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Abstract: The remote sensing of chlorophyll a concentration from ocean color satellites has been an
essential variable quantifying phytoplankton in the past decades, yet estimation of accessory pigments
from ocean color remote sensing data has remained largely elusive. In this study, we validated
the concentrations of multiple pigments (Cpigs) retrieved from in situ and MEdium Resolution
Imaging Spectrometer (MERIS) measured remote sensing reflectance (Rrs(λ)) in the global oceans.
A multi-pigment inversion model (MuPI) was used to semi-analytically retrieve Cpigs from Rrs(λ).
With a set of globally optimized parameters, the accuracy of the retrievals obtained with MuPI is
quite promising. Compared with High-Performance Liquid Chromatography (HPLC) measurements
near Bermuda, the concentrations of chlorophyll a, b, c ([Chl-a], [Chl-b], [Chl-c]), photoprotective
carotenoids ([PPC]), and photosynthetic carotenoids ([PSC]) can be retrieved from MERIS data with
a mean unbiased absolute percentage difference of 38%, 78%, 65%, 36%, and 47%, respectively.
The advantage of the MuPI approach is the simultaneous retrievals of [Chl-a] and the accessory
pigments [Chl-b], [Chl-c], [PPC], [PSC] from MERIS Rrs(λ) based on a closure between the input
and output Rrs(λ) spectra. These results can greatly expand scientific studies of ocean biology and
biogeochemistry of the global oceans that are not possible when the only available information is
[Chl-a].

Keywords: phytoplankton pigments; ocean color; remote sensing; MERIS; global oceans

1. Introduction

Ocean color remote sensing has been focused on phytoplankton due to the important role that they
play in the global biogeochemical cycles and ocean food webs [1,2]. With the development of remote
sensing technology, a variety of approaches have been developed to remotely obtain information about
phytoplankton, such as their chlorophyll concentration [3–5], functional groups, and size classes [6–11].
The most widely used satellite-based product of phytoplankton is chlorophyll a concentration ([Chl-a],
mg·m−3) [3–5,12,13]. Satellite retrieved [Chl-a] has been utilized in estimation of phytoplankton
biomass, primary production, and detection of harmful algal blooms [14,15]. However, many studies
have indicated that [Chl-a] alone is not a good indicator of phytoplankton biomass or physiological
status [16–20]. Some accessory pigments have been recognized as biomarkers for phytoplankton
groups or species [18,21–24]. These accessory pigments provide better estimation of the biomass
of particular phytoplankton groups or species, such as phycocyanin (PC) for cyanobacteria [25,26].
The variation in the accessory pigment composition has been widely used in estimating different
phytoplankton functional groups [27–42], and physiological status of the phytoplankton [43,44].
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In an effort to obtain pigment concentrations beyond [Chl-a] from remote sensing reflectance
(Rrs(λ), sr−1), phycocyanin concentration, instead of [Chl-a], has been retrieved and used as a better
index for cyanobacteria biomass and potential toxicity for cyanobacteria bloom waters [25,26]. To obtain
phycocyanin and [Chl-a], empirical and semi-analytical methods have been proposed and good
results obtained in their application to bloom detection and monitoring [13,25,26]. Either empirical or
analytical, these methods are based upon relationships between bio-optical information and one or
two pigment concentrations.

Empirical approaches have been the most widely used to obtain information for two or more
pigments. Similar to the empirical relationships used by NASA for the estimation of [Chl-a] from
Rrs(λ) [4], Pan et al. [45] developed empirical relationships between High-Performance Liquid
Chromatography (HPLC) measured pigment concentrations and Rrs(λ) for coastal waters in the
northeast coast of the United States. Moissan et al. [46] directly used satellite-derived [Chl-a] as model
input to retrieve other pigments in the Atlantic Ocean off the east coast of United States with the
underlining assumption that all accessory pigments co-vary with chlorophyll a.

Semi-analytical models, which are based on mechanistic relationships derived from radiative
transfer, allow the estimation of inherent optical properties (absorption and backscattering) from Rrs(λ)
measured by any radiometer [47–62]. These semi-analytical models make it possible to obtain optical
properties of the water components simultaneously from measured Rrs(λ). Taking advantage of this
property of semi-analytical algorithms, Wang et al. [63] incorporated the Gaussian decomposition
method proposed by Hoepffner and Sathyendranath [64] into a semi-analytical model, termed as
multi-pigment inversion model (MuPI), and demonstrated the potential of obtaining Gaussian peak
heights representing the absorption coefficients from various pigments. Chase et al. [65] also adopted
a similar scheme and applied it to hyperspectral in situ Rrs(λ) measurements from the open ocean
for the estimation of accessory pigments. However, as demonstrated in many studies [37,39,64–66],
the assumption that each Gaussian amplitude represents the light absorption of one specific pigment is
not always feasible. This is further shown in Chase et al. [65] where mixed results were obtained when
a Gaussian peak height was linked with a single pigment. In this study, with in situ data from the
global oceans, a thorough examination between the Gaussian peak heights and pigment concentrations
was conducted.

