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Dominant eukaryotic export production during ocean
anoxic events reflects the importance of recycled NH4

þ
Meytal B. Higginsa,b,1, Rebecca S. Robinsonc, Jonathan M. Hussona,b, Susan J. Cartera, and Ann Pearsona,1

aDepartment of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138; bDepartment of Geosciences, Princeton University, Princeton,
NJ 08544; and cGraduate School of Oceanography, University of Rhode Island, Narragansett, RI 02882

Edited by Donald E. Canfield, University of Southern Denmark, Odense M., Denmark, and approved December 23, 2011 (received for review March 17, 2011)

The Mesozoic is marked by several widespread occurrences of in-
tense organic matter burial. Sediments from the largest of these
events, the Cenomanian–Turonian Oceanic Anoxic Event (OAE 2)
are characterized by lower nitrogen isotope ratios than are seen
in modern marine settings. It has remained a challenge to describe
a nitrogen cycle that could achieve such isotopic depletion. Here
we use nitrogen-isotope ratios of porphyrins to show that eukar-
yotes contributed the quantitative majority of export production
throughout OAE 2, whereas cyanobacteria contributed on average
approximately 20%. Such data require that any explanation for the
OAE nitrogen cycle and its isotopic values be consistent with a
eukaryote-dominated ecosystem. Our results agree with models
that suggest the OAEs were high-productivity events, supported
by vigorous upwelling. Upwelling of anoxic deep waters would
have supplied reduced N species (i.e., NH4

þ) to primary producers.
We propose that new production during OAE 2 primarily was
driven by direct NH4

þ-assimilation supplemented by diazotrophy,
whereas chemocline denitrification and anammox quantitatively
consumed NO3

− and NO2
−. A marine nitrogen reservoir dominated

by NH4
þ, in combination with known kinetic isotope effects, could

lead to eukaryotic biomass depleted in 15N.

biomarkers ∣ nitrogen fixation ∣ stable isotopes ∣ paleoceanography

Mid-Cretaceous episodes of deposition of organic-rich sedi-
ments in the proto-Atlantic and Western Tethys basins

known as Oceanic Anoxic Events (OAEs) (1) are attributed to
high productivity and/or enhanced organic-matter preservation
resulting from increases in nutrient supply and/or decreases in
the ventilation of deep waters (2–6). Because OAEs are thought
to be associated with enhanced CO2 outgassing during emplace-
ment of large igneous provinces (7, 8), understanding the feed-
backs between CO2, anoxia, and nutrient availability may help
us understand better the effects of anthropogenic climate change
on ocean circulation, oxygen balance, and marine ecology (9).

Basinal anoxia during OAEs would have promoted loss of fixed
nitrogen through the processes of denitrification and anammox.
The resulting nitrogen deficits in waters returning to the surface
via upwelling would have been amended by nitrogen-fixing cya-
nobacteria, assuming iron and other micronutrients were ade-
quately available (10). Indeed, enhancement of cyanobacterial
production during many episodes of ocean anoxia has been pro-
posed based on increased burial of 2-methylhopanoids (11–13),
as these compounds are thought to be markers for cyanobacteria
(14). Because such biomarker indices are only qualitative indica-
tors of change and cannot provide quantitative estimates of ex-
port flux, complementary data generally include isotope ratios of
total sedimentary nitrogen (δ15NTN) (11, 15–17), as diazotrophy
also affects the nitrogen isotopic budget of the ocean (18–20).

The modern ocean has several localized regions of anoxia, and
in these regions, values of δ15NTN generally are higher than the
present deep-water average δ15NNO

3
− value of þ5‰ because of

the isotopic fractionation of denitrification expressed in the water
column (19, 21, 22). In contrast, sediments from OAE 2 record
striking nitrogen isotopic depletion. They are characterized by
values of δ15NTN consistently <−1‰, and often <−3‰ (11,

16, 17, 23). Expression of these negative values of δ15NTN varies
consistently by depositional location, with the average value of
δ15NTN for OAE 2 horizons of the Bonarelli section (Gubbio
and Furlo, Italy) being −3.3‰ and the South Ferriby formation
(England) being −2.8‰ (16); whereas the average value for the
South Atlantic is −1.9‰ (23), for the proto-North Atlantic is
−1.8‰ (11, 17, this work), and for the Tarfaya Basin, Morocco
is −1.7‰ (between 45–60 m in section) (16). Such differences
thus reflect regional heterogeneity of water masses, phototroph
ecology, and/or nutrient biogeochemistry; and it has been sug-
gested that patterns of intrabasinal upwelling intensity and nutri-
ent concentrations correspond directly to regional patterns of
sedimentation (8, 23, 24).

