
University of Rhode Island University of Rhode Island 

DigitalCommons@URI DigitalCommons@URI 

Open Access Dissertations 

1983 

Groundwater Flow Simulation by a Stochastic Representation of Groundwater Flow Simulation by a Stochastic Representation of 

Soil Soil 

Paul Bruce Aldinger 
University of Rhode Island 

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss 

Terms of Use 
All rights reserved under copyright. 

Recommended Citation Recommended Citation 
Aldinger, Paul Bruce, "Groundwater Flow Simulation by a Stochastic Representation of Soil" (1983). Open 
Access Dissertations. Paper 546. 
https://digitalcommons.uri.edu/oa_diss/546 

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open 
Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please 
contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly. 

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/oa_diss
https://digitalcommons.uri.edu/oa_diss?utm_source=digitalcommons.uri.edu%2Foa_diss%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/oa_diss/546?utm_source=digitalcommons.uri.edu%2Foa_diss%2F546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu


GROUNDWATER FLOW SIMULATION BY A 

STOCHASTIC REPRESENTATION OF SOIL 

BY 

PAUL BRUCE ALDINGER 

A THESIS SUBMITTED IN PARTIAL FULFILLME T OF THE 

REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

IN 

CIVIL AND ENVIRONMENTAL ENGINEERING 

UNIVERSITY OF RHODE ISLAND 

1983 



DOCTOR OF PHILOSOPHY DISSERTATION 

OF 

PAUL BRUCE ALDINGER 

Approved: 

Dissertation Committee 

Major Professor 

Dean of the Graduate School 

UNIVERSITY OF RHODE ISLAND 

1983 



ABSTRACT 

A Monte Carlo technique is utilized to incorporate the uncertainty in 

media characteristics to the solution of a groundwater flow problem. 

This technique involves the repetitive solution of a significant number 

of equiprobable representations of the soil medium. Probability and 

statistics are utilized to model the soil parameters and study the 

significance of the output. 

An existing computer code was adapted and significantly modified to 

allow characterization of the media's hydraulic conductivity (perme­

ability) as autocorrelated and statistically homogeneous. A first order 

nearest neighbor model was selected to affect the autocorrelation of 

this parameter within the finite difference mesh. The statistical 

homogeneity considers that the distribution of hydraulic conductivity 

values within the mesh comes from a log normal probability density 

function. The selection of hydraulic conductivity value at any mode of 

the mesh is stochastic within the framework of the autocorrelation and 

statistical homogeneity of the mesh aggregate. 

The computer code takes the stochastically generated hydraulic conduc­

tivity field and the boundary conditions and utilizing an iterative 

alternating direct implicit solution determines the hydraulic head 

values at each mode and flow rate through the medium. An array of these 

results are produced for each of the equiprobable representations of the 

soil medium. 



Mass transport through the region is simulated as a combination of 

advection and a stochastic simulation of microscopic or particle scale 

dispersion. A water particle is released from a preselected location 

along the upgradient boundary. The particle moves toward the down-

gradient boundary under the influence of advective forces caused by the 

differences in hydraulic head and the stochastic simulation of micro­

scopic dispersion. This simulation of microscopic dispersion displaces 

the particle parallel to and perpendicular to the advective transport 

direction based on laboratory scale dispersivities. The computer code 

establishes arrays for the particle location at a predetermined time 

after start as well as the location along the downgradient boundary and 

total travel time upon completion of transit of the region. 

Uniform flow results in most of the regions considered although some 

alternate configurations were considered. An effective hydraulic con­

ductivity is calculated on the basis of flow rate. After application of 

a shape factor this value was found to be slightly less but closest to 

the geometric mean of the hydraulic conductivity distribution thus 

confirming earlier work. An alternative effective hydraulic conduc-

tivity calculated on the basis of travel time was also determined. This 

value was generally less than the other effective hydraulic conductivity 

value but again after application of a shape factor the value was best 

estimated by the geometric mean. These results suggest that the mean 

flow rate and mean travel time may be estimated by the use of the shape 

factor from a flow net solution or the method of fragments and the 

geometric means of the hydraulic conductivity. 



The results of the simulations indicate that macroscopic or field scale 

longitudinal and lateral dispersion is significantly affected by the 

standard deviation of the hydraulic conductivity distribution. Region 

size, hydraulic gradient and time interval were found to cause lesser 

effects. 

The techniques utilized provide a means to develop confidence in the 

output. The effects of the variations in parameters become evident from 

a review of the results of the equiprobable results. Confidence limits 

may even be developed in the output where the characteristics of known 

probability density functions may be utilized. Example problems are 

presented where confidence limits on the estimates of travel time are 

developed for the conditions considered. 
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PREFACE 

This thesis is presented in the manuscript format. Section I, Ground­

water Flow in a Stochastic Medimum: Model Development and Section II , 

Groundwater Flow in a Stochastic Medium: Application of Computer Model, 

will be submitted for publication in the Journal of the Geotechnical 

Division of the ASCE. Both manuscripts are presented in the format of 

that journal. 

Details of the methods employed including the computer program as well 

as additional ancillary information are presented in the Appendices in 

Section III. 

xv 
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SECTION I 

GROUNDWATER FLOW IN A STOCHASTIC MEDIUM: 

MODEL DEVELOPMENT 

by Paul Bruce Aldinger,
1 

M. ASCE 

ABSTRACT: A computer model is developed to simulate ground­
water flow in a stochastic porous medium. The hydraulic 
conductivity (permeability) of the medium is simulated as made 
up of statistically homogeneous strata which are internally 
correlated by a two dimensional nearest neighbor model. 
Dispersion is simulated as a combination of advective trans­
port, and a stochastic simulation of microscopic dispersion. 
The model utilizes a Monte Carlo technique of repetitively 
solving equiprobable representations of the medium. Output 
consisting of hydraulic head, flow rate, travel time and 
dispersion is then analyzed to allow a measure of signifi­
cance. A shape factor is developed which may be utilized to 
calculate an equivalent value of hydraulic conductivity for 
simplified computation of the mean flux and travel times. 

INTRODUCTION 

Groundwater flow problems have always been particularly challenging due 

to their complexity and the uncertainties involved. Increasingly, 

predictions of flow quantity, direction and/or travel time are necessary 

to answer questions on risk and safety. This need for establishing the 

reliability of such predictions has brought investigators from various 

disciplines within the sciences into this arena. The result is that 

considerable progress has been achieved in advancing the state of the 

art in recent years. 

1 
Principal Geotechnical Engineer, Department Manager, CE Maguire, Inc., 

Providence, Rhode Island 
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The complexity of these problems is due to many factors. One factor is 

the difficulty in scaling up and combining the properties of the medium 

on the microscopic level to the macroscopic scale of the flow region. A 

related factor is the incomplete knowledge of flow regime caused by the 

complex conditions during deposition and/or subsequent weathering. 

Still other factors are the sheer number and range of variables and the 

limited resources normally available for analysis. 

Over the years, numerous techniques have been utilized to solve these 

groundwater flow problems. Analytical solutions have been developed for 

many flow situations, however, analytic techniques suffer from a lack of 

flexibility and the need to make restrictive simplifying assumptions on 

boundary conditions and media characteristics, thereby limiting their 

use with many practical problems. 

Perhaps the technique most widely used today is that of flow nets (10, 

11). Its greatest advantage is its simplicity and ease in use. How­

ever, this technique is limited in its ability to vary soil hydraulic 

conductivity and groundwater surface or free surface. 

A similarity with all of these techniques is the lack of flexibility in 

handling boundary conditions and/or varying soil property character-

istics. When these techniques are utilized, the consequences of the 

required averaging and other approximations are often unknown. 

With the recent interest in this area from the multitude of scientific 

disciplines and with the advancements in computer technology in the last 
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decade, major changes in the way these flow problems are analyzed have 

occurred. Investigators have developed numerical solutions which allow 

much more latitude in setting boundary conditions and input parameters 

allowing much more complex and realistic characterizations of flow 

regimes to be considered. 

Numerical solutions are approximate solutions to the flow problem. How­

ever, when properly executed they result in solutions within almost any 

desired level of accuracy. The most common types of numerical solutions 

in use today are the finite element method (FEM) and the finite differ­

ence method (FDM). Either of these methods may be used to solve most of 

the situations encountered, however, one type may have some advantage 

over the other for particular problems. A review of these methods may 

be found elsewhere (24, 35). 

The FEM and FDM methods have allowed not only more complex boundary 

conditions and input parameter characterization but also allowed intro­

duction of new types of considerations. Of these, stochastic generation 

of a correlated hydraulic conductivity distribution to characterize the 

flow regions, stochastic simulation of microscopic dispersion and the 

utilization of probability concepts or theory to analyze input and 

output are major considerations of this work. 

The flow region considered in this study is two dimensional. Figure 1 

presents the study region with the simplest boundary conditions result-

ing in predominantly uniform horizontal flow. The flow condition is 

referred to as uniform flow because flow is largely in one dimension, 



Impervious Boundary 

Left Boundary has constant 
Hydraulic head = H 

u 

4 

ah/ay = 

Right Boundary has constant 
Hydraulic head = ~ 

Figure I - General Plan of Flow Region 
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from the left side boundary to the right side boundary. A numerical 

solution by the finite difference method for steady state flow is used 

to determine hydraulic heads and flow within the region. 

Water particles within the flow region are subject to advective trans­

port forces and microscopic dispersion due to the pore structure. Water 

particles are released from the upgradient boundary, subjected to 

advection and a stochastic representation of microscopic dispers i on and 

their travel across the region monitored. This simulation allows a 

determination of the relative effects of hydraulic conductivity 

variations on observed dispersivities. It has been recognized that 

field dispersivities are generally higher than those measured in the 

laboratory and researchers have attributed this to the effects of 

heterogeneities. 

This paper presents the background for the methodology developed to 

simulate water flow in a medium with an autocorrelated hydraulic con-

ductivity (permeability) mesh. By a Monte Carlo technique which in-

volves generating numerous equiprobable distributions, a better under­

standing of the uncertainty in the predictions of flow quantity, dis­

persion and travel time is obtained. A companion paper will demonstrate 

its use to solve two types of real groundwater flow problems.(3) 

BACKGROUND 

The soil parameters required to characterize a flow medium are the 

hydraulic conductivity (permeability), porosity, and the dispersion 
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parameters. It should be pointed out that the term hydraulic conduc-

tivity is utilized rather that the more common geotechnical engineering 

term of permeability to avoid confusion with workers in other disci-

plines. The term permeability is reserved for the medium's flow 

characteristic without the effects of the pore fluid's characteristics. 

This is comparable with the work in the geologic and petroleum 

industries and with similar terminology in such areas as heat, 

electrical and chemical flow. 

The most significant of the soil parameters governing groundwater flow 

is hydraulic conductivity. The range of values for hydraulic con-

ductivity of normal soil deposits is as much as 13 orders of magnitude. 

This variation is large for a soil property. By comparison, porosity 

may only vary between zero and one, unit weights by less than one and 

dispersivity by two orders of magnitude . 

The variation within one single soil type can also be large. A 

variation of three orders of magnitude within a soil designation, such 

as sand or silt, is possible . The engineer has, by necessity, to 

categorize similar soil encountered in soil explorations into various 

soil strata. The variation in hydraulic conductivity in one soil 

stratum may be as much as one order of magnitude. This suggests that 

knowing the order of magnitude of hydraulic conductivity in a soil 

stratum may be enough and to expect to know the value at one particular 

point in a soil mass to within one order of magnitude is somewhat pre-

sumptive. Indeed we should expect considerable variation within even a 

"homogeneous" soil. 
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It is this potential for wide variation and therefore the implied un­

certainty which has led engineers and geologists to turn to probability 

and statistical techniques to characterize hydraulic conductivity. The 

value of hydraulic conductivity in situ is considered to be a random 

variable in this methodology. This implies that the exact value at any 

point cannot be predicted with certainty a priori. There is uncertainty 

in any estimate prior to experimentation. 

A random variable may be described by a probability density function 

(PDF) which simply relates the value of a variable with its correspond­

ing probability. A Monte Carlo solution is accomplished by generating a 

significant number of equally probable representations of the flow 

medium from the PDF, repetitively solving each for the unknown desired 

results, and analyzing the results to determine the "most probable" 

results as well as a measure of the magnitude of variation of that 

result. 

There are several well studied PDF's which have been found to adequately 

characterize soil properties (6, 20, 24). The Gaussian or normal dis­

tribution is one of the most commonly studies PDF's. This distribution 

is completely defined by the mean and standard deviation. This dis-

tribution has been found to model well those processes which are 

additive of many processes or random variables. This is the premise of 

the Central Limit Theorem. An example of a soil property which has been 

found to follow this PDF is porosity. 
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Another PDF which has been found to model some soil random variables is 

the log normal distribution . This distribution represents well those 

processes which are the result of multiplying other random variables . 

Hydraulic conductivity has been found to be adequately characterized by 

a log normal PDF (13, 29, 32). A useful identity is that the PDF of the 

log of a random variable with a lognormal PDF is normal . 

The physical processes which result in soil deposits may be quite random 

and conditions predominating at one time and place will be modified 

elsewhere. It should be expected, however, to f i nd similarities at 

adjacent locations when compared to locations separated by some dis­

tance. This similarity is often quantified by calculation of the auto­

correlation of the random variable. 

Techniques to accomplish this spatial autocorrelation include a nearest 

neighbor model, trend analysis, spectral density and variations of 

these. The nearest neighbor models develop equations for the dependency 

of the variable at adjacent locations and solve these equations for 

model development. This technique is adopted here so that further 

discussion will follow . 

The trend analysis technique was developed at Northwestern University by 

Krumbein and Whitten (23, 42). The technique assumes that the random 

variable at any point may be characterized as the summation of a trend 

component (dependent on location) and a random component. Koch and Link 

(22) present an excellent introduction to this technique. Tabba and 

Yong (36) have developed a working model and in a companion paper (37) 
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demonstrate its application to a real problem. This technique inter­

polates and extrapolates information on the random variables to all 

points in the flow media. 

The spectral density technique recognizes the Fourier transform pair 

consisting of the spectral density function of the random variable S(f), 

and the autocorrelation function, R(x). S(f) describes the frequency 

information for the process and R(x) the autocorrelation. This approach 

may describe the variations in soil properties more precisely than the 

other. However, its inherent complexity and the need for large amounts 

of data has discouraged its use for real problems in groundwater flow. 

It's use in solving groundwater flow problems has been demonstrated (4, 

16, 17, 18). 

The effects of dispersion during advective transport is becoming more 

critical as interest in tracking movement of pollutants and predicting 

concentrations in groundwater systems increases. Others have studied 

the problem of dispersion in groundwater flow stochastically (17, 35, 

41). The first and last papers incorporate microscopic dispersion in 

addition to advective transport. Smith and Schwartz (35) demonstrate 

that large scale spatial variations in hydraulic conductivity are the 

major factor causing macroscopic or field scale dispersion in ground­

water flow. Microscopic dispersivity is a minor factor. The assumption 

of normality for the travel time ensemble has not been confirmed. 

Gelhar, et al (17) indicated that for long travel distances a constant 

longitudinal dispersivity should be expected. 
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A methodology to include microscopic dispersion was first developed by 

Ahlstrom, et al (1) and modified in part by Smith & Schwartz (35). The 

technique assumes that this movement is a stochastic phenomenon and the 

magnitude is a function of a microscopic despersivity term. A similar 

technique was developed by others (27). An alternate technique by con­

trast uses spectral analysis assuming a vertical variability of 

hydraulic conductivity (17). 

MODEL INPUT DEVELOPMENT 

The methodology presented in this paper adopts the general premise that 

a soil stratum may be considered statistically homogeneous with the 

hydraulic conductivity having a lognormal PDF. A result of this premise 

is that the variation in the soil property may be represented by a curve 

similar to those presented in Figure 2. The upper curves illustrate 

PDF's of hydraulic conductivity for two different magnitudes of standard 

deviation but with the same mean value. These curves have lognormal 

PDF's. The lower curves illustrate the change in form of these PDF's 

when the log of hydraulic conductivity for these same two distributions 

are plotted. These curves have normal PDF's. It should be noted that a 

convenient aspect of the lognormal distribution is that negative values 

of the parameter are avoided. 

The method selected to achieve the auto-correlation for the hydraulic 

conductivity values at adjacent nodes in the finite difference mesh is 

the stochastic nearest neighbor-model originally adapted by Smith (31) 

for use in groundwater flow applications. The method was utilized by 
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others in other fields (5, 7, 9, 25, 42). A computer code was written 

to generate statistically independent realizations of hydraulic con-

ductivity for each of the required Monte Carlo simulations. 

Smith (31) presents a detailed development of the stochastic nearest 

neighbor model and much of this information is also available elsewhere 

(32, 33, 34). A swnmary is presented here. 

The finite difference method utilized to solve the groundwater flow 

problem requires as input hydraulic conductivities at regularly spaced 

grid points. These points or nodes are located at the center of a block 

of constant hydraulic conductivity, the so-called block centered ap-

proach. Figure 3 presents this diagramatically including the numbering 

system used. The nearest neighbor model uses the following equation to 

relate the conductivity at one point to all adjacent points. 

Where 

K . . = ~ /4 (K . . 1 + K . ·+1) +a y/4 (K . 1 . + K.+1 . ) 1] x 1,J- 1,J 1- ,] 1 ,J 

K . . 
1J 

=Hydraulic conductivity at nodal point, i, j. 

i = Row number with range from 1 to NROW 

j = Column Number with range from 1 to NCOL 

(1) 

ax, c\ = Autoregressive parameters which indicate the degree 

of correlation of hydraulic conductivity in the x and 

y directions. Range is from 0 to 1. 

This relationship may be put in matrix form and a stochastic element 

introduced as follows: 

{K} = [W] {K} + {E:} (2) 
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In this equation [W] is a weighting matrix consisting of NP rows and 

columns where NP is the total number of nodal points within the flow 

region, i.e., NP= NROW * NCOL. The [W] matrix is square while {K} and 

· {e} are column matrices. 

The {e} matrix is a column matrix of random numbers with a preselected 

mean and standard deviation. The basis for selecting the mean and 

standard deviation will be discussed later. 

Since the · { K } matrix is the unknown result, we can rearrange this 

equation by bringing both {K} matrices to the left side as below. 

{K} - [W] { K } = {£} (3) 

We may then utilize the properties of an identity matrix and write 

([I] [W]) { K } = { e } (4) 

Finally, we may solve for{K}by multiplying by the inverse of ([I] - [W]) 

resulting in 

{ K } = ( I w ) -1 { £ } (5) 

We now have the necessary matrix equation for this method. We need only 

develop the Weighting matrix [W], subtract it from the identity matrix, 

[I], compute an inverse, which may be called the Filter matrix, 

and multiply by the {e} matrix. 
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It should be noted that the Filter matrix contains all the information 

concerning the autocorrelation of hydraulic conductivities for each 

block in the flow region. The { E }matrix contains the random compon-

ent which is incorporated into the system of hydraulic conductivity 

values. 

The nearest neighbor model is easily adapted for developing the [W] 

matrix for interior nodes. However, boundary nodes are another matter. 

Smith (31) assumed that the ~ term is divided by the number of adjacent 

nodes. Figure 3 also presents the situation along the upper boundary. 

Here this approach results in the following equation: 

K .. 
1J 

~ x/3 K. . 1 + K. ·+1 1,J- 1,J 
+ a y/3 (6) 

Since a log normal distribution of hydraulic conductivity was adopted, 

the {s}matrix generated for each simulation will have a mean value of O, 

a standard deviation of 1 and a normal distribution. A transformation 

will later be made so that the hydraulic conductivity values will be log 

normally distributed. Smith (31) demonstrated that if the {s} matrix is 

multiplied by a constant term, n , any desired variance in the hydrau-

lie conductivity values could be effected. He showed that this constant 

term, n is a function of the desired variance of the conductivity 

distribution and the square root of a quantity G defined as: 

2 
G = ay py(2)/8 + ax ~ p(l,1)/2 

2 
+ a /8 + 1 + 

x 

2 
(2)/8 

+ + 
2 

a /8 y 

(7) 
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where p (1), p (1) 
x y are the lag I correlation coefficients of K in 

the x and y directions 

p (2)' p (2) x y 
are the lag 1 correlation coefficients of K 

in the x and y directions 

p (1,1) are the lag I in the x direction and lag I in 

the y direction correlation coefficients of K 

The assumption of a log normal distribution of hydraulic conductivity 

requires a transformation of the mean and standard deviation. It should 

be pointed out that the mean of the distribution of In K does not equal 

the natural log of the mean of K. Benjamin and Cornell (6) among others, 

present this transformation. 

= (( 
. - 2 

(8) In crK/K) +I) 

2 
In (K) -a /2 (9) 

y 
y = 

2 variance of y a· = y 
where: 

y = mean of Y 

2 variance of K GK = 
K = mean of K 

y = ln K 

This transformation is performed and the values a· and Y used with the 
y 

{e:}matrix. Following multiplication by the filter matrix and addition 

of the mean of the ln K, a transformation back to K is made. This 

transformation erodes some of the correlation although this has not been 

found to be significant (3I). 
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This method does not produce a distribution of hydraulic conductivity 

which exactly follows the desired correlation structure each time. This 

results from the randomness inserted by the random number generator, the 

exponential transformation, and boundary effects. However, each 

generated distribution is correlated and follows the desired correlation 

structure. When the ensemble of all Monte Carlo simulation is studied, 

a closer approximation to the desired correlation is obtained. 

Smith (31) pointed out a problem at the boundary in maintaining the 

autocorrelation of the K values. For this work it was decided to "shave 

off" the outer boundary nodes all around the block region. A 7 x 7 

region, for example, would have the outer nodes deleted and then be 

transformed into a 5 x 5 region. This technique reduces the boundary 

effects but also reduces the size of the region which may be considered 

by this technique in light of the matrix inversion limitations . 

This nearest neighbor method was chosen chiefly because it is easy to 

understand and, based on the work of previous researchers, it appears to 

represent the problem reasonably. Its major drawback is the amount of 

computer time needed to invert the weighting matrix, albeit this need 

only be done once for any region size and autocorrelation parameters and 

then stored. Indeed there are real limits to the size of the matrix 

that may realistically be inverted. This drawback effectively sets a 

limit on the number of nodes and hence influences mesh spacing and may 

influence the validity of results. 

To alleviate this limitation, the flow region may be considered a compo-
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site of two or more "blocks" that contain statistically homogeneous and 

internally correlated hydraulic conductivity meshes. For example, the 

shaved 5 x 5 region may be systematically added to 3 other statistically 

equivalent regions resulting in a 10 x 10 region. The computer time to 

add these regions together is much less than that required for inverting 

the larger matrix. 

The program utilized to solve the flow problem was developed by Reiter 

(29). This code was adapted from other available work for the two 

dimensional cross-sectional model (38). 

MASS TRANSPORT SIMULATION 

A computer code was developed to simulate transport across the hydraulic 

field resulting from a steady state solution. Transport results from 

hydraulic advection, a stochastic simulation of microscopic dispersion 

and dispersion resulting from variations in hydraulic conductivity. The 

major objective of this effort was to analyze the effects of hydraulic 

conductivity variations on dispersion. 

Others (17, 35) have indicated that the variation in porosity is much 

less than the variation in hydraulic conductivity and probably does not 

significantly influence dispersion. The value of the porosity has 

therefore been assumed constant throughout the region. 

The finite difference method assumes that the hydraulic head, hydraulic 

conductivity, porosity and therefore the resulting pore water velocity 
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are constant within each individual block in the flow region. These 

velocities are calculated for each conductivity simulation and for each 

block within the region by the method suggested by Sauty (30). 

Microscopic dispersion is incorporated into the model in a manner first 

described by Ahlstrom, et al (1) and then modified in part by Smith and 

Schwartz (35). In this method, dispersion is treated as a stochastic 

phenomenon. The water particle is assumed to undergo a random displace-

ment in the direction of flow and another random displacement perpendic-

ular to flow. These displacements are calculated from the following two 

equations: 

1 

DL = (24 DLC * DELT)~ * (0.5 RANOL) (10) 

1 

DT = (24 DTC ;'; DELT)~ ;'; (0.5 RANOT) (11) 

In these equations, DL and DT are the displacements in the longitudinal 

and transverse directions, respectively, relative to the direction of 

advective transport. DLC and DTC are the longitudinal and transverse 

dispersion coefficients. RANOL and RANOT are random numbers normally 

distributed with a mean of zero and a standard deviation of one then 

divided by six to keep the range of values in the -0.5 to +0.5 area. 

Kelly (21) developed a direct relationship, which has been adopted for 

this study, between grain size and microscopic dispersivity. This 

relationship may be expressed as: 
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o = 0.08 n
50 

(12) 

Where o = dispersivity, in meters, 

and = mean particle size in millimeters 

The longitudinal dispersion coefficient, DLC, is taken equal to the dis­

persivity times the velocity, v
1

, in the direction of flow. The trans­

verse dispersion coefficient, DFC, is taken equal to a percentage of the 

dispersivity, DSPRAT, times the dispersivity and velocity, v
1

. The 

expressions from Ahlstrom, et al (1) for microscopic dispersion are then 

modified by these assumptions and units adjusted to obtain the follow­

ing: 

DL = (6.3'1r n
50 

* v
1 

* DELT) ~~ RANOL 

DT (6.3* D
50 

* v
1 

* DELT) * DSPRAT * RANOT 

(13) 

(14) 

Since the advective transport direction will not always coincide with 

the X and Y axes the displacements in the X and Y directions are 

obtained by a transformation. 

The computer code simulates water movement from the upgradient side of 

the region to the downgradient side. A particle is released from the 

upgradient boundary and moves across the region as dictated by the 
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advective displacements and stochastic dispersive displacements. When 

an impervious boundary is encountered, the particle is reflected back 

into the region. Eventually the water particle encounters the down-

gradient boundary. The location, travel time and other data are recorded 

and available for statistical analysis. 

Monte Carlo simulations result in a great deal of output. It was 

necessary to develop a large data collection and analysis system to deal 

with the data. Data from this study was stored in disk data files as it 

was produced and saved for use and analysis later. The Statistical 

Analysis System (SAS) has been used in the analysis of the data. 

The data output to disk files was varied but consists of information on 

the hydraulic conductivity means and correlation for each simulation, 

travel times and dispersion, hydraulic head values both mean values and 

those for selected rows from each simulation. These data are used as 

input to the SAS programs. SAS programs have been written to perform 

all types of statistical calculations and checks, as well as to plot 

results. 

RESULTS AND DISCUSSION 

A considerable amount of computer simulation was performed during this 

study. One major limitation immediately encountered was the inordinate 

amount of computer time required to invert the (I-W) matrix. The size 

of the matrix increases very rapidly with the region size since a new 

row and column is added for each new finite difference block in the 
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region. The results of inverting this matrix for three region sizes, 7 

by 7, 12 by 12 and 12 by 22 suggest an exponential relationship between 

the total number of nodes in the region and the required computer time. 

The fact that the computer time required to perform the inversion in-

creases so rapidly with an increase in region size effectively sets a 

practical limit on the region size which could be considered in one 

block. The largest region considered in this study was a 12 by 22 

region which required that a 264 x 264 matrix be inverted. We shall see 

later that some techniques may be utilized to somewhat relax this 

limitation. 

The arithmetic, geometric and harmonic means of all the simulations of 

hydraulic conductivity for the numerous Monte Carlo solutions were 

computed. These mean values were compared to an effective hydraulic 

conductivity, K , calculated on the basis of the flow quantity by the 
q 

following equation: 

K = q 
= (15) 

where Q is the flow quantity, h
1 

is the total head loss within the 

region, L is the total length over which that head loss occurs, H is the 

height of the flow region and S is a shape factor computed in accordance 

with a technique suggested by Warren and Price (40) which will be 

presented later. 

The value of S is a shape factor which may be directly compared with the 
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shape factor, ND/NF' in a flow net solution or the form factor in the 

method of fragments. ND and NF are the number of equipotential drops 

and flow lines repectively in the flow net solution. The results of 

similar Monte Carlo simulations of flow regions represented by random 

and uncorrelated hydraulic conductivity meshes have indicated that the 

geometric mean is a good estimate of the effective hydraulic conduc-

tivity (8, 18, 40). 

A second measure of the effective hydraulic conductivity in terms of 

mean travel time was computed for each Monte Carlo simulation. This 

effective hydraulic conductivity on the basis of travel time, Kt, was 

calculated by making assumptions similar to those used in calculating 

K . Figure 4 presents a typical layout of a flow region with approx­
q 

imately horizontal uniform flow from left to right. The flow is not 

precisely uniform due to the dispersion present in the flow simulation. 

The velocity of flow, v, may be calculated by the following formula: 

K i (16) 
v = = n 

The mean velocity of all flow particles traversing the flow region, v 

may be calculated by dividing the length of the particle travel, LT' by 

the mean travel time, t, as below: 

(17) 

The effective hydraulic conductivity on the basis of travel time, Kt, 

has been calculated by setting v equal to v in the above two equa-
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tions, introducing the height of the region by inserting in both the 

numerator and denominator and solving for Kt resulting in the following: 

(18) 

where LT is the total length of particle travel and for the uniform flow 

case will equal L, n is the porosity, t is the mean travel time and L, H 

/ 
and h

1 
are as defined above. St is a shape factor dependent on boundary 

/ 

conditions and is computed in a manner similar to S and will be discuss-

ed later. St is a modified shape factor which may be compared to the 

other shape factors, S, and the shape factor in the flow net solution or 

by the method of fragments. 

Twenty-five variations of flow region size and characteristics were 

studied to determine the relationship between these calculated means. 

Generally for each flow region, 40 Monte Carlo characterizations were 

done. The means and effective hydraulic conductivities for each of 

these were computed. 

In addition to calculation of mean values for each of the Monte Carlo 

characterizations, a mean value of all . Monte Carlo characterizations was 

computed. Correlation of the geometric mean, and the two effective 

hydraulic conductivity values (flow quantity and travel time) were 

visually observed by plotting and also by computation of correlation 

coefficients. A typical plot of these results is presented in Figure 5 

and the results are summarized in Table 1. 
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Region 
File Size 

1 10 x 20 

2 10 x 20 

3 10 x 20 

4 lOXlO 

5 5 x 5 

6 10 x 20 

7 10 x 20 

B 10 x 20 

9 10 x 20 

10 10 x 40 

11 10 x 40 

12 10 x 40 

13 10 x 40 

14 20 x 40 

15 20 x 40 

16 10 x 60 

17 10 x 60 

lB 10 x 20 

Block 
Size 

10 x 10 

10 x 20 

10 x 20 

10 x 10 

5 x 5 

10 x 20 

10 x 20 

10 x 20 

10 x 20 

10 x 20 

10 x 20 

10 x 20 

10 x 10 

10 x 10 

10 x 20 

10 x 20 

10 x 10 

10 x 20 

TABLE 1 - SUMMARY OF FLOW SIMULATIONS 

Auto. Corr. No. 
Data of 

Sims x y 

.B .B .6B 40 

.B .4 . 6B 40 

.BL .BL 

.B .B 

.B .B 

.B .B 

.B .B 

.B .4 

.B . 8 

.8 .8 

.B .8 

.B .8 

.8 .8 

.8 . 8 

.8 .8 

.8 .8 

.B .8 

1.0 1.0 

.6B 40 

.68 40 

.68 40 

.68 10 

.68 44 

1.0 40 

.68 40 

.68 40 

.68 40 

.68 40 

.68 40 

.68 20 

.6B 20 

.68 40 

.68 40 

1 

No. Kol- Y 
of Time mog 
Wa- Int., D 
ves Days Stat 

Coor. 
at 
End 

1 1.6 

1 1. 6 

1 1.6 

1 O.B 

2 6.4 

4 1.6 

3 1.6 

1 1.6 

1 1. 6 

1 3.2 

1 0.3 

1 6.4 

1 3.2 

1 3.2 

1 3.2 

1 4.8 

1 4.8 

40 1.6 

.032 60 . 6 

.115 60. 4 

.15 59.5 

. 01 59.7 

.01 35.0 

.024 58.4 

58.6 

.01 60.0 

.01 59.9 

.01 59.6 

.15 60.2 

.014 59.2 

.04 60.8 

.15 111. 7 

.15 111.2 

. 15 59.5 

.052 59 . 5 

.15 60.2 

Total Means of Hydraulic Conductivity 
Travel ft/day 
Time, Arith Geom Harm Flux T.Tim. S.Dev 
Days Ka Kg Kh Kq Kt K 

172 . 5 5.02 4.63 4 . 28 4.53 4.44 2.10 

168.5 4.84 4.62 4.40 4.59 4.51 1.54 

171.1 5.01 4.65 4.32 4.57 4.44 2.01 

39.8 5.13 4.77 4.45 4.75 4.61 1.99 

9 . 5 5.13 4.78 4.46 4.80 5.28 1.90 

176.6 4.86 4.51 4.19 4.42 4.30 1.95 

234.3 5.05 4 . 69 4 . 36 4.63 4.54 1.99 

173.0 5.09 

169.7 5.04 

703.4 4.99 

694.4 5.06 

702 . 2 5.02 

697.0 5.02 

700.0 4.99 

699.7 4.98 

1576.2 5.06 

1576.7 5.06 

151. 9 5. 0 

4.60 4.15 4.54 4.39 2.40 

4.68 4.34 4.62 4.52 2.02 

4.62 4.28 4.53 4.45 2 . 02 

4.68 4.32 4.59 4.51 2.08 

4.64 4.29 4.54 4.46 2.08 

4.64 4.29 4.55 4.48 2 . 08 

4.61 4 . 27 4.54 4.46 2.09 

4 . 62 4.28 4.55 4.46 2.03 

4.67 4.31 4.57 4.49 2.11 

2.14 

5.0 5.0 5.0 5.0 0.0 

N 
-...J 



File 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

TABLE 1 - SUMMARY OF FLOW SIMULATIONS (CONTINUED) 

No. Kol- y Total Means of Hydraulic Conductivity 
Auto. Corr. No. of Time mog Coor. Travel ft/da1 

Region Block Data of Wa- Int., D at Time, Arith Geom Harm Flux T.Tim. S.Dev 
Size Size Sims ves Days Stat End Days K K Kh K Kt x y a g q 

10 x 20 10 x 20 .8 .2 1.0 40 1 1.6 60 . 7 170.1 5.11 4.65 4.23 4.62 4.47 

10 x 20 10 x 20 .8 .2 0.9 40 1 1.6 .15 60.2 169.8 5.005 4.64 4.3 4.6 4.7 

10 x 60 10 x 20 .8 .8 .68 40 1 1.0 .048 60.3 314.5 4.96 4.58 4.23 4.48 4.41 

10 x 60 10 x 20 .8 .8 .68 40 1 .44 .066 60.5 143.0 5.07 4.68 4.33 4.59 4.50 

10 x 20 10 x 20 .8 .8 .68 40 1 1.6 - 98.4 228.0 5 .12 4. 72 4.36 4.62 4.50 

10 x 20 10 x 20 1.0 1.0 - 1 133 1.6 - 88.7 211. 8 5.0 5 . 0 5.0 5.0 5.0 

10 x 20 10 x 20 1.0 1.0 - 1 40 1.6 - 98.8 200.5 5.0 5.0 5.0 5.0 5.0 

10 x 20 10 x 20 0.8 0.4 .84 40 1 1.6 60.2 173.7 4.90 4.55 4.23 4.51 4.39 

10 x 20 10 x 20 0.8 0.8 .68 40 1 1.6 .01 58.8 254.91 5.01 3.54 2.51 3.32 3.06 

10 x 20 10 x 20 .8 .8 .68 40 1 1.6 60.0 153. 11 5. 01 4.98 4.96 4.98 4.97 

20 x 40 10 x 20 .8 .8 .68 20 1 3.2 109.6 2058.4 2.99 - - - 1.52 

10 x 20 10 x 20 .4 .3 .95 40 1 1.6 . 15 59.8 170.5 5.01 4.66 4.34 4.58 4.47 

Note: Uniform flow in all files except 7 and 24 which simulate S Flow and 23 and 25 with cutoff. 

Values listed for K and K have been adjusted by use of the shape factor S. 
q t 

K 

2.35 

2.04 

2.05 

2.07 

2.12 

0.0 

0.0 

I. 98 

4. 786 

0.50 

2.47 

I. 97 

N 
CXl 
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The results of these computations support the observation that the geo-

metric mean is the best measure of the effective hydraulic conductivity 

in terms of flow quantity and travel time. The effective hydraulic con-

ductivity calculated both by flow quantity and travel time are relative-

ly close with the flow quantity value generally somewhat larger. These 

results generally agree with Butler and Gundlach (IO) who determined 

that the equivalent area for flow and travel time were not always equal. 

Their flow regions were largely one dimensional. 

Two boundary flow configurations were considered in addition to uniform 

flow, i.e. , flow from the left boundary to the right boundary of a 

rectangular region. The two flow configurations are presented in Figure 

6. The first flow configuration is described as S flow and consists of 

flow from the upper three nodes of the left boundary to the lower three 

nodes of the right boundary. This case could simulate a general two 

dimensional flow case such as around an obstruction or low hydraulic 

conductivity occulusion. The second flow configuration is described as 

cutoff and consists of flow from the left upper boundary to the bottom 

right boundary. This case is intended to simulate flow beneath a dam by 

representing one half of the flow region. 

Warren and Price (40) have indicated that the geometric mean of the 

hydraulic conductivity is a good approximation of the effective 

hydraulic conductivity even for non-uniform flow provided a shape factor 

is utilized to adjust the value for the shape of the flow region. They 

I 
suggest that the magnitude of this shape factor, S in equation 15, be 

determined by first calculating the effective hydraulic conductivity 
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of the flow region using a singular known value of hydraulic conductiv-

ity. This effective value of hydraulic conductivity should then be 

divided into the singular known value and the result is the shape 

factor. The shape factor is then multiplied by the effective hydraulic 

conductivity before comparing with the geometric mean . Examples of 

these computations are presented elsewhere (2) . 

The results of this study tend to support this technique. For the cases 

considered, the adjusted values of effective hydraulic conductivity 

generally fall between the geometric and harmonic means and is closest 

to the geometric mean as presented in Table 1. 

The importance of this finding is that the mean flow rate may be 

estimated by rearranging equation 15 to solve for the flow rate, Q, as 

below: 

Q = 
K~ 
s 

(19) 

The geometric mean should be used for the value of K and the shape 

factor, S, may be determined by a flow net solution or the method of 

fragments. 

A simi l ar rearrangement of equation 18 and taking LT equal to L, results 

in the following equation for the mean travel time, t: 

(20) 
t = 

The mean travel time may then be approximated by using the geometric 
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mean of hydraulic conductivity for K and the shape factor from a flow 

net solution or the method of fragments. Al though this technique has 

not been theoretically proven and for nonuniform flow LT may be unknown 

exactly and may not equal L, the results developed here suggest that 

this technique can provide reasonable estimates of mean travel time. 

The stochastic nearest neighbor process model was utilized to generate 

random meshes of hydraulic conductivity which are autocorrelated. Each 

of the individual representations within the ensemble of representations 

making up each Monte Carlo simulation was analyzed to determine the 

magnitude of correlation by row and column. The formulation below was 

utilized to calculate this value and may be found in many references, 

e.g. (32): 

n-L 

~-rL (K. 
l. 

K) 

P (L) = i=l (21) 
n 

cn~1)L (Ki 

i=l 

In this equation p(L) is the autocorrelation coefficient for the lag L. 

L is a whole number with the range zero to one minus the number of 

elements in the row or column considered. K is the value of hydraulic 

conductivity and K is the mean value. The denominator is the variance 

of the hydraulic conductivity. It may be easily shown that if L equals 

zero, then p: (O) equals 1. 0. 

A graph of a typical result of this computation for lags from one to 

three is presented in Figure 7. The concept of integral scale as dis-
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cussed by Smith and Freeze (33) is utilized herein to conceptualize the 

degree of dependency of the hydraulic conductivity value at one node 

with the value at adjacent nodes. The integral scale has been estimated 

as the summation of the positive auto-correlation coefficients times the 

block size. As indicated, the integral scale, A , equals 15. 8 for the 

data in Figure 7. 

Smith (31) recognized a problem with the autocorrelation resulting from 

boundary effects. This problem was mitigated somewhat by deleting the 

boundary blocks of the region after development. Aldinger (2) demon­

strates the effects on the autocorrelation coefficients of deleting 

these boundary blocks. Also presented are the effects on these same 

autocorrelation coefficients caused by the log transformation to 

hydraulic conductivity. The results indicate a slight loss of 

correlation when the boundaries blocks were deleted and some additional 

loss when the log transformation was completed. 

slight, particularly for the integral scale. 

This total loss was 

The effect of the region size on the integral scale is demonstrated in 

Figure 8. It is clear that as the region size increases, the integral 

scale increases, although at a decreasing rate. This figure also demon­

strates the effects of stacking blocks of internally autocorrelated 

hydraulic conductivity meshes to model larger regions without utilizing 

a larger FILTR matrix. There is a loss in the integral scale although 

this loss is relatively small even when the region is increased by three 

times. The figure also demonstrates that as the region size increases, 

the integral scale continues to increase even with the same FILTR 
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matrix. 

Sensitivity of Ensemble Means and Variances to the Number of Simulations 

Computer computations are relatively inexpensive. However, the practic­

ing engineer does not want to do more computations than are necessary to 

obtain reliable answers. A study of the number of simulations required 

to compute reliable mean values of various parameters was then conduct­

ed. 

Initially consider the mean and standard deviation of the hydraulic con-

ductivity formulations. Figure 9 presents a plot of an accumulating 

mean of the lag 3 arithmetic mean and standard deviation of the 

hydraulic conductivity as each new equiprobable representation of the 

Monte Carlo simulations is calculated. This plot demonstrates that the 

cumulative mean very rapidly approaches a constant value, in this case 

after approximately 8 simulations. 

The SAS program written to compute the cumulative mean of the lag 3 

means and standard deviation is an inexact estimate of the actual mean 

and standard deviation of all preceding observations. The procedure 

computes the mean and standard deviation of the previous three 

observations. A running mean value of these two results is then 

computed as each new mean and standard deviation is computed for a new 

observation and the two left from the earlier group of three after 

deleting the first observation . The results have been found accurate to 

approximately 3 to 4 decimal places for the mean value. However, the 
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mean of the cumulative mean of the lag 3 standard deviation computed by 

this technique may only be used as a qualitative measure of the trend 

and its stability. A precise measure of the actual standard deviation 

can only be computed after the entire ensemble is sampled. 

Similar plots for the effective hydraulic conductivity in terms of flow 

quantity, K , and travel time, K , respectively have been developed (2). 
q t 

These indicate that a fairly constant value is rapidly approached, 

usually in less than 10 simulations. This probably results from the 

fact these are a measure of the variation of the mean hydraulic conduc-

tivity in the flow region . The model attempts to set the mean value of 

hydraulic conductivity equal to the same value for each simulation so 

that these related mean values should also approach consistent values 

fairly rapidly. However, the cumulative means of the lag 3 standard 

deviation for these terms fluctuates considerably. In Figure 9, a truly 

constant value is not achieved even after the 40 simulations in this 

ensemble although after the first 20, the fluctuations are greatly 

reduced. 

Sensitivity of Ensemble Means and Variances to Number of Water Particles 

The number of particles which need to be released and their travel 

simulated to allow an estimate of the mean and standard deviation of the 

travel time is another important consideration in the amount of 

computation time required. A SAS program was written to compute the 

cumulative mean of the lag 3 mean and standard deviation of the travel 

time for particle transit. A typical plot for one run is presented in 
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Figure 10. This figure illustrates that a mean value of travel time is 

reached after approximately 20 water particles have transited the 

region. The cumulative mean of the lag 3 standard deviation of the 

travel time fluctuates 20 or 40 percent after 20 water particles, 

reaching a fairly consistent, although still slightly decreasing value, 

after approximately 80 water particles. 

Fried (15) gives an expression for the longitudinal dispersion co-

efficient, D
1

, assuming that the development of particle concentration 

at some distant point is normally distributed. He illustrates that this 

coefficient is directly related to the variance of the travel times. 

The equation developed for a long travel distance relative to the dis-

persion is: 

- 2 2 
U (2crt) (22) 

8 t 

where U and t are the mean velocities and travel time, respectively, 

and at is the standard deviation of the travel time. 

The distance, x, over which the dispersion occurs equals the product 

Ut0 .
5 

and may be substituted in this equation resulting in the following 

equation: 

2 2 
CJ' t x 

DL = 2(t ) 3 

(23) 
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These expressions illustrate the relationship between the standard 

deviation of the travel time, at' and the longitudinal dispersion co-

efficient. The macroscopic or field scale dispersivity, of' may be 

determined by dividing by the mean velocity to arrive at: 

0 = 
f 

a t x 
(24) 

These results and others indicate that the 400 water particles simulated 

is sufficient to compute a mean and standard deviation for travel time. 

The macroscopic or field scale lateral dispersion coefficient, DT, has 

been similarly shown (15) to be a function of the scatter about the mean 

ending location after traversing a region. The following equation was 

given: 

D = T 

1 2 
2 cry U (25) 

x 

where a is the standard deviation of the normalized location per­
y 

pendicular to the primary direction of flow and U and x are as defined 

earlier. 

