2016

Effects of Environmental Factors on the Abundance of Blacklegged Ticks

Jasmine L. Miller
University of Rhode Island, jasmine_miller@my.uri.edu

Roger A. LeBrun
University of Rhode Island

See next page for additional authors

Follow this and additional works at: http://digitalcommons.uri.edu/srhonorsprog

Part of the Entomology Commons, Environmental Education Commons, Environmental Studies Commons, and the Population Biology Commons

Recommended Citation

http://digitalcommons.uri.edu/srhonorsprog/503

This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons@etal.uri.edu.
The most significant environmental factors that influence measurements of *Ixodes scapularis* abundance varied, based on the particular location of the ticks sampled. Ticks were most abundant on hosts when there were relatively large numbers of available hosts. In contrast, questing ticks (ticks in leaf litter) were most abundant in environments with dense canopy cover and high relative humidity in the leaf litter. These results support previous studies that found tick abundance and survival to be greatest in forest habitats with high humidities (Maupin et al. 1991, Ginsberg & Zhioua 1996, Berger et al. 2014).

Our results suggest that when studying transmission of pathogens between ticks and hosts, researchers should sample ticks directly from hosts, rather than sampling host-seeking ticks from the leaf litter.

When sampling ticks to evaluate human risk of tick bite, environmental factors such as canopy cover and relative humidity should be taken into account. People are most likely exposed to potentially infected nymphal ticks in areas with moist leaf litter and thick canopy cover. Host-seeking *Ixodes scapularis* nymphs are most abundant in these conditions. These results help explain why studies have shown greatest risk of Lyme disease when residential areas are near forest habitats (Guerra et al. 2002, Jackson et al. 2006).

References:

