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A review of nitrogen isotopic alteration in marine sediments
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[11 Nitrogen isotopes are an important tool for evaluating past biogeochemical cycling
from the paleoceanographic record. However, bulk sedimentary nitrogen isotope ratios,
which can be determined routinely and at minimal cost, may be altered during burial and
early sedimentary diagenesis, particularly outside of continental margin settings. The
causes and detailed mechanisms of isotopic alteration are still under investigation. Case
studies of the Mediterranean and South China Seas underscore the complexities of
investigating isotopic alteration. In an effort to evaluate the evidence for alteration of the
sedimentary N isotopic signal and try to quantify the net effect, we have compiled and
compared data demonstrating alteration from the published literature. A >100 point
comparison of sediment trap and surface sedimentary nitrogen isotope values
demonstrates that, at sites located off of the continental margins, an increase in sediment
>N/"N occurs during early burial, likely at the seafloor. The extent of isotopic
alteration appears to be a function of water depth. Depth-related differences in oxygen
exposure time at the seafloor are likely the dominant control on the extent of N isotopic
alteration. Moreover, the compiled data suggest that the degree of alteration is likely to be
uniform through time at most sites so that bulk sedimentary isotope records likely provide a
good means for evaluating relative changes in the global N cycle.
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1. Importance of the Marine N Cycle

[2] Nitrogen (N) is a major component of biomass and is
required for photosynthesis. The total oceanic fixed N
inventory and its availability in the surface ocean are thus
important controls on primary production. Variations in
these two parameters over geologic time have significant
implications for the global biogeochemical cycling, not only
of N, but also of carbon, and oxygen throughout Earth his-
tory. Sedimentary N isotope measurements have emerged as
a powerful tool for monitoring the marine N cycle in the past
and for testing important hypotheses explaining the ice core
CO, records [Galbraith et al., 2008b, and references
therein]. However, initial tests of the proxy demonstrated
alteration of the primary isotopic signal during sinking and
sedimentation and, more significantly, during burial in some
settings [Altabet and Francois, 1994; Galbraith et al.,
2008b]. Because local-to-regional scale spatial patterns of
the surface and subsurface water column N isotopic com-
position of nitrate are largely mirrored in the sediments,
despite evidence for alteration, paleoceanographic work
proceeded [Altabet and Francois, 1994]. However, the focus
of this work has been on the continental margins, where
alteration is thought to be minimal [Altabet et al., 1999;
Kienast et al., 2002; Thunell et al., 2004], or based on iso-
topic measurements of specific organic N pools (i.e.,
microfossil-bound and chlorophyll degradation products)
[Higgins et al., 2009; Ren et al., 2009; Robinson et al.,
2004]. Here, we evaluate evidence for and against alter-
ation of bulk sedimentary N isotope ratios. A comparison of
>100 published, co-located sediment trap and surface sedi-
ment N isotope values indicates that the degree of alteration
increases with water depth in the ocean. The lack of evi-
dence for an increase in '’N/'*N with increasing sinking
depth, tracked by sediment traps at the same geographic
location and different depths, implies that alteration occurs
largely at/in the seafloor. Despite the evidence for alteration,
there exists the potential for a more comprehensive recon-
struction of the paleo-marine N cycle that includes the
widespread use of bulk measurements in combination with
the measurement of specific organic N pools and global
circulation models [Somes et al., 2010; E. Galbraith et al.,
Global nitrogen isotopic constraints on the acceleration of
oceanic denitrification during the last deglacial warming,
submitted to Nature Geoscience, 2012].

2. Processes Reflected by Sedimentary
N Isotope Ratios

[3] Nitrogen in the ocean is present in many redox states,
and biological processes are largely responsible for the var-
ious transformations of N from one form to another. These
transformations are usually associated with fractionation of
the N isotopes (’N/'*N) [dltabet and Francois, 1994;
Codispoti, 1989; Montoya, 1994; Wellman et al., 1968].
Kinetic isotope effects stem from differences in reaction
rates between the heavy and light isotopes. The processes
that are known to affect the isotopic composition of dis-
solved inorganic N (DIN) in the modern ocean include N,
fixation by diazotrophic bacteria [Karl et al., 1997], nitrifi-
cation, the extent of surface NO53 utilization [Altabet and
Francois, 1994], denitrification [Liu and Kaplan, 1989],
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Figure 1. Key steps in the marine N cycle typically
recorded in the nitrogen isotopic composition of marine
sediments. Estimates of isotopic enrichment factors for the
individual transformations are noted. The green shaded area
represents suboxic water columns where denitrification
occurs (modified from Sigman et al. [2009]).

and the anammox reaction (S. Contreras et al., manuscript
in preparation, 2012). The external processes, such as N,
fixation and denitrification/anammox, control the inventory
of nutrient N in the ocean while nitrification and uptake
reflect internal cycling processes. In the modern ocean,
the N isotopic compositions (as 6'°N, where 6"°N =
PN/ "*Naample/ "N/"*Nandara — 1¥1000%o, where the stan-
dard is atmospheric N,) of different N pools are used to
evaluate the relative roles of these various processes within
the N cycle [Brandes and Devol, 2002; Deutsch et al., 2004;
Lehmann et al., 2004; Sigman et al., 2009]. When organisms
assimilate N to produce biomass, the '°N content of their N
source is imprinted in the organic matter eventually depos-
ited in sediments. The source is influenced by the preformed
8N of the water mass as well as any process that adds or
removes N, such as remineralization or water column deni-
trification, along its flow path in the subsurface. The sub-
euphotic “source” signature may be overprinted by alteration
of the isotopic signal in the surface ocean, through additions
of newly fixed N or the partial consumption of NO3'. In sum,
sedimentary 6'°N can reflect changes in ocean circulation,
the biological pump, and large scale N cycling (Figure 1)
[Brandes and Devol, 2002; Deutsch et al., 2004; Galbraith
et al., 2008b; Robinson and Sigman, 2008; Sigman et al.,
2010]. N isotopes also may be viewed as a paleoredox
proxy because denitrification, the respiration of organic
matter using NOj3, occurs under suboxic conditions
[Galbraith et al., 2004; Jaccard and Galbraith, 2012;
Kashiyama et al., 2008] (Figure 1).

[4] The 6"°N values of bulk sedimentary organic nitrogen
reflect the §'°N of the sinking flux of organic matter,
plus any secondary isotopic alteration that occurs during
sinking and burial due to either the removal or addition
of N. To use the N isotopic composition of bulk sediments
as a paleoceanographic tracer for surface waters, the extent
of any alteration-related fractionation must be well constrained.
Studies of sinking particles in the North Atlantic, Norwegian
Sea, Sargasso Sea, Southern Ocean, and Southern California
Bight have shown alteration of the §'°N in sinking particles
with depth during periods of low flux, or in low-productivity
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Figure 2. Southern Ocean suspended and surface sediment
85N versus latitude [Altabet and Francois, 1994]. The large
offset between suspended and surface sediment §'°N values
collapses in the region of higher accumulation rates under
the Antarctic Polar Front (~44°S).

regions, perhaps due to the addition of nitrogen from other
sources [Altabet and Francois, 2001; Altabet et al., 1991,
Lehmann et al., 2002; Lourey et al., 2003] or the loss of spe-
cific Ny fractions [Macko and Estep, 1984]. The observed
changes are not unidirectional, but include both increases and
decreases of 6'°N [Lehmann et al., 2002]. However, during
blooms, the §'°N of sinking PN does not change with depth
[Altabet et al., 1991; Altabet and Francois, 1994]. Since high
flux events contribute the majority of organic matter accu-
mulating in sediments, organic N (N,,,) that reaches the sed-
iment-water interface generally should preserve the &§'°N
signal of N, in the surface.

3. Isotopic Alteration of the 5'°N Signal
in Sediments

[5] Significant isotopic alteration of the organic N signal
appears to occur at the sediment-water interface during early
burial [Altabet and Francois, 1994]. Comparisons of sink-
ing, suspended, and surface sedimentary 55N, led to the
assertion that in low organic N flux regions such as the
Southern Ocean, there is the potential for a large (3—6%o)
increase in the §'°N values recorded in bulk sediments at the
seafloor (Figure 2) [Altabet and Francois, 1994]. However,
spatial variation in sedimentary 6'°N values fit expectations
based on both surface nitrate concentration changes and
85N of nitrate values [Altabet and Francois, 1994; Farrell
et al., 1995; Sigman et al., 1999]. In high sediment accu-
mulation regions, such as on continental margins, the §'°N
values of surface sediments are essentially equal to the §'°N
of the sinking flux and/or subeuphotic zone nitrate, sug-
gesting that no significant alteration occurs in these regions
[Altabet et al., 1999; Kienast et al., 2002; Thunell et al.,
2004] (Figure 3a).

[6] Several attempts to understand isotopic alteration of
sedimentary N in the natural environment were made
[Altabet et al., 1999; Freudenthal et al., 2001a; Prokopenko
et al., 20006a; Velinsky et al., 1991]. Sequential extractions
from margin sediments led to the operational definition
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of four sedimentary nitrogen pools: (1) organic nitrogen,
(2) acid released/mineral bound, (3) weakly bound ammo-
nium (NH}), and (4) tightly bound NHj, [Freudenthal et al.,
2001a]. For example, the §'°N of the organic N pool sam-
pled off the Moroccan coast increased within the top 10 cm
and then stabilized, suggesting that even in margin sediments,
some alteration may occur [Freudenthal et al., 2001a]. In a
second study, measurements of sedimentary §'°N and pore
water-NH} 6'°N from the same horizons suggest that there is
little or no offset between the two N pools in organic-rich,
marine dominated margin sediments (<1%o), despite oxida-
tion of a significant proportion of the organic nitrogen
delivered to the seafloor and the large buildup of pore water
NH. [Prokopenko et al., 2006a, 2006b]. This is consistent
with the observation that in rapidly accumulating sediments
there is no offset between sinking flux §'°N and bulk 6'°N
of surface sediment (Figure 3a) [Altabet et al., 1999; Kienast
et al., 2002; Thunell et al., 2004]. One explanation for the
lack of offset, despite clear evidence for loss of organic N,
is that at high organic matter concentrations there is no pref-
erential removal of specific organic fractions. That is, the
fraction that is lost has a N isotopic composition that is
equivalent to that of the residual organic matter. Alterna-
tively, and probably less likely, the diversity of the sedi-
mentary microbial consortium may lead to the cancellation
of the various fractionating processes.

[7] In lower flux environments, where organic matter
content is low and the §"°N of the sinking flux is lower than
that of the surface sediments, the processes must be differ-
ent. The increase in bulk 6'°N appears to occur at/in the
seafloor and is generally attributed to the preferential loss of
components of the bulk organic matter with lower &§'°N.
While there is some field and experimental evidence for a
decrease in 6'°N of the bulk organic pool during early sed-
imentary diagenesis, at least under anaerobic preservation
conditions [Altabet et al., 1991, Libes and Deuser, 1988,
Lehmann et al., 2002], the majority of existing studies to
date suggests that the §'°N of sedimentary organic matter
increases during alteration. Evidence for the increase in §'°N
of organic nitrogen comes from both downcore profiles of
8N in the uppermost, oxic zone of the sediment column
[Freudenthal et al., 2001a] as well as incubation experi-
ments [Holmes et al., 1998]. Experimental investigation of
the N isotope effect associated with deamination suggests
that generally low 6'°N NHj is produced [Macko and Estep,
1984]. Leakage of low 6'°N NH into pore waters could
explain the increase in the bulk sedimentary 6'°N, provided
this NH, is not reincorporated into bacterial biomass or
readily adsorbed onto the sediment matrix. This is plausible
in oxic sedimentary environments where ammonium pools
are small or negligible due to the rapid and essentially
complete oxidization to NOj3 (e.g., near sediment/water
interface or beneath the oligotrophic gyres) and/or where
clay/organic matter content is minimal (i.e., biogenic sedi-
ments dominate).

[s] Bulk §'°N values can also be influenced by interfer-
ence from terrestrial materials, NH} absorption into clay
minerals, and winnowing/size fractionation [Mollenhauer
et al., 2005; Kienast et al., 2005; Schubert and Calvert,
2001]. The impact of these processes is more significant in
organic-poor sediments. NH} is associated with the solid
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phase of the sediment in fixed and exchangeable forms.
Exchangeable NH} is adsorbed by ion exchange reactions on
the surfaces of organics and minerals and makes up only a
small proportion of the bulk sedimentary N (typically <1%)
in pelagic sediments [de Lange, 1992; Freudenthal et al.,
2001a; Miiller and Suess, 1979]. It can account for a signif-
icantly larger fraction in anoxic, organic-rich sediments, as
the amount of exchangeable NH increases with the [NH,] of
the pore waters [Rosenfeld, 1979]. Fixed NH, on the other
hand, is incorporated into clay mineral structures and can
comprise a significant to dominant proportion of the bulk N
[Carman et al., 1996; Freudenthal et al., 2001a; Kienast
et al., 2005; Schubert and Calvert, 2001]. In organic-poor
sediments, inorganic N can make up 94% of the total N
[Schubert and Calvert, 2001]. The fixed fraction is made up
of an inherited component, that is NHj delivered with the
lithogenic sediments, as well as what is adsorbed in situ. As
with the exchangeable NHj, the fixed fraction tends to
increase with increasing pore water [NH,], but to a lesser
degree [Rosenfeld, 1979]. The adsorptive potential of any
given sediment depends upon its clay content and mineral-
ogy, NH; availability, and potassium content of the sedi-
ments and interstitial waters [Carman et al., 1996; Mackin
and Aller, 1984; Rosenfeld, 1979]. Because fixed NH, sub-
stitutes for a cation within the lattice structure of clay
minerals, it occurs at a slower rate than the ion-exchange
involved in adsorption of exchangeable NH}. Although this
slow rate makes substitution difficult to evaluate quantita-
tively in the lab, it is likely relevant on geologic timescales.
The consequences for bulk §'°N depend upon the size of
the NH; pool relative to the ON pool, the §'°N of the
NH; pool (s) (both what was inherited with clay minerals
and produced in situ), the proportion of the NH that is
fixed relative to what may be oxidized to NOj3, and any frac-
tionation associated with the adsorption process [Karamanos
and Rennie, 1978]. In sum, alteration of the bulk N isotopic
value from that of the sinking flux may occur in organic
poor sediments where NH; may make up a significant
portion of total sedimentary N because it may have several
fates (oxidation, adsorption, utilization) with fractionation
effects associated with each process.

4. Case Studies

[9] In this section we present two case studies highlighting
the challenges and complexities of investigations into the
cause of “diagenetic” alterations of the §°N signal, and
review some of the approaches taken/progress made over the
last 20 years. The first, from the South China Sea (SCS),
illustrates how alteration, due to diagenesis and variable

ROBINSON ET AL.: N ISOTOPIC ALTERATION IN MARINE SEDIMENT
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contributions of inorganic N from land, can result in mis-
leading bulk 8"5N results [Kienast et al., 2005]. Based on a
minor offset between 6'°N values in the fluff layer and the
uppermost sediment sample of only 0.3-1.2%., and the
absence of a correlation between increasing 6'°N and
decreasing percent TN in the downcore records, Kienast
[2000] argued modification of the §'°N signal in the water
column or during sediment burial in the SCS to be insig-
nificant. This seemed to be in line with expectations for
minimal alteration in marginal settings with high C,, burial
rates, compared to oligotrophic sites with low sedimentation
rates [Altabet, 1996]. The downcore record that accompa-
nied this assertion in Kienast [2000] is widely cited, as it
remains one of the few sedimentary §'>N records from an
oligotrophic site. Three lines of evidence, however, suggest
that the conclusion of no alteration, and thus the significance
of this record, need to be reevaluated. First, since the study
in 2000, trap time series from the SCS have become avail-
able [Gaye et al., 2009], which suggest that “6'°N in sedi-
ments underlying trap locations were 1.5-3%o higher than the
annual average of sinking particles,” comparable to other
sites studied (Figure 3a). Second, analysis of fluff samples
from many more of the stations within the SCS (n = 32)
reveals that the average offset between fluff samples and
the topmost sediment sample of 0.6%o at four of the core
sites presented in Kienast [2000] is a minimum estimate
(Figure 4). Indeed, there is a significant correlation between
increased sedimentary §'°N and a higher offset between fluff
and sediment surface (Figure 4). To a first approximation,
this trend implies that surface sediment values above 5-5.5%o
in the SCS are caused by an isotopic enrichment during early
sedimentary diagenesis of >1%o and up to 3%o during the
transition from fluff to surface sediment. Third, Kienast et al.
[2005] showed that 35-65% of TN in the SCS is (opera-
tionally defined) inorganic N, with an isotopic composition
of 3.1-4.8%o. These authors argued that “the significant
percentage of Nj., and the distinct isotopic signature will. ..
dampen any variability associated with N, in the bulk & N
signal” [Kienast et al., 2005, p. 5] Closer inspection of two
of the records from the southern SCS (sites 17961 and
17964) reveals how a significant post-depositional alteration
of the organic nitrogen could have been effectively masked
in the sedimentary record: A substantial loss of organic
nitrogen (ca. 20-25%) in the top 1-3 m, equivalent to the
last 10 ka, of these two cores is paralleled by an increase in
8'°N of organic N by up to 2%o, which results in a near
constant §°N of total N, similar to Freudenthal et al’s
[2001a] results. Finally, physical processing of sediment may
also have contributed to spatial differences in downcore
records in the South China Sea. Size-related differences in

Figure 3. Site locations of the global sediment trap compilation with color coding to highli%ht the geographic distribution

of A§"N values (sediment-sinking §'°N) (map panel). Surface versus sinking sedimentary &'