When viewed alongside the elevated 2-methylhopanoid ratios,
negative values of δ15N have been interpreted as evidence for
diazotrophic rebalancing of the nitrogen budget and cyanobacter-
ial dominance of the nitrogen supply for new (export) primary
production (6, 11, 15, 25, 26). However, the minimum value of
δ15N for the biomass of marine diazotrophs (δ15Ndiazo) should
be on average approximately −1.3‰, based on the fractionation
associated with nitrogenase (εfix ¼ 0-2‰) and the δ15N value of
dissolved N2 in seawater (approximatelyþ0.7‰). This number is
supported by data that consistently show N-fixing cyanobacteria
to have values of δ15Ndiazo between 0.5‰ and −2‰ (average
−1.4� 0.9‰) (25, 27–35). Reports of values significantly
<−2‰ are from a cultured Trichodesmium sp. (−3.5‰) that
was more negative than field samples collected in situ by the same
investigators (32) and from experiments on N2-sparged Anabaena
spp. (−2.4‰) grown in an artificial-seawater medium (ASP-2)
that also contained NH4

þ (31). Non-N2-derived N in the culture
media may explain these outliers. Given the likelihood that in situ
values of δ15Ndiazo would average approximately −1‰, the pre-
valence of sedimentary values lower than −2‰ in many OAE
sections cannot be explained solely by N supplied via N fixation.
These patterns require that additional N-cycling processes be
invoked to explain the source of nitrogen driving primary produc-
tion during OAEs.

Nitrogen Isotopic Records of Sediments, Porphyrins, and
Kerogen
Chlorophyll-derived sedimentary porphyrins can be used to gen-
erate records of δ15N values of eukaryotic and prokaryotic phy-
toplankton that are unaffected by diagenesis (36, 37), as well as
to estimate the contribution of cyanobacteria to burial flux (38).
We examined nitrogen cycling during OAE 2 using measurements
of coeval bulk and porphyrin nitrogen isotopes in sediments from

Author contributions: M.B.H., R.S.R., and A.P. designed research; M.B.H., R.S.R., J.M.H.,
S.J.C., and A.P. performed research; M.B.H., R.S.R., and A.P. analyzed data; and M.B.H.
and A.P. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.
1To whom correspondence may be addressed. E-mail: pearson@eps.harvard.edu or
meytal@post.harvard.edu.

This article contains supporting information online at www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1104313109/-/DCSupplemental.

www.pnas.org/cgi/doi/10.1073/pnas.1104313109 PNAS ∣ February 14, 2012 ∣ vol. 109 ∣ no. 7 ∣ 2269–2274

G
EO

LO
G
Y

EN
V
IR
O
N
M
EN

TA
L

SC
IE
N
CE

S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1104313109/-/DCSupplemental


the OceanDrilling Program Leg 207, Site 1258A (Demerara Rise).
A well-defined positive carbon isotope excursion in this section is
contained within the high total organic carbon (TOC) interval
commonly associated with the OAE (39) (Fig. 1A). Values of
δ15NTN (Fig. 1B) from before the OAE through the first two-thirds
of the OAE (428.5–423 m composite depth; mcd) decrease from
approximately −0.1‰ to approximately −1.4‰ and fluctuate
with greater variance than in the middle and top intervals
(p < 0.05). The middle of the analyzed section (423 to 419.5 mcd),
which spans the end of the OAE as defined by δ13Corg, is charac-
terized by stable δ15NTN values of −2.1� 0.3‰. The top section
(419.5 to 415.5 mcd) is characterized by an increase in δ15NTN
values, returning to−0.7‰ in the uppermost samples. All of these
values are lower than the δ15N minima that are observed in mod-
ern sediments, even in regions underlying zones of water-column
anoxia or intense nitrogen fixation (40, 41). Because diagenesis
and interstitial NH4

þ in clays can shift values of δ15NTN (18, 42),
we also measured δ15N values of kerogen. They show an average
negative offset of −0.4‰ relative to bulk sediment (Fig. 1B), sug-
gesting the original primary producers had even lower δ15N values
than what remains recorded by values of δ15NTN.

