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Abstract. Marine microbial communities can consume dis-
solved methane before it can escape to the atmosphere and
contribute to global warming. Seawater over the shallow Arc-
tic shelf is characterized by excess methane compared to
atmospheric equilibrium. This methane originates in sedi-
ment, permafrost, and hydrate. Particularly high concentra-
tions are found beneath sea ice. We studied the structure
and methane oxidation potential of the microbial commu-
nities from seawater collected close to Utqiagvik, Alaska,
in April 2016. The in situ methane concentrations were
16.3± 7.2 nmol L−1, approximately 4.8 times oversaturated
relative to atmospheric equilibrium. The group of methane-
oxidizing bacteria (MOB) in the natural seawater and incu-
bated seawater was > 97 % dominated by Methylococcales
(γ -Proteobacteria). Incubations of seawater under a range of
methane concentrations led to loss of diversity in the bac-
terial community. The abundance of MOB was low with
maximal fractions of 2.5 % at 200 times elevated methane
concentration, while sequence reads of non-MOB methy-
lotrophs were 4 times more abundant than MOB in most
incubations. The abundances of MOB as well as non-MOB
methylotroph sequences correlated tightly with the rate con-
stant (kox) for methane oxidation, indicating that non-MOB
methylotrophs might be coupled to MOB and involved in
community methane oxidation. In sea ice, where methane
concentrations of 82± 35.8 nmol kg−1 were found, Methy-
lobacterium (α-Proteobacteria) was the dominant MOB with
a relative abundance of 80 %. Total MOB abundances were
very low in sea ice, with maximal fractions found at the ice–
snow interface (0.1 %), while non-MOB methylotrophs were
present in abundances similar to natural seawater commu-

nities. The dissimilarities in MOB taxa, methane concentra-
tions, and stable isotope ratios between the sea ice and water
column point toward different methane dynamics in the two
environments.

1 Introduction

Methane (CH4) is the third most abundant greenhouse gas
contributing to climate change (IPCC, 2014) – exceeded only
by water vapor and carbon dioxide. Despite much lower con-
centrations than carbon dioxide, it has a 32 times higher ac-
cumulative radiative forcing potential (Etminan et al., 2016)
over a time span of 100 years. In the ocean, the two major
sources of methane are ongoing biogenic production by mi-
crobes in anoxic sediment (Formolo, 2010; Reeburgh, 2007;
Whiticar, 1999) and release of fossil methane from geologi-
cal storage (summarized by Kvenvolden and Rogers, 2005;
Saunois et al., 2016). Other sources include release from
permafrost, river runoff, submarine groundwater discharge
(Lecher et al., 2016; Overduin et al., 2012), and produc-
tion from methylated substrates under aerobic conditions
(Damm et al., 2010; Karl et al., 2008; Repeta et al., 2016).
More than 90 % of the methane sourced in the seabed is oxi-
dized within the sediment by anaerobic and aerobic oxidation
(Barnes and Goldberg, 1976; Boetius and Wenzhöfer, 2013;
Knittel and Boetius, 2009; Reeburgh, 1976). The remaining
methane either diffuses into the water at the sediment sur-
face or is released as bubbles, which completely or partially
dissolve while rising through the water column (Leifer and
Patro, 2002). Dissolved methane is diluted by the surround-
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ing water column (e.g., Damm and Budéus, 2003; Gentz et
al., 2014), in which it is used as a substrate and oxidized by
aerobic methanotrophic bacteria (methane-oxidizing bacte-
ria, MOB; Hanson and Hanson, 1996; Murrell, 2010). As a
result, oceanic methane concentrations are frequently at low
nanomolar levels, leaving only a small fraction of sediment-
sourced methane to eventually exchange with the atmosphere
(Karl et al., 2008; Reeburgh, 2007).