N values with color coding to

denote water depth differences for each location (a) The Gaye et al. [2009] South China Sea sediment trap data are outlined
in black. Surface sedimentary versus nitrate §'°N values (black diamonds) and surface versus sinking values from several
margin locations fall along the 1-to-1 line (solid black line). Reduced major axis linear regression for all sites (dotted line)
as well as a subset of sites made up of those with depths >1000 m (dashed line), suggest a line with a slope of 1.2 and an
intercept of ~1%o (1.1-1.4%o). (c) Aé'°N (sediment-sinking §'°N) shows a strong relationship to water depth (r* = 0.46,
Japan Trench samples highlighted in gray oval marked JT are excluded from this correlation) but (b) not to sinking depth
(12 =0.11), suggesting (d) that the alteration takes place at the seafloor. See Table 1 for full details on data, including location,

trap depths, and references.
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Figure 4. Crossplot of A§'*N (surface §"°N-fluff §'°N)
and surface sediment 6'°N values from the South China
Sea showing the variability in preservation across the basin.
The first order increase in sedimentary §'°N values appears
to be due to isotopic alteration (M. Kienast, unpublished
data, 2006).

the 6'°N of particles exist and sediments that witness either
winnowing or focusing will record an altered bulk §'°N
record. This is most likely to occur where there are het-
erogeneous mixtures of organic matter, such as on the
continental margins and in marginal seas [Kienast et al.,
2005]. The end result is that the sediments in the South
China Sea experience variable degrees of alteration and the
Kienast [2000] records are not likely faithfully recording water
column variations.

[10] The next case study involves the well-studied sedi-
ments of the Mediterranean Sea. The Mediterranean sedi-
ments present striking evidence for variability in their
preservation of sedimentary organic matter (e.g., alternating
marl and sapropel layers). Accompanying this variability are
large systematic changes in the bulk N isotopic composition
of the sediments with higher §'°N values in the low TOC
marls and lower 6'°N values in the organic rich sapropels.
Some interpretations of the isotope records have inferred
significant overprinting of the primary §'°N values by
alteration [Mébius et al., 2010; Sachs and Repeta, 1999],
while others have interpreted the records to reflect primary
signatures [Calvert et al., 1992; Higgins et al., 2010].

[11] The evidence for isotopic alteration comes from
observed increases in bulk §'°N associated with post depo-
sitional oxidation of sapropelic organic carbon JMoodley
et al., 2005] and from the comparison of bulk 6'°N values
to the amino acid (AA) Degradation Index (DI) [Dauwe
et al., 1999; Mobius et al., 2010]. DI is the result of statisti-
cal evaluation of systematic compositional changes of the 14
most common protein AAs during remineralization [Dauwe
et al, 1999]. DI scores sediments with a value of 1 for
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fresh organic matter toward low values (<—0.5) with inten-
sive organic matter degradation. Sediments from the Medi-
terranean, both surface sediments from a spatially distributed
survey and downcore profiles, show a linear relationship
between DI and bulk §'°N values [Mébius et al., 2010],
suggesting that changes in §'°N may be linked to organic
matter quality. Mobius et al. [2010] suggested that the low
8'>N values that occur in the sapropel intervals are the result
of enhanced preservation, and that diagenetic isotopic alter-
ation raised the 6'°N values of the marl sedimentary organic
matter. However, the correlation between DI and 6'°N does
not, on its own, indicate causality.

[12] This interpretation is at odds with results comparing
the 6'°N of chlorins, chlorophyll @ degradation products,
and bulk §'°N from Mediterranean sedimentary sequences
containing both sapropel and marl horizons. Throughout the
profiles, 6'°N values from chlorins are consistently offset
from bulk values by 4—5%o, implying that the bulk §'°N
values recorded in the organic poor marl sequences are not
heavily overprinted by alteration, and that the low §'°N
values during sapropel formation represent significantly dif-
ferent N biogeochemical conditions in the overlying surface
waters [Higgins et al., 2010]. These data call into question
the basic assumption that 6'°N data from organic-poor sedi-
ments should be discounted categorically and suggest that,
at least in this case, the degradation index reflects good
preservation at times when the water column above pro-
duced low 6'°N organic matter. This would be consistent
with abundant N, fixation and rapid accumulation of organic
matter and/or O,-poor bottom waters during sapropel for-
mation, for example.