Porphyrin values of δ15N (δ15Npor) also show patterns that are
similar to bulk N isotopes, although they exhibit more scatter
than the δ15NTN and δ15Nkerogen values. The large error ranges are
due to full propagation of analytical uncertainty associated with
preparation and analysis by the denitrifier method (43). To over-
come the scatter, we plotted 3-, 5-, and 9-point moving averages
(Fig. 1C). These different resolutions all show similar patterns,
indicating that temporal trends in the results are not sensitive
to the degree of smoothing and are not dependent on data den-
sity. The data are spaced relatively uniformly (0.5 m), although
sampling resolution is higher in some horizons surrounding the
excursion interval, from 421.9 to 427.5 mcd (0.2 m). The duration
of OAE 2 has been estimated to be approximately 400–800 ka
(44, 45), corresponding to sampling resolution for the porphyrin
data of approximately 20,000–100,000 y per sample, or signifi-
cantly longer than present-day estimates of N residence time
in the ocean (2,000–5,000 y; ref. 9). Trends observed in the
smoothed data thus reflect persistent, potentially steady-state
perturbations of the marine N cycle. The top and bottom sections
of the core have identical values of δ15Npor:−5.6� 0.7‰ above

419.5 mcd and −5.4� 0.7‰ below 423 mcd. However, between
423 and 419.5 mcd, values of δ15Npor average −6.4� 0.6‰
and decrease sharply to −7.5‰ approaching and just after the
termination of the OAE. This shift correlates with the phasing
observed for δ15NTN and δ15Nkerogen, but in both cases the N iso-
topes lag the excursion observed in δ13CTOC.

The εpor Proxy for Eukaryotic vs. Cyanobacterial Burial
The relative fraction of eukaryotic vs. cyanobacterial export pro-
duction can be estimated from δ15N values of porphyrins and
their associated sediments. In previous work we examined the
biochemical and physiological basis for fractionation of nitrogen
isotopes between biomass and chloropigments (38). The offset,
known as εpor (εpor ¼ δ15NTN − δ15Npor), differs systematically
between eukaryotes and cyanobacteria. Values of εpor for eukar-
yotes are around 5� 2‰; i.e., chlorophyll 5‰more depleted in
15N than biomass (33, 38, 46). In contrast, cyanobacteria have
values of εpor between 0 and −10‰ (i.e., chlorophyll equal to
or up to 10‰ enriched in 15N relative to biomass). One example
of a value of εpor near −10‰ had been observed previously for
Anabaena cylindrica (33). To expand on this finding, we recently
reported data showing that among the seven species of cyanobac-
teria tested to date, freshwater ecotypes cluster around the εpor ¼
−10� 2‰ endmember, whereas marine ecotypes cluster around
the εpor ¼ 0� 2‰ endmember (38).

Because εpor reflects intracellular partitioning of N isotopes
downstream of the amino acid glutamate, it is independent of
the nitrogen substrate utilized by the organism (N2, NO3

−, or
NH4

þ; ref. 38). Thus, we proposed that εpor would be an excellent
proxy for calculating the relative contributions of eukaryotes and
cyanobacteria to marine export production. Measured values of
εpor would be 5� 2‰ in a 100% eukaryotic system and would be
0� 2‰ in a 100% marine cyanobacterial system, regardless of
the proportion of diazotrophic species among the latter (not all
marine cyanobacteria are diazotrophs). Moreover, influx of terri-
genous biomass and/or cyanobacteria from fresh waters would lead
to values of εpor < 0‰. Indeed, to date the only in situ value of
cyanobacterial εpor from the environment is from a freshwater lake
in Japan in which εpor was determined to be −13 to −16‰ (47).

