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ABSTRACT

The use of electroencephalogram (EEG) for predictive purposes of seizures in
epileptic patients has grown steadily with the access to greater computing power.
Methods of seizure analysis to date have focused on modeling and computer aided
machine learning to help increase sensitivity and specificity of seizure detection.
Brain synchronization between various areas of the brain at the onset of seizures
tends to be a common feature of seizures, followed by a resynchronization of the
various brain areas at the end of seizures. While previous methods have looked at
the cross-correlation or lag-correlation of only two areas the brain, most EEG data
these days has a vast array of sensors that can easily exceed 15-20 areas of the
brain. The goal of this research is to take a relatively new approach to statistical
modeling of multivariate EEG data, by use of the variance of multiple sensors as
an extended measure of brain desynchronization in a time series format. Use of the
Children’s Hospital Boston and Massachusetts Institute of Technology (CHB-MIT)
scalp database from PhysioNet is used to demonstrate the potential effectiveness of
modeling multivariate EEG data by assessing the overall variance between sensors
for three young patients with intractable seizures by use of a DCC-GARCH model,

Bayesian regime switching mixture model, and a Bayesian change-point model.
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CHAPTER 1

Introduction

1.1 Seizure Background

Epilepsy is a prevalent disease, with the World Health Organization (WHO)
estimating its toll to be around 50 million individuals [1]. A seizure itself is clas-
sified as overabundance of neuronal electrical activity in the brain resulting in
moderate to severe shaking along with the potential loss of consciousness and ex-
crement control [1]. The obvious impact that a seizure can have on an individual
is not only one of physical concern, but also that of mental state and well-being.
While individuals can have independent seizures at one point and never have them
again, patients with epilepsy are those that suffer more than just one seizure in
their lifetime, and in most cases more than one in a day itself when not properly
treated [1].

Intractable seizures can occur in patients with epilepsy, meaning they do not
respond to medication based treatment. It is estimated that about 70% of patients
with epilepsy respond to medication, however this also means approximately 3 in 10
patients do not respond [1]. Surgical options are then considered, with implanted
sensors in the brain to determine the actual area of seizure activity in the brain to
be resected [2].

Commonly, scalp electroencephalogram (EEG) is used to measure the electri-
cal brain activity at various areas of the brain simultaneously. A common EEG
recording of many sensors simultaneously is displayed in Figure 1.1 [3, 4]. Recent
work has extended the use of EEG recordings to ambulatory monitoring, which
allows patients to go about their daily routines without being wired to a machine

2, 4, 5, 6]. Real time monitoring of EEG allows for a much larger amount of



available data as patients can wear the ambulatory headsets throughout the day
doing their normal routines. Post-hoc time series analysis of the ambulatory EEG
in recent years has led to many alternative approaches to the analysis of seizures

and their onset [7].
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Figure 1.1. A sample EEG of multiple sensors recorded consecutively over the
same time interval.

The use of battery powered ambulatory devices for monitoring EEG as it
occurs or in a post-hoc fashion allows for a much richer and more complex amount
of data [6]. One common study for example typically uses 22 sensors recording

simultaneously with a resolution of 256 Hz for one hour, a total of 921,600 data-



points for each of the 22 sensors is available for analysis, or 20, 275, 200 data-points
for one hour [3, 4]. Supervised multivariate machine learning algorithms have
dominated current research in seizure analysis, however the use of power required
for a real-time analysis needs to also be considered [5, 6, 7]. Bayesian modeling
approaches have also been applied to EEG recordings with focus on modeling the
EEG behavior versus computer extracted decisions based on maximum likelihood
estimation [8, 9].

For consistency, monitoring of EEG recordings are referenced by scalp lo-
cations as defined by the international 10-20 system of electrode placement
[10, 11, 12]. Figure 1.2 highlights the areas located within the 10-10 system. It is
worth noting that not all areas are necessarily included, as EEG electrode set-ups
vary in number and positioning. The 10-20 system is a necessity for consistency
in noting electrode placement. For example, the CHB-MIT scalp database utilizes
almost two dozen electrodes [3, 4] while other studies have used varying sizes of

electrodes [7] and configurations [13].



Left preauricular Right preauricular

Figure 1.2. The standard EEG sensor areas as defined by the international 10-10
system.

The use of EEG recording allows for not only time series analysis of multi-
variate data, but also allows for the potential use of spatio-temporal monitoring
[8, 13]. Location of seizures is another issue in itself, one of importance, however
the actual modeling of seizures is still a developing field. The benefit of the 10-20
system does allow for not only the ability of analysis across time, but the inclusion

of spatial location can also be added.

1.2 Brain Synchronization
A common feature of seizures is the desynchronization and resynchronization

of the synaptic activity in the brain [14, 15, 16, 17]. Typically, the electrical activity



of the brain will show high levels of desynchronization at the onset of a seizure fol-
lowed by strong resynchronization of the signals to end the seizure [17]. The scalp
electrodes of the EEG monitor the synaptic activity in the neurons of the brain
with a minimum of 108 neurons and 6 cm? necessary to present an EEG sensor
response [15]. Some research has suggested a strong synchronization between var-
ious areas of the brain potentially hours leading into a seizure, however this seems
to only be extrapolated when knowledge of a seizure occurring is also present [16].
Measuring levels of neuronal synchronization can either be measured in regards
to a set threshold or across time, which can thus be interpreted as increasing or
decreasing trends [17]. Because of the cortical changes in synchronization that
are many times present in EEG recordings, it offers a strong potential for seizure
location and detection [14].

Typical approaches to addressing brain synchronization have focused on a
correlational aspect of two sensors. A common measure is called mean phase
coherence R , or similarly called first Fourier mode and phase locking value [14].
Another method is to utilize the correlation matrix of the normalized sensor data at
each time point and analyze the eigenvalues of the matrix across time [16]. Other
autoregressive measures and transformations have been utilized, but generally are
only beneficial when the knowledge of an ictal state occurring is included in a

post-hoc analysis [16].

1.3 A Look Forward

Surely, investigation of EEG recordings to help monitor and potentially pre-
vent seizures in epileptic patients has a tremendous potential impact on the health
of such patients. Pre-ictal seizure states have been a relative mystery, but current

increases in data and computing ability have allowed for a much more thorough



focus on seizure prediction. Modeling EEG data offers many benefits, challenges,
and possibilities, particularly because of the massive amount of data combined in
every patients record. Various multivariate and univariate analytic methods have
shown predictive potential, as have frequentist and Bayesian approaches. Melding
these ideas into a solid modeling approach that has the potential of low-power
usage ambulatory monitoring and care becomes a main goal for any seizure based
research.

Use of the Children’s Hospital Boston and Massachusetts Institute of Technol-
ogy (CHB-MIT) scalp database from Physionet [3, 4] is accessed to demonstrate the
potential effectiveness of modeling multivariate EEG data by assessing the overall
variance between sensors for young patients with intractable seizures. Recent ar-
ticles using the same data set have addressed the question of real life practical use
of EEG analysis and power reduction approaches to make acquisition and possible
prevention of seizures more plausible [5, 6]. Several other articles recently have
addressed the CHB-MIT dataset through machine learning, with good predictive
success but at the cost of lower potential ambulatory usage [2, 18]. What lacks
in the research of this dataset is a thorough statistical modeling approach to the
CHB-MIT database, particularly with the goal in mind of being less computation-
ally expensive and more practicality based.

By focusing on the idea of brain desynchronization through modeling EEG
sensor variance, it is anticipated that predictions will display both a strong sensi-
tivity and specificity to detecting seizures before they actually occur. Time series
modeling will be utilized to delineate the processes preceding the seizure onset.
Early detection of seizures is useful in the case of patients such as those in the
CHB-MIT database, who have not responded to medication and could benefit

from the use of implanted devices to counteract seizures before they occur. To



do this, natural patterns of the levels of synchrony in the brain will be analyzed
by assessing the variance within 22 scalp EEG sensors, followed with appropriate
statistical modeling.

This thesis follows with three more chapters. Chapter 2 addresses modeling
approaches to EEG data through multivariate dynamic conditional correlation
generalized autoregressive conditional heteroskedasticity (DCC-GARCH) models
and Bayesian analysis (Markov regime switching mixture models and change point
models). Chapter 3 utilizes a DCC-GARCH model on three CHB-MIT patients
and then addresses a new approach to modeling brain synchronization through the
use of the variance between sensors at every time-point, followed by the application
of a Markov switching model with a mixture of normal densities and a change point
model for all three patients. Chapter 4 serves as a discussion of the three various
models utilized in this thesis in terms of the three subjects analyzed for each.

Future goals and directions based on this research are also presented in Chapter 4.
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CHAPTER 2

Statistical Modeling Approaches

2.1 DCC-GARCH Modeling

A very practical approach to modeling multivariate time-series data with
volatility can be achieved by use of a dynamic conditional correlation generalized
autoregressive conditional heteroskedasticity (DCC-GARCH) model. When the
number of time points gets rather large such as a typical EEG dataset, the DCC-
GARCH models can be rather efficient at multivariate modeling of the various
sensors. While typically used in financial data applications, the GARCH models
have been applied to EEG wavelets in several studies but not in a multivariate

DCC-GARCH approach [1, 2, 3, 4].

2.1.1 ARCH & GARCH Models

The use of multivariate measures with a large amount of data points can be
tedious, however the dynamic conditional correlation generalized autoregressive
conditional heteroscedasticity (DCC-GARCH) model allows for a stream-lined
approach to the task. Initially, the autoregressive conditional heteroskedasticity
(ARCH) model was introduced to deal with volatile financial data [5]. The
ARCH(p) model relates a model with mean zero to it’s autoregressive volatility

when the assumption of normality is met s.t.:

10



Y | (b(t—l) ~ N (07 ht)

he = ao+ iy g

where ¢; is the information available up until time ¢ and h; represents the variance
function of the data, which can also be stated in terms of p autoregressive

parameters estimated as a:

ht = h (y(t—l)7 Y—2)5 -+ - Yt—p)s a)

with p ARCH model parameters are estimated using maximum likelihood, which
results in the values for a that best optimize the model.

The ARCH model was further extended to the generalized autoregressive
conditional heteroskedasticity (GARCH) a few years later, which allowed for not
only autoregressive parameters p, but also moving average parameters ¢ in an
ARMA modeling approach for the error variance [6]. The stochastic GARCH

model also assumes normality and is specified as:

11



Y | ¢(t—1) ~ N (0, ht)

p

q
hy = ag+ Z aiy(Qt—l) + Bihi—i
i=1 )

(i=1

— g+ A(L)y + B(L)h,

where:

The GARCH(p, ¢) model can also be expressed in another variation as follows

6]:

q P P
yi = a0t Y awhny D Bty — D Bty t
i=1 (j=1) J=1

by = yf—ht

= (5 =1) h

12



where 7, ~ N(0,1) and v; is uncorrelated across time with a mean of zero. The
latter GARCH(p, q) expressions allow for a time series ARMA model for y? with

orders of m = max (p, ¢) and p.

2.2 Multivariate DCC-GARCH Models
A multivariate version of the GARCH model relies on the conditional
correlation of the matrix of values correspondent with time. The DCC-GARCH

model [7] focuses on the time-varying covariance matrix H; such that:

Ht = DtRDt

where D, = diag(«/ hi,t) and h represents the univariate GARCH models. R is

the conditional correlation matrix:

R = E,_\(g€)=D;"H,D; !

where ¢, = D, Ly, and € represents standard normal disturbances. In the DCC
model, the correlation matrix R is allowed to vary with time and conditional

variances must summate to unity [7]. The correlation matrix can be represented

as a GARCH(1,1) model [7, 8] as:
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Gije = Pij+ o€ w—1€u—1) — Pij) + B(Gij.-1) — Pij)
B l—a-p > s
Pij (W) +a Z B (t—s)€j,(t—s)
s=1

where the expected cross-product is p; ; and the variances summate to 1. The

correlation can be estimated as:

it
Pijt = —\/m
and the expectation is positive definite since the covariance matrix (), is a weighted
average of positive definite and semidefinite matrices. A requirement of a4+ < 1
for the model to not become explosive and reman stationary must be met [7, 8.
The DCC estimation is computed through a maximum likelihood procedure.

The extension of the DCC-GARCH by Engle [7] helps to attain a more parsi-
monious (yet still very high) number of parameters. The multivariate GARCH is
an extensive of the univariate GARCH proposed by Bollerslev [6]. Use of autore-
gressive (AR) and moving average (MA) parameters can also be included to the
univariate measures to help increase multivariate model fit, however adding even

more parameters to the model.

2.3 Basics of Bayesian Inference
Often in Bayesian modeling we need to simulate from the posterior distribu-

tions. In contrast to frequentist statistics, Bayesian statistics focuses on proba-
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bilities with given information and prior beliefs that can either be strong when
evidence supports it, or weak when there isn’t as much convincing evidence avail-
able. Use of Bayes’ rule can be applied to updating probabilities of interest with the
addition of new information [9]. Iterative simulation methods are used to approxi-
mate the joint posterior distribution by drawing samples from the full conditional

distributions via processes such as a Gibbs sampler [9)].