A record was maintained of the starting and ending y coordinate of each 

particle. A normalized ending y coordinate was then computed along with 

a cumulative mean and cumulative mean standard deviation as each new 
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record of water transport was added. The same was computed for the y 

coordinate at the estimated time to transit half the region. A typical 

plot of these results is presented in Figure 11. These results also 

indicate that the 400 water particles are sufficient to reach a con­

sistent mean value for these variables. 

Normality Check on Travel Times 

The ensemble of travel times was utilized to plot a breakthrough curve. 

Figure 12 presents a representative sample of a breakthrough curve. 

These curves are similar to a concentration versus time curve and their 

similarity of shape supports the premise of general conformance of 

normality. 

A check for the goodness of fit of the assumption of a normal dis-

tribution for the ensemble of travel time records was made. A SAS 

program was written to test the null hypothesis that the data could be a 

random sample from a normal distribution. A Kolomogorov D statistic was 

computed and compared with critical values. A Kolomogorov statistic was 

utilized rather than the more common chi square check since it is more 

easily adapted to continuous uncategorized data. 

Table 1 presents the results of this check for several flow ensembles. 

Several of the normality checks support the assumption of a normal dis­

tribution with a general tendency to do so as the transit distance 

increases. Cases 10, 11 and 12 suggest that as the time interval de-

creases, there is a greater likelihood of acceptance of a normal dis-
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tribution. A Kolomogorov D statistic of 0.10 or greater was considered 

acceptance of the assumption of normality for this study. 

Hydraulic Head Value Sensitivity 

The hydraulic head value along two rows was tabulated for each of the 

simulations. This tabulation was then available to allow computation of 

mean values and variations resulting from changes in region size, 

hydraulic gradient, conductivity and other factors. 

Figure 13 presents typical results from one of the Monte Carlo 

simulations. The upper plot presents the mean hydraulic head versus the 

node number. The averaging over the 40 Monte Carlo simulations results 

in a fairly smooth straight line relationship. The middle curve in 

Figure 13 presents the standard deviation and the lower curve the 

variance of the hydraulic head for the 40 Monte Carlo simulations versus 

the node number. These plots clearly demonstrate the boundary effects. 

At the ends of the flow region the head is held constant and therefore 

the standard deviation is zero at these nodes. At nodes further away, 

there is less influence from the boundary and therefore the standard 

deviation and variance are greater. 

The number of Monte Carlo simulations required to reach a fairly con­

sistent value of the hydraulic head was also investigated. Figure 14 

presents a typical plot of the results of one such investigation at an 

interior node. This plot indicates that the initial simulation had a 

value very close to the resulting mean value and after three simulations 
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Mean, Standard Deviation and Variance 
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the mean value was within 3 percent of that value. 

The effect of variations in region size is demonstrated in Figure 15. 

The maximum value of the normalized standard deviation of hydraulic head 

for any of the nodes in the region increases as the region size increas­

ed. The maximum value of the standard deviation of hydraulic head was 

normalized by dividing each value by the mean head loss in each block or 

grid. 

The effect of variations in hydraulic gradient is demonstrated in Figure 

16. The upper plot indicates a gradual increase in the maximum value of 

the standard deviation of hydraulic head as the hydraulic gradient in-

creases. After normalizing these values by dividing by the mean head 

loss, however, there is no general trend as is demonstrated by the lower 

plot. 

The relationship between this quantity and the standard deviation of the 

hydraulic conductivity is of more significance. Figure 17 presents this 

relationship which indicates a direct relationship. This is significant 

since the uncertainty in the hydraulic conductivity value directly 

affects our uncertainty in the value of the hydraulic head value within 

the region. 

Macroscopic Dispersivity Sensitivity 

The macroscopic or field scale longitudinal dispersivity has been shown 

to be a function of the standard deviation of the travel time. The 
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macroscopic transverse dispersivity has been shown to be a function of 

the standard deviation about the mean ending location perpendicular to 

the general flow direction. For the horizontal uniform flow case this 

may be taken as the standard deviation in the ending y coordinate. The 

sensitivity of the macroscope dispersivities to variations in region 

size, hydraulic gradient, time interval and standard deviation of 

hydraulic conductivity was investigated. 

Figure 18 presents results of the effect of region size on the macro-

scopic longitudinal and transverse dispersivity. The upper plot 

indicates a relatively small change in the longitudinal dispersivity 

with an increase in region size and no consistent trend. The lower plot 

indicates a steadily decreasing transverse dispersivity with region 

size. The values plotted for the macroscopic dispersivities was 

determined by dividing the dispersion coefficients determined by 

equations 18 and 21 by the mean particle velocity in the region. These 

results suggest that a constant value of dispersivity is not reached 

during the transit of these particles. 

Figure 19 presents the effects of a change in hydraulic gradient and 

Figure 20 the effects of a change in time interval for mass transport on 

these same parameters. The variation of both macroscopic longitudinal 

and transverse dispersivity is small and inconsistent due to the change 

in hydraulic gradient and time interval. The insensitivity of the 

observed dispersivity due to time interval variation is important since 

the computer time required to simulate particle transit is dependent on 

the time interval utilized. 
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The effect of a variation in the standard deviation of hydraulic 

conductivity is much more pronounced than these other variables. The 

results of a variation of this parameter are presented in Figure 21. A 

reduction in standard deviation of the hydraulic conductivity from 2 to 

0.5 resulted in a reduction from 2.5 to 0.3 in longitudinal dispersivity 

and from 0.14 to 0.05 on the transverse dispersivity. 

The sensitivity of the macroscopic dispersivity on the microscopic 

dispersivity was also investigated. The typical range of lab or micro­

scopic longitudinal dispersivisy has been reported (14) to be in the 

range of 0 .1 to 20 mm for unconsolidated geologic sediments. Lab 

values of transverse dispersivity have likewise been reported to be 5 to 

20 percent of the longitudinal dispersivity. Mass transport in regions 

of uniform flow with values of dispersivity near the extremes of this 

range was simulated. The initial simulation with both microscopic 

dispersivity values equal to zero and a singular constant value of 

hydraulic conductivity of five resulted in a macroscopic dispersivity of 

zero. A second simulation with microscopic dispersivities of 0.47 feet 

(144 mm) and 0.14 feet (43 mm) respectively, resulted in macroscopic 

dispersivities of 0.16 feet and 0.05 feet respectively. However when 

these same microscopic dispersivities are compared with the results 

presented in Figure 21, it is apparent that the variation of the micro­

scopic dispersivities is of secondary importance relative to possible 

variations in hydraulic conductivity. 

The sensitivity of the longitudinal dispersivity to changes in the shape 

of the flow region was also considered. Generally the greater the 
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tortuosity of the flow region boundary conditions, the greater the 

macroscopic dispersivity. The macroscopic longitudinal dispersivity 

varied from 2. 49 feet for the uniform flow case to 2. 84 and 3. 25 feet 

for the S flow and cutoff cases respectively. For the three general 

flow regions considered the variation in macroscopic dispersivity was 

relatively small when compared to that resulting from a variation in the 

hydraulic conductivity distribution. 

Development of Confidence Limits 

The confidence which the engineer has in his prediction of flow 

quantity, travel times and dispersion is the major reason for utilizing 

these more sophisticated and complex solutions for field flow problems. 

If the engineer were not able to increase his confidence in his pre­

dictions there would be little reason to utilize these techniques. The 

nature of the output from this method lends itself to the development of 

confidence limits on the solution. 

A methodology to utilize the knowledge of the variability of the flow 

region characteristics to establish confidence limits on the output 

utilizing probability and statistics has been formulated. The emphasis 

of this methodology is in the quantification of the characteristics of 

the major input parameter, hydraulic conductivity. Other parameters 

have been shown to be of lesser importance to the problem solution. 

The procedure to develop the site specific soil parameters is 

essentially unchanged. Field programs are utilized to measure insitu 
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soil parameters and to secure samples for laboratory testing. The 

field and laboratory tests will be analyzed so that a probability 

density function of the hydraulic conductivity may be formulated. Other 

parameters such as porosity, and laboratory dispersivity characteristics 

must also be developed. 

These parameters are then the input to a Monte Carlo computer solution 

for flow quantity and travel time. The results of these Monte Carlo 

computer simulations may then be analyzed utilizing the knowledge of the 

underlying distribution of these results to develop confidence in the 

results. 

In general the flow quantity and travel time results should be expected 

to conform to a normal distribution. This assumption is made on the 

basis of the Central Limit Theorem. The water particle movement may be 

considered the result of adding up the effects of many individual 

factors (hydraulic conductivity values). This assumption of normality 

has been only generally verified in this study, since numerous 

exceptions were observed. 

The mean value of the flow quantity and travel time may then be estimat-

ed with confidence by the method described below. The results of one 

Monte Carlo simulation are presented in Figure 22. The characteristics 

of the flow region are also presented. The mean and standard deviation 

of the effective hydraulic conductivity, K , is 4.57 and 0.230 respec­
q 

tively. The magnitude of error of the mean with 95% confidence may be 

estimated by the following expression (26): 
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. s = 1.96 . 0.230 = 0.071 

IN l40 
(26) 

where ta 12 is the value of the cumulative distribution function of the 

I 
student t distribution at a /2 significance, s is the value of the 

standard deviation and N is the sample size. 

The mean value would then be expected to lie between the limits of the 

sample mean (4.57) plus or minus the error (0.07) i.e., 4.50 and 4.64. 

The effective hydraulic conductivity, K , was calculated by dividing the 
q 

flow by the mean hydraulic gradient and area. The flow rate may then be 

estimated with confidence limits of 95% by multiplying by these con­

stants. In so doing the flow limits of 38 to 39.5 ft 3/day were esti-

mated with 95% confidence limits. 

The same methodology may be utilized to develop confidence limits on the 

travel times. The mean and standard deviation of the travel time is 

1576.2 and 146.9 days. The magnitude of error of the mean with 95% 

confidence may be estimated as: 

E < 
1.96 (146.9) = 14 _4 days 

/400 
(27) 

The mean value of travel time is therefore expected to lie between 

1562 and 1591 days. 

The standard deviation of the travel time may also be estimated with 

confidence by the expressions given below (26): 



s 

1 + z ~/2 
/2N 

< (j < 

62 

s 
(28) 

where Za/ 2 is the value of the cumulative density function at a signif­

icant of a/2. Utilizing this equation results in the following: 

146.9 < (j < 
1 1.96 

+ ./ 2(400) 

which reduces to: 

137 .4 < (j < 

146.9 
1.96 

1 -m oo) 

157.8 

(29) 

(30) 

The water particles are expected to follow a normal distribution so that 

a hypothetical breakthrough curve may be developed for the extremes of 

these parameters. The result of such an exercise is presented in Figure 

23. This allows the engineer to estimate not only the mean arrival time 

with confidence but also the distribution of travel times. 



i:: 
0 

•rl 
00 
Q) 
~ 

:;: 
0 

.--i 
µ:.. 

~ 
0 

"O 
i:: 
~ 

00 
i:: 

•rl 
,.c: 
(.) 

ell 
Q) 
~ 

(/) 
Q) 

.--i 
(.) 

·rl 
.IJ 
H 
ell 

p., 

~ 
0 

Q) 
00 
ell 
.IJ 
i:: 
Q) 
(.) 

H 
Q) 
p., 

100 

80 

60 

40 

20 

0 

63 

95% Confidence Limits 

1000 1500 

Travel Time, Days 

Figure 23 - Hypothetical Breakthrough Curve with 
Confidence Limits 

2000 



64 

CONCLUSIONS 

The methodology outlined herein which utilizes a stochastic nearest 

neighbor model and a log normal PDF technique to simulate the variation 

in hydraulic conductivity (permeability) is useful in incorporating the 

variability in flow regions into flow calculations. The following 

conclusions concerning the results of the Monte Carlo simulations for 

steady state flow may be drawn: 

1. The effects of the boundaries, of stacking blocks of internally 

autocorrelated subregions and the log transformation necessitated 

by this technique did not severely erode the integral scale for the 

cases considered. 

2 . The geometric mean is the best estimate of the effective hydraulic 

conductivity value computed either on the basis of flow quantity or 

travel time. This is true for uniform as well as the more tortuous 

flow conditions considered after applying a shape factor. 

3 . The magnitude of the standard deviation of the hydraulic head at 

any point in the flow region is a function of the standard 

deviation of the hydraulic conductivity, the region size and the 

distance from the boundary. 

4. The flow quantity and travel time to traverse the region cannot 

always be assumed normally distributed. This may be due to the 

limited size of the regions considered in this study. However, 
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when testing confirms normality, confidence limits for the mean and 

standard deviation may be developed. These estimates could provide 

the necessary input for economic studies of alternates when 

tempered with engineering judgement. 

S . The macroscopic lateral and transverse dispersivities did not 

consistently reach constant values within the distance studied. 

The magnitude of the macroscopic dispersivity was more dependent on 

distributions of hydraulic conductivity than other parameters 

considered including variations in the microscopic dispersivity . 
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APPENDIX II - NOTATION 

The following symbols are used in this paper : 

= macroscopic longitudinal dispersion coefficient 

= macroscopic transverse dispersion coefficient 

= 50% particle size or mean particle size 

DELT = time increment, days 

DL = longitudinal displacement 

DLC = microscopic longitudinal dispersion coefficient 

DSPRAT = transverse to longitudinal dispersivity ratio 

DT = transverse displacement 

DTC = microscopic transverse dispersion coefficient 

E = magnitude of error 

F(K) = probability density function of K 

G = variable relating standard deviations of Y to K 
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= hydraulic head 

= hydraulic head loss 

= height of flow region 

= hydraulic head at downgradient boundary 

= hydraulic head at upgradient boundary 

= row number of finite difference grid system 

= identity matrix 

= column number of finite difference grid system 

= hydraulic conductivity (permeability) at nodal point i,j 

= mean hydraulic conductivity 

= arithmatic mean of hydraulic conductivity 

geometric mean of hydraulic conductivity 

= harmonic mean of hydraulic conductivity 

= effective hydraulic conductivity on basis of flow 
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= effective hydraulic conductivity on basis of travel time 

L = length over which head loss occurs 

= length over which water travels in flow simulation 

n = porosity 

N = sample size 

= number of equipotential drops in flow net 

= number of flow lines in flow net 

RANOL,RANOT random number from normal distribution 

s = sample standard deviation 

= shape factors 

t mean travel time 

t~/2 = cumulative distribution function of student t distrib-

ution at r§./2 significance 

-u = mean particle velocity 
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= velocity of water 

weighting factor matrix 

= coordinate 

= distance of total particle travel 

= coordinate 

= autoregressive parameters 

= significance level 

= macroscopic dispersivity 

= random number matrix 

= integral scale 

= constant which relatesCfJ< tocry 

= correlation coefficient 

standard deviation 
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SECTION II 

GROUNDWATER FLOW IN A STOCHASTIC MEDIUM: 

APPLICATIONS OF COMPUTER MODEL 

BY 

PAUL BRUCE ALDINGER
1

, M. ASCE 

ABSTRACT: The use of a computer model which characterizes 
flow in a porous medium as a stochastic process is demon­
strated on two field problems. The computer model allows 
the hydraulic conductivity (permeability) to be varied 
within the blocks of the finite difference mesh according 
to a predetermined autocorrelation structure and a log 
normal probability density function. Mass transport is 
simulated as a combination of advection and microscopic or 
particle scale dispersion. The model allows development of 
confidence in the flow rate and travel times within the 
region. 

INTRODUCTION 

Geotechnical engineers are asked to make predictions of groundwater flow 

in a variety of boundary conditions and soil media. Sometimes there is 

considerable data available, but more often the problem is so large, the 

boundary conditions and soil medium so complex, that the resources 

available can not be expected to identify in detail the conditions 

insitu. 

Nevertheless, predictions are required. The geotechnical engineer has 

1 
Principal Geotechnical Engineer, Department Manager, CE Maguire, Inc. 

Providence, Rhode Island 
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met that need by idealizing boundary conditions and soil media char­

acteristics and making conservative assumptions as necessary to develop 

predictions.Sensitivity analyses have also been performed to study the 

effects varying of input parameters have on predictions. 

Recently new techniques have been introduced which allow more complex 

and realistic input parameter characterization. In addition, other 

techniques have been utilized to analyze the results of numerical 

simulations. One of these tools, the use of probability and statistics, 

is utilized to estimate confidence limits for the prediction resulting 

from such analyses . 

A word of caution is always necessary when discussing the use of pro-

bability and statistics in engineering problems. Too often the user 

forgets that these results are only estimates and that uncertainty still 

exists. These techniques do help develop confidence in one's predic-

tions, but like all engineering tools, they must be weighted with 

engineering judgement. 

This paper is the second of two papers. The first paper detailed the 

development of a computer model which uses a Monte Carlo technique, a 

finite difference numerical solution and a stochastic representation of 

the soil medium to simulate groundwater flow (1). This paper presents 

two applications of this computer model to study a typical groundwater 

flow problem. The first application is an actual situation in Rhode 

Island, the second is a hypothetical problem. 
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BACKGROUND 

A two dimensional characterization of the flow region has been chosen 

for several reasons. The practicing engineer rarely has sufficient 

information to make a three-dimensional model worth the expense of 

developing it. The practicing engineer is therefore more familiar with 

two dimensional representations. In addition, the computational effort 

required for stochastic three dimensional solutions would be enormous. 

Perhaps the techniques will be expanded to the three-dimensional case 

when further advances in computers allow and researchers consider the 

effort worthwhile. 

For problems considered in this paper, steady state conditions are 

assumed. The first considers flow beneath a dike and the second flow 

away from a waste disposal lagoon. The flow region has been assumed 

rectangular for simplicity although other region shapes could be 

utilized. 

The practicing engineer's primary analysis techniques until quite re-

cently have been analytical solutions and flow nets. Analytical 

solutions are exact solutions to the flow conditions and have been 

developed to solve many flow situations (6). Where appropriate, these 

techniques provide reliable answers. These techniques suffer from their 

lack of flexibility and the need to make restrictive simplifying 

assumptions for boundary conditions and media parameters. In general, 

regions must be assumed homogeneous and isotropic. 

generally be included by performing a transformation. 

Anisotropy can 
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Perhaps the technique most widely used today is the flow net. This 

technique has been available for nearly half a century and been utilized 

extensively (3, 4). Its greatest advantage is its simplicity and ease 

of use. The technique suffers from its limited capacity to vary the 

soil's hydraulic conductivity and freewater surface, however. 

Numerical methods allow more realistic problem formulations. In most 

cases, however, the problem must be simplified into regions where the 

soil media have constant hydraulic conductivity. The companion paper 

(2) discusses the problems with this type of approach as well as other 

more realistic modifications. 

The computer model discussed in the companion paper (2) requires input 

information normally required in any of the foregoing techniques as well 

as some additional information. Initially the soil medium must be 

divided into similar strata. Boundary conditions must also be evaluated 

and locations for constant head and no flow or impervious boundaries 

identified. 

The hydraulic conductivity of the soil medium is presumed to be char­

acterized stochastically by a log normal probability density function 

(PDF). An estimate of the mean and standard deviation of the hydraulic 

conductivity must be determined. The method of estimating these values 

is to compile all the data available and assign weighting factors for 

the various sources and test procedures used. Perhaps more weight will 

be given to insitu tests than lab tests or correlations from other 

measured parameters. An estimate of the integral scale or distance over 
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which the value of hydraulic conductivity is positively correlated must 

also be determined. This may be done by plotting the discrete values of 

hydraulic conductivity from samples taken in close proximity vertically 

and laterally, computing correlation coefficients and the resulting 

integral scale. (10) 

Other data required are median grain size, the ratio of lateral to long­

itudinal microscopic or particle scale dispersivity and soil porosity. 

The median grain size may be determined from grain size distribution 

curves. Soil porosity may be estimated from standard penetration tests 

and soil descriptions. Figure 1 presents a correlation between standard 

penetration test results and porosity for different soils types. This 

figure is adapted from Navfac DM 7 (8). On the right ordinate scale the 

results of information were superimposed correlating density descrip­

tions with standard penetration results from Peck (9). 

The methodology to be described herein and presented in detail in the 

companion paper (2) can best be illustrated by example. The following 

two examples will demonstrate its use in solving real flow problems. 

FLOW BENEATH A DIKE EXAMPLE 

The State of Rhode Island is presently planning the construction of the 

Big River Reservoir in central Rhode Island. The reservoir will inun­

date approximately 7 square miles of land in two towns, Coventry and 

West Greenwich. Figure 2 presents a plan of the general area of the 

site. 
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Interstate Route 95 traverses this area and will divide the impounded 

water resulting in a reservoir on both sides of the road. For the 

eastern pool, this interstate highway will essentially form the northern 

boundary of the reservoir and Division Street will be flooded. Figure 3 

presents a plan of the area with the groundwater contours reported in 

the preliminary geotechnical investigation (7). A groundwater divide is 

indicated near the proposed alignment of dikes along the southern side 

of Route 95 near Division Street, effectively separating existing 

groundwater flow patterns between those flowing south westerly into Carr 

Pond from those flowing northerly into Lake Mishnock. At the present 

time, as a consequence of the groundwater divide, the hydraulic gradient 

of the groundwater from the proposed dike alignment near Division Street 

to Lake Mishnock is nearly flat and we would expect very little ground­

water flowing northerly into Lake Mishnock from the Division Street 

area. Apparently, the major groundwater contributions to this lake are 

presently from the east and west. 

The design reservoir pool elevation is at 300 feet (91.5 meters) NGVD 

(National Geodetic Vertical Datum). The ground elevation along Route 95 

in this area is approximately 310 feet (94.5 meters) NGVD. The ground 

surface drops off rapidly to the north in the direction of Lake Mishnock 

where the ground and water elevation is approximately 250 feet (76. 2 

meters) NGVD. 

Upon completion and filling of the proposed Big River Reservoir and if 

no mitigating measures are taken, a rather large hydraulic gradient 

between the reservoir to the south of Route 95 and Lake Mishnock would 
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be set up. This would increase seepage into Lake Mishnock perhaps 

increasing water levels on a lake already ringed with homes only a few 

feet above water levels. Other homes between the reservoir and the lake 

might be similarly affected. 

The site is underlain by relatively pervious glacial deposits consisting 

mostly of sand and silt. They are mapped as undifferentiated sand and 

gravel deposit and a kame terrace (10). The soils have clearly defined 

stratification which is visible in borrow cuts in the area but not 

easily recognized in boring samples. The uniform grain size and strati­

fication suggests that it may have been deposited in a glacial lakebed 

with some thin coarser outwash deposits near the surface. 

Figure 4 from KAME (7) presents a hydrogeologic section along the 

approximate alignment of the dikes. A deep valley was encountered in 

the area of boring D5 which coincides with the area of the steepest 

predicted hydraulic gradient under post construction conditions. 

Figure 5 from KAME (7) presents a similar hydrogeologic section oriented 

perpendicular to that in Figure 4 and presents a section across the dike 

and along the location of potential leakage from the reservoir. 

The major problem confronting the design engineer in this area is to 

quantify potential leakage from the reservoir if an impervious dike were 

constructed along the proposed alignment. Seepage losses beneath an 

impervious dike must be estimated with confidence. In addition, design 

alternatives to reduce leakage to acceptable levels need to be developed 
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and their effects on the seepage losses quantified with confidence. 

An idealized soil profile assuming a singular stratum of soil was 

sufficient to characterize the soil profile was developed and is 

presented in Figure 6. The soil properties were estimated from the 

results of a series of laboratory tests. The mean and standard 

deviation of hydraulic conductivity and mean particle size were 

estimated from a series of grain size analyses on this soil. The auto­

regressive parameters were assumed equivalent to the results of field 

studies based on similar stratified soil by Smith (11). The porosity 

was estimated from soil descriptions and standard penetration test 

results. 

A second soil profile which characterizes the soil conditions by using 

two soil strata is presented in Figure 7. The deeper soil stratum has a 

higher hydraulic conductivity and thus may act as a conduit for flow 

beneath the dike. Its thickness is limited to one row of the finite 

difference mesh located along the bottom of the section. 

Both profiles have assumed an impervious barrier for the upper boundary 

for simplicity. The groundwater would actually flow upward somewhat 

after travelling beneath the impervious dike. In these examples, a 

stochastically generated mesh of autocorrelated hydraulic conductivity 

values are input to the numerical model while heads and resulting flow 

rate are determined. Subsequently mass transport is simulated by 

particles released from the upper left area of the region which 

eventually reach the right boundary. The main interest in this problem 
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is the calculation of flow rate. Dispersion and travel times are of 

less concern. 

The flow region and boundary conditions in this example do not result in 

uniform flow so a shape factor must be applied to the effective 

hydraulic conductivities. The technique to determine this shape factor 

was included in the companion paper (2). 

The results of 40 Monte Carlo simulations for these two flow situations 

are summarized in Table 1. In addition to the two soil profiles already 

discussed is a third profile, profile lA, which has the same layout but 

the soil is assumed to have a constant value for the hydraulic conduc­

tivity of 5.5 feet per day. 

The intermediate coordinates during transit and travel time values 

listed are the mean values for all 400 particles which flow through the 

region. The reference to percentage of the region are as presented in 

Figure 6 and merely are a tabulation of time to get to that point in the 

region. Since an equal number of water particles are released from each 

of the 10 nodes which are release points, there is a bias in the travel 

times. More on this later. 

These results demonstrate that the presence of the lower stratum of 

higher hydraulic conductivity increases flow by about 25 percent and 

lowers the mean value of the exiting y coordinate by approximately 

twelve feet . The median y coordinate at the end dropped approximately 

12 feet. For Profile 2, the median water particle exits within this 
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TABLE 1 

SUMMARY OF RESULTS - DIKE EXAMPLE 

Profile 1 Profile lA Profile 2 

Mean Values of Hyd. Conductivity (Ft/Day) 
Arithmetic 5.52 5.50 7.21 
Geometric 4.10 5.50 4.74 
Harmonic 3.07 5.50 3.31 
Effective, Hydraulic 4.41 6.37 5.43 

(After Applying Shape Factor) 3.81 5.50 
Effective, Travel Time 3.26 5.04 4.99 

(After Applying Shape Factor) 3.56 5.50 
Std. Deviation of Hyd. Conductivity 5.00 0 

Flow Quantity (Cubic Ft/Day)-Mean 56.5 81.6 69.6 
Standard Deviation 3.4 4.4 
Porosity 0.3 0.3 0.3 
Mean Coordinates After 191 Days (x) 194.8 272.2 205.4 

(y) 95.7 110.9 118.6 

Mean y Coordinate at End 122.2 122.3 135.3 
Median y Coordinate at End 131.5 151. 2 
Mean Travel Time (Days) 

50% Region 404.0 273.9 
60% Region 454.6 305.1 
70% Region 504.8 336.0 
80% Region 555.4 366.2 
90% Region 605.9 397.0 

100% Region 656.2 417.7 428.5 

Std. Deviation of Travel Time (Days) 
50% 290.9 122.9 
60% 292.5 114.9 
70% 292.8 109 .1 
80% 292.2 105.0 
90% 292.0 103.3 

100% 292.3 148.9 104.7 
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lower stratum. 

The adjusted mean values of the effective hydraulic conductivity fall 

within the expected range relative to the mean values calculated for the 

stochastic mesh of values for Profile 1. The effective hydraulic con­

ductivity values are fairly close to the geometric mean, although some­

what lower. The effective value determined by flow is larger than that 

determined by travel time. No similar comparison was possible for 

Profile 2 because of the different stratification. 

Figure 8 presents a plot of the x and y locations for each water par-

ticle after 191 days. The upper plot is for the Profile 1 case, the 

lower plot for Profile 2. It is clear that the influence of the lower 

stratum in Profile 2 has caused the water particles to move downward 

while traversing toward the low head boundary at the right. Figure 9 

presents a plot for the starting x coordinate versus the ending y 

locations for the two cases. This figure also demonstrates the skewing 

effect of the lower stratum in Profile 2. 

Figure 10 presents the time to traverse the region versus the starting x 

coordinate. Profile 1 results in a clear relationship of decreasing 

travel time with increasing starting x coordinate. This should be 

anticipated since we would expect a higher velocity as well as a shorter 

route for those particles starting closest to the dike. 

The flow rate for Profile 1 was computed as 56.5 cubic ft/day per linear 

foot with a standard deviation of 3.4 cubic ft/day. Figure 11 presents 
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the cumulative mean of the mean and lag 3 standard deviation of the 

effective hydraulic conductivity for this profile. As was indicated in 

the companion paper (2), the cumulative mean of the lag 3 standard 

deviation may only be used as a qualitative measure of the trend and 

stability of the standard deviation. The true measure of the standard 

deviation would require calculation of that term for all preceeding 

values after each new observation is added. The effective hydraulic 

conductivity equals a constant times the flow rate. Figure 11 

demonstrates that the mean value is very rapidly approached; in fact, 

there is very little fluctuation after 6 simulations. The mean of the 

lag 3 standard deviation reaches a fairly consistent level after 

approximately 26 simulations. A check for normality using the 

Kolmogorov D statistic indicates that the distribution of flow cannot be 

accepted as normally distributed to a high enough significance. 

Confidence limits can therefore not be predicted with accuracy. Even a 

quick observation of Figure 11, however, would certainly lead one to 

believe that the mean value of 56. 5 cubic ft/ day is a fairly good 

estimate of the flow rate. 

Figure 12 presents similar results for Profile 2. The mean value of 

69.6 ft/day is also reached very rapidly after only a few simulations. 

The value of the mean of the lag 3 standard deviation does not appear to 

reach a consistent mean value except perhaps in the last 4 or 5 simu­

lations. The standard deviation of the flow rate was calculated to be 

4.4 cubic ft./day. Again, normality could not be accepted by the 

calculation of Kolmogorov D statistic but the figure clearly indicates a 
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consistent trend in predicted flow rates. 

This analysis would assist the geotechnical engineer in making pre­

dictions of groundwater flow beneath the proposed dike. It would also 

demonstrate that the determination of the presence of the high hydraulic 

conductivity stratum overlying the bedrock would be an important one. 

In any case, this flow rate is likely to produce an increase in the 

groundwater levels around Lake Mishnock which is an unacceptable result. 

The next step in the analysis which could be completed would be to study 

the effect of mitigating measures on the flow rate. A seepage blanket 

could be simulated extending the left boundary and thereby increasing 

the flow path. An alternative would be a partially pentrating cutoff 

wall to increase the travel path of the water downward and around the 

wall. Similar results would then provide the geotechnical engineer with 

sufficient information on the predicted flow rates and variations so 

that the decision on which alternatives to utilize may be made. 

GROUNDWATER IN THE VICINITY OF A LANDFILL EXAMPLE 

The second example considered was for flow in the vicinity of a waste 

landfill. The example is for a hypothetical landfill although landfills 

with similar conditions exist. This landfill has been sited upgradient 

from a waterbody approximately 600 linear feet (183 meters) as depicted 

in Figure 13. The landfill was initially begun by excavating to or 

somewhat below the water table to allow excavation of cover material. 

The landfill materials were then dumped in the excavation and this 
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dumping has continued for several years. 

Monitor wells down gradient from the landfill were installed recently 

and have indicated some contamination. An investigation into the extent 

of this contamination, the time required for this contamination to reach 

the stream, as well as the estimated flow quantity is desired. 

The soil profile consists of a stratified fine sand and silt with the 

same properties as the earlier example. Its thickness is 150 feet (45.5 

meters) overlying a crystalline bedrock. The upper and lower boundaries 

are considered no flow boundaries with the exception of the small area 

within the landfill itself. The left boundary is a constant head boun­

dary and the right boundary is a no flow boundary beneath the stream 

indicating a groundwater divide there. Figure 14 presents the soil 

profile utilized by the computer program to simulate the flow problem. 

Table 2 presents the results of the analysis of this simulation. A 

shape factor was again determined as before to adjust the values of the 

effective hydraulic conductivities. The adjusted values again indicate 

that the geometric mean is the best predictor of the travel time and 

flow rate. 

The mean flow quantity for the 40 simulations was calculated at 43. 2 

cubic ft/day flowing into the stream. The quantity of leachate present 

would be a part of this total quantity determined by the characteristic 

of the leachate generation process at the landfill. Assuming no change 

in the hydraulic head at this point, the results of the travel time 
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TABLE 2 

SUMMARY OF RESULTS - LANDFILL EXAMPLE 

Mean Value of Hyd. Conductivity (Ft/Day) 
Ari thmetic 
Geometric 
Harmonic 
Effective, Hydraulic 

(After Applying Shape Factor) 
Effective, Travel Time 

(After Applying Shape Factor) 

Std. Deviation of Hyd. Conductivity 

Flow Quantity (Ft3/day) 
Poros i ty 

Mean Coordinates After 191 Days (x) 
(y) 

Mean y Coordinate at End 

Mean Travel Time (Days) 
50% of Region 
60% of Region 
70% of Region 
80% of Region 
90% of Region 

100% of Region 

Std . Deviation of Travel Time (Days) 
50% of Region 
60% of Region 
70% of Region 
80% of Region 
90% of Region 

100% of Region 

Profile 1 

5.46 
4 . 05 
3.01 
3.44 
3.73 
3.15 
3.54 

4.87 

43.2 
0 . 3 

172.5 
65.6 

27.8 

392.2 
457.4 
522.6 
584.2 
642.9 
681.9 

179.0 
181.5 
182.2 
183.4 
190 .1 
199.5 

Profile lA 

5 . 50 
5.50 
5 . 50 
5.07 
5.50 
4.89 
5.50 

0 

64.4 
0.3 

250.7 
77 .2 

27.7 

240 . 9 
282.5 
324.2 
365.5 
405 . 0 
430.6 

87.3 
87.4 
87.9 
89.1 
92.9 
97.6 
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simulations indicate that approximately 45% of the water exiting at the 

river will pass through the landfill and be contaminated. 

The mean x and y coordinates after 191 days are 218.8 feet and 54.5 

feet, respectively. Figure 15 presents a plot of the x and y coor-

dinates of the flow particles at this time was well as a plot of the 

starting x coordinate versus the y coordinate at the end of the region. 

This figure illustrates that the particle swarm separates somewhat with 

a large number of the particles moving downward into the flow region, 

the lowest penetration being 120 feet into the 150 foot thick sediment. 

Generally those particles starting from the end of the landfill closest 

to the surface water body stay near the surface and exit the highest. 

Those which start from the upgradient side plunge deeper and exit lower 

into the stream. 

Figure 16 presents the time to traverse the region versus the starting x 

coordinate. A relationship is suggested similar to that in the dike 

example that the travel time is increased as the distance away from the 

river increases. This is expected and is undoubtedly due to the lower 

velocity, the longer travel distance and the indirect route taken down­

ward into the sediment by those particles farthest from the stream. 

The distribution of travel times could not be accepted as normally dis­

tributed by the Kolmogorov D statistic because of the several extremely 

large travel times recorded. Consequently, confidence limits on 

the travel time could not be developed. However, by inspecting 

Figure 17 which presents a histogram and breakthrough curve for this 
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simulation, some confidence may be developed on the range of values of 

arrival time at the stream. 

CONCLUSIONS 

The usefulness of the methodology outlined in the companion paper has 

been demonstrated by two field problems. The following conclusions con­

cerning the results of these examples in steady state groundwater flow 

may be drawn: 

1 . The geometric mean is the best predictor of the effective 

hydraulic conductivity in terms of flow rate and travel time 

after applying a shape factor. 

2. Very few simulations are required to develop a consistent 

value of the mean flow rate and travel times in the regions 

considered . 

3. The presence of a high hydraulic conductivity stratum at depth 

may significantly increase the flow through the region even 

when the flow is generally parallel to the stratum. 

4. Estimates of confidence limits may be developed from the 

results of these analyses when normality is confirmed and 

assuming that the soil properties adequately characterize the 

in situ soil. 
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5. Even when the distribution of travel times and flow rates 

cannot be accepted as conforming to a normal distribution, 

confidence may be developed in the predictions of these 

results by reviewing the histograms and cumulative mean 

results. 

6. More work is needed to develop autoregressive parameters for 

sediments. It is not likely that these parameters will vary 

over a large range but more actual field studies are required 

to develop these parameters. 
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APPENDIX A 

INTRODUCTION AND REVIEW OF THE PROBLEM 

I. Introduction 

Groundwater flow problems have always been particularly challenging due 

to their complexity and the uncertainties involved. Increasingly, 

predictions of flow quantity, heads, direction and/or travel time are 

necessary to answer questions on risk and safety. This need for 

reliable predictions has brought investigators from various disciplines 

within the sciences into the arena. The result is that considerable 

progress has been achieved in advancing the state of the art in recent 

years. 

The complexity of these problems is derived from many factors. One 

factor is the difficulty in scaling up and averaging quantities at the 

microscopic or particle level to the macroscopic or field scale of the 

flow region. Another factor is the incomplete knowledge of flow regime 

caused by the complex conditions during deposition and/or subsequent 

weathering. Still other factors are the sheer number of variables and 

the limited resources available for analysis. 

Over the years, numerous techniques have been developed to treat these 

groundwater flow problems. Analytical formulations which lead to exact 

solutions for the flow conditions, have been developed for many flow 

situations, (Harr 1962). Analytic techniques suffer from their lack of 

flexibility and the need to make restrictive simplifying assumptions for 
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boundary conditions and media characteristics thereby inhibiting their 

use with most problems. 

Perhaps the most widely used technique today is that of flow nets, see 

Casagrande (1937), Cedergren (1977). Its greatest advantage is its 

simplicity and ease in use. This technique is also limited in it's 

ability to vary soil hydraulic conductivity and groundwater free 

surface. 

Scale models in sand tanks have also been utilized to study the flow of 

groundwater e.g. Bear (1961), Prickett (1975) (Grace 1981). Boundary 

conditions may be rather flexible but hydraulic conductivity variations 

cannot be easily simulated, capillarity action and grain size cannot be 

properly scaled and time is distorted. Other physical models such as 

the viscous fluid model have been utilized (Rushton and Redshaw, 1979) 

but they also require considerable expertise and specialized equipment. 

A common characteristic of all these techniques is their lack of flexi­

bility in boundary condition treatment and/or soil property character-

istics. When these techniques are utilized, the consequences of the 

required averaging and other approximations are often unknown to the 

investigator. 

With the recent interest in this area from the multitude of scientific 

disciplines and with the advancements in computer technology in the last 

decade, major changes in the way these flow problems are treated have 

occurred. Investigators have developed numerical solutions which allow 
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much more latitude on boundary conditions and input parameters and 

therefore allow more realistic characterizations of flow regimes to be 

economically considered. 

Numerical solutions are approximate solutions. However, when properly 

executed they result in solutions within the desired level of accuracy. 

The most common types of numerical solutions are the finite element 

method (FEM) and the finite difference method (FDM). Either of these 

methods may be used to solve most of the situations encountered, how­

ever, one method may have some advantage over the other for particular 

problems. A review of these methods may be found in Prickett (1975) and 

Wang and Anderson (1982). 

These methods have provided the means to introduce not only more complex 

boundary conditions and input parameters but have allowed introduction 

of new considerations. Of these, stochastic generation of a correlated 

hydraulic conductivity distribution to represent the flow regions, 

stochastic simulation of microscopic dispersion and the utilization of 

probability techniques to quantify input and output are major consider­

ations of this work. 

II. The State of the Art 

The methods outlined herein are intended to provide a tool for solving 

real problems. It is appropriate to consider the present state of the 

art for the types of problems for which this method will be appropriate. 
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Universities and other research institutions have led the way in the 

development of numerical methods. Here finite element and finite 

difference methods are routinely used to study groundwater flow. 

Numerous researchers have investigated the significance and usefulness 

of introducing variability of soil parameters to the problem. Some of 

these have proven fruitful; others have not. 

Workers in government and industry who are faced with real field 

problems have generally relied on less sophisticated models for most 

problems. Numerical models have generally been utilized for only the 

most critical field problem where large amounts of money and data are 

available. 

The advancement of these techniques in research work coupled with the 

tremendous increase in computing power available provides the potential 

to expand the use of these new techniques in all the areas of the field. 

It is to this technology transfer that this work is directed. 

III . Numerical Methods 

Both finite element and finite difference methods require that the 

region be represented as a system of blocks or elements. Mathematical 

expressions are written for each block or element and combined with the 

boundary conditions to yield a system of simultaneous equations which 

can then be solved for the unknown values, normally the hydraulic heads. 

The finite difference method was chosen for this work for several 
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reasons. Working computer codes have been available for some time using 

the finite difference method. They are fundamentally quite simple and 

adequate for most real problems. More practitioners are familiar with 

the finite difference method than finite element method and the numeri-

cal method was of secondary importance to the characterization of the 

flow region, the dispersion studies, and output analysis. 

The basis of these numerical models are Darcy's Law and the continuity 

equation. Darcy (1856) conducted a series of experiments to observe 

what factors governed the flow of water through a sand column. Darcy 

reported a direct relationship between the flow rate, Q, and the cross-

sectional area, A, and head drop, h
2 

- h
1

. An inverse relationship was 

found between the flow rate and the length over which the head drop 

occurred, 1
2 

- 1
1

. The resulting equation is given below with the nega-

tive sign inserted to indicate that the flow occurs in the direction 

that head decreases. 

Q 
(1) 

In this expression, K, is the proportionality constant called hydraulic 

conductivity. 

The term, hydraulic conductivity, is utilized here and elsewhere (i.e., 

Freeze and Cherry, 1979) for this proportionality term rather than the 

permeability term most often used in the civil engineering field. 

Hydraulic conductivity is a function not only of the flow media but also 

of the pore fluid. When the effects of the pore fluid are extracted 
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from this term, a second proportionality constant is left which is a 

function of the flow media only. This second term is also at times 

referred to as the permeability, the specific permeability or the 

intrinsic. permeability. The adoption of the term hydraulic conductivity 

for the proportionality constant in Darcy's equation is made to avoid 

confusion with work done in other disciplines as well as a conviction 

that eventually this convention will be adopted by all workers in the 

field. 

Laplace's Equation has been derived from the continuity equation for 

groundwater flow and Darcy's Law by others (i.e., Wang and Anderson, 

1982) and is presented below: 

0 
(2) 

This is the governing equation for groundwater flow in an isotropic 

homogeneous aquifer in three dimensions under steady state conditions. 

This equation becomes the basis of the solution by the finite difference 

method. 

To understand the basic concepts, a simplified discussion in two 

dimensions follows. Figure A.1 presents the overall flow problem to be 

represented for a two dimensional region as well as a close-up of one 

section of the finite difference mesh. Here the blocks are node 

centered and the head value is constant in each block. The size of the 

blocks is 

h .. . 
l.J 

The 

t:. x by t:. y. The head at nodal point i, j is signified as 

forward finite difference approximation of the first 



119 

IMPERVIOUS BOUNDARY 

T 
f:.y 

_J_ 

--- Flow Region Mesh 

I 
I 
I 
I 
I 

• 0 : 
I 
I 

I I 
I I --- ______ ...J 

• 1 

Figure A.1. - Flow Region Representation 

x 



120 

derivative, ah/ax is t, h/t, x which for nodes 0 to 3 is 

= 
h 

0 
- h 

3 
x 

(3) 

The second derivative is approximated as the difference between adjacent 

first derivatives. Thus for the case considered in Figure A.1, the 

second derivative is: 

h - h h - h 
1 0 0 3 

a 
2
h"' t, x t, x hl h

3 
_ 2h

0 = (4) 

a x 2 ( t, x)2 t, x 

and a 2
h h2 - h - 2h 

"' 4 0 (5) 
2 ( t, y)2 a Y 

Utilizing Laplace's Equation, and if t, x = t, y, then we get the equation 

for this node: 

+ 4h 
0 

(6) + = 0 + 

Similar expressions 1Day be written in succession for all the nodes in 

the region, substituting boundary conditions where appropriate. The 

result is a series of simultaneous equations which, when solved, yield 

the head values at all the nodes. 

Many techniques have been utilized to perform this job. Reiter (1981) 

adopted the computer code developed by the USGS in their 1976 finite 

difference model as described in Trescott, et. al (1976). The 

Iteriative Alternating Direct Implicit (IADI) technique described by 

Reiter (1981) was used to determine the head values at the nodal points 
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in the flow region for the problem's boundary conditions in this work. 

IV. Boundary Conditions 

The conditions at the edges of the flow region which must be entered to 

obtain a solution are the boundary conditions. These conditions define 

the limits of flow and make the solution of flow within the region 

unique. 

Boundary conditions are of two general types: constant flow, often no 

flow, and constant hydraulic head. It is quite common to have combina-

tions of both types in each field problem. 

The initial boundary condition considered is one of shape or configu­

ration of the no flow boundary . This is really a type of constant flow 

condition where some nodes have no flow. The simplest example of this 

is one dimensional flow such as flow in a narrow pipe. Flow conditions 

are relatively simple here and will get progressively more complicated 

as flow in two or three dimensions are considered. It is clear that 

real field problems are three dimensional problems, however, the study 

of three dimensional flow can require enormous amounts of data and 

effort to solve when compared to two dimensional problems. Fortunately, 

flow in two dimensions can often represent field conditions reasonably 

well and therefore most studies still rely on two dimensional models. 

Another restriction is the need to limit the flow regime. In two dimen­

sional flow the simplest region is a square or rectangular region as 



122 

presented in Figure A.l. This configuration often adequately models the 

flow region. However, oftentimes an irregularly shaped region can more 

accurately describe the flow region and thus the boundary conditions 

must be modified. 

