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Abstract 

 

Sustainable energy produced by offshore wind will likely increase as technology moves 

into deeper water. With increasing water depth, floating substructures may become the 

most economical and viable means for deploying offshore wind turbines, and thus require 

a greater reliance on anchoring systems. A green anchor concept called the “flying wing 

anchor” is currently in development to provide high vertical load capacity, and minimize 

the amount of energy needed to transport, install, and recover it from the seabed. 

Conceptually, the anchor is dynamically installed vertically through free-fall penetration, 

where the anchor will then rotate and dive into a position that is near normal to the anchor 

line in response to the service loads imposed by the offshore floating structure. To aid in 

the development of this novel anchor concept, an experimental program was conducted on 

scale-model anchors under 1g acceleration in a rigid sand-filled tank.  

 

Chapter 1 describes a novel laboratory approach to measure the strength (i.e. friction angle) 

at very low confining pressures, typical of 1g physical model experiments. A simple tilt 

method is proposed to capture the peak friction angle at very low confining pressures, and 

then combined with conventional triaxial results to calibrate a modified stress-dilatancy 

relationship. The results of the tilt method indicate adequate and rational estimates of 

friction angle at very low stresses, and show to predict the critical state friction angle of 

the test sands within 1% to 3%. Furthermore, the modified stress-dilatancy relationship 

minimizes the asymptotic nature of the standard relationship at very low confining 

pressures by adding a second logarithmic term. Chapter 2 presents an experimental and 



 

 

analytical study carried out in the same sand to investigate the effect of anchor shape on 

the pullout capacity of horizontal plate anchors. The experimental results indicate a 

difference in normalized capacity over a range of embedment depth with respect to shape. 

Circular anchors produced consistently larger capacities relative to square anchors, and 

with increasing embedment depth, circular, equilateral triangular, and kite anchors become 

comparable within 5%. The proposed analytical model predicted the pullout capacity 

within 10% for circular plates, and within, on average, 30% for the remaining shapes at 

shallow embedment depths.  

 

Chapter 3 presents a physical model study to identify the anchor shapes that have the most 

effective dive performance, and to investigate the effects of initial embedment depth, 

loading line location, initial fluke orientation, and loading line angle on the dive trajectory. 

The results indicate that the dive performance of a simple kite plate anchor can be 

optimized when the loading line is attached at or near the anchor centroid at an initial fluke 

orientation of 10 degrees relative to the horizontal. This configuration has results in an 

additional 1.5 fluke lengths of embedment with no indication of pull out. Lastly, Chapter 

4 presents an experimental study of the soil-anchor interaction during drag embedment. 

The capacity in the normal and shear (i.e. parallel to the anchor fluke) direction will control 

the trajectory and thus it is important to understand if the presence of one component of 

the mooring line force in one direction influences the resistance in the other direction. The 

resistance and kinematics of a simple kite-shaped plate anchor is measured under pure 

normal, shear, and rotational loading, and compared to force components acting on the 

anchor that were extracted from the previous dive trajectory experiments. The results 



 

 

suggest there is minimal interaction between the normal and shear components acting on a 

simple fluke during dive trajectory in sand. Thus, the trajectory may be easily modeled 

with no adjustment to the resistance in either failure mode.  
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Preface 

 

This dissertation is organized in manuscript format and is comprised of four manuscripts 

contained in four separate chapters. It is the intention of the author that these manuscripts 

will be submitted for publication in appropriate peer-reviewed journals. The first chapter 

deals exclusively with the characterization of the strength of sands at extremely low 

confining stresses, whereas the remaining three manuscripts focus on the experimental 

behavior of a novel drag-type anchor proposed for the use in deep water offshore wind 

development. Chapter 1 presents a simple experimental approach to assess the peak friction 

angle of sand at extremely confining stresses typical of 1g physical model testing. The 

method is combined with conventional triaxial data to calibrate a modified stress-dilatancy 

relationship used to estimate friction angle over a full range of confining stresses. Chapter 

2 investigates the effect of shape on the pullout capacity of horizontal plate anchors in sand 

through 1g physical model experiments. A theoretical framework is presented for the 

development of a nonassociated flow limit equilibrium solution to predict the pullout 

capacity of asymmetric anchor shapes. Chapter 3 presents an experimental investigation 

into the dive trajectory behavior of a plate anchor that is initially embedded in sand. The 

study was designed to identify optimal anchor shapes that have the most effective dive 

performance, and to investigate the effects of initial embedment depth, loading line 

location, initial fluke orientation, and loading line angle on the dive trajectory. Finally, 

Chapter 4 presents an experimental study to investigate the normal and shear force 

interactions that occur during drag embedment of a novel drag-type anchor in sand that is 

initially embedded in sand. 
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Abstract 

 

This paper presents an experimental approach that may be used to assess the peak friction 

angle of sand at extremely low confining stresses. Previous studies in literature have 

performed triaxial testing on sands at initial confining stresses as low as 2 kPa with 

corresponding mean effective stresses at failure ranging from 6 to 9 kPa. However, at initial 

confining stresses below 10 kPa, factors that normally would be negligible in triaxial tests 

become amplified and may contribute to the strength if not accounted for properly. There 

is no literature that presents a method to measure peak friction angle of sands below a mean 

effective stress at failure of 6 kPa. A simple tilt test method is proposed in this study to 

capture peak friction angle at very low confining stresses, that are typically below the range 

of element tests. The tilt and triaxial test results were combined to calibrate a modified 

stress-dilatancy relationship that can be used to estimate friction angle over a full range of 

confining stresses.  

 

Introduction 

 

It has been well established in the literature that sands exhibit increased dilatancy with 

decreasing confining stress. At very low confining stress, even very loose sands will show 

dilative behavior (e.g. Huang et al. 2015). Characterizing the strength and dilatancy of 

sands at low stress levels below 10 kPa may be needed in some geotechnical applications 

including small-scale 1g physical modeling, and the analysis of seabed anchors and buried 

pipelines (White et al. 2008; Bradshaw et al. 2015; Bradshaw et al. 2016; Giampa et al. 

2016; Gerkus et al. 2016), as well as, micro-gravity environments, cavity expansion, 
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shallow foundations, surface failure slope stability, and cone penetration test modeling 

(Salgado et al. 1997).  

 

It is common to use standard laboratory element tests such as the triaxial test to determine 

the friction and dilation angles of reconstituted sand. Triaxial tests have been performed at 

low initial confining pressures ranging from 1.4 kPa to 8 kPa (e.g. Ponce and Bell 1971; 

Chakraborty and Salgado 2010; Huang et. al. 2015). However, the results of triaxial tests 

can be unreliable at very low initial confining pressures (’3 < 10 kPa) because of several 

factors that would normally be neglected become considerably large (Ponce and Bell 

1971). These factors include the strength contributed by the rubber membrane, self-weight 

of the specimen, and piston and/or bearing friction. Other tests that have been used to 

measure friction angles at very low pressures include tilt table devices to measure friction 

along rock joints (e.g. Cawsey and Farrar 1976; Hencher 1976; Bruce et al. 1989), 

geosynthetic interfaces (e.g. Girard et al. 1990; Shan 1993; Lalarkotoson et al. 1999), and 

critical state friction angle (’c) of sand under 1g and microgravity environments (e.g. 

Huang and Mao 2013; Huang et al. 2015). Methods involving the measurement of the angle 

of repose have also been used to assess the critical state friction angle of sand (e.g. 

Cornforth 1973; Santamarina and Cho 2001; Sadrekarimi and Olson 2011).  

 

Given the difficulty of element testing at low stress levels (< 10 kPa), this study proposes 

a new approach to measure the strength of sand at very low confining stresses. It is 

presumed that this method will provide reliable results and eliminate factors from standard 
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element tests that may contribute to the overall strength. The remaining sections of the 

paper present the test sands used in this study, the proposed method, a triaxial experimental 

program, and analysis of test data.  

 

Test Sands 

 

This study uses two test sands to demonstrate the proposed method to characterize the 

strength at very low stress levels. The two sands are Westerly Beach (Bradshaw et al. 2015, 

2016; Gerkus et al. 2016) and Golden Flint (Giampa et al. 2016; Schneider et al. 2016), 

which are currently being used in physical model testing facilities at the University of 

Rhode Island (URI) and the Naval Facilities Engineering Command (NAVFAC), 

respectively. The sands primarily consist of quartz and have very similar grain size (Figure 

1.1) and index properties (Table 1.1). Characterization of the test sands include standard 

index testing, consolidated drained triaxial (TX) tests, and the proposed tilt tests. These 

datasets are used to expand on the behavior of sand at low confining stresses. 

 

Proposed Tilt Test Method 

 

The proposed tilt method is based on the theory of infinite slope failure, for which 

determines the conditions (i.e. soil strength) under which a layer of soil will slip along a 

plane parallel to the ground surface. A factor of safety (FS) is computed that is a measure 

of the closeness to conditions of sliding that exist in the slope (Cruikshank 2002). Based 

on an infinite slope analysis the factor of safety for a cohensionless soil for total stress 

conditions (or effective stress conditions with zero pore pressure) can be expressed as the 

ratio of tan(’)/tan(), where  is the angle of the slope (Duncan and Wright 2005). For a 
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slope impending failure (i.e. FS = 1), the angle  of the slope has to equal the soil strength 

’. Building off of infinite slope theory and the angle of repose for a loose deposit, the 

proposed tilt method estimates the peak friction angle at very low stresses as the inclination 

of the slope that causes failure (i.e. sand movement) for a range of relative density (Dr).  

However, an uncertainty that is associated with the proposed method is measuring the exact 

failure location, thus the mean effective confining pressure at failure (p’f). As an 

approximation, the mean effective confining pressure at failure is taken as a range of D50, 

being the smallest possible stress, up to 25D50, where  is the dry unit weight of the sand, 

based on shear band formation observed in laboratory tests, discrete element modeling, and 

theoretical considerations (e.g. Roscoe 1970; Vardoulakis and Graf 1985; Vardoulakis and 

Aifantis 1991; Yoshida 1994; Bradet and Proubet 1991; Oda et al. 1997; Finno et al. 1997; 

Iwashita and Oda 1998; Alshibli and Sture 1999; Sadrekarimi and Olsen 2010). For the 

sands used in this study, p’f may range from approximately 0.0042 kPa to 0.12 kPa in the 

proposed method. Therefore, for further analysis p’f was taken to be on the order of 0.1 

kPa. 

 

Tilt tests were performed on two quartz sands at different relative densities, and was 

performed using a standard metal mold provided for maximum and minimum index density 

tests (ASTM D4253; ASTM D4254). Dry sand was placed in the standard metal mold 

using a funnel maintaining nearly zero drop height to achieve an initial loose soil state. 

Once the mold was filled, any excess sand was carefully removed to make the sample level 

with the top. Samples were then vibrated, with a surcharge, on a vibratory table to achieve 

a range of relative densities from 0% to 80%. An inclinometer was then attached to the side 
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of the mold to track the angle to failure (i.e. sand movement at the surface) or the friction 

angle. Figure 1.2 summarizes the results of the tilt tests as peak friction angle versus 

relative density index (ID), defined as emax-e/emax-emin where emax, emin are the maximum 

and minimum void ratios, and e is the current void ratio of the sand. 

 

Triaxial Testing  

 

A total of 43 TX tests were conducted with the results summarized in Table 1.2. Three 

laboratories were used to characterize the test sands. The Westerly Beach sand has been 

characterized at the University of Rhode Island (URI) geotechnical laboratory. Similarly, 

the Golden Flint sand has been characterized over three separate laboratories which include 

URI, University of Tennessee, Knoxville (UTK) (Alshibli 2015), and California State 

University, Los Angeles (CSLA) (Tufenkjian and Yee 2006). 

 

Both sands used in this study were tested in triaxial conditions over a range of initial 

confining pressure from 8 kPa to 150 kPa, with corresponding p’f values from 16 kPa to 

449 kPa. Three types of triaxial tests were performed on the test sands. All TX samples 

had a diameter and height of approximately 71 mm and 142 mm, respectively. The samples 

were prepared using dry pluviation with a funnel that allowed for a range of relative 

densities by varying the opening size and fall height. The first type of test consisted of 

conventional consolidated drained triaxial (CD TX) tests on saturated samples using an 

automated load frame system performed at URI and CSLA laboratories. At the URI 

laboratory, volume change was measured using a burette system that allowed the 
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calculation of peak dilation angles (p), however, CSLA only reported peak friction angle 

values. Triaxial samples were sheared after a B-parameter of at least 0.93 was achieved.  

 

The second type of test was a slight modification to the standard CD TX test performed at 

UTK on the Golden Flint sand. Following preparation, a vacuum was applied to the pore 

space of the sample to prevent its collapse as the split mold was removed. The external test 

cell was assembled around the sample, filled with water, and pressurized to apply the 

desired initial confining pressure, while gradually reducing the vacuum connected to the 

specimen pore space. Upon reaching the target initial confining pressure, the sample pore 

was vented and kept at atmospheric pressure throughout the experiment; the specimen was 

sheared dry under quasi-static conditions. The volume change of the specimen was 

measured using the volume of water pumped in/purged out of the cell while maintaining a 

constant confining pressure during the experiment. Lastly, the third type of test was 

performed on dry samples under a vacuum in order to achieve very low initial confining 

pressures down to 8 kPa. When the desired confining stress was achieved through the 

vacuum at the TX base, the external test cell was assembled around the sample, where a 

special cell top cap was put in place to eliminate the resistance caused by the bearings 

against the piston. This allowed the sample to be tested at very low effective conditions 

while minimizing sample disturbance and piston friction. It was not possible to measure 

volume change in these tests or successfully complete tests below 8 kPa due to equipment 

limitations. Sample measurements before and after shear were taken in order to apply an 

area and membrane correction based on Baxter (2000).  
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Analysis of Test Data 

 

Validation of Tilt Test Data 

 

To help verify the proposed tilt method, the critical state friction angle was measured and 

compared to values previously obtained for the Westerly Beach and Golden Flint sands. 

Two published methods were used to determine the critical friction angle of the test sands: 

1. Bolton (1986), 2. Santamarina and Cho (2001). Bolton (1986) extrapolates the peak 

friction angle to zero dilation angle (i.e. zero volumetric strain or critical state) using 

triaxial data (Figure 1.3). Santamarina and Cho (2001) proposed a tilt method using a 

graduated cylinder were sand is poured into the graduated cylinder filled with water, then 

tilted approximately 60o and brought slowly back to the vertical position. The angle of 

repose made by the sand is taken as the critical state friction angle. A comparison of the 

critical state friction angles is summarized in Table 1.3. The resulting ’c values from the 

proposed tilt method were within 1% and 3% of the critical state friction angles determined 

using the Bolton (1986) and Santamarina and Cho (2001) methods.  

 

It is well understood that critical state friction angle, for a particular sand, will not change 

with a change of initial relative density or initial confining pressure, but will vary with 

loading path (Chakraborty and Salgado 2010). Thus, the peak friction angle will also 

change. Literature has shown that friction angle under plane strain conditions can be 3o to 

5o higher than for triaxial conditions (Tatsuoka et al. 1986; Pradhan et al. 1988; Yoshimine 

2005). However, some researchers suggest that the critical state friction angle is unique 

regardless of boundary conditions and that there is no difference. Using a similar tilt 
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method to obtain ’c, Sanatmarina and Cho (2001) showed a 1o difference in the value 

when compared to undrained triaxial tests for a range of sands. This difference was also 

seen for the test sands in this study and thus for further analyses the friction angles obtained 

from the proposed tilt test method have not been adjusted.  

 

Modified Stress-Dilatancy Relationship 

 

In order to analyze all test results, which cover a wide range of stresses and relative 

densities, Bolton (1986) stress-dilatancy relationship was adopted. The Bolton (1986) 

stress-dilatancy relationship has been used in literature for modeling the strength and 

dilatancy of sands at low confining stress (e.g. White et al. 2008; Chakraborty and Salgado 

2010; Giampa et al. 2016; Bradshaw et al. 2016). The work is based on the fundamental 

understanding that the shear strength is attributed to the combination of inter-particle 

friction and dilation. The proposed relationship was developed using a large database of 

TX and plane strain (PS) compression test data, and describes the shear strength and 

dilatancy of sands based on relative density and p’f as shown by the following Eqns.  

