
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2015

SCHEDULE OPTIMIZATION WITH FLEXIBLE DURATIONS SCHEDULE OPTIMIZATION WITH FLEXIBLE DURATIONS

Kevin R. Roy
University of Rhode Island, nivek10k@yahoo.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Roy, Kevin R., "SCHEDULE OPTIMIZATION WITH FLEXIBLE DURATIONS" (2015). Open Access Master's
Theses. Paper 532.
https://digitalcommons.uri.edu/theses/532

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/532?utm_source=digitalcommons.uri.edu%2Ftheses%2F532&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

SCHEDULE OPTIMIZATION WITH FLEXIBLE

DURATIONS

BY

KEVIN R. ROY

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

SYSTEMS ENGINEERING

UNIVERSITY OF RHODE ISLAND

2015

MASTER OF SCIENCE

OF

KEVIN R. ROY

APPROVED:

Thesis Committee:

Major Professor Manbir Sodhi

 David Taggart

 Cenk Undey

 Nasser Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND
2015

ABSTRACT

Cost, quality, and time are the pillars of a popular and well known business

model. What is also well known about this model is that it is very difficult to be the

industry leader in all three categories. This is because these categories are naturally

interconnected such that one category cannot be changed without affecting the others.

This creates an environment where a balance must be established to determine the

appropriate amount of effort to focus on each of these three categories.

This current research presents an application for the schedule optimization of

operations with flexible durations. The objective of the problem is to find the optimal

sequence of jobs to minimize cost, where cost is a function of makespan and work

center processing durations. The constraints in the problem include variable job

durations and a sequential flow of jobs through multiple successive work centers.

Details of the implemented tools chosen in support of the optimization are described

followed by a summary of the accuracy, robustness, and scalability of the proposed

system on generic case studies.

Final results indicate the proposed approach can successfully be applied to

scheduling optimization with flexible job processing times. Implementation of this

approach proves to be accurate, robust, and scalable when evaluated against other

approaches. The system is implemented via a user friendly graphical interface.

iii

ACKNOWLEDGMENTS

Throughout my academic experience and writing this thesis, many have offered

guidance, all of who deserve thanks. However the encouragement of a select few has

led to the completion of this work.

Dr. Manbir Sodhi – your support and guidance throughout my undergraduate and

graduate terms. Thank you for presenting me with a problem and allowing me the

opportunity to develop my capability of learning. I have no doubt I would not be

where I am today if we had never crossed paths and for that, I can never thank you

enough.

Arash Nashrollahishirazi – your guidance and advisement truly broadened my

academic horizon relating to python and genetic algorithms.

My family – your loving support has helped me through writing the chapters of

this work. Without your love and encouragement, none of this would have been

possible.

Amgen Inc. - your financial support during my graduate term.

iv

TABLE OF CONTENTS

ABSTRACT .. ii

ACKNOWLEDGMENTS .. iii

TABLE OF CONTENTS .. iv

LIST OF TABLES .. vi

LIST OF FIGURES ... vii

CHAPTER

1 Introduction ... 1

2 Review of Literature ... 3

2.1 Schedule Optimization .. 3

2.2 Model Research Applications ... 4

3 Methodology .. 5

3.1 Process Simulation and Modeling ... 5

3.2 Components of Profit .. 5

3.3 Area of Optimization ... 8

3.4 P VS. N ... 9

3.5 Mixed Integer Program Formulation... 9

3.5.1 Variables and Inputs .. 10

3.5.2 Objective function ... 11

3.5.3 Constraints ... 11

3.6 Optimization Techniques .. 12

v

3.7 Algorithm Selection .. 12

3.8 Algorithm Implementation .. 13

3.9 System Design ... 17

3.10 Additional Features ... 19

3.11 Limitations .. 20

4 Findings .. 22

4.1 Case Studies .. 22

4.1.1 Case Study 1 .. 22

4.1.2 Case Study 2 .. 25

4.1.3 Case Study 3 .. 29

4.1.4 Case Study 4 .. 31

4.1.5 Case Study 5 .. 33

5 Conclusion .. 36

APPENDIX ... 37

GA PSEUDOCODE ... 37

BIBLIOGRAPHY .. 38

vi

LIST OF TABLES

TABLE PAGE

Table 1. Case study 1 parameter inputs. .. 23

Table 2. Case study 1 method performance comparison. .. 25

Table 3. Case study 2 parameter inputs. .. 26

Table 4. Case study 2 method performance comparison. .. 28

Table 5. Case study 3 parameter inputs. .. 29

Table 6. Case study 3 method performance comparison. .. 30

Table 7. Case study 4 parameter inputs. .. 31

Table 8. Case study 4 method performance comparison. .. 32

Table 9. Case study 5 parameter inputs. .. 33

Table 10. Case study 5 method performance comparison. .. 35

vii

LIST OF FIGURES

FIGURE PAGE

Figure 1. Graphical representation of the problem design. .. 2

Figure 2. Correlation of maintenance and equipment usage cycles. 6

Figure 3. Economic analysis of Boeing commercial airplane maintenance. 7

Figure 4. Venn diagram showing the relationship between P, NP, and NP-complete ... 9

Figure 5. GA chromosome of work center durations. .. 13

Figure 6. Graphical representation of an iteration within example problem. 14

Figure 7. Crossover process within GA. .. 15

Figure 8. Mutation process within GA. .. 16

Figure 9. C# GUI interface for providing optimization problem inputs. 17

Figure 10. C# GUI interface for displaying solution. .. 18

Figure 11. Process flow of the C# and python system. .. 18

Figure 12. Scheduler graphical display for re-optimization example. 20

Figure 13. 3D plot presenting the graphical solution for case study 1. 23

Figure 14. Contour plot presenting the graphical solution for case study 1. 24

Figure 15. Chart showing divergence to a solution for case study 1. 24

Figure 16. Scheduler graphical display for case study 1. ... 25

Figure 17. 3D plot presenting the graphical solution for case study 2. 27

Figure 18. Contour plot presenting the graphical solution for case study 2. 27

Figure 19. Chart showing divergence to a solution for case study 2. 28

Figure 20. Scheduler graphical display for case study 2. ... 28

viii

Figure 21. Chart showing divergence to a solution for case study 3. 30

Figure 22. Scheduler graphical display for case study 3. ... 30

Figure 23. Chart showing divergence to a solution for case study 4. 32

Figure 24. Scheduler graphical display for case study 4. ... 32

Figure 25. Chart showing divergence to a solution for case study 5. 34

Figure 26. Scheduler graphical display for case study 5 after 250 iterations. 34

Figure 27. Scheduler graphical display for case study 5 after 1000 iterations. 35

Figure A.28. Proposed GA pseudocode for the problem. (Nashrollahishirazi, Roy and

Sodhi n.d.). ... 37

1

CHAPTER 1

INTRODUCTION

When used effectively, schedule optimization can be very valuable to industry.

Two goals strived in manufacturing are to make products less expensive and at a faster

production rate because often the customer wants the product as soon as possible and

at the lowest price. The customer will likely purchase from a competitor if they feel

they can get the product faster or for a lower price. Due to the complexities of

manufacturing systems, schedule optimization is computationally expensive and

difficult to implement. Some of the complexities of implementing schedule

optimization are not considered within the scope of this study including work center

downtime, labor capacity, product changeover tasks, interruptible operations, product

demand fluctuations, job priorities, and resource utilization.

The design of the problem will include jobs that will be processed through work

centers (WCs). There are a total of j jobs to be processed, s work centers in series, and

p work centers in parallel. Each job must sequentially go through every serial work

center. A job may sit idle between work centers if there is no subsequent work center

available. Figure 1 is a graphical illustration of the design of the scheduling

optimization problem with flexible durations. Case studies will be evaluated with

different quantities of j, s, and p. The components of profit will include functions of

makespan and work center process durations. The total profit will be evaluated to

determine the quality of the solution.

2

Figure 1. Graphical representation of the problem design.

For manufacturing systems observed by the author, typically there is one order of

magnitude quantity of work centers in parallel, one or two orders of magnitude

quantity of work centers in series, and anywhere between one to numerous orders of

magnitude quantity of jobs. Scheduling optimization becomes increasingly

computationally demanding as the size of a manufacturing system increases.

3

CHAPTER 2

REVIEW OF LITERATURE

2.1 Schedule Optimization

There has been much research related to schedule optimization of manufacturing

systems. Balasubramanian and Grossmann (2003) used a mixed integer linear

programming (MILP) technique to optimize the minimum makespan of tasks with

uncertainty in processing time durations. The approach presented by Balasubramanian

and Grossmann worked well where the solution was more heavily structured by

certain types of constraints but the models did not perform as well when tested against

general problems. Li and Ierapetritou (2008) also evaluated schedule optimization

with uncertainty in processing time durations but used three formulations of robust

optimization (RO). The drawback of the approach taken by Li and Ierapetritou's was

that it did not optimize an expected value objective function but rather promised to

enforce the feasibility for the entire predefined uncertainty space of the problem. Ant

colony optimization was presented by Kumar et. al. (2003) as an effective method of

scheduling jobs in a flexible manufacturing system (FMS) but with non-flexible task

durations. One of the most popular schedule optimization methods presented in this

literature review is genetic algorithm (GA) optimization. Guo et. al. (2008) evaluated

GA optimization with tardiness and earliness penalties built into the objective function

which performed effectively when evaluated against two-order scheduling problems.

Gao et. al. (2006) assessed GA optimization with machine availability constraints and

Fanti et. al. (1998) studied GA optimization with a multi-criteria objective function by

4

weighing desired criteria such as makespan, resource utilization, and work in progress

(WIP). To the author’s knowledge, no specific work relating to schedule optimization

with flexible processing durations using GA optimization or any other optimization

method is published in literature.

2.2 Model Research Applications

There does not seem to be any published research devoted to improving schedule

optimization with operations that have flexible durations. This may be due to the fact

that scheduling optimization with static work center durations is by itself challenging

thus allowing work center durations to be dynamic only increases the difficulty to find

the optimal solution. It could also be a consequence of assuming that most of the cost

and speed benefits are obtained by solving a scheduling problem with static durations

however, under certain circumstances it may be desirable to allow the optimization

algorithm to determine task durations to increase profit margins. The remainder of this

paper will examine this problem, evaluate the performance of a GA approach against

case studies, and conclude with a summary of the results.

5

CHAPTER 3

METHODOLOGY

3.1 Process Simulation and Modeling

Simulations provide the user with a means to better understand a system by

allowing the user to conduct experiments and analyze a system without having to deal

with the complications inherent with many real world experiments. Simulation

package design can range between being tailored for a specific process with specific

equipment to having a generic purpose with generic equipment. The advantage to

having the more specific simulation package is the developer can spend less time

creating the framework for the simulation and more time with the details unique to the

system. The disadvantage to having the more specific simulation package is that the

user is typically limited to the constraints of the pre-established framework and thus

can lose flexibility. In contrast, a generic simulation package generally allows the user

more flexibility for development yet typically requires additional time to create the

framework. Ideally, an off the shelf simulation package should provide the user

adequate customizability to add, remove, or modify features of the simulation with

minimal development effort.

3.2 Components of Profit

One component of profit (as defined by this paper) is the cost to operate work

centers. Maintenance is a significant input to the cost to operate work centers.