The purpose of this study is twofold: (1) to evaluate the updated MuPI in retrieving concentrations
of multiple phytoplankton pigments across the global ocean from MEdium Resolution Imaging
Spectrometer (MERIS) measurements, and (2) to present the spatial distributions of accessory pigments
across the global ocean that were previously not available. Model parameters were updated, and its
performance was evaluated with different datasets covering a large dynamic range of ocean water
conditions. The model was then applied to satellite remote sensing data from MERIS to obtain the
global distribution and variation of different pigment concentrations. Finally, limitations and future
developments of the MuPI model are discussed.

2. Data and Methods

2.1. Datasets and Study Sites

The datasets used in this study can be broadly classified into six different categories: (a)
phytoplankton absorption coefficients (aph(λ)) from the global oceans; (b) simultaneously collected
aph(λ) and HPLC; (c) simultaneously measured Rrs(λ), aph(λ) and/or HPLC; (d) HPLC time series; (e)
Rrs(λ) from MERIS imagery; and (f) HydroLight simulated Rrs(λ), aph(λ), particulate backscattering
coefficients (bbp(λ)) and absorption coefficients of colored dissolved and detrital matters (adg(λ))
(International Ocean-Color Coordinating Group (IOCCG) dataset [50]). Table 1 provides an overview
of the different datasets, time, size, variables, [Chl-a] range, and the main usage. The description of
each dataset and the data measurements are included in the following paragraphs.
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Table 1. Datasets, time, variables, size and their usages in this study. Cpigs: pigment concentrations, N:
the number of samples, NA: not applicable.

Datasets/Cruises Time Size (N) Measurements Chl-a (mg·m−3) Usage

SeaBASS
2001–2012 1619 aph(λ) NA Gaussian curves

1991–2007 430 aph(λ), HPLC 0.02–13.2 aGau(λ) vs. Cpigs
relationships

IOCCG NA 500
Rrs(λ), aph(λ),
adg(λ), bbp(λ) 0.03–30

aGau(λ) and Cpigs
validation

Tara Oceans
expedition 2010–2012 23 Rrs(λ), aph(λ),

HPLC 0.02–0.95

VIIRS cal/val 2014–2015 21 Rrs(λ), aph(λ),
HPLC 0.15–1.5

BIOSOPE 2004 31 Rrs(λ), aph(λ),
HPLC 0.00036–3.06

BATS 2002–2012 148 HPLC 0.002–0.486 Cpigs variation
MERIS 2002–2012 148 Rrs(λ) 0.037–0.325

A series of aph(λ) spectra measured with the quantitative filter technique (QFT [67]) were used
to find the globally optimized Gaussian parameters and the relationships among them. This dataset
was obtained by searching the SeaWiFS Bio-optical Archive and Storage System (SeaBASS), which
covers 1619 stations across the global oceans observed during 2001–2011. A set of 430 observations that
had aph(λ) and HPLC measurements coincidently observed were obtained from this dataset and were
further randomly separated into two equal subsets (N = 215). The Subset_1 was used for regression
analysis between Gaussian peak height (aGau(λ)) and pigment concentrations (Cpigs) to obtain the
relationships among them; and the Subset_2 together with the aph(λ) and HPLC from Tara Oceans,
BIOSOPE, and VIIRS cal/val cruises were used to validate the relationships obtained from Subset_1.

The Tara Oceans expedition contains 23 match-ups of Rrs(λ), aph(λ) and HPLC around the global
ocean. The BIOSOPE dataset includes 31 match-ups of Rrs(λ), aph(λ) and HPLC which were collected
in the southeastern Pacific Ocean (obtained from: http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/
bio.htm). The VIIRS cal/val dataset is composed of 21 Rrs(λ), aph(λ) and HPLC measurements obtained
from cruises covering the coastal oceans in North Atlantic Ocean off the United States east coast.
The BATS (Bermuda Atlantic Time-Series Study) dataset is composed of HPLC time series from
2002 to 2012 and was obtained from the Bermuda Atlantic Time-Series Study (near Bermuda) (http:
//bats.bios.edu/bats_measurements.html). All of the in situ measurements used are from the surface,
defined as a depth ≤5 m. The sampling locations of all these measurements are shown in Figure 1.

The IOCCG dataset was simulated using HydroLight software version 5.1 [68]. It was designed
to cover the dynamic range observed across the global ocean but is biased to coastal waters (http:
//www.ioccg.org/data/synthetic.html). The Rrs(λ), aph(λ), adg(λ) and bbp(λ) obtained from this dataset
were used to validate the MuPI retrievals.

http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/bio.htm
http://www.obs-vlfr.fr/proof/vt/op/ec/biosope/bio.htm
http://bats.bios.edu/bats_measurements.html
http://bats.bios.edu/bats_measurements.html
http://www.ioccg.org/data/synthetic.html
http://www.ioccg.org/data/synthetic.html
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Figure 1. In situ data distribution, the (o) are the stations for quantitative filter technique (QFT) aph(λ)
from SeaBASS, (o) and (+) are the subset_1 and subset_2 stations of matchups of aph(λ) and HPLC
from SeaBASS, (o) is the HPLC location for BATS (Bermuda Atlantic Time-Series Study), (o) are the
BIOSOPE Rrs(λ), aph(λ) and HPLC locations, (o) are locations of the Rrs(λ), aph(λ) and HPLC from
VIIRS val/cal cruises in 2014 and 2015, and (o) are the locations of Rrs(λ), aph(λ) and HPLC from Tara
Oceans expedition.