At Site 1258A the observed value of εpor throughout the
section averages 4.3� 0.8‰ (if calculated vs. δ15NTN) or

Fig. 1. Elemental and isotopic data for site 1258A. The shaded bar represents the δ13Corg excursion interval that defines the OAE. (A) %TOC (squares) and
δ13Corg (circles) from (39). (B) δ15N values of bulk sediment (triangles) and kerogen (diamonds), and their 1-m averaged trends. (C) Porphyrin δ15N values, and
their 3- (green), 5- (tan), and 9- (blue) point averaged trends. (D) The isotopic offset εpor between bulk sediment and porphyrins (triangles), and kerogen and
porphyrins (diamonds), as well as the corresponding fraction of cyanobacterial export based on the endmember values described in the text. The solid vertical
line represents a typical algal value of εpor, and the dotted vertical line represents a marine cyanobacterial value of εpor (38). All error bars represent 1σ, and
preparative and analytical errors are compounded when possible. Raw data are shown in Table S1.
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4.0� 0.8‰ (if calculated vs. δ15Nkerogen) (Fig. 1D). The values of
εpor reach minima—reflecting maximum burial of cyanobacterial
biomass—toward the end of the OAE. There appears to be a qua-
litative trend of decreasing magnitude of εpor from the beginning
of the OAE until approximately 1 mcd below the termination. At
this point, εpor increases and fluctuates repeatedly until approxi-
mately 4 mcd after termination of the OAE, after which εpor then
returns to the starting value near 5‰. This again shows that
changes in nitrogen cycle processes are out of phase with the
changes in the carbon cycle that define the OAE. Such differ-
ences may be expected: in multiple OAE 2 sections the local
primary productivity is known to be variable within the overall
record of the OAE as defined by δ13C values (24, 48).

If we assume that only eukaryotic algae and marine cyanobac-
teria contribute significantly to the burial flux of photosynthetic
pigments (i.e., eliminating the possibility of freshwater cyano-
bacteria), a value of εpor consistently >4‰ during the OAE in-
dicates that the export flux remained on average ≥80% eukaryotic
throughout the event. In contrast with previous interpretations
invoking N fixers as the primary source of nutrient N (11, 15, 26),
these results indicate that the abundance of cyanobacteria con-
tributing directly to export production during OAE 2 was not
large; and it suggests that another N source would have been re-
quired to sustain such high rates of eukaryotic export production.
However, the data for εpor are consistent with a large relative
change in the cyanobacterial population, as observed values of
εpor approximately 4‰ within the OAE indicate approximately
20% cyanobacterial biomass, whereas pre- and post-OAE values
of εpor nearer 5‰ indicate less burial of cyanobacterial biomass
(certainly <5–10%). The εpor data thus indicate at minimum a
doubling to quadrupling of cyanobacterial production, but within
a system consistently and overwhelmingly dominated by eukar-
yotic primary producers. If Site 1258A is representative of
OAE 2 in general, the widespread negative values of sedimentary
δ15NTN throughout OAE 2 deposits must be attributed to burial
of eukaryotes having significant 15N-depletion in their biomass.

Nitrogen Cycle in Anoxic Oceans: A Paradox of Nitrification
and Denitrification
Amodest increase in cyanobacterial production is consistent with
expected changes to the nitrogen cycle. During OAE 2, anoxic
deep waters of the proto-Atlantic and Western Tethys would have
contained nitrogen predominantly in the form of NH4

þ. Upwel-
ling rates were high (8), and NH4

þ upwelled into oxic surface
waters either was assimilated by phytoplankton or oxidized to
NO2

− and/or NO3
−. Reducing conditions impinging on the photic

zone likely meant that a greater fraction of this NO2
− and NO3

−

subsequently was reduced to N2 via denitrification and anammox,
causing a modestly greater fixed-nitrogen deficit. Such wide-
spread N deficits suggest it is unlikely that negative values of
δ15NTN in sediments of OAE 2 could be due to the expression of
isotopic discrimination during nutrient uptake, which occurs for
eukaryotes only in nutrient-replete systems in which the nitrogen
supply is in excess of biological demand (49, 50). The extent to
which fixed N was used to completion in OAE 2 surface waters
would have determined the ecological niche for N-fixing cyano-
bacteria, either as free-living cells or as symbionts; but the overall
system was N limited, as generally is the case in the marine photic
zone (10). Complete utilization of the available nutrient N
implies that the total flux must have been isotopically negative.