Scheduled equipment maintenance (also known as preventative maintenance) is

6

generally correlated with the quantity of occurrences of using a piece of equipment

(also known as cycles or intervals). Preventative maintenance is typically scheduled

prior to the wear zone which is the point where the probability of corrective

maintenance (also known as unscheduled maintenance) becomes increasingly

(sometimes exponentially) more likely to occur. Figure 2 shows the general

correlation between equipment failure rate and equipment interval, including examples

of preventative and corrective maintenance occurrences relative to equipment interval

and equipment failure rate.

Figure 2. Correlation of maintenance and equipment usage cycles.

Boeing conducted a statistical analysis to evaluate the economics of conducting

maintenance on their commercial airplanes (McLoughlin, Doulatshahi and Onorati

2011). This analysis was used to determine the optimal number of cycles (flight hours)

to minimize costs associated with preventative maintenance and corrective

maintenance. Figure 3 shows an economic analysis of maintenance to determine the

optimal maintenance interval for Boeing commercial airplanes by evaluating the total

cost of scheduled and unscheduled maintenance.

7

Figure 3. Economic analysis of Boeing commercial airplane maintenance.

This paper will assume maintenance will occur at the cost optimal quantity of

cycles with no direct correlation to time. Given maintenance is correlated to

equipment cycles, the cost of maintenance increases per unit of time as the number of

cycles increase per that same unit of time. In addition to this maintenance cost, the

paper will also assume labor and utilities is a linear addition to the work center cost.

Therefore as a work center production rate increases, so does the cost to run that work

center.

Work center cost constitutes half the profit equation whereas the other half

comprises of the makespan cost. The components of makespan cost are more indirect

than the components of work center cost. The carrying cost of inventory and stock out

cost significantly impact the cost of makespan. Some of the components of carrying

cost of inventory include taxes, insurance, depreciation, and inventory cost. The cost

of inventory is money that is tied up in unfinished product which cannot be used to

invest elsewhere until the product is sold (known as cost of capital or the opportunity

cost of the money). Therefore, reducing the amount of unfinished product by reducing

8

makespan duration will liquidate inventory assets and allow cash to be invested in

something else, such as mutual funds, treasuries, or even money market accounts.

Reducing the amount of unfinished product by reducing makespan duration will also

reduce taxes, insurance, and depreciation associated with work-in-progress inventory.

Shorter makespan durations also reduce the risk of long stock out durations because

raw materials can be turned into finished product faster. The cost of long stock out

durations is a risk based calculation and is correlated with the inventory level of

finished goods.

In practice, the cost equations for work centers and for makespan may be a

challenge to define and will likely vary between industries and between companies.

However for this paper, the cost equations for work centers and for makespan will be

evaluated as quadratic and exponential.

3.3 Area of Optimization

Optimization is an attempt to select the best solution out of a collection of

solutions, generally bounded by constraints. One area of optimization is schedule

optimization which is an area of operations research that can be used widely among

commercial industry. Almost every company has to do some form of scheduling in

one way or another. Not every scheduling operation necessarily warrants formulating

the problem and solving it using an optimization algorithm but when the problem

becomes complex and having a sub-optimal solution may significantly impact cost or

speed, then it may be appropriate to leverage schedule optimization.

9

3.4 P VS. N

The types of optimization problems are commonly categorized between P and

NP. P is any type of problem that can be solved in polynomial time and NP is any type

of problem that can be solved by a non-deterministic Turing machine in polynomial

time (Garey and Johnson 1979). All P problems are NP problems (P ∈ NP) but not all

NP problems are P problems. It takes significantly more time to solve an NP type

problem than it does to describe the problem so consequently large NP type problems

are typically computationally expensive (Garey and Johnson 1979). There are sub

classes for NP type problems including NP-hard, NP-complete, NP-easy, and NP-

equivalent. Job-shop schedule optimization typical falls into the NP-complete category

(Garey and Johnson 1979) (Garey, Johnson and Sethi 1976) (Gonzalez and Sahni

1978) (Lenstra, Kan and Brucker 1977). Figure 4 is a Venn diagram showing the

relationship between P, NP, and NP-complete.

Figure 4. Venn diagram showing the relationship between P, NP, and NP-complete.

3.5 Mixed Integer Program Formulation

A formulation is presented in the next subsections for the problem of schedule

optimization with flexible durations. The minimum degree of complexity of this

10

formulation is quadratic as a consequence of the product of the inputs parameters and

decision variables. This is one of many ways to formulate this problem and depending

on how the problem is formulated it may impact the appropriate optimization

algorithm to use. For example, there may exist a formulation that replaces the input

parameters start and end times with durations, such is the case for the GA approach

discussed later in the paper.

3.5.1 Variables and Inputs

Sets and indices:

j	ൌ	job	index	where	j	ൌ	ሼ1,	2,	3,…,	Jሽ	

p	ൌ	work	center	in	parallel	index	where	p	ൌ	ሼ1,	2,	3,…,	Pሽ	

s	ൌ	work	center	in	series	index	where	s	ൌ	ሼ1,	2,	3,…,	Sሽ	

Input parameters:

௠௔௫ݐ݁ ൌ	Maximum	end	time	for	all	jobs.	

ܿ௦ሺݐݏ, ሻݐ݁ ൌ	Cost	function	for	the	work	center	in	series	s.	

ሻݐሺ݁ܥ ൌ	Cost	function	for	the	makespan.	

Decision variables:

௝,௣,௦ݐݏ ൌ	Start	time	for	job	j	performed	in	WC	in	parallel	p	and	in	series	s.	

௝,௣,௦ݐ݁ ൌ	End	time	for	job	j	performed	in	WC	in	parallel	p	and	in	series	s.	