2.2. Radiometric Measurements

The in situ remote sensing reflectance, Rrs(λ), was calculated based on the measurements of
radiance and irradiance sampled with the Radiometer Incorporating the Skylight-Blocked Apparatus
(RISBA) [69], Hyper Spectral Radiometer HyperPro free-fall profiler (Satlantic, Inc. Halifax, Nova
Scotia, Canada), or above water radiometers [70]. The Rrs(λ) spectra from 350–800 nm with different
spectral increments were interpolated to 1 nm resolution.

Standard Level 3 MERIS Rrs(λ) was acquired from the National Aeronautics and Space
Administration (NASA) ocean color website (https://oceancolor.gsfc.nasa.gov). The HPLC data
from BATS were matched to Level 3 MERIS 8-day products, at 4 km resolution and plus or minus one
pixel (3 × 3 window). This criterion, although less restricting than NASA’s 3-h window for data and
algorithm validation [71], was adopted to maximize the number of match-ups.

The MuPI model was applied to MERIS Rrs(λ) imagery from 2002–2012 to obtain the seasonal
variation of chlorophyll a, b, c, photoprotective and photosynthetic carotenoids concentrations ([Chl-a],
[Chl-b], [Chl-c], [PPC], [PSC]) near Bermuda. As examples, global maps of these five different pigments
were also obtained from MERIS Rrs(λ) imagery of 2007. The ratios of these concentrations to [Chl-a]
are also presented to highlight their independence from chlorophyll a.

2.3. Absorption Measurements

Water samples for absorption and HPLC measurements were filtered onto a GF/F filter and
stored in liquid nitrogen before laboratory measurements. Spectrophotometers were used to measure
the absorbance and then to calculate the absorption coefficient of particles (ap) and detrital matter (ad).
The phytoplankton absorption coefficient (aph(λ)) were obtained by subtracting ad from ap following
NASA Ocean Optics Protocols, Revision 4, Volume IV protocol [72]. These aph(λ) spectra generally
cover 400–800 nm with spectral resolution around 3 nm. They were interpolated into 1 nm resolution
for studies here.

Following Hoepffner and Sathyendranath [37,64] and Wang et al. [63,73], the phytoplankton
absorption coefficients were decomposed into 13 Gaussian curves using the least square curve fitting

https://oceancolor.gsfc.nasa.gov
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technique provided in MATLAB and Statistics Toolbox (Release 2016a, MathWorks, Inc. Natick,
MA, USA):

aph(λ) =
n

∑
i=1

aGau(λi) exp

[
−0.5

(
λ− λi

σi

)2
]

(1)

where σi and aGau(λi) are the width and peak magnitude of the i-th Gaussian curve at peak center (λi)
as shown in Table 2. The obtained aGau(λ) are used as ground truth to validate the inversion results
from Rrs(λ).

Table 2. The 12 Gaussian curves corresponding to the phytoplankton pigment absorption coefficients,
with Peak_loc as the center location of each pigment absorption peak and width as the full width
at half maximum (FWHM). The relationships indicate the power-law relationships used to estimate
the Gaussian peak amplitudes from the two independent variables: x1: aGau(434) and x2: aGau(492).
Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c: chlorophyll c, PPC: photo-protective carotenoids, PSC:
photosynthetic carotenoids, PE: phycoerythrin and PC: phycocyanin.

Peak Pigments Peak_loc (nm) Width(FWHM) (nm) Relationships R2

1 Chl-a 406 16 1.13x1
1.01 0.98

2 Chl-a 434 12 x1 –
3 Chl-c 453 12 0.60x1

0.95 0.99
4 Chl-b 470 13 0.51x1

0.97 0.98
5 PPC 492 16 x2 –
6 PSC 523 14 0.87x2

1.17 0.99
7 PE 550 14 0.79x2

1.27 0.96
8 Chl-c 584 16 0.40x2

1.17 0.96
9 PC 617 13 0.34x1

1.14 0.93
10 Chl-c 638 11 0.47x2

1.19 0.96
11 Chl-b 660 11 0.30x2

1.11 0.94
12 Chl-a 675 10 0.86x1

1.11 0.98

2.4. Pigment Concentrations

All the HPLC analyses were carried out according to the method following or adapted from Van
Heukelem and Thomas [23]. The concentrations of chlorophyll a, b, c, photo-protective carotenoids
(PPC) and photosynthetic carotenoids (PSC) were estimated from HPLC measurements as:

(A) Total chlorophyll a (Chl-a) = chlorophyll a + divinyl chlorophyll a + chlorophyllide a;
(B) Total chlorophyll b (Chl-b) = chlorophyll b + divinyl chlorophyll b;
(C) chlorophyll c (Chl-c) = chlorophyll c1 + chlorophyll c2;
(D) PPC = α-carotene + β-carotene + zeaxanthin + alloxanthin + diadinoxanthin;
(E) PSC = 19′-hexanoyloxyfucoxanthin + fucoxanthin + 19′-butanoyloxyfucoxanthin + peridinin.

