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ABSTRACT 

The Internet can be conceptualized as a useful tool for providing people with a 

vast array of mental health information at the click of a button. Despite this plethora of 

available knowledge, oftentimes the information that is presented on popular physical 

and mental health websites is written for an audience with a reading grade level higher 

than the national 6
th

-8
th

 grade average. Although the CDC has developed guidelines 

for developing online patient health materials that account for disparities in health 

literacy across various socio-demographic groups, adherence to these guidelines is 

largely poor and minimally monitored. This discrepancy can have broad public health 

implications when considering the suggested relationship between low health literacy 

and poor health outcomes.  

The present study systematically examines grade level readability scores for 

online information describing sixteen different mental health disorders, extracted from 

six highly utilized mental health websites, using a general estimating equations 

approach. In order to best understand this problem, two manuscripts are presented 

herein. The first manuscript focuses on public health concerns associated with higher 

than average reading grade level estimates of online mental health materials, whereas 

the second manuscript focuses on the methodology used to make these determinations. 

Results suggest that reading grade level estimates of publicly available online mental 

health information are much higher than the 6
th

 – 8
th

 grade levels suggested by the 

CDC, such that the average reader will not be able to effectively understand the 

selected text. This finding can have broad implications from a public health 

perspective and maintain existing health disparities. 
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PREFACE 

The manuscript format is in use. Two manuscripts are presented herein. The first 

manuscript describes in detail the problem under investigation and the results of the 

study conducted by the authors, and will be submitted to the American Journal of 

Public Health. The second manuscript describes the methodology used in the study in 

greater detail, with a particular emphasis on how these methods can be applied by 

public health and/or psychology researchers. The second manuscript will be submitted 

to the journal of Evaluation and the Health Professions.  
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Abstract 

 The Internet can be conceptualized as a useful tool for providing people with a 

vast array of mental health information at the click of a button. Despite this plethora of 

available knowledge, oftentimes the information that is presented on popular physical 

and mental health websites is written for an audience with a reading grade level higher 

than the national 6
th

-8
th

 grade average. Although the CDC has developed guidelines 

for developing online patient health materials that account for disparities in health 

literacy across various socio-demographic groups, adherence to these guidelines is 

largely poor and minimally monitored. This discrepancy can have broad public health 

implications when considering the suggested relationship between low health literacy 

and poor health outcomes. The present study systematically examined grade level 

readability scores for online information describing sixteen different mental health 

disorders, extracted from six highly utilized mental health websites, using a general 

estimating equations approach.  
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Introduction 

 In light of the massive expansion of the Internet over the last decade, a plethora 

of information has now become available on almost any topic imaginable. Given the 

existing socioeconomically and geographically- based health disparities in the United 

States, this treasure trove of knowledge can help to inform decision-making on 

important physical and mental health topics ranging from signs and symptoms of heart 

disease, to mental health concerns such as substance use and anxiety. Indeed, in a few 

short keystrokes, people now have access to a myriad of information from multiple 

sources via popular online search engines such as Google, Bing, Yahoo, and Ask.com.  

 However, despite the popularity of online health materials as a vital source of 

information from which to make important health-related decisions, little attention has 

been paid to the readability of these materials, where readability refers to a systematic 

measure of ease with which a passage of text can be read (Albright, de Guzman, 

Acebo, Paiva, Faulkner, & Swanson, 1996; McInnes & Haglund, 2011). This lack of 

attention to readability of online public health information is particularly problematic 

considering that approximately 35% of US citizens have basic and below basic health 

literacy, 53% have intermediate health literacy, and only 12% have proficient health 

literacy. Here, health literacy is defined as the ability to search for, comprehend, and 

utilize written health education materials to make educated healthcare decisions 

(Berkman, Sheridan, Donahue, Halpern & Crotty, 2011; Berkman, Sheridan, 

Donahue, Halpern, Viera, & Crotty, et al., 2011; Kutner, Greenberg, Jin & Paulsen, 

2006; Committee on Health Literacy, 2004).  
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 The purpose of this report is to compare the current readability estimates of 

several popular mental health-related topics from various online sites, to determine 

whether there are systematic differences in grade-level readability based on topic 

and/or source from which the information was obtained. The following disorders were 

considered for analysis based on their 12-month prevalence rates for adults within the 

United States population: specific phobia – 8.7% (National Institute of Mental Health, 

2016); substance abuse/addiction – 8.2% (Substance Abuse and Mental Health 

Services Administration, 2014); alcohol abuse/alcoholism – 6.8% (National Institute 

on Alcohol Abuse and Alcoholism, 2016); social phobia – 6.8% (National Institute of 

Mental Health, 2016); major depressive disorder (MDD) – 6.7% (Center for 

Behavioral Health Statistics and Quality, 2015); attention deficit/hyperactivity 

disorder (ADHD) – 4.1%; post-traumatic stress disorder (PTSD) – 3.5%; generalized 

anxiety disorder (GAD) – 3.1%; panic disorder – 2.7%; bipolar disorder – 2.6%; 

borderline personality disorder – 1.6%; schizophrenia – 1.1%; obsessive compulsive 

disorder (OCD) – 1.0%; agoraphobia - .8%; bulimia nervosa - .3%; and anorexia 

nervosa – lifetime prevalence .6% (National Institute of Mental Health, 2016).  

 Results from this study can be used to create a general set of readability 

guidelines from which to modify existing online mental health-related materials and/or 

compile new information in a manner that is consistent with the reading level and 

education of the general population. Indeed, it is possible that by illustrating the 

educational bias inherent in much of the written mental health information that is 

available online, we can begin to address ways in which to reduce this gap and serve 

those who are most in need (World Health Organization, 2010).  
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 Although there is some research examining readability scores for a range of 

physical conditions (see, for example, Brigo, Otte, Igwe, Tezzon & Nardone, 2015; 

Colaco, Svider, Agarwal, Eloy & Jackson, 2013; Misra, Agarwal, Kasabwala, 

Hansberry, Setzen & Eloy, 2013; or Svider, Agarwal, Choudhry, Hajart, Baredes, & 

Liu et al., 2013), little if no attention has been paid to assessing readability of online 

mental health materials. Furthermore, only one study to date has explored the topic of 

readability using a mixed modeling approach (McEnteggart, Naeem, Skierkowski, 

Baird, Ahn & Soares, 2015). Hence, this study is novel in that it is the first of its kind 

to explore the readability of mental health-related information for 16 of the most 

prevalent mental health disorders, using data extracted from several of the most 

popular mental health websites, using multiple readability indices. 

Who uses the Internet in the United States? 

 According to a recent study by the Pew Research Center (Perrin & Duggan, 

2015), 84% of all Americans use the Internet. Given the heterogeneity of the U.S. 

population, as well as vast differences in access to technological resources across 

various socioeconomic spheres, it is important to further examine rates of use by level 

of education, income, race/ethnicity, gender, and age. For instance, 95% of college- 

educated Americans use the Internet, as compared with 90% of those with some 

college education, 76% of those with a high school degree, and 66% with less than a 

high school diploma (Perrin & Duggan, 2015).  

 Likewise, 95 - 97% of those earning more than $50,000 per year are Internet 

users, as compared with 85% of individuals earning between $30,000 - $49,999, and 

74% earning less than $30,000 annually. Despite these gaps, there has been much 
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growth in Internet use over the past 15 years among those in lower-income households 

and lower levels of educational attainment, such that class differences have shrunk 

somewhat and many are now able to regularly access this resource from a range of 

technological platforms (Perrin & Duggan, 2015).  

 Examination of Internet use by race/ethnicity reveals that 97% of English-

speaking Asian individuals use the Internet regularly, as compared with 85% of non-

Hispanic Whites, 81% of Hispanics, and 78% of non-Hispanic Blacks. Similar rates of 

use are evidenced across genders, with 85% of men, and 84% of women indicating 

Internet use (Perrin & Duggan, 2015). Lastly, a breakdown of use by age indicates that 

96% of adults ages 18-29, 93% of adults ages 30 – 49, 81% of adults ages 50-64, and 

58% of adults ages 65 or older are Internet users. Although older adults have 

traditionally been the slowest age group to adopt this technology, a majority of senior 

citizens now indicate regular Internet use (Perrin & Duggan, 2015).  

 Despite some differences in rates of adoption among these heterogeneous 

groups, it is fair to state that a majority of Americans are using the Internet on a 

regular basis. Hence, there is much potential to utilize this tool to empower people to 

make more informed choices about their mental health care needs. However, in order 

to make specific recommendations and develop an action plan for increasing access to, 

and comprehension of, online mental health materials, it is first important to examine 

how people are currently seeking health information on the Internet, as well as how 

these behaviors are related to users’ general sense of health literacy. 

How are people using the Internet to acquire health-related information? 
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 According to a 2012 study conducted by the Pew Research Center, 

approximately 72% of Internet users reported seeking health information online within 

the past 12 months (Fox & Duggan, 2013). Likewise, 77% of online health seekers 

reported beginning their search at a general search engine website such as Google, 

Bing, or Yahoo, whereas approximately 13% reported beginning at a more specialized 

medical website such as WebMd.com.  Furthermore, 55% of users reported searching 

for a specific disease or medical problem, and 43% reported searching for a certain 

medical treatment or procedure. Approximately half of users reported searching for a 

close family member or friend (Fox & Duggan, 2013).  

 In addition, 35% of U.S. adults indicated that they have specifically gone 

online to find out what condition they or someone else might have, and 46% of these 

‘online diagnosers’ reported that the information obtained led them to think they 

needed medical intervention (Fox & Duggan, 2013). The remaining 38% reported 

saying that they could take care of the issue themselves at home, with 11% being 

ambivalent about the decision to seek additional medical care. Participants also 

reported on the accuracy of their initial diagnosis, with 43% indicating that a medical 

professional confirmed or partially confirmed their hypothesis, 35% indicating they 

did not visit a professional, and 18% indicating that a medical professional either 

disagreed with the initial diagnosis or offered an alternate medical opinion (Fox & 

Duggan, 2013).  

Health literacy  

 These statistics are important when considering the potential gravity of 

misdiagnosing or ignoring a serious medical problem based on written information 
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obtained online, particularly when this information is only readable by a small 

fragment of the population. Indeed, given that approximately 77 million Americans 

have basic to below basic health literacy, defined as the ability to read, understand, 

locate, and interpret health-related information correctly in text (America’s Health 

Literacy, 2008), and that the average reading level across the United States is no 

higher than the 6
th

 - 8
th

 grade (Kutner, Greenberg, Jin, & Paulsen, 2006; Paasche-

Orlow, Parker, Gazmararian, Nielsen-Bohlman & Rudd, 2005), it is important that 

health information be written at a level that is accessible by the majority of consumers.  

According to the U.S. Department of Health and Human Services’ Office of 

Disease Prevention and Health Promotion report on Health Communication Activities 

(2008), results from the National Assessment of Adult Literacy survey suggest that 

health literacy is an issue for all racial and ethnic groups, with 28% of Whites, 57% of 

Blacks, 65% of Hispanics, and 34% of Others (including Asians, Native Americans, 

and multi-racial adults) in the basic to below basic health literacy groups. Within the 

scope of this study, health literacy was defined as the ability to successfully: read a set 

of short instructions and identify what is permissible to drink before a medical test 

(below basic health literacy); read a pamphlet and give two reasons why a person with 

no symptoms should be tested for a disease (basic health literacy); read instructions on 

a prescription label and determine at what time a person can take the medication 

(intermediate health literacy); and, using a table, calculate an employee’s share of 

health insurance costs for one year (proficient health literacy).  

Results from this study also indicated that lower health literacy is associated 

with less education: 76% of individuals with less than a high school degree, 44% of 
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those with a high school diploma, 21% of those who had completed some education 

beyond high school, and 12% of those with a Bachelor’s degree or higher, were at the 

below basic or basic levels for health literacy. Likewise, uninsured adults (53%) and 

those enrolled in Medicare (57%) and Medicaid (60%) were more likely to be at the 

below basic or basic levels than those who received insurance from an employer 

(24%). Interestingly, only 15% of adults with below basic health literacy indicated 

using the Internet “some” or “a lot” of the time for obtaining health information, as 

compared with 31% of those with basic health literacy, 49% with intermediate health 

literacy, and 62% of those with proficient health literacy (America’s Health Literacy, 

2008). Clearly, marketing online health information for the 12% of users who possess 

proficient health literacy only serves to perpetuate existing health disparities and limits 

access to valuable resources to a thin and privileged slice of the population. Policy 

implications from the Office of Disease Prevention and Health Promotion report 

(2008) suggest that there is an urgent need to address the gap between publicly 

available health information and existing realities in health literacy levels across 

various socio-demographic spheres.  

 The importance of accessibility to comprehensible text becomes even more 

apparent considering that individuals with low health literacy are at higher risk for 

poorer access to care, experience poorer health outcomes (Berkman, Sheridan, 

Donahue, Halpern, & Crotty, 2011), and have higher hospitalization rates than 

individuals with high health literacy (McInnes & Haglund, 2011).  According to a 

number of reports (Baker, Parker, Williams, & Clark, 1998; Baker et al., 2002; 

Gordon, Hampson, Capell, & Madhok, 2002; Scott, Gazmararian, Williams, & Baker, 
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2002), individuals with low health literacy make greater use of treatment services, as 

compared with services designed to prevent the onset of disease or lessen serious 

complications. This results in an estimated $50 - $73 billion dollars in additional 

health care costs annually in the United States. It is possible that one way to attenuate 

these costs might be to match the readability of written healthcare information to 

national reading grade level averages, or below. Although this is clearly not a catch-all 

strategy for reducing the financial burden associated with poor health outcomes, it is 

an important first step in addressing existing disparities in health literacy, and 

providing consumers with usable information from which they can make more 

informed decisions about their own, or loved ones’, mental healthcare needs.    

Readability 

 In accordance with this theme, several national organizations including the 

Centers for Disease Control and Prevention (CDC) and the American Medical 

Association (AMA) recommend that health information be written at a 6
th

 – 8
th

 grade 

reading level (Neuhauser & Paul, 2011; Weis, 2003). Grade level estimates of written 

text are synonymous with the concept of readability, which can be calculated in a 

number of ways. Typically, readability formulas give a general estimate of how 

difficult a text is to read based on the average number of syllables per word, and 

number of words per sentence. The readability score estimated from these formulas 

refers to the grade level people need to have completed to be able to read the text. It is 

important to remember that readability does not equate to comprehension, which can 

oftentimes be two or more grade levels below reading or education level, and drops 

when a person is under stress (McInnes & Haglund, 2011). Indeed, even individuals 
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with strong literacy skills and high educational attainment can face health literacy 

challenges, particularly when faced with: being diagnosed with a serious medical or 

mental illness that requires complicated self-care; unfamiliarity with opaque medical 

terminology and processes; and/or having to interpret numbers or risks in order to 

make challenging healthcare decisions (America’s Health Literacy, 2008). 