By contrast, in the subarctic and Arctic shelf areas, shal-
low water depths and seasonal sea-ice cover complicate the
picture. High concentrations of methane have been reported
from the entire water column up to the surface around Sval-
bard (Damm et al., 2005; Mau et al., 2013; Myhre et al.,
2016), the Siberian Shelf (Shakhova et al., 2010), and the
Beaufort Sea (Lorenson et al., 2016). In addition, during
periods of near 100 % sea-ice cover, gas exchange from
the water column to the atmosphere is restricted (Loose et
al., 2011). Under ice-free conditions, methane concentra-
tions are frequently found in the range of 15 to 30 nmol L−1

or up to 7 times supersaturated with regard to atmospheric
equilibrium, while winter concentrations are often 10 to
100 times higher. Maximal concentrations of 5000 nmol L−1,
or oversaturation of 1600 times, have been reported from the
Siberian Shelf (Lorenson et al., 2016; Shakhova et al., 2010;
Zhou et al., 2014).

Along with factors like oxygen and trace-metal availabil-
ity (Crespo-Medina et al., 2014; Sansone et al., 2001; Sem-
rau et al., 2010), as well as local oceanographic and geologic
conditions (Schmale et al., 2015; Steinle et al., 2015), dis-
solved methane concentration can be a control on the com-
munity of MOB and thus methane oxidation rates (Crespo-
Medina et al., 2014; Kessler et al., 2011; Mau et al., 2013).
Methane hotspots, promoted by limited gas exchange under
sea ice, might thus be candidate locations for accumulation
of methane oxidizers. In addition, sea ice, particularly the
ice–water interface, is a hotspot for microbial activity. The
ice surface, penetration of light, and constant exchange with
the underlying water column favor the development of com-
munities composed of small eukaryotic organisms, microal-
gae, prokaryotes, and viruses; the biomass often being sev-
eral orders of magnitude denser than in the underlying water
column (Thomas and Dieckmann, 2002).

MOB use methane as their sole carbon and energy source
(Hanson and Hanson, 1996). In the first step, methane is
oxidized to methanol catalyzed by the enzyme methane
monooxygenase. Since methane monooxygenase is charac-
teristic of nearly all aerobic MOB (Knief, 2015), pmoA, the
gene encoding for a subunit of the membrane-bound partic-
ulate methane monooxygenase, has been used as a specific
molecular marker for detection and characterization of aer-
obic MOB (Knief, 2015; Lüke and Frenzel, 2011; reviewed
by McDonald et al., 2008; Tavormina et al., 2008). Methanol
is further metabolized to formaldehyde, from which it is ei-
ther mineralized to carbon dioxide (CO2) or assimilated into
organic compounds and finally biomass (reviewed by Han-

son and Hanson, 1996; reviewed by Strong et al., 2015).
Different types of MOB are distinguished by their phy-
logeny and assimilation pathways for formaldehyde. While
γ -Proteobacteria or Type I MOB assimilate formaldehyde
via the ribulose monophosphate pathway, α-Proteobacteria
or Type II MOB use the serine pathway (Hanson and Han-
son, 1996). Besides these two proteobacterial groups, MOB
also occur in the phylum Verrucomicrobia (e.g., Dunfield et
al., 2007; Pol et al., 2007).

Methane-derived carbon is also assimilated in non-
methane-utilizing methylotrophs (non-MOB methylotrophs)
or other bacteria in freshwater and temperate marine environ-
ments. These non-methane oxidizers are suggested to cross-
feed on metabolites produced by the MOB (Hutchens et al.,
2003; Jensen et al., 2008; Saidi-Mehrabad et al., 2013).

Knowledge of the microbial communities responsible for
methane oxidation in the Arctic and subarctic is still sparse.
During the last few years, the first studies have determined
methane oxidation rates from seawater in these regions to
cover a range from 10−4 up to 3.2 nmol L−1 d−1 (Gentz et
al., 2014; Lorenson et al., 2016; Mau et al., 2013, 2017;
Steinle et al., 2015). In only two of these studies, both per-
formed off Svalbard, oxidation rate measurements were com-
bined with analysis of the microbial community. Steinle et
al. (2015) quantified MOB by fluorescence in situ hybridiza-
tion and microscopy. Low but relatively constant cell-specific
oxidation rates were determined from the oxidation rates and
MOB abundance, indicating that MOB community size is an
important control on the total methane oxidation rate in the
system. Mau et al. (2013) analyzed the bacterial community
with denaturing gradient gel electrophoresis (DGGE) of the
16S gene and compared patterns of PCR products for pmoA.
Different MOB communities were observed in the meltwater
layer and deep water in this stratified system, also reflecting
the observed differences in methane oxidation rates. Only 1
of the 11 analyzed DGGE bands was identified as methan-
otroph (from the genus Methylosphaera) from the deep water
in this study, while 0 were detected in the meltwater, possi-
bly due to the limitations of the method. To our knowledge,
no high-throughput sequencing studies of MOB in the Arctic
have been published in peer-reviewed literature to date.