5. Sediment Trap and Surface Sediment
Compilation

[13] In an effort to evaluate the degree of isotopic alter-
ation from a global data set and to put some of the individual
sediment trap studies discussed into a larger context, we
compiled published, co-located, sediment trap-sinking par-
ticle and surface sediment §'°N values (Figure 3 and
Table 1). The term co-located describes trap and surface
sediment sampling stations that are nominally within the
same location. In most cases, both data types were presented
together, but in the case that we assigned surface sediment
values from separate studies to available trap data, we
defined co-location as being within 1° of latitude/longitude
of one another and most are within 0.5°. The sites, not sur-
prisingly, are largely located on the margins and in the
Northern Hemisphere (see map in Figure 3). The compila-
tion includes sites at a range of water depths (180-9200 m),
primary production (based on Chl a 0.09-5 mg/m’) and
sedimentation rates (2—>200 cm/kyr), as well as distances
from land. Overall, the compilation reveals a fairly consis-
tent relationship between the sinking flux and the sedimen-
tary 6'°N values, despite the fairly large range of A§'°N
values of —2 to0 6.5%0 (A8'°N = surface sediment - sinking
8'°N). The mean is 2.3 + 1.8%o (lo) (Figure 3a). Only a
handful of surface sediment samples fall along the 1:1 line in
the crossplot of sediment versus sinking 6'°N (Figure 3a)
and they are from highly productive continental margin
locations. Surface sediment 6'°N versus subeuphotic zone
615Nnitrate from several margin locations also fall along the
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1:1 line (Figure 3a). The remaining data tend to lie above the
o 1:1 line and these data are broadly distributed geographi-
N cally, without an apparent pattern of variation. A reduced
oo major axis linear regression (which accounts for error in
I¥IVTTTTT both the x and y data sets) yields a slope close to 1 (1.2) and
§ § § EEEEER a y-intercept of 1.1%o. If sites with depths <1000 m are
§ § § Eag?ﬂgg excluded (this includes all of the sites on the 1:1 line), the
SO §°Q§°§°§J§°§" slope is the same, 1.2, and the intercept is 1.4 %o. In both
- g 5 g R cases, the relationghip is si.gniﬁcant, with a p value <0.001 at
2285283328 95% conﬁde.nc.e hmltl.5 This suggests that th; offset betyveen
Aot bulk and sinking 6 N‘.’N value§ is relatively consistent
§0 §o gog ;, § g § § across a range of depositional environments but that there is
SSS353333 an increase in the offset with increasing water depth
EEE 523833 (Figures 3a). The A§"°N values increase with water depth
SSSESEEE by 0.5%o/km using the entire data set and by ~1%o/km if the
s35====== samples from the Japan trench, which fall off of the trend,
55§58 are excluded (Figure 3c). This is similar to the increase in
SSS §"°N values observed with water depth for a larger, surface
sediment database (0.4%o/km) (Galbraith et al., submitted
manuscript, 2012). No such linear trend is observed if we
= compare A§"N to sinking depth (water depth - trap depth)
eyl (Figure 3b). Nor is any systematic change observed when one
E E e examines data from locations with trap data from multiple
5 depths; in some cases it is unchanged, in others it decreases
5 Zloaags388s and in still others it increases. This suggests that while there
3 g FFFLA2QTQ is isotopic alteration in the water column, the systematic
n increase that is observed is likely a product of early burial
= %1; gagyagaay diagenesis at the seafloor [Altabet and Francois, 1994],
CEg|SsSSssssss rather than in the water column between the trap and the
= o seafloor. This is consistent with the observations from the
F S| ommomunmenn E South China Sea fluff-sediment comparison (see above).
5 O\E Amaaaanaa § The variability observed when comparing 6'°N values
= 3 between traps also suggests that the controls in the water
£ o g column are more complex.
© : 00 00 09 09 90 00 00 00 | F [14] The discrepancy between the §'°N values in trap
N 5 material and sediments could have several causes. It may
a 5 simply be due to differences in the sources of organic matter
5 = ©n to traps and to the seafloor. This is caused by differences in
z %VZ § dneannsee % the timescale of deposition between traps and sediments,
- g% 2 = where short-term perturbations, either natural such as blooms
s - e e oot oo 5 or dust storms or anthropogen}c mcludn}g plumes and agri-
FRE|23-R2028g |2 cultural runoff, have the potential to heavily influence what is
A TTOTemTne g captured in traps but may not appear in the seafloor signal. It
|5 gg wonssssssl 8 can also be due to “swimmers” in the traps or lateral transport
ERT R8RS 5 at the seafloor. Transport at the seafloor has the potential to
3 2 fractionate the sediments by size, which in turn may alter
2| 8889225222 the isotopic signal. Transport-related processes in particular
R R R R é may be important in this data set, given its bias toward the
— £ margins, where organic matter may be moved downslope
g copEmonooo | B beneath surface waters with a strong gradient in " Nyiate
EREEE RS S50 3 4 values [e.g., Freudenthal et al., 2001a] and toward open
- 3 ocean sites located in regions with active sediment focusing
2 (e.g., Equatorial Pacific, Southern Ocean) [Francois et al.,
é 2004; Mollenhauer et al., 2005]. However, we compiled
— E as large a data set as possible in order to highlight first order
'§ - ° trends in the data and to avoid bias by site specific effects,
8 2 & and despite the broad scatter in the data, the observed trends
S & PR 2 are significant. We attribute the majority of the isotopic
= ceegg222¢ 5 change between traps and surface sediments to early dia-
= RRARAEEEEEE | & genesis of the isotopic signal.
= §§8888888|7 [15] Preservation of organic matter, while not perfectly
= SRS IRRRRPRR understood, is likely a function of the length of time that
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Figure 5. Crossplots of (left) A§'°N versus bottom water [O,], (middle) Chl-a concentration, and (right)
sedimentation rate for the sites in the sediment trap database. Sites close to the margins were excluded
from the Chl-a comparison because of the large error associated with nearshore-site Chl-a estimates from
satellites. In all cases but Chl-a, the correlations are statistically significant at a 95% confidence interval.