 

Rfcp IA''            (1.1) 

pcp ''            (1.2) 

   R'plnQII fDR          (1.3) 

   R'plnQIA'' fDfcp         (1.4) 
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Where ’p = peak friction angle, ’c = critical state friction angle, p = peak dilation angle, 

IR = relative dilatancy index, ID = relative density index, p’f = mean effective confining 

pressure at failure (in kPa), Af, , Q, R = soil-specific constants. The soil-specific constants 

can be determined through a simple linear regression using triaxial results shown in Figures 

1.3-1.5 (e.g. Salgado et. al. 2000; Chakraborty and Salgado 2010; Giampa et al. 2016; 

Bradshaw et al. 2016). The constants are summarized in Table 1.1. As the mean effective 

confining stress at failure approaches a value close to 0 kPa, estimates of ’p from Eqn. 

(1.4) become large and unrealistic. Thus, the results of the tilt test are plotted in Figure 1.5 

to show the difficulty in calibrating the existing relationship using ’p results at very low 

stresses. The correlation becomes poor with a resulting coefficient of determination (r2) 

ranging from 0.6 to 0.7. This is caused by the logarithmic nature of the relationship in 

which it becomes asymptotic as p’f approaches zero. It should be noted that the critical 

state friction angle from the tilt test (Dr = 0%) falls in line with the triaxial results, and with 

increasing relative density the data begins to deviate.    

 

Chakraborty and Salgado (2010) gathered TX and PS data on Toyoura sand at p’f from 9 

kPa to 400 kPa to examine Bolton (1986) stress-dilatancy relationship at low stresses. 

Chakraborty and Salgado (2010) found when the constant R is set to a value of 1, Q 

decreases with decreasing ’3. As part of this study, the same form of the Q function 

presented by Chakraborty and Salgado (2010) is adapted herein, only p’f is used in place 

of initial confining pressure to be consistent with Eqn. (1.3) (i.e. Q = Q1+Q ln(p’f)). By 

substituting the revised Q function into Eqn. (1.3) and combining with Eqn. (1.1), a 

modified form of the dilatancy index can be expressed as 
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      R'pln'plnQQII ff1DR         (1.5) 

Where Q1, Q = soil-specific constants. Q1 = a value of Q at a p’f of 1 kPa, and Q = the 

change in Q at a p’f other than 1 kPa. The modified fitting parameters can be determined 

through a multi-variable linear regression in which should take on the general form of y = 

a1x1+ax2+b. By equating Eqn. (1.5) with Eqn. (1.1) and rearranging, the regression 

equation can be expressed as 

 

    R'plnQIQI'plnII fD1DfDR        (1.6) 

 

The regression of Eqn. (1.6) can be performed using a statistic software add-on in Excel. 

The addition of the second logarithmic term in Eqn. (1.6) allows the modified fitting 

parameters to be regressed using results obtained from the tilt and triaxial tests to cover a 

wide range of stresses. The additional term simply minimizes the asymptotic behavior 

found in the standard Bolton (1986) relationship. Thus, providing a more rational estimate 

of the peak friction angle at a low stress range. A summary of the modified terms are found 

in Table 1.1. The regression of Eqn. (1.6) resulted in an r2 value of 0.94 and 0.97 for the 

Westerly Beach and Golden Flint sands, respectively. 

 

 



12 

 

Predicting Strength of Sand 

 

Figure 1.6 compares the estimated peak friction angles versus p’f for two relative densities 

using Eqns. (1.4) and (1.6). As expected the peak friction angle increases with decreasing 

mean effective stress at failure and increasing Dr. The standard relationship, Eqn. (1.4), 

largely overestimates the peak friction angle over a range of relative density, with a 

significant difference being evident below p’f = 10 kPa. Due to the logarithmic nature of 

Eqn. (1.4), the contours in Figure 1.6 produce unrealistic values of ’p at extremely low 

stresses. Additionally, the relationship is being extrapolated beyond its calibration due to 

the difficulty in incorporating the tilt test results. However, the additional logarithmic term 

in Eqn. (1.6) better allows the equation to estimate friction angle in the low stress range, as 

it essentially flattens the contours (Figure 1.6). Regressing Eqn. (1.6) using the tilt and 

triaxial test results provides a wide range of p’f to calibrate the relationship and avoids 

extrapolation down to low stresses. The estimated peak friction angles at a p’f ≈ 0.1 kPa for 

both test sands produced values approximately 85% of those predicted using Eqn. (1.4).  



Conclusions 

 

The objective of this study was to present an experimental approach that may be used to 

assess the peak friction angle of sand at extremely low confining stresses. The results were 

then used to calibrate a modified stress-dilatancy relationship so that the peak friction angle 

may be predicted over a wide range of stresses. The simple tilt test method is meant to 

eliminate strength contributing factors often associated with element testing at initial 

confining pressures below 10 kPa. The results of the tilt test on two quartz sands indicate 

adequate and rational estimates of the friction angle at extremely low stresses. Comparisons 
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of the critical state friction show that the tilt test comes within 1% to 3% of the critical state 

friction angle of the test sands, determined from two published methods. Therefore, 

providing some validation that it may be extended to denser soil. Calibration of a modified 

Bolton (1986) stress-dilatancy relationship was carried out using the results obtained from 

triaxial and the tilt test approach. The modification of the stress-dilatancy relationship, 

adapted from Chakraborty and Salgado (2010), allows for a calibration to be accomplished 

over a wide range of stresses. The modification adds a second logarithmic term to the 

relationship which in turn minimize the asymptotic nature of the standard Bolton (1986) 

relationship at low stress levels. As shown by the results, the modified relationship 

predicted peak friction angles, at a mean effective stress equal to p’f = 25D50, that were 

approximately 85% of those estimated by the standard relationship.  

 

Although further investigation is warranted using additional sand and regarding the exact 

value of the mean effective stress at failure used in the tilt test approach, the current method 

offers a means to capture reasonable estimates of peak friction angle in sand at low stresses.  
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Table 1.1. Properties of test sand. 

 

Westerly 

Beach 
Golden Flint 

Parameter Value Value 

max (kN/m3) 18.10 17.68 

min (kN/m3) 14.09 14.24 

emax  0.844 0.847 

emin  0.436 0.487 

Gs 2.65 2.68 

D50 (mm) 0.30 0.25 

Cu 1.63 1.61 

Cc 1.24 1.13 

'c (deg) 32.3 33.9 

 0.69 0.64 

Af 4.8 3.6 

Q (Bolton 1986 Method) 7.03 9.61 

R (Bolton 1986 Method) -0.12 -0.69 

Q1 (This Study) 4.46 5.75 

Q (This Study) 0.53 0.80 

R (This Study) -0.27 -0.69 




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Table 1.2. Summary of TX results for Westerly Beach and Golden Flint sand. 

Lab Sand Condition Dr p'f (kPa) ’3 (kPa) 'p (deg) p (deg)

URI Westerly B. Dry 38 102 50 37.4 - 

URI Westerly B. Dry 43 64 30 38.8 - 

URI Westerly B. Dry 42 42 20 38.5 - 

URI Westerly B. Dry 42 43 20 39.0 - 

URI Westerly B. Dry 44 22 10 39.8 - 

URI Westerly B. Dry 48 23 10 40.9 - 

URI Westerly B. Dry 19 93 50 34.5 - 

URI Westerly B. Dry 17 58 30 35.5 - 

URI Westerly B. Dry 15 38 20 35.3 - 

URI Westerly B. Dry 13 20 10 36.2 - 

URI Westerly B. Dry 13 16 8 36.7 - 

URI Westerly B. Saturated 20 58 30 35.8 3.2 

URI Westerly B. Saturated 21 180 100 33.1 2.8 

URI Westerly B. Saturated 53 208 100 38.2 9.7 

URI Westerly B. Saturated 52 69 30 41.5 12.9 

UTK Golden F. Dry 0 54 25 39.6 - 

UTK Golden F. Dry 0 97 50 36.0 3.7 

UTK Golden F. Dry 0 288 150 35.4 - 

UTK Golden F. Dry 65 73 25 47.8 22.0 

UTK Golden F. Dry 61 139 50 46.6 20.4 

UTK Golden F. Dry 61 402 150 45.7 19.8 

UTK Golden F. Dry 81 75 25 48.5 24.0 

UTK Golden F. Dry 81 151 50 48.8 22.7 

UTK Golden F. Dry 81 449 150 48.5 22.0 

URI Golden F. Saturated 62 81 30 45.8 17.4 

URI Golden F. Saturated 40 76 30 44.2 15.3 

URI Golden F. Saturated 5 57 30 34.8 1.4 

URI Golden F. Dry 8 101 50 37.2 - 

URI Golden F. Dry 7 102 50 37.6 - 

URI Golden F. Dry 7 61 30 37.5 - 

URI Golden F. Dry 8 39 20 36.1 - 

URI Golden F. Dry 6 22 10 39.3 - 

URI Golden F. Dry 54 136 50 46.1 - 

URI Golden F. Dry 53 135 50 46.0 - 

URI Golden F. Dry 54 82 30 46.3 - 

URI Golden F. Dry 53 58 20 47.6 - 

URI Golden F. Dry 51 30 10 48.4 - 

CSLA Golden F. Saturated 17 76 34 39.9 - 

CSLA Golden F. Saturated 29 79 34 41.3 - 

CSLA Golden F. Saturated 43 85 34 43.4 - 

CSLA Golden F. Saturated 32 87 34 44.2 - 

CSLA Golden F. Saturated 60 105 34 49.1 - 

CSLA Golden F. Saturated 62 99 33 48.7 - 
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Table 1.3. Comparison of average critical state friction angle. 

Sand 

Critical State Friction Angle, 'c (deg) 

Bolton (1986) 

Santamarnia 

and Cho 

(2001) 

Tilt (This Study) 

Westerly Beach 32.3 31.6 32.4 

Golden Flint 33.9 32.8 34.0 
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Figure 1.1. Grain size distribution of test sands. 
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Figure 1.2. Results of tilt test method for (a) Westerly Beach sand; and (b) Golden Flint 

sand assuming a range of mean effective stress at failure. 
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Figure 1.3. Relationship between peak friction angle and dilation angle in TX test for (a) 

Westerly Beach sand; and (b) Golden Flint sand. 
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Figure 1.4. Assessment of Bolton (1986) Af parameter from TX tests for (a) Westerly 

Beach sand; and (b) Golden Flint sand. 
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Figure 1.5. Calibration of Bolton (1986) stress-dilatancy Q and R parameters for (a) 

Westerly Beach sand; and (b) Golden Flint sand. 
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Figure 1.6. Comparison of the modified Bolton stress-dilatancy relationship regressed 

using tilt and triaxial test data and the standard Bolton (1986) stress-dilatancy relationship 

regressed using triaxial test data for: (a) Westerly Beach sand; and (b) Golden Flint sand. 

 

30

35

40

45

50

55

60

0 5 10 15 20

P
e

a
k
 F

ri
c
ti
o

n
 A

n
g
le

, 

' p

(d
e

g
)

Mean Effective Confining Pressure at Failure, 

p'f (kPa)

Eqn. (1.6) This Study

Bolton (1986)

WesterlyBeach

Dr = 15%

60%

(a)

30

35

40

45

50

55

60

0 5 10 15 20

P
e

a
k
 F

ri
c
ti
o

n
 A

n
g
le

, 

' p

(d
e

g
)

Mean Effective Confining Pressure at Failure, 

p'f (kPa)

Eqn. (1.6) This Study

Bolton (1986)

Golden Flint

60%

(b)

Dr = 15%



28 

 

2. The Effect of Shape on the Pullout Capacity of Plate Anchors in Sand 
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Abstract 

 

This paper presents an experimental study to investigate the effect of shape on the pullout 

capacity of horizontal plate anchors in sand. In addition, a nonassociated flow limit 

equilibrium solution for plane strain and axisymmetric conditions is proposed for 

asymmetric anchor shapes. Experimental results indicate a difference in the breakout factor 

(i.e. normalized capacity) over a range of embedment depths with respect to shape. Circular 

anchors produced consistently larger breakout factors relative to square anchors. With 

increasing embedment, the circle, equilateral triangular, and kite anchors become 

comparable within 5%. The proposed analytical model predicted breakout factors within 

10% for circular plates and within, on average, 30% for the remaining shapes for a 

normalized embedment less than 5. Although additional study is warranted, the 

experimental results indicate a difference in capacity when altering the shape, and the 

solution procedure predicts pullout capacity within reason which in turn gives confidence 

in the further application of the analytical procedure. 

 

Introduction 

 

The offshore wind industry will likely move further offshore into deeper water to capture 

greater wind resources and to extend out of visual range of coastal communities (Musial et 

al. 2004). This will allow for the production of a significant amount of renewable energy 

without harmful emissions (Musial and Ram 2010). The major challenges with moving 

into deeper water is that conventional offshore foundations will become impractical and 

uneconomical due to the size and energy required for resisting environmental forces and 

installation. Thus, the most economical option will be floating substructures anchored to 
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the seafloor, which must provide enough buoyancy to support the weight of the turbine, 

and restrain from pitch, roll, and heave motions within acceptable limits (Musial and 

Butterfield 2006).  

 

Floating platforms have been successfully used for oil and gas development in deep water; 

these platforms are secured by anchors attached to the structure via mooring systems. The 

mooring systems typically can be a taut, semi-taut, or catenary system attached to a variety 

of different anchors which include, but are not limited to, anchor piles, suction caissons, 

drag anchors, suction embedded plate anchors, and dynamically penetrating anchors 

(Randolph and Gourvenec 2011). However, plate type anchors have shown to provide an 

efficient means to resist vertical and inclined loading due to the resistance being mobilized 

over the bearing surface of the anchor, rather than in side shear that might be the case, for 

example, in a pile anchor. 

 

The Author is currently researching a new anchor concept where a wing-like plate anchor 

is installed into the seabed using free-fall penetration, similar to a torpedo pile. The anchor 

will then rotate and move into position that is near normal to the anchor line under the 

applied mooring load (Gerkus et al. 2016). The shape of the anchor will likely take on non-

axisymmetric and non-planar shapes so that it will remain hydrodynamically stable as it 

free-falls through the water column. It will be necessary to be able to predict the pullout 

capacity of the wing anchor after it achieves its final embedment.  
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A review of the literature, summarized in Table 2.1, indicates that most of the studies on 

the pullout capacity of horizontal plate anchors have focused primarily on either circular 

or rectangular anchors. Researchers (e.g. Murray and Geddes 1987; Merifield et al. 2006) 

have found that circular anchors have approximately 30% higher capacity than square 

anchors. Other studies (e.g. Rowe and Davis 1982; Sing and Ramaswamy 2008) have 

shown that circular and square anchors have higher capacities than rectangular anchors due 

to three-dimensional effects. It is unclear how shape might affect the capacity of other non-

axisymmetric and/or non-planar shapes. As a starting point, the objective of this study is 

to investigate the pullout capacity of shallow embedded triangular and kite shaped anchors. 

Circular and square anchors are also included, however, to provide a baseline for 

comparison.   

 

Experimental Program 

 

As part of this study, 20 small-scale 1g physical model experiments were performed on 

various shaped anchors in dry sand. The anchor embedment ratio (H/B), where H is the 

depth from the ground surface to lowest point of the anchor and B is the diameter or plate 

width, varied from 1 to 5 in order to focus on shallow embedded anchors. As part of a 

preliminary development study on the wing-anchor concept after Gerkus et al. (2016), 

experimental penetration results following free-fall of a simple plate anchor indicated 

maximum normalized embedment’s of 1 and 3 for saturated and dry sand, respectively. 

Furthermore, simple dive trajectory experiments in sand have shown the anchor to achieve 

one to two additional anchor width or diameter of embedment, therefore gearing the focus 

to shallow embedded anchors. Scale effects are important to consider so that the results can 
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be reliably interpreted. Bradshaw et al. (2016) showed that scale effects can be minimized 

in 1g plate anchor tests by presenting the pullout capacity in a dimensionless form, 

commonly referred to as a breakout factor (Nq/H), and by scaling the constitutive 

behavior of the soil. Soils will generally have a higher strength in small-scale 1g models 

due to higher dilation at low confining pressures. Therefore, the scaling of the constitutive 

behavior involves preparing the soil looser in the model than at full-scale to get a similar 

dilation response. Consistent with current centrifuge scaling laws presented in Garnier and 

Gaudin (2007), experiments were also designed such that the width of the anchors were at 

least 48 times the median diameter (D50) of the sand to ensure there was a sufficient number 

of particles over the width of the plate.  