We studied methane-oxidizing communities from sea-
water sampled on the Beaufort Sea shelf close to Utqi-
agvik, Alaska. Incubation experiments were performed un-
der different methane concentrations to directly compare
the bacterial community structure with methane oxidation
rates. Seawater incubations, freshly sampled seawater, and
sea ice were analyzed for their entire community diversity
(16S rDNA) and the presence of MOB (16S rDNA and
pmoA) using high-throughput Illumina MiSeq sequencing.
The aim of this study was to (1) investigate the response of
the entire microbial community to an increase in methane
abundance, (2) identify types of MOB involved in the oxida-
tion of methane, (3) test for the presence of MOB in natural
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seawater and sea ice communities, and (4) relate these com-
munity features to methane oxidation rates.

2 Methods

2.1 Study site

Samples were collected at two sites between 7 and
15 April 2016 in the Beaufort Sea (Table 1). Site El-
son Lagoon (EL) is located north of Utqiagvik, Alaska,
(7 April 2016; 71.334◦ N, −156.363◦W). At the time of
sampling, EL was covered with 1.5 m thick sea ice; at ap-
prox. 1.5 m water depth, this left only a narrow layer of water
between the sea ice and the sediment. Site “ice mass balance
buoy” (IMB) is located 1 km offshore of Utqiagvik, close to
the ice mass balance buoy of the sea ice physics group of the
University of Alaska, Fairbanks (7 April 2016; 71.373◦ N,
−156.548◦W and 9 April 2016; 71.372◦ N, −156.540◦W).
This site was characterized by 1 m thick fast ice cover and a
water depth of approximately 7 m.

2.2 Sampling and instrument deployment

Seawater temperature and salinity were recorded with a
YSI Professional Plus probe (YSI, Ohio, USA) and a
YSI 600 OMS V2 sonde (YSI, Ohio, USA). Water was
collected using either a peristaltic pump (Masterflex En-
vironmental Sampler, Cole-Parmer, Illinois, USA) or sub-
mersible pump (Cyclone, Proactive Environmental Products,
Florida, USA) from different water depths. For determina-
tion of methane concentration and isotope ratios, water sam-
ples were collected as described in Uhlig and Loose (2017a).
Briefly, in the field, 0.7 to 0.9 L of seawater was transferred
bubble-free directly into foil sample bags (no. 22950, Restek,
Pennsylvania, USA). On return to the laboratory, a 0.1 L
headspace of ultra-high purity nitrogen (Air Liquide, An-
chorage, AK) was introduced into the bags through the septa,
and the samples were equilibrated at 30 ◦C for at least 6 h to
measure in situ methane concentration and carbon isotope
ratios.

For DNA extractions, between 1 and 2 L of seawater
were filtered onto Sterivex® filter cartridges (Millipore) with
0.2 µM PES filter membranes directly in the field, or were
filled into foldable polypropylene containers and filtered
upon return to the laboratory. For nutrient analysis, an aliquot
of the flow-through of the Sterivex® filters was collected in
15 mL polypropylene tubes (Falcon Brand, Corning, New
York, USA) and frozen at −80 ◦C. Seawater was fixed with
2 % final concentration formaldehyde (Mallinckrodt Chemi-
cals, Surrey, UK) and stored at 5 ◦C for later determination
of the cell abundance.

Additionally, at site IMB, seawater temperature, salin-
ity, and velocities were recorded with an Aquadopp Profiler
(Nortek AS, Norway) and a salinity temperature recorder
(SBE37SMP, Sea-Bird Scientific, Washington, USA). These

were deployed at about 7 m depth on the seafloor between 9
and 15 April.