௝,௣,௦ݔ ൌ 	 ൜
1, 					.݌	ݏ݁݅ݎ݁ݏ	݊݅	݀݊ܽ	݌	݈݈݈݁ܽݎܽ݌	݊݅	ܥܹ	ݕܾ	݀݁݉ݎ݋݂ݎ݁݌	ܾ݁	݈݈݅ݓ	݆	ܾ݋݆	݂݅
0, .ݏ	ݏ݁݅ݎ݁ݏ	݊݅	݀݊ܽ	݌	݈݈݈݁ܽݎܽ݌	݊݅	ܥܹ	ݕܾ	݀݁݉ݎ݋݂ݎ݁݌	ܾ݁	ݐ݋݊	݈݈݅ݓ	݆	ܾ݋݆	݂݅

11

3.5.2 Objective function

The objective function is the equation that the optimization algorithm is going to

attempt to maximize or in this case minimize by adjusting the variables. The following

is the objective function of the formulation.

Minimize:

෍ ෍ ෍ ܿ௦൫݁ݐ௝,௣,௦ െ ௝,௣,௦ݔ௝,௣,௦൯ݐݏ
௃

௝ୀଵ

௉

௣ୀଵ

ௌ

௦ୀଵ
൅ ௃,௣,ௌݐ௃,௣,ௌ݁ݔሺ෍ܥ

௉

௣ୀଵ

	ሻ

3.5.3 Constraints

The constraints establish bounds on the variables included in the objective

function. The following are the constraints of the formulation.

 ∑ ௝,௣,௦௉ݔ
௣ୀଵ ൌ 1, ∀݆, (a) ݏ∀

௝,௣,௦ݐݏ௝,௣,௦ݔ ൑ ,௝,௣,௦ݐ௝,௣,௦݁ݔ ∀݆, ,݌∀ (b) ݏ∀

 ∑ ௝,௣,௦௉ݐ௝,௣,௦݁ݔ
௣ୀଵ ൑ ∑ ௝,௣,௦ାଵ௉ݐݏ௝,௣,௦ାଵݔ

௣ୀଵ , ∀݆, (c) ݏ∀

௝,௣,௦ݐ௝,௣,௦݁ݔ ൑ ,	௝ାଵ,௣,௦ݐݏ௝ାଵ,௣,௦ݔ ∀݆, ,݌∀ (d) ݏ∀

 0 ൑ ௝,௣,௦ݐݏ ൑ ,	௠௔௫ݐ݁ ∀݆, ,݌∀ (e) ݏ∀

 0 ൑ ௝,௣,௦ݐ݁ ൑ ,	௠௔௫ݐ݁ ∀݆, ,݌∀ (f) ݏ∀

 ∑ ௝,௣,ௌ௉ݐ௝,௣,ௌ݁ݔ
௣ୀଵ ൑ ∑ ௝ାଵ,௣,ௌ௉ݐ௝ାଵ,௣,ௌ݁ݔ

௣ୀଵ , ∀݆ (g)

Constraint (a) ensures only one work center can be used per job per operation

(work center in series). The duration of any operation must be greater than or equal to

zero which is enforced through constraint (b). Constraint (c) ensures the end of an

operation must finish before the start of the next work center in series. To ensure the

end of one operation must finish before the start of the next operation at the same

work center, constraint (d) was included in the formulation. Constraint (e) ensures no

12

job can start before time zero and no job can start after the maximum end time.

Similarly, constraint (f) ensures no job can end before time zero and no job can end

after the maximum end time. The last constraint (g) ensures the end time for job ݆

cannot be later than the end time for job ݆ ൅ 1. Constraint (g) is enforced through

constraint (d) when there is only one work center in parallel but is required when there

are more than one work centers in parallel.

3.6 Optimization Techniques

There are a vast number of optimization techniques available, some being more

appropriate for certain problems than others. Some of these techniques include

simplex, combinatorial, iterative methods (e.g. quasi-newton, interior point, gradient

descent, etc.), and heuristics (e.g. genetic, hill climbing, ant colony, etc.). Selecting an

appropriate optimization technique to obtain a desired level of accuracy and

robustness is very much dependent on the class of the problem. It's important to note

that not every optimization technique will necessarily provide the optimal solution to a

problem but rather an approximate solution relative to optimal.

3.7 Algorithm Selection

As mentioned previously, job-shop scheduling typically falls into the complete

combinatorial optimization problem which is a category of problem that is challenging

to find a method capable of providing the optimal solution. Therefore, it is appropriate

to look for heuristic methods for finding a time schedule solution for the problem. In

studies, genetic algorithms have been shown to be efficient and robust in comparison

with other methods for solving these scheduling problems because of its stochastic

nature (Chen, Ihlow and Lehmann 1999) (Biegel and Davern 1990). The author

13

decided to leverage the genetic algorithm for the problem discussed in this paper and

implementation of this algorithm is presented in the next subsection.

3.8 Algorithm Implementation

The first step for genetic algorithm is to randomly generate N number of time

duration (௝݀,௣,௦ where ௝݀,௣,௦ = ݁ݐ௝,௣,௦ - ݐݏ௝,௣,௦) vectors to make the population. The

durations are for a particular job on a specific work center based on a permutation

schedule. A permutation schedule is where the jobs are sequenced (i.e. processing

order) the same way for all work centers. These duration vector elements (also known

as chromosomes) are then sorted from smallest to largest (shown in Figure 5) and

represent the duration for each job for every work center in series.

Figure 5. GA chromosome of work center durations.

Figure 6 illustrates an example of three jobs performed by two work centers in

series and two in parallel. The makespan time to finish all jobs is T (where ܶ ൌ

	maxଵஸ௣ஸ௉ .(௃,௣,ௌݐ݁

14

Figure 6. Graphical representation of an iteration within example problem.

Main genetic processes begin after chromosomes generation. The genetic process

iteratively adjusts the work center durations in such a manner that it produces desired

results (i.e. lower cost). Crossover (also known as homologous recombination) and

mutation are two main processes in natural genetics. Meiosisrate is the size of the

randomly selected subset of the main population used to perform crossover.