 Common readability indices include the Automated Readability Index, 

Coleman Liau Index, Simple Measure of Gobbledygook (SMOG), Gunning Frequency 

of Gobbledygook (FOG) score, and Flesch-Kincaid Grade Level (Friedman & 

Hoffman-Goetz, 2006). These indices generate reading level scores based on unique 

formulas or algorithms, hence increasing the probability that scores obtained from 

each index will exhibit marked variability. Given that these five indices were used to 

assess the same sample of text for each disorder in this study, a modeling approach 

that takes into consideration clustering within the data was necessary in order to 

examine the relationship between website (source) and topic area (subject), when 

accounting for variability in reading grade level scores by index. This approach 

provides a robust method for assessing differences in readability scores between, and 

within, websites and content areas, respectively.  

In summary, the purpose of this project was to systematically examine reading 

grade levels for 16 common mental health disorders from the top 6 websites common 

to all disorders. A significant source by content area interaction was hypothesized 

when accounting for the variability in reading level estimates generated by various 

indices, such that grade level estimates for various disorders were expected to vary 

based on the website text was derived from. It was also hypothesized that written text 
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for some of the more serious mental illnesses examined, such as schizophrenia, bipolar 

disorder, and borderline personality disorder, would have the highest reading level 

estimates, as compared with text from other disorders. Given the dearth of attention 

bestowed upon the readability of patient mental health materials in the past, it was 

expected that text from all websites would exceed the recommended 6
th

 to 8
th

 grade 

guidelines suggested by the CDC and the AMA. 
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Methods 

Materials  

 According to the website ebizMBA.com, Google, Bing, Yahoo, Ask, and 

AOL.com, respectively, have been named the top five search engines of 2015.  

Because different Internet search engines may produce unique results for the same 

query based on numerous factors (including an individual’s location and browsing 

history), top website hits for the sixteen disorders selected for analysis were explored 

using all five search engines. That is, each term of interest was entered using Google, 

Bing, Yahoo, Ask, and AOL, and the top fifteen website hits for each query were 

recorded and examined for consistency across search engines. This process of 

exploration and elimination resulted in the following list of six common websites that 

contain information for all disorders under investigation: Wikipedia.com, 

MayoClinic.org, PsychCentral.com, MedicineNet.com, HealthLine.com, and 

WebMd.com.  

 Information from the ‘About Us’ or ‘About’ tab on MayoClinic.org, 

PsychCentral.com, MedicineNet.com, HealthLine.com, and WebMd.com suggests that 

information on these sites is monitored and maintained by a team of editors, 

physicians, and other healthcare professionals. Indeed, as of July 14, 2016, 

information on the HealthLine.com site claims that “Health seekers have made us the 

fastest growing health information site. Over 40 million people turn to Healthline 

every month”. Likewise, the MedicineNet.com site states that “MedicineNet is an 

online, healthcare media publishing company. We provide easy-to-read, in-depth, 

authoritative medical information for consumers via its robust, user-friendly, 
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interactive website. Founded in 1996, MedicineNet.com has had a highly 

accomplished, uniquely experienced team of qualified executives in the fields of 

medicine, healthcare, Internet technology, and business to bring you the most 

comprehensive, sought-after healthcare information anywhere. Nationally recognized, 

doctor-produced by a network of more than 70 U.S. board-certified physicians, 

MedicineNet.com and onhealth.com are trusted sources for online health and medical 

information”. Despite being acquired by WebMd.com in 2004, MedicineNet.com 

maintains that it operates under this original vision. In light of this claim, and for the 

purposes of this study, information from MedicineNet.com was deemed independent 

from information obtained from WebMd.com. 

 Information obtained from the WebMd.com website indicates that “WebMD 

has created an organization that we believe fulfills the promise of health information 

on the Internet. We provide credible information, supportive communities, and in-

depth reference material about health subjects that matter to you. We are a source for 

original and timely health information as well as material from well-known content 

providers”. Information obtained from the MayoClinic.com website also indicates that 

“The product development team consists of experts in content development and 

production, product management, and user experience and design. Because physicians, 

scientists and other medical experts dedicate a portion of their clinical time to this site, 

we are in the unique position to give you access to the knowledge and experience of 

Mayo Clinic”. Although the MayoClinic.com site provides detailed information about 

the mental health disorders and conditions explored in this study, as of July, 2016, the 



 

15 

 

site does not name any psychologists, psychiatrists, or licensed mental health workers 

under its list of specialty medical editors.  

 Information obtained from the PsychCentral.com website claims that its credo 

is to “Provide the best evidence-based mental health & psychology information, 

regardless of profession. All voices are important and should be elevated in the 

discourse about mental illness & mental health”, and that “Psych Central is the 

Internet’s largest and oldest independent mental health social network. Since 1995, our 

award-winning website has been run by mental health professionals offering reliable, 

trusted information and over 250 support groups to consumers. We are today’s modern 

voice for mental health information, emotional support and advocacy. With the 

broadest online reach and recognition of any mental health network today, we touch 

the lives of over 7 million people around the world every month”. 

 Unlike the other sites examined, Wikipedia.com is owned by the non-profit 

organization Wikimedia Foundation and is described on the site Wikipedia.com as “a 

free Internet encyclopedia that allows its users to edit almost any article accessible. 

Wikipedia is the largest and most popular general reference work on the Internet and 

is ranked among the ten most popular websites”. Clearly, Wikipedia.com is not 

managed by a board of mental health professionals, and its users generate and edit 

most of the mental health content posted on the site. However, given its popularity, 

Internet users searching for medical and mental health conditions are often directed to 

this site for key information. 

 A selection of text from each website, for each disorder, was extracted and 

saved in a Word document as a simple text file during the last two weeks of October, 
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2015. All commas, quotation marks, apostrophes, hyperlinks, references, and headings 

were removed from the text, as specified by common guidelines for readability 

analysis (DuBay, 2004). All bulleted lists and sentence fragments followed by a colon 

or semicolon were also removed. The final word count for selected texts ranged from 

approximately 150 to 600 words; the average number of words per sentence ranged 

from approximately 10 to 30 words; and the average number of syllables per word 

ranged from 1.5 to 2.5.  

 Text was processed by pasting extractions into the appropriate field on the 

website read-able.com. This website is one of many free, online readability 

calculators, and generates five different grade-level readability estimates. Readability 

estimates derived from this site were cross-referenced with estimates from indices 

available on readability-score.com and readability-formulas.com. Specific indices 

examined included the Automatic Readability Index, Coleman Readability Index, 

SMOG, Gunning Fog Grade Level, and Flesch-Kincaid Grade Level Index.  

 The Flesch-Kincaid Grade Level and SMOG indices generate an approximate 

grade level score at which an average U.S. student in that grade can read the text. For 

example, a Flesch-Kincaid or SMOG score of 8.3 indicates that an average student in 

the eighth grade can read the text in question. Although the specific formulas for each 

index vary slightly, both scores are dependent on the number of syllables per word, 

and number of words per sentence in the text passage under investigation. Similarly, 

the Gunning Fog Grade level utilizes average sentence length and percentage of hard 

words (words that contain more than 3 syllables) to generate a grade level for written 

text, such that the ideal Fog score is a 7 or 8. Materials that receive a score of 10 are 
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considered hard, 15 are considered difficult, and 20 are considered very difficult 

(DuBay, 2004).  

 Unlike the aforementioned indices, the Coleman-Liau and Automated 

Readability Index generate a readability estimate that takes into consideration the 

number of characters per word, as well as the number of words per sentence. Hence, 

although each index employs a different mathematical formula to arrive at a grade 

level score, scores should largely be consistent across indices.  

Statistical analyses 

 For the purposes of this analysis, each of the selected reading level indices 

served as a separate rater of the same excerpt of text. Hence, reading level scores were 

clustered by rater (index), with each rater examining a total of 96 excerpts of text, for 

sixteen disorders, from six different websites. Because we were not interested in 

exploring differences in reading level scores between raters, and the raters chosen 

were conceptualized as a representative selection of the entire body of available raters 

(reading level indices), a population-averaged or generalized estimating equations 

(GEE) approach was utilized to explore systematic differences between websites, 

content areas, and website by content area interactions on population averaged reading 

grade level scores.  

GEE’s are typically used to estimate population-average or marginal models 

that describe changes in the population mean of a given variable in relation to other 

important covariates, while also taking into account subject specific non-independence 

among observations (Hubbard et al., 2010). Although the authors considered using the 

mean score for all raters for each disorder to explore differences in reading level 
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scores across disorders and websites, this approach reduces the number of 

measurements in each subject cluster to one data point, which may reduce power. 

Hence, specific statistical methodologies, such as GEE, that accommodate correlations 

within clusters were considered more appropriate for the questions explored in this 

study. 



 

19 

 

Results 

Preliminary Analyses. Data were analyzed using SAS Version 9.3 (Carey Institute, 

N.C.), and SPSS Version 21 (IBM, 2012). In order to determine the need for more 

complicated methodological techniques, the Intraclass Correlation Coefficient (ICC) 

was first calculated for rater (index). The ICC can be conceptualized as a general 

measurement of agreement or consistency between two or more raters or measuring 

methods, where a value of ‘1’ represents perfect agreement, and a value of ‘0’ 

represents no agreement at all.  The purpose of this preliminary analysis was to 

determine the extent of variability in reading level scores attributable to differences in 

rating algorithms utilized by each index selected. Because we were primarily 

interested in exploring how reading level scores vary by website and content area, it 

was important to take this variability into careful consideration; evidence for 

variability by index would suggest a clustering effect in the data that would need to be 

accounted for in all subsequent analyses.  

A two-way random effects model was specified for rater in order to assess 

variability in reading level scores between raters. A two-way random effects model 

was selected because the same indices were used to assess all selections of text, and 

the indices selected were chosen from a population of available indices used to 

calculate grade reading level scores. The ICC (2) assumes that the variance of the 

raters serves to add noise to any ratings obtained, and that the mean of rater error is 

zero. Results indicated that the estimated reliability between indices was 82.1%, with 

95% CI [76.9, 86.6], using a consistency definition. As can be seen in Table 1 below, 

the mean for reading level scores generated by the Gunning Fog index was highest and 
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had the largest variability, whereas the mean for reading level scores generated by the 

SMOG index was lowest and had the smallest variability of the indices selected.  

Overall, the indices selected were largely consistent in their ratings of 

readability across disorders and/or websites. Hence, it could be concluded that the 

indices chosen demonstrated sufficient consistency for further analysis. Given that the 

researchers were: 1) not interested in examining specific differences between raters 

(indices) across websites and disorders; and 2) wanted to increase power by retaining 

as much information as possible from the original dataset (collapsing the data by 

calculating a mean score for each disorder from each website would reduce the 

number of available data points from 480, with all raters considered separately, to 96 

when scores are averaged), a GEE approach was utilized to account for any natural 

variation in outcomes attributable to rater specific effects. 

Index Mean Std. Deviation 

Auto Readability Index 11.766 2.5710 

Coleman 14.523 1.6711 

FK Grade Level 12.263 2.2784 

Gunning Fog 15.625 2.5924 

SMOG 11.377 1.8263 

 Table 1: Mean readability ratings by index  

 

Main Analyses. Reading level values extracted from the websites sampled ranged from 

1.3 to 21.5, with a mean of 13.07, and standard deviation of 2.85 (N = 480). Results 

from a one-sample t-test exploring differences between mean readability estimates 

obtained across all websites and disorders and the national 8
th

 grade average suggest 

that the mean of the obtained sample is significantly higher than the national average, 

(mean difference = 5.04, p < .001, t =52.27, 95% CI of difference [4.85, 5.23]).   
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 Results from the GEE suggest a significant website by content area interaction, 


2
(4, 480) = 192.57, p <.001, when controlling for the presumed interdependencies 

between scores across indices. The main effects of subject, 
2
(4, 480) = 436.92, p 

<.001, and website, 
2
(4, 480) = 1446.20, p <.001, were also significant at the .05 

level.  Significance tests for all reported pairwise comparisons were adjusted using the 

Holm-Bonferroni method (Holms, 1979). See Figure 1 and Table 2 for specific details 

regarding pairwise comparisons. 

Interaction Effects. Specific phobia (8.7% prevalence). Results for specific 

phobia suggest that text obtained from MedicineNet.com had the highest reading 

grade level estimate (grade level estimate = 16.10, 95% CI [14.59, 17.62]), as 

compared with estimates for text obtained from WebMd.com (p <.001, grade level 

estimate = 13.62, 95% CI [11.82, 15.42]), PsychCentral.com (p <.001, grade level 

estimate = 13.48, 95% CI [11.90, 15.07]), MayoClinic.com (p <.001, grade level 

estimate = 12.88, 95% CI [11.26, 14.51]), HealthLine.com (p <.001, grade level 

estimate = 11.16, 95% CI [9.44, 12.88]), and Wikipedia.com (p <.001, grade level 

estimate = 10.32, 95% CI [8.47, 12.17]), respectively.  All comparisons with 

MedicineNet.com reached statistical significance at the .05 level. Reading level 

estimates were consistent with a mid-high school to college level reading level and 

well exceeded the recommended 6
th

 to 8
th

 grade reading level guidelines. 

Substance abuse (8.2% prevalence). Results for substance abuse suggest that 

text obtained from Wikipedia.com had the highest reading grade level estimate (grade 

level estimate = 14.20, 95% CI [12.75, 15.66]), as compared with estimates for text 

obtained from PsychCentral.com (p = 1.0, grade level estimate = 12.96, 95% CI 
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[10.61, 15.31]), MedicineNet.com (p = 1.0, grade level estimate = 12.62, 95% CI 

[10.64, 14.60]), MayoClinic.com (p <.001, grade level estimate = 11.12, 95% CI 

[9.72, 12.52]),  WebMd.com (p = .001, grade level estimate = 11.10, 95% CI [9.84, 

12.36]), and HealthLine.com (p <.001, grade level estimate = 10.62, 95% CI [8.95, 

12.29]), respectively. Only comparisons between Wikipedia.com and 

MayoClinic.com, WebMd.com, and HealthLine.com, respectively, reached a level of 

statistical significance at the .05 level. All grade level estimates exceeded the 

recommended 6
th

 to 8
th

 grade guidelines and were consistent with a high school to 

college age reading level. 

Alcoholism (6.8% prevalence). Results suggest that content related to 

alcoholism derived from the MedicineNet.com site had the highest reading grade level 

estimate (grade level estimate = 16.46, 95% CI [14.86, 18.06]), as compared with 

WebMD.com (p = .011, grade level estimate = 13.42, 95% CI [11.91, 14.93]), 

Wikipedia.com (p <.001, grade level estimate = 11.2, 95% CI [9.83, 12.57]), 

HealthLine.com (p <.001, grade level estimate = 10.98, 95% CI [9.23, 12.73]), and 

MayoClinic.com (p <.001, grade level estimate = 10.18, 95% CI [9.11, 11.25]), in 

descending order. The difference in estimates between MedicineNet.com and 

PsychCentral.com (grade level estimate = 12.46, 95% CI [10.93, 13.99]) was not 

significant (p = .056, 95% CI [-.023, 8.02]); all other comparisons reached 

significance at the .05 level. However, no reading grade level estimate from the 

websites examined approached the suggested 6
th

 -8
th

 grade reading level. 