organic matter is exposed to molecular O, in pore waters
[Hartnett et al., 1998], which is a function of bottom water
oxygen concentrations and total sediment and organic carbon
accumulation rates. For comparison, we have plotted our
A6"N values against first order estimates of these para-
meters (Figure 5). In each case, values are estimated from
gridded data sets; bottom water oxygen estimates are from
WOAOQ9 [Garcia et al., 2010] and chlorophyll-a concentra-
tions (Global SeaWIFS chlorophyll mean Sept. 1997-Dec.
2004). Nearshore sites were omitted from the chlorophyll-a
comparison because the data are unreliable. Sedimentation
rate estimates are based on published age models (see Table 1
for references). Oxygen concentrations, sedimentation rates,
and chlorophyll-a concentrations are not completely inde-
pendent from one another and all are related to A§'°N for the
trap sites. Oxygen is linearly related while the relation to
sedimentation rates is log linear. In both cases, the correla-
tions are statistically significant at a 95% confidence interval.
The linear correlation between A§'°N and Chl-a is weaker
and is not statistically significant, although this may be
related to the omission of the highly productive margin sites
from this analysis (Figure 5). In addition, all are linearly
related to water depth. The water depth versus A§'°N com-
parison gives the best fit, with an r* value of 0.46, suggesting
that the degree of sedimentary A§'°N alteration is a function
of oxygen exposure time, consistent with the suggestion of
Mobius et al. [2010, 2011]. Water depth is a robust proxy for
exposure time because early burial, or the period in which
sediments are exposed to oxygen-rich bottom waters and
active microbial processes, is generally prolonged in the deep
sea due to slower sediment accumulation and microbial
metabolic rates [D Hondt et al., 2009; Roy et al., 2012].
However, these are not strictly depth related processes, but
are also a function of distance from land, sediment type,
productivity in the overlying surface water and the chemistry
of the water bathing the seafloor at a given site [Alkhatib
et al., 2012]. The Japan Trench samples serve as a good
example of an exception to the water depth generalization, in
that they do not fall along the trend of ~1%o of alteration
per km of water depth, but rather more like 0.5%o [Nakatsuka
et al., 1997]. The lower degree of alteration for their given
depth (9200 m) is likely due to the sites proximity to land and

relatively rapid sediment accumulation rates when compared
to the deep gyres.

[16] If we take depth as a robust proxy for the controls on
alteration and consider significant changes in burial depth at
a given site unlikely on orbital timescales or without major
changes in the site location (e.g., tectonic transport away
from a spreading ridge), then significant temporal changes in
the degree of alteration at a given site are unlikely as well.
Furthermore, regionally coherent downcore records of §'°N
changes, across a range of sedimentation rates and sediment
compositions, from the continental margin to the central/
western Equatorial Pacific argue against significant changes
in preservation as a function of realistic changes in accu-
mulation rates at a single site [Galbraith et al., 2008a; Kao
et al., 2008; Martinez et al., 2006]. The data suggest that
spatial comparisons using absolute §'°N values should
consider the potential impact of alteration at deeper/more
distal sites. However, when comparing the average offset of
2.3%o to the total range of surface sedimentary 6'°N values
compiled in the NICOPP database of 15%o, this seems
minor (Galbraith et al., submitted manuscript, 2012). Finally,
the ~2.3%o average offset gleaned from the sediment trap
compilation is, interestingly, approximately equal to the
2.5%o mean offset between predicted surface sediment §'°N
values derived from simulations with a global ocean bio-
geochemical model incorporating nitrogen isotopes [Somes
et al., 2010] and the global compilation of observed surface
sediment §'°N values (Galbraith et al., submitted manuscript,
2012).