Meiosisrate is defined as:

݁ݐܽݎݏ݅ݏ݋݅݁ܯ ൌ ሺ݊|	݊ ൑ ܰሻ					ܰ: ݁ݖ݅ݏ	݊݋݅ݐ݈ܽݑ݌݋݌

Homologous recombination is the biological way for exchanging genetic material

between parent chromosomes. The genetic diversity will increase by exchanging more

genetic information. Figure 7 shows the crossover process in the algorithm for two

parent chromosomes. Crossover occurs on two randomly selected chromosomes from

15

the meiosisrate subset and this pair of randomly selected chromosomes is called parent

chromosomes. There is a quantity of ܯ parent chromosomes.

Figure 7. Crossover process within GA.

Mutation is the second main genetic process and is performed on every offspring

produced from crossover. In this process the algorithm will randomly select one

element from the crossover offspring time duration vector and copy to a randomly

selected mutation element within the same chromosome. This process imitates the

mutation process of DNA. Mutation may improve the final solution by searching

globally rather than diverging to a local optimum. Figure 8 shows the mutation

process in the algorithm for one offspring chromosome.

16

Figure 8. Mutation process within GA.

The work center fitness function (ܿ௦) is used to evaluate all M mutated

chromosomes. The fitness function value for the ܯ௧௛ chromosome is calculated as a

linear combination of the makespan cost function (ܥெ) and cost functions for each

work center (ܿ௦ெ). The fitness function value is defined as:

ሺݏݏ݁݊ݐ݅ܨ	݊݋݅ݐܿ݊ݑ݂	݁ݑ݈ܽݒሻெ ൌ ெሺܶሻܥ	 ൅෍ ෍ ෍ ܿ௦ெ൫ ௝݀,௣,௦൯
௃

௝ୀଵ

௉

௣ୀଵ

ௌ

௦ୀଵ

The mutated offspring and associated parent chromosomes are evaluated using

their relative fitness function values. Mutated offspring with a lower fitness function

value than either of the associated parent chromosomes will replace the parent

chromosome with the largest fitness function value. This iterative process will

continue until the program reaches the termination condition of a predefined number

of iterations. Finally, the chromosome with the lowest fitness value (for a

minimization problem) will be chosen as the solution for the problem. The

optimization engine uses a different seed for the random number generator and thus

the solution to the problem may vary between calculation executions. Increasing the

number of iterations would increase the likelihood that different calculation instances

17

would produce the same solution and more importantly it would also increase the

likelihood of a better solution. The pseudocode of the GA algorithm discussed in this

paper is outlined in the appendix.

3.9 System Design

A C# graphical user interface (GUI) application was developed to act as the

conduit between user inputs and the optimization engine as well as a graphical means

to display the results. Using the interface, the user can enter all of the variables of the

problem including number of jobs, number of work centers in series, number of work

centers in parallel, cost per work center, and cost for makespan. Figure 9 shows the

interface for providing the problem inputs with example inputs prepopulated.

Figure 9. C# GUI interface for providing optimization problem inputs.

The C# GUI collects the necessary information to formulate the problem and then

sends this information to an embedded python GA script. The GA is then executed

with the problem until the termination condition has been meet at which point it then

18

sends the solution with the lowest fitness value back to the C# GUI to be graphically

displayed via the Gantt chart. The name of the GUI is called “scheduler.” The front

end is similar to Microsoft® Project in that time is expanded across the x-axis and

resources (equipment) are listed along the y-axis. Events (also known as jobs) and

dependencies between events can be added manually. Figure 10 shows what the

scheduler looks like without any events added to the scheduler and Figure 11 shows a

summary of the system process flow.

Figure 10. C# GUI interface for displaying solution.

Figure 11. Process flow of the C# and python system.

19

3.10 Additional Features

Schedules created with the scheduler can be saved as multiple different file

formats including CSV, TXT, XLSX, and BMP. Models saved to CSV, TXT, and

XLSX can also be loaded back into the scheduler. There is a zoom track-bar that

allows the user to adjust the zoom of the Gantt chart approximately between 10% and

200% the default size. Tooltips can be enabled or disabled to allow the user to quickly

view each event’s name, associated equipment, start time, and duration. Lines showing

the dependencies between events can also be enabled or disabled. Events can be

dragged and dropped anywhere within the preconfigured workspace. Event durations

can also be adjusted simply by dragging the ends of any event. The progress of the

python GA script, as a percent completed, is displayed on a progress bar within the C#

GUI while the python script is executing.

The scheduler also allows the user to “re-optimize” a previously evaluated

problem. After a solution has been graphically displayed via the Gantt chart, the user

has the ability to adjust and then lock any event duration (i.e. set an event duration

constraint). Duration constraints can be applied to any number of events

simultaneously. Re-optimization then evaluates the problem with the new event

duration constraint(s) included. This new solution will likely have a higher cost than

the original solution but this functionality is intended to provide a means to respond to

instances where event delays occur. Figure 12 shows iterations of scheduler

throughout a re-optimization example. Part “a” of Figure 12 shows the optimized

solution for a problem with no event duration constraints. Part “b” shows the

scheduler with a duration constraint of 4 time units manually applied to job 1 on work

20

center in series 1 and work center in parallel 1 (equipment S1P1). Part “c” shows the

new re-optimized solution for the problem with this new event duration constraint

included. The re-optimized solution adjusted some of the non-duration constrained

events from part “b” to minimize cost.

Figure 12. Scheduler graphical display for re-optimization example.

3.11 Limitations

One limitation to the optimization engine is a maximum duration for any given

operation must be provided. Another limitation of the GA is that it is designed to

follow a permutation schedule. The last limitation of the GA is that it assumes there

are an equal number of work centers in parallel for each work center in series. This

assumption could be removed allowing the optimization engine to solve a problem

21

with unequal number of work centers in parallel for each work center in series but this

would require modification to both the GA and the GUI.