A deficit in fixed N during OAEs is not surprising, as anoxia
promotes denitrification. What may be surprising is that the
deficit was not larger. We suggest that counterintuitively, rates of
denitrification may decrease under conditions of extreme basin-
wide anoxia. Denitrification and anammox depend on sufficient
availability of NO3

− and NO2
−. Because these oxidized N species

are produced aerobically, extreme oxygen limitation in the water-
column may decrease their rate of formation, leaving a greater

fraction of remineralized organic nitrogen to cycle throughout
these regionally isolated basins and reenter the photic zone as
NH4

þ. This in turn would limit the need for compensating N fixa-
tion. Evidence for photic-zone sulfide oxidation during OAEs
suggests that NO3

− indeed was completely absent beneath the
photic zone, at least episodically (5, 51), and that fixed N in these
deep waters would have remained in reduced form. We propose
that the values of δ15NTN < −2‰ found in OAE sediments re-
flect severe diminishment of the deep-water NO3

− component of
the marine N cycle, implying that the deep ocean was a reservoir
of NH4

þ. Upwelled NH4
þ, rather than newly fixed N, was the

main N source for primary production. Chemocline impingement
on the photic zone would have driven nitrification, denitrifica-
tion, and anammox into competition with NH4

þ-assimilation.
The balance between these processes—which varied regionally—
would have set the loss rate of N from the ocean and the com-
pensatory rates of N fixation.

To explain the observed values of δ15NTN, isotopic mass bal-
ance would then require that the newly fixed N (δ15Ndiazo ¼
0 to − 2‰), plus the upwelled NH4

þ supply, together can yield
new production that has values of δ15N <−2‰ (e.g., Bonarelli
and South Ferriby sections; ref. 16). This is different from a mod-
ern-ocean scenario, in which denitrification associated with the
spreading of anoxic zones leads to progressively higher (positive)
values of δ15NNO

3
− that are then propagated to δ15NTN (21, 22).

The modern-ocean endmembers are thus near-zero (diazo-
trophs) and more positive (nitrate assimilation and/or recycling),
whereas the OAE endmembers must be near-zero (diazotrophs)
and more negative (NH4

þ assimilation and recycling). Although
required to explain the data, such a scenario is far from intuitive:
it requires that the fixed N lost from the ocean by the processes
of denitrification plus anammox have a net positive value of δ15N.
Below we explore how such a system might be possible.

NH4
þ-Upwelling Model

To yield a marine system in which the burial flux of δ15NTN has a
negative value, we assume that NO3

− (and NO2
−) are produced

only in the aerobic photic zone and are reduced quantitatively
to N2 in the chemocline by denitrification and/or anammox. This
loss is analogous isotopically to sedimentary denitrification in
the modern ocean, which is considered to impart zero fractiona-
tion because it proceeds to completion, and by mass balance,
δ15Ninputs ¼ δ15Noutputs (19).

The following additional conditions then would be sufficient
to achieve a denitrifying flux of N2 that is net isotopically positive.
To yield surface waters in which NH4

þ and N2 are the most im-
portant bioavailable sources of N, we assume that nitrification of
the upwelling flux to NO3

− followed by phytoplanktonic assimi-
lation is much less significant than direct assimilation of conco-
mitant upwelling NH4

þ. Where NH4
þ is available, NO3

− is a less
favorable nutrient for phytoplankton growth due to the higher
energetic costs associated with its reduction (52). Nitrite gener-
ally is not believed to be an important source of nutrient N (53),
and thus we assume it also is removed by denitrification or, more
likely, by anammox. The dominant fractionations and fluxes in
the N cycle are then εfix and φfix (N2 fixation), ε1and φ1 (NH4

þ-
assimilation), and ε2 and φ2 (ammonium oxidation, NH4

þ →
NO2

−), whereas the burial flux is small relative to these internal
cycles (Fig. 2A). We also specify the flux associated with reminer-
alization of sinking phytoplankton N (φ3), and assume no fractio-
nation for this process. As stated above, all oxidations and
reductions downstream of φ2 are quantitative and do not impart
further fractionation.