This initial type of boundary condition generally limits flow at the 

boundary. This may be necessary to simulate no flow through impervious 

strata as across groundwater divides. At no flow vertical boundaries, 

the flow in the horizontal or x direction is zero so that ah/ ax must 

also equal zero. Figure A.2 presents a typical problem in two 

dimensional groundwater flow with its corresponding boundary conditions. 

The second type of boundary condition was that of hydraulic head 

regulation. This condition basically maintains a consistent head of 

known magnitude at the boundary, either constant or otherwise. 

Irrespective of conditions within the region, the head values are 

unchanged at these boundaries. The reason for setting these conditions 

in the problem may be to simulate a surface water body such as a lake or 

stream. 

For real problems, the boundary conditions are usually determined with 

the use of observation wells and careful study of the region to locate 

significant water bodies and other indications of the groundwater gra­

dient. No flow boundaries must also be identified and recognized either 

in very impervious strata or groundwater divides. 

V. Characteristics of the Region 
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Perhaps the most significant input to the flow problem solution is that 

of the characterization of hydraulic conductivity. The range of values 

which this single parameter may realistically have is very broad. 

Hydraulic conductivities in natural deposits of soil have been found to 

vary by thirteen orders of magnitude. Freeze and Cherry (1979) indicate 

that the hydraulic conductivity of some gravels may be as high as 100 

centimeters per second and that of some clays as low as 10 -ll centi­

meters per second. The hydraulic conductivity of some rocks may even be 

lower than this. 

It is not common for an engineering parameter to vary by this much. 

Figure A.3 from Cedergren (1967) compares the range of possible values 

for hydraulic conductivity with other common soil parameters: strength 

and unit weight. It has been found that the same soil type may vary by 

as much as six orders of magnitude and the same stratum by more than one 

order of magnitude. This information suggests that simply knowing the 

order of magnitude of the hydraulic conductivity will be useful and that 

it is unlikely that we can determine the value at any point to within 

much closer than an order of magnitude. We also can expect to see a 

relatively large variation, perhaps an order of magnitude or more, 

within a "homogeneous" deposit. 

Geologists, geotechnical engineers, irrigation engineers, and petroleum 

engineers, among others, have attempted to develop methods to estimate 

the value of hydraulic conductivity insitu. Estimates have been attemp­

ted by testing "undisturbed" samples in the laboratory, by empirical 

relationships with grain size and density, and by field testing, includ-
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ing field pumping tests and outflow tests. The results of these many 

attempts suggest that no method is very accurate and there are 

advantages and disadvantages for each of the methods adopted. 

Estimates utilizing grain size distri bution have been tried by many 

investigators. Perhaps the most commonly used equation is the Hazen 

formula given below. 

(7) 

In this equation d
10 

is the particle grain size which 90 percent of the 

soil is larger and 10 percent is smaller . The constant, C, has been 

estimated to be from 1. 0 to 1 . 5 if d
10 

is in millimeters and K is in 

centimeters per second. Although this equation was developed originally 

for fairly uniform sands, it has been found to be adequate for most 

sands and gravels . The major advantage of this equation is its relative 

simplicity . 

A similar empirical relationship was developed by The Corps of 

Engineers. The relationship presented in Figure A. 4 from Leonards 

(1962) was developed on the basis of results of field pumping tests. 

This relationship was also based on tests of sands and gravels. The 

range predicted by the Hazen formula was superimposed on this figure for 

comparison purposes. 

Other more complicated formula have been developed which seek to incor­

porate other factors which have a demonstrated effect on the hydraulic 

conductivity values. Some of these factors are the sorting or uniform-
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ity of the grain sizes in the soil. A soil which is well sorted con-

tains mostly one particle size and the hydraulic conductivity will tend 

to be higher. A soil which is not well sorted will be well graded, the 

smaller particles filling the voids between the larger particles and 

thus lower hydraulic conductivity. An example of these is one developed 

by Masch and Denny (1966) given in the form of a semi-log plot in 

Figure A.5. The grain size curves plotted in Krumbein~ units where ~ = 
log

2 
d and d is the particle size in millimeters. The sorting aspect 

takes the form of a factor referred to as cr
1 

which equals 

(8) 

These relationships were developed for sands and gravels tested under 

controlled conditions in the laboratory. 

Prugh developed a series of curves dependent on the uniformity coeffi-

cient for three levels of density, i.e., loose, medium dense and dense 

(Powers, 1981). These empirical relationships were developed with 

results of field pumping tests. 

Another soil parameter affecting hydraulic conductivity is porosity or 

void ratio since the two are directly related. The higher the porosity 

or void ratio, the higher the hydraulic conductivity, all other factors 

the same. The best known equation which includes this factor is the 

Kozeny-Carmen equation (Bear 1972) given below: 

K = 
u 

3 
n 

2 (1 - n) 

d 2 
m 

180 

(9) 
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In this formula, p is the density and u is the viscosity of the fluid, g 

is the acceleration of gravity and d is the representative grain size. 
m 

Other less significant factors such as particle shape and packing have 

also been suggested, Todd (1980), for correlation with hydraulic con-

ductivity. The effects of these other factors are relatively insignifi-

cant when compared with those already discussed, and therefore are not 

generally accounted for. 

Laboratory testing of samples of the soil may yield quite reasonable 

values for some soils. Lambe (1951) presents the procedures most often 

utilized in an engineering soils laboratory to conduct these tests. 

Voids along the edge of the permeameter may affect the results, 

particularly of cohesive soils. Undisturbed samples of granular soils 

are virtually impossible to collect so that reconstituted samples are 

generally tested. These modifications of the samples may also severely 

modify the results. 

Field testing of soil inplace consists of generally two techniques. The 

best is often referred to as slug or outflow tests. Such tests consist 

of simply introducing or withdrawing water into a piezometer or 

observation well and observing the quantity of flow for constant head 

maintenance or the speed of water surface drop or rise. NAVFAC (1982) 

presents a good summary on how these tests may be performed and 

analyzed. The major problems with these tests are that some water may 

be pushed up voids along the casing, or a collection of silt on the 

bottom of the casing may distort the results. The test generally 
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represents only a small volume of soil and the hydraulic resistance of 

the screen, if any, is not accounted for. 

The other type of field test is the pumping test. This test generally 

consists of pumping from a screened well at a known flow rate and 

observing drawdowns in observation wells around the well. Stallman 

(1971) presents a good narrative on designing and analyzing a pumping 

test. This test is perhaps the most realistic of all the tests 

conducted but suffers from the fact the hydraulic conductivity value 

determined is some mean of all those insitu so that a sense of 

variability is not clear. It also is handicapped by the fact it is very 

expensive and can only be utilized when its high cost can be justified. 

In light of the fact that the value of hydraulic conductivity is highly 

variable, many investigators have chosen to consider this parameter as a 

random variable. A random variable is a variable whose precise 

magnitude cannot be determined with certainty, a priori . This is 

certainly the case for hydraulic conductivity . Probability aspects will 

be discussed later in this appendix. 

Another input parameter has already been mentioned . This is porosity 

which is defined as the volume of voids divided by the total soil 

volume, expressed in percent. Porosity is related to hydraulic con-

ductivity but its maximum range of values is only from zero to 100%. 

Additionally, typical values for soil are only within the range of 15 to 

60 percent. Porosity is utilized to calculate the velocity of ground­

water flow since the Darcy velocity is not the actual water particle 
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velocity but really a homogeneized term. 

The other remaining input parameters are the microscopic or particle 

scale longitudinal and transverse dispersivities. The dispersivity is a 

property of the soil which relates to the spreading of the water 

particles about a mean direction of movement. This term attempts to 

incorporate the spreading due to the tortuous path followed as the water 

particle traverses the flow region. Dispersivity has been found to be 

an approximate function of the grain size of the porous media, Kelly 

(1982). Kelly pointed out the difficulty in scaling up sand column 

dispersivities from the laboratory to a field problem. A discussion on 

dispersion will follow in a later section. 

VI. Stochastic Soil Modeling 

Recent work in the study of groundwater flow indicates that engineers 

and geologists now recognize that it is oftentimes dangerous to charac­

terize soil properties simply with some average value or some other 

presumably "conservative" estimate. Even the addition of multi-strata 

flow regions and sensitivity analyses on input parameters are not always 

satisfactory. Recently investigators have turned to the use of prob-

ability and statistics to facilitate their understanding of these 

complex problems. 

Simple statistics have, of course, long been utilized to characterize 

soil properties, i.e., the average or mean value. However, it has been 

only recently that the randomness of the data, to some extent quantified 



133 

by its standard deviation, has been incorporated into the problem 

analysis e.g. Harr (1977). Other more powerful concepts are available 

and are now also being used. 

There are many good introductory texts dealing with probability and 

statistics for engineers and scientists, e.g . , Benjamin & Cornell 

(1970), Miller and Freund (1977) and Walpole & Myers (1978) . It is not 

the purpose of this appendix to introduce these concepts since they are 

readily available elsewhere, however, some discussion will follow on 

their usage in the study of groundwater flow. 

It is very unlikely that a soil property such as hydraulic conductivity 

or porosity will be uniform in situ. Variations are inevitable. How­

ever, when analyzing groundwater flow, the investigator must, by 

necessity, recognize similarities and divide the region into like strata 

to facilitate analysis. 

Soil media involves numerous characteristics which may be considered as 

random rather than deterministic variables. This implies that the exact 

value of these characteristics or properties at any point is not known 

and cannot be predicted with certainty, a priori. There is uncertainty 

in any estimate prior to experimentation. 

The principal difference between stochastic and deterministic soil 

modeling is that the former recognizes variability and attempts to quan-

tify its effects. Since the probability distribution of a random 

variable describes the limits of its variability in probabilistic terms, 
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it may be used to generate a significant number of equally probable 

representations of the soil medium. The ensemble of solutions to the 

flow problem provides input on the variability of these results. This 

repetitive simulation of the flow media and analysis of the ensemble of 

results is commonly referred to as a Monte Carlo simulation. 

Most soil characteristics may be considered continuous random variables, 

i.e., may have non-integer values. The probability distribution rela­

tionship is therefore the probability density function (PDF) which 

simply relates the respective value of the variable with the corres­

ponding probability. 

Figure A. 6 presents a typical PDF and the equation for this function 

which has been found to adequately characterize the characteristics of 

some soil properties. e.g., Lumb (1974) and Harr (1977). This PDF is 

for the Gaussian, or normal distribution, which is also the most com­

monly studied distribution. This distribution is completely defined by 

two parameters, the mean and the standard deviation. 

A unique aspect of the normal distribution proven by probability theory 

is the Central Limit Theorem. The hypothesis of this theorem is that 

the normal distribution will approximate a random variable which is 

itself the sum of many other random variables. 

(1971) state the theorem as follows: 

Benjamin and Cornell 

"Under very general conditions, as the number of variables in 

the sum becomes large, the distribution of the sum of random 

variables will approach the normal distribution." 
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A second PDF which is the result of multiplying many other random 

variables is the log normal distribution. Figure A.7 presents several 

forms of the PDF for the log normal distribution with different values 

for the parameters. The equation for this PDF is also presented. Two 

aspects of the log normal distribution which have encouraged its use for 

some engineering aspects are that it fits data which is skewed and it 

precludes negative values for the random variable. 

characteristics are common in engineering data. 

Both of these 

It should be pointed out that the log normal distribution may be con-

sidered a special case of the normal distribution. If a random 

variable, K, is log normally distributed with a mean of K and a standard 

deviation of o k' then a new variable, Y = ln K, may be defined. This 

new variable, Y, will have the normal distribution. In Appendix B, this 

fact is utilized to handle a random variable with a log normal distri­

bution . 

A useful technique of statistics which may be used to infer the prob­

ability distribution of a random variable is the transformation of 

variable technique. Freund and Walpole (1980) present a proof of this 

technique and some examples of its use. This technique uses the known 

relationship between two variables and the nature of the probability 

distribution of one of them to determine the probability distribution of 

the other. 

Soil properties which are treated as random variables need not be 

categorized into a specific probability distri~ution with its known PDF. 
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However, where this is possible, considerably less data is required to 

develop confidence in the prediction of the soil property at any given 

point. Of particular concern with the strategy of matching data with a 

known PDF are problems in the tails of the distribution, i.e. , the 

extreme values of the distribution. 

There are several accepted methods to verify that an assumed PDF pro­

perly models the data collected. The probability and statistics texts 

cited earlier treat these methods in detail. These methods may be 

divided into two main types, graphical and computational. Graphical 

techniques may be used to roughly determine if the assumed PDF is 

adequate. Comparison of histograms generated from collected data and 

from the assumed PDF such as those in Figure A.8 may be used as a 

qualitative measure of acceptance . Figure A.8 after Benjamin and 

Cornell (1971) also presents a plot of the same data on normal pro­

bability paper. Data from a normal distribution will plot as a straight 

line on this paper so that a measure of conformity to the distribution 

is possible. Large deviations from a straight ~ine would cast doubt on 

the assumption of normality. 

Two quantitative techniques which are utilized to test the appropriate­

ness of a PDF to model observed data are the chi-squared and 

Kolmogarov - Smirnov tests. These techniques quantify the deviation of 

the observed data from the assumed PDF or cumulative distribution 

function (CDF) within a specified significance level. The most popular 

of these is the chi-squared test although it suffers from the fact that 

for continuous variables it requires dividing the range of values into 
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discrete intervals prior to testing significance. 

In spite of these problems fitting data into these known probability 

distributions, numerous soil properties have been categorized by various 

investigators. Table A. I compiles the results of several of these 

attempts. Although this review should not be considered exhaustive, it 

does indicate a consensus for some of these soil properties. Of par­

ticular interest to this work is that hydraulic conductivity has been 

found to have a log-normal PDF and porosity a normal PDF. 

With the extreme variability possible for input parameters and output, a 

measure of confidence in the predictions is desirable. Research work in 

this area has resulted in several methods for estimating confidence limits 

on the mean values and estimates of the error in these estimates. Miller 

and Freund (1977) show that for a normal distribution, the maximum error, 

E, in the prediction of the mean value of the population is: 

s/ vN (10) 

In this inequality Z6. /
2 

is a tabulated value for the normal distribu­

tion, such that the area under this distribution to its right is equal 

to ~/2. Also & is the significance level, s is the standard deviation 

of the sample and N is the number of observations in the sample. 

Similarly, they also develop estimates of confidence limits for the 

population mean, X as follows: 
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Table A.1 - Probability Density Functions for Seve ral Soil Properties 
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-
< < x 

In this inequality, x is the sample mean, 

+ z~/2 
(11) 

cr is the population standard 
x 

deviation and za/2 is the value of (x - X) at which the CDF of the 

normal distribution equals a/2. Unfortunately, the value of the 

population standard deviation is not known and we must utilize the 

sample standard deviation as an estimate. This may not have a 

significant effect on these estimates, particularly if the sample is 

large. 

However, if the sample size is not large but the underlying distribution 

is the normal distribution, then another similar inequality has been 

developed and is presented below from Miller & Freund (1977). 

s 
& 

< x < 
-x + s 

~ 

(12) 

Here the variables are the same as indicated earlier. In all of these 

expressions, the confidence in the prediction is directly proportional 

to the scatter in the population and/or sample and indirectly pro-

portional to the sample size. Given the population variance, the con-

fidence in the estimates may be increased by increasing the sample size. 

Estimates of confidence in the standard deviation of the variable for 

large samples taken from normal or near normal distributions may be made 

by using the following in equality from Miller and Freund (1977): 
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s < a < s (13) 

1 + z%i 
In deterministic solutions to groundwater flow problems, data from field 

explorations and laboratory analysis are utilized to identify soil 

types, stratification and mean or "conservative" values for soil proper-

ties . A stochastic representation of these soil units or strata may be 

developed in accordance with the definitions in Greenkorn and Kessler 

(1969). Figure A.9 presents frequency distributions for hydraulic con-

ductivity for the four possible combinations of uniformity and homo-

geneity. 

Case a in Figure A.9 represents the typical deterministic representation 

of a soil medium. It is virtually inconceivable that a single value or 

even two values of hydraulic conductivity would be representative of a 

real soil medium although some attempts have been made in this area . We 

shall discuss these later. Cases a and b cannot be expected to accu-

rately simulate real field media unless a singular value were deter-

mined. Case c is an example of a singular modal probability density 

function such as a normal or log normal distribution which have been 

found to adequately represent the variability of several soil proper-

ties. This case of soil property distribution has also been referred to 

as statistically homogeneous and this definition will be adopted here. 

The nature of the origin of a soil deposit is reflected in its flow 

characteristics. The number of factors which affect deposition of soil 
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is immense and variable. Conditions predominant at one time and place 

will undoubtedly be somewhat altered elsewhere resulting in changes in 

flow characteristics. The combinations of these factors are random, but 

it should not be unexpected to find similarities at adjacent locations 

when compared to locations separated by some distance. 

Lumb (1974) developed an expression for a soil property which is depen-

dent on the value of that property on either side plus a random distor-

tion. This expression written in terms of the random variable, hydrau-

lie conductivity, k, where a and b are measures of dependency is given 

below: 

+ E. 
1 

(14) 

This expression indicates a dependency only in one dimension, i.e., the 

direction of the i axis. The purely random distortion is included in 

the term E. which would be a value taken from a distribution with mean 
1 

of zero and a specified variance. 

Lumb suggests that generally soil properties should be expected to 

display dependency forward and backward along the i axis when this coin-

cides with the horizontal, and some soil properties may also show 

dependency in one of the vertical directions. 

Bartlett (1975) extended the work of Whittle (1954, 1966) on a nearest 

neighbor stochastic process model. This model essentially relates the 

value of a random variable at one point to that at adjacent points. 
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Other work on the development of this model has been done by Brook 

(1964), Besag (1974) and Martin (1974) on agricultural forecasting. 

Smith and Freeze (1979a) developed a similar equation where a and b are 

equal. They refer to this technique as a nearest neighbor stochastic 

process model. Their terminology has been adopted herein. In their 

companion paper, Smith and Freeze (1979b) extended this to allow treat­

ment of a dependency in two dimensions. Their expression is similar to 

that given below: 

In this expression, the alpha terms quantify the dependency of the hy­

draulic conductivity values in the x and y directions. 

Smith & Freeze utilized this expression to develop a series of simul­

taneous equations at all grid points within a specified flow region. 

These equations are solved for each stochastic representation, and the 

ensemble of equally probable distributions are statistically analyzed 

for significance. It is this method of Monte Carlo simulation of 

equally probable representations of the flow media which was selected 

for further investigation in this work. 

A statistical measure of dependency of one random variable upon another 

is the correlation. The term autocorrelation refers to that dependency 

of the value of the random variable at adjacent locations. The auto­

correction coefficient p (1) may be defined as: 
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N-1 
1 L (K . - K) (Ki+l - K) 
N-1 1. 

( 1) 
i=l (16) 

p = N 
1 [ (K . - K) 2 

N-1 1. 

i=l 

In this expression Ki and Ki+l are the value of K at node i and i+l 

respectively, and K is the mean value of K. It should be noted that 

because we have assumed a statistically homogeneous media, the mean and 

variance of the adjacent K values are equivalent and that the 

denominator equals the variance of K. 

An interesting result of this parameter is that it may vary only within 

the range of -1 and +l . A value of zero indicates no dependency, that 

of one indicates complete dependency, and a minus one indicates an 

inverse relationship. 

Whittle (1963) developed expressions for the autocorrelation function 

assuming singular direction or one dimensional dependency, i.e., a uni-

lateral Markov Process of: 

p (1) = exp (- a 1) (17) 

Figure A.10 presents a plot of an autocorrelation function which would 

illustrate this relationship of correlation and distance . The corre-

lation decays with distance. 

Whittle also presented a similar equation for a bilateral Markov Process 

where K
1 

(x) is the modified Bessel function of the second kind : 
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p (1) (Bl) K1 (Bl) (18) 

Agterberg (1970) derived the expression for line sampling of a three 

dimensional autocorrelation which is equivalent to the one for a uni-

lateral Markov Process given above. Agterberg indicated that this 

expression has been found to be in agreement with experimental autocor­

relation function for residuals obtained for geologic data. Lumb (1974) 

compared these theoretical expressions with results of testing on two 

natural soils. He concluded that for those soils, the autocorrelation 

function decayed quite rapidly for most soil properties . The strength 

of the soil with depth displayed the most sustained autocorrelation 

function . 

Lumb (1974) concluded, however, that for a spacing of 1 to 2 meters, 

there would be no significant error in assuming an uncorrelated pattern. 

He suggested that for the soils studied, that a treatment of the soil 

property random variable as the sum of a trend component and a random 

component would perhaps be the best approach. 

This alternative method of treatment of the similarity of soil parameter 

is referred to as trend analysis or trend surfacing. The development of 

this technique is generally credited to Krumbein and Whitten at North­

western University, see e.g. Krumbein (1959) and Whitten (1959). The 

technique is something similar to the contouring of an area indicating 

spatial trends of high values compared to other areas with a lower value 

trend. 
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A form of regression equation is typically utilized to relate the un-

known value of the parameter, e.g. w, at each location within the 

region. The value of w is expressed as a function of one or more inde-

pendent variables, x., representing coordinates, corresponding constant 
l. 

coefficient, and a random component, e. The random component is usually 

assumed to be normally distributed with a mean of zero and a standard 

deviation characteristic of the scatter within the soil determined in 

the field. Koch and Link (1970) present an excellent introduction to 

this technique with examples of its practical use. The simplest example 

of this technique is a linear one in one dimension. An equation may be 

written for the dependent variable w as follows: 

w = C + Bx + e (19) 

Here B and C are undetermined constants depending on the data. If we 

plot the data with the dependent variable as the ordinate and the coor-

dinate x as the abcissa, then C will equal the intercept and B the slope 

of the line. The "best fit" for this line is characteristically deter-

mined by the method of least squares. 

Thee term may now be evaluated from the residuals, i.e., the variation 

of the data points from the fitted line. It is generally assumed to 

have a normal distribution with a mean of zero and a variance equal to 

the mean value of the squared distance for the "best fit" line. 

This method may get far more intricate as the parameter to be modeled 

requires it. Two and three dimensional models are possible. The coor-

dinate terms may include not only the first power of these coordinates, 
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but also higher powers and cross products in order that the trends be 

adequately mapped. 

Tabba and Yong (198la) have developed a working model for a quasi homo­

genous soil utilizing the trend analysis technique. They combine the 

bias in the parameter measurement method with the random variation 

component so that the mean of the random variation will no longer always 

be zero. 

Tabba and Yong (198lb) demonstrate how this technique may be utilized to 

assist the solution of real problems. This technique will essentially 

provide a complete representation of a flow medium's parameter given the 

value of flow media's characteristic at certain locations. 

An alternative method most frequently discussed in the literature is the 

spectral density treatment of the soil property random variable. Bakr 

(1976), Gelhar (1977), Gutjahr, et. al. (1978) and Gelhar, et. al., have 

demonstrated its use in groundwater flow problems. This approach 

recognizes the Fourier Transform pair consisting of the spectral density 

function for the random variable, S (f), and the autocorrelation func­

tion, R (x). A brief description of these concepts are presented here. 

A thorough presentation of this complex subject may be found in random 

vibration texts such as Newland (1975) and Bendat and Piersol (1971). 

The soil medium is considered the result of a random process. The auto­

correlation function, R(x)' relates the influence of the value of the 

random variable at one point to that at some other point. The power 
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spectral density function, S(f), describes the general frequency infor-

mation of the underlying random process. The form of the Fourier trans-

form pair between S (f) and R (x) is: 

00 

R (x) J S (f) cos 2 1T xf (x) df (20) 
c;,oo 

S (f) = J R (x) cos 2 1T f x dx (21) 

- co 

In these expressions, f is the frequency defined as the inverse of the 

distance, x, the distance between data points or the lag distance. 

A random process which is large in the space domain will be small in the 

frequency domain. This is illustrated in Figure A.11 which presents the 

probability density function, autocorrelation function and power spec-

tral density plot for a wide band random noise process. 

The autocorrelation functions for the random variables discussed earlier 

as being characteristic of soil properties have been positive exponen-

tial functions similar to that shown on Figure A.11. Its power spectrum 

would therefore have a peak at low frequencies and decay fairly rapidly. 

Conversely, if the autocorrelation function decays rapidly, the power 

spectral density will shift to higher frequencies. The term white noise 

is referred to a random process with all frequencies of equal power and 

no correlation in the space domain. 

This approach to the treatment of the media characteristics has a dis-

tinct advantage. Variations in soil properties may be treated in the 

continuum sense and therefore more exact representations of the medium 

are possible. The method suffers however from difficulties for the 
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average practitioner in understanding the concept, as well as the large 

amount of real data required to make the procedures produce signif­

icantly more realistic result. The large amount of data required casts 

doubt on its use for most real problems due to the difficulty in 

verifying the parameters. 

Van Marke (1977, 1978) describes the benefits of a probabilistic model-

ing of soil profiles. Van Marke proposed an alternate method for 

simulation of soil profile modeling which recognizes the variability in 

the soil and considers one or more of the soil properties as random 

variables which are functions of location. Figure A.12 presents this 

concept for a multi-strata representation of a soil profile in two and 

three dimensions. 

Van Marke proposed that the soil parameter could be completely described 

by three statistical parameters: the mean, the standard deviation and 

the scale of the fluctuation. The scale of the fluctuation quantifies 

the distance over which the value of the soil property has strong 

correlation. He indicates that this scale of fluctuation is close to 

the mean distance between intersections of the value of the random 

variable and the mean. This is illustrated in Figure A.12. In fact, 

Van Marke demonstrated that this technique may be used to estimate the 

scale of the fluctuation. 

Van Marke points out that this representation of the soil parameter 

random variable is quite similar to the approaches mentioned earlier. 

The scale of fluctuation is a different but related measure of correla-
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tion of soil property. The concept of developing a large number of 

random variables in the problem solution, e.g., numbers and thicknesses 

of strata and soil properties such as hydraulic conductivity, porosity 

and dispersivity have great potential but it seems that this diversity 

will be very difficult to achieve due to the computational effort 

required. 

As indicated earlier, several researchers have attempted to determine if 

a s i ngle "average" value of hydraulic conductivity in a homogeneous soil 

could satisfactority represent the conditions in a more realistic heter-

geneous soil. Warren and Price (1961) determined that the geometric 

mean would be the best estimate of this "average" value. The geometric 

mean, Kg, is defined as: 

Kg N / K .. K2 ... Kn 
1 

(22) 

Bouwer (1969) demonstrated this finding for a hetergeneous soil by 

numerical and analog methods calling this value the effective hydraulic 

conductivity. 

Smith and Freeze (1979) summarized the results of several other re-

searchers indicating that the geometric mean should be equal to this 

"effective conductivity" for steady state uniform flow. However, the 

geometric mean could not accurately estimate the effective hydraulic 

conduct i vity for non-uniform and/or transient flow. 

Bouwer (1969) points out that the arithmetic mean is the normal average 

value, K where 
a 



K 
a 
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(23) 

Willardson and Hurst (1965) indicate that this mean would be the best 

estimate if the soil were truly homogeneous and all variations were due 

to measurement error. Bouwer (1969) demonstrates that the arithmetic 

mean should be the best estimate for a highly stratified flow parallel 

to the layering and the harmonic mean should be the best estimate for 

flow perpendicular to the layering. The harmonic mean, Kh, is defined 

as: 

N (24) 
1 

~ 

Warren and Price (1961) suggested that a shape factor should be utilized 

to "normalize" the calculation of the effective hydraulic conductivity 

K ' q 
for non-uniform and/or transient flow. This may be achieved by 

calculating K for the flow through a homogeneous soil with the same 
q 

I 
geometry using this result to calculate a shape factor, S 

I 
s 

K 
c = K 
q 

where: 

(25) 

In this equation K is the value of the constant hydraulic conductivity 
c 

and the K is the effective hydraulic conductivity for this homogeneous 
q 

soil. 

VII. MASS TRANSPORT SIMULATION 

Mass transport in groundwater through a stochastically generated flow 
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medium has been studied by various investigators, e.g., Smith and 

Schwartz (1980) and Gelhar, et. al. (1979). The classical development 

for mass transport in groundwater in a porous medium is given in the 

literature by various researchers. Freeze and Cherry (1979) indicate 

that mass transport may involve as many as six mechanisms: advection, 

dispersion, adsorption, chemical reaction, biological transformation and 

radioactive decay. The first two are present in virtually all cases 

while the remaining four may or may not be significant factors in the 

groundwater transport. 

Advection is the movement of the water caused by hydraulic gradients. 

Dispersion is the movement of the water resulting from the spreading of 

the water particles due to diffusion and the natural hetergeneity at the 

pore scale of the flow medium. 

Freeze and Cherry (1979) developed the one dimensional transport 

equation which includes only these first two mechanisms and it is 

presented below: 

a c 
a 1 

= (26) 

In this equation D
1 

is the dispersion coefficient and equals the sum of 

the diffusion coefficient and dispersivity times the mean pore fluid 

I 

velocity. C is the concentration, 1 is the length dimension, v
1 

is the 

mean tracer velocity, and t is the time. 

Figure A.13 presents the setup and results of a common laboratory test 
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which may be used to demonstrate this concept. Initially, a wave front 

is released from the upper portal and movement and distortion is traced. 

Ogata (1970) presented the solution to this differential equation in 

terms of the complementary error function, erfc, 

I 
C/Co = 1 [ erfc (1 - vt) + exp (vl) erfc (1 + vt)J 

2 (2/1JLt) (Dl) (2/¥) 
(27) 

For all practical purposes the second term in the brackets is negligible 

and may be neglected. 

The Central Limit theorem has been utilized to justify the assumption 

that the breakthrough curve illustrated in Figure A.13 should be 

normally distributed, e.g., Bear (1972), Fried (1975). This had been 

suggested for the displacement relationship provided the water particle 

is allowed to undergo a significant number of uncorrelated displace-

ments. Fried (1975) presents a method to calculate the macroscopic or 

field scale dispersion coefficients given the results of a tracer trans-

port experiment and utilizing the assumption of a normal distribution. 

Smith and Schwartz (1980) utilized a nearest neighbor stochastic process 

model of hydraulic conductivity to characterize a uniform flow field . 

Water particles were released on one side and recovered along the down-

gradient boundary. The particles were allowed to move by hydraulically 

driven advection and a stochastic simulation of microscopic dispersion. 

Their results indicated that normality for the breakthrough curve and a 

constant macroscopic dispersivity could not be confirmed . 
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Gelhar, et. al. (1979) studied the mass transport problem and found that 

for large distances the macroscopic dispersivity did appear to reach a 

constant value and appeared to be a function of the properties of the 

medium. They developed an equation for the effective macroscopic dis-

persivity for large times, 

a. = a.L + A (28) 
LT 00 

Where A 
1 crK2 12 (29) = 00 3 -2 a.T K 

In this equation K and cr K are the mean and standard deviation of the 

hydraulic conductivity, a.T is the traverse dispersivity and 1 is the 

length scale. 

Gelhar, et. al. (1979), concluded that the distance required to reach a 

constant dispersivity is large, perhaps exceeding 1 km to reach 90% of 

this value. This could explain the inability to measure a constant dis-

persivity on most field investigations. 

A great deal of work has already been done in this area and yet we do 

not feel confident with the answers received by the current state-of-

the-art procedure. This work will build on the earlier work and perhaps 

provide some additional measure of confidence in the results computed. 
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APPENDIX B 

Details of Method Used 

B.1 Introduction 

It has been an objective of this work to develop a procedure to more 

realistically characterize the medium of groundwater flow for a field 

problem and to arrange the output so that definitive conclusions may be 

drawn utilizing statistical models. It is hoped that this will result 

in an improvement in the confidence that an engineer may have in the 

predictions of flow quantity and travel times. 

B.2 General Technique 

In this work, a two dimensional characterization has been chosen because 

it is the more common and simpler representation. A three dimensional 

model could have been adopted, but it would have been very difficult to 

implement to solve any real problems because of the tremendous amount of 

computation required. Although the computer has made the numerical 

methods possible, in practice, three-dimensional solutions are still not 

commonly done. 

A rectangular flow region was chosen for study so that a general problem 

might be solved. Figure B.1 presents the layout of the idealized flow 

region with boundary conditions. Hydraulic conductivity is presumed to 

be statistically homogeneous with correlation in accordance with a 
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stochastic nearest neighbor model. Variations in the soil media 

characterization, region shape and boundary conditions were also studied 

and will be discussed later. 

The problem considered was one of a steady state flow situation. This 

condition was chosen because many real problems may be considered to be 

approximated by steady state conditions. The autocorrelation and dis­

persion techniques may be adapted to transient solutions as well. 

The general procedure adopted to study this groundwater flow problem is 

detailed below: 

1. Select a region size and shape, develop boundary conditions 

and soil media parameters which approximate the real 

situation. 

2. Generate a stochastic representation of the flow media. 

3. Utilizing a finite difference program with the Iterative 

Alternating Direct Implicit Procedure (IADI), solve for the 

heads and flow quantity for the steady state condition. 

4. Release water particles from the upgradient side of the flow 

region to traverse the region under the action of advection 

and a stochastic simulation of dispersion. Record their 

respective travel times and locations upon reaching the down­

gradient side of the flow region. 
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5. Repeat the above process until a sufficient number of Monte 

Carlo simulations of the region and water transport has been 

completed. 

6. Tabularize the data and perform statistical checks of signifi­

cance on output so that definitive conclusions may be drawn. 

B.3 Problem Definition 

The initial step requires a definition of the region size and the soil 

properties. This step is required in any modeling of groundwater flow 

whether analytical, numerical or otherwise. 

An idealized representation of the region in terms of finite blocks of 

homogeneous soil media is required. The hydraulic conductivity, 

porosity and head are assumed to be constant everywhere within each 

fin i te block. 

As is often the case, a good deal of experience is required to make the 

selection of the number of blocks to represent the region. A trade-off 

of accuracy against computation time is necessary for numerical model­

ing. Often two representations at different grid spacings are made and 

compared to observe the effect of the variation in grid size to aid in 

this decision. 

B.4 Hydraulic Conductivity 
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of constant hydraulic conductivity, the so-called block centered ap-

proach. Figure B.2.a. presents this diagramatically including the 

numbering system used. The nearest neighbor model uses the following 

equation to relate the conductivity at one point to all adjacent points. 

(K . . _1 + K. ·+l) + cc14 (K._1 . + K.+l .) 
1,J 1,J y 1 ,J 1 ,J 

(1) 

Where K . . 
1J 

=Hydraulic conductivity at nodal point, i, j. 

i = Row number with range from 1 to N ROW 

j = Column Number with range from 1 to N COL 

ax, a y 
= Autoregressive parameters which indicate the degree 

of correlation of hydraulic conductivity in the x 

and y directions. Range is from 0 to 1. 

This relationship may be put in matrix form and a stochastic element 

introduced as follows: 

{ K} = [W] . { K} + { E } (2) 

In this equation [W] is a weighting matrix consisting of NP rows and 

columns where NP is the total number of nodal points within the flow 

region, i.e., NP = NROW * NCOL. The [W] matrix is square whil~ { K} and 

{E} are column matrices. 

The · {E} matrix is a column matrix of random numbers with a preselected 

mean and standard deviation. The basis for selecting the mean and 

standard deviation will be discussed later. 
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Since the {K } matrix is the unknown result, we can rearrange this 

equation by bringing both { K} matrices to the left side as below. 

{ K} [W] { K} = { E } (3) 

We may then utilize the properties of an identity matrix and write 

([I] [W] ) { K } = { E } (4) 

Finally, we may solve for . { K} by multiplying by the inverse of 

([I) - [W)) resulting in 

. { K} = (I - W) - l . { E } (5) 

We now have the necessary matrix equation for this method. We need only 

develop the Weighting matrix [W], subtract it from the identity matrix, 

[I], compute an inverse, which we will call the Filter matrix, and 

multiply by the { E} matrix. 

It should be noted that the Filter matrix contains all the information 

concerning the autocorrelation of hydraulic conductivities with each of 

the blocks in the flow region. The{ E} matrix contains the randomness 

component which is incorporated into the system of hydraulic conductiv­

ity values. 

The nearest neighbor model is easily adapted for developing the [W] 

matrix for interior nodes. However, boundary nodes are another matter. 

Smith (1978) assumed that the a. term is divided by the number of 

adj a cent nodes. Figure B. 2. b. presents the situation along the upper 

boundary. Here this approach results in the following equation: 
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a 
(K. · 1 + K . ·+1) + ~3 (K . +l .) 

I.,J- l.,J 1. ,J 

(6) 

An alternative treatment of these boundary nodes was considered. This 

alternative approach treats these areas in the same way as finite dif-

ference grid manipulations at the boundaries resulting in the following 

equation . 

(7) 

This approach results in greater weight being assigned to the K value 

horizontally along a soil layer for the end boundaries and less along 

the upper and lower boundaries. There would be no difference in the 

equations written at the corners of the flow region. Comparison of 

results computed by each treatment will be discussed later. 

Figure B.3 presents a 7 by 7 flow region and the numbering system adopt-

ed. Since there is a maximum of 4 nearest neighbors, there is a maximum 

of 4 non-zero entries in each row of the matrix. The [W] matrix which 

results with this numbering system is banded. A band width equal to two 

times the number of columns plus one is centered on the diagonal. The 

matrix is, however, not symmetrical. Figure B.4 presents the W matrix 

for the 7 by 7 flow region shown utilizing Smith's boundary conditions. 

A log normal distribution of hydraulic conductivity is adopted here . 

Appendix A discusses the background for this assumption. As a con-

sequence of this assumption, the {E }matrix generated for each simula-
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Impervious Boundary 

j=l j=2 j=3 j=4 j=5 j=6 j=7 
=NC L 

i=l 1 2 3 4 5 6 7 

i=2 8 9 1 1 12 13 14 

i=3 15 16 1 18 1 20 21 

i=4 27 28 

i=5 34 35 

i=6 36 37 38 39 40 41 42 

Impervious Boundary 

NP NROW * NCOL 7 * 7 49 

Figure B.3 - 7 By 7 Example of Region Representation 
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Note: All spaces in matrix not occupied by a letter or zero should 
contain a zero. 

See the Legend below for explanation of letter designation. 

m • 1 5 10 15 20 25 30 35 40 45 49 

k • 1 0 A 0 0 0 0 0 D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O O 0 0 O O O O 
B 0 B E O 
OBOB E O 
0 BOB E O 

5 0 BOB E O 
0 BOB E O 
0 A 0 D O 
E 0 B E O 
OF COC F O 

10 0 F C 0 C F 
0 F COC F 
0 F COC F 
0 F C 0 C F 
0 E R 0 E 

15 0 E 0 B E 
0 F C 0 C F 
0 F C 0 C F 
0 
0 

20 0 
0 
0 
0 
0 

25 0 
0 
0 
0 
0 

F C 0 C F 
F C 0 C F 

F C 0 C F 
E B 0 E 

E 0 B 
F C 0 C 

F C 0 C 
F C 0 C 

F C 0 C 
F C 0 C 

E B 0 
E 

E 
F 

F 

0 B 
F C 0 C 

F 

F C 0 C 

F 

F C 0 C 

F 

F C 0 C 

E 

30 0 
0 
0 
0 
0 F C 0 C 

35 0 
0 
0 
0 
0 

40 0 
0 

E B 0 
E 

F 
F 

F 
F 

F 

E 
F 

F 
F 

F 
F 

E 
0 B E 
C 0 C F 

c 0 c 
c 0 c 

c 0 c 
c 0 c 

F 
F 

F 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

F 0 
0 E B 0 E 
0 D 0 A 0 
0 E BOB 0 

45 0 E B 0 B O 

0 E BOB 0 
0 E BOBO 
0 E B 0 B 

49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 O O 0 0 0 0 O D O O O O O A O 

LEGEND 
A a /2 D a /2 

x y 

B = a /3 E = a /3 
x y 

c = a /4 F a /4 
x y 

Figure B.4 - Weighting Matrix for 7 By 7 Region 



173 

tion will have a mean value of 0, a standard deviation of 1 and will 

follow a normal distribution . A log transformation will later be made 

so that the hydraulic conductivity values will be log normally distri-

buted. 

Smith (1978) demonstrated that if the { E} matrix is multiplied by a con-

stant term, n, the desired variance in the hydraulic conductivity values 

results. He showed that this constant term, n , is a function of the 

desired variance of the conductivity distribution and the square root of 

a quantity G defined as: 

a 
+ x 

8 

2 a 2 
p (2) 

+ 1 + x x 
8 

a P (1) 
y y 

a P 
x x 

(1) Cl 2 
+ J_ 

8 

(8) 

where p (1) and p (1) are the lag 1 correlation coefficients of K in the 
x y 

x and y directions respectively. P (2) and P (2) are the lag 2 
x y 

correlation coefficients of K in the x and y directions. p (1, 1) is the 

lag 1 in the x direction and lag 1 in the y direction correlation co-

efficients of K. 

Because of the assumption of a log normal distribution of hydraulic con-

ductivity, a transformation of the mean and standard deviation is re-

quired. It should be pointed out that the mean of the distribution of 

lo K does not equal the natural log of the mean of K. Benjamin and 

Cornell (1970) among others, present this transformation. 
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K 
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2 = ln CCcr/K) +l) 

= ln (K) - 0 
2 

/2 y 

= variance of Y 

= mean of Y 

= variance of K 

= mean of K 

= ln K 

(9) 

(10) 

This transformation is performed and the values cr and Y used with the {E} 
y 

matrix. Following the multiplication by the filter matrix and addition 

of the mean of the ln K, a transformation back to K is made. This 

transformation erodes some of the correlation although this has not been 

found to be significant (Smith (1978)). 

This method does not produce a distribution of hydraulic conductivity 

which fits exactly the desired correlation structure. This is due to 

the randomness inserted by the random number generator, the exponential 

transformation and boundary effects. However each generated distri-

bution is correlated and approximates the desired correlation structure. 

When the ensemble of all Monte Carlo simulations is studied, a closer 

approximation to the desired correlation is obtained. 

The computer code developed to perform these operations referred to as 

Inverse is included in Appendix D. A step-by-step description of the 

procedure is given below. 
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1. All data on the flow region characteristics are read into the 

computer and problem setup. (Lines 340 to 2320) 

2. The transformation of statistical parameters for K to ln K is 

performed . (Lines 2330 to 2370) 

3. The n term, (ETAN), is set equal to the required percentage of 

the standard deviation of ln K. (Lines 2372 to 2373) 

4. A column matrix (EPSILN) of random numbers which are normally 

distributed with a mean of 0 and standard deviation of cr is 
y 

generated, N (O,cr ). (Lines 2375 to 2410) 
y 

5. The square ([I] - [W]) matrix is generated directly by insert-

ing a 1 on the diagonal and making all other non-zero co-

efficients of the [W] matrix negative. (Lines 2420 to 3300) 

6. The ( [I] - [W]) matrix is then inverted and the new matrix, 

FILTR, stored on permanent disk file. (Lines 3310 to 3370) 

7. The FILTR matrix is then multiplied by the EPSILN column 

matrix yielding the LNK matrix having N (O,cr ). 
y 

(Lines 3380 

to 3440) 

8. The desired mean value of ln K is then added to each term 

resulting in the 

3510) 

XLNK matrix with N (Y,cr ). ·y 
(Lines 3450 to 
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9. The transformation is then made back to{ K} by taking the 

exponential of each term in the XLNK matrix and assigning 

the resulting K value to its respective position in the flow 

region. The resulting { K} matrix has a log normal distri-

bution with the desired statistical parameters within allow­

able tolerances. (Lines 3520 to 3530) 

10. A check is then made for these statistical parameters, i.e., 

mean, standard deviation and auto correlation by rows, columns 

and the entire distribution and writes out results. (Lines 

3540 to 6020) 

This hydraulic conductivity matrix, · {K}, is then the input matrix used 

to solve the flow problem. For subsequent simulations the steps, 1 

through 3 and 5 and 6 need not be completed again. Only steps 4 and 7 

through 10 are needed for independent values of stochastically generated 

hydraulic conductivity values for subsequent Monte Carlo simulations. 

It should be noted that this computer code utilizes selected subroutines 

from the International Mathematics and Statistical Libraries (IMSL). 

These subroutines perform necessary tasks for which new subroutines 

could have been developed. It is considered unnecessary to do that, 

however, when efficient, documented routines are available. 

An example of the use of such a routine may be found in Step 4. The 

EPSILN matrix is generated by invoking the GGNQF command. This step 

generates a random number from a normal distribution with a mean of zero 
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and a standard deviation of one. This procedure is done within a DO 

loop as many times as necessary to assign a value at each node. 

A second example of the use of the IMSL library may be found in Step 6. 

The subroutine LGINF is called to invert the (I-W) matrix and thereby 

determine the FILTR Matrix. 

The IMSL library has several routines which may be utilized to invert 

matrices. LGINF was selected because it is a generalized solution which 

could easily handle the problem. Other more efficient and/or accurate 

inversion routines could have been utilized to reduce required computer 

time or increase the accuracy of the solution. The reduction of 

required computer time to invert the matrix was not a major objective of 

this study although some efficiency might be desirable for subsequent 

work. The results cited later will demonstrate that the accuracy of the 

solution is sufficient. 