MERIS [Chl-a] was estimated from the Level 3 Rrs(λ) following the standard algorithm OC4E
provided by NASA [4]. Details about this algorithm can be found on the following webpage: https:
//oceancolor.gsfc.nasa.gov/atbd/chlor_a/.

2.5. Pigment Retrieval from Rrs(λ)

2.5.1. aGau(λ) from Rrs(λ)

The multi-pigment inversion model (MuPI) was used to retrieve aGau(λ) from Rrs(λ).
Wang et al. [63,73] developed this semi-analytical inversion model (MuPI) to retrieve aGau(λ) from
hyper- or multi-spectral Rrs(λ). A brief description of MuPI is presented here. The functional

https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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relationship between Rrs(λ) and inherent optical properties (IOPs) is taken from Gordon et al. [47] and
Lee et al. [49]:

Rrs(λ) = 0.52
2

∑
i=1

gi

[
bb(λ)

a(λ) + bb(λ)

]i
/

{
1− 1.7

2

∑
i=1

gi

[
bb(λ)

a(λ) + bb(λ)

]i
}

(2)

where g1 (sr−1) and g2 (sr−1) are fixed to 0.089 and 0.125 sr−1. The IOP spectra, a(λ) and bb(λ), are
partitioned into relevant components

bb(λ) = bbw(λ) + bbp(λ) (3)

a(λ) = aw(λ) + aph(λ) + adg(λ) (4)

with bbw(λ) for seawater backscattering coefficient [74] and aw(λ) for seawater absorption
coefficient [75,76]. Phytoplankton absorption coefficient (aph(λ)) is modeled following Equation (1);
bbp(λ), particulate backscattering coefficient, is modeled following Equations (5) and (6) [49]; and
the combined dissolved and detrital particulate absorption coefficient adg(λ) is modeled using
Equation (7) [52,77,78].

bbp = bbp(λ0)

(
λ0

λ

)η

(5)

η = 2
(

1− 1.2 exp
(
−0.9

Rrs(440)
Rrs(550)

))
(6)

adg(λ) = adg(λ0) exp(−S(λ− λ0)) (7)

where λ0 is a reference wavelength (nearest to 440 nm), S is the spectral decay constant for absorption
of detrital and dissolved materials and kept as an unknown within 0.007 to 0.02 nm−1 [52,77,78]. η is
the power-law exponent for the particulate backscattering coefficient calculated from the Rrs(440) to
Rrs(550) ratio following Lee et al. [49].

In the determination of Gaussian parameters (σi and λi) for aph(λ) in the global scale, we also
tested various combinations of parameters using data published in the literature [63–65]. The existing
parameters were not successful at obtaining satisfactory results for every data range due to various
reasons, including the fact that the initial datasets used to obtain the parameters had a small dynamic
range unable to cover varied conditions such as coastal regions and non-bloom natural oceanic waters.
Thus, a refinement of the parameters σi and λi was conducted using the aph(λ) dataset obtained from
SeaBASS to improve the overall performance of the MuPI model for global oceans. The non-linear
least square fitting procedure in MATLAB was used to solve Equation (1). A set of refined Gaussian
parameters for σi and λi were obtained and are presented in Table 2. For oceanic waters, as the
absorption coefficient from water molecules contributes >80% of the total absorption coefficient for
wavelengths >550 nm, it is difficult to obtain accurate aGau(λ) by directly inverting Rrs(λ) in the longer
wavelengths. On the other hand, since the Gaussian peaks at 434 and 492 nm cover the main absorption
features of the different pigments, the two aGau(λ) at 434 and 492 nm were chosen as the independent
variables in this effort.

Following Wang et al. [73], the implementation of this model used two Gaussian peak heights
[aGau(λ1) and aGau(λ2)] to reconstruct aph(λ), in which empirical relationships as shown in Table 2 were
used. These relationships between aGau(λ) were obtained by regression analysis with the purpose of
reducing the unknowns in the Rrs(λ) inversion procedure [63,73]. With this design, there will be five
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unknowns [aGau(λ1), aGau(λ2), bbp(λ0), adg(λ0) and S] to be retrieved from a Rrs(λ) spectrum, which is
obtained by a minimization of the cost function (Equation (8)):

δ =

√
1

Nλ

Nλ

∑
i=1

(
R̂rs(λi)− Rrs(λi)

)2

1
Nλ

Nλ

∑
i=1

Rrs(λi)

(8)

with Nλ as the wavelength number, Rrs(λ) as the measured, and R̂rs(λ) the modeled spectrum,
respectively. Basically, δ value provides a measure of the relative difference between the input and
output Rrs spectra. The generalized reduced gradient (GRG) nonlinear optimization procedure [79]
was used to solve Equation (8).