2.3.1 Inference of the Conditional Posterior Mean

Bayesian analysis can be utilized to determine posterior probability densities
by use of Monte Carlo simulations which sufficiently approximate the actual
posterior density when enough consecutive iterations (i) of sampling provide
convergence. For example, estimation of a parameter # in a sample of yq,...,y,
from the distribution 7 (yi,...,y,|0) can be achieved via Markov Chain Monte
Carlo (MCMC) methods [9]. For independent iterations ¢ of sampling, the

posterior distribution for € is simulated s.t.:

o0 .09 ~iid 70|y, .. Yn)

where increased values of ¢ give a better approximation of the true posterior
distribution [9]. Posterior joint inference of the mean when conditioned on the
variance can be estimated for a normally distributed model with mean 6 and

variance o2 as follows when (yi,...,¥y,|0,0?) ~iid. N(6,c?):

15



T (y1,- . yn |6, 07)

From the above equation derives a sufficient statistic based on (332, > ;)

which can also be transposed to (7,s*) when we know § = > w;/n and

2

s2 =3 (y; —9)*/ (n—1) [9]. Posterior inference for # conditioned on the known

value of 02 with a conjugate prior for 0 will result in:

1

T (011, n, 07) o< 7w (0]0%) X exp {—ﬁZ(%_Q)ﬂ

o< m(0]0) x exp [c; (0 — 02)2}

when the terms of exp [¢; (6 — 02)2} are normally distributed we can then surmise

that 7 (6 | 0?) is an appropriate conjugate prior [9]. If 6 ~ N (o, 72) then:
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T (0lyr, .. Yn, 07) =

(8]0 <7T(y1,...

T (Y.

< w(0o?) x 7 (y1,...

1 2
270

Y | 6, 02))

»Yn | 0?)

Un |0, 0°)

1

202

o exp |~k (0| x exp | 505 3 - ]

X exp

L 70

= abf?® — 200 + ¢

when the following are substituted:

1 n
a = —5 —

2 2

7—0 g

_ Mo > Yi

b= K04 !

7—0 g

2 2

¢ = C(M07T070-7y17"'
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From this a normal density can be extrapolated for 7 (8|02, v, ..

7T(0|02,y1,...,yn) o

S Yn) St

exp —1 ab? — 2b0
5 (

. [ a 02 2b0 N b? N b?
D | — = v,z .
p 2 a a? 2a

2
exp —g (9—3) ]

exp —5

! va

where 1/y/a represents the standard deviation and b/a the mean in terms of a

normal distribution, and thus 7 (0] 0?2, y1,. ..

,Yn) is normally distributed where:

a
1

1 n
2Ty
75 o
b
a
Ho 1Y

2 2

75 o

1 n
2T 9
75 o

The data and prior information are combined to form the joint posterior precision

S.t.:
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Similarly the posterior mean can be determined from the amalgamation of the

data and the prior:

1 n
i P
Hn = 1 . nHJU_I_ 1 g ny
2te  ote

If there are kg prior observations, the prior precision could be adjusted to

72 = 0% /Ko. Based on this, the posterior mean would then be:

KoHo ny
kKo+n  Ko+n

n —

Prediction of a new point Y from previous observations Y1, --,Y, based on the

normal posterior distribution thus follows:
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Ef/]yl,...,yn,UZ] = E[9+€|y1,...,yn,az]
= E[0|y17"'7yna02}+E[€|y1a"'7yn70-2]

= lj/n

Var }7|y1,...,yn,02] Var[9+€|y17---7yn702}

= Var [9|y1,...,yn, 02] + Var [€\y1,..- Yns 02}

_ 2 2
= T1,+0".

Since # and € are conditional on the normally distributed data in yq,...,y,, it

follows then that:

<5~/|027 yl’,..,yn) ~ N(un, 7'3—!—02)

2.3.2 Joint Conditional Inference of Mean and Variance
In its simplest form, the Bayes rule for the posterior of the joint distribution

of 6 and o2 states that:

7.‘—(y17‘~'7y7’b|67 0-2)7T(‘97 02)

71-(9’0'2|y1,---7yn) T (Y1, Yn)
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The axioms of probability for a joint distribution also state:
m(0,0%) = w(|0*) 7 (c?)

when o2 is known and 7¢ = 0%/ko where py and kg are the mean and sample size

from the prior observations, we can then state:
7 (0|0*) 7 (0?) = dnorm (0, po, 7o = 0/v/ko) x 7 (7).

Use of the gamma distribution is common for the prior of the precision, or 1/02.

When expressed in terms o