Considering the difficulty at the boundary of maintaining the autocorre­

lation structure, it was decided to "shave off" the outer boundary nodes 

all around the block region. A 7 x 7 region would have the outer nodes 

deleted and thereby be reduced to a 5 x 5 region. This technique 

reduces the boundary effects but also reduces the size of the region 

which may be considered by this technique in light of the matrix in­

version limitations. 

To alleviate this limitation, the flow region can be considered a compo­

site of two or more "blocks" that contain statistically homogeneous and 
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internally correlated hydraulic conductivity meshes. The shaved 5 x 5 

region may be systematically added to 3 other statistically equivalent 

regions to develop in a 10 x 20 region. We will see that the computer 

time to add these regions together is much less than that required for 

inverting a larger matrix. Indeed there are real limits to the size of 

the matrix that may realistically be inverted. 

B.5 Numerical Solution of Finite Difference Technique 

The finite difference solution utilized to solve the flow problem was 

that computer code developed by Reiter (1981). This code was adapted 

from other available work, e.g. Trescott, et. al. (1976) for the two 

dimensional cross-sectional model. 

The initial task to complete in the numerical solution is to write the 

finite difference equation at each nodal point as described in 

Appendix A. Several techniques may then be utilized to find the 

solution, e.g., iterative and simultaneous solution of the equations. 

Prickett and Lonniquest (1971) and Wang and Anderson (1982) describe 

some of these techniques. Iterative solutions include Jacobi and Gauss­

Seidel iteration, successive overrelaxation and the iterative alternat-

ing direction implicit. This work utilized the iterative alternating 

direction implicit because it was a code which was readily available and 

earlier work revealed that solutions could be achieved somewhat faster 

than for example successive over relaxation. 

An explicit finite difference solution technique is a forward difference 
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approximation since the head value which is being calculated is assumed 

a function of the previous estimate at adjacent nodes . An implicit 

solution involves a backward difference approximation where the head 

value is assumed a function of previous estimates at the node being 

calculated as well as at adjacent nodes . These methods were developed 

for transient problems but are equally applicable to steady state 

problems. 

The IADI technique processes the equations row by row initially holding 

head values in adjacent rows constant. Upon completion of one pass, the 

same equations are processed column by column holding head values in 

adjacent columns constant. This completes an iteration and iterations 

continue until the maximum error at any point in the region is less than 

the requested allowable value. 

B. 6 Mass Transport 

A major objective of this study was to analyze the effects of hydraulic 

conductivity variations on dispersion. A computer code was developed to 

simulate transport across the hydraulic field resulting from a steady 

state solution. Transport occurs due to hydraulic advection and a 

stochastic simulation of microscopic dispersion. 

B. 6.1 Advective Transport 

The methodology utilized to determine the hydraulic head distribution 

has been described earlier. The results of each solution of a stoch-
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astically generated realization of hydraulic conductivity is a steady 

state flow field. These results provide all the necessary input data to 

simulate advective transport. 

As cited in Appendix A, the variation in porosity is much less than the 

variation in hydraulic conductivity. Porosity has been assumed constant 

throughout the region similar to the assumption in Gelhar, et. al. 

(1979) and Smith & Schwartz (1980). 

The solution assumes that hydraulic head, hydraulic conductivity, 

porosity and therefore the resulting velocity is constant throughout 

each individual block in the flow region. Velocities are calculated 

initially for each conductivity simulation and for each block within the 

region by the method suggested by Sauty (1976). Figure B.S presents a 

representation of a portion of the flow region and the finite difference 

expression utilized to solve for the velocities in the X and Y 

directions. The method is basically a central difference approximation 

over the three neighboring nodes. 

In these finite difference equations and in the figure, V and V are x y 

the velocities in the X and Y directions, respectively. The subscripts 

on K indicate the two nodes included in the calculation of harmonic 

mean, e.g., K
10 

is the harmonic mean of K values at nodes 1 and 0. The 

value H is the hydraulic head at the node, n is the porosity and DELTAX 

and DELTAY are the node spacing in the X and Y directions, respectively. 

This equation for the velocities has to be modified for boundary blocks 
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Fi gure B.5 - Schematic View of Interior Node of Finite Difference Mesh 
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since the velocity orthogonal to the boundary is zero. In these 

boundary blocks, the gradient is averaged over only one block length. 

An example is the upper boundary block where dh/dy = 0 as in Figure B.5, 

which is simulated by setting H
0 

= H
2

. The velocity in the X direction 

is calculated as before but in the Y direction, the equation reduces to 

the following: 

(11) 

Similar equations are written for other boundary blocks. 

The advective transport SX and SY, is then calculated for a given time 

interval, DELT, by the equations below: 

SX = VX * DELT (12) 

SY = VY * DELT (13) 

B.6.2 Microscopic Dispersion 

Microscopic dispersion is included in the model in a manner first 

described by Ahlstrom, et al (1977) and then modified in part by Smith 

and Schwartz (1980). In this method, dispersion is treated as a stoch-

astic phenomenon. The water particle is assumed to undergo a random 

displacement in the direction of flow and another random displacement 

perpendicular to flow. These displacements are calculated from the 

following two equations from Ahlstrom, et al (1977). 

l 

DL = (24 DLC * DELT)~ (0.5 RANOL) (14) 

l 

DT = (24 DTC * DELT)~ (0.5 RANOT) (15) 
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In these equations, DL and DT are the displacements in the longitudinal 

and transverse directions, respectively relative to the direction of 

advective transport. DLC and DTC are the longitudinal and transverse 

dispersion coefficients respectively. Anisotropy, if any, is presumed 

in the advective transport so no anisotropy is assumed in dispersivity. 

RANOL and RANOT are random numbers normally distributed with a mean of 

zero and a standard deviation of one then divided by six to keep the 

range of values in the -0 . 5 to +0.5 area. 

Kelly (1982) developed a relationship which has been adopted for this 

study and assumes a direct relationship between grain size and micro­

scopic dispersivity . This relationship may be expressed as: 

o = 0.08 n
50 

(16) 

Where o dispersivity, in meters 

n
50 

= mean particle size in millimeters 

The longitudinal dispersion coefficient, DLC, is taken equal to the dis­

persivity times the velocity, v
1

, in the direction of flow. The trans­

verse dispersion coefficient, DTC, is taken equal to a percentage of the 

dispersivity, DSPRAT, times the dispersivity and velocity, v
1

. 

The expressions from Ahlstrom, et al (1977) for microscopic dispersion 

are then modified by these assumptions to result in the following: 

DL = (6.3* D50 * VL * DELT) * RANOL (17) 

DT = (6 . 3* D50 * VL * DELT) * DSPRAT * RANOT (18) 

Prickett and Lonniquest (1981) developed a similar approach which pre-
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sumes a constant value for DELT, the time interval. 

Since the advective transport direction will not always coincide with 

the X and Y axes the displacements in the X and Y directions are 

obtained by a transformation, ie, 

THETA = ARCTAN (SY/SX) (19) 

The transformation is computed such that DSX and DSY are the dispersive 

displacements in the X and Y directions, respectively. Figure B.6 pre­

sents the vector diagram illustrating this transformation: 

DSX = DL * COS (THETA) DT * SIN (THETA) 

DSY = DL * SIN (THETA) + DT * COS (THETA) 

B.6.3 Particle Transport 

(20) 

(21) 

The computer code simulates water movement from the upgradient side of 

the block or region to the downgradient side. Figure B. 7 presents a 

typical problem flow region with flow from left to right. The manner in 

which displacements are included in the particle movement simulation 

within the region can now be detailed. Initially, a particle is 

released from the upgradient boundary. It moves a distance equal to the 

advective displacements, SX and SY. The random dispersive displace-

ments, DSX and DSY are then added and the total displacements 

determined. A check is then made to see if the particle has moved out 

of the block. If is has not, a new time interval begins, new displace-



Old 

x 

185 

SY 

sx 

sx 

I 
I 
I 
I 
L---------

1 

DSX2 

Figure B.6 - Velocity Vector Diagram 

DSY2! 



186 

NCOLMl NCOL 
J 1 2 3 4 5 6 7 8 9 

I 1 

2 • • • • • • • 

1 XLOC 
3 • • • • • • • 

I I .µ 
:>-, :>-, 

/1 
I'M 

H 4 • • • • • • • I en H 
m I~ m 

"Cl .µ I I m "Cl 

§ ~ 
en I E-t ::l 

0 ~ I 4-1 
0 

~ 5 m • • • • • • • ~ 
H IO 

.µ E-t I .µ 

~ "Cl ~ 
Q) 4-1 I I i::c:l 

Q) 

'M o, 'M 
"Cl 6 .µ I • • • • • • • v "Cl 
m m 
H HI H 
00 00 
0. .µI § :::i tn I 

7 1 • • • • • • 0 • ~ 

I 

8 • • • • • • • 

NROW =9 

New Position 

x 

J /1~SY 
v Constant 

y x 

v Constant y 
TOTSX SX+DSX 

K Constant 
Old Position 

New TOTSX n Constant 

Figure B.7 - General Flow Region 



187 

ments are calculated and added to those previously summed. 

Eventually the water particle moves out of the block, either laterally , 

vertically, or both simultaneously . The code checks for lateral move­

ment out of the block initially. If this has occurred, the code checks 

to verify that the movement was only into the next block . If movement 

was beyond the next block, this fact is recorded and printed out so that 

the time interval can be reduced in a later simulation. 

The code then calculates the portion of the time interval spent in each 

block for this time interval. An adjustment of the displacements in the 

new block is made to account for the change in velocity in the new 

block. This adjusted displacement is recorded and a new time interval 

is begun. If the particle reached the end of the region, the portion of 

the last time interval remaining after the particle reached the boundary 

is subtracted from the computed total travel time. 

A check is made to determine if the particle is displaced vertically out 

of the block as well. If not, then the next time interval is begun. 

However, if vertical movement has occurred into the next block, a check 

is made for block skipping as before. If vertical movement results in 

contact with a boundary, the particle is reflected back into the flow 

region. No additional adjustment in displacements is made in the event 

of horizontal and vertical block changes, a new time interval is simply 

begun. 

In the event that the particle was displaced vertically out of the block 
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but not horizontally out of the block, checks are made to record any 

skipping of blocks and reflection by the boundaries. An adjustment for 

displacements due to movement into the next block is made similar to the 

technique for lateral movement and a new time cycle begun. 

Upon reaching the downgradient boundary, the following results are 

recorded in a array, tabularized and recorded on a data set file. These 

are then available for statistical manipulations and checks. 

Particle Number 

Simulation Number 

Starting Y Coordinate 

X and Y Coordinate at the time after starting estimated for 

travel to the region midpoint. 

Y Coordinate at Completion 

Time to Travel 50, 60, 70, 80 and 90% of the Region 

Total Travel Time 

B.7 Procedures for the Analysis of Results 

Monte Carlo simulations necessarily result in a great deal of output. It 

was necessary to develop a data collection and analysis system to properly 

deal with this. Data from this study is stored in disk data files as 

it's produced and saved for use and analysis later. Use has been made 

of a sophisticated data analysis system called the Statistical Analysis 

System (SAS) to assist in the analysis of the data from this study. 
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A listing of the computer code referred to as STKBLKNP, which was 

adapted from that developed by Reiter (1981) is included in Appendix D. 

The code may be subdivided into 11 steps as listed below with the line 

numbers referring to the listing. 

1. Data input and echo check of data on region size and para­

meters (lines 100 to 2000). 

2. Selection of hydraulic conductivity form, autocorrelation 

development and stochastic generation of values for each Monte 

Carlo Simulation (lines 2010 to 3330). 

3. Calculate actual statistical parameters of the hydraulic con­

ductivity values generated (lines 3340 to 6280). 

4. Computation of harmonic means of hydraulic conductivity at 

adjacent nodes for use in finite difference solution (lines 

6290 - 6910). 

5. Finite difference solution for steady state heads (lines 6920 

to 9170). 

6. Compute flow quantity, equivalent hydraulic conductivity and 

write out results (lines 9180 to 11650). 

7. Compute stream function and write out (lines 11660 to 13630). 
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8. Compute velocities in all sections of the finite difference 

grid (lines 13640 to 14220). 

9. Read in required data on dispersion and initialize parameters 

(lines 14230 to 14630). 

10. Water particles traverse the region (lines 14640 to 17670). 

11. Results written out and stored on files (lines 17680 to 

19580). 

12. Subroutines to calculate means and correlations (lines 19590 

to 20860). 

The data stored in disk files is varied but consists of information on 

the hydraulic conductivity means and correlation for each simulation, 

travel times and dispersion, hydraulic head values both mean values and 

those for selected rows in each simulation. These data are then avail­

able for input to the SAS programs. SAS programs have been written to 

perform all types of statistical calculations and checks, as well as to 

plot these results. 

B.8 Discussion of the Results 

B.8.1 Computer Time 

A considerable amount of computer simulation was performed during this 
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study. One major limitation immediately encountered was the large 

amount of computer time required to invert the (I-W) matrix. The size 

of the matrix increases very rapidly with the region size since a new 

row and column is added for each new finite difference block in the 

region. 

Figure B. 8 presents a plot of the required computer time for matrix 

inversion versus the number of nodes in the region. The three sizes 

computed were 49 (7 x 7 region), 144 (12 x 12 region) and 264 (12 x 22 

region ) . These results suggest a non-linear relationship which is 

linearized by plotting on a semilog scale (log time) as presented in 

Figure B.8. This plot suggests a relationship defined by the following 

expression: 

ln T = 0.01075 B + 0.23 (22) 

where T is the time to complete the inverse and B is the number of nodes 

in the mesh . The practical limit on region size based on this time 

requirement will depend on the computer system available; however, the 

largest region considered in this study was a 12 x 22 region. 

A check of the accuracy of the inversion was performed by rewriting the 

inverse code to generate the Weighting matrix, retrieve the completed 

inverse matrix, FILTR, and pre-multiply the (I-W) matrix by the FILTR 

matrix . For the region considered, these results indicated that the 

inverse was accurate to five significant figures which is considered 

adequate. 
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B.8.2 Effective Hydraulic Conductivity 

The arithmetic, geometric and harmonic means of all the simulations of 

hydraulic conductivity for the numerous Monte Carlo solutions were cal-

culated. These mean values were compared to the effective hydraulic 

conductivity calculated on the basis of the flow quantity, K , by the 
q 

following equation: 

(23) 

where Q is the flow quantity, ~ is the total head loss within the 

region, L is the total length over which that head loss occurs, H is the 

I 
height of the flow region, and S is a shape factor computed in accord-

ance with a technique suggested by Warren and Price (1961) which will be 

presented later. 

The value of S is a shape factor which may be directly compared with the 

shape factor, ND/NF, in a flow net solution or the form factor in the 

method of fragments. ND and NF, are the number of equipotential drops 

and flow lines respectively in the flow net solution. 

A second measure of the effective hydraulic conductivity in terms of 

mean travel time was computed for each Monte Carlo simulation. This 

effective hydraulic conductivity on the basis of travel time, Kt, was 

calculated by making assumptions similar to those used in calculating 

K . Figure B.9 presents a typical layout of a flow region with 
q 

approximately horizontal-uniform flow from left to right. The flow is 
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not precisely uniform due to the dispersion present in the flow 

simulation. 

The velocity of flow, v, may be calculated by the following formula: 

v = = 
K~ 
n L 

(24) K i 

n 

The mean velocity of all flow. particles traversing the flow region, v, 

may be calculated by dividing the length of the particle travel, LT' by 

the mean travel time, E, as below: 

(25) 

The effective hydraulic conductivity on the basis of travel time, Kt has 

been calculated by setting v equal to v in the above two equations, 

introducing the height of the region, H, by inserting in both the 

numerator and denominator and solving for Kt resulting in the following: 

(26) 
= 

where LT is the total length of particle travel, n is the porosity, t is 

I 
the mean travel time and L, H and ~ are as defined above. St is a 

I 

shape factor computed in the same general manner as S above except that 

mean travel time rather than flow rate is used. St is a modified shape 

factor which may be compared to the shape factors from a flow net, the 

method of fragments or to S calculated above. 

Over thirty variations of flow region size and characteristics were 
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studied to determine the relationship between these calculated means. 

Generally for each flow region, 40 Monte Carlo characterizations were 

done. The means and effective hydraulic conductivities for each of 

these was computed. 

In addition to calculation of mean values for each of the Monte Carlo 

characterizations, a mean value of all Monte Carlo characterizations was 

computed. Correlation of the geometric mean and the two effective 

hydraulic conductivity values (flow quantity and travel time) were 

visually observed by plotting and also by computation of correlation 

coefficients. A typical plot of these results is presented in Figure 

B.10 and the results are summarized in Table Bl. 

The results of these computations support the observation that the geo­

metric mean is the best measure of the effective hydraulic conductivity 

both in terms of flow quantity and travel time. The effective hydraulic 

conductivity calculated both by flow quantity, Kq and travel time, Kt, 

are relatively close with the flow quantity value generally somewhat 

larger. 

Two boundary flow configurations were considered in addition to uniform 

flow, i.e. , flow from the left boundary to the right boundary of a 

rectangular region. The two flow configurations are presented in Figure 

B.11. The first flow configuration is described as S flow for the case 

of flow from the upper three nodes of the left boundary to the lower 

three nodes of the right boundary. This case could simulate a general 

two dimensional flow case such as around an obstruction or low hydraulic 
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Region 
File Size 

Block 
Size 

1 10 x 20 10 x 10 

2 10 x 20 10 x 20 

3 

4 

5 

6 

7 

B 

9 

10 x 20 10 x 20 

10 x 10 10 x 10 

5 x 5 5 x 5 

10 x 20 10 x 20 

10 x 20 10 x 20 

10 x 20 10 x 20 

10 x 20 10 x 20 

10 10 x 40 10 x 20 

11 10 x 40 10 x 20 

12 10 x 40 10 x 20 

13 10 x 40 10 x 10 

14 20 x 40 10 x 10 

15 20 x 40 10 x 20 

16 10 x 60 10 x 20 

17 10 x 60 10 x 10 

TABLE B.1 - SUMMARY OF FLOW SIMULATIONS 

Auto. Corr. No. 
Data of 

Sims 
x y 

.B .B .6B 40 

.B .4 .6B 40 

.BL .BL .6B 40 

. B .B .6B 40 

.B . B .6B 40 

.B .B .6B 10 

. B .B .6B 44 

• B . 4 1.0 40 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.B 

.6B 40 

.6B 40 

.6B 40 

.6B 40 

.6B 40 

.6B 20 

.6B 20 

.6B 40 

.6B 40 

No. Kol- Y Total Means of Hydraulic Conductivity 
of Time mog 
Wa- Int., D 
ves Days Stat 

Coor. 
at 
End 

Travel ft/day 
Time, Arith Geom Harm Flux T.Tim. S.Dev 
Days K K Kh K K K a g q t 

1 1. 6 

1 1. 6 

1 1. 6 

1 O. B 

2 6.4 

4 1.6 

3 1.6 

1 1. 6 

1 1. 6 

1 3.2 

1 0.3 

1 6.4 

1 3.2 

1 3.2 

1 3.2 

1 4.B 

1 4.B 

. 032 60.6 172.5 5.02 4.63 4.2B 4.53 4.44 2.10 

.115 60.4 16B.5 4.B4 4.62 4.40 4.59 4.51 1 . 54 

.15 59.5 171 . 1 5.01 

.01 59.7 39.B 5.13 

.01 35.0 9.5 5.13 

.024 5B.4 176.6 4.B6 

5B.6 234.3 5.05 

.01 60.0 173.0 5.09 

4.65 4 . 32 4.57 4.44 2.01 

4.77 4 . 45 4.75 4.61 1.99 

4.7B 4.46 4.BO 5.2B 1.90 

4.51 4.19 4.42 4 . 30 1.95 

4.69 4.36 4.63 4.54 1.99 

4.60 4.15 4.54 4.39 2 . 40 

.01 59.9 169.7 5.04 4.6B 4.34 4.62 4.52 2 . 02 

.01 59.6 703.4 4 . 99 4.62 4 . 2B 4.53 4.45 2.02 

.15 60.2 694.4 5.06 4.6B 4.32 4 . 59 4.51 2 . 0B 

.014 59.2 702 . 2 5.02 4.64 4 . 29 4.54 4.46 2.0B 

.04 60.B 697.0 5.02 4.64 4.29 4.55 4.4B 2.0B 

.15 111.7 700.0 4 . 99 4.61 4 . 27 4.54 4 . 46 2.09 

.15 111.2 699.7 4.9B 4 . 62 4 . 2B 4.55 4.46 2 . 03 

.15 59.5 1576.2 5.06 4.67 4 . 31 4.57 4 . 49 2.11 

lB 10 x 20 10 x 20 1.0 1.0 1 40 1. 6 

.052 59.5 1576.7 5.06 

. 15 60.2 151.9 5 . 0 

2.14 

5.0 5.0 5.0 5.0 0 . 0 

...... 
\0 
CX> 



File 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

TABLE B.1 - SUMMARY OF FLOW SIMULATIONS (CONTINUED) 

No. Kol- y Total Means of Hydraulic Conductivity 
Auto. Corr. No. of Time mog Coor. Travel ft/day 

Region Block Data of Wa- Int., D at Time, Arith Geom Harm Flux T.Tim. S .Dev 
Size Size Sims ves Days Stat End Days K K Kh K Kt K x y a g q 

10 x 20 10 x 20 .8 .2 1.0 40 1 1.6 60.7 170.1 5.11 4.65 4.23 4.62 4.47 2.35 

10 x 20 10 x 20 .8 .2 0.9 40 1 1.6 .15 60.2 169.8 5.005 4.64 4.3 4 . 6 4.7 2.04 

10 x 60 10 x 20 .8 .8 . 68 40 1 1.0 .048 60.3 314.5 4.96 4.58 4.23 4.48 4.41 2.05 

10 x 60 10 x 20 .8 .8 .68 40 1 .44 .066 60.5 143.0 5.07 4 . 68 4.33 4 . 59 4.50 2.07 

10 x 20 10 x 20 .8 .8 .68 40 1 1.6 - 98.4 228.0 5.12 4.72 4.36 4.62 4 . 50 2.12 

10 x 20 10 x 20 1.0 1.0 - 1 133 1.6 - 88.7 211. 8 5.0 5.0 5.0 5.0 5.0 0.0 

10 x 20 10 x 20 1.0 1.0 - 1 40 1.6 - 98.8 200.5 5.0 5.0 5.0 5.0 5.0 0.0 

10 x 20 10 x 20 0.8 0.4 .84 40 1 1.6 60.2 173.7 4.90 4.55 4.23 4.51 4.39 1.98 

10 x 20 10 x 20 0.8 0.8 .68 40 1 1.6 .01 58.8 254.91 5.01 3.54 2.51 3.32 3.06 4.786 

10 x 20 10 x 20 .8 .8 .68 40 1 1.6 60.0 153.11 5.01 4.98 4.96 4.98 4.97 0.50 

20 x 40 10 x 20 .8 .8 .68 20 1 3.2 109.6 2058.4 2.99 - - - 1.52 2.47 

10 x 20 10 x 20 .4 .3 . 95 40 1 1.6 .15 59.8 170.5 5.01 4.66 4.34 4.58 4.47 1. 97 

Note: Uniform flow in all files except 7 and 24 which simulate S Flow and 23 and 25 with cutoff. 

Values listed for K and K have been adjusted by use of the shape factor S . 
q t 

~ 
l.O 
l.O 
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conductivity occlusion. The second flow configuration is described as 

cutoff for the case of flow from the left upper boundary to the bottom 

right boundary. This case is intended to simulate flow beneath a dam by 

representing one half of the flow region. 

Warren and Price (1961) have indicated that the geometric mean of the 

hydraulic conductivity is a good approximation of the effective 

hydraulic conductivity even for non-uniform flow provided a shape factor 

is utilized to adjust the value for the shape of the flow region. They 

suggest that the magnitude of this shape factor be determined by first 

calculating the effective hydraulic conductivity of the flow region 

using a singular known value of hydraulic conductivity. This effective 

value of hydraulic conductivity should then be divided into the singular 

known value and the result is the shape factor. The hydraulic conduct­

ivity value determined for the non-uniform flow case with the log normal 

distribution of hydraulic conductivity is multiplied by the shape factor 

before comparing with the geometric mean. This approach is similar to 

that technique embodied in a flow net solution or the one incorporated 

in the method of fragments. 

The results of this study support the technique suggested by Warren & 

Price (1961) for calculation of a shape factor. For the cases con-

sidered, the computed values of effective hydraulic conductivity 

generally fall between the geometric and harmonic means and is closest 

to the geometric mean as presented in Figure B12. 



H~draulic Conductivit~ Means ShaEe Factors 
Equivalent Equivalent Method 
H~draulic Travel Time Flow of 

File No. Flow Type Arith Geom Harm s s st st Net Fragment 
K K K Kh K K Kt Kt Nd/Nf li'm a 

9 2 5.04 4.68 4.34 4.62 4.62 4.50 4.50 1. 0 1.9 1.0 1.9 1.9 1.9 
Uniform 

18 0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 

7 2 5.05 4.69 4.36 3.17 4.63 3.26 4.54 1.46 2.78 1.39 2.66 3.0 2.91 N 
S-Flow 0 

N 
24 0 5.0 5.0 5.0 3.42 5.0 3.59 5.0 

23 2 5.12 4. 72 4.36 2.79 4 . 62 3.41 4.50 1.66 3.15 1.32 2.57 3.25 
Cutoff 

25 0 5.0 5.0 5.0 3.02 5 . 0 3.79 5.0 

Note: K and K are the equivalent mean values of K and K after adjusting by the shape factor. q t q t 

Figure B.12 - Hydraulic Conductivity Comparisons 
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B.8.3 Autocorrelation Coefficients and Integral Scale 

The stochastic nearest neighbor process model was utilized to generate 

random ensembles of hydraulic conductivity meshes which are autocorre-

lated . Each of the individual representations within the ensemble of 

representations making up each Monte Carlo simulation was analyzed to 

determine the degree of correlation by row and column. The formulation 

below utilized to ca l culate this value may be found in many references, 

e . g . Smith (1981). 

n-L 
1 L (K. - K) (Ki+L - K) 

n-Li=l 
]. 

Rho(L)= (27) 

~-lt (K 
i 

- K)2 

i=l 

In this equation Rho (L) is the autocorrelation coefficient for lag L . 

L is a whole number from zero to the number of elements in the row or 

column minus one. K. is the value of hydraulic conductivity at point i, 
]. 

and K is the mean value. The denominator is the variance of the 

hydraulic conductivity . It may be easily shown that if L equals zero, 

then Rho (0) equals 1 . 0. 

A graph of a typical result of this computation for lags from one to 

three is presented in Figure B. 13. The concept of integral scale as 

discussed by Smith and Freeze (1979) is utilized herein to conceptualize 

the degree of dependency of the hydraulic conductivity value at one node 

with the value at adjacent nodes. The integral scale has been estimated 

as the summation of the positive autocorrelation coefficients times the 
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Figure B.13 - Correlation Coefficient Versus Lag 
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block size. As indicated, the integral scale, A. , equals 15. 8 for the 

data in Figure B.13. 

During the course of this work, the nature of the governing equation for 

autocorrelation of hydraulic conductivity values at the boundaries was 

raised. An alternative methodology was written and a Monte Carlo 

simulation investigated. Figure B.14 presents the mean row auto-

correlation coefficients by the two techniques. Utilizing the co-

efficients resulted in integral scales of 14.9 and 12.4 feet for the x 

and y directions using the original technique and 14. 4 and 12. 3 feet 

using the alternate formulation. It would appear that at least for 

these conditions the alternative technique provided no significant 

difference and therefore no further investigation of this alternative 

was conducted. 

Irrespective of this finding, there was still concern over the auto-

correlation of hydraulic conductivity in the boundary blocks. This 

problem was mitigated somewhat by deleting the boundary blocks of the 

region after development. The effects on the autocorrelation coef-

ficients may be seen on Figure B.15 which presents the autocorrelation 

coefficients by rows of the log of the hydraulic conductivity before and 

after deleting these boundary blocks. Also presented are the auto-

correlation coefficients by rows of this same simulation after the log 

transformation to hydraulic conductivity. The results are fairly 

typical of the simulations conducted and indicate a slight loss of 

correlation when the boundaries blocks were deleted and some additional 

loss when the log transformation was completed. This total loss was 
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rather slight, however. The reduction in the integral scale is con-

siderably less. 

The effect of the region size on the integral scale is demonstrated in 

Figure B .16. It is clear that as the region size increases, the 

integral scale increases, al though at a decreasing rate. This figure 

also demonstrates the effects of stacking blocks of internally auto-

correlated hydraulic conductivity meshes to achieve larger regions 

without utilizing a larger FILTR matrix. There is a loss in the 

integral scale although this loss is relatively small even when the 

region is increased by three times. The figure also demonstrates that 

as the region size increases, the integral scale continues to increase, 

even with the same FILTR matrix. 

Figure B.17 demonstrates that the integral scale changes with a change 

in the autocorrelation parameter, I 
CL • This plot indicates that the 

integral scale in both the x and y direction increases with an increase 

in the ~ term. The increase in the y integral scale is expected, but 
y 

the increase in the integral scale in the x direction may not be. This 

increase in the integral scale in the x direction resulting from the 

increase in the 
I 

CL term likely results from a general increase in 
y 

correlation of all terms in the mesh. 

B.8.4 Sensitivity of Ensemble Means and Variances to the Number of 

Simulations 

Computer computations are relatively inexpensive. However, the prac-
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tioner does not want to do more computations than are necessary to 

obtain reliable estimates. A study of the number of simulations 

required to compute reliable mean values of various parameters was then 

conducted. 

Initially consider the mean and standard deviation of the hydraulic con­

ductivity formulations. Figure B.18 presents a plot of an accumulating 

mean of the arithmetic mean and standard deviation of the hydraulic con-

ductivity for one of the Monte Carlo simulations. This plot demon-

strates that these cumulative mean values very rapidly approach a con­

stant value, in this case after approximately 8 simulations. 

The SAS program written to compute the cumulative mean of the means and 

standard deviation is an inexact estimate of the actual mean and 

standard deviation of all preceding observations. The procedure 

computes the mean and standard deviation of the previous three 

observations. A running mean value of these two results is then 

computed as each new mean and standard deviation is computed for the new 

observation and the two left from the earlier group. The results have 

been found accurate to approximately 3 to 4 decimal places for the mean 

value. However the mean of the running standard deviation computation 

by this technique may only be used as a qualitative measure of the trend 

and its stability. A true measure of the actual standard deviation can 

only be computed after the entire ensemble is sampled. 

Figure B.19 and B.20 present similar plots for the effective hydraulic 

conductivity in terms of flow quantity, K q, and travel time, Kt, 
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respectively. Both of these indicate that a fairly constant value is 

rapidly approached, in this case, in only 7 to 10 simulations. However, 

the cumulative means of the standard deviation for both terms fluctuates 

considerably. A truly constant value is not achieved even after the 40 

simulations in the ensemble although after the first 20, the fluctua­

tions are greatly reduced. 

B.8.5 Sensitivity of Ensemble Means and Variances to Number of 

Particles 

The number of particles which need to be simulated to reach a fairly 

constant value of the mean and standard deviation of the travel time is 

another important consideration in the amount of computation time 

required. A SAS program was written to calculate the cumulative mean of 

the mean and standard deviation of the travel time for particle transit. 

A typical plot of the results for one run is presented in Figure B.21. 

This figure illustrates that a mean value of travel time is reached 

after only approximately 20 water particles. 

The cumulative mean of the lag 3 standard deviation of the travel time 

fluctuates 20 or 40 percent after 20 water particles reaching a fairly 

consistent, although still slightly decreasing value after approximately 

80 water particles. 

Fried (1975) gives an expression for the longitudinal dispersion co­

efficient assuming that the development of particle concentration at 

some distant point is normally distributed. He illustrates that this 
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coefficient is directly related to the variance of the travel times. 

Here concentrations are simulated by the breakthrough curve. The equ-

ation developed for a large travel distance relative to the dispersivity 

is: 

u2 
(28) 

where n
1 

is the longitudinal dispersion coefficient, U and tO.S are the 

mean velocities and travel time respectively, and crt is the standard 

deviation of the travel time. 

The distance, x, over which the dispersion occurs equals the product 

UtO.S and may be substituted in this equation resulting in the following 

equation: 

2 2 
CJ t x (29) 

These equations illustrate the relationship between the standard 

deviation of the travel time, crt, and the longitudinal dispersion co-

efficient. Since the dispersion coefficient equals the dispersivity 

times the mean velocity, the macroscopic dispersivity may be determined 

by dividing by the mean velocity to arrive at: 

x (30) 
= -----

These results and others indicate that the 400 water particles simulated 

is sufficient to compute mean and standard deviation for travel time. 
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The macroscopic or field scale lateral dispersion coefficient, DT' has 

been shown by Fried (1975) to be a function of the scatter about the 

mean ending location after traversing a region . 

following equation: 

= 1 (J2 
2 y 

u 
x 

Fried presented the 

(31) 

where a is the standard deviation of the normalized location per­
y 

pendicular to the direction of flow and U and x are as defined earlier . 

A record was maintained of the starting and ending y coordinate of each 

water particle. A normalized ending y coordinate was then computed 

along with a cumulative mean and cumulative mean of the standard 

deviation as each new record of water transport was added. The same was 

computed for the y coordinate at the estimated time to transport half 

the region. A typical plot of these results is presented in Figure 

B.22. These results also indicate that 400 particles are sufficient to 

reach a consistent mean value for these variables. 

B. 8.5 Normality Check on Travel Times 

The ensemble of travel times was utilized to plot a breakthrough curve. 

Figure B. 23 presents a representative sample of a breakthrough curve. 

These curves are similar to a concentration versus time curve and their 

similarity of shape supports the premise of general conformance of 

normality. 
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A check for the goodness of fit of the assumption of a normal distri­

bution for the ensemble of travel time records was made. A SAS program 

was written to test the null hypothesis that the data could be a random 

sample from a normal distribution. A Kolomogorov D statistic was com-

puted and compared with critical values. A Kolomogorov statistic was 

utilized rather than the more common chi square check since it is more 

easily adapted to continuous uncategorized data. 

Table B.l presents the results of this check for several flow ensembles. 

Several of the normality checks support the assumption of a normal dis­

tribution with a general tendency to do so as the transit distance in-

creases. Cases 10, 11 and 12 suggest that as the time interval de-

creases, there is a greater likelihood of acceptance of a normal dis­

tribution. A Kolomogorov D statistic of 0.10 or greater was considered 

sufficient for acceptance of the assumption of normality for this study. 

B.8.6. Hydraulic Head Value Sensitivity 

The hydraulic head value along two rows was tabulated for each of the 

simulations. This tabulation was then available to allow computation of 

mean values and variations resulting from variations in region size, 

hydraulic gradient, conductivity and other factors. 

Figure B.24 presents typical results from one of the Monte Carlo 

simulations. The upper plot presents the mean hydraulic head versus the 

node number. The averaging over the 40 Monte Carlo simulations results 

in a fairly smooth straight line relationship. The middle curve 

I' 
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presents the standard deviation and the lower curve the variance of the 

hydraulic head for the 40 Monte Carlo simulations versus the node 

number. These figures clearly demonstrates the boundary effects. At 

the ends of the flow region the head is held constant and therefore the 

standard deviation is zero there. At nodes further away, there is less 

influence from the boundary and therefore the standard deviation and 

variance are greater. 

The number of Monte Carlo simulations required to reach a fairly con­

sistent value of the hydraulic head was also investigated. Figure B.25 

presents a typical plot of the results of one such investigation at an 

interior node. This plot indicates that the initial simulation had a 

value very close to the resulting mean value and after three simulations 

the mean value was within 3 percent of that value. 

The effect of variations in region size is demonstrated in Figure B.26. 

The maximum value of the normalized standard deviation of hydraulic head 

for any of the nodes in the region increases as the region size 

increased. The maximum value of the standard deviation of hydraulic 

head was normalized by dividing each value by the mean head loss for 

each node. 

The effect of variations in hydraulic gradient is demonstrated in Figure 

B.27. There appears to be a gradual increase in the maximum value of 

the standard deviation of hydraulic head as the hydraulic gradient 

increases. This is probably due to the larger numbers in the calculation 

however, since when divided by the mean value there is no general trend. 
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The relationship between this quantity and the standard deviation of the 

hydraulic conductivity is of more significance. Figure B. 28 presents 

this relationship which results in a direct relationship. This is 

significant since the uncertainty in the hydraulic conductivity value 

directly affects our uncertainty in the value of the hydraulic head 

value within the region. 

B.8.7. Macroscopic Dispersivity Sensitivity 

The macroscopic or field scale longitudinal dispersivity has been shown 

to be a function of the standard deviation of the travel time. The 

macroscopic transverse dispersivity has been shown to be a function of 

the standard deviation about the mean ending location perpendicular to 

the general flow direction. For the horizontal uniform flow case this 

may be taken as the standard deviation in the ending y coordinate. The 

sensitivity of the macroscopic dispersivity to variations in region 

size, hydraulic gradient, time interval and standard deviation of 

hydraulic conductivity was investigated. 

Figure B.29 presents results of the effect of region size on the micro-

scopic longitudinal and transverse dispersivity. The upper plot 

indicates a relatively small change in the longitudinal dispersivity 

with an increase in region size and no consistent trend. The lower plot 

indicates a steadily decreasing transverse dispersivity with region 

size. The values plotted for the macroscopic dispersivities was 

determined by dividing the dispersion coefficients, determined by the 

equations taken from Fried (1975) given earlier, by the mean particle 
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velocity in the region. These results suggest that a constant value of 

dispersivity is not reached during the transit of these particles. 

Figure B.30 presents the effects of a change in hydraulic gradient and 

Figure B.31 the effects of a change in time interval for mass transport 

on these same parameters. The variation of both macroscopic longitu-

dinal and transverse dispersivity is small and inconsistent due to the 

change in hydraulic gradient and time interval. The insensitivity of 

the observed dispersivity due to time interval variation is important 

since the computer time required to simulate particle transit is 

dependent on the time interval utilized. 

The effect of a variation in the standard deviation of hydraulic conduc­

tivity is much more pronounced than these other variables. The results 

of a variation of this parameter are presented in Figure B. 32. A 

reduction in standard deviation of the hydraulic conductivity from 2.0 

to 0.5 resulted in a reduction from 2.5 to 0.3 in the longitudinal dis­

persivity and from 0.14 to 0.05 in the transverse dispersivity. 

B.8.8. Development of Confidence Limits 

The confidence which the engineer has in his prediction of flow 

quantity, travel times and dispersion of flow particles is the major 

reason for utilizing these more sophisticated and complex solutions for 

field flow problems. If the engineer were not able to increase his 

confidence in his predictions there would be little reason to utilize 

these techniques. The nature of the output from this method lends 
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itself to the development of confidence limits on the solution. 

A methodology to utilize the knowledge of the variability of the flow 

region characteristics to establish confidence limits on the output 

utilizing probability and statistics has been formulated. The emphasis 

of this methodology is in the quantification of the characteristics of 

the major input parameter, hydraulic conductivity. Other parameters 

have been shown to be of lesser importance to the problem solution. 

The procedure to develop the site specific soil parameters is essential-

ly unchanged. Field programs are utilized to measure insitu soil 

parameters and to secure samples for laboratory testing The field and 

laboratory tests will be analyzed so that a probability density function 

of the hydraulic conductivity may be formulated. Other parameters such 

as porosity, and laboratory dispersivi ty characteristics must also be 

developed. 

These parameters are then the input to a Monte Carlo computer solution 

for flow quantity and travel time. The results of these Monte Carlo 

computer simulations may then be analyzed utilizing the knowledge of the 

underlying distribution of these results to develop confidence in the 

results. 

In general the flow quantity and travel time results should be expected 

to conform to a normal distribution. This assertion is made on the 

basis of the Central Limit Theorem. The water particle movement may be 

considered the result of adding up the effects of many individual 



234 

1.0 2.0 3.0 4.0 5.0 

Standard Deviation of Hydraulic Conductivity, ft/day 

.. 
>-. 
+J 
·.-! 
:> 

•.-! 0.6 en 

'"' QJ 
p.. 
en 

·.-! 
A 

QJ 0.4 en 

'"' QJ 
:> 
Ul +J 
i:: QJ 
co QJ 

'"'~ H 

u 
•.-! 
p.. 
0 
u 
Ul 
0 

'"' u 
co 

;:.:: 

0.2 

0.0 
1.0 2.0 3.0 4.0 5.0 

Standard Deviation of Hydraulic Conductivity, ft/day 

Figure B.32 - Macroscopic Dispersivity Versus the Standard 
Deviation of Hydraulic Conductivity 



235 

factors (hydraulic conductivity values). This assumption of normality 

has been generally verified in this study. 

The mean value of the flow quantity and travel time may then be 

estimated with confidence by the method described earlier. The results 

of one Monte Carlo simulation are presented in Figure B.33. The char-

acteristics of the flow region are also presented. The mean and 

standard deviation of the effective hydraulic conductivity, K , is 4.57 
q 

and 0.230 respectively. Utilizing the equations developed earlier, the 

95% confidence limits on the mean value may be estimated. The magnitude 

of error of the mean with 95% confidence may be estimated by the 

following: 

E < t fi./2 . s = 1.96 . 0.230 = 0.071 
~ i4TI 

(32) 

where t&/
2 

is the value of the cumulative distribution function of the 

I 
student t distribution at the a/2 significance level, s is the value of 

the standard deviation and N is the sample size. 

The mean value would then be expected to lie between the limits of the 

sample mean (4.57) plus or minus the error (0.07) i.e., 4.50 and 4.64. 

The effective hydraulic conductivity, K , was calculated by dividing the 
q 

flow by the mean hydraulic gradient and area. The flow rate may then be 

estimated with confidence limits of 95% by multiplying by these con-

stants. In so doing the flow limits of 38 .1 to 39. 9 
3 ft /day were 

estimated with 95% confidence limits. 
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The same methodology may be utilized to develop confidence limits on the 

travel times. The mean and standard deviation of the travel time is 

1576.2 and 146.9 days. The 95% confidence limits on the magnitude of 

error may be estimated as: 

E < (33) 

The mean value of travel time is therefore expected to lie between 

1561.8 and 1590.6 days. The standard deviation of the travel time may 

also be estimated with confidence by the expressions given earlier. 

.. , . 

146. 9 <er< 146. 9 -------
1 + 1.96 1 1.96 

~(400) h(400) 

137 .4 < er < 157. 8 

(34) 

(35) 

The water particles are expected to follow a normal distribution so that 

a hypothetical breakthrough curve may be developed for the extremes of 

these parameters. The result of such an exercise is presented in Figure 

B.34. This allows the engineer to estimate not only the mean arrival 

time with confidence but also the distribution of travel times. 

B.8.9 Macroscopic Dispersivity 

The results of the various flow situations was analyzed for characteri-

zations of macroscopic dispersion coefficients and dispersivity. Using 

the equation developed by Fried (1975), a macroscopic dispersion coef-

ficient was calculated for the record of 400 flow particle traverses of 

the flow region. The equation developed by Fried assumes that the 
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particle breakthrough curve will simulate flow concentration. This 

macroscopic dispersion coefficient and dispersivity was plotted versus 

the mean region velocity and is presented in the upper two curves of 

Figure B.35. The upper curve indicates a general increase in the macro­

scopic dispersion coefficient with velocity as expected. There is no 

general trend for the middle curve. The value of macroscopic disper­

sivity appears not to vary greatly with velocity. 