Social phobia (6.8% prevalence). Results for social phobia suggest that text 

obtained from Wikipedia.com had the highest reading grade level estimate (grade 
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level estimate = 15.64, 95% CI [14.16, 17.12]), as compared with estimates for text 

obtained from MedicineNet.com (p = 1.0, grade level estimate = 15.10, 95% CI 

[13.04, 17.16]), MayoClinic.com (p = .315, grade level estimate = 14.78, 95% CI 

[13.24, 16.32]), WebMd.com (p <.001, grade level estimate = 14.44, 95% CI [12.87, 

16.01]), PsychCentral.com (p <.001, grade level estimate = 12.6, 95% CI [11.39, 

13.81]), and HealthLine.com (p <.001, grade level estimate = 11.8, 95% CI [9.86, 

13.74]), respectively. Only comparisons between Wikipedia.com and WebMd.com, 

PsychCentral.com, and HealthLine.com, respectively, reached statistical significance 

at the .05 level. All estimates well exceeded the recommended reading level guidelines 

and were consistent with an advanced high school to college reading grade level.  

Major depressive disorder (MDD) (6.7% prevalence). Results for MDD 

suggest that text obtained from Wikipedia.com had the highest reading grade level 

(grade level estimate = 15.04, 95% CI [13.61, 16.47], as compared with 

HealthLine.com (p = 1.0, grade level estimate = 14.8, 95% CI [13.06, 16.53]), 

WebMd.com (p = 1.0, grade level estimate = 14.6, 95% CI [12.88, 16.32]), 

MedicineNet.com (p <.001, grade level estimate = 14.18, 95% CI [12.60, 15.76]), 

MayoClinic.com (p <.001, grade level estimate = 11.76, 95% CI [10.22, 13.31]), and 

PsychCentral.com (p <.001, grade level estimate = 11.72, 95% CI [10.07, 13.37]), 

respectively. Scores obtained from Wikipedia.com were significantly different from 

scores obtained from MedicineNet.com, MayoClinic.com, and PsychCentral.com, 

respectively, but not for HealthLine.com or WebMd.com. All estimates for major 

depressive disorder exceeded the recommended guidelines and were consistent with a 

high school to college reading grade level. 
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Attention deficit and hyperactivity disorder (ADHD) (4.1% prevalence) 

Examination of corrected pairwise comparisons suggests that for ADHD, the 

population averaged reading grade level estimate obtained from MedicineNet.com 

(grade level estimate = 15.56, 95% CI [13.61, 17.52]), was significantly higher (at the 

.05 level) than the estimate obtained from Wikipedia.com (p <.001, grade level 

estimate = 13.08, 95% CI [11.61, 14.55]), MayoClinic.com (p <.001, grade level 

estimate = 12.36, 95% CI [10.71, 14.01]), and WebMd.com (p <.001, grade level 

estimate = 8.90, 95% CI [7.21, 10.60]), but not for HealthLine.com (p = 1.00, grade 

level estimate = 14.36, 95% CI [12.96, 15.76]) and PyschCentral.com (p = .389, grade 

level estimate = 13.56, 95% CI [12.44, 14.68]). Overall, MedicineNet.com had the 

highest reading grade level estimates, followed by HealthLine.com, 

PsychCentral.com, Wikipedia.com, MayoClinic.com, and WebMD.com, respectively. 

All estimates obtained for ADHD exceeded the recommended 6
th

 to 8
th

 grade reading 

level guidelines set forth by the CDC and other similar public health organizations.  

Post-traumatic stress disorder (PTSD) (3.5% prevalence). Results for PTSD 

suggest that text obtained from WebMD.com had the highest reading grade level 

estimate (grade level estimate = 15.44, 95% CI [13.99, 16.89]), as compared with 

estimates obtained from MedicineNet.com (p <.001, grade level estimate = 14.64, 

95% CI [13.32, 15.96]), Wikipedia.com (p <.001, grade level estimate = 13.82, 95% 

CI [12.53, 15.11]), PsychCentral.com (p <.001, grade level estimate = 12.76, 95% CI 

[11.35, 14.18]), MayoClinic.com (p <.001, grade level estimate = 11.54, 95% CI 

[10.21, 12.87]), and HealthLine.com (p <.001, grade level estimate = 11.48, 95% CI 

[9.87, 13.09]), respectively. All comparisons with WebMd.com reached statistical 
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significance at the .05 level, exceeded the recommended guidelines, and were 

consistent with a high school and above reading grade level.  

Generalized anxiety disorder (GAD) (3.1% prevalence). Examination of text 

obtained from MedicineNet.com related to generalized anxiety disorder revealed that 

MedicineNet.com had the highest reading grade level estimate (grade level estimate = 

16.04, 95% CI [13.92, 18.16]), as compared with text obtained from Wikipedia.com (p 

= 1.0, grade level estimate = 15.3, 95% CI [13.76, 16.84]), MayoClinic.com (p <.001, 

grade level estimate = 12.86, 95% CI [10.61, 15.11]), HealthLine.com (p = .938, grade 

level estimate = 12.6, 95% CI [11.31, 13.89]), WebMd.com (p = .689, grade level 

estimate = 12.4, 95% CI [10.64, 14.16]), and PsychCentral.com (p <.001, grade level 

estimate = 11.78, 95% CI [10.21, 13.35]), respectively. Reading level estimates from 

MedicineNet.com were significantly higher than estimates obtained from 

MayoClinic.com and PsychCentral.com, but not from Wikipedia.com, 

HealthLine.com, or WebMd.com. All estimates obtained for generalized anxiety 

disorder were consistent with a high school or above reading grade level and exceeded 

the recommended 6
th

 to 8
th

 grade reading level guidelines.  

Panic disorder (2.7% prevalence). Results for panic disorder suggest that text 

obtained from Wikipedia.com had the highest reading level estimate (grade level 

estimate = 14.74, 95% CI [13.33, 16.15]), as compared with estimates from 

MedicineNet.com (p <.001, grade level estimate = 12.52, 95% CI [11.30, 13.75]), 

WebMd.com (p <.001, grade level estimate = 12.3, 95% CI [11.07, 13.53]), 

HealthLine.com (p <.001, grade level estimate = 11.54, 95% CI [10.17, 12.91]), 

MayoClinic.com (p <.001, grade level estimate = 10.7, 95% CI [9.29, 12.11]), and 
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PsychCentral.com (p <.001, grade level estimate = 10.62, 95% CI [9.24, 12.00]), 

respectively. All comparisons reached statistical significance at the .05 level. 

Estimates from all websites for panic disorder exceeded the recommended 6
th

 to 8
th

 

grade guidelines and were consistent with a high school to college age reading level. 

Bipolar disorder (2.6% prevalence). Results suggest that reading grade level 

was highest for text derived from MedicineNet.com (grade level estimate = 16.56, 

95% CI [14.77, 18.35]), as compared with text obtained from MayoClinic.com (p 

=.013, grade level estimate = 15.24, 95% CI [13.38, 17.1]), PsychCentral.com (p 

<.001, grade level estimate = 13.9, 95% CI [12.33, 15.47]), Wikipedia.com (p <.001, 

grade level estimate = 11.66, 95% CI [10.01, 13.31]), and HealthLine.com (p <.001, 

grade level estimate = 11.46, 95% CI [9.21, 13.71]). The difference between scores 

obtained from MedicineNet.com and WebMd.com (p = 1.00, grade level estimate = 

15.68, 95% CI [13.66, 17.70]) was not significant. All estimates obtained for Bipolar 

disorder exceeded the recommended 6
th

 to 8
th

 grade reading level guidelines. 

Borderline personality disorder (BPD) (1.6% prevalence). Results indicate 

that text related to borderline personality disorder extracted from the 

MedicineNet.com site had the highest reading grade level estimate (grade level 

estimate = 17.90, 95% CI [16.09, 19.71]), as compared with text obtained from 

HealthLine.com (p <.001, grade level estimate = 12.38, 95% CI [10.54, 14.22]), 

MayoClinic.com (p <.001, grade level estimate = 11.58, 95% CI [10.11, 13.05]), and 

WebMd.com (p <.001, grade level estimate = 9.32, 95% CI [7.58, 11.06]). The 

difference between scores obtained from MedicineNet.com and PsychCentral.com (p 

= 1.0, grade level estimate = 17.36, 95% CI [15.38, 19.34]), and MedicineNet.com and 
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Wikipedia.com (p = 1.0, grade level estimate = 16.4, 95% CI [14.67, 18.33]), was not 

significant. Overall, text obtained from MedicineNet.com had the highest reading 

grade level estimates, followed by text from PsychCentral.com, Wikipedia.com, 

HealthLine.com, MayoClinic.com, and WebMd.com, respectively. However, all 

estimates exceeded the recommended 6
th

 to 8
th

 grade reading level guidelines. 

Schizophrenia (1.1% prevalence). Results for schizophrenia suggest that text 

obtained from MedicineNet.com had the highest reading grade level estimate (grade 

level estimate = 16.36, 95% CI [14.56, 18.16]), as compared with estimates for text 

obtained from PsychCentral.com (p <.001, grade level estimate = 14.66, 95% CI 

[13.12, 16.20]), WebMd.com (p <.001, grade level estimate = 13.54, 95% CI [11.83, 

15.25]), Wikipedia.com (p <.001, grade level estimate = 13.48, 95% CI [11.74, 

15.22]), HealthLine.com (p <.001, grade level estimate = 13.02, 95% CI [11.15, 

14.89]), and MayoClinic.com (p <.001, grade level estimate = 13.02, 95% CI [11.55, 

14.49]), respectively. All comparisons with MedicineNet.com reached statistical 

significance at the .05 level. Reading level estimates from all websites exceeded the 

recommended 6
th

 to 8
th

 grade guidelines and were consistent with a high school to 

college level and beyond reading level. 

Obsessive compulsive disorder (OCD) (1.0% prevalence). Results for OCD 

suggest that text obtained from MedicineNet.com had that highest reading grade level 

(grade level estimate = 14.9, 95% CI [13.41, 16.39]), as compared with WebMd.com 

(p = 1.0, grade level estimate = 13.78, 95% CI [12.25, 15.31]), PsychCentral.com (p = 

1.0, grade level estimate = 13.44, 95% CI [11.71, 15.18]), Wikipedia.com (p = .201, 

grade level estimate = 11.72, 95% CI [10.08, 13.36]), MayoClinic.com (p = .542, 
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grade level estimate = 11.66, 95% CI [9.74, 13.58]), and HealthLine.com (p = .005, 

grade level estimate = 11.0, 95% CI [9.16, 12.84]), respectively. Only the difference in 

reading level scores between MedicineNet.com and HealthLine.com was significant. 

All scores exceeded the recommended grade level guidelines and were consistent with 

an average high school and above reading level.  

Agoraphobia (.8% prevalence). Examination of corrected pairwise 

comparisons suggests that for Agoraphobia, the population-averaged reading grade 

level estimate obtained from MedicineNet.com (grade level estimate = 16.54, 96% CI 

[14.93, 18.15]) was significantly higher (at the .05 level) than the estimate obtained for 

Wikipedia.com (p <.001, grade level estimate = 13.5, 95% CI [12.23, 14.77]), 

MayoClinic.com (p <.001, grade level estimate = 12.14, 95% CI [10.97, 13.31]), 

HealthLine.com (p <.001, grade level estimate = 11.16, 95% CI [8.85, 13.47]), and 

WebMd.com (p <.001, grade level estimate = 5.62, 95% CI [4.17, 7.07]), but not for 

PsychCentral.com (p = .251, grade level estimate = 12.42. 95% CI [10.81, 14.03]). 

Only information obtained from WebMd.com met the recommended reading level 

guidelines for printed health materials.  

Bulimia nervosa (.3% prevalence). Exploration of results from Bonferroni-

corrected pairwise comparisons for Bulimia nervosa indicate that text obtained from 

MedicineNet.com had the highest reading grade level estimate (grade level estimate = 

15.02, 95% CI [13.55, 16.49]), followed by text obtained from WebMD.com (p = 1.0, 

grade level estimate = 14.98, 95% CI [13.60, 16.36]), PsychCentral.com (p = .048, 

grade level estimate = 13.96, 95% CI [12.50, 15.43]), MayoClinic.com (p <.001, grade 

level estimate = 12.04, 95% CI [10.59, 13.49]), HealthLine.com (p = .412, grade level 
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estimate = 11.82, 95% CI [9.90, 13.74]), and Wikipedia.com (p <.001, grade level 

estimate = 10.4, 95% CI [8.99, 11.81]), respectively. Only the difference in estimates 

between MedicineNet.com and MayoClinic.com, MedicineNet.com and 

Wikipedia.com, and MedicineNet.com and PsychCentral.com reached statistical 

significance at the .05 level. No estimates approached the recommended 6
th

 – 8
th

 grade 

reading level guidelines, and all estimates were consistent with a high school to 

college reading grade level. 

Anorexia nervosa (.6% lifetime prevalence). For anorexia nervosa, results 

indicate that reading grade level was highest for text derived from MedicineNet.com 

(grade level estimate = 15.32, 95% CI [13.88, 16.76]), as compared with text derived 

from WebMD.com (p <.001, grade level estimate = 14.1, 95% CI [12.66, 15.54]), 

PsychCentral.com (p <.001, grade level estimate = 13.0, 95% CI [11.45, 14.55]), 

MayoClinic.com (p <.001, grade level estimate = 12.64, 95% CI [11.26, 14.02]), 

HealthLine.com (p <.001, grade level estimate = 11.58, 95% CI [9.67, 13.49]), and 

Wikipedia (p <.001, grade level estimate = 10.12, 95% CI [8.62, 11.62]), respectively. 

No reading grade level estimates from the websites examined approached the 

suggested 6
th

 -8
th

 grade reading level guidelines. 