In N-limited surface waters, new production reflects the isoto-
pic signature of the integrated nitrogen budget. The resulting
value of δ15NTN will reflect a weighted average of the δ15N values
of diazotrophic cyanobacteria (δdiazo) and of NH4

þ-consuming
phytoplankton (δphyto). The former will be equal to δ15NN2ðaqÞ

Higgins et al. PNAS ∣ February 14, 2012 ∣ vol. 109 ∣ no. 7 ∣ 2271
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minus εfix, whereas the latter will be equal to the δ15N value of
their NH4

þ source minus a fractionation factor ε1. Isotopic mass
balance dictates that the source δ15NNH

4
þ is set by the relative flux

of NH4
þ that is utilized (φ1) vs. nitrified (φ2), as well as the flux

(φ3) that returns remineralized NH4
þ to the surface via upwel-

ling. Ratios of these fluxes, the fractionations associated with
NH4

þ utilization and oxidation (ε1 and ε2, respectively), and
the value of δdiazo, together set δNH

4
þ :

δNH
4
þ ¼ δdiaz þ

φ1 − φ3

φ1 þ φ2 − φ3

� ε1 þ
φ2

φ1 þ φ2 − φ3

� ε2:

Assuming δdiazo ¼ −1‰ and substituting δphyto ¼ δNH
4
þ − ε1 and

δNO
2
− ¼ δNH

4
þ − ε2 enables the system to be solved for a range of

combinations of ε1 and ε2 (full derivation in SI Text). This model
generates negative values for δphyto when ε1 > ε2, and it produces
an ocean system in which the major reservoir of dissolved inor-
ganic nitrogen (DIN) accumulates as 15N-depleted NH4

þ.
Biomass having a negative value of δ15N results from the co-

occurrence of ammonium oxidation and ammonium assimilation
in the photic zone, the competing effects of fractionations
associated with these processes on a single NH4

þ pool, and the
upwelling of recycled, 15N-depleted NH4

þ. Both assimilation and
oxidation fractionate such that their products are more 15N-de-
pleted than the source NH4

þ, and therefore the NH4
þ pool in

surface waters becomes more 15N-enriched as it is consumed. If
the fractionation associated with NH4

þ assimilation exceeds the
enrichment of the NH4

þ pool that is caused by nitrification/
denitrification (i.e., ε1 > ε2), the resulting biomass (φ1) is isoto-
pically negative. Regenerated NH4

þ in deep waters isotopically
resembles the sinking biomass from which it is remineralized.

As this NH4
þ upwells into the photic zone, it again becomes

15N-enriched and the system maintains steady-state.
The resulting value for total buried organic matter (δ15NTN) is

tempered by the percent contribution of diazotrophic biomass
(Fig. 2 B–D) such that values of δ15NTN approach −1‰ when
there is greater burial of diazotrophs, but decrease as the ratio
φ2∕φ1 increases and diazotrophic burial decreases. This is consis-
tent with records showing the most negative values of δ15NTN in
pelagic locations with lesser apparent bacterial biomass burial
(16) and more positive values of δ15NTN in epicontinental envir-
onments with higher apparent bacterial flux (16).

The model thus depends on the relative magnitudes of ε1 and
ε2 compared to the N deficit and resulting diazotrophic contri-
bution. It is possible that the fractionation associated with
NH4

þ-assimilation (ε1) by the enzyme glutamine synthetase (GS)
may exceed that of NH4

þ-oxidation (ε2) by the enzyme ammo-
nium monooxygenase (AMO) under some circumstances. The
observed value of ε1 (4–27‰) will depend on NH4

þ concentra-
tion, with larger fractionations expressed under NH4

þ-rich con-
ditions (54). In the modern ocean, NH4

þ concentrations are low
and ε1 is confined to the lower end of this range. Under the
NH4

þ-replete conditions that we propose for OAE 2, assimila-
tion using different enzymatic controls may lead to expression
of ε1 with a larger magnitude, although to date very little infor-
mation is available about fractionation during NH4

þ assimilation
by natural planktonic assemblages (55).