 

A schematic of the anchor load test setup is shown in Figure 2.1. The sand used in this 

study was obtained from a natural deposit in Westerly, RI (Bradshaw et al. 2015; 2016) 

and consisted of uniform quartz grains with index properties provided in Table 2.2. To 

investigate the effect of shape on pullout capacity, circular, square, equilateral triangular, 

and kite shaped plate anchors were tested as shown in Figure 2.2. The anchors were 

fabricated from 12.7 mm thick structural steel with dimensions given in Table 2.3 and had 

either a plate area of 75 cm2, 232 cm2, or 929 cm2. The anchors were “wished” into place 

and tested in a rigid test container having dimensions of 2.4 m length x 1.2 m width x 0.9 

m height. Sand was dry pluviated using a portable pluviator adapted from Gade et al. 

(2013). The device consisted of a bucket attached to a flexible hose leading to a pipe 

containing a plate with holes and a stack of sieves. By varying the opening size, fall height 

of the sand, and amount of sieves, the density was easily controlled (Bradshaw et al. 2016). 



33 

 

The unit weight of the deposited soil was determined by dispensing sand into small cups 

of a known volume (413 cm3), that were placed on the soil surface at various depths during 

pluviation. A typical profile of unit weight and corresponding relative density index (ID), 

defined as (emax-e)/(emax-emin) where emax, emin equal the maximum and minimum void 

ratios, and e equals the void ratio of the prepared sample, is shown in Figure 2.3. The 

relative density index was fairly uniform throughout the test container with a coefficient of 

variation less than 0.20. 

 

The plate anchors were spaced at least 3B from the walls of the test container and the 

adjacent anchors to minimize interaction. The anchors were pulled out at a constant rate of 

50 mm/s using an electric hoist, and a block and tackle system as shown in Figure 2.1. 

Loads were measured with a load cell with a capacity of 0.89, 2.2, or 11.1 kN (CAS SBA 

and Omega LC), and displacement was measured with a string potentiometer 

(Measurement Specialties SP2-50). The loading rate was significantly higher than other 

studies, but strain rates have shown to be negligible on the strength of dry sand (e.g. 

Whitman and Healy 1962) (Bradshaw et al. 2016). Table 2.4 summarizes the local soil 

properties and results of each plate anchor pullout test. 

 

The peak friction and dilation angles were estimated using the Bolton (1986) stress-

dilatancy relationship in order to handle the stress dependent changes in friction and 

dilation angles at low stresses. The relationship is expressed as 
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   R'plnQIA'' fDfcp         (2.1) 

pcp ''            (2.2) 

where ’c = the critical state friction angle, p’f = the mean effective stress at failure, and Q, 

R, Af, and  = Bolton’s fitting parameters. Triaxial tests were performed to calibrate 

Bolton’s fitting parameters for the sand used in this study. The triaxial samples were 

prepared using dry pluviation with a funnel in an attempt to achieve a similar fabric as the 

sand in the physical 1g model experiments. A range of relative density indices between 

0.13 and 0.53 could be achieved by varying the opening size of the funnel. The critical 

state friction angle was determined from extrapolating the peak friction angle at zero 

dilation angle (Bolton 1986), and the fitting parameters (Q, R, Af, ) were determined from 

the linear regression plots shown in Figures 2.4-2.6 (Bradshaw et al. 2016). A summary of 

the fitting parameters can be seen in Table 2.2.  

 

Experimental Results 

 

Figure 2.7 depicts the normalized load-displacement behavior obtained from the pullout 

tests conducted on circular, square, equilateral triangular, and kite plate anchors for an 

average relative density of 23% (ID = 0.23). Three tests were performed at a higher relative 

density of 55% (ID = 0.55) and can also be found in Table 2.4. It is apparent that the pullout 

capacity increases with increasing embedment and relative density regardless of the shape. 

All of the experimental tests show a clear peak capacity followed by a softening behavior 

due to the reduction in soil overburden and confining pressure as the anchor is pulled out 

of the soil. For anchor tests starting at H/B = 1 to 3, the peak pullout capacity occurred at 
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approximately 0.2B of displacement relative to the initial embedment depth. As the 

normalized embedment increased from 3 to 5, slightly more displacement (approximately 

0.5B) was required before reaching the peak pullout capacity. 

 

Figure 2.8a/b presents a comparison between the breakout factors obtained for circular and 

square plate anchors in this study with those found in literature from Dickin (1988), Murray 

and Geddes (1987; 1989), Pearce (2000), Illamparuthi et al. (2002), and Giampa et al. 

(2016). Although comparisons made between experimental results in literature are difficult 

due to uncertainty in the soil properties, anchor roughness, size, and sample preparation, 

they can provide a reasonable baseline for validation. The breakout factors for circular plate 

anchors are consistently larger than those of square plate anchors over a range of 

embedment depths. This trend is verified through the experimental results obtained in this 

study and in the literature. Additionally, the experimental capacities for circular and square 

plate anchors in this study are at minimum, 40% lower than those found in the majority of 

the literature which may be due primarily to the 4o difference in soil strength. Majority of 

the literature presented in Figure 2.8 do not reference any scaling considerations to account 

for the strength or friction angle of the soil at low stresses. Therefore, the soil strength may 

in fact be greater than the published values, explaining the discrepancies in the pullout 

capacity values. However, the non-linear increase in breakout factor is comparable with a 

greater difference in values at shallower depths (H/B = 1 to 2). Overall, the breakout factors 

for circular and square anchors obtained from the literature, although larger, follow very 

similar trends and assist in the validity of the experiments performed in this study. 
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The breakout factors (i.e. peak pullout capacity) for each anchor shape in this study are 

shown in Figure 2.9 as a function of normalized embedment depth. Experimental studies 

from the literature indicate that circular plates have breakout factors that are 20% to 30% 

higher than square plates (i.e. Murray and Geddes 1987; Tagaya et al. 1988; Merifield et 

al. 2006). In this study the breakout factors for the circular plates were 30% to 50% higher 

than those for the square plates. The kite and equilateral triangular anchors had a breakout 

factor that was comparable to the square anchors at an embedment ratio less than 2. For 

higher embedment ratios, the breakout factors of the kite and equilateral triangular anchors 

moved closer to the breakout factor of the circular plate. A reason for this change may be 

linked to the symmetry of the anchors. The axisymmetry and dilation may be causing an 

increase in the intermediate principle stress in a direction that is tangential to the failure 

surface, that is subsequently increasing the strength on the failure plane. 

 

Nonassociated Limit Equilibrium Solutions for Pullout Capacity  

 

Analyses to predict the pullout capacity of plate anchors in sand are typically based solely 

on peak friction angle (Meyerhof and Adams 1968; Vesic 1971; Sarac 1989; Ghaly and 

Hanna 1994; Illamparuthi et al. 2002; Merifield et al. 2006). These solutions are either 

based on the principle of associated flow, where p = ’p, or they inherently assume that 

the friction angle can uniquely capture the influence of dilation angle. Researchers 

including Davis (1968), Drescher and Detournay (1993), Loukidis et al. (2008), 

Krabbenhoft et al. (2012), Sloan (2012), and Giampa et al. (2016) have shown that the 

assumption of associated flow does not reflect drained soil behavior, and overpredicts 

drained foundation capacity in soils. Therefore, dilation angle should be directly included 
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in the analysis of pullout capacity of shallow anchors. A nonassociated limit equilibrium 

solution presented by White et al. (2008) for plane strain conditions and Giampa et al. 

(2016) for axisymmetric conditions has shown to capture the influence of dilation on the 

pullout capacity of shallow embedded anchors within 15% of the measured values.  

 

Solutions to predict the pullout capacity of shallow embedded anchors have been primarily 

developed for plane strain or axisymmetric conditions. The Author is unaware of any 

available closed-form theoretical solutions to predict the pullout capacity of shallow 

embedded asymmetric plate anchors. Therefore, a nonassociated limit equilibrium solution 

is adapted herein from Giampa et al. (2016) to assess the breakout factor, N, for the shapes 

used in this study. The axisymmetric solution after Giampa et al. (2016) was adapted from 

White et al. (2008) with an assumed failure wedge shown in Figure 2.10. The failure wedge 

assumes the inclination angle () of the failure surface is equal to the dilation angle of the 

soil (i.e. nonassociated flow). This assumption has been further verified experimentally by 

Cheuk et al. (2007) and Liu et al. (2012). White et al. (2008) states that the pullout 

resistance is equal to the weight of the lifted soil wedge plus the shear resistance along the 

two inclined failure surfaces. The weight of the soil wedge is taken as the volume of a two-

dimensional trapezoid, while the shear resistance, assuming only frictional energy 

dissipation is considered on the failure surface, can be expressed as 

 

 
pp1 tan'tanzC          (2.3) 
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         (2.4) 

Where  = peak-mobilized shear resistance;  = dry unit weight of sand; z = the height from 

the top to the bottom of the failure wedge; K0 = lateral earth pressure coefficient at-rest; p 

= peak dilation angle; ’p = peak friction angle; and C1 = constant for assessing the normal 

stress on the failure plane. Furthermore, Eqn. (2.4) is derived assuming that the normal 

stress on the failure surface does not change during uplift loading and is equal to the in situ 

value inferred from K0 conditions (White et al. 2008). By integrating Eqn. (2.3) and (2.4) 

along the two-dimensional slip planes and equating with the vertical forces acting on the 

sliding block, the peak uplift resistance for plane strain is calculated as  
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Where H = embedment depth from the ground surface to the deepest point of the anchor; 

and B = diameter or plate width (typically taken as the smallest dimension). Thus, 

normalizing Eqn. (2.5) by AH, where A is the bearing area of the plate anchor, the 

breakout factor for plane strain conditions can be simplified as 

 











B

H
F1N ps          (2.6) 

 
pp1pps tan'tanCtanF         (2.7) 
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Where Fps = pullout factor for plane strain conditions. Alternatively, a similar approach 

was used by Giampa et al. (2016) for axisymmetric conditions. Rather than representing 

the soil wedge as a two-dimensional trapezoid, Giampa et al. (2016) used a frustum 

obeying a nonassociated flow rule in which the uplifted weight can be generally expressed 

as 

 

 AAAA
3

H
W TTw 


         (2.7)  

Where AT = area of the plate projected to the ground surface assuming  = p; and A = 

bearing area of the plate anchor.  

  

Consistent with the assumptions made by White et al. (2008) that only frictional energy 

dissipation is considered on the failure surface; the peak-mobilized shear resistance 

becomes synonymous to Eqn. (2.3). Integrating Eqn. (2.3) along the failure surface 

represented as a frustum or three-dimensional wedge, combining with Eqn. (2.7), and 

normalizing by AH, the breakout factor for a circular plate is defined as 
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






         (2.8) 

  pp1p11 tan'tanCtanXF         (2.9) 

  pp1pp22 tan'tanCtantanXF        (2.10) 
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 
pp1 'cosC           (2.11) 

Where X1, X2 = anchor dependent coefficients = 2 and 4/3, respectively for a circle; and 

C1 = constant for assessing the normal stress on the failure plane. Giampa et al. (2016) 

proposed a first-order approximation of the constant C1 that differs from White et al. 

(2008). The approximation was based on analyses of strip anchors in a nonassociated flow 

Coulomb soil (Rowe and Davis 1982; Vermeer and Sutjiadi 1985; Koutsabeloulis and 

Griffiths 1989; White et al. 2008; Smith 2012). Giampa et al. (2016) concluded K0 has a 

minor influence on pullout capacity and C1 is approximately cos(’p) for p = 0, and C1 

can be unity for p = ’p, thus the constant can be represented by Eqn. (2.11). Additionally, 

for p = ’p (associated flow) Eqn. (2.8) becomes an upper bound solution where F1 = 

X1tan(’p) and F2 = X2tan2(’p) (e.g. Murray and Geddes 1987). 

 

The solution procedure presented by Giampa et al. (2016) was extended to square, 

equilateral triangular, and kite shaped plate anchors. The calculated soil wedge weights 

(i.e. Eqn. (2.7)) were verified numerically using SolidWorks for frustums inclined over a 

range of angles, from 0o to ’p, and embedment depths. For shallow embedded square and 

equilateral triangular plate anchors, the breakout factor can be expressed in a form identical 

to Eqns. (2.8-2.10). The constants X1 and X2 are equal to 2 and 4/3 for square anchors, and 

2√3 and 4 for equilateral triangular anchors. The kite anchor can be simplified to a slightly 

different form due to the geometry of the shape and is expressed as 
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Where L = largest dimensions of the anchor; 
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; and a1,a2 = length of the diagonals; and 1,2 = one half of the interior angles. In order to 

assess the newly derived solutions, the constant C1 was varied between Eqns. (2.4) and 

(2.11).  

 

Comparison of Analytical Expressions with Experimental Results 

 

Table 2.5 shows the tabulated results comparing the predicted and measured breakout 

factors using the solutions presented in Eqn. (2.8) for a circular, square, and equilateral 

triangular anchor, and Eqn. (2.12) for a kite anchor. The constant C1 was varied between 

Eqns. (2.4) and (2.11) to investigate the quality of the solution with respect to shape. A 

statistical assessment is also shown in Table 2.6. Figure 2.11 shows the N ratio of 

predicted to measured, for each shape, using both C1 constants. The results indicate that 

the pullout capacity of circular plate anchors (Figure 2.11d) is predicted within 

approximately 10% to 15% of the measured value with a coefficient of variation (COV) 

equal to 0.18, when using Eqn. (2.11) to estimate the normal stress along the failure plane. 

This finding is consistent with Giampa et al. (2016) for helical anchors and further validates 

the solution for circular plate anchors. Conversely, when using Eqn. (2.4) the results for 
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circular anchors are predicted within 20% to 40% of the measured values; thus, making the 

solution much more conservative.  

The N bias for the square, equilateral triangular, and kite plate anchors are shown in Figure 

2.11a/b/c, respectively. For normalized embedment’s, H/B ≤ 3, the closed-form solution 

predicts capacity within approximately 30% for the aforementioned shapes when using 

Eqn. (2.4) rather than Eqn. (2.11) to assess the normal stress on the failure plane. Eqn. (2.4) 

assumes K0 conditions which reduces the value by approximately one-half relative to Eqn. 

(2.11). This in turn decreases the predicted breakout factor and brings the bias closer to 1 

for square, equilateral triangular, and kite plate anchors. The difference is clearly 

highlighted in Figure 2.11a/b/c represented by the open markers.  

 

The sharp spike found in Figure 2.11 at H/B ≥ 5 may be explained by the anchor moving 

into a transition or deep failure mode in which the slip surface becomes more localized 

around the plate. Therefore, the current solution becomes unsuitable for predicting pullout 

capacity due to the assumed failure wedge extending from the anchor plate to the ground 

surface. Although additional study is warranted to assess C1 for non-circular plate anchors, 

Eqn. (2.4) is recommended to provide more conservatism when predicting pullout capacity.   

 

Shape Factors 

 

The effect of shape on the pullout resistance may be expressed as a dimensionless shape 

factor (S.F.) as 
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Where the values of Nstrip, Ncircle have been obtained from the work of White et al. (2008) 

and Giampa et al. (2016), respectively. For the purposes of numerical modeling it is 

convenient to model the pullout resistance under plane strain or axisymmetric conditions. 

Therefore, the use of shape factors will provide a means to adjust the resistance to a given 

shape. The breakout factors for a circular, square, equilateral triangular, and kite plate 

anchors are based on the present solution derivation with the recommended C1 constant, 

and are compared to the plane strain solution of White et al. (2008) and the axisymmetric 

solution of Giampa et al. (2016). The shape factors expressed in Eqn. (2.13) and (2.14) are 

presented over a range of dilation angles and normalized embedment depths as shown in 

Figures 2.12 and 2.13, respectively.   

 

For the shape factors shown in Figure 2.12 it is evident that dilation and embedment 

significantly increase capacity of circular, square, equilateral triangular, and kite plate 

anchors as compared to strip anchors. However, this trend is not quite similar when 

compared to the capacity of circular plate anchors. Figure 2.13a indicates that the capacity 

of circular plate anchors is larger than square plate anchors with increasing dilation and 

embedment depth. The trend is similar for the remaining shapes shown in Figure 2.13b/c 

at p equal to 0o; however, as dilation angle increases the capacity of an equilateral 
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triangular and kite plate anchor become larger than circular plate anchors. This trend is in 

opposition with the experimental results and may be explained by the solutions’ 

overprediction of pullout capacity for the equilateral triangular and kite shaped plate 

anchors. However, if the solutions predictions resulted in a mean bias closer to 1, the shape 

factors for  > 0o would mimic the behavior shown in Figure 2.13a for square plate 

anchors. 