6. Avoiding Alteration in Paleo Reconstructions

[17] In order to avoid alteration, work with sedimentary N
isotopes proceeded with a two-pronged approach, using bulk
8'°N measurements on the margins where fidelity was fairly
certain and developing new N archives that were less prone
to alteration for the study of relatively slowly accumulating
sediments, such as the Southern Ocean and the oligotrophic
regions [Altabet and Curry, 1989; Higgins et al., 2009; Ren
et al., 2009; Robinson et al., 2004; Sachs and Repeta, 1999;
Shemesh et al., 1993]. These include microfossil bound N
isotope proxies, developed to tap into a mineral bound
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organic fraction, and compound specific measurements of
chlorophyll and chlorophyll degradation products such as
those discussed in the Mediterranean Sea example. Both
proxy types assume that the §'°N value being measured is
1) a reflection of water column variability, rather than
species- or molecule-specific biases, and 2) protected from
alteration during sinking and burial.

[18] These alternative 8'°N proxies all have the potential
to allow a fresh look at the nitrogen cycle by opening up the
field of reconstructions to include the margins and open
ocean pelagic settings where preservation of bulk organic
nitrogen is questionable or the organic matter content is so
low that it precludes a robust measurement by EA-IRMS.
Both culture work and downcore reconstructions that com-
pare bulk §"°N values to the 6'°N values of the novel N
isotope proxies themselves allow for added investigations
into the integrity of the two signals.

[19] The predominance of sedimentary §'°N records from
the margins and a potentially unjustified skepticism of
downcore records from low productivity regions have
impeded our ability to study the global marine nitrogen cycle
in the past. Bulk analyses are inexpensive and rapid and
appear more robust than previously perceived. Testing
regional patterns of alteration by comparing the §'°N of
nitrate, sinking particles and surface sediments is useful but
not always feasible. Moreover, it does not exclude the pos-
sibility of differences in preservation in the past. We suggest
that the routine adoption of simple evaluation tools can help
detect potential problems with bulk §'°N in sediment cores.
For example, a nonzero y-intercept in a plot of total organic
carbon versus total nitrogen is indicative of the presence of
inorganic nitrogen, likely NHy fixed in clays [Calvert, 2004;
Kienast et al., 2005; Schubert and Calvert, 2001] or inputs
of terrestrial organics, with their distinct C/N. Given signif-
icant deviations from a 1:1 line, the inorganic N pool can be
measured and the organic N §'°N calculated. This correction
gives a value for ON, but it does not avoid variable preser-
vation of the ON.

7. Summary and Outlook

[20] Over the last several decades the use of sedimentary
6N as a tool to study the marine nitrogen cycle has
expanded. We have an excellent picture of variability in
rapidly accumulating sediments from the last ~50—-100 kyr.
However, data from the oligotrophic ocean are few, due to
concern regarding alteration. Studies that have sought to
unravel the exact mechanisms responsible for isotopic shifts
in the bulk sedimentary organic N pool have been largely
inconclusive due to the difficulty of discerning slow sedi-
ment alteration directly. However, empirical data, including
the sediment trap results compared here, suggest that even in
slowly accumulating regions of the ocean, bulk sedimentary
8N records will primarily reflect changes in the §'°N of
exported N in most cases, rather than differential alteration.
This is consistent with recent comparisons between chlorin/
porphyrin 6'°N and bulk sedimentary §'°N profiles that
indicate that in sediments of poor organic matter preserva-
tion, such as the Mediterranecan marls, or those millions of
years old, like the Cretaceous black shales [Higgins et al.,
2010, 2012], the bulk &§'°N presents a robust picture of
biogeochemical cycling of N.
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[21] The future of N isotope studies is likely to lead to an
improved understanding of the proxy itself as well as the
evolution of the long-term N cycle and its importance for
modulating climatic and ecological changes. At present,
published N isotope records largely span the last 100 kyr with
only a few on the order of 3-5 Ma and older (e.g., Ocean
Anoxic Events/the Archean [Garvin et al., 2009; Higgins
et al., 2012; Jenkyns et al., 2007; Junium and Arther,
2007]). While there is value in examining relative changes
in sedimentary 6'°N across an ancient interval, it is difficult
to place the data in context without a continuous, robust
record of 6'°N in the ocean. This is essential for distin-
guishing between global marine nitrogen cycle processes
and regional phenomena. Examining N cycle processes in
ancient sediments will also require further evaluation of
isotopic alteration on extremely long timescales.
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