The limitations of the GUI include it cannot display more than 100 work centers

in series, has a maximum makespan of 650 units of time, and time units must be

natural numbers (i.e. cannot be decimal or negative). The optimization engine is

capable of executing on multiple processers but is limited to single processing in order

to integrate with the C# GUI.

22

CHAPTER 4

FINDINGS

4.1 Case Studies

There are five case studies discussed in this chapter. The first two are relatively

simple case studies to evaluate the accuracy of the approach. The next three are more

complex case studies to assess robustness and scalability. For each of the case studies,

the following three methods will be evaluated.

 Graphical solution: 3D and contour plots using Wolfram Mathematica

 IBM® CPLEX Optimizer: Mixed integer quadratic program (MIQP)

 C# and Python: Genetic algorithm

4.1.1 Case Study 1

The first case study is a very simple case study with the intent to evaluate

accuracy. There are eleven inputs to this particular problem (shown in Table 1)

including cost functions which are dependent upon the number of work centers (WC)

in series. There will always be one makespan cost function and one cost function for

every WC in series. The cost functions for this case study are quadratic.

23

Jobs WC in Series WC in Parallel

1 2 1

WC Series 1 Cost
Function

WC Series 2 Cost
Function

Makespan Cost Function

ܿଵ,ଵ ൌ 	 ൬െ2 ൅
݀ଵ,ଵ,ଵ
2.5

൰
ଶ

 ܿଵ,ଶ ൌ ൬െ3 ൅
݀ଵ,ଵ,ଶ
5

൰
ଶ

ܥ ൌ 	൬
݀ଵ,ଵ,ଵ ൅ ݀ଵ,ଵ,ଶ

6
൰
ଶ

Iterations Meiosisrate
Initial

Population
Max Duration

Parent
Chromosomes

100 1000 1000 100 1000
.

Table 1. Case study 1 parameter inputs.

The objective function (minimize total cost) for case study 1 is defined as:

ܿଵ,ଵ ൅ ܿଵ,ଶ ൅ ܥ ൌ 	൬െ2 ൅
݀ଵ,ଵ,ଵ
2

൰
ଶ

൅ ൬െ3 ൅
݀ଵ,ଵ,ଶ
5

൰
ଶ

൅ ൬
݀ଵ,ଵ,ଵ ൅ ݀ଵ,ଵ,ଶ

6
൰
ଶ

Figure 13 and Figure 14 show the 3D and contour plot graphical solutions

(respectively) to case study 1. The graphical solutions indicates the minimum total

cost at approximately ݀ଵ,ଵ,ଵ ൌ 3 and ݀ଵ,ଵ,ଶ ൌ 8.

Figure 13. 3D plot presenting the graphical solution for case study 1.

24

Figure 14. Contour plot presenting the graphical solution for case study 1.

Figure 15 is a graph of the cost and makespan calculated by the GA algorithm for

each of the first 50 iteration. This graph shows rapid divergence to a solution with an

approximate solution in as little as 12 iterations. Figure 16 shows the Gantt chart

output from the scheduler when provided the inputs to case study 1.

Figure 15. Chart showing divergence to a solution for case study 1.

25

Figure 16. Scheduler graphical display for case study 1.

The performance of the three different methods (shown in Table 2) is relatively

similar. Graphical and IBM® CPLEX had slightly more desirable total cost solutions

of 6 relative to the GA solution of 7. The IBM® CPLEX solution required a

permutation schedule formulation otherwise the problem would have been a

polynomial of degree 3 and consequently unsolvable by CPLEX.

Method Iterations ݀ଵ,ଵ,ଵ ݀ଵ,ଵ,ଶ Total Cost
Graphical N/A Approx. 3 Approx. 8 6
IBM® CPLEX –
MIQP

100 3 8 6

C# and Python –
GA

100 4 10 7

Table 2. Case study 1 method performance comparison.

4.1.2 Case Study 2

The second case study is again designed to be simple with the intent to evaluate

the accuracy. This case study will also evaluate robustness because this problem

involves exponential cost functions rather than the previously evaluated quadratic cost

functions. There are again eleven inputs to this particular problem (shown in Table 3).

26

Jobs WC in Series WC in Parallel
1 2 1

WC Series 1 Cost
Function

WC Series 2 Cost
Function

Makespan Cost Function

ܿଵ,ଵ ൌ ݌ݔ݁	 ൬5 െ
݀ଵ,ଵ,ଵ
5

൰ ܿଵ,ଶ ൌ ൫1݌ݔ݁ െ ݀ଵ,ଵ,ଶ൯ ܥ ൌ ݌ݔ݁	 ൬
݀ଵ,ଵ,ଵ ൅ ݀ଵ,ଵ,ଶ

8
൰

Iterations Meiosisrate
Initial

Population
Max Duration

Parent
Chromosomes

50 1000 1000 100 1000
.

Table 3. Case study 2 parameter inputs.

The objective function (minimize total cost) for case study 2 is defined as:

ܿଵ,ଵ ൅ ܿଵ,ଶ ൅ ܥ ൌ ݌ݔ݁	 ൬5 െ
݀ଵ,ଵ,ଵ
5

൰ ൅ ൫1݌ݔ݁ െ ݀ଵ,ଵ,ଶ൯ ൅ ݌ݔ݁	 ൬
݀ଵ,ଵ,ଵ ൅ ݀ଵ,ଵ,ଶ

8
൰

Figure 17 and Figure 18 show the 3D and contour plot graphical solutions

(respectively) to case study 2. The graphical solutions indicates the minimum total

cost at approximately ݀ଵ,ଵ,ଵ ൌ 17 and ݀ଵ,ଵ,ଶ ൌ 1.

27

Figure 17. 3D plot presenting the graphical solution for case study 2.

Figure 18. Contour plot presenting the graphical solution for case study 2.