 

For comparison purposes Figure 2.14 presents shape factors based on the nonassociated 

flow limit equilibrium solution for circular and square anchors, and compares them to those 

presented by Merifield et al. (2006), Vesic (1971), and Koutsabeloulis and Griffiths (1989). 

Similar to previous findings, dilation and embedment depth increase capacity of circular 

and square anchors as compared to strip anchors, however it is noted that shape factors 

using the associated flow case of the limit equilibrium solution (upper bound) in Eqns. 

(2.8-2.11) match well with the lower bound published by Merifield et al. (2006). The 

associated flow case will tend to overpredict shape factors as compared to the 

nonassociated flow case. Shape factors based on the Vesic (1971) cavity expansion solution 

are slightly lower to shape factors based on the nonassociated flow limit equilibrium 

solution for the case when p > 10o (e.g. ’p > 39o). While shape factors from the 

nonassociated flow limit equilibrium and cavity expansion solution compare reasonably 

well with those of Koutsabeloulis and Griffiths (1989) up to H/B equal to 4 for ’p > 40o, 

the axisymmetric solution of Koutsabelouslis and Griffiths (1989) does not explicitly 

account for dilation angle and may significantly overpredict shape factors for ‘loose’ sands 

(p < 10o) and H/B greater than 5.  
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Conclusions 

  

The objective of this study was to investigate the effect shape has on the pullout capacity 

of shallow embedded plate anchors in sand. Twenty small-scale 1g physical model 

experiments were performed on various plate anchors including circular, square, 

equilateral triangular, and kite shapes to assess the effect on pullout capacity. A general 

procedure to derive closed-form nonassociated flow limit equilibrium solutions for the 

aforementioned shapes is also presented. The solutions were compared to the respective 

shapes in order to test the quality of the model.   

 

The experimental results indicate differences in breakout factor, over a range of 

embedment ratios with respect to shape. Consistent with literature, the capacity of circular 

plate anchors is 30% to 50% larger than square anchors. Additionally, as the embedment 

ratio increases (H/B > 2) the breakout factor for a circle, kite and equilateral triangular 

anchor become comparable, and are all larger than a square anchor. The change may be 

linked to an increase in the intermediate principle stress (i.e. tangential to the failure 

surface), that is increasing the strength on the failure plane. The analytical expressions 

extended to the shapes used in this study agree well with the experimental test results when 

selecting the appropriate normal stress constant, C1. Pullout capacity for circular plate 

anchors were predicted within 10% with a COV of 0.18 when C1 = cos(’p-p). 

Conversely, capacity of the square, equilateral triangular, and kite plate anchors were 

predicted within 30% when C1 = (1+K0)/2-(1-K0)cos(2p)/2 was used. The lateral earth 

pressure coefficient at-rest reduced the C1 value by one half, which in turn lowered the 
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predicted breakout factor for all shapes, but significantly improved the quality of the 

solutions for the non-circular or asymmetric plate anchors. It is recommended for design 

purposes that C1 shown in Eqn. (2.4) be used for shallow embedded, non-circular plate 

anchors to conservatively predict pullout capacity.  

 

From the analytical expressions derived in this study, shape factors were developed 

comparing the capacity of the square, equilateral triangular, and kite shapes to the capacity 

of a strip (plane strain) and circular (axisymmetric) anchor. The shape factor results 

indicated that the capacity of square, equilateral triangular, and kite anchors are larger than 

a strip anchor with increasing dilation and embedment depth. This trend was also evident 

for the capacity of equilateral triangular and kite shapes when compared to circular anchors 

for dilation angles greater than 0o. However, the capacity of a square anchor is smaller than 

a circular anchor over a range of dilation angles and embedment depths, as well as, 

equilateral triangular and kite anchors when p = 0o.  

 

Lastly, comparisons of the nonassociated limit equilibrium model for circular (Giampa et 

al. 2016) and square (this study) anchors were made with solutions presented by Merifield 

et al. (2006), Vesic (1971), and Koutsabeloulis and Griffiths (1989). Shape factors agreed 

well with lower bound shape factors of Merifield et al. (2006) when associated flow was 

assigned. Similarly, shapes factors based on Vesic (1971) cavity expansion solution were 

very similar to shape factors based on the nonassociated flow limit equilibrium solution for 
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circular plate anchors when p > 10o; both solutions also compared reasonably well with 

Koutsabeloulis and Griffiths (1989) up to H/B = 4 for ’p > 40o. 

 

Further assessment of the analytical solution procedure may be warranted for additional 

shapes, sand types, layering configurations, and the normal stress coefficient for non-

circular plate anchors. However, the reasonable agreement among the analytical and 

experimental results gives confidence in the further application of the simple limit 

equilibrium analytical solution method presented in this study, which can be used for 

asymmetrical or non-standard shallow embedded plate anchors. Additional experimental 

testing may be warranted to study the failure mechanisms of axisymmetric plate anchors 

to further clarify the observed differences in breakout factors. 
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Table 2.1. Summary of experimental tests on horizontal anchors in sand found in 

literature. 

Reference Type of Testing 
Anchor 

Shape 

Anchor Size 

(mm) 

Meyerhof and Adams 

(1968) 
Model-Scale Circ. 25.4 to 102 

Hanna and Carr (1971) 1g Circ. 38 

Hanna et al. (1971) 
Chamber and 

Field 
Circ. 38, 150 

Vesic (1971) 1g Circ.  

Das and Seeley (1975a/b) 1g 
Sqr., 

Rect. 
51 

Andreadis et al. (1981) 1g Circ. 80 , 150 

Ovesen (1981) 
Centrifuge and 

Field 

Circ., 

Sqr. 
20 

Rowe and Davis (1982) 1g 
Sqr., 

Rect. 
51 

Murray and Geddes (1987) 1g 
Circ., 

Rect. 
50.8 

Saeedy (1987) 1g Circ.  37.8-75.6 

Dickin (1988) 
Centrifuge and 

Chamber 

Sqr., 

Rect. 
25, 50 

Tagaya et al. (1988) Centrifuge 
Circ., 

Rect. 
15 

Frydman and Shamam 

(1989) 

Chamber and 

Field 

Strip, 

Rect. 
19, 200 

Murray and Geddes (1989) 1g 
Sqr., 

Rect. 
50.8 

Bouazza and Finlay (1990) 1g Circ. 37.5 

Sakai and Tanaka (1998) 1g Circ. 30, 200 

Pearce (2000) 1g Circ. 50-125 

Illamparuthi et al. (2002) 1g Circ. 100-400 

Fargic and Marovic (2003) 1g and Field Spatial 25, 50, 100 
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Table 2.1. Continued… 

Reference Type of Testing 
Anchor 

Shape 

Anchor Size 

(mm) 

Dickin and Laman (2007) Centrifuge Strip 100, 250 

Niroumand et al. (2010) 1g Sqr. 50, 75 

Niroumand and Kassim 

(2014a) 
1g Sqr. 50, 75, 100 

Niroumand and Kassim 

(2014b) 
1g Irregular 159, 297 

Bradshaw et al. (2015) 1g Sqr. 152, 305 

Bradshaw et al. (2016) 1g Sqr. 152, 305 

Giampa et al. (2016) 1g Helical 152, 254 
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Table 2.2. Properties of test sand. 

Property Value 

max (kN/m3) 18.1 

min (kN/m3) 14.1 

emin 0.44 

emax 0.84 

D50 (mm) 0.30 

Gs 2.65 

'c (deg) 32.3 

Q 7.03 

R -0.12 

Af 4.75 

 0.69 
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Table 2.3. Dimensions of test anchors used in this study. 

Dimensions 
Square 

(large) 

Square 

(small) 
Circle 

Equilateral 

Triangle 

(large) 

Equilateral 

Triangle 

(small) 

Kite 

(large) 

Kite 

(small) 

B (mm) 304.8 152.4 165.1 231 127 198 127 

L (mm) 304.8 152.4 165.1 231 127 236 127 

Diagonal 

long (mm) 
- - - - - 197 127 

Diagonal 

short (mm) 
- - - - - 127 66 

t (mm) 12.7 12.7 12.7 12.7 12.7 12.7 12.7 

A (cm2) 929 232 214 232 70 234 81 
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Table 2.4. Summary of local soil properties and plate anchor test results. 

Test 

ID 
Shape 


(kN/m3) 

'p 

(deg) 

p 

(deg) 
B & L (m) 

H 

(m) 
H/B 

Qu 

(N) 
N 

1 Square 14.91 40.2 11.4 0.152 0.152 1.0 90 1.7 

2 Square 14.91 39.4 10.3 0.152 0.305 2.0 255 2.4 

3 Square 14.85 39.7 10.7 0.152 0.152 1.0 96 1.8 

4 Square 14.85 38.5 9.0 0.152 0.457 3.0 706 4.5 

5 Square 14.85 38.9 9.6 0.305 0.305 1.0 720 1.7 

19 Square 14.72 37.1 7.0 0.152 0.762 5.0 1492 5.7 

22 Square 16.05 48.9 24.1 0.152 0.152 1.0 125 2.2 

15 
Eq. 

Triangle 
14.78 38.7 9.3 0.231 0.231 1.0 174 2.2 

16 
Eq. 

Triangle 
14.78 38.0 8.2 0.231 0.462 2.0 687 4.3 

17 
Eq. 

Triangle 
14.78 37.6 7.7 0.231 0.693 3.0 1384 5.8 

20 
Eq. 

Triangle 
14.72 37.3 7.2 0.127 0.635 5.0 494 7.6 

23 
Eq. 

Triangle 
16.05 46.0 19.9 0.231 0.462 2.0 1222 7.1 

12 Kite 14.81 38.9 9.6 
0.198 & 

0.236 
0.236 1.2 173 2.1 

13 Kite 14.81 38.2 8.5 
0.198 & 

0.236 
0.472 2.4 613 3.7 

14 Kite 14.81 37.9 8.1 
0.198 & 

0.236 
0.638 3.2 1355 6.1 

18 Kite 14.72 37.3 7.2 
0.127 & 

0.127 
0.635 5.0 498 6.6 

21 Kite 16.05 46.0 19.8 
0.198 & 

0.236 
0.472 2.4 1353 7.6 

24 Circle 14.90 40.1 11.2 0.165 0.165 1.0 181 3.4 

25 Circle 14.90 39.2 10.1 0.165 0.330 2.0 524 5.0 

26 Circle 14.90 38.8 9.4 0.165 0.495 3.0 935 5.9 
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Table 2.5. Comparison of experimental results to analytical expressions. 

Test 

ID 
Shape 

Experimental 

N 

Predicted 

N* 
Pred./Meas. 

Predicted 

N** 
Pred./Meas. 

1 Square 1.7 2.7 1.6 2.2 1.3 

2 Square 2.4 4.7 1.9 3.4 1.4 

3 Square 1.8 2.7 1.5 2.1 1.2 

4 Square 4.5 6.6 1.5 4.7 1.0 

5 Square 1.7 2.6 1.5 2.1 1.2 

19 Square 5.7 10.4 1.8 6.9 1.2 

22 Square 2.2 3.8 1.7 3.2 1.4 

15 
Eq. 

Triangle 
2.2 4.0 1.8 2.9 1.3 

16 
Eq. 

Triangle 
4.3 7.4 1.7 5.1 1.2 

17 
Eq. 

Triangle 
5.8 11.4 2.0 7.6 1.3 

20 
Eq. 

Triangle 
7.6 21.3 2.8 13.8 1.8 

23 
Eq. 

Triangle 
7.1 13.3 1.9 10.1 1.4 

12 Kite 2.1 4.7 2.2 2.4 1.1 

13 Kite 3.7 10.4 2.8 5.2 1.4 

14 Kite 6.1 15.4 2.5 8.0 1.3 

18 Kite 6.6 32.5 4.9 19.0 2.9 

21 Kite 7.6 21.0 2.8 13.2 1.7 

24 Circle 3.4 2.7 0.8 2.2 0.6 

25 Circle 5.0 4.6 0.9 3.4 0.7 

26 Circle 5.9 6.8 1.1 4.8 0.8 
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Table 2.6. Statistical assessment of analytical expressions based on experimental data. 

 

Pred./Meas. 

C1=cos(’p-p) 

Pred./Meas. 

C1=(1+K0)/2 – (1-K0)cos(2p)/2 

Shape Median COV Median COV 

Square 1.61 0.11 1.21 0.11 

Eq. Triangle 1.87 0.22 1.33 0.17 

Kite 2.76 0.35 1.39 0.41 

Circle 0.93 0.18 0.68 0.13 
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Figure 2.1. Schematic of the anchor test setup used in this study (adapted from Bradshaw 

et al. 2016). 
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Figure 2.2. Test anchors used in this study with A = 232 cm2. 
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Figure 2.3. Typical profiles of: (a) dry unit weight; and (b) relative density index obtained 

within the test container. 
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Figure 2.4. Relationship between peak friction and dilation angles for Westerly, RI sand 

measured in triaxial tests. 
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Figure 2.5. Assessment of Bolton (1986) Af parameter from triaxial tests. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

' = 4.8(-dev/de1)/0.3

r² = 0.905

0

5

10

15

20

0 1 2 3 4 5



' 
=

 
' p

-

' c

(d
e

g
)

(-dev/de1)/0.3

CD Triaxial Data



66 

 

 

Figure 2.6. Calibration of Bolton (1986) stress-dilatancy Q and R parameters. 
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Figure 2.7.   Normalized stress-strain behavior for: (a) square anchors; (b) equilateral 

triangular anchors; (c) kite anchors; and (d) circular anchors. 
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Figure 2.8. Comparison of experimental breakout factors with literature for: (a) circular 

anchors; and (b) square anchors. 
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Figure 2.9. Comparison of experimental breakout factor versus normalized embedment. 
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Figure 2.10. Failure mechanism assuming inclination angle corresponds to peak dilation 

angle. 
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Figure 2.11. Predicted to measured pullout capacity for: (a) square anchors; (b) 

equilateral triangular anchors; (c) kite anchors; and (d) circular anchors. 

 

 

 

 

 

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

N


(P
re

d
ic

te
d
/M

e
a

s
u
re

d
)

Normalized Embedment, H/B

Square Plate C1 = Eqn. (11)

Square Plate C1 = Eqn. (4)

(a)

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

N


(P
re

d
ic

te
d
/M

e
a

s
u
re

d
)

Normalized Embedment, H/B

Eq. Triangular Plate C1 = Eqn. (11)

Eq. Triangular Plate C1 = Eqn. (4)

(b)

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

N


(P
re

d
ic

te
d
/M

e
a

s
u
re

d
)

Normalized Embedment, H/B

Circular Plate C1 = Eqn. (11)

Circular Plate C1 = Eqn. (4)

(d)

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8

N


(P
re

d
ic

te
d
/M

e
a

s
u
re

d
)

Normalized Embedment, H/B

Kite Plate C1 = Eqn. (11)

Kite Plate C1 = Eqn. (4)

(c)



72 

 

 

Figure 2.12. Theoretical shape factors with respect to strip anchors for: (a) square 

anchors; (b) equilateral triangular anchors; (c) kite anchors; and (d) circular anchors. 
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Figure 2.13. Theoretical shape factors with respect to circular anchors for: (a) square 

anchors; (b) equilateral triangular anchors; and (c) kite anchors. 
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Figure 2.14. Theoretical shape factors comparing strip, circle, and square pullout capacity 

for shallow embedded anchors in sand using: (a) nonassociated flow limit equilibrium 

after this study; (b) lower bound limit analysis after Merifield et al. (2006); (c) cavity 

expansion after Vesic (1971); and (d) FEM after Koutsabeloulis & Griffiths (1989). 