Figure 1: Readability estimates by website and disorder 
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Table 2: Reading Grade Level Estimates 

with 95% CI Estimate Lower 95% CL Upper 95% CL 

Agoraphobia 5.62 4.17 7.07 

HealthLine 11.16 8.85 13.47 

MayoClinic 12.14 10.97 13.31 

MedicineNet 16.54 14.93 18.15 

PsychCentral 12.42 10.81 14.03 

WebMd 5.62 4.17 7.07 

Wikipedia 13.5 12.23 14.77 

ADHD 8.9 7.21 10.6 

HealthLine 14.36 12.96 15.76 

MayoClinic 12.36 10.71 14.01 

MedicineNet 15.56 13.61 17.52 

PsychCentral 13.56 12.44 14.68 

WebMd 8.9 7.21 10.6 

Wikipedia 13.08 11.61 14.55 

Borderline Personality Disorder 9.32 7.58 11.06 

HealthLine 12.38 10.54 14.22 

MayoClinic 11.58 10.11 13.05 

MedicineNet 17.9 16.09 19.71 

PsychCentral 17.36 15.38 19.34 

WebMd 9.32 7.58 11.06 

Wikipedia 16.4 14.67 18.33 

Anorexia Nervosa 10.12 8.62 11.62 

HealthLine 11.58 9.67 13.49 

MayoClinic 12.64 11.26 14.02 

MedicineNet 15.32 13.88 16.76 

PsychCentral 13 11.45 14.55 

WebMd 14.1 12.66 15.54 

Wikipedia 10.12 8.62 11.62 

Alcoholism 10.18 9.11 11.25 

HealthLine 10.98 9.23 12.73 

MayoClinic 10.18 9.11 11.25 

MedicineNet 16.46 14.86 18.06 

PsychCentral 12.46 10.93 13.99 

WebMd 13.42 11.91 14.93 

Wikipedia 11.2 9.83 12.57 

Specific Phobia 10.32 8.47 12.17 

HealthLine 11.16 9.44 12.88 



 

31 

 

MayoClinic 12.88 11.26 14.51 

MedicineNet 16.1 14.59 17.62 

PsychCentral 13.48 11.9 15.07 

WebMd 13.62 11.82 15.42 

Wikipedia 10.32 8.47 12.17 

Bulimia Nervosa 10.4 8.99 11.81 

HealthLine 11.82 9.9 13.74 

MayoClinic 12.04 10.59 13.49 

MedicineNet 15.02 13.55 16.49 

PsychCentral 13.96 12.5 15.43 

WebMd 14.98 13.6 16.36 

Wikipedia 10.4 8.99 11.81 

Panic Disorder 10.62 9.24 12 

HealthLine 11.54 10.17 12.91 

MayoClinic 10.7 9.29 12.11 

MedicineNet 12.52 11.3 13.75 

PsychCentral 10.62 9.24 12 

WebMd 12.3 11.07 13.53 

Wikipedia 14.74 13.33 16.15 

Substance abuse 10.62 8.95 12.29 

HealthLine 10.62 8.95 12.29 

MayoClinic 11.12 9.72 12.52 

MedicineNet 12.62 10.64 14.6 

PsychCentral 12.96 10.61 15.31 

WebMd 11.1 9.84 12.36 

Wikipedia 14.2 12.75 15.66 

Bipolar Disorder 11.46 9.21 13.31 

HealthLine 11.46 9.21 13.71 

MayoClinic 15.24 13.38 17.1 

MedicineNet 16.56 14.77 18.35 

PsychCentral 13.9 12.33 15.47 

WebMd 15.68 13.66 17.7 

Wikipedia 11.66 10.01 13.31 

PTSD 11.48 9.87 12.87 

HealthLine 11.48 9.87 13.09 

MayoClinic 11.54 10.21 12.87 

MedicineNet 14.64 13.32 15.96 

PsychCentral 12.76 11.35 14.18 
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WebMd 15.44 13.99 16.89 

Wikipedia 13.82 12.53 15.11 

OCD 11.66 9.16 12.84 

HealthLine 

 

9.16 12.84 

MayoClinic 11.66 9.74 13.58 

MedicineNet 14.9 13.4 16.39 

PsychCentral 13.44 11.71 15.18 

WebMd 13.78 12.25 15.31 

Wikipedia 11.72 10.08 13.36 

MDD 11.72 10.07 13.31 

HealthLine 14.8 13.06 16.53 

MayoClinic 11.76 10.22 13.31 

MedicineNet 14.18 12.6 15.76 

PsychCentral 11.72 10.07 13.37 

WebMd 14.6 12.88 16.32 

Wikipedia 15.04 13.61 16.47 

GAD 11.78 10.21 13.35 

HealthLine 12.6 11.31 13.89 

MayoClinic 12.86 10.61 15.11 

MedicineNet 16.04 13.92 18.16 

PsychCentral 11.78 10.21 13.35 

WebMd 12.4 10.64 14.16 

Wikipedia 15.3 13.76 16.84 

Social phobia 11.8 9.86 13.74 

HealthLine 11.8 9.86 13.74 

MayoClinic 14.78 13.24 16.32 

MedicineNet 15.1 13.04 17.16 

PsychCentral 12.6 11.39 13.81 

WebMd 14.44 12.87 16.01 

Wikipedia 15.64 14.16 17.12 

Schizophrenia 13.02 11.15 14.49 

HealthLine 13.02 11.15 14.89 

MayoClinic 13.02 11.55 14.49 

MedicineNet 16.36 14.56 18.16 

PsychCentral 14.66 13.12 16.2 

WebMd 13.54 11.83 15.25 

Wikipedia 13.48 11.74 15.22 
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Main effects. Subject. Results suggest that the estimate for text related to 

borderline personality disorder had the highest reading grade level (grade level 

estimate = 14.157, 95% CI [12.75, 15.57]), as compared with all other disorders. The 

difference in estimates between borderline personality disorder and bipolar disorder 

(difference = .073, 95% CI [-1.01, 1.16]), social phobia (difference = .097, 95% CI [-

.593, .787]), schizophrenia (difference = .143, 95% CI [-1.06, 1.35]), MDD 

(difference = .473, 95% CI [-.012, .959]), and GAD (difference = .660, 95% CI [-.138, 

1.46]), respectively, was not significant at the .05 level. In summary, reading level 

estimates for borderline personality disorder, bipolar disorder, schizophrenia, MDD, 

and GAD ranged from 14.16 to 13.50; these estimates are well above the recommend 

guidelines and suggest an early college reading grade level.                         

Text related to borderline personality disorder was significantly higher in 

reading grade level as compared with text describing PTSD (difference = .877, 95% 

CI [.176, 1.58]), bulimia (difference = 1.12, 95% CI [.655, 1.59]), ADHD (difference 

= 1.19, 95% CI [.179, 2.20]), specific phobia (difference = 1.23, 95% CI [.402, 2.06]), 

anorexia (difference = 1.36, 95% CI [.784, 1.94]), OCD (difference = 1.41, 95% CI 

[.399, 2.41]), alcoholism (difference = 1.71, 95% CI [1.01, 2.40]), substance abuse 

(difference = 2.05, 95% CI [.964, 3.14]), panic disorder (difference = 2.09, 95% CI 

[1.26, 2.92]), and agoraphobia (difference = 2.26, 95% CI [-1.33, 3.19]). Reading level 

estimates for text related to these disorders ranged from 13.28 to 11.90; these 

estimates are well above the recommend guidelines and suggest an advanced high 

school to early college reading grade level. 
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Given the ranking of reading level estimates, and that there was a significant 

difference in estimates between borderline personality disorder and PTSD (the next 

highest-ranked disorder after GAD), pairwise comparisons were examined between 

PTSD and all remaining disorders in descending order of reading grade level. Results 

suggest that the difference in reading level estimates between PTSD (grade level 

estimate = 13.28, 95% CI [11.94, 14.64]) and bulimia (difference = .243, 95% CI [-

.610, 1.10]), ADHD (difference = .310, 95% CI [-.447, 1.07]), specific phobia 

(difference = .353, 95% CI [-1.00, 1.71]), anorexia (difference = .487, 95% CI [-.501, 

1.47]), and OCD (difference = .530, 95% CI [-.214, 1.27]), respectively, was not 

significant at the .05 level. Reading level estimates for these disorders ranged from 

13.28 to 12.75 and are consistent with an early college reading grade level.  

The reading level estimate for text describing PTSD was significantly higher 

than text describing alcoholism (difference = .830, 95% CI [.127, 1.53]), substance 

abuse (difference = 1.18, 95% CI [.140, 2.21]), panic disorder (difference = 1.21, 95% 

CI [.507, 1.91]), and agoraphobia (difference = 1.38, 95% CI [.084, 2.68]), 

respectively. Estimates for these disorders ranged from 12.45 to 11.90 and are 

consistent with an advanced high school/early college reading level.  

Exploration of comparisons in reading level estimates by type of disorder 

revealed that social phobia had the highest reading grade level estimate (grade level 

estimate = 14.06, 95% CI [12.50, 15.62]) of all of the anxiety disorders examined, 

including GAD (difference = .563, 95% CI [.073, 1.05]), PTSD (difference = .780, 

95% CI [.087, 1.47]), OCD (difference = 1.31, 95% CI [.759, 1.86]), panic disorder 

(difference = 1.99, 95% CI [1.44, 2.54]), and agoraphobia (difference = 2.16, 95% CI 
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[1.28, 3.04]). The difference between social phobia and specific phobia was not 

significant at the .05 level (difference = 1.13, 95% CI [-.058, 2.33]), nor was the 

difference between GAD and PTSD (difference = .217, 95% CI [-.595, 1.03]).   

There was no difference in reading level estimates (difference = .347, 95% CI 

[-.264, .957]) between alcoholism (grade level estimate = 12.45, 95% CI [11.13, 

13.77]), and substance abuse disorder (grade level estimate = 12.10, 95% CI [10.53, 

13.68]). Likewise, there was no difference in reading level estimates (difference = 

.400, 95% CI [-.752, 1.55]) for the two mood disorders examined, bipolar disorder 

(grade level estimate = 14.08, 95% CI [12.32, 15.85]), and MDD (grade level estimate 

= 13.68, 95% CI [12.22, 15.15]). Estimates for these disorders were consistent with an 

advanced high school reading level and are well above the recommended 6
th

 to 8
th

 

grade reading level guidelines for written patient health materials. 

However, there was a significant difference (difference = .243, 95% CI [.022, 

.464]) in reading level estimates for text describing bulimia nervosa (grade level 

estimate = 13.04, 95% CI [11.62, 14.45]), and anorexia nervosa (grade level estimate 

= 12.79, 95% CI [11.31, 14.28]). Both estimates are consistent with an advanced high 

school to early college reading grade level.  

Table 3: Mean readability 

estimates by subject 

Subject Mean 
Std. 

Error 

95% Wald 

Confidence 

Interval 

Lower Upper 

ADHD 12.970 .7439 11.512 14.428 

Agoraphobia 11.563 .9060 9.788 13.339 

Alcoholism 12.450 .6727 11.131 13.769 

Anorexia Nervosa 12.793 .7565 11.311 14.276 

Bipolar 14.083 .9004 12.319 15.848 

Borderline Personality Disorder 14.157 .7194 12.747 15.567 
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Bulimia Nervosa 13.037 .7221 11.621 14.452 

GAD 13.497 .8001 11.929 15.065 

MDD 13.683 .7482 12.217 15.150 

OCD 12.417 .9456 10.563 14.270 

Panic Disorder 12.070 .6590 10.778 13.362 

PTSD 13.280 .6921 11.924 14.636 

Schizophrenia 14.013 .8427 12.362 15.665 

Social Phobia 14.060 .7963 12.499 15.621 

Specific Phobia 12.927 .8243 11.311 14.542 

Substance Abuse 12.103 .8020 10.531 13.675 

 

Website. Overall, estimates for text obtained from MedicineNet.com had the 

highest reading level estimates of all websites examined (grade level estimate = 15.36, 

95% CI [13.85, 16.88]), including PsychCentral.com (difference = 2.20, 95% CI [1.56, 

3.53]), Wikipedia.com (difference = 2.20, 95% CI [1.40, 3.00]), WebMd.com 

(difference = 2.66, 95% CI [1.80, 3.53], MayoClinic.com (difference = 3.08, 95% CI 

[2.35, 3.82]), and HealthLine.com (difference = 3.38, 95% CI [2.07, 4.69]), 

respectively. The difference in estimates between PsychCentral.com (grade level 

estimate = 13.17, 95% CI [11.75, 14.59]), and Wikipedia.com (grade level estimate = 

13.16, 95% CI [11.71, 14.62]), was not significantly different (difference = .004, 95% 

CI [-.419, .426]), nor was the difference in estimates between Wikipedia.com and 

WebMd.com (difference = .461, 95% CI [-.143, 1.07]). Overall, all grade level 

estimates well exceeded the recommended reading level guidelines suggested by the 

CDC and other similar organizations, and were consistent with an average advanced 

high school to advanced college reading grade level.  
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Table 4: Mean 

readability estimates by 

website 

Website Mean Std. 

Error 

95% Wald 

Confidence 

Interval 

Lower Upper 

HealthLine 11.985 .8381 10.342 13.628 

MayoClinic 12.281 .7384 10.834 13.728 

MedicineNet 15.364 .7744 13.846 16.882 

PsychCentral 13.043 .7910 11.492 14.593 

WebMd 12.578 .7812 11.046 14.109 

Wikipedia 13.164 .7403 11.713 14.615 
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Discussion 

 Overall, aside from a key few instances, the reading grade level for all 

disorders across the websites examined far exceeded the suggested 6
th

 to 8
th

 grade 

reading level guidelines established by the CDC and other similar organizations. In 

some cases, (i.e. text related to borderline personality disorder from 

MedicineNet.com), the estimated reading grade level reached as high as 17.9. This 

estimate suggests that, on average, only individuals with an advanced graduate degree 

(grade 17.9) would be able to read the selected text effectively. In other instances, (i.e. 

text related to ADHD and Agoraphobia from WebMd.com), reading grade level 

estimates were much lower, and consistent with a 6
th

 to 8
th

 grade reading level, 

respectively. These estimates suggest that an individual who completed the 6
th

 to 8
th

 

grade could effectively read the selected text. However, all other estimates obtained 

were markedly higher, with a minimum average high school reading level required to 

effectively read the selected text. 

 Interestingly, text related to borderline personality disorder demonstrated the 

highest reading grade level estimate, followed by text related to bipolar disorder, 

social phobia, schizophrenia, MDD, and GAD, in descending order of grade level. 

Examination of estimates for these disorders generally suggests that an individual with 

an average post-high school reading level could effectively read the segments of text 

selected for analysis. Given the severity of impairment often associated with these 

disorders (particularly borderline personality disorder, bipolar disorder, and 

schizophrenia), it could be surmised that the information available online from the 

websites surveyed is not only relatively inaccessible to most healthy consumers, but 
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particularly to those struggling with serious mental illness. Indeed, as noted by 

Revheim et al., (2014), individuals with schizophrenia commonly display severe 

deficits in reading ability. Likewise, given impairments in reading ability among 

individuals with serious mental illness, Rotondi et al. (2007) suggest that most online 

sources of mental health information are not well-suited to the needs of this 

population.  

 Not surprisingly, little difference was noted in reading grade level estimates 

between MDD and bipolar disorder, as these disorders may share a common language 

regarding general symptoms of depression. Likewise, given similarities in language, 

symptom presentation, and etiology, there was no notable difference in reading level 

scores for alcoholism and substance abuse, as well as social phobia and specific 

phobia. However, this rationale could not be extended to text describing the two 

predominant eating disorders examined in this study:  reading level estimates for 

bulimia nervosa were significantly higher than those for anorexia nervosa. It is 

possible that further exploration of text content may reveal emphasis on different 

features, symptoms, or etiology of each disorder, hence contributing to differences in 

reading level estimates.  