The statistical indices used to estimate the agreement between the two values (R̂ and R) was the
unbiased absolute percentage difference (UAPD), defined as Equation (9) and root mean square error
(RMSE, Equation (10)) with N as the number of samples.

UAPD =

∣∣R̂− R
∣∣

0.5
(

R̂ + R
) × 100% (9)

RMSE =

√
1
N
(

R̂− R
)2 (10)

2.5.2. aGau(λ) Versus Cpigs

Hoepffner and Sathyendranath [64] indicated that each Gaussian curve represents the absorption
contributed by one or multiple pigments. However, attempts to obtain the concentration of a specific
pigment from a single Gaussian curve is not always successful [39,65,66]. For a better understanding
of the Gaussian curves and their relationships with Cpigs, a series of regression analyses were applied
to relate aGau(λ) with Cpigs for data from SeaBASS. The t-statistics and p-value were calculated to
test the significance of the parameters. Using p < 0.05 as the criteria, the significant contributors
to each Gaussian peak and the corresponding R2 of these parameters were obtained (see Table 3).
The possible existence of other pigments that are not detectable with current HPLC techniques, such
as phycoerythrin (PE) and phycocyanin (PC), likely explains the relatively lower R2 values for Peaks 7,
8, 9 and 10.

After a series of multivariable regression analyses, it was found that Cpigs could be estimated
from aGau(λ) following the function:

log10(Cpigs) = a0 +
n

∑
i=1

ai log10(aGau(λi)) (11)

The corresponding aGau(λ), parameters, and the R2 value are shown in Table 4. Further, it was
found that the estimated Cpigs agree with the measured values very well throughout the concentration
range when the relationships were applied to the validation dataset (with data points scattered closely
to the 1:1 line; Figure 2).
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Figure 2. aGau(λ) estimated pigment concentrations versus the measured concentrations from HPLC
using the aph(λ) and HPLC from SeaBASS: A: chlorophyll a (Chl-a), B: chlorophyll b (Chl-b), C:
chlorophyll c (Chl-c), D: photoprotective carotenoids (PPC), and E: photosynthetic carotenoids (PSC).

Table 3. The p-value and R2 from the t-statistics, with aGau(λ) at 12 different wavelengths: 406, 434, 453,
470, 492, 523, 550, 584, 617, 638, 660, and 675 nm, and Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c:
chlorophyll c, PPC: photo-protective carotenoids, PSC: photosynthetic carotenoids.

p-Value Peak
406

Peak
434

Peak
453

Peak
470

Peak
492

Peak
523

Peak
550

Peak
584

Peak
617

Peak
638

Peak
660

Peak
675

Chl-a 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.00 0.00
Chl-b 0.03 0.00
Chl-c 0.04 0.03 0.00 0.04
PPC 0.00 0.00 0.00 0.00
PSC 0.00 0.02 0.01
R2 0.80 0.87 0.83 0.87 0.83 0.78 0.64 0.68 0.76 0.73 0.81 0.91
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Table 4. Parameters for estimation of pigment concentrations: the pigment-specific aGau(λ), coefficients
and R2. Chl-a: chlorophyll a, Chl-b: chlorophyll b, Chl-c: chlorophyll c, PPC: photo-protective
carotenoids, PSC: photosynthetic carotenoids.

Pigments aGau(λ) Parameters (a0, a1, . . . , ai) R2

Chl-a 675 1.804, 0.975 0.89
Chl-b 434, 453, 470 −0.066, 2.470, −3.073, 1.379 0.72

Chl-c 470, 492, 523, 675 1.334, 2.022, −3.125, 0.745,
1.119 0.83

PPC 453, 470 0.734, 1.311, −0.416 0.76
PSC 470, 492, 523 1.67, 3.034, −2.670, 0.725 0.84

3. Results

3.1. Retrievals from Rrs(λ)

3.1.1. aGau(λ) Validation

The MuPI model was first tested with datasets that contained different levels of chlorophyll a
concentration from the IOCCG synthesized data and different cruises in the global ocean. The main
purpose of this test was to evaluate, and validate, the implementation of the MuPI approach for a wide
range of environments. A mean UAPD of 36% was obtained between aGau(λ) from Rrs(λ) inversion
and aGau(λ) from water samples throughout the data range for different datasets (see Figure 3).
The differences in statistical results, noted in Table 5 for aGau(λ) retrieval from different datasets, are
strongly influenced by their different dynamic ranges and characteristics as implied in Section 2.1.
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(shown in different colors).
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Table 5. Mean (Mea.) and median (Med.) of the unbiased percentage errors for aGau(λ) retrieval from
Rrs(λ) for different datasets.

Peak Center
IOCCG Tara Oceans BIOSOPE VIIRS Cruises

Mea. Med. Mea. Med. Mea. Med. Mea. Med.