Sea ice was collected at site IMB only, using a Kovacs
Mark II ice corer (Kovacs, Roseburg, Oregon, USA). The ice
cores were sectioned into 15 cm and split lengthwise. The
outside was cleaned with a sterilized knife to remove mi-
crobes possibly transferred from the sampling equipment.
The core sections were sealed into custom-made gas-tight
tubes (Loose et al., 2011) for determination of methane con-
centration and isotope ratios. In the laboratory, the gas-tight
tubes were flushed with ultrapure nitrogen for several gas
volumes (Lorenson and Kvenvolden, 1995). Ice core 1 (IC1)
was melted at 5 ◦C within a week due to technical limita-
tions, while ice core 2 (IC2) was melted with frequent mix-
ing at room temperature within a day. Samples for molecu-
lar biology and cell counts were collected from the melted
sea ice similar to the procedure described for seawater. In
addition, the bottom 2 cm of one ice core was sampled
into a sterile sample bag (Whirlpak, Nasco, Fort Atkinson,
WI, USA) for molecular biology processing only. Sea-ice
brine volume fractions were calculated according to Cox and
Weeks (1983).

2.3 Net methane oxidation/production and
determination of isotope fractionation factors

Rates for net methane oxidation/production were deter-
mined from the methane mass balance according to Uh-
lig and Loose (2017a). In short, seawater was sampled
into multi-layer foil bags. In addition to a headspace of
hydrocarbon-free air (Air Liquide, Anchorage, AK), some
sampling bags were supplied with a spike of methane. Final
dissolved methane concentrations ranged between 3.0 and
4000 nmol L−1, representing approximately 0.2 times (no
methane addition, resulting in degassing of in situ methane to
the headspace, 0.2×), 2 times (2×), 10 times (10×), and 200
times (200×) of the in situ methane concentration. Samples
were incubated at 0 to 1 ◦C for 5 to 46 days. Some variation
in the incubation period was introduced by logistical con-
straints. To account for potential diffusive loss of methane, a
killed control was prepared for the 200× treatment by adding
0.1 M NaOH.

Assuming first order kinetics for oxidation of methane
(Reeburgh et al., 1991; Valentine et al., 2001), net oxida-
tion/production rate constants (kox) were determined from
the methane mass balance in the incubations (Uhlig and
Loose, 2017a) as

ln

(
n(CH4)total, ti
n(CH4)total, ti−1

)
=−kox,ppm× ti−(i−1) (1)

with n(CH4)total, ti being the total molar mass of methane in
the bag at time ti .

The net oxidation/production rate (rox) was calculated
from the first order constant and the in situ concentration of
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Table 1. Station and sample list.

Name1 Date Position Samples Parameters2

EL 7 April 2016 71.334◦ N, −156.363◦W water in situ CH4, ox rate, T/S, DNA,
cell counts, nutrients

IMB 1 7 April 2016 71.373◦ N, −156.548◦W water ox rate, DNA3, cell counts, nutrients3

IMB 2 9 April 2017 71.372◦ N, −156.540◦W water ox rate, T, DNA3, cell counts,
nutrients3

ice core 1 in situ CH4, T/S, DNA
IMB 3 11 April 2015 71.372◦ N, −156.540◦W water T/S3, DNA, nutrients, cell counts
IMB 4 15 April 2017 71.372◦ N, −156.540◦W water in situ CH4, T/S, DNA3

ice core 2 in situ CH4, T/S, DNA, cell counts

1Station abbreviations are Elson Lagoon (EL) and ice mass balance buoy (IMB). 2Parameters: in situ concentration and δ13CH4(in situ CH4),
net oxidation/production rate (ox rate), temperature and salinity (T/S), collection of biomass for DNA extraction (DNA), cell counts, nutrients.
3No complete depth profile available.

methane in the water:

rox = kox× c(CH4)w, insitu. (2)

Isotopic fractionation factors of methane oxidation (αox =
k12
k13
) were determined as described in Preuss et al. (2013), us-

ing the isotope fractionation approach (Coleman et al., 1981).

ln
(
c(CH4ti )

c(CH4t0)

) (
1
αox
− 1

)
= ln

(
1000 + δ13CH4ti
1000+ δ13CH4t0

)
, (3)

where the isotope ratios are described in δ-notation
δ13CH4 =

Rsample
Rstandard

− 1, and R is the isotope ratio of
13CH4 /

12CH4 in the sample or standard (VPDB, Vienna
Peedee Belemnite; McKinney et al., 1950).