Indeed, the reader is encouraged to recall that this study only examined the 

readability of online public mental health materials, and did not explore the content 

(or meaning) of text extracted from the sites selected. Readability is an important first 

component in understanding whether the structure and form of written material is 

largely digestible by the average reader. Based on national statistics that suggest the 

reading grade level of the average American citizen is between the 6
th

 to 8
th

 grade 
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(Kutner et al., 2006; Paasche-Orlow et al., 2005), materials describing mental health 

conditions, symptoms, and disorders that exceed this threshold may not be useful in 

helping the general population make important decisions about their own, or loved 

ones’ healthcare needs.  

It is also vital to remember that although readability is an important first 

element in broadly distinguishing the level of education required to read a passage of 

text, reading comprehension is oftentimes two to three grade levels below an 

individual’s overall level of education or established reading grade level. This effect 

may further be exacerbated when an individual is under duress or struggling with a 

serious mental illness (McInnes & Hagland, 2011). As such, for the 77 million 

Americans with limited health literacy (America’s Health Literacy, 2008; Kutner et 

al., 2006; Paasche-Orlow et al., 2005), much of the current mental health materials 

available online may be both unreadable and incomprehensible. This can have broad 

implications for perpetuating health disparities by limiting access to publicly available 

mental health information to a small segment of the population who already possess 

above average health literacy, have better access to resources, and consequently, may 

have better health outcomes than those with low health literacy.  

Examination of reading level estimates by website suggests that on average, 

MedicineNet.com has the highest reading grade level, followed by PsychCentral.com, 

Wikipedia.com, WebMd.com, MayoClinic.com, and HealthLine.com, in descending 

order. There was no difference in reading level scores between PsychCentral.com and 

Wikipedia.com, and betweenWikipedia.com and WebMd.com. However, 

PsychCentral.com had higher overall reading grade level estimates than WebMd.com, 
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whereas estimates from WebMd.com were higher than those obtained from 

MayoClinic.com and HealthLine.com. No difference was noted between 

MayoClinic.com and HealthLine.com. Reading grade level estimates for all websites 

were consistent with a high school senior reading level or above. These results provide 

valuable evidence that online information, procured from the most popular health-

related websites, for 16 of the most prevalent mental health disorders and/or 

conditions is written at a level that far exceeds the national reading grade level 

average. Writers of public mental health materials are well-advised to take great care 

in ensuring that the information provided to consumers is not only accurate, but also 

written in a manner that does not enhance existing health disparities by limiting access 

to knowledge to an already educated minority. Although it is most likely that this 

oversight is largely un- intentional (and can perhaps be tentatively attributed to a 

combination of factors including the global level of education of those writing public 

health materials, and/or a general lack of knowledge /awareness of statistics related to 

health literacy levels in the United States), failure to adhere to these guidelines can 

have broad public health implications (American’s Health Literacy, 2008).  

Lastly, it is important to consider the practical and methodological limitations 

of this study before making sweeping conclusions about the content of online public 

mental health materials. Clearly, individuals have a multitude of ways of arriving at 

the websites and disorders examined within the scope of this study. In many cases, 

searching for mental health information may begin by entering key words related to 

symptoms, rather than names of formal diagnoses. This study did not assess the 

mechanism by which people arrive at the websites selected, with the implied 
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understanding that based on common search terms, people will eventually be funneled 

to a web page describing a disorder whose symptoms are consistent with their initial 

search terms.  

Furthermore, this study is in no way a comprehensive review of all mental 

health diagnoses, nor does it sample all websites with available online mental health 

materials. The websites selected for analysis were chosen, in part, because they 

contain information specific to each disorder under investigation. Some prominent 

mental health websites, such as the National Institute of Mental Health 

(NIMH.NIH.gov) were not selected because they did not promote information specific 

to substance abuse disorders or alcoholism. Likewise, given the speed at which 

technology changes, it is possible that the search engines selected in October, 2015 to 

conduct the initial investigation are no longer the most popular engines available. 

From a methodological perspective, it may have been more robust to assess 

each block of text using additional readability indices, as well as to have multiple 

researchers select, clean, and process each block of text for enhanced inter-rater 

reliability. Although the researcher attempted to employ rigorous standards in 

selecting text for each disorder, it is possible that the selections may exhibit some bias. 

However, despite these limitations, this study provides some initial evidence that 

current readability estimates for 16 of the most prevalent mental health disorders 

common to all sites surveyed are well above the 6
th

 to 8
th

 grade reading level 

guidelines suggested by the CDC and AMA. This information is important for 

researchers interested in conducting more rigorous explorations of online mental 

health materials, policy makers interested in decreasing health disparities amongst 
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various socio-demographic groups, and editors of mental health websites dedicated to 

providing consumers with quality written health materials. Future directions for this 

work may include examination of online information for all existing mental health 

diagnoses, exploration of quality of content of written text, experimental 

manipulations of text with consumers in the laboratory, and/or evaluation of 

differences in comprehension for online information presented in written, versus 

auditory or interactive format.  
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Abstract 

 For many years, the Internet has provided people with a plethora of valuable 

health information. Likewise, the Internet has also served as a valuable resource for 

understanding how, why, when, and from what sources consumers most often seek out 

information about health-related topics. Much of these data are freely available online; 

however, little attention has been paid to how to best analyze these data. The purpose 

of this paper is to provide public health researchers with a concise, and easy to 

understand guide to the best possible methods for analyzing publicly available data 

sourced from the Internet. Specifically, different methods for analyzing readability 

estimates of text derived from sixteen different mental health disorders, extracted from 

six highly utilized mental health websites, will be discussed. This example will 

demonstrate the importance of considering how data are structured, particularly when 

there is evidence of, or a strong theoretical rationale for clustering within the data. 

Different interpretations of the Intraclass Correlation Coefficient (ICC) will be 

presented within this context, and modeling approaches that account for within cluster 

correlation (i.e., mixed modeling and generalized estimating equations) will be 

discussed in greater detail. Overall, the researchers hope to provide public health 

researchers with a valuable toolkit for better understanding how data sourced online 

can be analyzed effectively, without excessive technical jargon. Researchers interested 

in more technical explanations are referred to the reference section of this report. 
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Introduction 

 The readability of written patient health materials is a topic of great importance 

for public health researchers. Since the development and expansion of the Internet, 

much attention has been devoted to understanding how people utilize this resource to 

obtain health-related information (see for example, Baker, Wagner, Singer & Bundorf, 

2003; Diaz, Griffith, Ng, Reinert, Friedmann, & Moulton, 2002; Eysenbach & Kohler 

(2002); and McMullan, 2006). Given that much of the information available online is 

in written text format, analysis of the readability of online materials is paramount in 

ensuring that information intended for consumers remains accessible to the average 

reader (see McInnes & Haglund (2011), Neuhauser & Pace (2011), and Weis (2003) 

for a full discussion of how the construct of readability is defined and related to 

reading comprehension). In the United States, recent estimates suggest that the 

average adult reads at the 6
th

 to 8
th

 grade reading level (Kutner, Greenburg, Jin, & 

Paulsen, 2006). This has profound implications for writers of public health 

information, as information presented at a reading level much higher than the national 

average has the potential to maintain or exacerbate existing health disparities by 

catering only to those consumers with a high reading and educational status. These 

effects may be particularly egregious for individuals experiencing stress or mental 

health concerns. 

Luckily, much as the Internet is a valuable resource for consumers of health 

information, it is also a vast repository of publicly available data for researchers 

interested in evaluating the readability of online health and mental health information. 

This study demonstrates how these data can be analyzed using methods that account 
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for natural clustering by website, subject area, and/or readability index utilized to rate 

the text. In all cases, it is important to bear in mind how the research question of 

interest and interpretability of results may change in response to alternate 

conceptualizations for how data are structured within clusters. The purpose of this 

paper is thus two-fold: 1) to provide an overview of various methods for analyzing 

clustered data, including a discussion of the utility of the Intraclass Correlation 

Coefficient (ICC) and differences between fixed and random effects; and 2) to 

demonstrate how results may vary across two possible approaches to analyzing nested 

readability data from 6 different websites related to 16 different mental health 

disorders, using five separate readability rater indices. 

Overview of methods for analyzing nested data. Numerous techniques for 

analyzing nested data are currently available using common computer programs such 

as SPSS (IBM Corp., Armonk NY) or SAS (SAS Institute, Cary, NC), among others. 

These methods range from more straightforward methods such as multilevel analysis 

(or hierarchical linear modeling) for cross-sectional data using single indicator and 

outcome variables, to multi-level mediation models involving multiple mediators and 

moderators. More complex analyses often include categorical or non-normal response 

data and modeling of longitudinal effects over multiple time-points.  

 Given this wide range in methods, choosing the appropriate analysis may seem 

like a daunting task. However, it is important to remember that study design and an 

emphasis on addressing key questions of interest are of primary concern in developing 

an appropriate data analytic plan. The methods described herein are presented as a 

sampling of the multitude of techniques available for the analysis of nested data, and 
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are discussed in order from the most ‘simple’ (in comparison with the other techniques 

discussed) to the most complex.  

Fixed and random effects. Throughout this report, reference will be made to ‘fixed’ 

and ‘random’ effects in the context of multi-level modeling. Slight variations in the 

definition of fixed and random effects appear in the literature on mixed modeling 

depending on author orientation and intended message. According to Hamilton (2012), 

fixed effects typically refer to intercepts and slopes that are meant to describe the 

population as a whole, whereas random effects refer to intercepts and slopes that vary 

across subgroups within the sample. Within the Hierarchical Linear Modeling (HLM) 

framework, Warne et al. (2012) describe fixed effects as the average impact that an 

explanatory variable has on a dependent variable across all clusters or groups, and 

random effects as the degree of variation between clusters.  

 Likewise, Hayes (2006) describes random effects as effects that are allowed to 

vary between Level 2 (higher order) units, whereas fixed effects are those that have 

only a single value in the model for each Level 1 (lowest level) unit regardless of the 

Level 2 unit under which they are nested. Under the umbrella of ordinary regression 

analyses, the intercept and slope are both considered fixed effects, and the residual is 

considered random. In contrast, when accounting for nested data, it is possible to 

specify an intercept and slope for each Level 2 unit of the same predictor by setting 

some of the coefficients as random effects (Hayes, 2006). Overall, researchers have a 

high degree of flexibility in choosing how to specify fixed and random effects in the 

modeling process dependent upon their primary question of interest and research 

design.  
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 In our readability example, multiple iterations are possible. The simplest 

approach might be to first calculate a readability score for each website and subject 

area combination by averaging the scores across all five raters. This results in one 

Level 2 predictor (website, i.e., Wikipedia, WebMd, etc.), and one Level 1 predictor 

(disorder, i.e., agoraphobia, anorexia nervosa, etc.). Disorders are conceptualized as 

being nested within websites, and the outcome variable of interest is average 

readability score (across all five raters). Conceptualizing disorders as individuals 

nested within different websites allows for exploration of: 1) the effect of the Level 2 

predictor (website) on the outcome of interest (average readability score); 2) the effect 

of the Level 1 predictor (disorder, i.e. agoraphobia, anorexia nervosa, etc.) on the 

outcome of interest; and 3) any Level 1 by Level 2 interactions of interest (website by 

disorder interactions), all the while acknowledging the hierarchical nature of the data.  

However, given that this approach reduces the size of our sample from 480 units of 

analysis to 96, and that the data are limited in the number of Level 2 clusters (6 

websites), it is likely that our power to detect an effect if one is present is limited. 

Furthermore, without significant theoretical rationale for conceptualizing how nesting 

occurs within the data, it is equally possible to conceptualize that websites are 

clustered within disorders. 

Another possible conceptualization of the data posits that each readability 

score for each disorder, from each website, is independent of all other scores, 

regardless of the rater (index) it was derived from.  Although this iteration retains all 

data, it assumes that scores generated using the same readability index are not related, 

and ignores possible correlations within the data attributable to rater-specific effects. 
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Rater contributions are ignored, and only the fixed effects of website and subject area 

are explored in the regression analysis.  

This second conceptualization represents a naïve approach because it ignores 

the possibility that each index can be thought of as a unique rater of the same block of 

text that uses a distinct formula to generate readability scores. It could hence be argued 

that scores within raters are more similar to each other than scores between raters, and 

that there is thus a need to account for these dependencies in the modeling process. In 

the examples noted above, the similarities within raters are not accounted for either 

because an average readability score is calculated for each disorder by website 

combination (N decreases from 480 to 96), or because each rating is treated as 

independent of all others.  

These conceptualizations are potentially problematic because either the total 

sample size is reduced, the number of Level 2 groups is small, and/or any 

interdependencies in the data are not explicitly accounted for. Alternatively, it is 

possible to retain all of the data by treating indices as ‘individuals’ who are making 

multiple ratings on various passages of text. Here, it is possible to explicitly account 

for similarities in rating strategies within individuals by conceptualizing that 

readability scores from distinct websites and content areas are nested within the five 

individual raters selected for this study. Within this framework, it is possible to not 

only retain all of the data, but also to account for interdependencies within the scores 

generated from the same raters. This can be accomplished in a number of ways.  

First, using mixed modeling, an intercept-only random effects model can be 

specified with only a random intercept included for raters. This preliminary approach 
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allows researchers to calculate the ICC, or ratio of group-level variance over total 

variance, and determine the need for further nested modeling approaches. Here, the 

ICC represents the proportion of variance in the dependent variable that is explained 

by the grouping structure of the hierarchical model (Castro, 2002; Wears, R.L., 2008). 

Although some statistical references suggest that an ICC close to zero negates the need 

for multi-level or clustered data approaches, Hayes (2006) argues that values of the 

ICC as small as .05 can invalidate hypotheses tests and confidence intervals when 

clustering is not considered. In this context, a value of .05 would indicate that 

approximately 5% of the total variation in readability scores could be accounted for by 

which rater made the readability rating and thus the raters should be taken into 

account. More discussion on the ICC is given shortly to provide more input to 

researchers. 

The researcher may then choose to add predictor variables to the model and 

explore how the ICC changes with each new addition. For instance, the researcher 

could include a random component for the rater variable, and specify the calculation 

of fixed effects for website and content area. This approach allows raters to vary on 

the mean of readability scores, but assumes that the degree of association between 

explanatory and outcome variables is the same for all raters. In this example, it is 

possible to determine the degree of variation in scores between raters, and account for 

this variation, if necessary. Likewise, the researcher is able to flexibly decide which 

coefficients are to be fixed, and which coefficients are allowed to vary based on theory 

and research design. 
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The mixed modeling approach described above might be particularly useful if 

we were interested in assessing differences between raters, had some theory or 

hypothesis concerning how scores between raters might vary, but assumed that the 

degree of association between the predictor variables and the dependent variable was 

the same for all raters included in the analysis. Likewise, if we hypothesized that the 

degree of association between our predictor(s) and readability scores varied between 

raters, we might specify a random component for the predictor(s) of interest. It is 

important to remember, that the more coefficients specified, the greater the cost in 

degrees of freedom. Because our sample size and the number of groups is relatively 

small, we may be limited to simpler methodological designs.  

In contrast, if we were not interested in exploring differences between raters, 

but still wanted to account for the variability in readability scores due to rater effects, a 

population-averaged approach might be an appealing alternative. General(ized) 

Estimating Equations (GEE) provide one such flexible regression-based strategy. 