406 45 45 34 27 34 28 28 20
434 37 36 34 28 26 25 28 13
453 47 49 28 24 23 18 27 15
470 35 34 29 25 30 27 31 18
492 34 31 26 21 22 18 29 18
523 44 34 38 28 34 29 48 44
550 45 35 53 41 37 34 41 35
584 55 48 48 37 38 36 53 57
617 51 45 47 38 36 29 37 40
638 54 42 66 68 41 35 41 35
660 52 48 35 23 32 29 43 34
675 46 40 30 26 60 56 32 21

3.1.2. bbp(λ) and adg(λ) Validation

The backscattering coefficients of particles and absorption coefficients of detrital and dissolved
materials retrieved from Rrs(λ) by MuPI have also been validated with the IOCCG dataset (with values
at 440 nm as examples). The bbp(440) showed very high accuracy with mean UAPD of 4.8%, and all
samples showed no bias in the entire data range as presented in Figure 4A. The estimated adg(440)
also showed very good agreement with the simulated values, with the mean UAPD of 21.3%. No
inter-comparisons were made for the products adg(λ) and bbp(λ) for other datasets because of lacking
corresponding measured data.
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Figure 4. MuPI retrieved adg(440) and bbp(440) versus those from the International Ocean-Colour
Coordinating Group (IOCCG) dataset.

3.2. Cpigs from Satellite Remote Sensing

3.2.1. Cpigs Validation and Their Seasonal Variation

The ability of MuPI to capture the magnitudes of Cpigs and their seasonal variability from satellite
Rrs(λ) was then validated using a time series of HPLC measurements at BATS from the years 2002
to 2012. During this period of time, Cpigs varied in these ranges: [Chl-a]: 0.016–0.486 mg·m−3,
[Chl-b]: 0.001–0.108 mg·m−3, [Chl-c]: 0.001–0.206 mg·m−3, [PPC]: 0.004–0.147 mg·m−3, and [PSC]:
0.003–0.106 mg·m−3.

To obtain Cpigs from satellite Rrs(λ), aGau(λ) were inverted first from Rrs(λ) using MuPI, then
Equation (11) was applied to convert the retrieved aGau(λ) to Cpigs. As shown in Figure 5, it is found
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that there are good matches in the magnitudes and the seasonal cycles for the five pigments, with
mean UAPD values as 38%, 78%, 65%, 36%, and 47% (and the medians are 34%, 79%, 64%, 30% and
55%) for [Chl-a], [Chl-b], [Chl-c], [PPC] and [PSC], respectively. The [Chl-a] accuracy is comparable
with the NASA adopted standard [Chl-a] algorithms, for which the color index (CI) algorithm [5]
showed a mean UAPD of 38.6% and OC4E of 46.7%. There are many reasons for the relatively low
accuracy in the retrieval of [Chl-b] and [Chl-c], which include very low concentrations (e.g., in situ
[Chl-b] and [Chl-c] were close to the HPLC detection minimum), as well as uncertainties in satellite
measured Rrs(λ), and the derived aGau(λ) from Rrs(λ).
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Figure 5. Time series of pigment concentrations from BATS HPLC and MERIS Rrs(λ), and the
determination coefficients (R2). A: Chl-a: chlorophyll a, B: Chl-b: chlorophyll b, C: Chl-c: chlorophyll c,
D: PPC: photoprotective carotenoids, E: PSC: photosynthetic carotenoids, F: the scatterplot of estimated
versus in situ pigment concentrations.

Beyond the seasonal cycles in Cpig magnitudes, variation in pigment composition over time
implied in the change of pigment ratios was also noticed in Figure 6A. On further examination, we
found the ratios derived from MERIS Rrs(λ) using MuPI can pick up the variation in the [Chl-b],
[Chl-c], [PPC], [PSC] to [Chl-a] ratios observed from HPLC measurements very well with the mean
UAPD of 50%, 47%, 25%, 37%, and median of 38%, 39%, 19% and 29% respectively (Figure 6B). Since
these phytoplankton pigment ratios do not co-vary with the [Chl-a] product and cannot be empirically
estimated from [Chl-a] alone, the Gaussian peaks and multiple pigments retrieved here provide a
valuable glimpse into potential applications of these ratios in ocean changes that can be studied at
large spatial and high temporal scales.
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Rrs(λ) using MuPI.

3.2.2. Global Distribution of Cpigs

As an example, MuPI was applied to MERIS L3 global annual (2007) average Rrs(λ) to obtain the
global distribution of the five different pigment concentrations (Figures 7 and 8) and their ratios to
[Chl-a] (Figure 9). The global patterns of [Chl-a], [Chl-b], [Chl-c], [PPC], and [PSC] mimic the major
gyre systems and other large-scale circulation features of the world ocean. High values of Cpigs are
found within regions of persistent large-scale upwelling (e.g., subarctic gyres, equatorial divergences,
eastern boundary currents, etc.), while low values are observed where large-scale downwelling is
observed (e.g., subtropical gyres).