 

 

 

 

 

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

S
.F

. 
=

 N
 C

ir
c
le

 o
r 

S
q

u
a

re
/N
 S

tr
ip

Normalized Embedment, H/B

Limit Equilibrium

Lower Bound, after Merrifield et al. (2006)

'p = 40o

 'p = 40o Circle

Square

(a)

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

S
.F

. 
=

 N
 c

ir
c
le
/N
 s

tr
ip

Normalized Embedment, H/B

FEM Koutsabeloulis and
Griffiths (1989)

This Study

'p = 40o

'p = 30o

'p = 20o

(b)

'p = 39.5o p = 10.5o

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10

S
.F

. 
=

 N
 c

ir
c
le
/N
 s

tr
ip

Normalized Embedment, H/B

CE Vesic (1971)

This Study

'p = 40o

'p = 30o

'p = 20o

'p = 50o

(c)

'p = 39.5o p = 10.5o



75 

 

3. Experimental Study of the Dive Trajectory Behavior of Fully Embedded Plate 

Anchors in Sand 
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Abstract 

 

This paper presents an experimental study to investigate the dive trajectory behavior of a 

fully embedded plate anchor in sand. A series of 1g physical model drag embedment 

experiments were carried on a simple kite, trapezoid, and double connected trapezoid plate 

anchor with a free-moving shank mechanism. Experimental results indicate a significant 

difference in final embedment depth due to drag with respect to geometry. Furthermore, 

maximum embedment can be achieved when considering the initial embedment depth (i.e. 

starting point or penetration), fluke orientation, and loading line attachment. The results 

indicate that the dive performance of a simple kite plate anchor can be optimized when the 

loading line is attached at or near the anchor centroid at an initial fluke orientation of 10o 

relative to the horizontal. This configuration has resulted in an additional 1.5 fluke lengths 

of embedment with no indication of pull out. Although further study is warranted under 

different soil conditions, anchor geometry, and shank configuration, the results of this study 

provide valuable insight on the behavior of a fully embedded plate type anchor subject to 

diving forces, which may further be used for trajectory modeling.  

 

Introduction 

 

Offshore structures are used worldwide for a variety of functions in varying water depth 

and environmental conditions. Functions include, but are not limited to, oil and gas 

exploration, production processing, bridges and causeways, loading and offloading 

facilities, and offshore wind energy production (Offshore Center Danmark [OCD] 2010). 

In the design and analysis of offshore platforms many factors are taken into account to 

ensure safety; among the factors are loading conditions generated by the environment (i.e. 
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wave and wind loads), and transportation and lifting loads. This requires the proper 

selection and design of the foundation. With increasing interest in offshore technology 

moving into deeper water there is a greater reliance on anchored floating structures, as 

opposed to traditional stationary fixed-jacket or gravity-based structures secured to the 

seafloor through piling (O’Neill et al. 2003).  

 

The Author is currently researching a new anchor concept where a wing-like plate anchor 

is installed into the seabed using free-fall penetration, similar to a torpedo pile. The anchor 

will then rotate and move into position that is near normal to the anchor line under the 

applied mooring load (Gerkus et al. 2016). The shape of the anchor will need to be designed 

to maintain hydrodynamic stability during free-fall through the water column, and thus will 

likely take on non-axisymmetric and/or non-planar shapes. To further develop this anchor 

concept, it is necessary to understand and eventually predict the dive trajectory behavior of 

the anchor because its capacity in service will depend on its final embedment and 

orientation.   

 

Much of the literature on anchor trajectory or kinematics has focused on either drag 

embedment (DEA) or vertically loaded anchors (VLA) which start at the mudline and are 

dragged into place, or suction embedded plate anchors (SEPLA) that are jetted to a depth 

and then rotated into position. The behavior of these specific anchors has been investigated 

in both clay and sand. Theoretical investigations, primarily in clay, have used plastic limit 

analysis, finite element modeling, and limit equilibrium theories to estimate the dive 

trajectory and ultimate capacity, initial movement criteria, ultimate embedment depth, and 
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understanding the failure mechanisms under specific loading conditions (e.g. Murff 1994; 

Martin 1994; Neubecker and Randolph 1995; Dahlberg 1998; Bransby and O’Neill 1999; 

O’Neill et al. 2003; Murff et al. 2005; Gilbert et al. 2009; Aubeny and Chi 2010; Liu et al. 

2012; Yang et al. 2012; Gaudin et al. 2015; Wu et al. 2016). Other studies have used 

physical modeling. Focusing on sand, researchers have investigated the dive trajectory and 

holding capacity of drag embedment anchors simulating a Danforth anchor (LeLievre and 

Tabatabaee 1981), Navy Standard Stockless anchor with and without stabilizers (Walker 

and Taylor 1984), Vryhof Stevpris (O’Neill et al. 1999), and Hall type anchors (Shin et al. 

2011; Ren et al. 2016), as well as, vertical loaded anchors (e.g. Liu et al. 2010).   

 

The Author is unaware of published studies that have focused on the dive trajectory of an 

initially embedded drag embedment anchor in sand. Therefore, the objectives of this study 

are twofold: (1) to identify optimal anchor shapes that have the most effective dive 

performance, and (2) to investigate the effects of initial embedment depth, loading line 

location, initial fluke orientation, and loading line angle on the dive trajectory.  

 

Test Sand and Characterization  

 

The sand used in this study primarily consists of a natural deposit of quartz beach sand 

obtained from Westerly, Rhode Island. The sand has been used extensively in physical 1g 

model experiments on plate anchors after Bradshaw et al. (2015; 2016) and Gerkus et al. 

(2016). Characterization of the sand included standard index and consolidated drained 

triaxial testing. The index properties are summarized in Table 3.1.  
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The peak friction (’p) and dilation angles (p) were estimated using the Bolton (1986) 

stress-dilatancy relationship in order to handle the stress dependent changes in the angles 

at low stresses. The relationship is expressed as 

 

   R'plnQIA'' fDfcp         (3.1) 

pcp ''            (3.2) 

Where ’p = peak friction angle, ’c = critical state friction angle, p = peak dilation angle, 

ID = relative density index = (emax-e)/(emax-emin), emax, emin = maximum and minimum void 

ratios, respectively, and e = void ratio of the prepared sample, p’f = the mean effective 

stress at failure, and Q, R, Af, and  = Bolton’s fitting parameters. Triaxial tests were 

performed to calibrate Bolton’s fitting parameters for the sand used in this study. The 

triaxial samples were prepared using dry pluviation with a funnel in an attempt to achieve 

a similar fabric as the sand in the physical 1g model experiments. A range of relative 

density (Dr) between 13% (ID = 0.13) and 53% (ID = 0.53) could be achieved by varying 

the opening size of the funnel. The critical state friction angle was determined from 

extrapolating the peak friction angle at zero dilation angle (Bolton 1986), and the fitting 

parameters (Q, R, Af, ) were determined from the linear regression plots shown in Figures 

3.1-3.3 (Bradshaw et al. 2016). A summary of the fitting parameters can be seen in Table 

3.1.  
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Preliminary Dive Trajectory Study 

 

The objective of the preliminary experiments was to obtain a rough assessment on the 

effect of anchor shape, loading line attachment point, and initial fluke orientation (f) on 

the dive performance of a fully embedded drag anchor. The model-anchors consisted of a 

kite-, trapezoid-, and double connected trapezoid- (i.e. bi-wing) shaped plate shown in 

Figure 3.4. The models were fabricated from 0.51 cm thick plywood with respective fluke 

areas (Afluke) of 120 cm2, 120 cm2, and 130 cm2. A very thin steel cable, having a diameter 

of 1.59 mm, was used during loading to help reduce the soil friction along the loading line. 

The loading line acts likes a shank that is free to rotate along the long axis of the anchor 

and connects directly to the simple plate anchors at difference locations along the centerline 

(Figure 3.4). The 1g model experiments were carried out in a rigid test tank having 

dimensions of 2.4 m length x 1.2 m width x 0.9 m height.  

 

Various experiments were performed to investigate the trajectory of the different anchor 

shapes by varying the loading line attachment point (Figure 3.4), initial fluke orientation, 

and initial embedment (H). These variables are shown on the schematic in Figure 3.5. A 

measurement rod was attached to the back of the plate anchors to visually observe the 

change in plate anchor rotation and penetration depth during loading. Each anchor began 

fully embedded at the beginning of the experiment and the measurement rod extended 

outside of the soil; sand was not pluviated but rather placed via buckets. A hole was 

excavated to a desired depth relative to the surface, the anchor was then placed at a 

predetermined fluke orientation, and then backfilled prior to testing. The loading rate was 

approximately 50 mm/s controlled by an electric hoist, and a block and tackle system. 
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Although the rate was significantly higher than other studies (e.g. Liu et al. 2010), strain 

rates have been shown to have a negligible effect on the strength of dry sand (e.g. Whitman 

and Healy 1962). After the anchors were placed at their initial locations and orientations, 

they were pulled horizontally, a distance of approximately 5 fluke lengths (Lf).  

 

Figure 3.6 displays the results of the preliminary dive trajectory experiments. The results 

of each model anchor are presented in terms of final normalized embedment as a function 

of initial fluke orientation relative to the horizontal, loading line attachment location, and 

initial embedment. Trends among the three anchor models indicate that the movement, 

change in orientation, and embedment depth are highly dependent on the loading line 

attachment location on the fluke. When the loading line was attached at or below the anchor 

centroid, rotation was induced and the anchor moved away from the vertical, suggesting 

the attachment point was initially below the anchor center of pressure (COP). Alternatively, 

with the attachment located above the centroid and COP, all three anchor shapes rotated 

toward the vertical and pulled out of the soil. For the kite and trapezoid anchor, an increase 

in embedment was observed, while the anchor rotated away from the vertical (Figure 

3.6a/b). The embedment of the bi-wing anchor increased at early stages of drag, but then 

decreased as the anchor rotated below the horizontal causing the anchor nose to pitch 

upward, the loading line to act purely parallel with the fluke, and pull the anchor toward 

the soil surface resulting in an embedment shallower than the starting point (Figure 3.6c). 

The large amount of rotation seen by the bi-wing is an indication that the loading line is 

attached significantly below the COP, such that a large moment is produced causing the 

anchor to rotate more rapidly to the horizontal and eventually pull out.  
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The dive performance of the plate anchor models is further influenced by the initial fluke 

orientation (Figure 3.6a/b). With the exception of the bi-wing anchor, the final embedment 

depth was greatest when the anchor was initially oriented between 45o and 60o. The anchors 

dove while rotating away from the vertical during loading and eventually ceased when 

becoming parallel with the horizontal. The results suggest that by beginning the anchor at 

a steeper initial fluke orientation the final embedment can be maximized because more 

time is required to rotate the anchor to the horizontal over the same distance. Based on a 

series of experiments using the kite anchor (Figure 3.6a), initial embedment depth showed 

to have a minimal influence on the dive performance. The kite anchor was started at an 

initial embedment of 1Lf and 2Lf below the soil surface. On average, an additional 0.5 fluke 

lengths of embedment was achieved at either embedment depth.   

 

Main conclusions from the preliminary dive trajectory experiments are as follows: 

 The kite plate anchor resulted in the greatest maximum embedment depth compared 

to the trapezoid and bi-wing shapes. The kite anchor gained 60% more embedment 

when starting at an initial fluke orientation (f) of 45o.  

 When the loading line was attached above the plate anchor centroid, the fluke 

moved toward the vertical position and pulled out of the soil with increasing 

horizontal displacement. This behavior was exhibited by the bi-wing anchor 

regardless of line location.  

 For the kite and trapezoid shapes, diving was caused when the loading line was 

attached at the anchor centroid and/or slightly below the anchor center of pressure.  
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 The anchor dive trajectory changed significantly for different anchor shapes in dry 

sand, contrary to what was found for experiments performed in clay using similar 

plate anchor shapes after Gerkus (2016).  

 Maximum embedment was achieved by the kite shape anchor when the loading line 

was attached at the anchor centroid or slightly below the anchor COP starting at an 

initial embedment depth of 1Lf.  

 

Detailed Dive Trajectory Study of the Kite Anchor 

 

Building on the preliminary dive trajectory study, a series of experiments were performed 

on just the kite anchor, which included the measurement of all six-degrees of motion and 

loading line tension during embedment.  

 

Scaling Considerations 

 

It is important to consider scale effects so that the results can be reliably interpreted. 

Bradshaw et al. (2016) showed that scale effects can be minimized in 1g plate anchor tests 

by presenting capacity in a dimensionless form, q/H, where q is the plate bearing pressure, 

 is the dry unit weight of the sand, and H is the embedment depth from the soil surface to 

deepest part of the anchor. and by scaling the constitutive behavior of the soil. Soils will 

generally have a higher strength in small-scale 1g models due to higher dilation at low 

confining pressures. Therefore, the scaling of the constitutive behavior involves preparing 

the soil looser in the model than at full-scale to get a similar dilation response. Consistent 

with current centrifuge scaling laws presented in Garnier and Gaudin (2007), experiments 

were also designed such that the width of the anchors were at least 48 times the median 
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diameter (D50) of the sand to ensure there was a sufficient number of particles over the 

width of the plate. 

 

Sample Preparation 

 

The sand was rained into the test tank using a portable pluviator based on Gade et al. 

(2013). The pluviation device consisted of a bucket attached to a flexible hose leading to a 

pipe containing a plate with holes and a stack of sieves. The unit weight of the soil was 

determined by pluivating sand into small cups of a known volume (413 cm3) that were 

placed on the soil surface at various depths during sand placement. An example of the dry 

unit weights measured during preparation in the test container is shown in Figure 3.7a along 

with corresponding calculated relative density index in Figure 3.7b. The relative density 

indices were fairly consistent throughout the container with a coefficient of variation of 

less than 0.2. This was equivalent to 35% to 40% (ID = 0.35 to 0.40) at full-scale to account 

for scale effects (Bradshaw et al. 2016). Additionally, the corresponding peak friction and 

dilation angles in each test container, on average, were 39o and 10o, respectively. 

 

The plate anchors were placed at a desired depth and fluke orientation during pluviation. 

Upon completion of the test sample, the anchors were fully embedded (Figure 3.5). The 

kite anchor was placed at normalized embedment’s (H/Lf) of 1 and 2, with fluke 

orientations of 10o, 20o, 30o, and 45o. Lastly, the loading line location was placed at the 

approximate anchor centroid in order to minimize the amount of rotation at the start of drag 

and potentially maximize embedment. During the drag experiments a six-degree-of-

freedom magnetic tracker (magnetometer by Polhemus) was used to measure position (i.e. 



85 

 

x-y-z) and orientation (i.e. yaw [azimuth], pitch [elevation], roll) of the anchor as it moves 

through the soil in real time. Additional sensors included a 2.2 kN (CAS SBA) load cell 

and string potentiometer (Measurement Specialties SP2-50). The magnetometer was 

recessed on the back of the plate anchor before testing, while the load cell and string 

potentiometer were connected to the far end of the loading line beyond the pulley shown 

in Figure 3.8.  

 

Tracking Position and Orientation 

 

Anchor position and orientation was measured using a Polhemus magnetic tracking device 

as shown in Figure 3.9. The system consists of a sensor, source, electronics unit, and 

software package (Patriot User Manual 2008). The source receives the electromagnetic 

waves produced from the sensor during testing and is then converted to rotation and 

displacement measurements via a calibration that is performed by the manufacturer. The 

system generates its own magnetic field when in operation, and if highly magnetic objects 

are in close proximity to either the source and/or sensor, the internal calibration will be 

temporarily altered. This interference becomes noticeable in the system’s live display and 

can be fixed by moving magnetic objects out of range and by locating the source within 

127 mm of the sensor. 

 

Translation readings from the magnetometer are measured with respect to the center of the 

source; the positive x and y directions are marked on the sensor and the right hand rule is 

used to determine the positive z direction. The rotational angles are presented as Euler 

angles and are expressed in terms of rotating frames. The yaw (azimuth) is rotation around 
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the z-axis, pitch (elevation) is rotation around the y-axis, and roll is rotation around the x-

axis. The sensor first measures the yaw angle with respect to the external frame of x-y-z, 

next a new coordinate system is set (x’-y’-z’) and the pitch rotation is measure with respect 

to this new frame, and finally, another coordinate system is set (x”-y”-z”) to measure the 

roll rotation. The amount of rotation the anchor undergoes in each direction during loading 

is important for anchor dive trajectory tests, but using Euler angles may be misleading 

when extracting the exact behavior. Consequently, to measure the change in each rotation 

at a given interval or frame, the rotational angles should be measured with respect to a fixed 

axis of x-y-z rather than rotating axes, thus requiring a correction to be made to the 

magnetometer output (Gerkus 2016). This correction to the rotational output can be made 

by using a direction cosine matrix (R) that can be expressed for this magnetometer as 

 

























coscossincossin

sincoscossinsinsinsinsincossin

sinsincossincoscossinsinsincoscoscos

R   (3.3) 

Where  = yaw;  = pitch; and  = roll. The direction cosine matrix is calculated for each 

measurement frame and then multiplied by the inverse of the matrix (R-1) of each 

measurement frame. Next, the sum of the change in angles calculated with respect to this 

“new” frame gives the change in yaw, pitch, and roll angles with respect to a fixed axis. 