These models are appealing because: 1) they can handle a variety of correlated 

measure models, as well as a variety of outcome data (i.e., continuous, count, binary); 

and 2) are more flexible for missing data compared to other models (Zeger, Liang & 

Albert, 1988).  

Although both approaches take variation in rater scores into consideration, 

there can be marked differences in how output from these analyses are interpreted, 

particularly when outcome data are binary or counts.  For linear data, interpretation of 

estimates obtained using mixed modeling and GEE suggests that: coefficients derived 

from mixed modeling procedures represent the change in mean outcome for a unit 
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change in the associated grouping variable, keeping the random effect fixed; whereas 

coefficients derived from GEE represent the change in the mean outcome for a unit 

change in the associated grouping variable, across all levels of the grouping variable 

observed (Hubbard, et al., 2010). 

Furthermore, whereas random-coefficient models typically explicitly address 

variation at both unit-specific and higher-order levels, GEE models assume simple 

random sampling of subjects representing a population, as opposed to a set of higher 

order groups. Hence, GEE models provide “population average” results and model the 

marginal expectation of the outcome variable as a function of the predictors specified. 

Interestingly, intercept-only random-coefficients linear mixed models generally 

produce the same estimates as those obtained from the exchangeable working 

correlation model in GEE, albeit with a difference in degrees of freedom. Here, equal 

variances for all observations and equal covariance of all possible paired observations 

within the statistical unit are assumed, as well as no correlation of observations made 

on different units (Hubbard et al., 2010).  

Although there are numerous costs and benefits to each modeling strategy, 

fundamentally, the decision to employ GEE over mixed modeling (or vice versa) can 

be pared down to the researchers’ primary question(s) of interest. If the objective was 

to make comparisons between the grouping variable and the outcome of interest, a 

mixed modeling approach might be better suited. However, if the goal was to account 

for variation in the outcome variable due to clustering within the data, but not to make 

direct comparisons between clusters, a GEE approach might be more applicable. In the 

latter instance, the researcher is modeling the marginal expectation of the outcome of 



 

59 

 

interest across all clusters, and assumes that subjects are drawn from a sample 

representing the population. For a more detailed technical explanation, including 

thorough discussion of assumptions relevant to both modeling strategies, the reader is 

referred to Hubbard et. al. (2010).  

Intraclass Correlation. A discussion of clustered data analysis is not complete without 

detailed consideration of the ICC. One of the potential risks of using traditional 

statistical methods for analyzing clustered data is that estimated standard errors may 

be smaller than appropriate (Warne et al., 2012); this may result in increased 

probability for Type I error (Hox, 2010). The ICC is a quantitative measure of the 

degree of dependence in the data, such that it is possible to assess how similar subjects 

are to each other within clusters (Kenny, Kashy & Bolger, 1998; Peugh, 2010). The 

value of the ICC ranges from 0.0 (perfect independence) to 1.0 (all subjects are the 

same as others within the cluster) (Warne et al., 2012).  

 Traditionally, the ICC has been conceptualized as a measure of rater reliability, 

which is particularly relevant considering the conceptualization of the data used for 

the running example in this text (i.e., various readability indices as individual ‘raters’ 

of the same passage of text). In a seminal article on intraclass correlations, Shrout and 

Fleiss (1979) provide several examples of different uses for the ICC in the context of a 

reliability study of the ratings of several judges. The authors make the point that 

assessing whether judgments made by multiple observers are reliable is critical to 

knowing whether these measurements are meaningful. However, multiple forms of the 

ICC exist, and each is appropriate under a limited set of circumstances. 
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 There are typically two ways of conceptualizing the ICC: the ICC (1) is a 

measure of the amount of variance in individual level responses attributable to group 

level properties, as described above; whereas the ICC also (2) is a measure of the 

reliability of group means (Castro, 2012). ICC (1) values are typically not affected by 

group size or the number of groups. However, because of slight variation in the 

formula used to calculate these coefficients, the ICC (2) is influenced by group size. 

Because ICC’s are based on variance partitioning, they are subject to the same 

assumptions as analysis of variance (ANOVA), including homogeneity of variance, 

normality, and independence (Castro, 2002). In summary, the ICC provides an 

omnibus measure of dependency in the data, and can be used to determine the need for 

hierarchical or nested modeling procedures.  

Hierarchical Linear Modeling (HLM). For multilevel analyses involving two levels 

(i.e., individuals nested within groups) HLM can generally be thought of as a two-step 

approach. The first step, or Level 1, typically involves estimating a separate regression 

for each group of interest with individual-level predictors and outcome. At Level 2, 

the variance in the Level 1 slopes and intercepts is modeled using the group-level 

variable. These equations are evaluated simultaneously (Castro, 2002; Diex-Roux, 

2000; Luke, 2004). By treating clustered groups as their own level of data, as well as a 

combination of individual scores, it is possible to examine the cross-level influence of 

variables, thus developing a more nuanced and ecologically valid approach to 

examining real-world phenomenon, when theoretically applicable (Luke, 2004; 

Raudenbush & Bryk, 2002; Warne, et all, 2012).  
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 HLM is a statistical procedure that uses maximum likelihood to estimate the 

variance components of Level 2 models. This technique assumes multivariate 

normality for variables. Other assumptions of HLM include that: Level 1 residuals are 

independent and normally distributed with a mean of zero and equal variances across 

groups; Level 1 predictors are independent of Level 1 residuals; random errors at 

Level 2 are multivariate normal and are independent among Level 2 units; the set of 

Level 2 predictors are independent of Level 2 residuals; and that Level 1 and Level 2 

residuals are independent (Hofmann, 1997).  

 Model building in HLM is a multi-stage process, in which the researcher may 

consider three broad classes of models, starting with a null model with no Level 1 or 

Level 2 predictors (Luke, 2004). As noted above, this model may be useful for 

calculating the ICC and guiding further decision-making, and generally produces 

estimates equivalent to those obtained from the exchangeable working correlation 

model in GEE. Next, depending on the primary question of interest, the researcher 

might begin to add predictor variables into the model, allowing the intercept to vary 

for each identified cluster. The last class of models assumes variation in slopes and/or 

intercepts across Level 2 units, and can include interactions between individuals and 

group-level constructs.  

 As discussed, although the benefits of using HLM to model real-world 

phenomenon are plentiful, there are some important limitations of this approach that 

warrant further explication. Perhaps the most glaring of these limitations include: 

potential violations of the assumption of multivariate normality when considering 

cross-level interactions; restriction of the dependent variable to be operationalized at 
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the lowest level of analysis; and the need for fairly large sample sizes to obtain a 

sufficient level of power (Castro, 2002; Hofmann, 1997).  In our example using 

readability data derived online, a multi-level or HLM approach using all of the data 

may not be the best approach given our conceptualization of the data as readability 

scores related to different disorders from different websites, nested within different 

raters selected from a population of all possible raters.  

General(ized) Linear Mixed Modeling (GLMM). HLM is a powerful technique for 

analyzing continuous outcome data. However, the assumptions of HLM do not hold 

when the response format is binary, multinomial, a proportion, or a count. For 

instance, if we were interested in whether websites passed or failed a reading grade 

level standard, or the influence of various factors on the number of websites that 

scored at the average reading level (rather than a continuous readability outcome 

measure), other statistical methods that take into consideration non-normal response 

formats would be necessary. GLMM is an extension of linear mixed modeling 

procedures that can readily handle non-normal data. This is particularly important 

when considering that much of the data collected online, in hospitals, schools, or other 

naturalistic community settings may follow a variety of alternative distributions (i.e., 

Poisson, binomial, negative binomial, etc.), and that the assumptions of linearity, 

normality, and constant variance may thus not be applicable. As such, GLMM is 

acceptable for determining Level 1 and Level 2 effects for non-normal or non-linear 

data, hence allowing for multi-level analysis of binary, count, ordinal, and multinomial 

data.  
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 Kaplan (2004) suggests that some additional steps that must be taken when 

estimating generalized linear mixed models. First, a sampling model and link function 

must be specified. The link function transforms the expected value into a predicted 

value that can be estimated with a linear equation. In the case of linear mixed 

modeling, this is a normal distribution with a mean and variance, and a link function 

with the value of 1 (because no transformation is required). For binary outcomes (Y = 

1, N = 0), this would mean a Bernoulli distribution and a log odds ratio link function. 

Next, the researcher must specify a linear structural model to estimate the transformed 

expected value. Conditional models may be specified, such that the researcher has the 

option of including relevant Level 1 or Level 2 predictors, and including fixed and 

random effects, as needed (Kaplan, 2004). 

 Furthermore, when considering generalized linear mixed models, a distinction 

should be made between unit-specific and population average models (Raudenbush & 

Bryk, 2002). For instance, the unit-specific model (hierarchically structured model) 

describes processes that are occurring in each Level 2 cluster, where processes are 

captured by the beta-coefficients of the Level 1 model. Here, the primary question of 

interest may be how the processes differ over a population of Level 2 units. It may be 

possible that these processes differ in their intercept alone, slope, or both. 

Furthermore, the Level 2 model may also assess how differences in the Level 2 

explanatory variables influence Level 1 processes in each Level 1 unit. Hence, unit-

specific models provide information about how effects of predictors vary across 

groups (Kaplan, 2004; Raudenbush & Bryk, 2002).  
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 Raudenbush (2000; 2004) describes these questions as ‘unit-specific’, and 

contrasts them to a population-average (or Generalized Estimating Equations) 

approach (Zeger, Liang & Albert, 1988), in which the primary question of interest is in 

estimating average probabilities for population-level effects. Given the complexity and 

flexibility of this approach, one limitation may be that GLMM requires that 

researchers be explicit about their research questions and the type of data available for 

analysis, a priori. Interestingly, in some ways this could be conceptualized as both a 

weakness and strength of this approach, largely because it forces the researcher to 

exert much time and effort into clearly delineating their specific research hypotheses 

or intended intervention effects.  

Structural equation modeling. Over the past number of years, structural equation 

modeling (SEM) has been studied and applied as a valid methodology for the analysis 

of multilevel or clustered data (Tomarken & Waller, 2005). Indeed, one of the primary 

strengths of SEM is the ability to specify latent variable models that provide estimates 

of the associations between latent constructs and their indicators (otherwise known as 

the measurement model), as well as between important constructs themselves (the 

structural model).  

 Using this framework, it is possible to account for biases that are attributable to 

random error and variation that is not better explained by the constructs of interest. 

Other general strengths of SEM include the ability to evaluate complex models with a 

large number of linear equations against less complex models, as well as the ability to 

specify recursive relationships between constructs (and error terms), hence accounting 
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for dependencies in data that are nested or collected repeatedly on the same 

individuals over time. 

 In a comparison of HLM with SEM, Raudenbush & Bryk (2002) suggest a 

number of striking similarities between these modeling approaches for two-level 

‘growth models’, in which repeated measurements are taken on the same individuals 

over time. Here, the authors indicate that the Level 1 model of HLM corresponds with 

the measurement model of SEM, and that the latent variables of SEM are the 

individual growth parameters of HLM. The Level 2 model thus corresponds with the 

structural model specified in SEM. Using an SEM approach, it is hence possible to 

include Level 1 autocorrelated or heterogeneous random effects, and test a wide range 

of covariance structures (Duncan & Duncan, 2009). Curran (2003) further supports 

this claim and indicates that there is a large body of literature demonstrating that SEM 

and multilevel modeling are essentially analytically and empirically equivalent 

methods for evaluating clustering due to measurement of repeated observations over 

time. 

 However, one downfall is that SEM typically requires balanced data within 

groups, such that each individual is required to have the same number and distance 

between time points. Furthermore, Level 1 predictors with random effects are required 

to have the same distribution across all cases within each group. Unlike SEM, the 

HLM framework allows for unequal group sizes and spacing of time points, and does 

not require the distributions of Level 1 random effects to be identical (Raudenbush & 

Bryk, 2002). In recent years, the SEM framework has been extended to analyze data 

beyond a latent growth curve format, such that it is now possible to use SEM to 
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examine clustered data in situations that do not involve repeated measurements (Heck 

& Thomas, 2015; Hox & Maas, 2001; Tomarken & Waller, 2005).  

 Some attention has also been focused on extending the assumptions of multi-

level SEM to include non-linear response formats, such that it is now possible to 

model categorical or count data within the multi-level SEM framework (Rabe-

Hesketh, Skronda & Pickles, 2004). Generalized linear latent and mixed modeling 

(GLLAMM) combines features of generalized linear mixed modeling with structural 

equation modeling to produce a flexible and unified modeling framework that is 

capable of: handling data missing at random and has the scope for handling data not 

missing at random; dealing with unbalanced multilevel designs; allowing random 

coefficients of unbalanced covariates; including regressions among factors and/or 

random coefficients (latent variables) that vary at different levels; and modeling of 

ordered and unordered categorical responses, counts, and a wide range of alternative 

responses processes (Rabe-Hesketh, Skrondal & Pickles, 2004).  

 Given these capabilities, it has become increasingly apparent that boundaries 

between HLM, GLMM, and SEM have become somewhat blurry, and that researchers 

are now faced with the important task of deciding which framework is best suited for 

their data and their most relevant research hypotheses (Tomarken & Waller, 2005). 

Indeed, a return to fundamental questions of interest in any research design can be a 

guiding beacon of light for those who find themselves bogged down in the murky 

waters of ‘analysis paralysis’ in search of the ‘best’ analytic method. It is important for 

researchers to remember that the ‘best’ modeling strategy is that which is most suited 
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to their research design, and that no strategy can ultimately save those who fail to 

thoroughly plan for their journey into unexplored research lands.  

 Analysis of clustered data and issues related to sample size. A discussion of 

the analysis of clustered data using the techniques described above also warrants some 

mention of concerns related to sample size. There is some consensus that group-level 

sample size is more important than total sample size, with some compensation for a 

small number of groups in large individual-level samples (Maas & Hox, 2005). In a 

simulation study of sufficient sample sizes for multi-level modeling, Maas & Hox 

(2005) indicate that a small sample size at Level 2 (less than 50 groups) can lead to 

biased estimates of the Level 2 standard errors. Hence, the researchers strongly 

suggest using caution when applying multi-level methods with a limited number of 

groups, and call for bootstrapping or other simulation methods to account for these 

concerns when analyzing small-sample data.  

 In light of these concerns, and the high probability that modeling real-world 

phenomenon often involves a small or limited number of Level 2 groups, Hoyle and 

Gottfredson (2015) make several recommendations for maximizing the yield of multi-

level modeling or SEM efforts when N’s are small. These recommendations include: 

retaining all cases where possible in the analysis sample, such that no data are left 

unmodeled; optimizing the observed data to achieve normality and using reliable 

measures; and fixing or constraining variables where possible using knowledge from 

previous research to decrease the number of parameters that need to be estimated.  

 Summary. After careful consideration of the key points discussed above, two 

modeling strategies for assessing the readability of online mental health materials 
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using the full dataset described herein stand out as distinct possibilities. First, the data 

could be conceptualized as following a 2-level hierarchy, with scores from various 

disorders and websites nested within the five raters selected for this analysis. 