The basin-scale [Chl-a] distribution follows the pattern reported in the literature [4,5].
In comparing the global map of [Chl-a] derived in this study with the standard product from NASA
ocean color website (Figure 7), some differences were noticed. In the previous section, when using
HPLC data from BATS for validation, the retrieved [Chl-a] showed higher accuracy via MuPI than
that from the standard OC4E algorithm. To better understand the differences in [Chl-a] distribution
at the global scale, a validation dataset from SeaBASS was used. This dataset was obtained by
searching match-ups of in situ measured [Chl-a] with those from MERIS Rrs(λ). A dataset containing
608 pairs of [Chl-a] and MERIS Rrs(λ) were obtained in which [Chl-a] concentrations ranged from
~0.017 to ~40.3 mg·m−3 (locations shown in Figure 7A). In comparing the estimated [Chl-a] from
two different methods with in situ measurements (Figure 7C), MuPI and OC4E showed comparable
results with mean UAPD of 48.8% and RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and
RMSE of 4.05 mg·m−3 for MuPI. As shown in Figure 7C, the [Chl-a] estimated from OC4E is biased
slightly high (~10%) in the range of 1–10 mg·m−3 compared with results from MuPI. This range of
[Chl-a] (1–10 mg·m−3) is mainly from coastal and inland waters for which the influences from colored
dissolved and detrital matter result in lower accuracy in band-ratio estimated [Chl-a] [80]. For several
samples, the [Chl-a] values from MuPI are biased low (~70%) as shown in Figure 7C. There are two
possible reasons for this: (1) bad input MERIS Rrs(λ), not only the values but also the spectral shape,
especially at the blue bands that are susceptible to poor atmospheric correction, where negative values
are often observed for coastal waters [81]; (2) the limitation of the algorithm as a result of the empirical
parameters used to reduce the unknowns in MuPI, and the low contribution of aph(λ) to the total
absorption coefficients in the 400–750 nm range, which will be further discussed in Section 4.

The pigment ratios to [Chl-a] showed complicated patterns (Figure 9). In high [Chl-a] regions,
[Chl-b]/[Chl-a] and [PPC]/[Chl-a] are low. In some low [Chl-a] regions, the ratios of [Chl-c]/[Chl-a]
and [PSC]/[Chl-a] are relatively high, such as in the East Pacific Ocean. These results agree with
previous findings about the global distribution of phytoplankton groups and pigment ratios, as lower
[PPC]/[Chl-a] ratios correspond to high [Chl-a] and larger particle size [9,17,82–84]. As recorded in
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the literature, in different regions of the global ocean, the quality and quantity of light and nutrient,
as well as temperature, is highly variable [85]. These highly unpredictable and rapid changes of the
environment usually result in phytoplankton taxonomic composition variation (long-term adaptation)
or physiological acclimation (short-term acclimation) [24]. The variation in pigment ratios obtained
from MuPI can directly reflect these changes in phytoplankton and provide valuable information for
phytoplankton studies in large spatial and high temporal scales.Appl. Sci. 2018, 8, x FOR PEER REVIEW  13 of 20 
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Figure 7. Global distributions of chlorophyll a concentration estimated from 2007 MERIS L3 Rrs(λ)
imagery using NASA standard algorithm OC4E (A) and MuPI model (B). The locations (o) of in situ
Chl-a and MERIS Rrs(λ) matchups for further comparison of OC4E and MuPI were plotted on the
OC4E Chl-a map. C: Chlorophyll a concentration (Chl-a) from in situ measurements and from those
estimated from matchups of MERIS Rrs(λ) using OC4E and MuPI algorithms with mean UAPD of
48.8% and RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and RMSE of 4.05 mg·m−3

for MuPI.
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Figure 9. Global distributions of the accessory pigment to chlorophyll a ratios: ratio of concentrations
of chlorophyll b (Chl-b/Chl-a), chlorophyll c (Chl-c/Chl-a), photoprotective carotenoids (PPC/Chl-a),
and photosynthetic carotenoids to chlorophyll a (PSC/Chl-a).

4. Discussion

Based on the initial model of Wang et al. [63] that was developed for bloom waters, we have
demonstrated that using a set of refined parameters for the Gaussian curves for global waters (Table 2),
the MuPI model demonstrates consistent performance in aGau(λ) retrievals on a global scale, as shown
in Figures 3 and 4 and Table 5. Compared with HPLC measurements, the estimates of [Chl-a], [Chl-b],
[Chl-c], [PPC] and [PSC] from satellite Rrs(λ) showed reasonable accuracies, with the mean UAPD of
38%, 78%, 65%, 36%, and 47% respectively (Figure 5). Further, the distribution of these pigments and
their ratios to [Chl-a], were obtained from MERIS measurements on the global scale (Figures 8 and 9).