The lower curve plots macroscopic dispersivity versus the standard devi­

ation of hydraulic conductivity. This plot suggests that as the vari­

ation in hydraulic conductivity increases, the value of macroscopic dis­

persivity should increase. This trend suggests that particle transport 

is less direct as the variation of hydraulic conductivity in the region 

increases. 
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APPENDIX D - COMPUTER PROGRAMS 

1. INVERSE 

110 C THIS IS A PROGRAM WHICH WILL ASSIGN CORRELATED HYD . CONDUCTIVITY VALUES 
120 C TO A FINITE DIFFERENCE MESH AND WRITE VALUES ON A DISK 
130 C FILE NAME IS INVERSE 
160 c 
170 C SPECIFICATIONS 
180 INTEGER CHECK.CONH,CONK,ELEC,MINI,STRF,FLOW,SKIP,UNILU(10),UNIHU 
190 $( 10) 
200 INTEGER EXLO,EXHI,WARP,PTPT 
210 REAL K.KHARM,LENGTH,KHEQFD,KVEQFD.KVEQCS,KHEQCS,HARMK,MEAN,KLOG 
220 REAL KY , LNK<300>,WI<300,300) 
222 INTEGER IA,NN, IDQT, IER 
224 REAL WC300.300l.TOL,FILTRC300.300>.SC300,300>.WKC600l.WIDC300.300) 
230 DOUBLE PRECISION H 
250 REAL*8 DSEED/992299. DO/ 
260 DIMENSION KHARMC52, 52.2l.HC52.52>.K<52,52>.XD<52J,YD<52>.AX<52>, 
270 $AY<52l,HEADIN<20>.ANIS0(52>.CHECK(10>. X(52,52J,Y(52, 52>.ERR<300> 
280 DIMENSION LAYER<10>.LAYLU<10J,LAYHU<10l.CONMN<10>.SD<10l 
290 DIMENSION ETA<10l.ALPHAX<10l,ALPHAY<10l , EPSILN(300> 
300 DIMENSION IC<52, 52> , KY(52, 52) 

DATA CHECK/ 'CONK' , 'CONH ', 'ELEC ' , 'MINI', 'STRF ', 'VERT', 'SKIP', 
1 ' \/', 'WARP', 'PTPT'/ 

READ<5, 10> HEADIN 
10 FORMAT <20A4> 

WRITE(6,20l HEADIN 
WRITE<6.25> DSEED 

25 FORMAT <'0',/,5X, 'DSEED=',F12.0> 
20 FORMAT< '1', 20X,20A4l 
23 FORMAT <1I10.6Fl0. Sl 

320 
330 
340 
350 
360 
370 
380 
390 
400 
410 c 
420 
430 
440 c 

C INPUT PARAMETERS 
C NOTE*•** ALL INPUT PARAMETERS ARE NODAL VALUES**** 

450 READ<S.30> NROW,NCOL,EC, ISO.PERM 
460 READ<S , 35) CONH.CONK.ELEC.MINI,STRF.FLOW,SKIP.WARP 
470 READ<5,30) LSTRM.LEGUIV.DHEAD 
480 C LSTRM IS THE COLUMN <FDR THE HORIZONTAL FLOW CASE, FLDW=HORI> 
490 C DR THE ROW <FDR THE VERTICAL FLOW CASE, FLOW=VERT> 
500 C OR THE COLUMN OF THE CONSTANT HEAD POINT ON THE 
510 C LEFT SIDE OF THE UPPER BOUNDARY 
520 C WHERE THE TOTAL FLOW IS COMPUTED FDR THE USE OF NDNDIMENSIONALIZING 
530 C THE STREAM FUNCTION *** IT IS USED ONLY WHEN CHECK<5>=STRF 
540 c 

C LEGUIV IS THE COLUMN <FDR THE HORIZONTAL FLOW CASE, FLDW=HORI> 550 
560 
570 
580 
590 
600 
610 
620 
630 
640 
650 
660 
690 c 
700 c 
710 
720 
730 
740 
745 
750 
760 
770 
780 
790 

C DR THE ROW <FDR THE VERTICAL FLOW CASE, FLDW=VERTl 
C WHERE THE TOTAL FLOW IS COMPUTED TD BE USED IN SOLVING 
C FDR THE EGUIVALENT CONDUCTIVITY <RESISTIVITY> DR WHERE THE 
C WARREN ANO PRICE TECHNIGUE IS APPLIED 

READ<S.40> WPFACT 
NRIJWMl=NRDW-1 
NCOLMl,.,NCOL-1 
NROWM2=NRDW-2 
NCDLM2=NCDL-2 
NCDLM3=NCOL-3 
NROWM3=NRDW-3 

NOTE **** THE VALUE READ IN FDR HMIN IS THE LOWEST ITERATION 
PARAMETER AND IS USED ONLY IF MINI WAS SPECIFIED IN THE OPTIONS 

READ<S , 32> ITMAX.NUMPAR,HMAX,HMIN 
30 FORMAT <2I10, lFlO. 5, 110, FlO. 5> 
32 FORMAT C2I10 , 2F10. 5) 
33 FORMAT C3I10, 1Fl0. 5) 
34 FORMAT <4I10.3F10. 5) 
35 FORMATC16CA4.1X>> 

READ C5, 40> CX DCJJ ,J=l, NCDLl 
40 FORMAT C8F10. 1) 

READ<5.40) <YDCil, I=l.NRDW> 
C COMPUTE AX AND AY 



800 
810 
8 20 
830 
840 
850 
860 
870 c 

c 
c 
c 

880 c 
890 c 
900 c 
910 
920 c 
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AX= X-DISTANCE FROM ONE NODE CENTER 
AV= Y-DISTANCE FROM ONE NODE CENTER 

DO 42 J=2 . NCOL 
42 AXCJ l = CXD<Jl+XD<J-1ll/2. 0 

DO 44 I=2 , NROW 
44 AY<I>~<YD<I l +YD<I-1))/2 . 0 

READ ANISOTROPY AT EACH ROW 
VALUE IS THE RATIO OF KH/KV 

120 READ<5,40l (ANISO<I>, I=1,NROW) 

SET BOUNDARY CONDITIONS 

TO THE NEXT 
TO THE NEXT 

930 c 
940 c 
950 c 
960 c 
970 c 

NOTE *** PERIMETER BOUNDARY POINTS 
NOTE *** FLOW SHOULD BE FROM RIGHT 
I. E. HIGH HEADS SHOULD BE LOCATED 

CAN BE EITHER CONSTANT HEAD OR IMPERMEABLE 
TO LEFT OR TOP TO BOTTOM 
AT THE TOP OR LEFT SIDE 

980 C SET ALL HEADS EGUAL TO 
AND ALL IC CI,Jl VALUES 990 c 

SOME INITIAL VALUE 
TO ZERO 

1000 
1010 
1020 
1030 
1040 c 
1050 c 
1060 c 
1070 c 
1080 c 
1090 c 

32 5 DO 330 I = 1, NROW 
DO 330 J=1 , NCOL 
IC< I. J l =O 

330 H<I. J l= 50. 0 

READ LOCATIONS OF CONSTANT HEAD NODES 
ALONG THE PERIMETER 
NOTE : THE PERIMETER IS THE ONLY LOCATION FOR A SOURCE OR A SINK 
THAT IS - - A HIGH CONSTANT HEAD OR A LOW CONSTANT HEAD 

1100 C READ THE TOP ROW 
1110 READ<5 , 336l <ICC2, Jl,J=2,NCOLM1l 
1120 336 FORMAT (16I5l 
1130 C READ THE BOTTOM ROW 
1140 REi>.D<5, 3361 C I CCNROWMl. Jl , J =2 , NCOLMl l 
1 150 C READ THE LEFT SIDE 
1160 READC5. 336l <IC<I . 21. I=3. NROWM2) 
1170 C READ THE RIGHT SIDE 
1180 READ ( 5, 336 l <ICC I , NCOLMl l , I=3, NROWM2) 
11 90 c 
1200 c 
12 10 c 
1220 
1230 c 
12 40 
1250 c 

READ HEAD VALUES ALONG THE PERIMETER 
READ TOP ROW 

READC5,350l CHC2,Jl.J=2,NCOLM1) 
READ THE BOTTOM ROW 

READ<5 , 350l <H<NROWM1,Jl,J=2 , NCOLM1l 
READ THE LEFT SIDE 

READC5,350) CHCI.2) , I=3.NROWM2J 
C READ THE RIGHT SIDE 

1260 
1270 
1280 
1290 
1300 c 

READ C5,350l <H<I . NCOLMlJ, I=3, NROWM2l 
3 50 FORMAT C8Dl0 . 3) 

1310 C ECHO CHECK OF INPUT PARAMETERS 
1320 c 
1330 130 WRITEC6, 140 ) NROW,NCOL,EC , ITMAX 
1340 140 FORMAT C'0 '. 4X , ' #OF ROWS = ' ,T25,I5,/,5X, ' #OF COLUMNS ='. T25. I5,/ 
1350 $// /, 5X , 'CLOSURE ERROR CRITERIA= ' • E16. 5 , 5X, 'MAXIMUM ITERATIONS 
13,'JO $ = '. I 5 ) 
1370 WRITEC6, 1481 CONH.CONK. ELEC.MINI.STRF, FLOW, SKIP . WARP 
1380 148 FORMAT < ' 0',/ , 5X, ' PROBLEM OPTIONS SPECIFIED : ',2X,10A8l 
1390 IF<SKIP . EG . CHECK<?>> GO TO 215 
1400 WRITEC6 , 150> 
1410 WRI TEC6, 160> CXD (J) , J=l. NCOL> 
1420 150 FORMAT < ' O', /, 5X , 'DELTAX NODAL VALUES') 
1430 160 FORMAT C'0', 4X.10F12. 1/C5X.10F12. lll 
1440 WRITE <6. 170 > 
1450 WR I TE C6 , 160) CYDC I >. I= l. NROWl 
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170 FORMAT < 'O', 5X , 'DELTAY NODAL VALUES ' > 
215 WRITEC6, 220> 
220 FORMAT < '0 ' , SX, 'ANISOTROPY RATIO KH/KV' l 

WRITE< 6, 160) <ANISO< I>, I=-1 , NROWl 

C WRITE AX AND AY 

1460 
1470 
1480 
1490 
1500 
1510 
1520 c 
1530 
1540 
1550 
1560 
1570 
1580 
1 590 
1600 
1610 c 
1620 c 

2 50 

260 

2 5 5 

IF<SKIP . EG. CHECK<7>> GO TO 255 
WRITE(6, ;;?SOI 
FORMAT< ' O' , 5X, · 'AX VALUES ' ) 
WRITE<6, 1601 CAX<J>.J•2,NCOLl 
WRITEC6,260l 
FORMAT < 'O', 5X, 'AY VALUES') 
WRITE< 6, 1601 < AY< I l, I=2, NROWl 
CONTINUE 

16 30 
1640 
1650 
1660 
1670 
16 80 
1690 
170 0 
1710 
1720 
1730 
17 40 
1750 
1760 
1770 
1780 
1790 
1800 
1810 
1820 
1830 
1840 
1850 
186 0 
1870 
1880 
1890 
1900 
191 0 
192 0 
1930 
1940 c 
1950 c 
1960 
1970 
19 8 0 
19 90 
200 0 
2 010 
2020 
2030 
2 040 
2050 

READ IN THE NUMBER OF SOIL STRATA ANO REGUESTED SIMULATIONS 
READ<5,96l LAYERS,NOSIM 
DO 55 L=1 , LAYERS 
READ<S,S3lLAYER<Ll.LAYLU(Ll.LAYHUCLl 

c 

53 FORMAT <3I10.2F10. 31 
55 CONTINUE 

DO 3000 NSIM=l,NOSIM 
NOONE=O 
NOTWO=O 
NOTHRE=O 
NOFOR=O 
NOFIV"'O 
NOSIX"'O 
NOSEV=O 
NOEGT"'O 
NONIN"'O 
NOTEN"'O 
NOGTN"'O 
WRITEC6,97l NSIM,NOSIM 

97 FORMAT ( '1',/ / ,5X, ' SIMULATION NUMBER', I4, lX, 'OF', I4l 

C THE K VALUES ARE ASSUMED TO EACH NODE ON THE BASIS OF THE TYPE 
C OF P . D. F . ASSUMED . IF IS0,,,1,K: A CONSTANT; IF IS0,,,2,K IS UNIFORM 
c DIST . i IF ISO =3.K IS LOGNORMAL; IF IS0=4.EXPONENTIAL; IF IS0~5 . 

C K IS READ IN AT EACH NODE; IF ISO=O, WE HAVE VERTICAL STRATA. 
c 

IF < ISO. EG. 1 l GO TO 80 
IF< ISO. EG. 21 GO TO 91 
IF CISO. EG. 31 GO TO SO 
IF<ISO. EG. 41 GO TO 84 
IF<ISO. EG. S> GO TO 60 

C OTHERWISE 
READ VALUES FOR A VERTICALLY LAYERED DETERMINISTIC MODEL 

73 FORMATC2I10,F10 . 21 
c 
C THE MODEL IS VERTICALLY LAYERED 

78 DO 7 9 IL=1 , LAYERS 

2060 c 

READCS , 73> LAYLO,LAYHI , PERM 
DO 79 I=2,NROWM1 
DO 79 J =LAYLO,LAYHI 
~~(I. J l=PERM 

79 CONTINUE 
GO TO 95 

2070 C HYDRAULI C CONDUCTIVITY VALUES HAVE A LOG NORMAL DISTRIBUTION 
2080 C WITHIN UP TO 10 LAYERS IF REGUESTED 
2090 50 CONT I NUE 
2100 DO 57 N=l , LAYERS 



2110 
2120 
2130 
2140 
2150 

2160 
2170 
2180 
2190 

,2195 
2200 
2210 
22::!0 
2 222 
222 4 
222 6 
2 230 
2240 
2250 
2 2 60 
2262 
2263 
2265 
2266 
2 267 
2270 
2 280 
2 290 
2300 
2310 
2320 
2330 c 
2340 
2350 
2360 
2 3 7 0 
2372 c 
237 3 
237 5 c 
2380 
239 0 
2400 
2402 
2404 
24 10 
2420 c 
2430 c 
244 0 c 
2450 c 
2460 
2470 
2 480 
2'1 '70 
2 500 
2510 
2520 
2 530 
2 540 
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IF< NSIM. NE . 1 l GO TO 58 
READ<5,23lLAYER<N>,CONMN<Nl.SD<NJ,ETA<N>,ALPHAX<N),ALPHAY<N> 
IF<N. NE. 1) GO TO 76 
WRITE<6.51> LAYERS 

76 WRITE<6,65l LAYER<N>.LAYLU<N>.LAYHU<N>.CONMN<N>,SD<N>.ETA<Nl. 
$ALPHAX<N>.ALPHAY<N> 

58 LAYLO=LAYLU<N> 
LAYHI=LAYHU<N> 
MEAN=CONMN<N> 
SDEV=SD<N> 
ETAN=ETA<N> 
ALFAX=-ALPHAX<N) 
ALFAY=-ALPHAY<N> 
NOROWS=LAYHI-LAYLO+l 
NP=NOROWS*NCOLM2 
NLASR=<NOROWS-ll*NCOLM2+1 
SUMK=O.O 
RECIPK=O . 0 
PRODK=O. 0 
SUMDIF=O. 0 
IAINV=300 
IA=300 
NN=300 
MN=300 
TOL=O. 0 

51 FORMAT ( 'O', /, 5X, 'HYDRAULIC CONDUCTIVITY IS LOG-NORMALLY DISTRIBUT 
$ED IN'. I4 . ' LAYER<Sl ') 

65 FORMAT ( //, sx. 'LAYER" I4. 2x. , ; INITIAL ROW IS,. I4. 2x. 'LAST ROW IS' 
$,I4 . 5X, 'EXPECTED MEAN=',F10. 4.5X. '.STD. DEV. =',Fl0.4, 
$ ' WITH ETA='. F10. 4, //, 7X, 'AUTOREGRESSIVE PARAMETERS ARE ' , FlO. 4 , 
$'IN X DIRECTION AND', FlO. 4, 'IN Y DIRECTION') 

NOW CONVERT SDEV AND MEAN TO LOGARITHMIC VALUES,SDVLNK & AMNLNK 
COVKSG=<SDEV/MEANl**2 
VARLNK=ALOG<COVKSG+l . 0) 
SDVLNK=SGRT<VARLNK> 
AMNLNK=ALOG(MEANl-0 . 5*<VARLNKl 

INITIALLY SET ETAN=SDVLNK 
ETAN=SDVLNK 

GENERATE THE EPSILON MATRIX, {E}, AND PREMULTIPLY BY ETA 
DO 1 52 I= L NP 
YFL=GGNGF<DSEED> 
EPSILN(Il=ETAN*YFL 
WRITE<6. 194l I, EPSILN< I l 

194 FORMAT(!/, 7X, ItO. 2Fl0. 5l 
152 CONTINUE 
GENERATE A WEIGHTING MATRIX <WT> AND AN IDENTITY MATRIX <I> 
AUTOMATICALLY GENERATE MATRIX TO BE INVERTED <<Il-<WTll=(Wl 
I NITIALLY SET ALL VALUES ON THE DIAGONAL=1.0 , ALL OTHERS=O. 0 

DO 1 54 L= 1. NP 
DO 1 54 M= L NP 
IF ( L. EG . Ml GO TO 176 
W<L , Ml=O. 0 
GO TO 154 

176 W<L.Ml = l . 0 
1 54 CONTINUE 

DO 155 L=L NP 
NCOLML=NCOLM2+L 



2550 
2560 
2570 
2580 
2590 
2600 c 
2610 
2620 c 
2630 
2640 c 
2650 
2660 c 
2670 
2680 
2690 
2700 
271 0 c 
2720 
2730 
2740 
2750 
2760 c 
27 70 
2780 c 
2790 
2800 
2810 
2820 
2830 
28 40 c 
2850 c 
2860 
2870 
288 0 
2890 c 
2900 
2910 
2920 
2930 
2940 c 
29 50 
29 60 
2970 
2980 c 
2990 
3000 c 
30 10 
3020 
3030 
3040 
3050 c 
3060 
3070 
3080 
3090 c 
3100 
3110 c 
3120 
31 30 
3140 
3 150 
3 160 c 
31 70 
3 180 
3 190 

NCLMP2s NCOLM2*2 
NRUP=L-NCOLM2 
NRDN=L+NCOLM2 
NCOLR=L+l 
NCOLL=L-1 
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DETERMINE IF IN THE UPPER ROW 
IFCL. EG . ll GO TO 158 

DETERMINE IF IN THE MIDDLE OF THE UPPER ROW 
IFCL. LT. NCOLM2l GO TO 157 

DETERMINE IF WE ' RE IN THE UPPER LEFT HAND COR.NER 
IF<L. EG . NCOLM2l GO TO 156 

WE ' RE NOT IN THE UPPER ROW.CHECK FIRST COLUMN 
N1COL=<L-1l/NCOLM2 
CHKlCL= <FLOAT<LJ-1. Ol/CFLOATCNCOLM2ll 
CHKMTH=CHK1CL-FLOATCN1COLl 
IF<CHKMTH. EG . 0 . OJ GO TO 161 

WE'RE NOT IN THE LEFT HAND COLUMN, CHECK RIGHT HAND COLUMN 
NLASCL=L/NCOLM2 
CHKLCL=FLOATCLJ/FLOAT<NCOLM2l 
CHKMLS=CHKLCL-FLOAT<NLASCLJ 
IF<CHKMLS. EG . 0 . OJ GO TO 163 

~JE'RE NOT IN THE RIGHT COLUMN, CHECK LAST ROW 
IF<L. GT . NLASR> GO .TO 165 

WE'RE NOT IN LAST ROW SO WE MUST BE. AT AN INTERIOR POINT 
WCL.NCOLLJ=ALFAX/4. 0 
WCL,NCOLRJzALFAX/4 . 0 
W<L.NRUPl=ALFAY/4 . 0 
WCL,NRDNl=ALFAY/4 . 0 
GO TO 155 

~IE ' RE AT THE UPPER LEFT HAND CORNER 
158 WCL, 2l=ALFAX/2. 0 

WCL,NCOLMll=ALFAY/2. 0 
GO TO 155 

WE'RE IN THE MIDDLE OF THE UPPER ROW 
157 WCL,NCOLLJ=ALFAX/3 . 0 

WCL,NCOLRl=ALFAX/3. 0 
W( L,NRDNl =ALFAY/3 . 0 
GO TO 155 

WE ' RE IN THE UPPER RIGHT HAND CORNER 
156 WCL,NCOLLl=ALFAX/2. 0 

WCL,NRDNJ=ALFAY/2 . 0 
GO TO 155 

~JE ' RE IN THE LEFT HAND COLUMN 
161 IFCN1COL.EG. NROWM3l GO TO 162 
~IE ' RE NOT IN THE LOWER LEFT CORNER 

WCL.NRUPl=ALFAY/3. 0 
WCL.NRDNJ=ALFAY/3 . 0 
WCL , NCOLRJ=ALFAX/3. 0 
GO TO 155 

WE ' RE IN THE LOWER LEFT COLUMN 
162 WCL, NRUPl=ALFAY/2 . 0 

WCL.NCOLRl=ALFAX/2.0 
GO TO 155 

WE'RE IN THE RIGHT HAND COLUMN, CHECK IF AT LOWER CORNER 
163 IF CNLASCL. EG.NROWM2l GO TO 164 
WE ' RE NOT IN THE LOWER RIGHT CORNER 

WCL,NRUPl•ALFAY / 3 . 0 
WCL,NRDN>~ALFAY/3 . 0 
WCL.NCOLLl=ALFAX/3. 0 
GO TO 155 . 

~JE ' RE IN THE LOWER RIGHT CORNER 
164 WCL.NR UP l =ALFAY/2 . 0 

WC L, NCOLL l =ALFAX / 2 . 0 
GO TO 155 



3200 c 
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WE'RE IN THE INTERIOR OF THE LOWER ROW 
165 W<L,NCOLL>=ALFAX/3. 0 

WCL,NCOLRl•ALFAX/3. 0 
WCL,NRUP>=ALFAY/3. 0 

155 CONTINUE 
C PRINT OUT THE MATRIX THAT IS TO BE INVERTED 

WRITEC6, 178> LAYER<N> 

3210 
3220 
3230 
3240 
3250 
3260 
3270 
3280 
3290 
3300 
3310 
3320 
3330 c 
3332 

178 FORMAT <'1',//,5X, 'THE MODIFIED WEIGHTING MATRIX,«I>-<W>>.FOR LAY 
$ER', I4.2X, 'AS GENERATED IS') 

DO 179 L=l. NP 
179 WRITEC6,200) L, <W<L,Ml.M"'l.NP> 

C NOW INVERT THE MATRIX TO DEVELOP THE FILTER MATRIX 
CALL LGINF <W, IA,MN,NN,TOL,FILTR, IAINV,S,WK, IER> 

C NOW WRITE OUT THE FILTR MATRIX AND STORE ON DISK 
WRITEC6, 173) LAYERCN> 

173 FORMAT C 'O ', 5X , ' THE FIL TR MATRIX FOR LAYER '.I4, 
$2X, 'AS GENERATED IS ' > 

DO 181 L=l, NP 
181 WRITEC14.201> L, CFILTRCLM>.M=l.NP> 

OD 98 L=l. NP 
98 WRITEC6, 203) L, CFILTRCL, Ml. M=l, NP> 

WRITEC6, 182) IER 
182 FORMATC//,7X, IlO> 

3334 
3336 
3338 
3340 
3345 
3347 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 

C NOW MULTIPLY FILTER MATRIX BY EPSILON ANO THESE ARE LOG OF K 
00 183 L=l. NP 

343 0 
3440 
34 50 c 
3460 
3470 
3480 
3490 
350 0 c 
351 0 
3520 c 
3580 
3540 
3550 
3560 
3570 
3580 
3590 
3600 
3610 
3620 
3630 
3640 
3650 
3660 
3670 
3680 

YEGLK=O. 0 
DO 683 M= 1. NP 

683 YEGLKzYEGLK+FILTRCL,Ml*EPSILN(M) 

WRITEC6.23l L.YEGLK 
183 LNK < L> =YEGLK 

M=O 
DO 54 I=LAYLO,LAYHI 
DO 54 J=2.NCOLM1 
M=M+l 

THEN CONVERT NCO,SOEV> DEVIATE TO N(MEAN,SOEV> DEVIATE 
KLOG=LNKCM>+AMNLNK 

VALUE KLOG= LN OF K 
K<I. J>=EXPCKLOG> 
YEGLK=LNKCM> 
YYK=KC I. J) 

WRITEC6.23> M,YEGLK.KLOG,YYK 
SUMK=SUMK+K(I,J> 
RECIPK=RECIPK+Cl . /K(I,J>> 
PRODK=PRODK+ALOG10(K<I,J)) 

54 CONTINUE 
XLAYHI=FLOATCLAYHI> 
XLAYLO=FLOATCLAYLQ) 
XCOLM2=FLOATCNCOLM2) 
ARITHK=SUMK/CCXLAYHI-XLAYLO+l. O>*XCOLM2> 
HARMK=C <XLAYHI-XLAYLO+l. Ol*XCOLM2l/RECIPK 
GEOMK=lO**CPROOK/<(XLAYHI-XLAYLO+l. O>*XCOLM2>> 
DO 57 I=LAYLO,LAYHI 
DO 57 J=2,NCOLM1 

3690 C NOW 
3700 

CALCULATE THE ACTUAL STANDARD DEVIATION AND COEF OF VARIATION 
DISPER=CKCI,J>-ARITHK>**2 

3 7 10 SUMDIF=SUMDIF+DISPER 
3720 VARK=SUMDIF/CCXLAYHI-XLAYL0+1.0>*XCOLM2l 
3730 STDEV=SGRTCVARK> 
3740 COV=STDEV/ARITHK 



3750 c 
3760 
3770 
3780 
3790 
3800 
3810 
3820 
3830 
3840 
3850 
3860 
3870 
3880 
3890 c 
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CONVERT CONDUCTIVITIES FROM FT/D TO CH/SEC 
CARITH=ARITHK*. 0003528 
CHARH=HARHK*. 0003528 
CGEOH=GEOMK*. 0003528 
IFCI . LT . LAYHI> GO TO 57 
IFCJ. LT . NCOLM1> GO TO 57 
WRITEC6,56l ARITHK,CARITH,GEOMK,CGEOM,HARMK,CHARM 

56 FORMAT (//, 16X, 'ARITHMATIC MEANz'.FlO. 4, 1x, 'FT/D', 1x, '='. 1X,F10. 6, 
$1X, 'CM/SEC',/,16X, 'GEOMETRIC MEAN=',F10. 4,1X, 'FT/D',lX, ' =',1X,F10. 
$6, 1x, 'CM/SEC',/, 16X, 'HARMONIC MEAN•', F10. 4, 1x, 'FT/D'. 1x. ' =', 1x, F10 
$ . 6, 1X, ' CM/SEC'> 

WRITEC6, 1111> STDEV,COV 
57 CONTINUE 

GO TO 95 

3900 C CONDUCTIVITIES ARE READ IN AT EACH NODE 
3910 60 READC5 , 40lCCKCI.J>.J=1.NCOL>. I=1,NROW> 
3920 GO TO 95 
3 930 c 
3940 C HYDRAULIC CONDUCTIVITY VALUES ARE ALL THE SAME 
39 50 80 DO 82 I=l.NROW 
3960 DO 82 J=l.NCOL 
3970 82 KCI,J>= PERM 
3 980 GO TO 95 
3990 c 
4000 c 
4010 c 
4020 c 
4030 
4040 
4050 
4060 
4070 
4080 
4090 
4100 
4110 
41 20 
4 130 
4 140 
41 5 0 
4160 
41 70 
4 180 
4190 
4200 
4210 
4 220 
4230 c 
4240 c 
4250 c 
4260 
4270 
4280 
4290 
4300 
4 310 
4320 
4 330 
4 3 40 
4350 
4360 
4370 
4380 
4390 
4400 
4'1 10 
4420 

HYDRAULIC CONDUCTIVITY 
OVER THE ENTIRE REGION 

VALUES HAVE AN EXPONENTIAL DISTRIBUTION 

CONMNCL> =MEAN OF THE EXPONENTIAL DISTRIBUTION 
84 CONTINUE 

DO 88 L=l,LAYERS 
IFCNSIM. NE . 1 > GO TO 87 
READC5,23> LAYERCL>.CONMNCL> 
IFCL. NE. 1 > GO TO 83 
WRITEC6,85> LAYERS 

83 WRITEC6 , 81> LAYERCL>.LAYLUCL>.LAYHUCL>.CONMNCL) 
81 FORMAT C//,5X.'LAYER'.I4,2X,'; INITIAL ROW IS'.I4.2X,'LAST ROW IS ' 

$, I4 . 5X, 'EXPECTED MEAN=', F10 . 4) 
87 LAYLO~LAYLUCL) 

LAYHI =LAYHUCL> 
MEAN:-CONMNCL) 

85 FORMAT ( 'O '. / , 5X, 'HYDRAULIC CONDUCTIVITIES FOLLOW AN EXPONENTIAL 
$DISTRil3UTION IN ',I4 . 2X, 'LAYERCSl') 

DO 88 I=LAYLO. LAYHI 
DO 88 J=1,NCOLM1 

86 YFL~GGEXNCDSEED,MEAN> 
KC I. Jl=YFL 

88 CONTINUE 
GO TO 95 

THE HYDRAULIC CONDUCTIVITY VALUES ARE UNIFORMLY DISTRIBUTED 
WITH A DIFFERENT DISTRIBUTION WITHIN EACH OF THE LAYERS 

91 CONTINUE 
DO 93 L=1. LAYERS 
IFCNSIM. NE . 1) GO TO 89 
READC5,96lLAYERCL> , UNILUCLl,UNIHUCL> 
WRITEC6.94l LAYERCL>.UNILUCL>.UNIHUCL>.LAYLUCL>.LAYHUCL) 

89 XER=lOOO. 
IFCUNIHUCL> . LE . 100) XER = lOO . 
LAYLO=LAYLUCL> 
LAYHI=LAYHUCL> 
DO 93 I=LAYLO,LAYHI 
DO 93 J=2, NCOL~11 

9 2 YFL=GGUBFSCDSEED> 
NUM:-INTCYFL*XER) 
IF CNUM . LT. UNILUCL)) GO TO 92 
IFCNUM . GT . UNIHUCL>> GO TO 92 

KC I ,J l=FLOATCNUM> 
93 CONTINUE 
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4430 
4440 
4450 
4460 
4470 
4480 c 
4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 

94 FORMAT < '0 ', /, 5X, 'LAYER', I4, 2X, 'HYDR. COND. RANGE FOR UNIFORM DIS 
lTRIBUTION='· I6.2X. 'TO ', I6. 1x. 'FT/D', 1x. ' FOR ROWS'. 1x. I2, 1x. 'TO' 
$, 1x . I2l 

96 FORMAT <7I10) 
C SET VALUE OF K IN THE LEFT COLUMN EQUAL TO 0 

95 DO 100 I=1 , NROW 
K(I. ll"'O. 0 

C SET VALUE OF K IN THE 
c 

100 K(I,NCOL>=O . 0 
DO 110 J=l,NCOL 

RIGHT COLUMN EQUAL TO 0 

C SET VALUE OF K IN THE UPPER ROW EQUAL TO 0 
c 

K< L Jl=O. 0 
4580 C SET VALUE OF K IN THE LOWER ROW EQUAL TO 0 
4590 c 
4600 110 K<NROW,Jl=O. 0 
4610 c 
4620 c 
4630 C COMPUTE KY(I,Jl VALUES 
4640 C THESE ARE THE NODAL VALUES TO BE USED IN COMPUTING 
4650 C KHARM<I,J,2> --THE CONNECTION VALUE IN THEY-DIRECTION 
4660 DO 112 I=2,NROWM1 
4670 DO 112 J=2,NCOLM1 
4680 112 KY<I,Jl=KCI,Jl/ANISOCil 
4690 C CONVERT HYDRAULIC CONDUCTIVITIES TO ELECTRICAL CONDUCTIVITIES IF SPECIFIED 
4700 IF<ELEC. NE. CHECK<3llGO TO 117 
4710 DO 115 I=2,NROWM1 
4720 DO 115 J=2,NCOLM1 
4730 KYCI,Jl•l/(((KY<I,Jl*. 0003528)/5. 13E-06l**· 7) . 
4740 115 KCI,Jl=ll<<<K<I,Jl* . 0003528!/5. 13E-06l**· 7l 
4750 c 
4760 C COMPUTE THE ARITHMATIC.HARMONIC AND GEOMETRIC MEANS OF THE 
4770 C HYDRAULIC CONDUCTIVITY DISTRIBUTION 
4·190 c 
4790 117 SUMK=O. 0 
4800 RECIPK=O. 0 
4810 PRODK=O. 0 
4820 
4830 
4840 
4850 
4860 
487 0 
4880 
4890 
4900 
491 0 
4920 
4930 
4940 
4950 
4960 
4970 
4980 
4990 

OD 119 I=2,NROWM1 
DO 119 J=2,NCOLM1 
SUMK=SUMK+K(I , Jl 
RECIPK=RECIPK+<l . /K(I,Jll 
PROOK=PRODK+ALOGlO<K<I,Jll 

119 CONTINUE 
XROWM2=FLOAT<NROWM2l 
XCOLM2=FLOAT<NCOLM2l 
ARITHK=SUMKl<XROWM2*XCOLM2l 
HARMK=<XROWM2*XCOLM2l/RECIPK 
GEOMK•lO**<PRODK/CXROWM2*XCOLM2ll 

C NOW CALCULATE THE ACTUAL STANDARD DEVIATION AND 
SUMDIF=O. 0 
DO 121 I=2,NROWM1 
DO 121 J=2,NCOLM1 
DISPER=<K<I,Jl-ARITHKl**2 
SUMOIF=SUMDIF+DISPER 

121 CONTINUE 
5000 VARK=SUMDIFl<XROWM2*XCOLM2l 
5010 STOEV=SQRT<VARK> 
5020 COV=STDEV/ARITHK 

COEF OF VARIATION 

5030 c 
5040 c 
5050 c 
5060 
5070 
5080 

HYDRAULIC CONDUCTIVITY VALUES ARE WRITTEN ONTO A DISK DATA SET 
TO BE USED WITH PLOTTING 

IF<CONK . NE . CHECK(!)) GO TO 105 
DO 105 I=2.NROWM1 
00 105 J=2,NCOLM1 



5090 
5100 
5110 c 
5120 
5130 
5140 
5150 
5160 
5170 
5180 
5190 
5200 
5210 
5220 
5230 
5240 
52 50 
5260 
5270 
5280 

c 

WRI TE<l0.2110 ) K<I , J> 
105 CONTINUE 

IF<NSIM. GT. 1l GO TO 3000 
175 WRITE<6 , 180l 

260 

180 FORMAT < '1 ' , SX, ' HORIZONTAL CONDUCTIVITY VALUES AT NODE CENTER ' l 
DO 190 I=l,NROW 

190 WRITE<6 . 200) I. <K<J.J),J=1,NCOL) 
200 FORMAT < 'O ', I3 , 2X, 10F12. 4/(6X , 10F12. 4)) 
201 FORMAT < I3, 2X , 6F12. 10/<5X, 6F12. 10) l 
203 FORMAT ( '0 ' , I3, 2X, 10F12. 9/ < 6X, 10F12. 9) l 
210 FORMAT ('0' . I2.2X.10I10/(5X.10I10ll 

1111 FORMAT (//, 5X. ' ACTUAL STANDARD DEVIATION OF HYDRAULIC CONDUCTIVITY 
$ DISTRIBUTION IS ' • F10. 4 , //, 5X, ' ANO THE COEFFICIENT OF VARIATION I 
$S ' , F10. 4) 

2110 FORMAT<30X , F10. 5l 

3000 CONTINUE 
STOP 
ENO 

2. STKBLKNP 

100 C234 56789012345678901234567890123456789012345678901234567890123456789012******* 
10!) c 
110 c 
120 c 
130 c 
140 c 
150 c 
1 ::il c 
152 c 
153 c 
155 c 
160 c 

THIS IS FIRST PART OF A PROGRAM WHICH SOLVES 
2-0 STEADY, HETEROGENEOUS, ANISOTROPIC FLOW THROUGH POROUS MEDIA 

USING FINITE DIFFERENCE WITH VARIABLE GRID SPACINGS 
AND THE ITERATIVE ALTERNATING DIRECTION IMPLICIT PROCEDURE 
FILE NAME IS STKBLKNP AND PROGRAM CONTINUES IN FILE QWCOR2NP 

FILE SAME AS STKBLK EXCEPT PRINTOUT IS SEVERELY LIMITED 
SIMILAR TO QWCOR1 EXCEPT THE OUTER ROWS ANO COLUMNS ARE DELETED 
AFTER SHAVING , THE BLOCKS ARE STACKED ENO TO ENO ANO OR ON TOP OF 
ONE ANOTHER . THIS PROGRAM TAKES FILTR MATRIX FROM DSN FILE. 

165 c 234567890 12345678901234567890123456789012345678901234567890123456789012****** * 
170 C SPECIFICATIONS 
180 INTEGER CHECK , CONH,CONK, ELEC,MINI,STRF, FLOW,SKIP , UNILU<lO>.UNIHU 
190 $( 10) 
200 I NTEGER EXLO,EXHI,WARP , PTPT,UPDISC 
205 INTEGER NTREB <400) , NWAV(400>.NBSIM<400l 
210 REAL. K. KHARM,LENGTH,KHEQFO,KVEQFO, KVEQCS,KHEQCS,HARMK,MEAN , KLOG 
220 REAL KY, LNK <300) , XLNK<52l,AMEAN<60l , ASOVC60l,RH01C60) , ARHOC60.4l 
~22 R~AL TTHWC400 >. TT60C400l , TT70(400>.TT80C400l , TT90 C400>.RH04C60) 
2~ · " EAL FILTRC300,300>.PARTKC32,62> , RH02<60>.RH05C60>.HOSMNC32.62l 
226 REAL TOTMC400l . XLOCHT<400l,YLOCHTC400l , YLOCENC400>. XISCALClOO>. 
227 $ CC STATC100, 10) , 
228 $HDSUP <62 . 100>.HOSON<62, 100), 
229 $STY C400l , STRFMNC32, 62>.CSTATSC100, 17>.HCSTATC100,9>.YISCALC100l 
230 REAL RH03<60>.ARHOAC25,20l,AMEANAC60) , ASOVAC60l,RHOAC25) 
231 DOUBLE PRECISION H.HNEW. A. B.c.D.E.F.G.QPARM.QKNOWN.DABS. HOLD 
2 40 DOUBLE PRECISION ITPARM 
2 50 REAL*8 DSEED/992299. DO/ 
260 DIMENSION KHARMC52. 62,2>.H<52.62l,KC52,62). XDC62),YDC62l , AX <62) , 
270 $AY<52 >. HEADIN<20>.ANIS0<52>.CHECKC1Q),X(52,62J,Y<52.62l,ERR(300l 
280 DIMENSION LAYERC10>.LAYLUC10>.LAYHU<lOJ , CONMN<lO>.SDC10) 
290 DIMENSION ETA<10>.ALPHAX<10>.ALPHAYC10>.EPSILNC300l . 
300 DIMENSION G<62>. F<62>. IC<52, 62). HNEWC62>. ITPARMC62l. HOLOC52, 62), 
31 0 $STRFUNC52.62>.HSTRAT <S2. 62>.KYC52,62> 
315 DI MENSION VXC 52 , 62>.VY C52.62) 
31 7 DIMENSION VALYC100>.VALKC100) , RH0<100) 
320 DATA CHECK/ ' CONK ' , ' CONH ' , 'ELEC ' , 'MINI', 'STRF ' , 'VERT ' , 'SK I P ', 
330 1 ' I/ ' , ' WARP ' , ' PTP T ' I 
340 READ<5 , 10> HEADIN 
350 10 FORMAT <20A4 1 
360 WRITE C6, 201 HEADIN 



370 
380 
390 
400 
410 
420 
430 
440 
450 
460 
470 
480 
490 
500 
310 

c 
c 
c 
c 
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WRITE(6, 25) DSEED 
20 FORMAT ('1',20X.20A4> 
21 FORMAT (10F12. 5) 
22 FORMAT <1F5 . o, 16F8. 5) 
23 FORMAT <1I10.6F10. 5> 
24 FORMAT <3I6.2X,6F10. 5> 
25 FORMAT < 'O', /, 5X. 'DSEED=', F12. O> 
26 FORMAT <F5. 0.3F5. 3, 10F6. 3) 
27 FORMAT < 1F5. o, 8F9. 5) 
28 FORMAT C2I4.9F8. 2l 
29 FORMAT C3I6,2X, 10F10. 4, I9l 

INPUT PARAMETERS 
NOTE**** ALL INPUT PARAMETERS ARE NODAL 

520 READ<5,30> NROW,NCOL,EC, ISO, PERM 

VALUES**** 

530 READ(5,35> CONK,CONH,ELEC,MINI,STRF.FLOW.SKIP.WARP 
540 READ(5,30> LSTRM.LEGUIV,DHEAD 
550 C LSTRM IS THE COLUMN <FOR THE HORIZONTAL FLOW CASE, FLOW=HORI> 
560 C OR THE ROW <FOR THE VERTICAL FLOW CASE, FLOW=VERT> 
570 C OR THE COLUMN OF THE CONSTANT HEAD POINT ON THE 
580 C LEFT SIDE OF THE UPPER BOUNDARY 
590 C WHERE THE TOTAL FLOW IS COMPUTED FOR THE USE OF NONDIMENSIONALIZING 
600 C THE STREAM FUNCTION *** IT IS USED ONLY WHEN CHECK<5lsSTRF 
610 c 
620 c 
630 ;:: 
640 c 
650 c 
660 c 

LEGUIV IS THE COLUMN CFOR THE HORIZONTAL FLOW CASE, FLOW=HORI> 
OR THE ROW <FOR THE VERTICAL FLOW CASE, FLOW=l/EHT> 

WHERE THE TOTAL FLOW IS COMPUTED TO BE USED IN SOLVING 
FOR THE EGUIVALENT CONDUCTIVITY <RESISTIVITY> OR WHERE THE 
WARREN AND PRICE TECHNIGUE IS APPLIED 

READC5,40l WPFACT 
NROWMl=NROW-1 
NCOLMl=NCOL-1 
NROWM2=NROW-2 
NCOLM2=NCOL-2 
NCOLM3=NCOL-3 
NROWM3=NROW-3 
NROWP2=NROW+2 
NCOLP1=NCOL+l 
NCOLP2=NCOL+2 

670 
680 
690 
700 
710 
720 
7 30 
7 40 
750 
760 
770 
780 
790 
800 
810 
820 
830 
840 
850 
860 
870 
880 
890 

C NOTE **** THE VALUE READ IN FOR HMIN IS THE LOWEST ITERATION 
C PARAMETER AND IS USED ONLY IF MINI WAS SPECIFIED IN THE OPTIONS 

READ<5,32l ITMAX.NUMPAR,HMAX,HMIN 
30 FORMAT <2I10, 1F10. 5, I10,F10. 5) 
32 FORMAT <2I10.6F10. 5) 
33 FORMAT <3I10.3F10. 5> 
34 FORMAT <4I10,4F10. 5) 
35 FORMATC16CA4, lX>> 

READC5,40) <XD(J),J=l,NCOL) 
40 FORMAT <8F10 . 1> 

READC5,40) <YD<I>, I=l.NROW> 
C COMPUTE AX AND AY 
C AX= X-DISTANCE FROM ONE NODE CENTER TO THE NEXT 
C AY= Y-DISTANCE FROM ONE NODE CENTER TO THE NEXT 900 

910 c 
920 
930 
940 
950 
960 c 
970 c 

DO 42 J=2,NCOL 
42 AXCJ>= <XD(Jl+XD<J-1))/2 . 0 

DO 44 I=2,NROW 
44 AYCI>=<YD<Il+YDCI-lll/2 . 0 

980 C READ ANISOTROPY AT EACH ROW 
990 C VALUE IS THE RATIO OF KH/KV 
1000 120 READC5, 40l CANISOC I>. I=l. NROWl 
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1010 c 
C SET BOUNDARY CONDITIONS 1020 

1030 
1040 
10:50 
1060 
1070 
1080 
1090 
1100 
1110 
1120 
1130 
1140 c 
11:50 c 
1160 c 
1170 c 
1180 c 
11 <70 c 
1200 c 

C NOTE *** PERIMETER BOUNDARY POINTS CAN BE EITHER CONSTANT HEAD 
C NOTE *** FLOW SHOULD BE FROM LEFT TO RIGHT OR TOP TO BOTTOM 
C I. E. HIGH HEADS SHOULD BE LOCATED AT THE TOP OR LEFT SIDE 
c 
c 
c 

1210 
1220 
1230 c 
1240 

SET 
AND 
325 

ALL HEADS EGUAL TO 
ALL ICCI,J> VALUES 
DO 330 I=1,NROW 

SOME INITIAL VALUE 
TO ZERO 

DO 330 J=1.NCOL 
ICCI,J>=O 
HDSMNCI,J>=O. O 

· 330 HCI,J>= 50.0 

READ LOCATIONS OF CONSTANT 
ALONG THE PERIMETER 
NOTE : THE PERIMETER IS THE 
THAT IS -- A HIGH CONSTANT 

READ THE TOP ROW 

HEAD NODES 

ONLY LOCATION FOR A SOURCE OR A SINK 
HEAD OR A LOW CONSTANT HEAD 

READC5,336> CICC2,J),J=2,NCOLM1l 
336 FORMAT C16I5l 
READ THE BOTTOM ROW 

READC5.336l CICCNROWM1.Jl,J=2.NCOLM1l 
READ THE LEFT SIDE 1250 c 

1260 
1270 
1280 
1290 c 
1300 c 
1310 c 

READC5, 336> CIC< I, 2), I=3, NROWM2l 
C READ THE RIGHT SIDE 

READC5,336l CICCI.NCOLMll, I=3,NROWM2l 

READ HEAD VALUES ALONG THE PERIMETER 
READ TOP ROW 

1320 
1330 c 

READC5,350> CHC2,JJ,J=2.NCOLM1l 
READ THE BOTTOM ROW 

1340 
1350 
1360 
1370 
1380 
1390 

READC5,350) <HCNROWM1,J),J=2,NCOLM1l 
C READ THE LEFT SIDE 

READC5.350> CHCI,2), I=3,NROWM2l 
C READ THE RIGHT SIDE 

READC5,350) <HCI,NCOLM1), I•3,NROWM2l 
3:50 FORMAT C8D10. 3) 

14·00 c 
1410 C ECHO CHECK OF INPUT PARAMETERS 
1420 c 

OR IMPERMEABLE 

1440 
1443 
1447 

140 FORMAT ( 'O', 4X. '* OF ROWS ='· T25. rs./, 5X. '* OF COLUMNS =', T25. IS. I 
$/ , 4X, 'TOTAL DISSIPATED HEAD IS ', F10. 5,' FEET IN ', F10. 5, ' FEET', 
$3X, 'WITH AN AREA OF ',3X,F10. 5,' SGUARE FEET INTO SECTION', 

1450 
1460 
1470 
1480 
1490 
1300 
1510 
1520 
1330 
1340 
1550 
1360 
1370 
1380 
1390 
1600 c 
1610 c 
1620 c 
1630 

$///, 5X, 'CLOSURE ERROR CRITERIA='• E16. 5. , 5X, 'MAXIMUM ITERATIONS 
$=',IS> 

WRITE<6, 148) CONH,CONK,ELEC,MINI,STRF,FLOW,SKIP,WARP 
148 FORMAT C '0', /, 5X, 'PROBLEM OPTIONS SPECIFIED : ' • 2X, 10A8l 

IF<SKIP . EG . CHECK<7>> GO TO 215 
WRITEC6, 150) 
WRITE ( 6, 160> CXDCJ), J=l, NCOL> 

150 FORMAT < 'O ', I, SX, 'DEL TAX NODAL VALUES') 
160 FORMAT C '0 ', 4X, 10F12. 1/ C 5X, 10F12. 1 l) 

WRITE(6, 170) 
WRITE< 6, 160 l <YD CI l, I=1. NROWl 

17 0 FORMAT < 'O ', 5X, 'DEL TAY NODAL VALUES'> 
215 WRITE C6 ,220l 
220 FORMAT < 'O', SX, 'ANISOTROPY RATIO KH/KV'> 

WR I TE < 6, 1 60 l < AN I 50 C I l , I= 1. NR OW ) 

~JR !TE AX AND AY 

IF<SKIP . EQ . CHECKC7ll GO TO 255 
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1640 WRITEC6,2S0) 
1650 250 FORMAT( ·o·.sx. 'AX VALUES') 
1660 WRITEC6, 160) CAX(J),Jz2,NCOL> 
1670 WRITEC6,260> 
1680 260 FORMAT < ' O', SX, 'AV VALUES'> 
1690 WRITEC6. 160><AY<I> , 1=2,NROW> 
1700 255 CONTINUE 
1710 c 
1720 C READ IN THE NUMBER OF SOIL STRATA AND REQUESTED SIMULATIONS 
1725 C USE A VALUE FOR NCFLO ONLY IF FLOW IS FROM THE UPPER BOUNDARY, 
1726 C AND THEN USE THE LAST COLUMN FROM THE LEFT WHERE FLOW IS POSSIBLE 
1730 READCS,96) LAYERS.NOSIM.NRBLKoNCBLK.NCFLOoUPDISC.NCBAR,NRBARB 
1740 C UPDISC IS USED ONLY IF FLOW AT RIGHT SIDE IS TO THE UPPER SIDE, IE. A 
1750 C RESTRICTION TO FLOW EXISTS AT BOTTOM. USE A #>O & NRCUTO IS UPPER ROW # 
1760 C NCBAR IS COL # WITH A BARRIER FROM TOP DOWN TO COL # NRBARB 
1820 DO SS L=l,LAYERS 
1830 READ<S. 53>LAYERCL) , LAYLU<L>,LAYHU<L> 
1840 53 FORMAT C3110,2F10. 3) 
1850 55 CONTINUE 
1860 AVGAMK=O.O 
1870 AVGSDK=O. O 
1880 RH01YM=O . O 
1890 RH02 YM=O . O 
1900 RH03YM=O.O 
1910 ARH01Y=O. O 
1920 ARH02Y=O. O 
1930 ARH03Y=O. O 
1940 R01 1MK=O . O 
1950 R01MKR=O . 0 
1960 ROlMKC =O. 0 
1970 NSKIPS=O 
1975 
1980 
2000 
2010 c 
2020 c 
2030 c 
2040 c 
2050 c 
2060 c 
2070 

c 

NSl~OUT=O 

DO 3500 NSIM=1 , NOSIM 
97 FORMAT < ' 1 ', I I, SX, 'SIMULATION NUMBER', I4, 1 x, 'OF ', I4 > 

THE K VALUES ARE ASSUMED TO EACH NODE ON THE BASIS OF THE TYPE 
OF P. O. F. ASSUMED . IF IS0=1,K= A CONSTANT; IF IS0=2,K IS UNIFORM 
DIST.; IF ISO =3,K IS LOGNORMAL; IF IS0=4,EXPONENTIAL; IF IS0=5, 
K IS READ IN AT EACH NODE; IF ISO=O, WE HAVE VERTICAL STRATA. 