However, because of the small number of higher-order groups, as well as the relatively 

small size of our sample, it is hypothesized that utilizing a 2-level multilevel modeling 

approach may not be advisable.  

 Second, we could conceptualize that the raters selected are a random sample of 

all possible raters of online material, and although we are not interested in addressing 

differences between raters, we are interested in accounting for clustering within the 

data. Given this important design consideration, a general estimating approach could 

likewise be considered because it is better suited to our primary question of interest 

(i.e. assessing differences in reading level scores between websites and disorders 

across the population of possible raters). Results from these approaches will be 

discussed herein, with an emphasis on demonstrating that GEE may be better suited to 

the structure of these data, as well as the underlying research question of interest. 

However, because the response format is linear, it is likewise expected that results will 

not vary widely between approaches, and that the fundamental consideration for 

researchers selecting an appropriate methodology for analyzing these types of data 

will be conceptual in nature. 
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Methods 

Materials. According to the website ebizMBA.com, Google, Bing, Yahoo, Ask, and 

AOL.com, respectively, have been named the top five search engines of 2015.  

Because different Internet search engines may produce unique results for the same 

query based on numerous factors (including an individual’s location and browsing 

history), top website hits for the sixteen disorders selected for analysis were explored 

using all five search engines. That is, each term of interest was entered using Google, 

Bing, Yahoo, Ask, and AOL, and the top fifteen website hits for each query were 

recorded and examined for consistency across search engines. This process of 

exploration and elimination resulted in the following list of six common websites that 

contain information for all disorders under investigation: Wikipedia.com, 

MayoClinic.org, PsychCentral.com, MedicineNet.com, HealthLine.com, and 

WebMd.com.  

 A selection of text from each website, for each disorder, was extracted and 

saved in a Word document as a simple text file during the last two weeks of October, 

2015. All commas, quotation marks, apostrophes, hyperlinks, references, bulleted lists, 

sentence fragments followed by a colon or semicolon, and headings were removed 

from the text, as specified by common guidelines for readability analysis (DuBay, 

2004). The final word count for selected texts ranged from approximately 150 to 600 

words; the average number of words per sentence ranged from approximately 10 to 30 

words; and the average number of syllables per word ranged from 1.5 to 2.5.  

 Text was processed by pasting extractions into the appropriate field on the 

website read-able.com and was cross-referenced with estimates from indices available 
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on readability-score.com and readability-formulas.com. Specific indices examined 

included the Automatic Readability Index, Coleman Readability Index, SMOG, 

Gunning Fog Grade Level, and Flesch-Kincaid Grade Level Index. Although each 

index employs a different mathematical formula to arrive at a grade level score, scores 

were expected to largely be consistent across indices because the selected indices all 

measure the same construct. 
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Results 

ICC. A two-way random effects model was specified for rater in order to 

assess variability in reading level scores between raters. A two-way random effects 

model was selected because the same indices were used to assess all selections of text, 

and the indices selected were chosen from a population of available indices used to 

calculate grade reading level scores. The ICC (2) assumes that the variance of the 

raters serves to add noise to any ratings obtained, and that the mean of rater error is 

zero. Results indicated that the estimated reliability between indices was 82.1%, with 

95% CI [76.9, 86.6], using a consistency definition. The mean for reading level scores 

generated by the Gunning Fog index was highest and had the largest variability, 

whereas the mean for reading level scores generated by the SMOG index was lowest 

and had the smallest variability of the indices selected.  

Overall, the indices selected were largely consistent in their ratings of 

readability scores across disorders and/or websites. Calculation of the ICC using a 

definition of absolute agreement revealed that although the various raters selected 

were consistent in their scoring, and could be thought of as reliable raters of reading 

grade level, they were not in absolute agreement on ratings of readability scores, ICC 

(2) = .483, 95% CI [.156, .700]. This distinction between consistency and absolute 

agreement can be best explained using the following example: score sets of (2,4), 

(4,6), and (6,8) can be thought of as perfectly consistent (ICC = 1.0), however, are not 

in perfect absolute agreement. For our purposes, measuring the consistency of reading 

level scores across raters is important because it tells us that raters are largely in 

agreement over how scores are assessed. Here, we can be confident that although there 
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are differences in the scores generated by the raters selected, as a whole, they are 

largely consistent in how they measure grade level readability for the disorders and 

websites selected. 

Alternatively, we could also use the ICC to determine the percentage of total 

variance in the outcome (readability score) that can be explained by the grouping 

variable (rater/index). Results from the unconditional intercept-only model (ICC = 

.409) suggest that approximately 41% of the total variation in reading level scores can 

be attributed to rater effects (i.e., which rater or index makes the rating). These results 

suggest that overall, consideration of rater effects, is  important in the modeling 

process.  

2-Level Multilevel Model. A two-level multilevel modeling approach was applied in 

order to assess the effects of website and content area on readability scores across the 

indices selected for this study. Results from the unconditional intercept-only model 

suggest that approximately 41% of the variance in reading level scores was 

attributable to differences between raters, as noted above. Main and interaction effects 

for website and content area were then added to the model, while accounting for 

variation within the grouping variable. This was accomplished by adding ‘rater’ as the 

subject variable, and specifying fixed effects for the website and content area 

variables. In other words, it was presumed that although there would be some 

variability in average readability scores across raters, the direction of the association 

between the explanatory variables and the outcome would largely be consistent. 

Results from this model suggest a significant website by content area interaction, 

F(75, 380) = 12.76, p <.001, with content area and website estimates and their 95% 



 

73 

 

confidence intervals presented in Table 1 below. Comparing with the results of the 

null model, adding the website and content area variables had little effect on the 

variance between raters, and reduced the amount of variance at the within-group level 

from 5.28 to 1.22. After accounting for the effects of website, content area, and their 

interaction, the total amount of unexplained variance due to a difference between 

raters decreased to 25.24%. 

 

Table 1: Subject and content area estimated means, with 95% CI, from 2-level multi-

level modeling analysis 

 
Subject Website Mean 95% Confidence 

Interval 

Lower Bound Upper Bound 

ADHD HealthLine 14.360 12.427 16.293 

MayoClinic 12.360 10.427 14.293 

MedicineNet 15.560 13.627 17.493 

PsychCentral 13.560 11.627 15.493 

WebMd 8.900 6.967 10.833 

Wikipedia 13.080 11.147 15.013 

Agoraphobia HealthLine 11.160 9.227 13.093 

MayoClinic 12.140 10.207 14.073 

MedicineNet 16.540 14.607 18.473 

PsychCentral 10.420 8.487 12.353 

WebMd 5.620 3.687 7.553 

Wikipedia 13.500 11.567 15.433 

Alcoholism HealthLine 10.980 9.047 12.913 

MayoClinic 10.180 8.247 12.113 

MedicineNet 16.460 14.527 18.393 

PsychCentral 12.460 10.527 14.393 

WebMd 13.420 11.487 15.353 

Wikipedia 11.200 9.267 13.133 

Anorexia Nervosa HealthLine 11.580 9.647 13.513 

MayoClinic 12.640 10.707 14.573 

MedicineNet 15.320 13.387 17.253 

PsychCentral 13.000 11.067 14.933 

WebMd 14.100 12.167 16.033 

Wikipedia 10.120 8.187 12.053 

Bipolar HealthLine 11.460 9.527 13.393 

MayoClinic 15.240 13.307 17.173 

MedicineNet 16.560 14.627 18.493 

PsychCentral 13.900 11.967 15.833 

WebMd 15.680 13.747 17.613 

Wikipedia 11.660 9.727 13.593 
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Borderline personality 

disorder 

HealthLine 12.380 10.447 14.313 

MayoClinic 11.580 9.647 13.513 

MedicineNet 17.900 15.967 19.833 

PsychCentral 17.360 15.427 19.293 

WebMd 9.320 7.387 11.253 

Wikipedia 16.400 14.467 18.333 

Bulimia 

Nervosa 

HealthLine 11.820 9.887 13.753 

MayoClinic 12.040 10.107 13.973 

MedicineNet 15.020 13.087 16.953 

PsychCentral 13.960 12.027 15.893 

WebMd 14.980 13.047 16.913 

Wikipedia 10.400 8.467 12.333 

GAD HealthLine 12.600 10.667 14.533 

MayoClinic 12.860 10.927 14.793 

MedicineNet 16.040 14.107 17.973 

PsychCentral 11.780 9.847 13.713 

WebMd 12.400 10.467 14.333 

Wikipedia 15.300 13.367 17.233 

MDD HealthLine 14.800 12.867 16.733 

MayoClinic 11.760 9.827 13.693 

MedicineNet 14.180 12.247 16.113 

PsychCentral 11.720 9.787 13.653 

WebMd 14.600 12.667 16.533 

Wikipedia 15.040 13.107 16.973 

OCD HealthLine 11.000 9.067 12.933 

MayoClinic 11.660 9.727 13.593 

MedicineNet 14.900 12.967 16.833 

PsychCentral 13.440 11.507 15.373 

WebMd 11.780 9.847 13.713 

Wikipedia 11.720 9.787 13.653 

Panic 

Disorder 

HealthLine 11.540 9.607 13.473 

MayoClinic 10.700 8.767 12.633 

MedicineNet 12.520 10.587 14.453 

PsychCentral 10.620 8.687 12.553 

WebMd 12.300 10.367 14.233 

Wikipedia 14.740 12.807 16.673 

PTSD HealthLine 11.480 9.547 13.413 

MayoClinic 11.540 9.607 13.473 

MedicineNet 14.640 12.707 16.573 

PsychCentral 12.760 10.827 14.693 

WebMd 15.440 13.507 17.373 

Wikipedia 13.820 11.887 15.753 

Schizophrenia HealthLine 13.020 11.087 14.953 

MayoClinic 13.020 11.087 14.953 

MedicineNet 16.360 14.427 18.293 

PsychCentral 14.660 12.727 16.593 

WebMd 13.540 11.607 15.473 

Wikipedia 13.480 11.547 15.413 

Social 

Phobia 

HealthLine 11.800 9.867 13.733 

MayoClinic 14.780 12.847 16.713 

MedicineNet 15.100 13.167 17.033 
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PsychCentral 12.600 10.667 14.533 

WebMd 14.440 12.507 16.373 

Wikipedia 15.640 13.707 17.573 

Specific 

Phobia 

HealthLine 11.160 9.227 13.093 

MayoClinic 12.880 10.947 14.813 

MedicineNet 16.100 14.167 18.033 

PsychCentral 13.480 11.547 15.413 

WebMd 13.620 11.687 15.553 

Wikipedia 10.320 8.387 12.253 

Substance 

Abuse 

HealthLine 10.620 8.687 12.553 

MayoClinic 11.120 9.187 13.053 

MedicineNet 12.620 10.687 14.553 

PsychCentral 12.960 11.027 14.893 

WebMd 11.100 9.167 13.033 

Wikipedia 14.200 12.267 16.133 

 

 

Figure 1: Mean predicted readability rating by content area and website, with 95% CI 

GEE. Reading level values ranged from 1.5 to 21.5, with a mean of 13.11, and 

standard deviation of 2.77 (N = 480). Modeling these data using a GEE approach 

allowed the researchers to retain data from all of the indices examined, as well as to 
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account for any clustering in the data due to rater or index effects. Results from the 

GEE suggest a significant website by content area interaction, 
2
(4, 480) = 192.57, p 

<.001, when controlling for the presumed interdependencies between scores across 

indices. The main effects of subject, 
2
(4, 480) = 572.80, p <.001), and website, 

2
(4, 

480) = 8376.32, p <.001, were also significant at the .05 level. Holm-Bonferroni’s 

correction was applied to adjust for multiple comparisons. Results from this analysis 

are presented in Table 2 below.  

Table 2: Subject and content area estimated means, with standard error and 95% CI, 

from 2-level multi-level modeling analysis  

 

Subject Estimate  Lower 95% CL  Upper 95% CL 

Agoraphobia    

HealthLine 11.16 8.85 13.47 

MayoClinic 12.14 10.97 13.31 

MedicineNet 16.54 14.93 18.15 

PsychCentral 12.42 10.81 14.03 

WebMd 5.62 4.17 7.07 

Wikipedia 13.5 12.23 14.77 

ADHD    

HealthLine 14.36 12.96 15.76 

MayoClinic 12.36 10.71 14.01 

MedicineNet 15.56 13.61 17.52 

PsychCentral 13.56 12.44 14.68 

WebMd 8.9 7.21 10.6 

Wikipedia 13.08 11.61 14.55 

Borderline Personality Disorder    

HealthLine 12.38 10.54 14.22 

MayoClinic 11.58 10.11 13.05 

MedicineNet 17.9 16.09 19.71 

PsychCentral 17.36 15.38 19.34 

WebMd 9.32 7.58 11.06 

Wikipedia 16.4 14.67 18.33 

Anorexia Nervosa    

HealthLine 11.58 9.67 13.49 

MayoClinic 12.64 11.26 14.02 
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MedicineNet 15.32 13.88 16.76 

PsychCentral 13 11.45 14.55 

WebMd 14.1 12.66 15.54 

Wikipedia 10.12 8.62 11.62 

Alcoholism    

HealthLine 10.98 9.23 12.73 

MayoClinic 10.18 9.11 11.25 

MedicineNet 16.46 14.86 18.06 

PsychCentral 12.46 10.93 13.99 

WebMd 13.42 11.91 14.93 

Wikipedia 11.2 9.83 12.57 

Specific Phobia    

HealthLine 11.16 9.44 12.88 

MayoClinic 12.88 11.26 14.51 

MedicineNet 16.1 14.59 17.62 

PsychCentral 13.48 11.9 15.07 

WebMd 13.62 11.82 15.42 

Wikipedia 10.32 8.47 12.17 

Bulimia Nervosa    

HealthLine 11.82 9.9 13.74 

MayoClinic 12.04 10.59 13.49 

MedicineNet 15.02 13.55 16.49 

PsychCentral 13.96 12.5 15.43 

WebMd 14.98 13.6 16.36 

Wikipedia 10.4 8.99 11.81 

Panic Disorder    

HealthLine 11.54 10.17 12.91 

MayoClinic 10.7 9.29 12.11 

MedicineNet 12.52 11.3 13.75 

PsychCentral 10.62 9.24 12 

WebMd 12.3 11.07 13.53 

Wikipedia 14.74 13.33 16.15 

Substance abuse    

HealthLine 10.62 8.95 12.29 

MayoClinic 11.12 9.72 12.52 

MedicineNet 12.62 10.64 14.6 

PsychCentral 12.96 10.61 15.31 

WebMd 11.1 9.84 12.36 

Wikipedia 14.2 12.75 15.66 

Bipolar Disorder    
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HealthLine 11.46 9.21 13.71 