The phytoplankton pigment ratios are critical indicators of the variation in phytoplankton groups
and species due to their physiological adaptation to changes in nutrients, temperature, and light
availability over time and space. The HPLC measured pigment concentrations and ratios have been
widely used for determining the phytoplankton taxonomic composition and estimating the biomass
of different groups, such as in CHEMTAX [27] and PFT analyses [10]. However, lacking effective
methods, the estimation of phytoplankton pigments from satellite remote sensing has been limited
to only [Chl-a] in the past decades [3–5], and the efforts made to obtain the accessory pigments
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have been more or less based on empirical relationships with Chl-a [45,46]. Thus, these products
provided limited ability to capture the variation in the physiological status of phytoplankton. However,
these unknown physiological variations in phytoplankton pigments have been one of the main
uncertainties in traditional phytoplankton remote sensing models that use [Chl-a] as input to represent
the phytoplankton biomass, such as the traditional [Chl-a] based primary productivity [14,20]. MuPI,
as shown in this study, fills in this gap by obtaining not only the accessory pigment concentrations but
also their ratios to [Chl-a] on the global scale, and reasonable accuracy has been obtained in validation
with in situ data.

[Chl-a] is by far the easiest quantity to validate as it is routinely measured. An independent
evaluation of the model has been conducted with the MERIS match-up dataset (Figure 7). This dataset
contains nearly simultaneous in situ [Chl-a] measurements and MERIS Rrs(λ) at coincident locations.
To evaluate other pigments, an independent evaluation was conducted with MERIS Rrs(λ) and in
situ HPLC match-ups from 2002 to 2012 near Bermuda (Figure 5). The match-up dataset contains
data from different seasons over a decadal scale. Use of the model with the match-up dataset from
BATS confirms good overall behavior of the MuPI model for pigment concentration and pigment ratio
retrievals, demonstrating the ability of the model to obtain accurate information from satellite ocean
color imagery. However, because of the limitation of in situ pigment concentrations, the potential of
obtaining PE and PC concentrations from satellite remote sensing data was not addressed in this study.

The main difficulty in making the model more applicable with any waterbody comes from
the parameterization of the Gaussian curves, particularly the empirical relationships among aGau(λ).
Although it is reasonably straightforward to optimize the parameters with each dataset to obtain better
retrievals, it would be extremely difficult (if not impossible) to do so when in situ measurements from
the target location are hard to obtain. Instead, a set of globally optimized parameters were obtained
using a dataset that covers a large dynamic range of the global ocean. Another challenge for aGau(λ)
retrieval in the open ocean lies in the low contribution of pigment absorption to the total absorption
coefficient around 550–650 nm. Thus, it is difficult to directly invert Rrs(λ) to obtain pigment absorption
coefficients at the longer wavelengths (>550 nm).

This version of the MuPI model should be considered interim because the model could be further
updated when more global data become available. In its present form, the model is optimized to
work with Rrs(λ) data from the first nine MERIS bands. As a first step, several components of the
Gaussian model were deliberately formulated by use of empirical relationships to limit the number of
unknowns to be solved via the spectral optimization procedure. This is particularly true for estimation
of 13 aGau(λ) from two independent Gaussian curves, which significantly reduced the unknowns.
Instead of the Gaussian scheme, another potential way to obtain different pigment information from
remote sensing data is through the specific absorption coefficients as adopted by many studies [46,86].
However, the specific absorption coefficients have significant limitations, such as the variation of the
coefficients in different waters and the lack of routine measurements of some pigments, such as PE
and PC [46,86,87].

With the information of accessory pigments obtained from MuPI, different biogeochemical studies
could be conducted: 1. Remotely sensed PE and PC concentrations could be validated and applied
to the estimation of cyanobacteria on a global scale. 2. The pigment ratios could be used as a direct
indicator for estimation of phytoplankton functional types or functional traits, and phytoplankton
physiological variation over space and time. 3. The pigment absorption coefficients (photoprotective
and photosynthetic) could be estimated from satellite remote sensing data and incorporated into
models for more accurate estimation of primary productivity.

5. Conclusions

The multi-pigment inversion model, namely MuPI, which semi-analytically obtains concentrations
of multiple pigments from remote sensing reflectance, has been validated and applied to MERIS Rrs(λ)
imagery to obtain not only [Chl-a], but also [Chl-b], [Chl-c], [PPC], [PSC] (and subsequently their ratios
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to [Chl-a]) in the global oceans. The obtained pigment concentrations and the pigment ratios showed
good agreement with in situ HPLC data, with the mean UAPD of 38%, 78%, 65%, 36%, and 47%
respectively. Further, at the global scale, the MuPI obtained [Chl-a] from MERIS showed comparable
results with those estimated from the widely used OC4E algorithm with mean UAPD of 48.8% and
RMSE of 4.51 mg·m−3 for OC4E and mean UAPD of 49.3% and RMSE of 4.05 mg·m−3 for MuPI.
However, unlike OC4E, MuPI as a semi-analytical model provided reasonable retrievals of several
parameters {[Chl-a], [Chl-b], [Chl-c], [PPC], [PSC], adg(440) and bbp(440)} simultaneously from satellite
obtained remote sensing reflectance. The information of these accessory pigments would extend the
application of satellite ocean color data in global biogeochemical studies that was previously limited
due to [Chl-a] as the only available pigment.
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