IF C ISO. EQ. 1) 
IF < ISO. EQ. 2) 
IF< I SO. EG. 3) 
IF< ISO. EG . 4) 
IF< ISO. EG. S> 

OTHERWISE 
READ VALUES FOR 

GO 
GO 
GO 
GO 
GO 

TO 80 
TO 91 
TO SO 
TO 84 
TO 60 

A VERTICALLY LAYERED DETERMINISTIC MODEL 

73 FORMATC2I10.F10. 2) 

208 0 
2090 
2100 
2110 
2120 c 
2130 c 
2 (40 c 
2150 
2160 
21 70 
2180 
2 190 
2200 
22 10 
2220 
2230 

C THE 
78 

MODEL ·1s VERTICALLY LAYERED 
DO 79 IL=1,LAYERS 

2240 
22 50 c 
2260 c 
2270 c 
2280 
2290 
2300 
2310 
2320 

RE1~D < S, 73) LAYLO, LAYH(, PERM 
DO 79 I=2,NROWM1 
DO 79 J=LAYLO.LAYHI 
KCI,Jl=PERM 

79 CONTINUE 
GO TO 95 

HYDRAULIC CONDUCTIVITY VALUES HAVE A LOG NORMAL DISTRIBUTION 
WITHIN UP TO 10 LAYERS IF REQUESTED 

50 CONTINUE 
DO 57 N= l. LAYERS 
IF <NSIM. NE . 1) GO TO 58 
READC5 , 23 ) LAYER<N>,CONMN<N>.SDCN> , ETACN>,ALPHAX<N>,ALPHAY<N> 
IF<N. NE . 1 > GO TO 76 



2330 
2340 
2350 
2360 
2370 
2380 
2390 
2400 
2410 
2420 
2430 
2440 
2450 
2460 
2470 
2480 
2490 
2500 
2510 
2 5 20 
2530 
254·0 
2550 
2560 
257 0 
2580 
2590 
2600 
2610 
2620 
2630 
2640 
2650 
2660 
2670 
2680 
2690 c 
2700 
2710 
2 7 20 
2 730 
2740 c 
2750 
2755 
2 760 
2770 
2780 
2785 
2786 
2787 
2788 
2 789 
2 7 90 
2791 
2792 
2793 
2794 
2795 
2 7 96 
2800 
2820 
2830 
2840 
2850 
2860 
287 0 

264 

WRITE(6,51l LAYERS 
76 WRITEC6.65l LAYER<N>,LAYLU<Nl,LAYHUCNl,CONMN<Nl,SD<Nl,ETA<Nl, 

$ALPHAXCNl,ALPHAYCNl 
58 LAYLO=LAYLUCNl 

LAYHI=LAYHUCNl 
LALOM1=LAYL0-1 
LAHIP1:LAYHI+1 
MEAN=CONMN<N> 
SDEV=SDCNJ 
ETAN=ETACNl 
ALFAX=-ALPHAX<NJ 
ALFAY=-ALPHAYCNJ 
NOROWS=LAYHI-LAYL0+1 
NP=NRBLK*NCBLK 
NCDKM1=NCBLK-1 
NCDKM2=NCBLK-2 
NRDKM1=NRBLK-1 
NRBKM2=NRBLK-2 
SUMK=O. O 
RECIPK=O . O 
PRODK=O. 0 
SUMDIF=O. O 
CSTATSCNSIM,2J=O. 0 
CSTATSCNSIM,3l=O.O 
CSTATSCNSIM,4l=O. 0 
CSTATSCNSIM, 15l=O. 0 
CSTATS<NSIM, 16l=O. 0 
CSTATS<NSIM, 17l=O, 0 
XISCAL<NSIMl=XD<N> 
YISCAL<NSIMl=YD<Nl 

51 FORMAT I '0',/,5X, 'HYDRAULIC CONDUCTIVITY IS LOG-NORMALLY DISTRIBUT 
$ED IN', I4, ' LAYER(Sl ') 

65 FORMAT ( //' 5X. 'LAYER.' I4. 2x • • ; INITIAL ROW IS.' I4. 2x. 'LAST ROW IS. 
$, !4, 5X, ' EXPECTED MEAN=', F10. 4, 5X, '.STD. DEV.='. F10. 4, 
$ ' WITH ETA=', F10 . 4, //, 7X, 'AUTOREGRESSIVE PARAMETERS ARE ', FlO. 4, 
$ ' IN X DIRECTION AND'. F10 . 4, 'IN Y DIRECTION' l 

NOW CONVERT SDEV AND MEAN TO LOGARITHMIC VALUES,SDVLNK & AMNLNK 
COl/KSG=<SOEV/MEANl**2 
VARLNK=ALOGICOVKSG+1. Ol 
SOVLNK=SGRTIVARLNKl 
AMNLNK=ALOGIMEANl-0 . 5•CVARLNKl 

I NITIALLY SET ETAN=SDVLNK 
ETAN=O. 95•SDVLNK 
IF <NSIM. NE . 1 l GO TO 163 
WRITEC6, 161) AMNLNK,SOVLNK,ETAN 

161 FORMAT C '0 ' , 7X, 'REG"T MEAN OF LOG OF K= ', FlO. 5, ' ANO STD. DEV. = ', 
$Fl0. 5,' THE VALUE OF ETAN IS SET AT •, FlO. 6) 

163 CONTINUE 
NBLKSL=<NCOL-2l/(NCBLK-2l 
NBLKST=CLAYHI-LAYL0+1l/CNRBLK-2l 
NBKTOT=NBLKSL•NBLKST 
IF<NSIM. NE . 1 l GO TO 158 
WRITE(6,70l N, NBKTOT,NBLKST,NBLKSL 

70 FORMAT< 'O'. //,!OX, 'LAYER', I3,' CONSISTS OF '. I4,' BLOCKS. 
$I4, ' BLOCKS WILL BE STACKED ONE ON TOP OF THE OTHER ',//,!OX, 
$'ANO '.I4,' BLOCKS WILL BE STACKED ENO TO ENO, STARTING FROM THE U 
$PPER LEFT WORKING DOWN ANO THEN TO THE RIGHT') 

158 CONTINUE 
DO 75 NBLK=1,NBLKSL 
DO 75 NBLKT=l,NBLKST 

77 FORMAT ( '0',// , 1ox. 'THE BLOCK IN BLOCK ROW •, I4 •• AND BLOCK COLUMN 
$ ', I4, ' , HAS THE FOLLOWING MAKEUP' l 
NTROW=<NBLKT~1l•CNRBLK-2l+LALOM1 
NBROW~NTROW+NRBLK-1 

NTRWP1=NTROW+1 
NDRWM1=NBROW-1 
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2880 
2890 
2900 
2910 
2920 
2930 
2940 
2960 
2970 
2980 
2990 
2991 
3000 
3010 
3020 

c GENERATE THE EPSILON MATRIX, <E>• AND PREMULTIPLY BY ETA 
DO 152 I=l,NP 
YFL=GGNGF<DSEEDl 
EPSILN<I>=ETAN*YFL 

194 FORMAT(//,7X, Il0,2F10. 5) 

152 CONTINUE 
CALL MUNSD CEPSILN,NP,AMN,SDV,COEVARl 

162 FORMAT C '0', 5X. 'EPSILN MATRIX WITH '• I4, 
$Fl0. 5, ' AND STD. DEV. "'', FlO. 5, ' AND COV. 

IFCNBLKT . NE. 1 l GO TO 178 
IFCNBLK. NE. 1) GO TO 178 
IFCNSIM. NE. 1l GO TO 178 
IFCN. NE. ll GO TO 178 

' MEMBERS HAS A MEAN= ' 
= ',F10. 6l 

c 
C RETRIEVE THE FILTR MATRIX FROM THE DIS 

c 

DO 179 L=l.NP 
179 READ<14.202l CFILTRCL.Ml,M=l,NP) 
178 CONTINUE 

C NOW 

3030 c 
3040 
3050 
3060 
307 0 
3080 
3090 
3100 
3110 
3120 
3130 
3140 
3150 c 
3160 
3170 
3180 
3190 
3200 
32 10 

MULTIPLY FILTER MATRIX BY EPSILON AND THESE ARE LOG OF K 
DO 183 L=l. NP 

683 
183 

YEGLK=O. 0 
DO 683 M=l.NP 
YEGLK=YEGLK+FILTRCL,Ml*EPSILNCM) 
LNKCLl'"'YEGLK 
CALL MUNSD CLNK,NP,AMN,SDV,COEVAR> 

NLCOL=CNBLK-ll*CNCBLK-2)+1 
NRCOL=NLCOL+NCBLK-1 
M=O . 
DO 54 I=NTROW.NBROW 
~IM=l 

3220 
3230 c 

DO 54 J=NLCOL,NRCOL 
M=M+l 

THEN CONVERT NCO.SDEV> DEVIATE 
KLOG=LNKCMl+AMNLNK 

TO NCMEAN,SDEVl DEVIATE 
3240 
3250 
3260 
3270 
3 280 
3290 
3300 
3310 
3320 
3330 
3340 
3350 
3360 
3370 
3380 
3390 
3400 
3410 
3420 
3430 

IFCI . EG . NTROWl GO TO 159 
IFCI.EG. NBROW) GO TO 159 
IFCJ. EG . NLCOLl GO TO 159 
IFCJ . EG . NRCOL) GO TO 159 

C VALUE KLOG= LN OF K 

c 

KC I. Jl=EXPCKLOGl 
SUMK=SUMK+KC L Jl 
RECIPK=RECIPK+<l. /K(I,J)) 
PRODK=PRODK+ALOGlOCKCI,Jll 

C CHECK THE STATISTICAL PARAMETERS OF LOG K, BY ROWS 
159 XLNKCMMl=KLOG 

MM"'MM+l 
IFCMM. LE . NCBLK) GO TO 54 
CALL MUNSD ' CXLNK.NCBLK.AMN.SDV.COEVARl 
LAGS=5 
CALL AUGAR CXLNK. NCBLK. ~AMN •. SDV. LAGS. RHO) 
AMEANC!l=AMN 
ASDVCil=SDV 

3440 C NOW REFIGURE W/O THE EDGES 
DO 48 MMM=2,NCBKM1 
MMMREV=MMM-1 
XLNK<MMMREVl=XLNKCMMMl 

3450 
3460 
347 0 
3480 
3490 
3500 
3510 
3520 

48 CONTINUE 
CALL MUNSD CXLNK,NCBKM2.AMNA,SDVA,COVAl 
CALL AUGAR CXLNK.NCBKM2,AMNA.SDVA, LAGS,RHOAl 
AMEANACil=AMNA 
ASDVACil=SDVA 



DO 54 IN=l,LAGS 
ARHO< I, IN·>=RHO< IN) 
ARHOA<I, IN>=RHOAIIN> 

54 CONTINUE 
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C CORRELATION COEFFICIENTS 
DO 52 I=NTROW.NBROW 

3530 
3540 
3550 
3560 
3570 
3590 
3600 
3610 
3620 
3630 
3640 
3660 
3670 
3680 
3690 
3 71 0 
3 720 
3 730 
3 740 
3 7 50 
3 760 
3 78 0 
3790 
3800 
3810 
382 0 
3840 
3850 
386 0 
387 0 
3880 
3890 
3 900 
39 10 
3920 
3930 
3940 
3950 
3 9 60 
3 9 70 
3 980 
400 0 
40 10 
4 0 3 0 
4040 
4050 
4060 
4070 
4080 
4100 
4110 
41 2 0 
41 3 0 
4140 
4160 
41 7 0 
4180 
4200 
4210 
4220 
4240 
4250 
4 260 
4 ;;.-10 c 

FOR ALL ROWS OF THIS SEGMENT HAVE BEEN CALCULATED 

IREVs I-NTROW+l 
RHOl I IREV>=ARHOI I, 1> 
RH021IREV>=ARHOII.2> 
RH031IREV>=ARHOII,3) 

52 CONTINUE 
64 FORMAT( 'O', 1ox. 'MEAN.STD. DEV. AND AUTOCORRELATION COEFFICIENTS FO 

SR EACH ROW AND LAGS FROM 1 TO 4 ' , 11, 7X, 'ROW', 4X, ' MEAN', SX, 
$'STD. DEV. ',2X, ' RHOl1)',4X, 'RHOl2)',4X, 'RHOl3)',4X, ' RHOl4)') 

CALL MUNSD IRH01,NRBLK,AMN,SDV,COEVAR> 
RH01YM=RH01YM+AMNllFLOATINOSIM>> 
CSTATSINSIM, ll=FLOATINSIM> 
CSTATSINSIM,2>=CSTATSINSIM,2l+AMNl<FLOATINBKTOT>> 

165 FORMAT I '0 ', 5X, 'LAG 1 CORR . COEF. FOR', 13, ' ROWS, HAS A MEAN= ' • 
SF10. 5 , ' ANO STD. DEV.=' , FlO. 5, ' AND COV. = ', F10. 6> 

CALL MUNSD <RH02,NRBLK , AMN,SDV,COEVAR> 
RH02YM=RH02YM+AMNllFLOATINOSIM>> 
CSTATSINSIM,3l=CSTATSINSIM,3l+AMNllFLOATINBKTOT>> 

168 FORMAT C ' O', 5X, ' LAG 2 CORR . COEF. FOR', 13,' ROWS, HAS A MEAN= ', 
$F10. 5,' AND STD. DEV. = ' , FlO. 5, ' AND CCV. = ', FlO. 6) 

CALL MUNSD IRH03,NRBLK,AMN,SDV, COEVAR> 
RH03YM=RH03YM+AMNllFLOATINOSIM>> 
CSTATS<NSIM, 4>=CSTATSINSIM, 4>+AMNllFLOATINBKTOT)) 

172 FORMAT I 'O ', 5X, ' LAG 3 CORR . COEF. FOR', 13, ' ROWS, HAS A MEAN= ' , 
$F10. 5, ' AND STD. DEV.=', F10. 5, ' AND COV. = ', FlO. 6> 

169 FORMAT C ' O ' , 5X, 'LAG 1 CORR . COEF. FOR', 13, ' COLMNS, HAS A MEAN= ', 
$F 10 . 5, ' AND STD. DEV. =' , Fl0. 5,' AND COV. = ' , F10. 6) 

171 FORMAT C '0 ' , 5X, ' LAG 2 CORR . COEF. FOR', 13, ' COLMNS, HAS A MEAN= ', 
SFlO. 5, ' AND STD. DEV. = ', F10. 5, ' AND CCV. = ' , FlO. 6) 

17 3 FORMAT I '0',5X , ' LAG 3 CORR . COEF. FOR', 13, ' COLMNS, HAS A MEAN= ', 
SF10. 5, ' AND STD. DEV. =' , FlO. 5,' AND COV . = ',F10. 6) 

69 FORMAT C ' O ' , lOX , ' MEAN, STD. DEV. AND AUTOCORRELATION COEFFICIENTS FO 
SR EACH COLUMN AND LAGS FROM 1 TO 4 ' , 11 , 7X, 'COLUMN' , ,4X, 'MEAN', 5X , 
·$ ' STD. DEV. ',2X , 'RHOl1)' , 4X , 'RHOl2)' , 4X , ' RH0(3)' , 4X, 'RHOl4l') 

C NOW CALCULATE MEAN CORRELATION COEFFICIENTS AFTER DELETING OUTER NODES 
c 

71 FORMAT < '0 ' , 7X, 'AFTER REMOVING THE OUTSIDE LAYERS OF THE CONDUCTIVJ 
STY FJELD, WE ARE LEFT WITH A FIELD WITH THESE STATS') 

DO 153 I=NTRWP1 , NBRWM1 
J REV=J-NTRWP1+1 
RHOl l JREV>=ARHOAll , 1) 
RH021JREV>=ARHOAII,2> 
RH03<IREV>=ARHOAII , 3> 

153 CONTINUE 
DO 72 J=NTRWP1.NBRWM1 
IREV=I-NTRWPl+l 

7 2 CONTINUE 
NOROM2=NOROWS-2 
CALL MUNSD IRH01 , NRBKM2,AMN,SDV.COEVAR> 
ARHOlY=ARHOlY+AMNllFLOATINOSIM>> 
CSTATSINSIM, 15l=CSTATSINSIM, 15)+AMNllFLOATCNBKTOT>> 
CALL MUNSD IRH02,NRBKM2,AMN, SOV,COEVAR> 
ARH02Y=ARH02Y+AMNllFLOATINOSIM>> 
CSTATS< NSJM , 16) =CSTATSINSIM, 16) +AMNI IFLOATINBKTOT> > 
CALL MUNSD IRH03 , NRBKM2.AMN,SDV,COEVAR> 
ARH03Y=ARH03Y+AMNl lFLOATINOSIM>> 
CSTATSINSIM , 17)=CSTATSINSIM, 17)+AMNllFLOATINBKTOT>> 

75 CONTINUE 
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4280 
4290 
4300 

C COMPUTE THIS SIMULATIONS 
DO 275 I=LAYLO.LAYHI 
IREV=I-LAYLO+l 

STATS ON LN K 

4310 
4320 
4330 
4340 
4345 
4346 
4350 c 
4360 
4370 
4380 
4390 
4400 
4410 
44 2 0 
4430 
4440 
4450 
4460 
4470 
4480 
4490 
4500 
4510 
4520 
4530 
4540 
4550 
4560 
4570 
4580 
4 590 
4600 
4610 
4620 
4630 
4640 
46 50 
4660 

DO 275 J=2,NCOLM1 
JREV=J-1 

275 PARTKCIREV,JREVlmALOGCKCI,Jll 
CALL MUNSD2 CPARTK,NOROWS.NCOLM2,AMN,SDV,COEVAR> 
HCSTATCNSIM.8l=AMN 
HCSTATCNSIM.9l=SDV 

CHECK SUBROUTINE MUNSD2 & AUGAR2 BY RECALCULATING INFO ON K 
DO 66 I=LAYLO,LAYHI 
IREV=I-LAYLO+l 
DO 66 J=2,NCOLM1 
JREV=J-1 

66 PARTK<IREV,JREVl=KCI,Jl 
CALL MUNSD2 <PARTK,NOROWS,NCOLM2,AMN,SDV,COEVAR> 
NINK=NOROWS•NCOLM2 

167 FORMAT < ' O' , 5X. ' PARTK MATRIX WITH ' • I4,' MEMBERS HAS 
$Fl0. 5,' AND STD. DEV. •',FlO. 5,' AND COV. = ',FlO. 61 

CALL AUGAR2 CPARTK , NOROWS,NCOLM2,AMEAN,ASDV,RHOI 
NOROM3=NOROWS-3 
NOROMl=NOROWS-1 
LAYHMl=LAYHI-1 
DO 59 I=LAYLO,LAYHMl 
IREV=I-LAYLO+l 

59 CONTINUE 
CALL MUNSD CRHO.NOROMl,AMN,SDV,COEVARI 
R011MK=R011MK+AMN/CFLOATCNOSIM>> 
CSTATSCNSIM,8l=AMN 

A MEAN= 

166 FORMAT < '0 •, 5X, 'LAG 1, 1 CORR . COEF. FOR', I3, ' ROWS, HAS A MEAN= 
$F10. 5,' AND STD. DEV.=',FlO. 5,' AND COV. = ',FlO. 6) 

67 CONTINUE 
XLAYHI=FLOATCLAYHI> 
XLAYLO=FLOATCLAYLO> 
XCOL=FLOATCNCOL> 
XCOLM2=FLOATCNCOLM21 
ARITHK=SUMK/CCXLAYHI-XLAYL0+1.0l*XCOLM21 
HARMK=<<XLAYHI-XLAYLO+l. Ol*XCOLM2l/RECIPK 
GEOMK=10**<PRODKl<<XLAYHI-XLAYL0+1. Ol*XCOLM2l) 
DO 57 I=LAYLO,LAYHI 
DO 57 J=l. NCOLM2 

4670 C NOW CALCULATE THE ACTUAL STANDARD DEVIATION AND COEF OF VARIATION 
4680 
4690 
4700 
4 /' lO 
47 20 
4730 c 
4740 
47 50 
4760 
4770 
4780 
4790 
4800 
4810 
4820 
4830 
4840 
4850 c 

DISPER=<K<I,Jl-ARITHK>**2 
SUMDIF:SUMDIF+DISPER 
VARK=SUMDIF/CCXLAYHI-XLAYLO+l . Ol*XCOLM21 
STDEV=SGRT<VARKl 
COV=STDEV/ARITHK 

CONVERT CONDUCTIVITIES FROM FT/D TO CM/SEC 
CARITH=ARITHK*. 0003528 
CHARM=HARMK*. 0003528 
CGEOM=GEOMK*. 0003528 
IF <I.LT. LAYHII GO TO 57 
IFCJ . LT . NCOLM2l GO TO 57 

56 FORMAT C//,16X, ' ARITHMATIC MEAN=',F10 . 4.1X , 'FT/D',1X, '=' , 1X.F10. 6, 
$1X , ' CM/SEC',/,16X, 'GEOMETRIC MEAN=',F10. 4 , 1X, 'FT/D',1X, '= ' ,lX,FlO. 
$6 , 1 x. 'CM/SEC.' I' 16X. 'HARMONIC MEAN=.' F10. 4. l x. 'FT ID,' 1x. ·= ,' 1x. F10 
$. 6 , 1 X, ' CM/ SEC'> 

57 CONTINUE 
GO TO 95 

4860 
4870 
4880 
4890 
4900 

C CONDUCTIVITIES ARE READ IN AT EACH NODE 
60 READC5,40lC<K<I.Jl,J=1.NCOL>, I=l.NROW> 

GO TO 95 
c 
C HYDRAULIC CONDUCTIVITY VALUES ARE ALL THE SAME 



4910 
4920 
4930 
4940 
4950 
4960 
4970 c 
4980 c 
4990 c 
5000 c 
5010 
5020 
5030 
5040 
5050 
5060 
5070 
5080 
5090 
5 100 
51 10 
5 12 0 
51 3 0 
5140 
5150 
5 160 
5 170 
5 18 0 
5 190 
5200 
:5210 c 
5220 c 
5230 c 
52 40 
52 50 
5260 
52 70 
5280 
5290 
5300 
53 10 
5320 
5330 
5340 
5350 
5360 
5310 
5380 
5390 
5400 
5410 
5420 
5430 
5440 

80 DO 82 I=l.NROW 
DO 82 J=l . NCOL 

82 KCI,J>= PERM 
N=l 
CONMN<Nl=PERM 
GO TO 95 
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HYDRAULIC CONDUCTIVITY VALUES HAVE AN EXPONENTIAL DISTRIBUTION 
OVER THE ENTIRE REGION 
CONMN<L>•MEAN OF THE EXPONENTIAL DISTRIBUTION 

84 CONTINUE 
DO 88 L=1,LAYERS 
IFCNSIM. NE. 1> GO TO 87 
READC5,23l LAYER<L> , CONMN<Ll 
IF<L. NE. 1> GO TO 83 
WRITEC6.85l LAYERS 

83 WRITE<6 . 81) LAYER<L>.LAYLU(L),LAYHUCL>.CONMN<L> 
81 FORMAT (l/,5X,'LAYER' , I4.2X,' ;. INITIAL ROW IS'.I4, 2X,'LAST ROW IS' 

$, I4. 5X, 'EXPECTED MEAN=' • FlO. 4> 
87 LAYLO=LAYLUCL> 

LAYHI=LAYHUCL> 
MEAN=CONMN<L> 

85 FORMAT < ' 0 ' , I , 5X, 'HYDRAULIC CONDUCTIVITIES FOLLOW AN EXPONENTIAL 
$DISTRIBUTION IN ' • I4.2X, ' LAYERCS) ' ) 

DO 88 I=LAYLO, LAYHI 
DO 88 J=l. NCOLMl 

86 YFL=GGEXN<DSEED,MEAN> 
K< I. J>=YFL 

88 CONTINUE 
GO TO 95 

THE HYDRAULIC CONDUCTIVITY VALUES ARE UNIFORMLY DISTRIBUTED 
WITH A DIFFERENT DISTRIBUTION WITHIN EACH OF THE LAYERS 

91 CONTINUE 
DO 93 ·L=l. LAYERS 
IF<NSIM. NE. 1 > GO TO 89 
READ(5,96>LAYER<LJ,UNILU(LJ,UNIHUCL> 
WRITE<6,94> LAYER<L>.UNILU<L>.UNIHU<L>.LAYLU<L>,LAYHU<L> 

89 XER=1000. 
IF<UNIHU<L> . LE . 100) 
LAYLO=LAYLU(Ll 
LAYHI=LAYHUCL> 
DO 93 I=LAYLO,LAYHI 
00 93 J=2.NCOLM1 

9 2 YFL=GGUBFS<OSEED> 
NUM=INT<YFL*XER> 
I FCNUM. LT . UNILU<L>> 
IF<NUM. GT . UNIHUCL>> 
K<I , J>=FLOAT<NUM> 

93 CONTINUE 

XER=100 . 

GO TO 92 
GO TO 92 

94 FORMAT ( 'O ' , I , 5X, 'LAYER ' , I4, 2X , 'HYDR . COND. RANGE FOR UNIFORM DIS 
lTRIBUTION='. I6. 2x . 'TO '. I6. 1x. ' FT/D'. 1x. ' FOR ROWS '. 1x . I2. 1x. 'TO ' 
$.1X.I2> 

96 FORMAT C5I10,6I5l 
C SET VALUE OF K IN THE LEFT COLUMN EQUAL TO 0 54 50 

54 6 0 c 
5470 
548 0 
5490 
5500 
5510 
552 0 
5530 
5 54 0 
55 50 
5560 
55'10 
5 580 
5590 

95 00 100 I=l. NROW 
K(I. ll=O. 0 

c SET VALUE OF K IN THE RIGHT COLUMN EQUAL TO 0 
c 

100 ~U I. NCOL> =O. 0 
DO 110 J=l. NCOL 

c SET VALUE OF K IN THE UPPER ROW EQUAL TO 0 
c 

KC 1. J l =O . 0 
c SET VALUE OF K IN THE LOWER ROW EQUAL TO 0 
c 

1 10 K<NROW,J l =O . 0 
c 
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C CHECK IF A INTERIOR BARRIER IS PRESENT 
IFCNCBAR.EG. Ol GO TO 113 
DO 113 I=2,NRBARB 
K( I. NCBARl=O. 0 

113 CONTINUE 

COMPUTE KY<I.Jl VALUES 

5591 
5592 
5593 
5594 
5596 
5600 c 
5610 c 
5620 c 
5630 c 
5640 
5650 
5660 
5670 c 
5680 
5690 
5700 
5710 

THESE ARE THE NODAL VALUES TO BE USED IN COMPUTING 
KHARM<J,J,2) --THE CONNECTION VALUE IN THEY-DIRECTION 

DO 112 I=2,NROWM1 
DO 112 Ja2,NCOLM1 

112 KY<I,JlaK(I,Jl/ANISO<Il 
CONVERT HYDRAULIC CONDUCTIVITIES TO ELECTRICAL CONDUCTIVITIES IF SPECIFIED 

IF<ELEC . NE. CHECK<3llGO TO 117 

5720 
5730 c 

DO 115 I=2,NROWM1 
DO 1f5 J=2,NCOLM1 
KY<I , Jl=l/Cl<KYCJ,Jl• . 0003528)/5. 13E-06l**· 7> 

115 KII,Jl=ll<<<K<I,Jl•.0003528)/5. 13E-06l**· 7> 

5740 C COMPUTE THE ARITHMATIC,HARMONIC ANO GEOMETRIC MEANS OF THE 
5750 C HYDRAULIC CONDUCTIVITY DISTRIBUTION 
5760 c 
5770 117 SUMK=O. 0 
5·730 
5790 
5800 
581.0 
5820 
5830 
5840 
5850 119 
5860 
5870 
5880 
5890 
5900 
5910 C NOW 
5920 
5930 
5940 
5950 
5960 
5970 121 
5930 
5990 
6000 
6010 
6020 
6030 
6040 
6050 
6060 
6070 
6080 c 

RECIPK=O . 0 
PRODK=O. 0 
DO 119 I=2.NROWM1 
DO 119 J=2.NCOLM1 
SUMK=SUMK+K(I,Jl 
RECIPK=RECIPK+<l . IK<I,Jll 
PRODK=PRODK+ALOG10<KCI,Jll 
CONTINUE 
XROWM2=FLOAT<NROWM2l 
XCOLM2~FLOAT<NCOLM2l 

ARITHK=SUMK/CXROWM2•XCOLM2l 
HARMK=CXROWM2*XCOLM2l/RECIPK 
GEOMK=10**<PRODK/CXROWM2*XCOLM2>> 
CALCULATE THE ACTUAL STANDARD DEVIATION 
SUMDIF=O. 0 
DO 121 1=2, NROWMl 
DO 121 J=2,NCOLM1 
DISPER=<K<I,J>-ARITHKl•*2 
SUMDIF=SUMDIF+DISPER 
CONTINUE 
VARK=SUMDIF/(XROWM2•XCOLM2> 
STDEV=SGRT<VARK> 
COV=STDEV/ARITHK 
AVGAMK=AVGAMK+ARITHK/CFLOAT<NOSIMll 
AVGSDK=AVGSDK+STDEV/CFLOAT<NOSIM>l 
HCSTAT<NSIM, ll=FLOAT<NSIM> 
HCSTAT<NSIM.2l=ARITHK 
HCSTATCNSIM,3l=GEOMK 
HCSTAT<NSIM,4l=HARMK 
HCSTATCNSIM, 5l=STDEV 

ANO COEF OF VARIATION 

6090 C HYDRAULIC CONDUCTIVITY VALUES ARE WRITTEN ONTO A DISK DATA SET 
6100 c 
6110 
6120 
6130 
6140 
6150 
6160 c 

TO BE USED WITH PLOTTIN G 
IF<CONK . NE . CHECK<lll GO TO 105 
DO 105 I=2,NROWM1 
DO 105 J=2 , NCOLM1 
WRITE(10 , 2110l K<I,Jl 

105 CONTINUE 

6170 IF C NSIM. GT . 1 l GO TO 262 
6130 175 WRITE<6, 180) 
6190 180 FORMAT <'1 ', 5X , ' HORIZONTAL CONDUCTIVITY VALUES AT NODE CENTER'> 



6200 
6210 
6220 
6230 
6240 
62:50 
6260 
6270 
6280 
6290 c 
6300 c 
6310 c 

c 
c 

190 
200 
201 
202 
203 
204 
20:5 
210 

270 

DO 190 I=l,NROW 
WRITEC6, 200) I. CKC I, .Jl, .J=l, NCOLl 
FORMAT c·o·. 13,2x. 10F12. 4/C6X. 10F12.4)) 
FORMAT C 13, 2X, 6F12. 10/ C :5X, 6F12. 10> l 
FORMAT C:5X,6F12. 10> 
FORMAT ( ·o·. 13. 2x. 10F12. 9/(6X. 10F12. 9)) 

FORMAT C8X.6F12. 7) 
FORMAT c13,2X,6F12. 6/C5X,6F12. 6ll 
FORMAT C '0', 12, 2X, 10110/C5X, 10110)) 

COMPUTE KHARMCl • .J, 1) AND KHARMCl,.J,2) 
KHARMCl , .J, 1>• HARMONIC MEAN OF THE CONDUCTIVITIES AT AD.JACENT NODES 
IN THE X DIRECTION 
KHARMCI,.J,2l= HARMONIC MEAN OF THE CONDUCTIVITIES AT AD.JACENT NODES 

6320 
6330 
6340 
6 350 
6360 
6370 
6380 
6390 
6400 
6410 
6420 
6430 

C IN THE Y DIRECTION 
c 

6440 c 

262 DO 270 I=2,NROWM1 
DO 270 .J=2.NCOL 

270KHARMCI • .J,1l=CCXDC.J-1l+XDC.Jll*KCI,.J-1l*KCI,.Jll/CK(I,.Jl*XDC.J-1l 

$K < I. .J-1 l * X D C .J l l 
DO 280 I=2.NROW 
DO 280 .J=2,NCOLM1 

280 KHARMCI,.J,2l=CCYDCI-1l+YDClll*KYCI-1,.Jl*KYCI,.Jll 
$/CKYCI,.Jl*YDCI-1l+KYCI-1,.Jl•YDCill 

6450 
6460 
6470 
6480 
6490 
6500 
6510 
6520 
6530 
6540 

C WRITE VALUES OF KHARM 
c 

IFCSKIP . EG. CHECKC7ll GO TO 392 
WRITEC6, 290) 

290 FORMAT < '1 ', //, 5X, 'VALUES OF KHARM I...;, 1 'l 
DO 300 I=2,NROWM1 

300 WRITE C 6, 200 l I. C KHARM C I. .J, 1 l, .J=2, NCOL> 
WRITE<6,310l 

310 FORMAT C'1', //, 5X, 'VALUES OF KHARM I,.J,2') 
DO 320 I=2,NROW 

6550 320 WRITEC6. 200) I, <KHARM< I...;, 2l, .J=2, NCOLM1) 
6560 c 
6570 c 
6580 C WRITE STARTING HEAD MATRIX 
6590 IF<SKIP . EG . CHECKC7ll GO TO 392 
6600 WRITEC6,360l 
6610 360 FORMAT< '1 ' ,//, :5X, 'STARTING HEAD MATRIX'> 
6620 DO 370 I=l,NROW 
6630 
6640 
6650 
6660 
6670 
6680 c 
6690 
6700 
6710 
6720 
6730 
6740 
6 750 
6760 
6770 
6 780 
6790 
6800 
6810 
6820 
6830 

370 WRITEC6, 200) I. <HC I. .J), ..;~1, NCOLl 
WRITEC6,380l 

380 FORMAT< '1', //,5X, 'CONSTANT HEAD NODES'> 
DO 390 I=l,NROW 

390 WRITEC6,210l I. CICCI,.JJ..J-1,NCOLl 

392 IFCMINI.EG.CHECK<4ll GO TO 396 
HMIN=2. 
XVAL=3 . 1415**2/C2. *NCOL**2l 
YVAL=3. 1415**2/C2. *NROW**2) 
DO 395 I=2,NROW 
DO 395 .J=2,NCOL 
IF<K<I,.Jl.EG. 0. Ol GO TO 395 
XPART=XVAL*C1/(1+XD<.Jl**2/YDCil**2*ANISOCilll 
YPART=YVAL*Cl/(1+YDCil**2*ANISOCil/XDC.Jl**2ll 
HMIN=AMIN1CHMIN,XPART,YPARTl 

395 CONTINUE 
396 ALPHA=EXPCALOGCHMAX/HMINl/CNUMPAR-lll 

ITPARMCll=HMIN 
DO 397 NTIME=2,NUMPAR 

397 ITPARMCNTIMEl=ITPARM<NTIME-ll*ALPHA 



6840 
6850 
6860 
6870 
6880 
6890 c 
6900 
6910 
6920 ·c 
6930 
6940 
6950 
6960 
6970 
6980 
6990 
7000 
7010 
7 020 c 
70 3 0 
7040 
7050 c 
7060 c 
7070 c 
7080 
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IF<NSIM. NE. 1 > GO TO 401 
WRITE< 6, 398 > NUMPAR, < ITPARM <.Ji. .1=1, NUMPAR > 

398 FORMAT <'0',3X, I5,2X, 'ITERATION PARAMETERS : ',6D12. 3, //,6X, 10D12. 3) 
IF<MINI . EG . CHECK<4>> WRITE(6,399l 

399 FORMAT ( ·o.' 2x. 'NOTE--MINIMUM ITERATION PARAMETER WAS SET.) 

401 ICTR=O 
400 CONTINUE 
SOLUTION ALGORITHM USING THE ITERATIVE ALTERNATING DIRECTION IMPLICIT PROC . 

DO 500 I=1,NROW 
DO 500 .1=1,NCOL 

500 HOLD<I,.Jl=H<I,.J> 
DO 510 L=2,NCOLM1 

510 HNEW(Ll=H<1,Ll 
IF <MOD<ICTR,NUMPARll520,520,530 

520 NTH=O 
530 NTH=NTH+l 

PARM=ITPARM<NTH> 

ICTR=ICTR+1 
ERR<ICTRl=O. 0 

ROW CALCULATIONS 

DO 700 KK=2,NROW 
I=KK 
DO 620 .J=2,NCOLM1 
IF<K<I,Jll605,620,605 

605A=<KHARMCI,J,1l•YD<Ill/AXCJl 
B* CKHARM< I, J+1, 1) itYD< I> l /AX (J+1 l 
C:<KHARM<I,J,2l•XD<JlliAY(I) 
D=CKHARMCI+1,J,2l•XD(J)l/AYCI+1> 
GPARM=<A+B+C+Dl*PARM 
E=l\+B+GPARM 
GKNOWN=C*H<I-1,Jl+D•H<I+1,Jl-<C+D-GPARMl•H(I,.Jl 
IF(J. EG. 2> GO TO 615 
IFCICCI,J-ll . EG. -1) GO TO 610 
G<J>=CA*G(J-1l+GKNOWNl/CE-A*F(J-1)) 
F<J>=Bl<E-A*F<J-1>> 
GO TO 620 

6 10 G<Jl=CA•HCI,J-1l+GKNOWNl/E 
FCJ>=B/E 
GO TO 620 

615 GC2l=GKNOWN/E 
FC2l=D/E 

620 CONTINUE 

7090 
7 100 
7 110 
7120 
7130 
7 i40 
7150 
7160 
7 17 0 
7180 
7 190 
7200 
7 2 10 
7220 
72 30 
7240 
7 250 
7 260 
7270 
7280 
7290 
7390 
7400 
7410 
7420 
7430 
7440 
7450 
7460 
7470 
7480 
7490 
7500 
7510 
7520 
7530 
7540 c 
7550 c 
7560 c 
7570 
7580 

C CALCULATE HEADS BY BACK SUBSTITUTION 
N=NCOLM1 
H< 1-1. N>=HNEW<Nl 
IF (IC (I. NCOLM1) . EG . -1) GO TO 640 
HNEW<N>=G<Nl 
GO TO 655 

640 HNEW<Nl=HCI,Nl 
GO TO 655 

650 HNEW<N>= G<Nl+F(Nl*HNEWCN+ll 
655 N=N-1 

IFCN. EG . 1) GO TO 700 
HC I-1. Nl=HNEW<N> 
IF<ICCI,Nl. NE . -1> GO TO 650 
GO TO 640 

700 CONTINUE 

COLUMN CALCULATIONS 

DO 703 L=2.NROWM1 
703HNEWCLl=HCL,1> 



DO 800 KK=2.NCOL 
J=l.C.I~ 
DO 720 I=2,NROWM1 
IF<KCI,Jl) 705,720,705 
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705 A=CKHARMCI,J, ll*YDCill/AX<J> 
B=<KHARMC J, J+l, 1 l*YDC I> l/AX(J+l) 
C=<KHARMCI,J,2l*XD<Jll/AY<I> 
D=<KHARM<I+1,J,2>*XDCJll/AYCI+1l 
GPARM=<A+B+C+Dl*PARM 
E=CC+D+GPARM> 
GKNOWN=A*H(J,J-ll+B*H(J,J+ll-CA+B-GPARM>*H<J,J) 
IF<I. EG . 2> GO TO 715 
IFCICCI-1,J>. EG. -1> GO TO 710 
GCI>=<C*GCI-1l+GKNOWN>l<E-C*F<I-1>> 
F<I>=D/CE-C*FCI-1>> 
GO TO 720 

710 G<I>=<C*H<i-1,Jl+GKNOWNl/E 
F<I>=D/E 
GO TO 720 

715 GC2l=GKNOWN/E 
FC2l=D/E 

720 CONTJ.NUE 
C CALCULATE HEADS BY BACK SUBSTITUTION 

N=NROWM1 

7590 
7600 
7610 
7620 
7630 
7640 
7650 
7660 
7670 
7680 
7690 
7700 
7710 
7720 
7730 
7740 
7750 
7760 
7770 
7780 
7790 
7800 
7810 
7820 
7830 
7840 
7850 
7860 
7870 
7880 
7890 
7900 
7910 
7920 
7930 
7940 
7950 
7960 
7970. 
7980 
7990 
8000 
801 0 
8020 
8030 
8040 
8050 
8060 
8070 
8080 
8090 
8100 c 
8110 c 
8120 c 
8130 c 
8140 

H(N,J-ll=HNEWCN> 
IF<ICCNROWMl,Jl . EG . -1) GO TO 740 
HNEWCNl=GCNl 

c 

GO TO 755 
740 HNEW<N>=H<N, .J) 

GO TO 755 
750 HNEW<N>=GCN>+F<N>*HNEWCN+1> 
755 N=N-1 

IFCN.EG. 1) GO TO 757 
H<N,J-ll=HNEW<N> 
IFCICCN,Jl. NE . -1) GO TO 750 
GO TO 740 

757 IFCJ . EG . NCOL> GO TO 800 
DO 770 I=2,NROWM1 
ET=DABSCHNEW<Il-HOLD<I,Jl) 
IFCET. GT . ERRCICTR>> GO TO 760 
GO TO 770 