MayoClinic 15.24 13.38 17.1 

MedicineNet 16.56 14.77 18.35 

PsychCentral 13.9 12.33 15.47 

WebMd 15.68 13.66 17.7 

Wikipedia 11.66 10.01 13.31 

PTSD    

HealthLine 11.48 9.87 13.09 

MayoClinic 11.54 10.21 12.87 

MedicineNet 14.64 13.32 15.96 

PsychCentral 12.76 11.35 14.18 

WebMd 15.44 13.99 16.89 

Wikipedia 13.82 12.53 15.11 

OCD    

HealthLine  9.16 12.84 

MayoClinic 11.66 9.74 13.58 

MedicineNet 14.9 13.4 16.39 

PsychCentral 13.44 11.71 15.18 

WebMd 13.78 12.25 15.31 

Wikipedia 11.72 10.08 13.36 

MDD    

HealthLine 14.8 13.06 16.53 

MayoClinic 11.76 10.22 13.31 

MedicineNet 14.18 12.6 15.76 

PsychCentral 11.72 10.07 13.37 

WebMd 14.6 12.88 16.32 

Wikipedia 15.04 13.61 16.47 

GAD    

HealthLine 12.6 11.31 13.89 

MayoClinic 12.86 10.61 15.11 

MedicineNet 16.04 13.92 18.16 

PsychCentral 11.78 10.21 13.35 

WebMd 12.4 10.64 14.16 

Wikipedia 15.3 13.76 16.84 

Social phobia    

HealthLine 11.8 9.86 13.74 

MayoClinic 14.78 13.24 16.32 

MedicineNet 15.1 13.04 17.16 

PsychCentral 12.6 11.39 13.81 

WebMd 14.44 12.87 16.01 
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Wikipedia 15.64 14.16 17.12 

Schizophrenia    

HealthLine 13.02 11.15 14.89 

MayoClinic 13.02 11.55 14.49 

MedicineNet 16.36 14.56 18.16 

PsychCentral 14.66 13.12 16.2 

WebMd 13.54 11.83 15.25 

Wikipedia 13.48 11.74 15.22 
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Discussion 

The purpose of this paper was to provide a brief sampling of the analytic 

strategies available for analyzing nested reading grade-level data extracted from six 

different websites, for sixteen different mental health disorders and/or conditions, 

rated by five different readability indices. A discussion of various interpretations of 

the ICC was provided, as well as specific results from 1) a 2-level multi-level model 

with a random effect included to account for differences between raters/indices on 

average reading-level scores, and 2) a population-averaged GEE approach in which 

reading-level estimates were nested within a sample of all possible raters/indices.  

In our example, data were conceptualized to be clustered within the various 

indices used to rate text extracted from online sources. Because we were not interested 

in exploring differences between raters, theorized that the readability indices selected 

were a random sample of all possible indices used to rate written text, and wished to 

retain data from all raters for each website and disorder combination in the modeling 

process, a marginalized models or GEE approach was selected as the best analytic 

strategy from a conceptual perspective. This approach was also selected given that the 

number of units of the grouping variable was small (k = 5 indices/raters), and some 

researchers suggest that utilizing multi-level modeling with a small number of groups 

may be inadvisable due to issues related to power and type I and II error (Hoyle & 

Gottfredson, 2015).   

In this analysis, the variables website and disorder were treated as fixed 

effects, and an interaction term was included to account for differences in reading 

level scores across website and content area combinations. When comparing results 
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from the GEE approach and a 2-level multi-level model, it is apparent that these two 

strategies provided similar results, as expected. These differences are displayed below. 

Table 3: Comparison of 95% CI obtained from 2-level MLM and GEE approaches 
 Estimate MLM 

Lower 95% 

CL 

MLM Upper 

95% CL 

GEE 

Lower 95% 

CL 

GEE Upper 

95% CL 

ADHD           

HealthLine 14.36 12.96 15.76 12.43 16.29 

MayoClinic 12.36 10.71 14.01 10.43 14.29 

MedicineNet 15.56 13.61 17.52 13.63 17.49 

PsychCentral 13.56 12.44 14.68 11.63 15.49 

WebMd 8.9 7.21 10.6 6.97 10.83 

Wikipedia 13.08 11.61 14.55 11.12 15.01 

Agoraphobia         

HealthLine 11.16 8.85 13.47 9.23 13.09 

MayoClinic 12.14 10.97 13.31 10.21 14.07 

MedicineNet 16.54 14.93 18.15 14.61 18.47 

PsychCentral 12.42 10.81 14.03 8.49 16.45 

WebMd 5.62 4.17 7.07 3.69 7.55 

Wikipedia 13.5 12.23 14.77 11.57 15.43 

Alcoholism           

HealthLine 10.98 9.23 12.73 9.05 12.91 

MayoClinic 10.18 9.11 11.25 8.25 12.11 

MedicineNet 16.46 14.86 18.06 14.53 18.39 

PsychCentral 12.46 10.93 13.99 10.53 14.39 

WebMd 13.42 11.91 14.93 11.49 15.35 

Wikipedia 11.2 9.83 12.57 9.27 13.13 

Anorexia Nervosa         

HealthLine 11.58 9.67 13.49 9.65 13.51 

MayoClinic 12.64 11.26 14.02 10.71 14.57 

MedicineNet 15.32 13.88 16.76 13.39 17.25 

PsychCentral 13 11.45 14.55 11.07 14.93 

WebMd 14.1 12.66 15.54 12.17 16.03 

Wikipedia 10.12 8.62 11.62 8.19 12.05 

Bipolar Disorder         

HealthLine 11.46 9.21 13.71 9.53 13.39 

MayoClinic 15.24 13.38 17.1 13.31 17.17 

MedicineNet 16.56 14.77 18.35 14.63 18.49 

PsychCentral 13.9 12.33 15.47 11.97 15.83 
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WebMd 15.68 13.66 17.7 13.75 17.61 

Wikipedia 11.66 10.01 13.31 9.73 13.59 

Borderline PD       

HealthLine 12.38 10.54 14.22 10.44 14.31 

MayoClinic 11.58 10.11 13.05 9.64 13.51 

MedicineNet 17.9 16.09 19.71 15.97 19.83 

PsychCentral 17.36 15.38 19.34 15.43 19.29 

WebMd 9.32 7.58 11.06 7.39 11.25 

Wikipedia 16.4 14.67 18.33 14.47 18.33 

Bulimia Nervosa         

HealthLine 11.82 9.9 13.74 9.89 13.75 

MayoClinic 12.04 10.59 13.49 10.11 13.97 

MedicineNet 15.02 13.55 16.49 13.09 16.95 

PsychCentral 13.96 12.5 15.43 12.03 15.89 

WebMd 14.98 13.6 16.36 13.05 16.91 

Wikipedia 10.4 8.99 11.81 8.47 12.33 

GAD           

HealthLine 12.6 11.31 13.89 10.67 14.53 

MayoClinic 12.86 10.61 15.11 10.93 14.79 

MedicineNet 16.04 13.92 18.16 14.11 17.97 

PsychCentral 11.78 10.21 13.35 9.85 13.71 

WebMd 12.4 10.64 14.16 10.47 14.33 

Wikipedia 15.3 13.76 16.84 13.37 17.23 

MDD           

HealthLine 14.8 13.06 16.53 12.87 16.73 

MayoClinic 11.76 10.22 13.31 9.83 13.69 

MedicineNet 14.18 12.6 15.76 12.25 16.11 

PsychCentral 11.72 10.07 13.37 9.79 13.65 

WebMd 14.6 12.88 16.32 12.67 16.53 

Wikipedia 15.04 13.61 16.47 13.11 16.97 

OCD           

HealthLine 11 9.16 12.84 9.07 12.93 

MayoClinic 11.66 9.74 13.58 9.73 13.59 

MedicineNet 14.9 13.4 16.39 12.97 16.83 

PsychCentral 13.44 11.71 15.18 11.51 15.37 

WebMd 13.78 12.25 15.31 9.85 13.71 

Wikipedia 11.72 10.08 13.36 9.79 13.65 

Panic Disorder         

HealthLine 11.54 10.17 12.91 9.61 13.47 

MayoClinic 10.7 9.29 12.11 8.77 12.63 
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MedicineNet 12.52 11.3 13.75 10.59 14.45 

PsychCentral 10.62 9.24 12 8.69 12.55 

WebMd 12.3 11.07 13.53 10.37 14.23 

Wikipedia 14.74 13.33 16.15 12.81 16.67 

PTSD           

HealthLine 11.48 9.87 13.09 9.55 13.41 

MayoClinic 11.54 10.21 12.87 9.61 13.47 

MedicineNet 14.64 13.32 15.96 12.71 16.57 

PsychCentral 12.76 11.35 14.18 10.83 14.69 

WebMd 15.44 13.99 16.89 13.51 17.37 

Wikipedia 13.82 12.53 15.11 11.89 15.75 

Schizophrenia        

HealthLine 13.02 11.15 14.89 11.09 14.95 

MayoClinic 13.02 11.55 14.49 11.09 14.95 

MedicineNet 16.36 14.56 18.16 14.43 18.29 

PsychCentral 14.66 13.12 16.2 12.73 16.59 

WebMd 13.54 11.83 15.25 11.61 15.47 

Wikipedia 13.48 11.74 15.22 11.55 15.41 

Social phobia         

HealthLine 11.8 9.86 13.74 9.87 13.73 

MayoClinic 14.78 13.24 16.32 12.85 16.71 

MedicineNet 15.1 13.04 17.16 13.17 17.03 

PsychCentral 12.6 11.39 13.81 10.67 14.53 

WebMd 14.44 12.87 16.01 12.51 16.37 

Wikipedia 15.64 14.16 17.12 13.71 17.57 

Specific Phobia        

HealthLine 11.16 9.44 12.88 9.23 13.09 

MayoClinic 12.88 11.26 14.51 10.95 14.81 

MedicineNet 16.1 14.59 17.62 14.17 18.03 

PsychCentral 13.48 11.9 15.07 11.55 15.41 

WebMd 13.62 11.82 15.42 11.69 15.55 

Wikipedia 10.32 8.47 12.17 8.39 12.25 

Substance abuse         

HealthLine 10.62 8.95 12.29 8.69 12.55 

MayoClinic 11.12 9.72 12.52 9.19 13.05 

MedicineNet 12.62 10.64 14.6 10.69 14.55 

PsychCentral 12.96 10.61 15.31 11.03 14.89 

WebMd 11.1 9.84 12.36 9.17 13.03 

Wikipedia 14.2 12.75 15.66 12.27 16.13 
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The similarities in results generated from both modeling strategies may be due 

to a number of factors. These factors may include the continuous nature of the 

outcome variable, as well as the limited number of factors included as fixed effects in 

the model. Although there are some differences in the interpretation of outcomes 

between multi-level models and GEE when the outcome variable is binary or non-

linear, the interpretation is largely consistent across models for continuous data. 

Likewise, although the number of groups included to account for clustering within the 

data was small (scores nested within five raters), only the variables website and 

disorder were included as explanatory variables in both models. In this case, the 

decision to utilize GEE over a 2-level multi-level model hence lies in the fundamental 

question of interest to the researcher. Given that the primary research objective of this 

study was to evaluate the relationship between websites, disorders, and their 

interaction on reading grade-level scores across a population of possible raters 

(indices), a GEE or marginal models approach was hypothesized to be the best 

conceptual fit for this specific question. However, because the outcome data are linear 

and normally distributed, multi-level modeling may also be an appropriate alternative 

strategy.  

Overall, aside from a key few instances, the reading grade level for all 

disorders across the various websites explored far exceeded the suggested 6
th

 to 8
th

 

grade reading level guidelines established by the CDC and other similar organizations. 

In some cases, (i.e. text related to borderline personality disorder from 

MedicineNet.com), the estimated reading grade level reached as high as 17.9. This 

estimate suggests that, on average, an individual with an advanced graduate degree 
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(grade 17.9) would be able to read the selected text effectively. In other instances, (i.e. 

text related to ADHD and Agoraphobia from WebMd.com), reading grade level 

estimates were much lower, and consistent with a 6
th

 to 8
th

 grade reading level, 

respectively. These estimates suggest that an individual who completed the 6
th

 to 8
th

 

grade could effectively read the selected text. However, all other estimates obtained 

were markedly higher, with a minimal average high school reading level required to 

adequately read the selected text. 

 Interestingly, text related to borderline personality disorder demonstrated the 

highest reading grade level estimate, followed by text related to bipolar disorder, 

social phobia, schizophrenia, MDD, and GAD, in descending order of grade level. 

Examination of estimates for these disorders generally suggests that an individual with 

an average post-high school reading level could effectively read the segments of text 

selected for analysis. Given the severity of impairment often associated with these 

disorders (particularly borderline personality disorder, bipolar disorder, and 

schizophrenia), it could be surmised that the information available online from the 

websites surveyed is not only relatively inaccessible to most healthy consumers, but 

also especially to those struggling with serious mental illness. 

 Not surprisingly, little difference was noted in reading grade level estimates 

between MDD and bipolar disorder, as these disorders may share a common language 

regarding general symptoms of depression. Likewise, given similarities in language, 

symptom presentation, and etiology, there was no notable difference in reading level 

scores for alcoholism and substance abuse, as well as social phobia and specific 

phobia. However, this rationale could not be extended to text describing the two 
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predominant eating disorders examined in this study:  reading level estimates for 

bulimia nervosa were significantly higher than those for anorexia nervosa. It is 

possible that further exploration of text content may reveal emphasis on different 

features, symptoms, or etiology of each disorder, hence contributing to differences in 

reading level estimates.  

Future research may focus on: 1) increasing the number of clusters of the 

grouping variable by including ratings from additional indices; 2) re-conceptualizing 

the data as being nested within various websites, or within disorders (instead of within 

raters) to expand the number of groups; 3) further investigating inter-rater reliability 

by asking multiple individuals to extract text from the websites selected for the study; 

4) investigating how the construct of reading comprehension is related to the 

readability of selected text using human subjects; and 5) exploring how readability and 

comprehension are related to utilization of health services. These ideas for future 

investigation may address some of the key limitations of this study, which include a 

small number of groups of the clustering variable, and the absence of any information 

regarding how reading comprehension might be related to reading-grade level of 

selected text. Furthermore, only information from disorders that were available on all 

web platforms was selected for this analysis. Expanding the number of websites and 

disorders for analysis may provide a more comprehensive picture of the readability of 

online mental health materials, and may reveal additional or alternative associations 

not demonstrated in this analysis.  

Overall, despite some differences in the width of confidence intervals, results 

from the multi-level modeling and GEE approach are consistent in that they suggest 
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that although some website and disorder combinations had higher readability scores 

than others, scores from all websites and for all disorders exceeded the recommended 

6
th

 to 8
th

 grade standard. This result is important because it demonstrates that much of 

the material obtained online is not written at a level that is comprehensible for the 

majority of consumers in the United States. In order to prevent the perpetuation of 

existing health disparities associated with lack of health literacy, writers of public 

online mental health materials are advised to take great care in ensuring that the 

information they post is accessible to as many individuals as possible. Readers are also 

encouraged to explore alternative modeling strategies for more complicated data, 

depending on their primary research aim.  
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