The rotation results presented in this study show the real time anchor movement in each 

direction calculated using this method. It is noted that for all drag tests the anchor exhibited 

minimal roll and yaw rotation movements shown in Figure 3.10. 
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Effects of Initial Embedment Depth 

 

Knowledge of the initial embedment depth of the wing-anchor concept is particularly 

important in order to understand its trajectory and drag efficiency following free-fall 

penetration. To investigate the effect of initial embedment depth, the anchor was started at 

1 and 2 fluke lengths below the soil surface at initial fluke orientations of 10o and 30o from 

the horizontal.  

 

Figure 3.11 shows the dive trajectory normalized by fluke length, along with the 

corresponding fluke orientation and loading line tension applied at the surface during drag. 

It is evident that for a given fluke orientation, the anchor will achieve more relative 

embedment when beginning at 1Lf below the soil surface. During drag, the anchor 

gradually rotates from the horizontal to the vertical (Figure 3.11b), with this behavior 

occurring much faster when the anchor begins at an initial embedment of 2Lf. As the anchor 

pitches closer to the vertical the tension in the loading line increases, indicating the anchor 

is being loaded near normal to the fluke area (Figure 3.11c). Upon reaching a peak load 

there is a sudden decrease due to the reduction in soil overburden as the anchor moves 

upward through the soil. A rapid increase in the tension force can be seen in tests T8 and 

T9 due to the anchor rotating to the vertical at an early stage of drag. A similar trend can 

be seen in tests T3 and T4, however, the increase occurs around 1Lf of drag. The cause of 

the decrease in embedment at 2Lf and 2.5Lf may be linked to the free movement of the 

loading line, attachment point, and limitations of the box length potentially causing the 

loading to act more normal to the fluke as it is drag. As the anchor dives deeper and rotates 

closer to the vertical, the line will have a tendency to act more normal to the fluke, rather 
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than parallel to the fluke, and cause pull out. Additionally, as the anchor becomes steeper 

the center of pressure moves closer to the anchor nose and below the original loading line 

attachment, causing the loading line to now act above the center of pressure and uplift the 

anchor.  

 

The location of the loading line between the anchor centroid and center of pressure is 

particularly difficult to achieve using small-scale models. A slight offset may cause the line 

to act above the center of pressure and cause the anchor to rotate toward the vertical at 

early stages of drag shown in Figure 3.11b.  

 

Effect of Initial Fluke Orientation  

 

To investigate the effect of initial fluke orientation on the dive trajectory, the model was 

placed 1Lf below the soil surface with its fluke orientation ranging from 10o to 45o from 

the horizontal. Figure 3.12 shows the normalized trajectory, fluke orientation, and loading 

line tension applied at the surface during drag. The results indicate optimum diving and 

maximum embedment depth is achieved when the anchor is near parallel (f = 10o) with 

the horizontal. Test T4 achieved approximately 0.5Lf more embedment, with no indication 

of pull out, compared to the remaining tests (Figure 3.12a). Also, the test results show that 

the anchor continues to pitch to the vertical while diving deeper due the change in center 

of pressure with depth and orientation. For tests T2, T3, T5R, and T7 the diving occurred 

when the anchor rotated between 25o and 35o from the horizontal. However, slight plowing 

followed by pull out occurred when the fluke orientation exceeded 40o (Figure 3.12b).  
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Rotation of the fluke toward the vertical is observed for all of the tests shown in Figure 

3.12b. By placing the anchor at an initial shallow orientation relative to the horizontal, 

more time is required to rotate the anchor to the vertical, and allowing the anchor to dive 

deeper over the same distance. This finding indicates that optimum dive can be achieved 

when the anchor is started at a shallow fluke orientation around 10o with a loading line 

attachment at the approximate anchor centroid.   

 

Effect of Loading Line Attachment 

 

To obtain minimal pitch or fluke rotation during drag it is important to locate the loading 

line or shank attachment at the anchor centroid or below the center of pressure. The 

preliminary tests performed showed that if the loading line is attached at or below the 

anchor centroid, the eccentricity will cause a moment resulting in fluke rotation away from 

the vertical. This further indicates that the center of pressure is close to the anchor centroid. 

Conversely, for line attachments above the anchor centroid or center of pressure, a moment 

is caused rotating the anchor toward the vertical, and eventually out of the soil. To 

investigate the effects of the loading line attachment a comparison of two drag tests, T3 

and T6, under the same conditions were made. The loading line attachment point was 

located at the approximate anchor centroid in T3 and moved 0.13Lf below in T6, closer to 

the anchor nose.  

 

The results are summarized in Figure 3.13. The dive trajectory (Figure 3.13a) differed 

significantly between the two drag experiments, showing more relative embedment when 

the location of the loading line was at the approximate anchor centroid. As can be seen in 
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Figure 3.13b, when the loading line was attached 0.13Lf below the centroid a large moment 

was induced causing the anchor to rotate at a faster rate to the horizontal. Diving was ceased 

at approximately 2 fluke lengths of drag due to the anchor becoming parallel with the 

horizontal. The behavior is further displayed in terms of the applied loading line tension at 

the soil surface shown in Figure 3.13c, where the loading line tension essentially plateaus 

indicating the anchor is plowing at a constant depth. As dragging continues, test T6 began 

to pitch below the horizontal and pull out of the soil, causing a slight reduction in line 

tension. Alternatively, diving was exhibited in test T3 until reaching a fluke orientation 

greater than 40o.  This behavior was further observed in tests shown in Figure 3.11 and 

3.12.  

 

Relationship Between the Fluke Orientation and Loading Line Angle  

 

To further study the behavior of the dive trajectory of this simple wing-anchor concept it 

is important to understand the relationship between the fluke orientation and loading line 

angle at the attachment (a) relative to the horizontal (Figure 3.5). Having knowledge of 

the attachment angle determines the relative horizontal and vertical force components on 

the anchor caused by a structure. This information is a critical aspect in the design of this 

anchor and other drag embedment type anchors, as it will determine the mode of failure 

and the optimum location of the loading line on the anchor, and the embedment 

performance (Neubecker and Randolph 1995).  
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For an embedded section of loading line shown in Figure 3.14, the governing differential 

equations proposed by Vivatrat et al. (1982) and further presented in Neubecker and 

Randolph (1995) are expressed as  

 

 sinwF
ds

dT
          (3.4) 




coswQ
ds

d
T           (3.5) 

Where T = tension in the chain; ds = length of loading line segment; q = angle relative to 

the horizontal subtended by the loading line; F = resistance per unit length offered by the 

soil tangential to the loading line; Q = resistance per unit length offered by the soil normal 

to the loading line; and w = buoyant weight of the chain per unit length. The bearing 

resistance, Q, of the loading line was estimated after Mortensen (2015) shown as 

 

 
vqssandsand 'NNdA5.0dAQ           (3.6) 

Where d = diameter of the loading line; Asand = 1 for a wire or cable = empirical factor 

linking chain thickness to the representative width of a chain link; Ns = bearing capacity 

factor after Lundgren and Mortensen (1953); Nq = bearing capacity factor for the 

surcharge-case after Prandtl (1920); and ’v = average in situ vertical effective stress. The 

loading line angle at the attachment location was then determined throughout each drag 

test by numerically solving the chain equilibrium equations with the loading line bearing 
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pressure, Q, increasing nonlinearly with depth, and assuming the line angle at the soil 

surface is equal to zero. 

 

The results of the dive trajectory tests showing the relationship between fluke orientation 

and loading line angle at the attachment are shown in Figure 3.15. Anchor tests beginning 

at 1 fluke length of embedment with the loading line attached near the anchor centroid are 

used. With all tests, except T4, the anchor followed a similar trajectory where the anchor 

rotated continuously during drag while diving deeper. Between 0Lf and 1Lf of horizontal 

displacement, a large line angle was estimated suggesting minimal anchor movement. With 

increasing horizontal displacement, the line cut through the sand, decreasing to 

approximately 20o where it was maintained for the duration of drag. Similar behavior was 

observed in test T4, however the line angle at the attachment was maintained around 30o 

relative to the horizontal. Although diving was observed for all tests shown in Figure 3.15, 

it was maximized in T4. This finding suggests that the loading line angle at the attachment 

should be maintained around 30o for optimal dive performance, which is comparable the 

line angle used for VLAs in sand after Liu et al. (2010).  

 

Conclusions 

 

The objective of this study was to investigate the dive trajectory behavior of a fully 

embedded plate anchor in sand. Specifically, (1) to identify the optimal anchor shapes that 

have the most effective dive performance, and (2) to investigate the effects of initial 

embedment depth, loading line location, initial fluke orientation, and loading line angle on 

the dive trajectory. A series of 1g physical model experiments were performed on a kite, 
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trapezoid, and double connected trapezoid (i.e. bi-wing) shaped plate anchor with a loading 

line free to move along the long axis of the fluke. These experiments were designed to 

gather a preliminary understanding of the anchor movement, change in orientation, and 

final embedment depth with respect to shape, initial orientation, and loading line 

attachment. The preliminary results indicated that the dive trajectory in dry sand is specific 

to anchor geometry, loading line attachment, and initial embedment depth. The kite plate 

anchor achieved approximately 60% more final embedment than the trapezoid and bi-wing 

anchors. The maximum final embedment of the kite anchor was achieved at an initial 

embedment depth of 1Lf with the loading line attached at the anchor centroid. 

 

Building off of the preliminary dive trajectory study, a series of controlled drag tests were 

carried out on the kite plate anchor to investigate the effect initial embedment depth, initial 

fluke orientation, and loading line attachment point has on the trajectory behavior, as well 

as, the relationship between the fluke orientation and loading line angle during drag. The 

primary conclusions indicate the following: 

 The simple plate anchor configurations showed significant diving in sand, 

indicating a free-moving shank along the long axis of the fluke (i.e. loading line) is 

sufficient for penetration. 

 For a free-moving loading line, the location is critical in order to maximize 

embedment during drag.  

 The dive performance of a kite shaped anchor is optimized by locating the loading 

line at the approximate anchor centroid and by placing the anchor at an initial fluke 

orientation 10o. Model tests with initial embedment of 1Lf show that the anchor will 
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achieve an additional 1.5Lf of embedment with no indication of pull out. However, 

for the same fluke orientation at 2Lf of initial embedment the anchor will only dive 

an additional 0.5Lf before pulling out of the soil.  

 Optimum diving was further achieved when the loading line angle at the attachment 

was between 25o and 30o relative to the horizontal. 

 

Although further investigation is warranted under saturated conditions, additional anchor 

geometry, and shank mechanism, the results of the current experimental study provide 

valuable insight on the dive trajectory behavior of a fully embedded plate anchor in sand 

and aid in future trajectory modeling.  
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Table 3.1. Properties of test sand. 

Property Value 

max (kN/m3) 18.1 

min (kN/m3) 14.1 

emin 0.44 

emax 0.84 

D50 (mm) 0.30 

Gs 2.65 

'c (deg) 32.3 

Q 7.03 

R -0.12 

Af 4.75 

 0.69 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



100 

 

 

Figure 3.1. Relationship between peak friction and dilation angles for Westerly, RI sand 

measured in triaxial tests. 
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Figure 3.2. Assessment of Bolton (1986) Af parameter from triaxial tests. 
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Figure 3.3. Calibration of Bolton (1986) stress-dilatancy Q and R parameters. 
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Figure 3.4. Model-scale anchors: (a) kite; (b) trapezoid; and (c) double connected 

trapezoid or bi-wing. 
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Figure 3.5. Cross-section of drag embedment test setup. 
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Figure 3.6. Summary of preliminary dive trajectory results for: (a) kite anchor; (b) 

trapezoid anchor; and (c) bi-wing. 
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Figure 3.7. Typical profiles of: (a) dry unit weight; and (b) relative density index obtained 

within the test container. 
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Figure 3.8. (a) Location of Polhemus magnetometer on model anchor; and (b) overview 

of laboratory test setup. 
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Figure 3.9. (a) Polhemus magnetometer and source; and (b) polhemus electronics unit. 
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Figure 3.10. Out-of-plane rotation of model anchor during drag: (a) yaw rotation; and (b) 

roll rotation. 

 

-20

-10

0

10

20

30

40

50

0 1 2 3 4 5

Y
a

w
 R

o
ta

ti
o

n
 (

d
e

g
)

Normalized Horizontal Displacement (Lf)

All Tests

(a)

-10

0

10

20

30

40

50

60

0 1 2 3 4 5

R
o

ll 
R

o
ta

ti
o

n
 (

d
e

g
)

Normalized Horizontal Displacement (Lf)

All Tests

(b)



110 

 

 

 

 

Figure 3.11. Effect of initial embedment depth on: (a) dive trajectory; (b) fluke 

orientation during drag; and (c) loading line tension applied at the soil surface. 
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Figure 3.12. Effect of initial fluke orientation on: (a) dive trajectory; (b) fluke orientation 

during drag; and (c) loading line tension applied at the soil surface. 
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Figure 3.13. Effect of loading line attachment on: (a) dive trajectory; (b) fluke orientation 

during drag; and (c) loading line tension applied at the soil surface. 
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Figure 3.14. System of forces acting on a segment of embedded loading line. 
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Figure 3.15. Relationship between fluke orientation and loading line angle (a) dive 

trajectory; (b) fluke orientation during drag; and (c) loading line angle at attachment 

relative to the horizontal. 
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4. Experimental Study of Load Interaction on a Novel Drag-Embedded Plate 

Anchor in Sand 

 

Prepared for submission to ASCE Journal of Geotechnical and Geoenvironmental 
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Abstract 

 

This paper presents an experimental study to investigate the normal and shear force 

interactions that occur during drag embedment of a novel plate anchor in sand that is 

initially embedded through free-fall penetration. Prediction of the trajectory and final 

embedment depth of the anchor is critical to determining its ultimate holding capacity. The 

capacity in the normal and shear (i.e. parallel) direction will control the trajectory and thus 

it is important to therefore know if the presence of one component of the mooring line force 

in one direction influences the resistance in the other direction. As a first step toward 

understanding this interaction, the resistance of a simple kite-shaped plate anchor is 

measured under pure normal, shear (i.e. parallel), and rotational loading. Force components 

acting on the fluke were extracted from a series of drag embedment experiments where the 

anchor movement was tracked in all six-degrees of freedom. The results suggest there is 

minimal interaction between the normal and shear components acting on a simple fluke 

during dive trajectory in sand.  

 

Introduction 

 

As offshore wind development moves into deeper water, floating substructures secured to 

the seafloor through anchoring systems become a viable and economical foundation 

alternative to traditional fixed-jacket or gravity-based structures (O’Neill et al. 2003; 

Musial and Butterfield 2006). To properly secure these buoyant structures in position, 

anchoring systems are often sought after due to their efficiency to resist uplift forces, and 

ability to achieve very deep embedment. Mooring systems such as catenary, taut or semi-

taut, and vertical tendons provide the connections from the structure to the anchors below 
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the seabed (Randolph and Gorvenec 2011). Some of the anchoring systems that have been 

used include drag embedment anchors (DEA), drag-in vertically loaded plate anchors 

(VLA), as well as those installed by suction caissons such as suction embedded plate 

anchors (SEPLA) (Bradshaw et al. 2015).  

 

The Author is currently researching a new green anchor concept called the “flying wing 

anchor” as described in Gerkus et al. (2016). The motivation for the concept is to reduce 

the amount of energy to transport and install the anchor into the seabed. Similar to a torpedo 

pile, the anchor is dynamically installed vertically into the seabed through free-fall 

penetration. After initial penetration, the anchor, in concept, will rotate and dive into a 

position that is near normal to the anchor line in response to the service loads imposed by 

the structure. For the anchor to be effective it should have a shape that is hydrodynamically 

stable, and maximizes the drag embedment in the soil. 

 

Knowledge of the final embedment depth and orientation of a drag-type anchor is critical 

to evaluate the in-service performance including the ultimate holding capacity. To predict 

the anchor dive trajectory or kinematic behavior, a variety of approaches have been used. 