Figure 19 is a graph of the cost and makespan calculated by the GA algorithm for

each of the first 50 iterations. This graph shows rapid divergence to a solution with an

approximate solution in as little as 19 iterations. Figure 20 shows the Gantt chart

output from the scheduler when provided the inputs to case study 2.

28

Figure 19. Chart showing divergence to a solution for case study 2.

Figure 20. Scheduler graphical display for case study 2.

The performance of the three different methods (shown in Table 4) is the same for

those that could be evaluated. A total cost solution of 15 was calculated for both the

graphical and GA methods. CPLEX has the limitation that it “cannot solve problems

where a decision variable is an argument to the exponential function” (IBM Corp.

2010).

Method Iterations ݀ଵ,ଵ,ଵ ݀ଵ,ଵ,ଶ Total Cost

Graphical N/A Approx. 17 Approx. 1 15

IBM® CPLEX – MIQP
CPLEX cannot solve problems where a decision variable
is an argument to the exponential function (IBM Corp.

2010)

C# and Python – GA 50 16 1 15

Table 4. Case study 2 method performance comparison.

29

4.1.3 Case Study 3

The third case study is designed to show robustness and scalability against a

slightly larger problem than the first two case studies and with quadratic cost

functions. There are eleven inputs to this particular problem (shown in Table 5).

Jobs WC in Series WC in Parallel

3 2 2

WC Series 1 Cost
Function

WC Series 2 Cost
Function

Makespan Cost Function

ܿଵ,ଵ ൌ 	 ൫െ6 ൅ 0.8 ௝݀,௣,ଵ൯
ଶ
 ܿଵ,ଶ ൌ ൫െ3 ൅ 0.5 ௝݀,௣,ଶ൯

ଶ
ܥ ൌ 	 ሺ0.5ܶሻଶ

Iterations Meiosisrate
Initial

Population
Max Duration

Parent
Chromosomes

100 1000 1000 100 1000
.

Table 5. Case study 3 parameter inputs.

Figure 21 is a graph of the cost and makespan calculated by the GA algorithm for

each of the first 50 iteration. This graph shows rapid divergence to a solution with an

approximate solution in as little as 17 iterations. Figure 22 shows the Gantt chart

output from the scheduler when provided the inputs to case study 3.

30

Figure 21. Chart showing divergence to a solution for case study 3.

Figure 22. Scheduler graphical display for case study 3.

The performance of the three different methods is shown in Table 6 for those that

could be evaluated. The IBM® CPLEX had slightly more desirable total cost solution

of 45 relative to the GA solution of 47. The IBM® CPLEX solution again required a

permutation schedule formulation otherwise the problem would have been a

polynomial of degree 3 and consequently unsolvable by CPLEX.

Method Iterations Total Cost

Graphical Greater than three dimensions.

IBM® CPLEX – MIQP 100 45
C# and Python – GA 100 47

Table 6. Case study 3 method performance comparison.

31

4.1.4 Case Study 4

The forth case study is again designed to show robustness and scalability with a

problem similar to case study 3 but with exponential cost functions. There are eleven

inputs to this particular problem (shown in Table 7).

Jobs WC in Series WC in Parallel

3 2 2

WC Series 1 Cost
Function

WC Series 2 Cost Function Makespan Cost Function

ܿ௣,ଵ ൌ ݌ݔ݁	 ቆ2 െ ௝݀,௣,ଵ

2
ቇ ܿ௣,ଶ ൌ ݌ݔ݁ ቆ1 െ ௝݀,௣,ଶ

1
ቇ ܿ௣,ଵ ൌ ݌ݔ݁	 ൬

ܶ
4
൰

Iterations Meiosisrate
Initial

Population
Max Duration

Parent
Chromosomes

50 1000 1000 100 1000
.

Table 7. Case study 4 parameter inputs.

Figure 23 is a graph of the cost and makespan calculated by the GA algorithm for

each of the first 50 iteration. This graph shows rapid divergence to a solution with an

approximate solution in as little as 15 iterations. Figure 24 shows the Gantt chart

output from the scheduler when provided the inputs to case study 4.

32

Figure 23. Chart showing divergence to a solution for case study 4.

Figure 24. Scheduler graphical display for case study 4.

The performance of the three different methods is shown in Table 8 for those that

could be evaluated. A total cost solution of 12 was calculated for the GA method.

Method Iterations Total Cost

Graphical Greater than three dimensions.

IBM® CPLEX – MIQP
CPLEX cannot solve problems where a decision variable is an
argument to the exponential function (IBM Corp. 2010).

C# and Python – GA 50 12

Table 8. Case study 4 method performance comparison.

33

4.1.5 Case Study 5

The final case study is designed to show the scalability of the GA algorithm by

evaluating a larger size problem than any of the previous case studies. There are 15

inputs to this particular problem (shown in Table 9). The cost functions for this case

study are exponential.

Jobs WC in Series WC in Parallel

25 6 5

WC Series 1 Cost Function WC Series 2 Cost Function

ܿ௣,ଵ ൌ ൫4݌ݔ݁	 െ 0.7 ௝݀,௣,ଵ൯ ܿ௣,ଶ ൌ ൫3݌ݔ݁ െ ௝݀,௣,ଶ൯

WC Series 3 Cost Function WC Series 4 Cost Function

ܿ௣,ଷ ൌ ൫1݌ݔ݁	 െ 0.8 ௝݀,௣,ଷ൯ ܿ௣,ସ ൌ ൫2.5݌ݔ݁ െ 0.95 ௝݀,௣,ସ൯

WC Series 5 Cost Function WC Series 6 Cost Function

ܿ௣,ହ ൌ ൫3.25݌ݔ݁	 െ 0.75 ௝݀,௣,ହ൯ ܿ௣,଺ ൌ ൫3݌ݔ݁ െ 0.65 ௝݀,௣,଺൯

Makespan Cost Function

ܿ௣,ଵ ൌ ሺ0.8ܶሻ݌ݔ݁

Iterations Meiosisrate
Initial

Population
Max Duration

Parent
Chromosomes

1000 1000 1000 100 1000
.