The value of ε2 also remains poorly constrained. The relative
fraction of aerobic ammonia oxidation by archaea vs. bacteria
during OAE 2 is not known, but δ13C and archaeal biomarker
data measured in black shales deposited during the Albian
OAE1b (approximately 112 Ma) suggest that Crenarchaeota

Fig. 2. Conceptual model for sedimentary values of δ15NTN in an ocean in which NH4
þ is the dominant fixed N species. (A) System in which the δ15N values of

exported eukaryotic biomass depend on the fractional fluxes to ammonium assimilation (φ1), oxidation (φ2), and recycling (φ3), as well as the difference
between the associated fractionation factors ε1 and ε2. (B–D) Calculated δ15N values of sedimentary organic matter as a function of percent export from
diazotrophs and fractional fluxes φ1 and φ2 for three sets of fractionation factors: (B) ε1 − ε2 ¼ −5‰; (C) ε1 − ε2 ¼ 5‰; (D) ε1 − ε2 ¼ 10‰. (E) Data for
δ15NTN for OAE 2 from the literature [11 (red); 16 (blue, Italy; green, England); 17 (yellow); 23 (orange), and this study (gray)], plotted relative to the range
of paired values of ε1 and ε2 solved with the model, assuming 20% export of diazotrophic biomass (solid lines), as well as an ε1∕ε2 offset of 10‰ assuming 10%
export of diazotrophic biomass (dashed line).
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(now called Thaumarchaeota; ref. 56) that are believed to be re-
sponsible for most ammonium oxidation in the modern ocean
(57), were abundant in the Cretaceous (58). Values of ε2 for bac-
terial AMO are approximately 14–38‰, for a variety of species
grown on 1–2 mM NH4

þ (59). Recent measurements of isotope
effects associated with archaeal ammonia oxidation show a simi-
lar range of values, from 10–37‰ (60). In all cases, the relative
contributions of fractionations associated with transport of NH4

þ
or diffusion of NH3 through membranes and equilibrium of
NH4

þ∕NH3 are uncertain. It is thus difficult to extrapolate these
cultures to natural systems, except to suggest that bacterial and
archaeal AMO results are similar.

If ε1 was large due to elevated NH4
þ concentrations (54) up-

welling to the base of the photic zone from a large, deep NH4
þ

pool, the condition of ε1 > ε2 could be met. For example, if ε2 ¼
22‰ (average archaeal value) and ε1 ¼ 27‰ (maximum enzy-
matic effect on NH4

þ-assimilation), then ε1 − ε2 ¼ 5‰. This
results in values of δ15NTN for export production that will be
<−2‰ (Fig. 2C) if NH4

þ oxidation consumes at least one-tenth
of the upwelling NH4

þ flux (φ2 > 0.1) and the burial contribution
of diazotrophs is 20%, the upper limit based on our data for εpor.
Other versions of the model that impose larger differences
between ε1 and ε2 (e.g., ε1 − ε2 ¼ 10‰, Fig. 2D) also are com-
patible with some of the data from OAE 2, in particular a few of
the very negative values of δ15NTN for the sections from Italy and
England (Fig. 2 D and E) (16). Analogous models with ε1 < ε2
can produce only positive values of δ15NTN, as would be seen in
the modern ocean (Fig. 2B). Using our conceptual model, most
data for δ15NTN compiled from OAE 2 (11, 16, 17, 23, this paper)
fall within isotope space corresponding to ranges of ε1 − ε2 ¼
5‰ (Fig. 2E).

We further tested the plausibility of our conceptual framework
using a simplified steady-state model that calculates δ15N values
of biomass N, NH4

þ, NO2
−, and NO3

− in a two-box (surface and
deep) ocean. The model was optimized to reproduce known
modern values using estimates of fluxes and fractionation factors
from the literature. To run the model subsequently for the OAE,
we modified nitrogen-redox partitioning (more NH4

þ, less NO3
−)

and changed the magnitude of associated fluxes proportionally.
Rates of upwelling and the total N inventory remained the same
in both cases. By changing these parameters, the model generated
sedimentary δ15NTN values of −4.4‰ for the OAE and þ4.9‰
for modern sediments. For a complete model description, results,
and sensitivity analysis, see Supplementary Information.

Implications
Our model implies a widespread and well-mixed “ammonia
ocean” for the proto-Atlantic and Western Tethys because it re-
quires a sustained source of upwelling NH4

þ that can be used for
biological assimilation. This can be achieved if nitrate production
is limited by severe demands on NO2

−, possibly through en-
hanced anammox. In such an ocean, ammonia assimilators and N
fixers both could out-compete assimilatory NO3

− reducers due to
the dominance of NH4

þ and a limited rate of NO3
− generation.