These include methods based on limit equilibrium where the trajectory is solved by 

incrementally advancing the anchor into the soil; it assumes that the anchor will move 

along the path of least resistance and parallel to the fluke, thus the soil resistances acting 

on the anchor at its failure condition will dictate the direction of movement (e.g. Stewart 

1992; Neubecker and Randolph 1996a; Neubecker and Randolph 1996b; Thorne 1998; 
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Dahlberg 1998; Ruinen 2004; Liu et al. 2012). Plasticity limit analysis methods have been 

proposed primarily in soft clays were a yield locus is used to characterize the plastic failure 

behavior of the anchor during its trajectory; the yield loci are expressed as a combination 

of normal, shear, and moment forces acting on the anchor, thus incremental anchor 

displacements are calculated under the given loading combination (e.g. Murff 1994; Martin 

1994; Bransby and O’Neill 1999; O’Neill et al. 2003; Kim 2005; Murff et al. 2005; Aubeny 

et al. 2005; Aubeny et al. 2008; Aubeny and Chi 2010). This approach typically assumes 

associated flow where the displacement of the anchor occurs normal to the yield loci.  

 

In some types of foundation systems, it is recognized that the capacity in one mode of 

failure may be reduced by the presence of loads in other directions. For example, in shallow 

foundations the bearing capacity can be substantially reduced under the presence of a shear 

load (e.g. Meyerhof 1953; Hansen 1970). This led to the development of inclination factors 

that adjust the bearing capacity for the load interaction effect. Subsequently, more complex 

interaction diagrams have been proposed that account for a combination of normal, shear, 

and moment loads (e.g. Gottardi et al. 1999); Aubeny and Chi 2010). Though the 

interaction diagram (or yield loci) approach has been applied to drag embedment anchors 

in clay under undrained loading, the author is unaware of any studies that have considered 

the force interaction of a plate-type drag embedment anchor in sand under drained 

conditions. As a first step, the objective of this study is to investigate if there is a similar 

interaction between the normal and shear force components during drag embedment on a 

simple plate anchor that is initially embedded in sand. This will be achieved in the 
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laboratory by performing a suite of 1g physical model experiments involving a kite-shaped 

plate anchor as described below.  

 

Scaling Considerations 

 

It is important to consider scale effects so that the results can be reliably interpreted. 

Bradshaw et al. (2016) showed that scale effects can be minimized in 1g plate anchor 

experiments by presenting capacity in a dimensionless form, q/H, where q is the plate 

bearing pressure,  is the dry unit weight of the sand, and H is the embedment depth from 

the soil surface to deepest part of the anchor, and by scaling the constitutive behavior of 

the soil. Soils will generally have a higher strength in small-scale 1g models due to higher 

dilation at low confining pressures. Therefore, the scaling of the constitutive behavior 

involves preparing the soil looser in the model than at full-scale to get a similar dilation 

response. Consistent with current centrifuge scaling laws presented in Garnier and Gaudin 

(2007), experiments were also designed such that the width of the anchor was at least 48 

times the median diameter (D50) of the sand to ensure there was a sufficient number of 

particles over the width of the plate. 

 

Test Sand and Characterization  

 

The sand used in this study primarily consists of a natural deposit of quartz beach sand 

obtained from Westerly, Rhode Island. The sand has been used extensively in physical 1g 

model experiments on plate anchors after Bradshaw et al. (2015; 2016) and Gerkus et al. 

(2016). Characterization of the sand included standard index and consolidated drained 

(CD) triaxial testing. The index properties are summarized in Table 4.1.  
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The peak friction (’p) and dilation angles (p) were estimated using the Bolton (1986) 

stress-dilatancy relationship in order to handle the stress dependent changes in the angles 

at low stresses. The relationship is expressed as 

 

   R'plnQIA'' fDfcp         (4.1) 

pcp ''            (4.2) 

Where ’p = peak friction angle, ’c = critical state friction angle, p = peak dilation angle, 

ID = relative density index = (emax-e)/(emax-emin), emax, emin = maximum and minimum void 

ratios, respectively, and e = void ratio of the prepared sample, p’f = the mean effective 

stress at failure, and Q, R, Af, and  = Bolton’s fitting parameters.  

 

Triaxial tests were performed to calibrate Bolton’s fitting parameters for the sand used in 

this study. The triaxial samples were prepared using dry pluviation with a funnel in an 

attempt to achieve a similar fabric as the sand in the physical 1g model experiments. A 

range of relative density (Dr) between 13% (ID = 0.13) and 53% (ID = 0.53) could be 

achieved by varying the opening size of the funnel. The critical state friction angle was 

determined from extrapolating the peak friction angle at zero dilation angle (Bolton 1986), 

and the fitting parameters (Q, R, Af, ) were determined from the linear regression plots 

shown in Figures 4.1-4.3 (Bradshaw et al. 2016). A summary of the fitting parameters can 

be seen in Table 4.1.  
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Sample Preparation 

 

The sand was rained into a rigid test tank having dimensions of 2.4 m length x 1.2 m width 

x 0.9 m height using a portable pluviator based on Gade et al. (2013). All experimental 

testing was performed in a sand with relative density, Dr ≈ 20% (ID ≈ 0.20). The pluviation 

device consisted of a bucket attached to a flexible hose leading to a pipe containing a plate 

with holes and a stack of sieves. The unit weight of the soil was determined by pluivating 

sand into small cups of a known volume (413 cm3) that were placed on the soil surface at 

various depths during preparation. An example of the dry unit weights measured during 

pluviation in the test container is shown in Figure 4a along with corresponding calculated 

relative density index in Figure 4b. The relative density indices were fairly consistent 

throughout the container with a coefficient of variation of less than 0.2. The relative density 

in laboratory model was equivalent to 35% to 40% (ID = 0.35 to 0.40) at full-scale to 

account for scale effects (Bradshaw et al. 2016). Additionally, the corresponding peak 

friction and dilation angles in each test container, on average, were 39o and 10o, 

respectively.  

 

Pure Loading Behavior of Kite Anchor 

 

The first step to understanding, predicting, and controlling the behavior of the proposed 

anchor concept is to establish its resistance to pure bearing, shear, and rotation (Gerkus et 

al. 2016). For the purpose of this study only the resistances in pure normal and shear (i.e. 

parallel to fluke) will be of focus, however results under pure rotation will be presented for 

completeness. The loading modes of the anchor are shown in Figure 4.5, which include a 

vertical (fluke orientation = f = 90o) and horizontal anchor (f = 0o) loaded perpendicular 
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(i.e. normal) and parallel (i.e. shear) to the fluke, and pitch rotation. Preliminary 

experiments on the kite-shaped anchor indicated that most of the resistance of the plates 

was due to the bearing resistance of the surfaces normal to the loading direction (i.e. 

bearing capacity). For this reason, the following non-dimensional quantities were used to 

describe the normal and shear resistance components   

 

fluke

n

HA

F


          (4.3) 

le

s

HA

F


           (4.4) 

Where Fn, Fs = the forces in the normal and shear directions, respectively; Afluke = fluke 

area; Aleprojected area of the leading edge of the anchor;  = dry unit weight; and H = 

embedment depth from the soil surface to deepest point of the anchor.  

 

Resistance of Kite Anchor Loaded Parallel to Fluke 

 

Two model anchors were used to assess the resistance when loaded in the shear direction 

or parallel to the anchor fluke (Figure 4.5a/b). The model used for the vertical oriented 

anchor (Figure 4.5a) was fabricated from 12.7 mm thick structural steel with a fluke length 

(Lf) and width (B) equal to 127 mm and is shown in Figure 4.6. Similarly, the horizontal 

oriented anchor (Figure 4.5b) was fabricated from the same structural steel with a fluke 

length and width approximately equal to 197 mm and 236 mm, respectively, shown in 

Figure 4.7.  
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The vertical oriented anchor was pushed into the soil using a steel rod with a diameter of 

9.5 mm and length of 483 mm attached at the tip (or top) of the anchor to provide a smooth, 

controlled, and continual penetration. To ensure constant penetration of the anchor, 

reaction weights totaling 1.4 kN were placed at the top of the steel rod directly above a 

load cell. The anchor was started at the soil surface and displaced vertically into the soil, a 

distance of 3.5Lf. When the anchor was placed horizontally, it was “wished” into place at 

normalized embedment depths (H/Lf) of 1, 2, and 3. Due to limitations of the test tank the 

anchor was displaced laterally a distance of 2Lf. Both testing configurations displaced the 

model anchors at a constant rate of 50 mm/s using an electric hoist, and a block and tackle 

system. Loads were measured with a load cell having a capacity of either 0.89, 2.2, or 11.1 

kN (CAS SBA and Omega LC), and displacement was measured with a string 

potentiometer (Measurement Specialists SP2-50). The loading rate was significantly higher 

than other studies, but strain rates have shown to be negligible on the strength of dry sand 

(e.g. Whitman and Healy 1962) (Bradshaw et al. 2016). 

 

The results of the vertical and horizontal oriented anchor tests are shown in Figures 4.8 and 

4.9, respectively. The non-dimensional shear resistance curves shown in Figure 4.8 suggest 

that the resistance is essentially constant with depth below a normalized embedment of 

approximately 1. The large variability in the normalized resistance indicated at very 

shallow depths (< 1Lf) is caused by a small bearing area in combination with very low 

effective stresses near the soil surface, thus causing Eqn. (4.4) to produce large values near 

the surface. The resistance, on average, ranged from 75 to 80, and appear to be independent 

of embedment depth. It is important to note that the anchor was continuously pushed, and 
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the calculated resistances represent a fully mobilized value, whereas if the anchor had been 

placed at a specified embedment depth and then loaded, it would require the anchor to 

deform some amount before reaching a peak. Lastly, analysis of the results has indicated 

that the resistance is primarily being controlled from end bearing at the nose of the anchor, 

and considering the bearing area is much smaller than the embedment depth, it is likely the 

failure mechanism is local or “deep”, suggesting that it is being controlled by the shear 

strength of the soil near the anchor nose. Because the resistance is increasing approximately 

linearly with depth, the normalization is accounting for the increase in overburden stress 

leading to constant normalized resistances for f = 90o.  

 

The results presented in Figure 4.9 for the anchor experiments at f = 0o show an early peak 

with minimal softening. The cause of this is due to the nature of the test and failure mode, 

such that the anchor can be displaced laterally without any rotational movement or vertical 

displacement; thus the overburden pressure remains constant on the anchor. Two curves 

are shown per initial embedment in Figure 4.9 and indicate a repeat test. The curves are 

nearly identical and were performed to ensure accuracy of the results. The normalized 

resistance shows to be largest at an initial normalized embedment of 2Lf, while the 

resistances at 1Lf and 3Lf were nearly indistinguishable; the resulting normalized bearing 

factors ranged from 34 to 45. Therefore, it is evident that with increasing embedment depth, 

there is only a slight increase in resistance. It is further assumed that the resistance is being 

controlled primarily by the net passive resistance of the soil with some resistance due to 

interface friction (negligible). Similar to the previous anchor tests, normalization should 

account for the linearly increasing friction with increasing depth, thus resulting in an 
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approximate constant normalized resistance with depth. This effect is similar to what was 

found in the measured results.  

 

The primary conclusions of the model anchor experiments loaded parallel to the anchor 

fluke indicate: 

 The loading modes were likely controlled by a local or “deep” failure mechanism 

near the nose of the anchor, due to the bearing area being significantly smaller than 

the embedment depth. 

 The normalized resistance is dependent on fluke orientation, such that the resistance 

increases between f = 0o and f = 90o. However, the resistance is relatively 

independent of embedment depth. The resulting non-dimensional shear resistances, 

on average, are 38 at f = 0o and 75 at f = 90o. 

 

Resistance of Kite Anchor Loaded Normal to Fluke 

 

The model used to assess the resistance of the kite anchor loaded normal to fluke at f = 0o 

and 90o (Figure 4.5c/d), is identical to the one used in Figure 4.7 and consists of a fluke 

length and width of 197 mm and 236 mm, respectively. The test setup for both horizontal 

and vertical oriented anchors consists of the anchor being “wished” into place at specified 

embedment depths. For the horizontal oriented anchor tests, the anchor was started at initial 

normalized embedment’s of 1, 2, 3, and 5, and displaced vertically until completely out of 

the soil. Similarly, the vertical oriented anchor tests began at initial H/Lf’s of 1 and 2, and 
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laterally displaced approximately 2Lf. Displacements and loads were measured and 

controlled using the same experimental setup as the tests loaded parallel to the anchor fluke.  

 

Figures 4.10 and 4.11, respectively, present the results of the vertical and horizontal 

oriented anchor tests loaded normal to the fluke. The resistance of the normal vertical 

anchor tests showed signs of an early peak and softening behavior for H/Lf of 1 and 2. Two 

causes of the softening behavior are attributed to the dilative nature of the soil at the low 

confining stresses in the test container, and the slight upward movement of the anchor at 

large lateral displacements which would reduce the overburden pressure and ultimately the 

resistance. Repeat tests were performed at a normalized embedment of 1, and showed to 

be identical resulting in a peak normalized resistance of 8.5. With an increase in 

embedment, the peak normalized resistance increased to approximately 11.5 at H/Lf of 2 

(Figure 4.10).  Conceptually, the resistance as the anchor is displaced laterally is due to the 

net lateral earth pressure. With increasing embedment depth, the failure changes from a 

shallow to deep mechanism; when the anchor is shallow (H = 1Lf) the soil is undergoing a 

wedge type failure that extends from the bottom of the anchor to the soil surface. 

Alternatively, as the embedment increases, the failure mechanism becomes more localized 

around the fluke area resulting in a higher normalized value.  

 

The normalized load-displacement behavior shown in Figure 4.11 for a horizontal anchor 

loaded normal to the fluke. The results indicate an increase in pullout resistance with 

increasing embedment. All tests show a clear peak capacity followed by a softening 

behavior due to the reduction in soil overburden and confining pressure as the anchor is 
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pulled out of the soil. For anchor test starting at H/Lf = 1 to 3, the peak pullout capacity 

occurred at approximately 0.2Lf of displacement relative to the initial embedment depth. 

As the normalized embedment increased from 3 to 5, slightly more displacement 

(approximately 0.5Lf) was required before reaching the peak pullout capacity. The peak 

normalized resistance was calculated as 2.1, 3.7, 6.1, and 6.6, for initial embedment’s of 

1Lf, 2Lf, 3Lf, and 5Lf, respectively. It is well established that the failure mechanism of a 

horizontal anchor loaded normal to the fluke changes from a wedge-type failure to a local 

or “deep” failure at about H/Lf  ≥  5, thus providing some explanation in the deviation of 

capacity from H/Lf of 1 to 5.  

 

The primary conclusions of the model anchor experiments loaded normal to the fluke 

indicate: 

 A significant increase in capacity for a vertical oriented anchor between normalized 

embedment’s 1 and 2. This change may be linked to the transition from shallow to 

deep failure mechanism. 

 The capacity of a horizontal oriented anchor increases nonlinearly with increasing 

embedment depth.  

 Results indicate that the non-dimensional normal resistance is dependent on the 

fluke orientation and embedment depth. The resistance increases with increasing 

fluke orientation and depth. 

 

 



128 

 

Resistance of Kite Anchor Subject to Pitch Rotation 

 

To properly model the dive trajectory of the proposed wing-anchor concept it is crucial to 

capture the resistance in all failure modes including rotation (Figure 4.5e). As the anchor 

dives into the soil, it will inevitably undergo some degree of rotation. The focus of the 

current study is on the interaction behavior between the normal and shear component, 

therefore the resistance to pure pitch rotation is presented only for completeness.  

 

Figure 4.5e depicts the failure mode of the anchor subject to pure pitch rotation. The model 

anchor was tested at three normalized embedment depths of 1, 2, and 3, where it was 

“wished” into place. The anchor was fabricated from 15.9 mm thick aluminum with a fluke 

length and width of approximately 197 mm and 236 mm, respectively. To rotate the anchor 

in pure pitch, the anchor was fixed at the centroid to a 15.9 mm diameter aluminum rod 

with a length of 610 mm to fully intersect the width of the test tank; the rod was designed 

to accommodate the anticipated applied moments with the experimental setup is shown in 

Figure 4.12. On either side of the test container two holes were drilled out to accommodate 

the aluminum moment rod; either hole was fit with a ball-bearing flange to minimize 

friction during rotation. The torque throughout the test was measured using a 226 N-m 

torque sensor (Omega Engineering) and the anchor was rotated manually via a level arm 

at a constant rate. A magnetic tracking device was fixed at the tip of the anchor to measure 

rotation, as well as, a manual measurement for comparison purposes. Details of the 

magnetic tracking device will be discussed later.  
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The results are presented in Figure 4.13 as a normalized moment resistance with respect to 

fluke orientation. The normalization of the moment is expressed similar to Eqns. (4.3) and 

(4.4) as 

 

flukeHLA

M


          (4.5) 

Where M = the applied moment including shear and bearing components; and L = the 

length of an equivalent fluke = √Afluke. The moment resistance is anticipated to be from the 

net bearing resistance on the fluke.  

 

The anchor was rotated between approximately 130o to 180o relative to the vertical. A clear 

peak resistance followed by a softening behavior can be seen for all of the experiments. 

However, at a normalized embedment depth of 1Lf the resistance increased following a 

first peak around 100o; the cause of this may be explained due to the shallow embedment 

where the sand surface collapsed during rotation following the first peak, i.e. the mobilized 

soil wedge increases until the anchor is almost horizontal, and after the 90o rotation the soil 

mobilization behavior repeats (Figure 4.13). For the remaining tests embedded at 2Lf and 

3Lf it is anticipated that the soil is flowing almost locally around the anchor during rotation, 

reflecting the strain-softening behavior. Biarez et al. (1965) showed that failure mechanism 

transitions from a shallow to local failure between a normalized embedment of 0 and 6. 

Since the shear strength of the soil should increase near linear with depth, the normalization 
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of stress should be accounting for this behavior causing an approximate normalized 

resistance with increasing depth.  

 

Dive Trajectory Study of the Kite Anchor 

 

A series of dive trajectory experiments were performed on the kite-shaped anchor with a 

free moving shank (or loading line) along the long axis of the fluke. The anchor was 

fabricated from 0.51 cm thick plywood with an approximately fluke area of 120 cm2. 

Measurements of all six-degrees of motion and loading line tension during embedment 

were made. Using the pluviation technique, the plate anchor was placed at a desired depth 

and fluke orientation during sample preparation within the rigid test container. Upon 

completion of the test sample, the anchors were fully embedded as shown in Figure 4.14. 

The kite anchor was placed at normalized embedment’s of 1 and 2, with fluke orientations 

of 10o, 20o, 30o, and 45o. Lastly, the loading line location was varied to investigate the 

effects on dive performance. A very thin steel cable, having a diameter of 1.59 mm was 

used during loading to help reduce the soil friction along the loading line. During the drag 

experiments a six-degree-of-freedom magnetic tracker (magnetometer by Polhemus) was 

used to measure position (i.e. x-y-z) and orientation (i.e. yaw [azimuth], pitch [elevation], 

roll) of the anchor as it moves through the soil in real time. Additional sensors included a 

2.2 kN (CAS SBA) load cell and string potentiometer (Measurement Specialties SP2-50). 

The magnetometer was recessed on the back of the plate anchor before testing, while the 

load cell and string potentiometer were connected to the far end of the loading line beyond 

the pulley shown in Figure 4.15. 
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Tracking Position and Orientation  

 

Anchor position and orientation was measured using a Polhemus magnetic tracking device 

as shown in Figure 4.16. The system consists of a sensor, source, electronics unit, and 

software package (Patriot User Manual 2008). The source receives the electromagnetic 

waves produced from the sensor during testing and is then converted to rotation and 

displacement measurements via a calibration that is performed by the manufacturer. The 

system generates its own magnetic field when in operation, and if highly magnetic objects 

are in close proximity to either the source and/or sensor, the internal calibration will be 

temporarily altered. This interference becomes noticeable in the system’s live display and 

can be fixed by moving magnetic objects out of range and by locating the source within 

127 mm of the sensor. 

 

Translation readings from the magnetometer are measured with respect to the center of the 

source; the positive x and y directions are marked on the sensor and the right hand rule is 

used to determine the positive z direction. The rotational angles are presented as Euler 

angles and are expressed in terms of rotating frames. The yaw (azimuth) is rotation around 

the z-axis, pitch (elevation) is rotation around the y-axis, and roll is rotation around the x-

axis. The sensor first measures the yaw angle with respect to the external frame of x-y-z, 

next a new coordinate system is set (x’-y’-z’) and the pitch rotation is measure with respect 

to this new frame, and finally, another coordinate system is set (x”-y”-z”) to measure the 

roll rotation. The amount of rotation the anchor undergoes in each direction during loading 

is important for anchor dive trajectory tests, but using Euler angles may be misleading 

when extracting the exact behavior. Consequently, to measure the change in each rotation 
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at a given interval or frame, the rotational angles should be measured with respect to a fixed 

axis of x-y-z rather than rotating axes, thus requiring a correction to be made to the 

magnetometer output (Gerkus 2016). This correction to the rotational output can be made 

by using a direction cosine matrix (R) that can be expressed for this magnetometer as 

 

























coscossincossin

sincoscossinsinsinsinsincossin

sinsincossincoscossinsinsincoscoscos

R   (4.6) 

Where  = yaw;  = pitch; and  = roll. The direction cosine matrix is calculated for each 

measurement frame and then multiplied by the inverse of the matrix (R-1) of each 

measurement frame. Next, the sum of the change in angles calculated with respect to this 

“new” frame gives the change in yaw, pitch, and roll angles with respect to a fixed axis. 

The rotation results presented in this study show the real time anchor movement in each 

direction calculated using this method.  

 

Experimental Results 

 

Eight dive trajectory experiments were performed where the initial fluke orientation, initial 

embedment depth, and loading line location were varied to investigate the effect on dive 

performance. Figure 4.17 presents typical results obtained from the experiments. The 

results are presented with respect to normalized lateral displacement and include the 

trajectory (i.e. vertical penetration), change in fluke orientation (f) during dive, change in 

the loading line angle (a) relative to the horizontal at the attachment point, and the change 

in loading line tension (Ta) at the attachment point. The results indicate that the simple 
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plate anchor configuration showed significant diving in sand with a free-moving loading 

line along the long axis of the fluke. However, it is important that the location of the free-

moving loading line is attached close to the anchor centroid (≈0.60Lf); this will increase 

the amount of relative final embedment as shown by tests T3 and T6 in Figure 4.17a. 

Additionally, the tests indicate that diving may be optimized when attaching the loading 

line at the approximate centroid and by placing the anchor at an initial shallow fluke 

orientation of 10o and initial embedment depth of 1Lf as shown by test T4 in Figure 4.17a. 

Resulting from this configuration was a loading line angle between 25o and 30o relative to 

the horizontal, which is also consistent with the angle that causes diving for a VLA as 

shown by Liu et al. 2010. 

 

Analysis of Interaction 

 

As a first order approximation the interaction between the normal and shear components 

was assessed using the pure loading and dive trajectory experiments. It should be noted for 

the majority of the drag experiments very little rotation was observed as the anchor was 

diving. This was attributed to the anchor shape, and location of the loading line; the loading 

line attachment point was located at the anchor centroid and close to center of pressure 

resulting in a small eccentricity on the anchor and minimizing rotation early on in the 

experiments. However, the anchor did exhibit significant rotation during the uplift phase 

of the experiments due to the change in eccentricity. The eccentricity is controlled by the 

distance from the fixed attachment point to the center of pressure, and with increasing 

embedment the center of pressure varies causing an increase in the eccentricity. However, 
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the current experimental configuration was not set up to obtain the change in center of 

pressure throughout dive trajectory.  

 

The shear and normal force components acting on the fluke during its trajectory were 

calculated for each drag experiment based on the fluke orientation, loading line angle 

relative to the attachment, and loading line tension at the attachment expressed as 

 

 afan sinTF           (4.7) 

 afas cosTF           (4.8) 

Where Fn, Fs = the force acting in the normal and shear directions relative to the fluke; and 

Ta = loading line tension at the attachment point. Next the trajectory results were analyzed 

to obtain the absolute change in displacement caused by the force in the normal direction 

(dn) and the force in the shear direction (parallel to the anchor fluke) (ds). Plots of non-

dimensional normal resistance and non-dimensional shear resistance can be created along 

with vectors representing the movement direction.  

 

Figure 4.18 presents the vector plots representing the two types of behavior that were 

observed in the experiments. Movement purely in the shear direction is indicated when the 

direction vectors are parallel with x-axis, and movement purely in the normal direction is 

indicated when the direction vectors are parallel with the y-axis. An increase in 

displacement in either the shear and/or normal directions is indicated by an increase in 
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length of the displacement vectors. This is caused by an increase in magnitude of the shear 

and/or normal forces acting on the fluke. For test T4, constant vertical penetration was 

observed, thus the displacement vectors become larger with increasing force and primarily 

point parallel with the shear or x-axis (Figure 4.18a). Alternatively, test T9 showed a slight 

vertical penetration or movement parallel to the fluke at early stages of drag indicated by 

the small vectors pointing along the x-axis in Figure 4.18b. As lateral displacement 

increased in test T9, the anchor began to move out of the soil causing an increase in the 

force normal to the fluke and a decrease in the force parallel to the fluke. The anchor 

movement now becomes perpendicular to the fluke and is represented by the vectors 

changing orientation and pointing near parallel with the normal or y-axis in Figure 4.18b. 

The decrease in the normal and shear component is caused by the anchor moving toward 

the soil surface (i.e. reduction in overburden pressure).  

 

The vector plots created from each test are essentially representative of a yield surface. 

Given a combination of loading, movement in the normal and/or parallel to the fluke will 

occur, and are represented by the displacement vectors. It is obvious that the anchor 

movement does not always occur normal or perpendicular to the yield surface, suggesting 

that for a drag anchor in sand normality does not hold and therefore follows a nonassociated 

flow rule.  

 

Using the vector plots created from each drag embedment test, force component data are 

selected at moments when the anchor was primarily diving (i.e. anchor movement parallel 
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to the fluke) and pulling out (i.e. anchor movement normal to fluke). These resistances 

were then compared to the normal and shear resistances obtained through pure loading to 

assess the interaction between either component. Figure 4.19a compares the results of the 

pure shear resistance to points within serval drag embedment experiments where both a 

shear and normal component are present on the fluke, and movement is primarily occurring 

parallel to the fluke. It is evident that the pure loading resistance parallel to the fluke 

increases with increasing orientation, however, due to an absence of data it is difficult to 

definitively define a trend. for simplicity it is assumed to be a linearly increasing trend 

from 0o to 90o. Thus, the forces acting in the shear direction during drag, regardless of the 

magnitude of the normal force, follow the increasing resistance trend offered by the pure 

loading results. Additionally, the shear values are within a ±20% boundary, indicated by 

the dashed lines, over a range of fluke orientations. This suggests that the magnitude of the 

shear component does not seem to be affected by the presence a normal component.  

 

Alternatively, results from the drag embedment tests were taken when the anchor began to 

pullout indicating movement was primarily occurring normal to the fluke. The results are 

compared to the pure loading values shown in Figure 4.19b. Similar to Figure 4.19a, it is 

unknown of the exact trend of the pure loading resistance loaded normal to the anchor 

fluke, except that the resistance increases with increasing fluke orientation. Therefore, it is 

assumed to be a linear increase with increasing fluke orientation. The values of resistance 

normal to the fluke obtained from several drag embedment tests show to plot within a ±20% 

boundary, and follow the assumed trend regardless of the magnitude of the shear 
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component acting on the fluke. This indicates that there is minimal interaction between the 

two present forces acting on the anchor during the dive trajectory.   

 

Conclusions 

 

The objective of this study was to experimentally investigate the interaction between the 

force components in the normal and shear direction that are simultaneously acting on a 

fully embedded plate during its trajectory. The plate anchor tested is inspired by a wing-

anchor concept currently under development where it will install into the seabed under 

free-fall and, in concept, rotate and move into position in-service. The first step to 

understanding, predicting, and controlling the behavior of the proposed anchor concept is 

to establish its resistance to pure normal, shear, and rotation loading, and experimentally 

track the behavior during drag. As a first step, a series of 1g physical model experiments 

were carried out to assess the interaction between the forces acting normal and parallel to 

the fluke. Each drag embedment experiment was analyzed to extract the forces acting in 

both the normal and shear directions caused by the loading line tension at the attachment. 

At various locations during the dive trajectory where movement was primarily parallel with 

the fluke, the forces in the normal and shear directions were compared to the pure loading 

results for a horizontal and vertical oriented anchor loaded parallel to the fluke. A similar 

process was performed where movement was normal to the anchor.  

 

The results suggest that both the force components in the normal and shear directions acting 

on the fluke during drag do not interact. This finding is inferred due to the magnitude of 

either force component falling within a similar range and increasing trend displayed by the 
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pure loading results, regardless the magnitude of the additional component in place. 

Furthermore, if no interaction is present between the force component in the normal and 

shear directions, the trajectory may be simply modeled using the pure loading resistances. 

However, it is warranted that additional pure loading experiments are performed at 

intermediate fluke orientations to properly define the overall resistance behavior and trend. 

Additional assessment of the interaction between the moment and normal component, as 

well as, interaction between the moment and shear component is warranted to fully develop 

a dive trajectory model. 
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Table 4.1. Properties of test sand. 

Property Value 

max (kN/m3) 18.1 

min (kN/m3) 14.1 

emin 0.44 

emax 0.84 

D50 (mm) 0.30 

Gs 2.65 

'c (deg) 32.3 

Q 7.03 

R -0.12 

Af 4.75 

 0.69 
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Figure 4.1. Relationship between peak friction and dilation angles for Westerly, RI sand 

measured in triaxial tests. 
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Figure 4.2. Assessment of Bolton (1986) Af parameter from triaxial tests. 
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Figure 4.3. Calibration of Bolton (1986) stress-dilatancy Q and R parameters. 
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Figure 4.4. Typical profiles of: (a) dry unit weight; and (b) relative density index obtained 

within the test container. 
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Figure 4.5. Pure loading failure modes for: (a) vertical anchor loaded parallel to fluke 

area; (b) horizontal anchor loaded parallel to fluke area; (c) vertical anchor loaded normal 

to fluke area; (d) horizontal anchor loaded normal to fluke area; and (d) vertical anchor 

subject to pure pitch rotation. 
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Figure 4.6. Photograph of the anchor model with attached rod used for pure loading of a 

vertical anchor loaded parallel to the fluke area. 
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Figure 4.7. Photograph of the anchor model used for pure loading of a vertical and 

horizontal anchor loaded parallel and normal to the fluke area.  
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Figure 4.8. Pure loading results for a vertical anchor loaded parallel to the fluke area 

expressed as a non-dimensional shear resistance. 
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Figure 4.9. Pure loading results for a horizontal anchor loaded parallel to the fluke area 

expressed non-dimensional shear resistance. 
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Figure 4.10. Pure loading results for a vertical anchor loaded normal to the fluke area 

expressed as a non-dimensional normal resistance. 
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Figure 4.11. Pure loading results for a horizontal anchor loaded normal to the fluke area 

expressed as a non-dimensional normal resistance. 
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Figure 4.12. Experimental setup for pure pitch rotation loading. 
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Figure 4.13. Pure loading results for a vertical anchor subject to pitch rotation expressed 

as a non-dimensional moment resistance. 
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Figure 4.14. Cross-section of drag embedment experimental setup. 
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Figure 4.15. (a) Location of Polhemus magnetometer on model anchor; and (b) overview 

of laboratory test setup. 
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Figure 4.16. (a) Polhemus magnetometer and source; and (b) Polhemus electronics unit. 
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Figure 4.17. Typical results of the dive trajectory experiments with respect to normalized 

lateral displacements showing: (a) the trajectory or change in vertical penetration; (b) 

change in fluke orientation throughout dive; (c) change in the loading line angle relative 

to the horizontal at the attachment location; and (d) total loading line tension at the 

attachment location. 
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Figure 4.18. Typical normal versus shear plots with displacement vectors for 

experiments: (a) T4; and (b) T9. 
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Figure 4.19. Comparison of pure loading results with values obtained from drag 

embedment experiments for: (a) resistance parallel to the anchor fluke with a presence of 

a normal force; and (b) resistance normal to the anchor fluke with a presence of a shear 

component or parallel to the anchor fluke. 
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