Alpha can be determined as αox =
1

m+1 from the slope

(m) of the linear regression between ln
(
c(CH4ti )

c(CH4t0 )

)
and

ln
(

1000+ δ13CH4ti
1000+ δ13CH4t0

)
.

2.4 Analytical procedures

2.4.1 Methane concentration and stable isotope ratios

Methane concentrations and stable isotope ratios were deter-
mined with a Picarro G2201-i cavity ring-down spectrom-
eter (Picarro, Santa Clara, California, USA) coupled to the
Picarro A0314 small sample isotope module (SSIM) as de-
scribed by Uhlig and Loose (2017a). After equilibration, the
headspace above the seawater or melted ice was subsampled
with a gas tight syringe and 1 to 15 mL was injected into the
SSIM. Measurements were performed in fast measurement
mode. Dissolved methane concentrations were calculated as
described in Magen et al. (2014), with the equilibrium con-
stant according to Yamamoto et al. (1976).

2.4.2 Nutrient analysis and flow cytometry

Phosphate, nitrate, and nitrite concentrations were deter-
mined using a QuickChem QC8500 automated ion analyzer

(Lachat, Loveland, Colorado, USA). The total number of
prokaryotic cells was counted on a BD InfluxTM flow cy-
tometer with BD FACSTM software. Formol-fixed samples
were stained with a final concentration of 1× SYBR Green I
(Invitrogen, Molecular Probes, Eugene, Oregon, USA) for 20
to 45 min at room temperature in the dark before analysis.

2.5 Nucleic acid extraction and sequencing

DNA was extracted with the PowerWater® DNA extraction
kit (MoBio, Carlsbad, California, USA). To remove the filter
membrane, the Sterivex® cartridge was opened with a pair of
sterilized pliers. The filter membrane was cut out along the
edge with a scalpel, transferred into the bead tube, and DNA
subsequently extracted according to the manufacturer’s pro-
tocol. A minor modification was made: the tube was vortexed
once for 3 min, rotated 180◦, and then vortexed for another
3 min. The DNA was eluted in 80 µL buffer PW6, after in-
cubating the buffer for 1 min on the membrane. Quantifica-
tion was conducted with a Qubit®2.0 fluorometer (Invitro-
gen, Carlsbad, California, USA).

The V4-V5 region of the 16S rRNA gene
was amplified with forward primer 518F (5′-xx-
CCAGCAGCYGCGGTAAN-3′), and an 8 : 1 : 1 mix of the
reverse primers 926R1 (5′-yy-CCGTCAATTCNTTTRAGT-
3′), R2 (5′-yy-CCGTCAATTTCTTTGAGT-3′), and R3
(5′-yy-CCGTCTATTCCTTTGANT-3′) (Nelson et al.,
2014). Primers included 33 base pair (bp) adapters (xx,
yy) at the 5′ end. The final volume of 20 µL PCR reaction
contained 0.2 µL PfuUltra II fusion HS DNA polymerase
(Agilent Technologies, Santa Clara, California, USA),
50 µM each forward and reverse primer, 25 µM each
dNTPs (Thermo Scientific, Waltham, Massachusetts,
USA), 10 µg mL−1 BSA (Thermo Scientific, Waltham,
Massachusetts, USA) and 1 ng template DNA. After initial
denaturation for 2 min at 95 ◦C, DNA was amplified in
30 cycles of 30 s 95 ◦C denaturation, 30 s 55 ◦C annealing,
and 30 s at 72 ◦C for extension, with a final extension
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of 2 min at 72 ◦C. The pmoA subunit of the particulate
monooxygenase (pMMO) was amplified with primer pair
189f (5′-xx-GGNGACTGGGACTTCTGG-3′) and mb661r
(5′-yy-CCGGMGCAACGTCYTTACC-3′) (Holmes et al.,
1999; Lyew and Guiot, 2003). The PCR conditions were the
same as described for the V4-V5 amplicon. All amplicons
were purified with Agencourt® AMPure® XP magnetic
beads (Beckman Coulter, Indianapolis, Indiana, USA) at a
ratio of 0.7× bead solution per PCR reaction volume and
washed with 80 % ethanol.