760 ERRCICTR>=ET 
IET=I 
JET=J 

770 CONTINUE 
800 CONTINUE 

C CHECK CLOSURE CRITERIA FOR STEADY 
1000 IFCICTR . GE. ITMAX> GO TO 1045 

IFCERRCICTRl. GT. EC> GO TO 400 
C OTHERWISE THE STEADY STATE HEADS 

STATE 

HAVE BEEN COMPUTED 

COMPUTE HEADS AROUND THE PERIMETER OF THE MODEL 
THIS IS DONE TO GIVE A BETTER PLOT EFFECT 

C ALONG TOP ROW 
8150 
8160 
8170 c 

DO 950 J=L NCOL 
9 50 HC1,Jl=HC2,J) 

8180 C ALONG BOTTOM ROW 
8190 DO 960 J=l,NCOL 
8200 960 HCNROW,Jl=HCNROWMl,Jl 
8210 c 
8220 C ALONG LEFT VERTICAL BOUNDARY 
8230 DO 970 I=l,NROW 
8 240 970 HCI , ll=H<I,2> 



8250 c 
8260 c 
8270 
8280 
8290 c 

c 

ALONG RIGHT VERTICAL BOUNDARY 
DO 980 I=t. NROW 

980 H<I,NCOL>=H<I,NCOLM1> 
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STORE THIS SIMULATION'S HEAD VALUES· IN THE CUMULATIVE ARRAY, 
HDSMN, WHICH WILL CONTAIN THE MEAN VALUES FOR ALL SIMULATIONS 

DO 981 I=l.NROW 
DO 981 J=l,NCOL 
HDSMN<I,J>=HDSMN(I,J>+H(I,J)/(FLOAT<NOSIM>> 

981 CONTINUE 

8300 
8310 
8320 
8330 
8340 
8350 
8360 
8370 
8380 
8390 
8400 
8410 
8420 
8430 

C STORE THE HEAD VALUES ALONG TWO SELECTED ROWS 
IF<NHDSUP . NE. O> GO TO 983 

8 440 c 
8450 
8460 
8470 
8480 
8'190 
8500 
8510 
8520 
8530 
8540 
8 550 
8 560 
857 0 
8580 
8590 
8600 
8 610 
8620 
8630 
8640 
8650 
8660 
8670 
8<'.·3 0 
8690 
8 700 
8 710 
8 720 c 
8 730 

-8740 
8750 
8 7 60 
8 770 
8 780 
8790 
8800 
8810 
8820 
8830 c 

NHDSUP=NROW/3 
NHDSDNm2*NHDSUP 

983 CONTINUE 
DO 984 J=2,NCOLM1 
JREV=J-1 
HDSUP <NSIM,JREV>=H<NHDSUP , J) 

984 HDSDNCNSIM,JREV>=HCNHDSDN,J> 

IF <NOSIM . NE. 0) GO TO 1041 
WR ITEC 6, 1005) CERR <I>. I=l, ICTR) 

1005 FORMATC '1 ', 5X, 'HEAD DIFFERENCE FOR EACH ITERATION' , //, 
$(/, 3X , 10F12. 5)) 

1010WRITE<6,1020> ICTR.ERR<ICTR>. IET,JET 
1020 FORMAT< '1', //, 1ox. ' STEADY STATE HEAD MATRIX AFTER', I4.2X. 'ITERATIO 

$NS •• 11. lOX. ' LARGEST HEAD DIFFERENCE =,' E12 . 3. 2x. 'AT POINT.' 2x. 'RmJ 
$ ', 13, 2X. 'COLUMN', I3 > 

GO TO 1022 
1024 WRITE<6. 1006><ERRCI>. I=t. !CTR> 
1006 FORMATC5X , 'HEAD DIFFERENCE FOR EACH ITERATION',// , 

$(/ , 3X. 10F12. 5> > 
1011 WRITEC6,1021) ICTR,ERRCICTR>.IET,JET 
1021 FORMAT(//, 1ox. ' STEADY STATE HEAD MATRIX AFTER' , I4.2X. 'ITERATIO 

$NS ', //, 1ox. 'LARGEST HEAD DIFFERENCE =', E12. 3, 2x. ' AT POINT', 2x. 'ROW 
$ ' , 13, 2X , 'COLUMN' , I3 > 

1022 IF CNSIM . NE. 1 l GO TO 1041 
1030 DO 1040 I=l.NROW 
1040 WRITEC6 , 200) I , CHC I, J>. J=l, NCOL> 
1041 IFCNOSIM. NE. 1> GO TO 1100 

IFCCONH . NE . CHECKC2ll GO TO 1100 
DO 1042 I=!.NROW 
DO 1042 J= 1. NCOL 

10 42 WRITECll,2110> HCI,J> 
WRITEC6, 1043) 

1043 FOR MA T C ' 0 ', 4X, ' ***** HEADS WRITTEN ONTO DSN *****' > 
GO TO 1100 

1045 WRITEC6, 1055) 
WR ITEC 6, 1005 l CERR (I>. I=l, ICTR) 

1050 WRITEC6, 1060) ICTR,ERRCICTR>. !ET.JET 
1055 FOR~1AT C '1 ' , ' *********** ITERATIONS EXCEEDED ************* ' ) 
1060 FORMAT C'l ', / / .lOX, 'HEAD MATRIX AFTER'.I4,2X, 'ITERATIONS',//.lOX, 

$LARGEST HEAD DIFFERENCE =',E12. 3,2X, ' AT POINT ', 2X, 'ROW',I3,2X, 
$'COLUMN', 13) 

DO 1070 !=1,NROW 
1070 WRITEC6.200l I. CHCI.Jl,J=l,NCOL> 

GO TO 3000 

1100 IFCELEC . EQ . CHECKC3l> GO TO 1120 
C OTHERWISE CONVERT CONDUCTIVITIES FROM FT/D TO CM/SEC 

CARITH=ARITHK* . 0003528 

8840 
8850 
8860 
8870 
8880 
8890 c 

CHARM=HARMK*. 0003528 
CGEOM=GEOMK*. 0003528 
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1110 FORMA.T ('1 ' ,SX. 'STATISTICAL MEANS OF THE HYDRAULIC CONDUCTIVITY'; 
1' DISTRIBUTION'.//, ax. 'ARITHMATIC MEAN='• FlO. 4, ix. 'FT/D'. 1x. 
2 '=,. 1 x. F10 . 6. 1 x. 'CM/SEC,. 11. ax. 'GEOMETRIC MEAN=,' F10. 4, 1 x. 'FT ID •• 
31X. '='• 1x. F10 . 6.' 1x. 'CM/SEC'.//, ex. 'HARMONIC MEAN='.F10 . 4, lX. 
4'FT/D'. 1x. '='• 1X.F10. 6.1x. 'CM/SEC'> 

1126 FORMAT ( 5X, 'STATISTICAL MEANS OF THE HYDRAULIC CONDUCTIVITY' , 
1' DISTRIBUTION',//,, ax. 'ARITHMATIC MEAN='• F10. 4, 1x. 'FT/D'. 1x. 
2': ', 1x. F10 . 6. 1x. 'CM/SEC'.//, ex. 'GEOMETRIC MEAN='• F10. 4, 1x . 'FT/D', 
31 x. '=,. 1 x. F10. 6.' 1x . 'CM/SEC'' 11. ex. 'HARMONIC MEAN=,' FlO. 4, 1 x. 

a900 
a910 
a920 
a930 
a940 
a950 
a960 
a970 
a9ao 
a990 
9000 
9010 
9020 
9030 
9040 
9050 
9060 
9070 c 

4 ' FT/D'. 1x. '='. lX.Fl0. 6. 1x. 'CM/SEC'> 
. 1124 CONTINUE 

c 

1111 FORMAT (//,SX, 'ACTUAL STANDARD DEVIATION OF HYDRAULIC CONDUCTIVITY 
$DISTRIBUTION IS '.F10. 4,//,5X. ' AND THE COEFFICIENT OF VARIATION I 
$S ',FlO . 4> 

C CHECK THE DOUBLE SUBSCRIPTED ARRAY SUBROUTINE 
GO TO 1140 

9080 c 
9090 

' 91 00 
9110 
9120, 
9130 
9140 
9150 
9160 
9170C 
91ao 
9190 
9 2 00 c 
9 210 c 
9 2 20 c 

CONVERT CONDUCTIVITIES TO RESISTIVITIES 
1120 ARITHK=1. /HARMK 

GEOMK=l . /GEOMK 
HARMK= 1 . I AR ITHK 
WRITE(6, 1130> ARITHK.GEOMK,HARMK 

1130 FORMAT ( ' 1 '. 5X, ' STATISTICAL MEANS OF THE RESISTIVITY '. 
!'DISTRIBUTION', 11.ex. 'ARITHMATIC MEAN='.F10 . 4. 1x. ' OHM-METERS', 
2// , ex . 'GEOMETRIC MEAN='. F10 . 4 , 1x. 'OHM-METERS'.// , ax . 
3 'HARMONIC MEAN=', F10. 4, 1 X, 'OHM-METERS'> 

1140 IF<FLOW. EQ . CHECK<6ll GO TO 1300 
IF<WARP . EQ. CHECK<9>. OR . FLOW.EQ. CHECK<10ll GO TO 1293 

9230 C OTHERWISE THE PREDOMINANT FLOW MUST BE HORIZONTAL 
9240 C COMPUTE THE EQUIVALENT HORIZONTAL HYDRAULIC CONDUCTIVITY 
9250 c 
9260 c 

G=O. 0 
AREA=O.O 

C AREA= TOTAL CROSS SECTIONAL AREA THAT THE FLOW PASSES THROUGH 
c 

9270 
9280 
9290 
9300 
9310 
9320 
9330 
9340 
9350 
9360 
9370 
9380 c 
9390 
9400 
9410 
9420 
9430 
9440 
9450 
9460 
9470 
9430 
9490 

DO 1200 I=2,NROWM1 
AREA=AREA+YD<I> 
G=G+<KHARM<I.LEQUIV, ll*<<H<I , LEQUIV-11-H<I , LEQUIVJJ/AX <LEQUIVJJ 

l*YD<IJ) 
12 00 CONTINUE 

C LENGTH=MACROSCOPIC LENGTH OVER WHICH THE TOTAL HEAD DIFFERENCE 
C <DHEADJ IS DISSIPATED 

LENGTH=O.O 
DO 1250 J=3.NCOLM1 . 
LENGTH=LENGTH+AX<JJ 

1250 CONTINUE 
c 
C KHEGFD=EQUIVALENT HORIZONTAL HYDR . COND . IN UNITS OF FT . /DAY 

KHEQFD=<G*LENGTHl/(DHEAD*AREAJ 
HCSTAT<NSIM.6l=KHEQFD 

C f\HEQCS=EQUIVALENT HORIZONTAL HYDRAULIC CONDUCTIVITY IN UNITS OF CM . /S~C . 

KHEQCS=KHEQFD* . 0003528 
IF<ELEC . EQ . CHECK<3>> GO TO 1290 

C OTHERWISE WE HAVE THE HYDRAULIC CASE 
9500 c 
9510 
9520 
9530 
9540 
9 550 
9560 

12 ao FORMAT< ' O ', Ill//, 5X. ' MACROSCOPIC PARAMETERS ' , // , BX, 'EQUIVALENT ', 
1 ' HORIZONTAL HYDR . CONDUCTIVITY=' ' F10 . 4 , 1x. 'FT /D ,. 1x. '= '. F10. 6. l x. 
2'CM/SEC •• // , sx. ' TOTAL FLOW='· F10 . 1 . 1x. ' CFO ', //, ex. ' LENGTH= ', F10. 4, 
31X. 'FT'.//, BX, ' AREA= '. Fl O. 4, lX, ' SQ. FT . ' ,// , BX, 
4 'TOTAL DISSIPATED HEAD='. F10 . 4, lX, 'FT . 'I 
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957 0 c 
9 580 GO TO 1400 
9590 1290 KHEQFD=l/KHEQFD 
9600 C THE EQUIVALENT ELECTRICAL HORIZONTAL CONDUCTIVITY WAS CONVERTED TO 
96 10 C AN EQIVALENT HORIZONTAL ELECTRICAL RESISTIVITY 
9620 C CONVERT CURRENT FLOW TO AMPERES 
9630 Q=Q/3. 2e1 
9640 WRITE(6, 1292) KHEQFD , Q, LENGTH,AREA,DHEAD 
9650 1292 FORMAT <' O' , /////,5X , 'MACROSCOPIC PARAMETERS',//,eX , 'EQUIVALENT', 
9660 1' HORIZONTAL ELECTRICAL RESISTIVITY .. . . F10. 4 , 1x. 'OHM-METERS',// , ex . 
9670 2 ' TOTAL CURRENT FLOW='· F10. 6. 1x. ' AMPERES '. //, ex. ' LENGTH='· F10. 3, 1x. 
96eO 3 ' FT. ·.11.ex. ' AREA• ',F10. 3 >1X. ' SQ. FT.· ',// , ex. ' TOTAL VOLTAGE DROP= ' · 
9690 4F10. 4, 1X, 'VOLTS ' > 
9700 GO TO 1400 
9710 c 
9720 C COMPUTE THE AQUIFER HYDR . CONDUCTIVITY FOR POINT TO POINT FLOW USING 
9730 C THE METHOD SHOWN BY WARREN AND PRICE 
9 740 c 
9750 1293 
9 7 60 

FKI=O. O 
DO 1294 I=2 , NROWM1 

9 770 
9780 
9 790 
9800 
9810 
9820 
98 30 
9840 
9 850 
9860 
9870 
9eeo 
9890 
9 9 0 0 
9910 
9 9 20 

12 94 
FKI~FKl+KHARM<I , LEQUIV, ll*<H<I,LEQUIV-ll-H(l , LEQUIVll 
CONTINUE 
KHEQFD=FKl/WPFACT 
WRITEC6, 1298> 
IF<ELEC . EQ . CHECK<3ll GO TO 1296 
WRITE(6 , 1295) FKI,KHEQFD 
GO TO 1400 

12 9 ::i FORMAT < ' O ' , 5X, ' FKI= ' , 1 X, F10. 2, 1 X, ' FT**2/D ' , 111, 5X , 
1 ' AQUIFER HYDRAULIC CONDUCTIVITY"' '• lX , FlO. 3, lX, ' FT/D ' l 

c 
12 96 KHEGFD=l. /KHEGFD 

WRITE(6 , 1297) FKI,KHEQFD 
1297 FORMAT ( ·o · . ///, 5X. 'FKI= ' • 1x. FlO. 6 . 1x. ' VOLT/OHM-M ' , /// , 5X. 

l ' AGUIFER RESISTIVITY='• 1X,F10. 2) 
129e FORMAT ( · o · . /////, ::;x . 'MACROSCOPIC TRANSPORT PROPERTIES', 

1 ' WERE COMPUTED BY THE WARREN & PRICE TECHNIQUE') 
9 9 30 c 
9940 GO TO 1400 
9 9 50 c 
996 0 C HERE THE PREDOMINANT FLOW IS VERTICAL 
9 9 7 0 C COMPUTE THE EQUIVALENT VERTICAL HYDRAULIC CONDUCTIVITY 
9980 c 

1300 IF <WARP . EQ . CHECK<9ll GO TO 1393 
Q=O. 0 

9990 
10000 
100 10 
10 020 
10030 
100 40 
10050 
10060 
10070 
10080 
10090 
10100 
10110 
10120 
10 13 0 
101 4 0 
10150 
10160 
10170 
10180 c 

ARE A=O . o· 
DO 1350 J=2 , NCOLM1 
AREA=AREA+XD(Jl 
Q=Q+<KHARM<LEQUIV,J,2l*<CH<LEQUIV-1,Jl-H<LEQUJV,Jll/AY<LEQUIVll 

l*XDCJl l 
1350 CONTINUE 

c 
c 
c 
c 

LENGTH= MACROSCOPIC LENGTH 
<DHEADl IS DISSIPATED 
COMPUTE LENGTH 

LENGTH=O. O 
DO 1370 I=3 , NROWM1 
LENGTH=LENGTH+AYCil 

OVER WHICH THE TOTAL HEAD DIFFERENCE 

13 70 
c 

CONTINUE 

c 

101 90 
102 00 
10210 
10220 
10230 
10 240 
10250 
1026 0 
10270 c 

KVEGFD= EQUIVALENT VERTICAL HYDR . CONDUCTIVITY IN UNITS OF FT. / DAY 
KVEGFD=<G*LENGTHl/(DHEAD*AREAl 

KVEQCS~ EQUIVALENT VERTICAL HYOR . CONDUCTIVITY IN UNITS OF CM . / SEC . 
KVEQCS=KVEGFD*. 000352e 
I F CELEC . EG . CHECKC3ll GO TO 1390 
WRITE C6. 13eO> KVEQFO , KVEQCS , Q,LENGTH, AREA,l)HEAD 

l3eo FORMAT< ' O'. // / //, 5X . ' MACROSCOPIC PARAMETERS',//, ex. ' EQUIVALENT • . 
1 'VERTICAL HYDR. CONDUCTIVITY= ', FlO. 4 , 1x. 'FT/D ' , 1x . ·= ·· F10. 6. 1x. 
2 ' CM/SEC •, // , ex. 'TOTAL FLOW= ', F10. 1. 1x . ' CFO ' .//, ex. ' LENGTH=' • F10 . 4, 
3 1X. ' FT ' , // , ex. ' AREA= '• F 10. 4 , 1x. ·sa. FT . •,// , BX. 
4 ' TOTAL DISSIPATED HEAD= ' , F lO. 4 , l X. 'FT. ' l 
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102eo GO TO 1400 
10290 c 
10300 C THE EQUIVALENT VEATICAL ELECTRICAL CONDUCTIVITY IS CONVERTED TO 
10310 C THE EQUIVALENT VERTICAL ELECTRICAL RESISTIVITY 
10320 1390 KVEQFD=1/KVEQFD 
10330 c 
10340 C CONVERT CURRENT FLOW TO AMPERES 
10350 Q=Q/3. 2e1 

c 

c 

WRITEC6, 1392> KVEQFD,G.LENGTH,AREA,DHEAD 
1392 FORMAT< '0 '.I I I//, 5X, 'MACROSCOPIC PARAMETERS'.//, ex, 'EQUIVALENT'. 

1' VERTICAL ELECTRICAL RESISTIVITY•', FlO. 4, 1x, 'OHM-METERS',//, ex, 
2'TOTAL CURRENT FLOW=',F10. 6, 1x, 'AMPERES'. 11.ex. 'LENGTH='.F10. 3, 1x. 
3'FT. ', 11.ex, 'AREA='.F10. 3, 1x. 'SQ. FT. ',//,SX, 'TOTAL VOLTAGE DROP=', 
4F10 . 4, lX, 1 VOLTS'l . 

GO TO 1400 

COMPUTE THE AQUIFER HYDRAULIC CONDUCTIVITY FOR VERT. FLOW USING 
THE METHOD SHmJN BY WARREN AND PRICE 

1393 FKI=O. 0 
DO 1394 J=2,. NCOLMl 
FKI=FKl+KHARMCLEQUIV,J,2l*CHCLEQUIV-1,Jl-HCLEQUIV,J>> 

1394 CONTINUE 
KVEQFD=FKI/WPFACT 
WRITEC6, 1398) 
IFCELEC . EQ . CHECKC3>> GO TO 1396 
WRITEC6. 1395) FKI.KVEQFD 
GO TO 1400 

1395 FORMAT ( 'O'. 5X. 'FKI,.'. 1x. FlO. 2. 1x, 'FT**2/D', ///, 5X. 
1 'AGUIFER HYDRAULIC CONDUCTIVITY=-', 1x, F10. 3, 1x. 'FT/D') 

1396 KVEQFD=1. /KVEQFD 
WRITEC6, 1397) FKI,KVEQFD 

1397 FORMAT ( 'O', ///, 5X, 'FKI=', 1x. FlO. 6, 1x. 'VOLT/OHM-M', ///, 5X, 
!'AQUIFER RESISTIVITY=', 1X.F10. 2> 

139e FORMAT C '0', /////, 5X, 'MACROSCOPIC TRANSPORT PROPERTIES'. 
1' WERE COMPUTED BY THE WARREN & PRICE TECHNIQUE'> 

1400 CONTINUE 
IFCISO. EQ . 1) GO TO 1450 

10360 
10370 
103eo 
10390 
10400 
10410 
10420 
10430 c 
10440 c 
10450 c 
10460 
10470 
104eo 
10490 
10500 
10510 
10520 
10530 
10540 
10550 
10560 
10 
10580 
10590 
10600 
10610 
10620 
10630 
10640 
10650 
10660 
10670 
106eo 
10690 
10700 
10710 
10720 
10730 
10740 
10750 
10760 
10770 
107eo 
10790 
1oeoo 
1oe10 
1oe20 
10830 
10e4o 
10850 
10860 
10870 
100eo 
10e90 
10900 
10910 
10920 
10930 
10940 

C DETERMINE 1D AUTOCORRELATION COEFFICIENTS OF HYDRAULIC CONDUCTIVITY 
C BY ROWS 

DO 1281 I=2,NROWM1 
M=O 
DO 12e2 J=2,NCOLM1 
M~M+l 

VALKCM>=KC I. J) 
VALYCM>=ALOGCKCI,Jll 

12e2 CONTINUE 
CALL MUNSD CVALK,NCOLM2,AMN.SDV.COEVAR> 
CALL AUGAR CVALK,NCOLM2.AMN.SDV.LAGS,RHO> 
AMEANCI>=AMN 
ASDVCI>=SDV 
CALL MUNSD CVALY.NCOLM2.AMN.SDV.COEVARJ 
CALL AUGAR CVALY,NCOLM2.AMN.SOV.LAGS,RHOA> 
AMEANACI>=AMN 
ASDVA<I>=SDV 
00 12e1 IM=t,LAGS 
ARHOC I. IMJ=RHOC IM) 
ARHOACI, IMJ=RHOACIMJ 

1281 CONTINUE 
00 1289 I=LAYLO.LAYHI 
IREV=I-LAYLO+l 
RHOl C IREVJ=ARHOC I, 1 J 
RH02CIREVJ=ARHOCI,2l 
RH03CIREVJ=ARHOCI,3) 
RH04CIREVl=ARHO<I.4l 



10950 
10960 
10970 
10980 
10990 
11000 
11010 
11020 
11030 
11040 
11050 
11060 
11070 
11080 
11090 
11 100 
1 1110 c 
11 120 c 
111 30 
11140 
11150 
111 60 
111 70 
111 8 0 
111 90 
11200 
11210 
11220 
11 230 
11 240 
11250 
11260 
11270 
11280 c 
11 290 c 
11300 
11310 
11320 
11330 
11340 
11 350 
11 360 
11 370 
11 380 
11390 
11 400 
114 10 
11420 
11 430 
11440 
11450 
11460 
11470 
11480 
114 90 
11500 
11510 
11 520 
11530 
11540 
11550 
11 560 
11 570 
11580 
11590 
11600 
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RH05CIREVl=ARHOCI, 5l 
1289 CONTINUE 

CALL MUNSD CRH01 , NOROWS,AMN,SDV,COEVARl 
CSTATSCNSIM, 9l=AMN 
CCSTATCNSIM, ll=AMN 
R01MKR=R01MKR+AMN/CFLOATCNOSIMll 
CALL MUNSD CRH02.NOROWS,AMN,SDV, COEVARl 
CSTATSCNSIM, 10lsAMN 
CCSTATCNSIM,2lmAMN 
CALL MUNSD CRH03,NOROWS, AMN,SDV,COEVARl 
CSTATSCNSIM, 11l=AMN 
CCSTATCNSIM,3l=AMN 
CALL MUNSD CRH04,NOROWS,AMN,SDV,COEVARl 
CCSTATCNSIM,4l=AMN 
CALL MUNSD CRH05 , NOROWS,AMN.SDV.COEVARl 
CCSTATCNSIM, Sl=AMN 

COMPUTE THE MEAN AUTOCORRELATION COEFFICIENTS FOR LOG OF K BY ROWS 
DO 1286 I=LAYLO.LAYHI 
I REV=I-LAYLO+l 
RHOl<IREVl =ARHOACI, ll 
RH02CIREVl =ARHOA<I , 2l 
RH03CIREVl=ARHOA<I,3l 
RH04CIREVl=ARHOACI,4l 
RH05CIREVl=ARHOA<I, 5l 

1286 CONTINUE 
CALL MUNSD <RH01 , NOROWS,AMN,SDV, COEVARl 
CSTATS<NSIM. 5l=AMN 
R01MKR=R01MKR+AMN/CFLOAT<NOSIMll 
CALL MUNSD CRH02,NOROWS,AMN.SDV,COEVARl 
CSTATS<NSIM, 6l=AMN 
CALL MUNSD CRH03,NOROWS,AMN, SDV,COEVARl 
CSTATS<NSIM,7l=AMN 

DETERMINE 1D AUTOCORRELATION COEFFICIENTS OF HYDRAULIC CONDUCTIVITY 
BY COLUMNS 

DO 1283 J=2,NCOLM1 
M"'O 
DO 1284 I=2,NROWM1 
M=M+1 
VALK ( M) =K < I. J l 

1284 CONTINUE 
CALL MUNSD CVALK.NROWM2.AMN, SDV,COEVARl 
CALL AUGAR CVALK,NROWM2, AMN , SDV,LAGS, RHOl 
AMEANCJl=AMN 
ASDVCJ> =SDV 
DO 1283 IM=1,LAGS 
ARHOCJ, IMl =RHO<IMl 

1283 CONTINUE 
DO 1291 J=2, NCOLM1 
JREV=J-1 
RH01CJREVl ~ARHO(J, ll 
RH02<JREVl=ARHOCJ,2l 
RH03<JREVl=ARHOCJ,3l 
RH04CIREVl=ARHO(I , 4l 
RH05CIREVl=ARHOCI , 5) 

1291 CONTINUE 
CALL MUNSD CRH01 , NCOLM2,AMN,SDV,COEVARl 
R01MKC=R01MKC+AMN/CFLOAT<NOSIMll 
CSTATSCNSIM, 12l=AMN 
CCSTAT<NSIM, 6l =AMN 
CALL MUNSD <RH02,NCOLM2, AMN , SDV, COEVARl 
CSTATSCNSIM, 13l=AMN 
CCSTATCNSIM, 7l=AMN 
CALL MUNSD <RH03 , NCOLM2 , AMN, SDV, COEVARl 
CSTATS<NSJM, 14l=AMN 
CCSTATCNSJM, Sl =AMN 
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CALL MUNSD <RH04,NOROWS,AMN,SDV,COEVARl 
CCSTAT<NSIM,9l=AMN 
CALL MUNSD <RH05 , NOROWS,AMN,SDV,COEVAR> 
CCSTAT<NSIM, 10l=AMN 

1450 
c 

11610 
11620 
11630 
11640 
11650 
11660 
11670 
11680 c 
11690 c 
11700 c 
11710 c 

CONTINUE 

c 
c 

11720 
11 730 
11740 
11750 
11 760 c 
11770 c 
1178 0 c 
11790 

IF<STRF. NE. CHECK<5ll GO TO 3000 
OTHERWISE COMPUTE THE STREAM FUNCTION FROM THE 
STEADY STATE HEADS 

BRANCH TO THE APPROPRIATE LOCATION TO COMPUTE THE STREAM FUNCTION 
DEPENDING ON THE FLOW TYPE <HORIZONTAL, VERTICAL OR POINT TO POINT> . 

IF<FLOW. EG. CHECK<6ll GO TO 2500 
IF<FLOW. EG . CHECK(10)) GO TO 2560 

OTHERWISE THE FLOW IS PREDOMINATELY HORIZONTAL 
SET BOTTOM ROW STREAM FUNCTION VALUES TO ZERO 

DO 1500 J=·l. NCOLM1 
11 800 1500 STR FUN<NROWM1,Jl=O. 0 
1181 0 c 
11820 c 
11830 C COMPUTE INTERIOR VALUES OF THE STREAM FUNCTION MOVING ALONG 
11840 C SUCCESSIVE COLUMNS FROM THE BOTTOM STREAMLINE 
11850 c 
11 860 
11870 
11880 
11890 
11900 
11 9 10 
11920 c 

DO 1800 J=2,NCOLM2 
DO 1800 I=2,NROWM1 
I I=NROW- I 
STRFUN< I I, Jl=STRFUN< I I+l, Jl+(KHARM( I I+1 , J+l, 1 l*( <H< I I+l , J l­

~H <I I+1, J+1) l /AX< J+1 l l *YD< I I+1 l l 
1800 CONTINUE 

11930 C SET THE VALUES OF STRFUNCI , 1l AND STRFUN<I,NCOLM1l TO 
11940 C PRODUCE A BETTER PLOT EFFECT 
11950 c 
11 960 DO 1850 I=l,NROWM1 
11970 STRFUN<J, 1 J=STRFUN<J,2l 
11980 1850 STRFUN<I,NCOLM1l=STRFUN<I,NCOLM2l 
11990 c 
12000 C NONDIMENS I ONALIZE THE STREAM FUNCTION 
12010 c 
12020 
120 30 
12040 
120 50 
12060 
120 70 
12080 

STRNOR=STRFUN<l,LSTRMl 
DO 1900 I=1,NROWM1 
DO 1900 J=1 , NCOLM1 

1900 STRFUN<I.Jl=<STRFUN(I,Jl/STRNORl*100. 
c 
C WRITE OUT THE VALUES OF THE NONDIMENSIONALIZED STREAM FUNCTION 
c 

12090 C STORE THIS SIMULATION'S VALUES IN THE CUMULATIVE ARRAY . STRFMN 
12 100 DO 982 I=1,NROWM1 

• 12 110 DO 982 J=1 , NCOLM1 
12120 STRFMN(I , J>=STRFMN<I,JJ+STRFUN(I , Jl/(FLOAT<NOSIM>> 
12 130 982 CONTINUE 
12140 IF<NSIM . NE . 1 l GO TO 3000 
121 50 C A WRITE STATEMENT SHOULD BE PUT HERE IF STRFUN IS DESIRED 
12160 2 100 FORMAT < '1 ', 5X, 'STREAM FUNCTION VALUES ' l 
12170 C A WRITE STATEMENT W/ DO LOOP IS NEEDED TO PRINT STRFUN 
12 180 c 

' 12 190 c 
12200 C WRITE STREAM FUNCTION VALUES ONTO DSN 
122 10 DO 2200 I=l,NROWMl 

• 12220 DO 2200 J=1.NCOLM1 
12230 2200 WRITEC13 , 2110l STRFUNCI,Jl 

• 12 240 2 110 FORMAT C30X . F10. 5) 
122 50 WRITE ( 6 , 2300l 
12260 2300 FORMAT ( ' O ' , '*** STREAM FUNCTION VALUES WRITTEN ONTO DSN *H·' > 
12270 c 



c 
c 

GO TO 3000 
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12280 
' 12290 
' 12300 

12310 
12320 
12330 
12340 

C COMPUTE STREAM FUNCTION FOR VERTICAL FLOW 
C SET RIGHT SIDE STREAM FUNCTION VALUES TO ZERO 
c 

12350 
12360 

2500 DO 2510 I=1,NROWM1 

2510 STRFUN<I,NCOLM1l=O. 0 
c 

' 12370 
' 12380 

12390 
12400 
12410 
12420 
12430 
12440 
12450 
12460 
12470 
12480 
12490 
12500 
12510 

C COMPUTE INTERIOR VALUES OF THE STREAM FUNCTION MOVING ALONG 
C SUCCESSIVE ROWS FROM THE RIGHT SIDE STREAM LINE 
C WHERE .THE STREAM FUNCTION IS .EGUAL TO ZERO 
c 
c 

DO 2520 I=2,NROWM2 
DO 2520 J=2,NCOLM1 
JJ=NCOL-J 
STRFUN(I , JJ) 2 STRFUNCI,JJ+ll+CKHARMCI+1,JJ+l,2l*((H(I,JJ+1)-

2520 
c 

1HCI+1,JJ+lll/AYCI+1ll*XD(JJ+lll 
CONTINUE 

12520 

c 
c 

SET THE VALUES OF STRFUN(l,Jl 
PRODUCE A BETTER PLOT EFFECT 

DO 2525 J=l,NCOLMl 
STRFUNC1,Jl=STRFUNC2,Jl 

AND STRFUNCNROWMl,Jl TO 

12530 2525 STRFUN<NROWM1,Jl•STRFUNCNROWM2,Jl 
12~40 c 
12550 C NONDIMENSIONALIZE THE STREAM FUNCTION 
12560 c 
12570 
12580 
12590 
12600 2530 
12610 c 

STRNOR=STRFUNCLSTRM, ll 
DO 2530 I=1,NROWM1 
DO 2530 J=1,NCOLM1 
STRFUNCI,Jl=CSTRFUNCI,Jl/STRNORl*lOO. 

12620 C WRITE THE VALUES OF THE NONDIMENSIONALIZED STREAM FUNCTION 
12630 c 
12640 
12650 
12660 
12670 2540 
12680 c 

IFCNSIM.NE. ll GO TO 3000 
WRITEC6 , 2100l 
DO 2540 I=l,NROWMl 
WRITE(6,200l I, <STRFUN<I,Jl,J=l,NCOLMll 

12690 C WRITE STREAM FUNCTION VALUES ONTO DATA SET 
12700 c 
12710 
12720 
12730 2550 
12740 
12 750 c 
12760 
12770 c 
12780 c 

DO 2550 I=l,NROWMl 
DO 2550 J=l,NCOLMl 
WRITE<13,2110l STRFUN<I,Jl 
WR !TE C 6, 2300 l 

GO TO 3000 

12790 C COMPUTE STREAM FUNCTION FOR POINT TO POINT FLOW 
12800 C SET RIGHT SIDE STREAM FUNCTION VALUES TO ZERO 
12810 c 
12820 2560 DO 2570 I=2,NROWM2 
12830 STRFUNCI, ll=O. 0 
12840 2570 STRFUN(I,NCOLMll=O. 0 
12850 c 
12860 C COMPUTE INTERIOR VALUES OF THE STREAM FUNCTION MOVING ALONG 
12870 C SUCCESSIVE ROWS FROM THE RIGHT SIDE STREAM LINE 
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12880 C WHERE THE STREAM FUNCTION IS EGUAL TO ZERO 
12890 c 
12900 c 

DO 2600 I=2,NROWM2 
DO 2600 J=2,NCOLM2 
JJ=NCOL-J 
Gl=KHARM<I+l,JJ+l,2l*<CHCI+1,JJ+ll-H<I,JJ+ll) 

l/AYCI+lll*XD(JJ+l> 
2600 STRFUNCI,JJ>~STRFUN(I,JJ+ll+Gl 

c 
C COMPUTE TOTAL INFLOW AND OUTFLOW AT THE 
C CONSTANT HEAD NODES IN ROW 2 

GIN=O. O 
QOUT=O. 0 
DO 2606 J=2,NCOLM1 
IF<IC(2,J> . GE . O> GO TO 2606 

12910 
12920 
12930 
12940 
12950 
12960 
12970 
12980 
12990 
13000 c 
13010 
13020 
13030 
13040 
13050 
13060 
13070 
13080 
13090 
131 00 
13110 

C OTHERWISE COMPUTE FLOW THROUGH THE LEFT<GL), RIGHT<GR> 
C AND BOTTOM<GB> FACES OF THE CONSTANT HEAD NODE 

GL=KHARM(2,J, 1)*(H(2,Jl-H(2,J-1))/AX(J)*YD(2) 
GR=KHARMC2,J+1, ll*(H(2,J>-H<2,J+lll/AX(J+ll*YD<2l 
GB=KHARMC3,J,2l*(H(2,Jl-HC3,Jll/AY(3l*XD<Jl 
GNODE=GL+GR+-GB 
IFCGNODE. LT. 0 . 0l GO TO 2604 

13120 C OTHERWISE INFLOW OCCURS AT THE NODE 
13130 GIN=GIN+GNODE 

GO TO 2606 13140 
13150 
13160 
13170 
13180 
13190 

C OUTFLOW OCCURS AT THE NODE 
2604 GOUT=GOUT+GNODE 

c 
c 

13200 c 
13210 c 
13220 
13230 
13240 
13250 
13260 
13270 
13280 
13290 

2606 CONTINUE 

SET STREAM FUNCTION VALUES OF ROW 1 
THIS IS VALID ONLY WHEN ALL INFLOW IS 
AND ALL OUTFLOW LEAVES AT ONE NODE 

LSTRMl=LSTRM-1 
DO 2608 J=l,LSTRMl 
JJ=NCOL-J 
STRFUNC L J>=O. 0 

2608 STRFUNCI,JJl=O. O 
Jl=LSTRM 
J2=NCOL-J1 

13300 2609 
13310 c 

DO 2609 J=Jl,J2 
STRFUNC L J>=GIN 

FROM ONE NODE 

13320 C MAKE THE BOTTOM ROW OF THE STREAM FUNCTION= 0 . 0 
13330 c 
13340 DO 2610 J=1 , NCOLM1 
13350 2610 STRFUN<NROWMl,Jl=O . 0 
13360 c 
13370 C NONDIMENSIONALIZE THE STREAM FUNCTION 
13380 C AS BASED ON THE TOTAL INFLOW 
13390 DO 2620 I=l,NROWM1 
13400 DO 2620 J=1,NCOLM1 
13410 2620 STRFUNCI,Jl=CSTRFUN<I,Jl/GIN>*100. 
13420 c 
13430 C WRITE THE VALUES OF THE NONDIMENSIONALIZED STREAM FUNCTION 
134110 c 
13450 WRITEC6,2100) 
13460 DO 2630 I=1,NROWM1 
134 70 2630 ~lRITEC6,2640) I. CSTRFUNCI.Jl.J=LNCOLM1> 
13480 2640 FORMAT ( 'O', 12, 2X, 10F12. 3/(5X, 10F12. 3> l 
13490 c 
13500 
13510 
13520 
13530 c 

WRITEC6,2650l GIN.GOUT 
2650 FORMAT C 'O ', 3X, ' FLOW INTO THE MODEL=', F 12. 2, //, 

13X. ' FLOW OUT OF THE MODEL:',F12 . 3) 

13540 C WRITE STREAM FUNCTION VALUES ONTO DATA SET 
13550 c 



13560 
13570 
13580 
13590 
13600 
13610 
13620 
13630 
13640 
13650 
13660 
13670 
13680 
13690 
13700 
13710 
1372 0 
13730 
13740 
13750 
13760 
13 7 7 0 
13780 
13790 
13800 
13810 
13820 
13830 
13840 
13850 
13860 
13870 
13880 
13890 

c 

IF<NSIM. NE. ll GO TO 3000 
DO 2660 I=1,NROWM1 
DO 2660 J=1,NCOLM1 
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2660 WRITE<13 , 2670l STRFUN<I,Jl 
2670 FORMAT (30X , F10. 4) 

WRITE<6. 2300) 

3000 CONTINUE 
C CALCULATE THE TRAVEL TIME FROM THE LEFT SIDE TO THE RIGHT 
C INITIALIZE ALL VELOCITY VALUES=O 

DO 213 I=l. NROW 
DO 213 J=1,NCOL 
VX(I,Jl=O. 0 

213 VY<I,Jl=0. 0 
C CALCULATE THE VELOCITY IN EACH INTERIOR BLOCK 

DO 191 I=3.NROWM2 
DO 191 J=3.NCOLM2 
POROCT=l. 0 
VX <I, J >=-0 . 5*< (KHARM< I, J+1, 1 l*<H< I, J+l l-H< I• J) l /AX< J) l +<KHARM< L J, 

$ ll*CH<I.Jl-HCI,J-lll/AXCJ-1lll/POROCT 
VY<I , Jl=-0. 5*((KHARM<I , J,2l*<H<I-1,Jl-H(I , Jll/AYCill+CKHARM<I+l , J, 

$2l * CH<I , Jl-HCI+l,Jll/AYCilll/POROCT 
191 CONTINUE 

C COMPUTE VELOCITY IN THE UPPER BOUNDARY BLOCK 
DO 193 J=3,NCOLM2 
VY<2,Jl=-CKHARM(3,J,2l*<H<2,Jl-H(3, Jll/AY<2ll/POROCT 
v x c2 . J>=-O. 5*((KHARM<2.J+1. l)*(H(2, J+1>-H<2.J))/AX(J))+(KHARM<2.J . 