Table 9. Case study 5 parameter inputs.

Figure 25 is a graph of the cost and makespan calculated by the GA algorithm for

each of the first 1000 iterations. This graph shows divergence to a solution with an

34

approximate solution to this larger size problem after 900 iterations. Figure 26 shows

the output from the schedule for case study 5 after 250 iterations and Figure 27 shows

the output from the scheduler for case study 5 after the full 1000 iterations. The

makespan reduced from approximately 100 time units down to 42 between the first

250 iterations and the 1000th iteration.

Figure 25. Chart showing divergence to a solution for case study 5.

Figure 26. Scheduler graphical display for case study 5 after 250 iterations.

35

Figure 27. Scheduler graphical display for case study 5 after 1000 iterations.

The performance of the three different methods is shown in Table 10 for those

that could be evaluated. A total cost solution of 3.9x1014 was calculated for the GA

method.

Method Iterations Total Cost

Graphical Greater than three dimensions.

IBM® CPLEX – MIQP
CPLEX cannot solve problems where a decision variable is an
argument to the exponential function (IBM Corp. 2010).

C# and Python – GA 1000 3.9x1014

Table 10. Case study 5 method performance comparison.

36

CHAPTER 5

CONCLUSION

This work has demonstrated that the genetic algorithm can be successfully

applied to scheduling optimization with flexible durations. Solving NP combinatorial

optimization problems can be computationally expensive but the proposed approach

has shown accurate, robust, and scalable when evaluated against multiple generic case

studies of different variety and sizes. Leveraging this approach can be valuable to

industry by minimizing cost and consequently increase profit margins.

This work serves as the beginning. There is incredible potential for future work

related to the problem discussed in this paper. Future work should attempt to solve the

problem without the limitation of permutation scheduling, which will likely result in

lower cost solutions. Also, work focused on the linearization of the mixed integer

program formulation may yield desirable opportunities for other approaches, in

addition to the approach proposed in this paper.

37

APPENDIX

GA PSEUDOCODE

Figure A.28. Proposed GA pseudocode for the problem. (Nashrollahishirazi, Roy

and Sodhi n.d.).

38

BIBLIOGRAPHY

Balasubramanian, J, and I.E. Grossmann. "Scheduling optimization under uncertainty-

an alternative approach." Computers and Chemical Engineering 27, no. 4

(2003): 469-490.

Biegel, John E, and James J Davern. "Genetic algorithms and job shop scheduling."

Computers & Industrial Engineering 19, no. 1 (1990): 81-91.

Chen, Haoxun, Jürgen Ihlow, and Carsten Lehmann. "A genetic algorithm for flexible

job-shop scheduling." Robotics and Automation, 1999. Proceedings. 1999

IEEE International Conference 2 (1999): 1120-1125.

Fanti, M.P., B. Maione, D. Naso, and B. Turchiano. "Genetic multi-criteria approach

to flexible line scheduling." International Journal of Approximate Reasoning

19, no. 1-2 (1998): 5-21.

Gao, Jie, Mitsuo Gen, and Linyan Sun. "Scheduling jobs and maintenances in flexible

job shop with a hybrid gentic algorithm." Journal of Intelligent Manufacturing

17, no. 4 (2006): 493-507.

Garey, M. R., D. S. Johnson, and Ravi Sethi. "The Complexity of Flowshop and

Jobshop Scheduling." Mathematics of Operations Research 1, no. 2 (May

1976): 117-129.

Garey, Michael R., and David S. Johnson. Computers and Intractability, A Guide to

the Theory of NP-Completeness. Edited by Victor Klee. San Francisco: W.H.

Freeman and Company, 1979.

39

Gonzalez, Teofilo, and Sartaj Sahni. "Flowshop and Jobshop Schedules: Complexity

and Approximation." Operations Research 26, no. 1 (February 1978): 36-52.

Guo, Z.X., W.K. Wong, S.Y.S. Leung, and J.T. Fan. "A genetic-algorithm-based

optimization model for scheduling flexible assembly lines." The International

Journal of Advanced Manufacturing Technology 36, no. 1 (2008): 156-168.

IBM Corp. 2010. http://www-

01.ibm.com/support/knowledgecenter/SSSA5P_12.2.0/ilog.odms.cplex.help/C

ontent/Optimization/Documentation/CPLEX/_pubskel/CPLEX1248.html

(accessed January 15, 2015).

Kumar, R., M.K. Tiwari, and R. Shankar. "Scheduling of flexible manufacturing

systems: an ant colony optimization approach." Proceedings of the Institution

of Mechanical Engineers, Part B: Journal of Engineering Manufacture 217,

no. 10 (2003): 1443-1453.

Lenstra, Jan Karel, AHG Rinnooy Kan, and Peter Brucker. "Complexity of machine

scheduling problems." Annals of discrete mathematics 1 (1977): 343-362.

Li, Zukui, and Marianthi G. Ierapetritou. "Robust Optimization for Process Scheduling

Under Uncertainty." Industrial & Engineering Chemistry Research 47, no. 12

(2008): 4148-4157.

McLoughlin, Brian, Farshad Doulatshahi, and Jason Onorati. July 2011.

http://www.boeing.com/commercial/aeromagazine/articles/2011_q3/3/

(accessed December 28, 2014).

40

Nashrollahishirazi, Arash, Kevin Roy, and Manbir Sodhi. "A genetic algorithm to

compute non-permutation schedules for flow-lines with flexible job processing

times." Working Paper, n.d.

	SCHEDULE OPTIMIZATION WITH FLEXIBLE DURATIONS
	Terms of Use
	Recommended Citation

	Microsoft Word - SCHEDULING OPERATIONS WITH FLEXIBLE DURATIONS.docx