Postulated high rates of upwelling, combined with nutrient trap-
ping under estuarine circulation in the North Atlantic (8), may
explain why these negative δ15N signals are widespread during
OAEs, yet are regionally variable (16). The trapping of quantita-
tively significant levels of NH4

þ in deep waters during OAEs also
helps preserve the total pool of marine N, alleviating the need for
excessive rates of nitrogen fixation. Extreme anoxia may there-
fore exert a natural, negative feedback on the nitrogen cycle by
preventing the ocean from denitrifying completely.

Our proposed model for the N cycle during OAE 2 also helps
to explain why extreme N isotopic depletion is not seen in modern
anoxic basins like the Black Sea and the Cariaco Trench, where
δ15N values of particulate organic nitrogen are >0‰ throughout

the water column (41). The nutrient sources and circulation pat-
terns in these two systems are not analogous to anoxic oceans.
The Cariaco Trench is a silled basin that receives NO3

− from the
Atlantic, and sedimentary organic nitrogen in the Cariaco basin
carries an isotopic signature that reflects a mass balance between
Atlantic NO3

− that has been influenced by N2 fixation (approxi-
mately 3‰) and N2 (local nitrogen fixation) (61). In the Black
Sea, a commonly used analog for anoxic oceans, the supply of N
to surface waters is largely sourced from continental rivers,
whereas the intense salinity stratification limits the upwelling of
deep NH4

þ and promotes formation of NO2
− followed by nearly

quantitative loss via the anammox process (62). The nutrient N
cycle of the modern Black Sea, therefore, primarily is analogous
to a large lacustrine system with severe stratification. In contrast,
we envision OAE 2 as a time of sustained upwelling.

The ammonia ocean scenario also may help to explain the tem-
poral evolution of N isotope patterns seen in our data. Values of
δ15Npor and δ15NTN are out of phase with carbon isotopes. They
do not begin to decrease until the middle of the OAE interval,
and their minimum persists past the traditionally defined termi-
nation of the event. This phase lag may reflect the balance of
oxidants in the marine system. Enhanced burial of organic carbon
during OAEs should be associated with accumulation of oxygen in
the ocean and atmosphere. This in turn would increase the rates of
ammonium oxidation and nitrification, eventually suppressing
anammox and allowing NO3

− to accumulate. Indeed, our pre-
dicted values of δ15NTN decrease as φ2 increases (Fig. 2 C–E). The
predicted isotopic trajectory, therefore, is that δ15NTN values will
decrease during the early stages of ocean reoxidation. Values of
δ15NTN only would “flip” to positive values when the nitrification
flux (φ2) was sufficiently high to accumulate excess NO3

−, allowing
subsequent denitrification to enrich 15N in the accumulating NO3

−

reservoir. These results highlight the importance and promise of
using temporal records of εpor in conjunction with δ15NTN values
to examine both the succession of marine ecosystems and the redox
state of the ocean.

In sum, a mid-Cretaceous deep ocean dominated by reduced
rather than oxidized nitrogen species, normal rates of ocean cir-
culation (63), and enhanced input of nutrients (5, 6, 8) together
could yield negative values of biomass δ15N and sustain a primary
producer community that remained rich in eukaryotes. Although
the oxidation state and temperature of OAE oceans was very
different from the modern ocean, the persistent dominance of
eukaryotes and dependence of primary producers on upwelled
nutrients suggests that the balance between gross and net produc-
tion was not greatly dissimilar from the present-day. Our results
imply that additional feedbacks act under oxygen-limited condi-
tions to maintain nitrogen balance, thereby limiting the extent of
denitrification and the compensatory expansion of diazotrophy
during OAEs.

Materials and Methods
Sediments were obtained from Ocean Drilling Program Leg 207, Site 1258A,
from the Demerara Rise, offshore from modern Surinam. Samples spanned
415–428 m composite depth (mcd). Forty samples were analyzed for bulk
δ15NTN, δ

15Nkerogen, and δ15Npor at approximately 0.5-m spacing. Sampling re-
solution was higher leading into and coming out of the OAE, which spanned
approximatley 422–426 mcd (Table S1. Sample preparation and isotopic
analysis followed established methods (43); details are given in SI Text.
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