$ll * <H<2.Jl-H(2,J-lll/AXCJ-llll/POROCT 

C COMPUTE VELOCITY IN LOWER BOUNDARY BLOCK 
I =NROWMl 
VX< I. Jl=-0. 5*< <KHARM< I. J+l, 1 l*CHC I. J+l l-H< I, Jl l/AX(J) l+<KHARM< I. J, 

$1l*<H<I,Jl-HCI,J- 1ll/AXCJ-1lll/POROCT 
193 VY<NROWM1,J)a-CKHARMCNROWM1,J,2l*<HCNROWM2,Jl-HCNROWM1,Jll / AY<NROW 

$M l l > /POROCT 
13900 c 
13910 

CALCULATE VELOCITIES IN THE LEFT BOUNDARY BLOCKS 
DO 195 I=2,NROWM1 

13920 
13 930 
139 4 0 
13950 c 

VX <I. 2 >=-< KHARM< I. 3, 1 l *<H< I. 3>-H< I, 2 l l /AX (2) l /POROCT 
VYCI , 2>=-0. 5*C<KHARMCI,2.2l*CH<I-1,2l-HCI,2ll/AY<Jll+<KHARM<I+1 ,2, 

$2l*<HCI , 2l-H<I+l,2ll/AYCilll/POROCT 
CALCULATE VELOCITIES IN THE RIGHT BOUNDARY BLOCKS 

J=NCOLMl 13 9 60 
1397 0 
13 980 
1399 0 
1400 0 
140 10 
14020 
14030 
14040 
14050 
1406 0 
1 4 0 ·10 
14080 
14090 
141 0 0 
14 1 10 
14120 
14130 
14 140 
14 150 
141 6 0 
141 7 0 

VY CI,Jl=-0. 5* C<KHARM<I , J,2l*<H<I-1,Jl-H(I , Jll/AY<Ill+(KHARMCI+l , J , 
$ 2 l * <H<I,Jl-H<I+l , Jl)/AYCilll/POROCT 

19 5 VX< I . NCOLM1>=-<KHARM<I.NCOLM1. ll*<HCI.NCOLM1>-H<I.NCOLM2ll/AX<NCOL 
$M2 l l / POROCT 

C REVISE VERTICAL VELOCITIES IN THE FOUR CORNERS OF FLOW REGION 
VY ( 2 , 2l =-CKHARMC3,2,2l*<H<2,2l-HC3.2ll/AYC2ll/POROCT 
VY<2.NCOLM1l=- <KHARM<3,NCOLM1,2l*CH(2,NCOLM1l-HC3,NCOLM1ll/AY<2ll/ 

$POROCT 
VY<NROWM1,2l • -<KHARM<NROWM1,2,2l*<H<NROWM2,2l-H<NROWM1,2ll/AYCNROW 

$Ml l l /POROCT 
J =NCOLMl 
VY<NROWM1,Jl=-<KHARM<NROWM1,J,2l*<H<NROWM2, Jl-H<NROWM1,Jll/AYCNROW 

$Ml> l /POROCT 
DO 198 I=2,NROWM1 
VEXAMP=VY<J, 2 > 

198 IFCVEXAMP. EG.0 . 0l VY<I . 2l =VY<I.3l 
DO 199 J=2,NCOLM1 

199 J FC VEXAMP. EG . O. Ol VX<2,Jl=VXC3,J) 
VEXAMP=VX C2,Jl 
IF<NSIM. NE. 1 l GO TO 182 

14 180 C SET 
14190 

WRJTE<6, 140> NROW,NCOL , DHEAD , LENGTH,AREA,EC , ITMAX 
CUMULATI VE MEAN VALUES EGUAL TO 0 . 0 
AVGXH=O. 0 

14 200 
1421 0 
14220 

AVGYH=O. 0 
AVGYL=O . O 
AVGTTT=O. 0 



14230 c 
14240 c 
14250 c 
14260 
14270 
14280 
14290 
14300 
14310 
14320 
14330 
14340 
14350 
14360 
14370 
14380 
14390 
14 400 
14410 c 
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READ IN THE VARIABLE INPUT DATA 
USE STFLOC=O. O FOR FLOW FROM ENTIRE LEFT SIDE, 1. 0 FOR ONLY PART 

OF THE LEFT SIDE, OR 2 . 0 FOR FLOW FROM UPPER BOUNDARY . 
READ(5,34l NWAVES,NROWT,NROWB,NRCUTO,DELT,D50,DSPRAT,STFLOC 
NPTOT=NWAVES*<NROWB-NROWT+ll*<FLOAT<NOSIM)) 
NPSIM=NWAVES*<NROWB-NROWT+l> 
STXLOC=XD(J)*l. 0 
ENXLOC=FLOAT<NCOLMll*XD<J> 
TDIST=ENXLOC-STXLOC 
HALFWY=STXLOC+O. 5*<ENXLOC-STXLOC> 
REG60P=STXLOC+0 . 6*<ENXLOC-STXLOC) 
REG70P=STXLOC+O. 7*<ENXLOC-STXLOC> 
REG80P=STXLOC+O . B*<ENXLOC-STXLOC> 
REG90P=STXLOC+0.9*<ENXLOC-STXLOC> 
ESTTTT=<TDIST*LENGTH>*POROCT/(CONMN<N>*DHEAD> 
THT=ESTTTT/2 . 0 
NESHT=INTCTHT/DELT> 
THT=DELT*FLOAT<NESHT> 

MP IS A COUNTER OF THE PARTICLES TRAVERSING THE REGION 
1442 0 MP =O 
14430 182 CONTINUE 
14440 C SET HORIZ . VELOCITIES IN UPPER ROW EGUAL TO NEIGHBOR IF CUTOFF PROBLEM 
14450 
14460 
14470 
14480 
14490 
14500 
145 10 c 
14520 
14530 
14540 
14550 
14 560 
14570 
14580 
1459 0 
14600 
14610 
1462 0 
14630 
14640 
14650 
14 6 6 0 
14670 
14680 
14690 
14700 
14710 
14720 
14730 
14740 
14750 
14760 
14770 
14780 
14790 
1480 0 
14810 
14 820 
143 30 
148 110 
14350 
14860 
14870 
14880 
1489 0 

HDCHK1=H<2,2) 
HDCHK2=H<2,3> 
IF CHDCHK1 . NE. HDCHK2l GO TO 197 
DO 196 J=l , NCFLO 

196 VXC2 , J l =VXC3,Jl 
197 CONTINUE 

IFCSKIP. EG . CHECKC7l) GO TO -176 
13 1 WRITEC6. 184> 
184 FORMAT< '1 ' , //, 5X, ' THE VELOCITY MATRIX IN THE X DIRECTION IS TABULA 

$TED BELOW, WHERE J=', //, 13X, '1',12x , ' 2 ' , 12x, '3', 12x. ' 4', 12x, '5 ' . / / ) 
DO 186 I=L NROW 

186 WRITEC6,200l I, CVX<LJ),J=l,NCOL> 
WRITEC6. 187> 

187 FORMAT( '1 ', //,5X, ' THE VELOCITY MATRIX IN THE Y DIRECTION IS TABULA 
$TED BELOW, WHERE J:z ' , //, 13X, '1',12x , '2 ', 12x, ' 3' , 12X, '4', 12x, ' 5 ', / / ) 

DO 188 I=LNROW 
188 WRITEC6,200) I, CVYCLJ>,J=LNCOL> 
1 76 CONTINUE 

SIMTTM=O . 0 
DO 45 NT=l , NWAVES 
DO 45 IY=NROWT,NROWB 
TOTSX=O. 0 
MP =MP+l 
NWAV <MP>=NT 

. SIUPS=O. 0 
N"T IM'-"O 
TTHWCMP>=O. 0 
TT60CMPl=O. O 
TT70CMP>=O. O 
TT80 CMP>=O. 0 
TT90(MPl=O. O 
NTREB<MP>=O 
IF <STFLOC . EQ. 2.0l GO TO 41 
I=I Y 
YLOC =FLOATCil*YDCil+C YD<IJ/2. OJ 
STYCMP >=YLOC 
J =l 
XL OC =FLOATCJ>*XD<J> 
GO TO 1 

43 WRI TEC6.62> MP.NTIM 
62 FORMAT < ' O ', 7X, 'PARTICLE NO. ', I4, ' DUR ING TIME INTERVAL NO', 

$I4, ' GOT BUMPED BACK BEYOND THE ORIGIN ' ) 
GO TO 45 

3 53 CONTINUE 



14900 
14910 
14920 
14930 
14940 
14950 
14960 
14970 
14980 
14990 
15000 
15010 
15020 
15030 
15040 
15050 
15060 
15070 
15080 
15090 
15100 
15110 
15120 
15130 
15140 
15150 
15160 
15170 
15180 
15190 
15200 
15210 
15;220 
152 30 
152 40 
152:50 
152 60 
15270 
15280 
15290 
15:JOO 
153 10 
15320 
15330 
15340 
15350 c 
1536 0 
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NSKOUT=NSKOUT+1 
355 FORMAT < '0 ', 7X, 'THE PARTICLE WAS KICKED BACK OUT OF THE REGION'> 

IF<NTIM. GT. 10) GO TO 354 
GO TO 357 

362 WRITE<6, 355) 
WRITE<6.356l NTIM,MP 

356 FORMAT( 'O', ax. 'DURING TIME INTERVAL', I4,' THE PARTICLE WAS ALLOWED 
$ TO CONTINUE TRAVERSING ANYWAY', 2X, 'PARTICLE NO WAS ', I4 > 

357 YLOC=YLOC+SY+DSY 
NTIM=NTIM-1 
GO TO 1 

371 CONTINUE 
IF<XLOC . GE.REG60Pl GO TO 372 
IF<TTHW<MPl . EG. 0 . 0> TTHW<MP)aFLOAT<NTIM-ll*DELT-TREM 
GO TO 379 

372 CONTINUE 
IF<XLOC .' GE. REG70Pl GO TO 373 
IF<TT60<MPl . EG . O. Ol TT60<MP>=FLOAT<NTIM-1l*DELT-TREM 
GO TO 379 

373 CONTINUE 
IF<XLOC . GE. REGSOP> GO TO 374 
!F<TT70<MPl . EG. 0 . 0l TT70<MPl=FLOAT<NTIM-1l*DELT-TREM 
GO TO 379 

374 CONTINUE 
IFCXLOC . GE. REG90Pl GO TO 375 
!F<TTSO<MP> . EG . O. Ol TT80<MPl=FLOAT<NTIM-1l*DELT-TREM 
GO TO 379 

375 CONTINUE 
!FCTT90<MP> . EG. O. Ol TT90<MPl=FLOAT<NTIM-1l*DELT-TREM 
GO TO 379 

41 !=1 

3 79 

YLOC=FLOAT<I>*YD<I> 
J o: IY 
XLOC=FLOAT<J>*XDCJl+<XDCJ+1l/2. Ol 
STY<MPl=XLOC 
TOTSX=XD(J+ll/2. 0 
IFCMP . NE. 1 > GO TO 
WRITE<6.25l DSEED 
WRITE(6 . 189) MP.NTIM. I.J.NI.SY. DSY.YLOC.SX.DSX. XLOC.TOTSX 
NTIM=NTIM+1 
IFCXLOC . LT. 0 . Ol GO 
IF<XLOC.GE. HALFWY> 
CONTINUE 
NBLKSX=O 
NDLKSY=O 

TO 43 
GO TO 371 

RESTABLISH THE I&J VALUES AT THE PARTICLE LOCATION 
J = INT<XLOC/XD<Jll+l 
I=INTCYLOC/YD(Ill+l 

C PARTICLE CANNOT MOVE BACKWARDS OR UPWARDS OUT OF THE REGJON 
IF<J . GT . 1 > GO TO 352 

15370 
15380 
15390 
15400 
15410 
15420 
1 54 30 
15440 
15450 
15460 
15470 
15480 c 
15490 
15500 
15510 c 
15520 
15530 
15540 
155:50 

J=2 
TOTSX=O. 0 

352 CONTINUE 
IFCI. GT . ll GO TO 351 
I =2 
YLOC=FLOAT<I>*YD<I> 
IF<MP . NE. 1) GO TO 351 
WRITE<6.25) DSEED 

CALCULATE THE PARTICLE CONVECTIVE MOVEMENT IN THE X * y DIRECTIONS 
351 SX=VX<I,Jl*DELT 

SY=VY C I, J l •DEL T 
CALCULATE THE PARTICLE DISPERSIVE MOVEMENT IN THE X & y DIRECTIONS 

RANOL=GGNGFCDSEEDl/6 . O 
RANOT=GGNGF<DSEEOl/6. O 
THETA=ATAN<SY/SXl 
VL=SGRTCVX<! , Jl**2+VY(I,Jl**2) 



15560 
15570 
15580 
15590 
15600 
15610 
15620 
15630 
15640 
15650 
15660 
15670 
15680 
15690 
15700 c 
15710 
15720 c 
15730 
15740 c 
15750 
1576 0 c 
15770 
15780 c 
15790 
15300 c 
15810 
158 2 0 c 
15830 
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DL=SGRT(6 . 3*D50*VL*DELT>*<RANOL> 
DT=SGRT<6. 3*D50*VL* DSPRAT*DELT>*<RAN0Tl 
DSX=DL*COS<THETA>-DT*SIN<THETA> 
DSY=DL*SIN<THETAl+DT*COS<THETA> 
YLOC=YLOC-SY-DSY 

354 

NI=INT<YLOC/YD<Ill+l 
IF<NI. LE. 1 > GO TO 353 
TOTSX=TOTSX+SX+DSX 
XLOC=XLOC+SX+DSX 
IF<NTIM. EG.NESHT> GO TO 18 

19 CONTINUE 
IF<MP . LT . 401) GO TO 15 
WRITE(6. 189) MP.NTIM. I.J.NI.SY.DSY.YLOC.SX.DSX . XLOC.TOTSX 

15 CONTINUE 

189 FORMAT (//,7X, 5I5.8F10. 5) 
CHECK TO SEE IF THE PARTICLE HAS MOVED LATERALLY TO THE NEXT BLOCK 

IF <TOTSX . GE. XD(J)) GO TO 3 
CHECK TO SEE IF THE PARTICLE MOVED VERTICALLY OUT OF THE BLOCK 

!F I NI . NE. I> GO TO 4 
THE PARTICLE REMAINS IN THE SAME BLOCK SO START A NEW TIME INTERVAL 

GO TO 1 
PARTIC LE HAS MOVED LATERALLY OUT OF THE BLOCK 

3 NBLKSX=INTITOTSX/XDCJ)) 
VERIFY THAT IT HAS MOVED ONLY ONE BLOCK 

IFCNBLKSX . GT . l > GO TO 2 
PARTICLE HAS ONLY MOVED INTO THE NEXT BLOCK OR A SKIP WAS RECORDED 

13 PREVX=TOTSX-SX-DSX 
XREMB=XD(Jl-PREVX 
PRCTXM= XREMB/(SX+DSX> 
PARDSX=PRCTXM*DSX 
RXREMB=XREMB-PARDSX 
TREM=DELT-<RXREMB/VXC!,J)) 
J=J+NBLKSX 

15840 
15850 
15860 
15870 
1588 0 
1589 0 
15900 
1591 0 

C CHECK TO SEE IF THE PARTICLE HAS REACHED THE END OF THE REGION 
!F (J. GE. NCOL> GO TO 74 

15920 c 
15930 

PARTICLE HAS NOT REACHED THE END OF THE REGION 
IF(J . NE. NCBAR> GO TO 3~9 

15940 
15950 c 

IF<NI. GT. NRBARB> GO TO 359 
PARTIC LE HAS ENCOUNTERED THE BARRIER 

J=J-NBLKSX 15960 
15970 
15980 
15990 
16000 
160 10 
1602 0 
16 0 30 
16040 
16050 
1606 0 
16070 
16080 
16090 
16 100 
16110 
16 12 0 
16130 
16140 
16 150 
16 160 
16170 

3 61 
358 

I F<J. GT . NCBAR> GO TO 361 
XLOC=FLOAT<NCBARl*XD<J>-<XLOC-FLOAT<NCBARl*XD(J)) 
GO TO 358 
XLDC= < FLOAT<~C3AR > *XD < Jll*2 . 0-XLOC 

TOTSX=XLOC-<FLOAT<J-ll * XD(J)) 
NTREB<MPl=NTREB<MP l +l 
GO TO l 

359 TOTSX =VX(I , J> * TREM+DSX-PAROSX 
XLOC=TOTSX+XD<J>*<FLOAT(J)-1.0l 
IF<TOTSX . LT. XD<J>> GO TO 31 

C PARTICLE HAS MOVED MORE THAN ONE BLOCK 
TREM=<TOTSX-XD<Jll / VX<I,Jl 
J=J+INT <TOTSX / XDIJ)) 
IF< J . GE . NCOL ) GO TO 74 

3 1 CONTINUE 
IF CNI . NE . I> GO TO 4 

C PARTICLE HAS NOT MOVED UP OR DOWN OUT OF THE BLOCK, SO NEW TIME INT. 
GO TO 1 

C PAR T ICLE HAS MOVED MORE THAN ONE BLOCK 
2 SKIPS=SKIPS+l . 0 

GO TO 13 
16180 C PARTICLE HAS MOVED VERTICALLY AT LEAST ONE BLOCK 
161 9 0 4 CONTINUE 
16200 C CHECK TO VERIFY THAT THE PARTICLE HAS NOT MOVED BEYOND 
16210 C THE BOUNDARIES. CHECK THE UPPER BOUNDARY FIRST 
16 220 IFINI. LT . 2> GO TO 6 
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16230 
16240 
16250 
16260 
16270 
16280 

C NOW CHECK THE LOWER BOUNDARY 
NBLKSY=<NI-I 
IF<NI.GT. NROWM1l GO TO 7 

C THE PARTICLE REMAINS IN THE REGION 
I=NI 

11 CONTINUE 
CHECK TO SEE IF THE PARTICLE MOVED MORE THAN ONE BLOCK 

NBSY=IABSCNBLKSY> 
IFCNBSY. GT. 1) GO TO 5 

C IT HADN'T, BUT SEE IF THE DISPLACEMENT HAS BEEN ADJUSTED 
12 CONTINUE 

16290 c 
16300 
16310 
16320 
16330 
16340 
16350 
16360 
16370 
16380 
16390 
16400 
164 10 

IFCNBLKSX . NE. Ol GO TO 1 
C FIRST CHECK IF THE PARTICLE WAS REBOUNDED FROM THE BOUNDARY 

IF<NI. LT . 2> GO TO 1 
IF<NI . GT . NROWMl> GO TO 1 

C PARTICLE HADN'T MOVED LATERALLY, SO RECALCULATE DISPLACEMENTS 
PREVY=YLOC+SY+DSY 

16 4 20 c 
16 430 
16440 c 
16 4 50 
16460 
16470 c 
16480 

PREVX =TOTSX-SX-DSX 
IPREV=-I-NBLKSY 

DETERMINE WHETHER THE PARTICLE MOVED UP OR DOWN 
I FCNBLKSY. LT. 0) GO TO 14 

PARTICLE HAS MOVED DOWNWARD 
YREMB=YD<I>*CIPREV>-PREVY 
GO TO 16 

PARTICLE MOVED UP 
14 YREMB=PREVY-YD<Il*C1PREV-1l 

16490 
16500 
165 10 
16 520 

C NOW CALCULATE THE TIME REMAINING AFTER LEAVING BLOCK 
C FIRST CHECK IF VY=O 

16 CONTINUE 
IFCVYCIPREV,Jl.EO. 0 . 0) GO TO 8 

16530 C IT ISN'T SO CONTINUE 
PRCTDY=YREMB/CSY+DSY> 
PARDSY=PRCTDY*DSY 
RYREMB=YREMB-PARDSY 
TREM=DELT-<RYREMB/ABS<VY<IPREV,J>>> 

16540 
,16550 
16560 
16570 
16580 C NOW RECALCULATE DISPLACEMENTS 
16590 9 SX=VX<IPREV,J>*<DELT-TREM>+VXCI,J>*TREM 
16600 
1661 0 
166 20 
16630 
16640 

SY=VYCIPREV,Jl*CDELT-TREMl+VYCI , J>*TREM 
TOTSX=PREVX+SX+DSX 
YLOC=PREVY- SY-DSY 
XLOC=CFLOAT<J>-l>*XDCJ>+TOTSX 
NJ=INT CX LOC/XDCJ))+l 
IF<N~~ > GO TO 1 
TOTSX=XLOC-CFLOATCNJ-ll * XDCJ>> 
J=NJ 

16650 
16660 
16670 
16680 IF<J . GE . NCOL) GO TO 74 
16690 C NOW START A NEW TIME INTERVAL 
16700 GO TO 1 
16710 
16720 
16730 
1674 0 

C PARTICLE MOVED OUT OF A BLOCK WHERE VY = 0 
8 PARDSY=YREMB/DSY 

TREM=O. 0 
GO TO 9 

16750 C PARTICLE SKIPPED AT LEAST ONE BLOCK 
16760 5 SKIPS=SKIPS+l. 
16"770 
16780 
16790 
16800 
168 10 
168 20 
16830 
168 4 0 
168 50 

GO TO 12 
C PARTICLE HAS HIT THE UPPER BOUNDARY 

6 NBLKSY=I-NI 
NTREBCMP>=NTREB<MP)+l 
IFCNI . LT. 1) GO TO 17 

C PARTICLE ONLY MOVED ONE BLOCK INTO THE BOUNDARY 
YLOC =2 . O* YD<I l -YLOC 
I ~ INT < YLOC / YD < I l l+l 

IF< J. GE . NCOL > GO TO 231 
168 6 0 C NmJ RECALCULATE DISPLACEMENTS 
16870 GO TO 11 



286 

16880 
16890 
16900 
16910 
16920 
16930 
16940 
16950 
16960 
16970 

C PARTICLE MOVED MORE THAN ONE BLOCK BEYOND THE UPPER BOUNDARY 
17 YLOC=ABS<YLOC>+YD<Il*2 . 0 

I = INT<YLOC/YD<I>>+1 
IFCJ. GE. NCOLJ GO TO 231 
GO TO 11 

C PARTICLE HIT THE LOWER BOUNDARY 
7 YLOC=FLOAT<NROWM1>*YDCil*2. 0-YLOC 

NTREB<MPl=NTREB<MPl+1 
I=INT<YLOC/YDCill+1 
GO TO 11 

C PARTICLE HAS TRAVELED HALF THE ESTIMATED TIME REGUIRED TO TRAVERSE 
THE REGION. STORE THE X & Y LOCATIONS AT THIS TIME . 

16980 
16990 c 
17000 
17010 
17020 
17030 
1704 0 
170 50 

18 AVGYH=AVGYH+YLOC/FLOATCNPTOTJ 
AVGXH=AVGXH+XLOC/FLOAT<NPTOT> 
XLOCHT<l'IP J=XLOC 
YLOCHT<MPl=YLOC 
GO TO 19 

C PARTICLE REACHED THE END BEFORE END OF TIME CYC LE 
1 ·1060 
17070 
17080 
170 9 0 
171 0 0 c 
171 10 
17 120 
17130 
17 140 
17150 
17160 
171"70 c 
17180 
.l 7190 
17:200 c 
17 210 c 
17220 c 
17230 
17240 c 
17250 
17260 
17270 c 
17280 
1 7~~90 
17300 
17310 
17320 c 
17330 
17340 
17350 
17360 
173 7 0 
17380 
17390 
17 40 0 
17 41 0 
17420 
17430 
17440 
17 450 
17 '! 60 
17470 
17480 
17490 

7 4 CONTINUE 
NICHK=NI 
IF <UPDISC . GT . O> NICHK=NROW-NI 
IF<NICHK. GT. NRCUTO> GO TO 61 

PARTICLE HAS ENCOUNTERED THE CUTOFF, SO REBOUND IT 
XLOC=FLOAT<NCOLMll*XD<JJ-<XLOC-FLOAT<NCOLMll•XD(J)) 
NJ= INT<XLOC/XDCJ)l+l 
TOTSX=XLOC-<FLOATCNJ-ll*XD<Jl) 
NTREB<MP>=NTREB<MPJ+l 
GO TO 1 

61 TOTIM=FLOAT<NTIM>*DELT-TREM 

TOTM<MP>=TOTIM 
NBSIM<MP)zNSIM 

CHECK TO SEE IF THE PARTICLE MOVED VERTICALLY OUT OF THE REGION 
CHECK UPPER BOUNDARY 

IF<NI. LT . 2> GO TO 6 
CHECK LOWER BOUNDARY 

I F CNI. GT . NROWM1> GO TO 232 
GO TO 231 

PARTICLE WENT BEYOND THE LOWER BOUNDARY 
2 32 YLOC=FLOAT <NROWM1l*YD<I>•2. 0-YLOC 

I = INT <YLOC/YD<Ill+l 
23 1 AVGYL =YLOC/FLOAT<NPTOT>+AVGYL 

YLOC EN<MP>=YLOC 
DETERMINE IF THE PARTICLE SKIPPED ANY BLOCKS DURING TRANSIT 

IF<SKIPS. EG . 0 . O> GO TO 49 
NSKIPS=NSKIPS+INT<SKIPS> 
WRITE <6.47) NT , IY , SKIPS,NSIM 

4 7 FORMAT< ' 0 ' , 5X. 'DURING TRANSIT IN WAVE# ' • I3.2X, 'AND IY= ' , 
$13 , 2X , 'THE PARTICLE SKIPPED AT LEAST ONE BLOCK', 1F5. 1, 'TIMES', 
$ ' SIM# IS ' ,I4l 

49 CONTINUE 
SIMTTM=SIMTTM+TOTIM/FLOAT<NPSIM> 

45 AVGTTT=AVGTTT+TOTIM/FLOAT<NPTOTJ 
RATIO=FLOAT<NOSIMl/FLOAT<NSIMl 
RAVGXH=AVGXH• RATIO 
RAVGYH=AVGYH•RATIO 
n AVGYL=AVGYL*RATIO 
RAVGTT=AVGTTT*RATIO 
RR01YM=RH01YM*RATIO 
RR02 YM=RH02YM*RATIO 
RR03YM=RH03YM*RATIO 



17500 
17510 
17520 
17530 
17540 
17550 
17560 
17570 
17580 
17590 
17600 
17 610 
17620" 
17630 
1764 0 
176 50 
17660 
17670 
17680 
17690 
17700 
17710 
17720 
17730 
17740 
17750 
17760 
17770 
17780 
17790 
17800 
17810 
17820 
17830 
178 40 
17850 
17860 
17870 
17 3 80 
17890 
17 900 
17 91 0 
17920 
17 930 
17940 
17950 
17960 
1797 0 
17980 
17 990 
18000 
18010 
18020 
18030 
18040 
18050 
18060 
18070 
18080 
180<}0 
18100 
18110 
18120 
18130 
18140 
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RAROlY=ARHOlY*RATIO 
RAR02Y=ARH02Y*RATIO 
RAR03Y=ARH03Y*RATIO 
RR11MK=R011MK*RATIO 
RR1MKR=R01MKR*RATIO 
RR1MKC=R01MKC*RATIO 
RAMK=AVGAMK*RATIO 
RSDK=AVGSDK*RATIO 
RTTTK=<TDIST*LENGTHl*<POROCTll<DHEAD*RAVGTTl 
SIMKTT=<TDIST*LENGTHl*<POROCT>l<DHEAD*SIMTTMl 
HCSTAT<NSIM,7laSIMKTT 
IF<NSIM. NE. 1> GO TO 3500 
WRITE(6.32l NSJM,NOSIM,RATIO,AVGXH,AVGYH,AVGYL,AVGTTT 
WRITE(6,32l NSIM,MP,THT,RAVGXH,RAVGYH,RAVGYL,RAVGTT,RTTTK 
WRITE(6,32> NSIM,NTIM,RAMK,RSOK,Q 
WRITE<~23> NSIM,RR01YM,RR02YM,RR03YM,RR11MK,RR1MKR,RR1MKC 
WRITE<6.23> NSIM,RAR01Y.RAR02Y,RAR03Y 

3500 CONTINUE 
WRITE(6,321l NSKOUT 

321 FORMAT ( '1 ', 7X, 'THE NUMBER OF PARTICLES WHICH WERE KICKED BACK OUT 
$ OF THE REGION DURING INITIAL STAGES OF TRAVERSING WERE ', I4> 

WRITE(6, 46> NPTOT, NROWT , NROWB, DELT, 0:50, DSPR1\T 
ANROWS=FLOAT<NROWT+NROWBll2.0 
AVGSI=ANROWS*YD<I>+YD<Ill2 . 0 
WRITEC6,226l STXLOC , ENXLOC 
WRITEC6,224> AVGSI . 

224 t=ORMAT C '0 ', 5X, 'THE AVERAGE STARTING Y LOC ;\TION WAS ', 1F 10. 4) 
226 FORMAT C ' 0 ', 5X, ' PARTICLE TRAVEL WAS FROM X=- ' , lFlO. 4, 

$' TO X= ' , 1F10. 4) 
WRITE(6,222> THT,AVGXH,AVGYH,AVGYL,AVGTTT 

222 FORMAT < '0 ' , 5X, 'THE AVERAGE x· & Y LOCATIONS AFTER' , F10. 4, 
$'DAYS IS',F10. 3,' ANO',F10. 3, ll,7X, 'THE A ERAGE Y LOCATION AT THE 
$ENO IS',F10. 3.2X. ' ANO TRAVEL TIME OF '. F1 0 . 5,2x. 'DAYS') 

46 FORMAT< 'O ', 5X , 'A TOTAL OF ', I4, 2X, ' PARTICLES WERE RELEASED UNIFORML 
$Y FROM HALF THE NODE SPACING BELOW ROW', I2.ll,9X, ' TO HALF THE NODE 
$SPACING BELOW ROW ', I2. 2x. 11. 7X. 'TIME INTERVAL OF. •, F10 . 4, 2x . 
$'DAYS ' , 2X, ' AND MEDIAN GRAIN SIZE OF '. F8 . 2, ' MM . , WITH A DISPERSIVI 
$ TY RATIO OF ', F5. 3, ' WAS UTILIZED. '> 

IF <NSKIPS . EG. Ol GO TO 223 
WRITE<6,221l NSKIPS 

221 FORMAT C' Q' , 5X, 'DURING PARTICLE TRANSIT ', I4,' PARTICLES SKIPPED A 
$C OMPLETE BLOCK ' ) 

223 CONTINUE 
IF<STFLOC. NE. 2. O> GO TO 230 
WRITE<6.234l 

234 FORMAT< ' O ', 7X, '******* NOTE; REFERENCES TO STARTING Y LOCATION SHO 
$ULD REALLY BE STARTING X LOCATIONS****** ' ) 

230 WRITE<6,233l THT,THT 
233 FORMAT < ' 1 ', 25X, ' SUMMARY TABLE OF TRAVEL TIME INFORMATION', 11 , 1 X. 

$ 'PARTICLE ', 1X, 'SIM. ', lX, 'WAVE ' ,6X, 'Y LOCATIONS AT',4X , 
$ ' XLOC AT ' , 4X, ' TOTAL TIME <DAYS> FOR TRANSIT OF EACH 'Y. OF REGION', 
$9X . 'YLOC AT ', 2x. ' TIMES'. 11. 2x. ' NUMBER' , 2x. ' NO . ', 1x. 'NUMBER ·. 3X. 
$ ' START '. 4X. 1F4 . 1.' DAYS', 1X, 1F4 . 1 . ' DAYS ', 3X . '50'Y.', ex. '60'Y. ', 7X. 

$ ' 70'Y.',7X, ' 80'Y.',7X, ' 90'Y.',6X, '100'Y.',6X, 'EN0',4X, 'REDOUNDED'> 
DO 235 MP=l,NPTOT 
WRITE<15,24l MP,NBSIMCMPl,NWAV<MP>.STY<MP>.YLOCHT<MP>. XLOCHT<MP> 

$YLOCENCMP >, TOTMCMP > , 
235 WRITE (6, 29) MP, NBSIM<MP>. NWAVCMP>. STYCMP>. YLOCHT<MP>. XLOCHT(MP> , 

$TTHW <MP>. TT60 C MP>. TT70 <MP>. TT80 C MP>, TT90 C MP>, TOTM (MP), YLOCEN (MP) 
$NTREB<MP> , 

CALL MUNSD <TOTM,NPTOT,AMN,SDV,COEVAR> 
WRITEC6 . 236) AMN,SDV,COEVAR 

2 36 FORMAT C'0 ' ,5X, ' MEAN TRAVEL TIME= ',F l0. 5, •DAYS, ~JI STD DEi/ . = ' , 
$F10 . 5,' AND COV= ', FlO. 5> 

TTTK=<TDIST*LENGTH>*<POROCTllCDHEAD*AMN> 



18150 
18160 
18170 
18180 
18190 
18200 
18210 
18220 
18230 
18240 
18250 c 
182 60 c 
18270 c 
18280 c 
18290 
18300 
18310 
18320 
18330 
18:140 
18 350 
18360 
18 :1 70 
183 8 0 
18390 
18400 
18410 
18420 
1843 0 
184 4 0 
18 4 50 
184 .SO 
1847 0 
18 480 
1849 0 
1850 0 
185 10 
18520 
18530 
18 540 
18550 
18560 
18570 
1858 0 
18590 
18600 
186 10 
1862 0 
18630 
18640 
18650 
18660 
1867 0 
18680 
18 690 
18700 
187 10 
18720 
18 730 
18 "140 
187 50 
18760 
187 70 
18780 
18 7 90 c 
18800 
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WRITE(6 , 238) TTTK 
238 FORMAT C ' O ', 5X, ' EFFECTIVE HYDRAULIC CONDUCTIVITY OF THE REGION ON 

$BASIS OF TRAVEL TIME IS ',F10. 5,' FT/DAY') 
CALL MUNSD CYLOCEN.NPTOT.AMN, SDV.COEVARl 
WRITEC6 , 237l AMN , SDV,COEVAR 

237 FORMAT C 'O •, 5X, 'MEAN Y COORDINATE AT END OF TRANSIT IS'• FlO. 4, 
$ ' WITH STD DEV =',FlO. 5,' AND COV = ' ,F10. 6) 

WRITEC6,239l NOSIM.AVGAMK.AVGSDK 
239 FORMAT C 'O • , 5X. 'MEAN OF HYDRAULIC CONDUCTIVITY FOR A TOTAL OF '• 

$I4, • SIMULATIONS IS •, FlO. 4, ' WITH A MEAN STD. DEV. OF '• F10. 4 l 
WRITE OUT THE MEAN VALUES OF THE HEAD MATRIX COMPUTED FOR ALL THE 

SIMULATIONS 
ADO A WWRITE STATEMENT HERE TO DO THAT 
CALCULATE MEAN & STD DEV. OF THE HEADS FOR ALL SIMS AT PRESELECTED SPOTS 

DO 263 J=1,NCOLM2 
M=O 
DO 264 I=l. NOS IM 
M=-M+1 
VALKCM>=HOSUPCI,Jl 

2 6 4 CONTINUE 
CALL MUNSDCVALK.NOSIM,AMN , SDV,COEVARl 
AMEANCJl=AMN 
ASDV CJl=SDV 

263 CONTINUE 
DO 265 J=1.NCOLM2 
M=O 
DO 266 I=l. NOSIM 
M=M+l 
VALKCMl=HOSDNCI , Jl 

266 CONTINUE 
CALL MUNSOCVALK , NOSIM.AMN,SDV,COEVARl 
AMEANACJl "'AMN 
ASDVACJl=SDV 

265 CONTINUE 
WRITEC6,269l NHDSUP,NHDSON, NCOLM1 
DO 267 I=!.NOSIM 
WRITE< 6 , 200) I. CHOSUP CI, Jl, J=l, NCOLM2> 

2 6 7 WRITE ( 20. 205 > I. C HDSUP (I. J l. J= 1. NCOLM2 l 
DO 268 I=l. NOSIM 
GO TO 268 

261 WRITEC6 . 200 ) I. <HDSDN< I. Jl. J=l. NCOLM2> 
268 WRITEC21.205l I , CHDSDN<I,Jl,J=1,NCOLM2l 
2 41 CONTINUE 

WRITEC6.271l NHDSUP . NHDSDN,NHOSUP.NHDSON 
DO 272 J=1,NCOLM2 
VARHUP=<ASDVCJ)l** 2 
VARHDN= <ASDVA<Jll**2 
JREV=J+l 
WRITEC22,23lJREV. AMEAN<Jl , ASDV<J>.VARHUP , AMEANA<J>,ASDVA<Jl.VARHDN 

272 WRITE(6 , 23> JREV, AMEAN<J>. ASDV<Jl. VARHUP, AMEANA<J>. ASDl/A(J), VARHDN 
2 71 FORMAT < 'O ', 7X, ' TABLE OF MEAN AND STD. DEi/ . OF HYD HEADS FOR THE 

$TWO PRESELECTED ROWS, ', I4, ' ANO ', I4, // , 5X, 'COLUMN ' , 2 X, 
$ ' FOR HEADS IN ROW '• I4.7X , 'FOR HEADS IN ROW '• I4 , // , 14X. 'MEAN ' , 
$4 X, ' STD. DEV. '. 2X, ' VARIANCE',3X, 'MEAN',4X, ' STD. DEV. VARIANCE ' > 

269 FORMAT ( ' 1 ', 7X , 'THE HEAD VALUES FOR EACH SIMULATION FOR ROWS ', 
$14., ANO " I4. , LISTED BELOW BY COLUMN',// , 2x . 'SIMULATION ', 2x. 
$ ' COLUMN FROM 2 THROUGH ', I4l 

IF<CONH. NE . CHEC K<2 l l GO TO 242 
DO 242 I= 1. NROW 
DO 242 J=l,NCOL 
WRITE C11 , 204l HOSMN <I , J> 

2 42 CONTINUE 
2 40 FORMAT( ' ! ',// , !OX, ' MEAN STEADY STATE HEAD MATRIX FOR ' , I 4, 

$ ' SIMULATIONS ' > 
WRI TE OUT THE MEAN STREAM FUNCTION VALUES ANO TO A DISK IF CALCULATED 

IF CSTRF. NE . CHECK ( 5)) GO TO 245 



18810 
18820 
18830 
18840 
18850 
18860 
18870 
18880 
18890 
18900 
18910 
18920 
18930 
18940 
18950 
18960 
18970 
18 980 
18990 
19000 
19010 
19020 
19030 
19040 
19050 
19060 
19070 
19080 
19090 
19100 
19110 
19120 
19130 
19140 
19150 
19160 
19170 
19180 
19190 
19200 
19210 
19220 
19230 
19240 
19250 
19260 
1927 0 
19280 
19290 
19300 
19310 
1932 0 
19330 
19340 
19350 
19360 
1937 0 
19380 
19390 
19400 
19410 
1942 0 
19430 
19440 
19450 
19460 
19470 
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C ADD A WRITE STATEMENT HERE TD PRINT THE STREAM FUNCTION 
244 CONTINUE 

DD 245 I=1,NRDWM1 
DD 245 J=1,NCDLM1 
WRITE<16,204) STRFMNCI,J> 

243 FORMAT< '1 ', //, 10X, 'MEAN STEADY STATE STRFMN MATRIX FDR ', I4, 
$' SIMULATIONS'> 

245 CONTINUE 
WRITE (6, 2!58) 

258 FORMATC'1',7X, 'HYDRAULIC CONDUCTIVITY STATISTICS BY SIMULATION NUM 
$BER', // , 2X, 'SIMULATION', 11x, 'STATISTICAL MEANS', 12x. ~ STANDARD',4X, 

$'EFF K VALUE ON BASIS OF',//,4X, 'NUMBER',5X, 'ARITHEMATIC',2X, 
$'GEOMETRIC',4X, 'HARMONIC',4X, 'DEVIATION',3X, 'FLOW QUANTITY', 1X, 
$'TRAVEL TIME') 

C WRITE OUT CORR &HYO COND STATS AND STORE ON A DISK DATA FILE 
DO 247 I=L NOSIM 
WRITEC6, 21 > CHCSTATC I. J), J=L 9) 

247 WRITEC17,27> CHCSTATCI,J>.J=1,9J 
WRITE C 6, 259 > 

2!59 FORMAT < '1 ', 7X, ' HYDRAULIC CONDUCTIVITY CORRELATION STATISTICS BY 
$SIMULATION NUMBER',//, 1X, 'SIM '• lOX, 'LOG CONDUCTIVITY BEFORE & 
$AFTER SHAVING' . 1ox. ' COEFF BY ROW'. 1ox. 'COEFF BY COLUMN'. 
$,// , IX, 'NO. ' , lX, 'YRHOCl> YRHOC2) YRHOC3) RYRHOCl) RYRHOC2) ', 1X, ' RY 
$RH0<3> RHO< 1. 1 > RRHOC 1 J RRH0<2> RRHOC3J CRHOC 1 J GRH0<2> CRH0(3) '> 

DO 249 I=L NOSIM 
WRITEC6,22> CCSTATSCI.J),J=l.17) 

2 49 WRITE< 18, 26> CCSTATSC J, J), J=l, 14) 
DO 274 J=2, 17 
M=O 
DO 273 I=l.NOSIM 
M~M+l 

VALKCMJ=CSTATSCI,JJ 
273 CONTINUE 

CALL MUNSD<VALK,NOSIM , AMN.SDV,COEVAR> 
AMEAN<J>=AMN 
ASDVCJ>=SDV 

2 74 CONTINUE 
WRITEC6.277> NOSIM 

277 FORMAT< ' O '. 7X, 'THE STATS ON THE CORRELATION COEFFICIENTS FOR 
$I4 , ' SIMULATIONS FOR EACH OF THE COLUMNS ABOVE AR[;:· • /I 
$4X, 'COLUMN' , 5X, 'MEAN', 3X, 'STD. DEV. ') . ' ' 

DO 276 J=2, 17 
276 WRITEC6.23> J,AMEANCJ> , ASDV<j> 

DO 2!51 I=L NOSIM 
M~O 

DO 251 J=L 5 
IFCM. NE. O> GO TO 451 
IFCCCSTATCI,J) . LE. OJ GO TO 451 
XISCALCI>=XISCALCI>+CCSTATCl,J>*XDCJJ 
GO TO 251 

451 M=l . 
25 1 CONTINUE 

DO 252 I=l.NOSIM 
M~o 

DO 252 J=6, 10 
IFCM. NE. O> GO TO 252 
IFCCCSTATCI,J> . LE. OJ GO TO 452 
YISCAL<I>=YISCAL<I>+CCSTATCI , Jl*YDCJ) 
GO TO 252 

452 M=l 
252 CONTINUE 

WRITEC6, 253J NOSIM 
DO 254 I = L NOSIM 

2 54 WRITEC6 , 23J I, XISCAL<I>.YISCALCIJ 

THE' , 

253 FORMATC'0 ' ,7X, 'THE MEAN INTEGRAL SCALES IN THE X 
$FOR THE •,r4, ' SIMULATIONS ARE ' , //, lX, ' SIM NO 
$ IRECTION'J . . 

AND Y DIRECTIONS 
X DIRECT. Y D 



19480 
19490 
19500 
19510 
19520 
19530 
19540 
19550 
19560 
19570 
19580 
19590 c 
19600 c 
19610 c 
19620 c 
19630 c 
19640 c 
19650 
19660 
19670 
19680 c 
19690 

c 
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CALL MUNSD <XISCAL,NOSIM,AMN, SDV,COEVAR> 
CALL MUNSD <YISCAL,NOSIM,AMNA,SDVA,COVA> 
WRITE C6,256) AMN,SDV,AMNA,SDVA 

256 FORMAT C ' 0 ', 2X, ' THE MEAN INTEGRAL SCALE IS ' • F6. 2, ' FEET IN THE X 
$DIRECTION WITH A SD= ' , F6 . 2,//,4X, 'AND ',F6. 2,' FEET IN THEY DIREC 
$TION WITH A SD= ' ,F6. 2) 

DO 257 MP=1 , NPTOT 
257 WRITE<19,28) MP,NBSIM<MP>.STY<MP> , TTHW<MP>.TT60<MP>.TT70<MP> , TT80C 

·$MP ) , TT90 (MP ) 
STOP 
END 

******************************************************************* 

SUBROUTINE FOR COMPUTATION OF MEAN & STD DEV. ,ETC 
OF A SINGLE SUBSCRIPTED VARIABLE ARRAY 

*********************************************************** ******** 
SUBROUTINE MUNSD <VAL,N,AMN,SD,COEVAR> 
REAL VALCN> 

5 FORMAT CilO, 5F10. 5> 
CALCULATE THE MEAN VALUE OF THE ARRAY 

SUMVAL=O . 0 
DO 10 I=1 , N 
SUMVAL=SUMVAL+VAL(I) 

10 CONTINUE 
AMN=SUMVAL/CFLOATCN>> 

C NOW 

19 700 
197 10 
19720 
19730 
19740 
19750 
19760 
19770 
19780 
19790 
19800 
19810 
19820 
198 30 
19840 
19850 
19860 c 
19870 c 
19880 c 
19890 c 
19900 c 
19910 c 

CALCULATE THE STANDARD DEVIATION, VARIANCE & COEF. OF VARIATION 
SUMDIS=O. O 

c 

DO 20 I=L N 
DISPER= <VAL<I>-AMN>••2 
SUMDIS=SUMDIS+DISPER 

20 CONTINUE 
VAR=SUMDISl<FLOAT<N>-1.0l 
SD=SGRTCVAR> 
COEVAR=SD/AMN 
RETURN 
END 

******************************************************************* 

SUBROUTINE FOR COMPUTATION OF MEAN & STD DEV .• ETC 
OF A DOUBLE SUBSCRIPTED VARIABLE ARRAY 

******************************************************************* 
SUBROUTINE MUNSD2 <VAL,N,L,AMN,SD , COEVAR> 
REAL VALC32,62> 

5 FORMAT C2I10,5F10. 5> 
15 FORMAT C ' O ' , I3 , 2X, 10F12. 4/ < 6X, 10F12. 4) > 

C CALCULATE THE MEAN VALUE OF THE ARRAY 
SU~1VAL=O . 0 

19920 
19930 
19940 
199 50 
19960 
19970 
19980 
19 9 9 0 
20000 
200 10 
200 20 
2 00 30 
2 0 0 40 c 
2 0050 
20060 
2 0070 
20080 
2 00 9 0 
20100 
20110 
20120 
20 130 
20140 
201 50 
2 0 160 

DO 10 I = 1. N 
DO 10 J = l, L 
SUMVAL=SUMVAL+VAL<I,J) 

10 CONTI NUE 
AMN=SUMVAL/(FLOATCN*Ll) 

C NOW CALCULATE THE STANDARD DEVIATION, VARIANCE & COEF. OF VARIATION 
SUMDI S=O. 0 
DO 20 I=1. N 
DO 20 J=1. L 
DISPER=CVAL<I,J>-AMN>••2 
SUMDIS=SUMDIS+DISPER 

20 CONTINUE 
VAR=SUMDIS/CFLOAT<N•L>-1.0> 
SD=SGRTCVAR> 
COEVAR=SD/AMN 
RETURN 
END 



20170 c 
20180 c 
20190 c 
20200 c 
20210 c 
20220 c 
20:?30 c 
20240 c 
20250 
20260 
20270 
20280 
20290 
20300 
20310 
20320 
20330 
20340 
20350 
20360 
20370 
20380 
20390 
20400 
20410 c 
20420 c 
20430 c 
20440 c 
20450 c 
20460 c 
20470 c 
20480 c 
20490 
20:;00 
20510 
20520 
20530 
20540 c 
20550 
20 :'160 
20570 
20580 
20 590 
20600 
20610 
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****************************************************•************** 

SUBROUTINE TO CALCULATE THE AUTOCORRELATION OF AN ARRAY OF 
ORDERED VALUES <SINGLE SUBSCRIPTED ARRAY> 

******************************************************************* 

SUBROUTINE AUGAR CVAL,N,AMN.SD,LAGS,RHO> 
REAL VALCN>.RHOCLAGS> 

5 FORMAT C2I10.6F10. 5> 
DO 20 NL=l.LAGS 
COV=O. 0 
NINSAM=N-NL 
DO 10 I=l.NINSAM 
DISPAH=VALCI+NL>-AMN 
DISP=VALC I >-AMN 
ACOV=DISPAH*DISP/FLOATCNINSAM> 
COV=COV+ACOV 

10 CONTINUE 
RHOCNL>=COV/SD**2 

20 CONTINUE 
RETURN 
END 

************************~****************************************** 

SUBROUTINE TO CALCULATE THE AUTOCORRELATION OF AN ARRAY OF 
ORDERED VALUES FOR A LAG OF ONE AHEAD & BELOW 

******************************************************************* 

SUBROUTINE AUGAR2 CVAL.N.L,AMN.SD,RHO> 
REAL VALC32,62),RHOCN>.AMNCN>.SD<N> 
REAL SUMVALC60>.SUMDIS<60) 

5 FORMAT C2I10.9F10. 5> 
15 FORMAT < 'O', I3, 2X. 10F12. 4/C6X, 10F12. 4)) 

CALCULATE THE MEAN VALUE OF EACH ROW OF THE ARRAY 
DO 30 I=l,N 
SUMVALCil=O. O 
DO 30 J=l. L 
SU~1VAL (I ) =SUMVAL CI) +VAL ( I, J) 

30 CONTINUE 
DO 40 I=l. N 

40 AMN<I>=SUMVAL<Il/CFLOAT<L>> 
20620 c 
20630 C NOW CALCULATE THE STANDARD DEVIATION OF EACH ROW 

DO 50 I=l. N 206 40 
20650 
20660 
20670 
20680 
20690 
20700 
20710 
20720 
20730 
20740 
20750 
20760 
20"170 
20780 
20790 
20800 
20810 
20820 
20830 
20840 
20850 
20860 

SUMDIS<Il=O. 0 
DO 50 J=l.L 
DISPER=CVALCI,J>-AMNCJ>>**2 
SUMDIS<I>=SUMDISCI>+DISPER 

50 CONTINUE 

60 

DO 60 I=l.N 
VAR=SUMDISCil/CFLOATCL>-1. O> 
SDCI>=SQRTCVAR> 
NMl=N-1 
LMl=L-1 
DO 20 I=L NMl 
COV=O. 0 
DO 10 J=l.LMl 
DISPAH=VALCI+l,J+ll-AMNCI> 
DI3P=VALCI,J>-AMNCI> 
ACOV=DISPAH*DISP/FLOATCLM1) 
COV=COV+ACOV 

10 CONTINUE 
RHOCI>=COV/CSDCI>•SDCI+l)) 
CONTINUE 20 
RETURN 
END 
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