The primer sequences specified above included adapter se-
quences (xx, yy) to attach Nextera indices and adapters in a
second PCR reaction of 6 cycles with 50 ng template DNA
(http://web.uri.edu/gsc/next-generation-sequencing/, last ac-
cess: 27 May 2018). Amplicons were sequenced with Illu-
mina MiSeq at 2× 250 bp read length.

2.6 Sequence analysis

2.6.1 V4-V5 region of 16S rRNA gene

Demultiplexing and adapter removal was performed with Il-
lumina software. V4-V5 sequence quality control and clus-
tering was performed in mothur (Schloss et al., 2009) as
follows. Contigs were prepared from forward and reverse
reads and culled if they contained ambiguous bases or ho-
mopolymers longer than 6 bases. Contaminating sequences
observed in kit and filter blanks accounted for 1.4 % of all
sequences and were removed from all samples. After align-
ment to the Silva small subunit reference database (v123;
Quast et al., 2013), the 408 bp long sequences were preclus-
tered (1 % variability allowed) and filtered for chimeras (de
novo algorithm) with the UCHIME (Edgar et al., 2011) wrap-
per in mothur. Sequences identified as chloroplast, mitochon-
dria, Archaea, Eukaryota, or unknown were removed and op-
erational taxonomical units (OTUs were built at a 3 % dis-
tance level with the opticlust algorithm. OTUs with fewer
than 2 reads were removed from further analysis.

Visualization and further analysis of sequencing data were
performed in R version 3.2.3 (R CoreTeam, 2015) in RStu-
dio Version 0.99.903. Species diversity was analyzed using
the phyloseq package (McMurdie and Holmes, 2013) to de-
termine richness (Shannon and Simpson indices) and differ-
ences in community structures (Bray–Curtis dissimilarities).
Differences in community structure associated with different
methane spike concentrations were determined via analysis
of similarity (ANOSIM) in the package vegan (Oksanen et
al., 2017) on three predefined groups: in situ (n= 9), 0.2×
(n= 2), and 10× (n= 3). Groups 1×, 200× short, and 200×
long with n= 1 (Table 2) were excluded from the analysis.

2.6.2 Identifying potential methane-oxidizing bacteria

To select groups representing methylotrophs and methan-
otrophs, 16S OTUs were filtered according to their phylo-

Table 2. Samples sequenced for V4-V5 and pmoA.

Treatment1 Station V4–V5 pmoA
no. of samples no. of samples

in situ IMB 9 4
EL 1 1
sea ice 7 0

0.2×, 10 days IMB 1 2 3
EL 1 1

2×, 5 days IMB 2 1 1

10×, 46 days IMB 1 3 2
EL 1 1

200×, 6 days IMB 2 1 1

200×, 41 days IMB 2 1 1

1The different incubation times resulted from logistical constraints.

genetic annotation assigned by mothur for containing the
string “meth” on family, order, and genus level. This filter
is expected to find 97 % of taxonomically annotated methan-
otrophs, according to a current review on the diversity of
methanotrophs (Knief, 2015).

Further, phylogenetic groups potentially involved in
methane dynamics were identified as differentially more
abundant 16S OTUs between incubations (0.2×, 10×, 200×)
and in situ samples using DESeq2 (Love et al., 2014). Only
OTUs with an adjusted p value in DESeq2 < 0.05 were kept
for further analysis. OTUs identified from spike concentra-
tion 0.2× were considered to represent groups favored due
to the incubations (the “bottle effect”) rather than addition of
methane, and removed from further analysis. Treatments EL
0.2×, EL 10×, and IMB 2× (Table 2) were not included in
this analysis, since no replicate samples were available. The
abundance of all candidate 16S OTUs, identified as described
above, was determined within every in situ or incubated sam-
ple.

Absolute numbers of methanotrophs and methylotrophs
were calculated by multiplying the relative 16S sequence
abundance with flow cytometric cell counts. The absolute
numbers were further corrected for the mean of the 16S gene
copy number for the lowest taxonomic rank (class to genus)
available in the rrnDB database (Stoddard et al., 2015).

2.6.3 Particulate methane monooxygenase: pmoA

In addition to 16S genes, the alpha subunit of the particu-
late methane monooxygenase (pmoA) was used as a molec-
ular marker for MOB. Only pmoA forward reads were ana-
lyzed. High-quality pmoA reads were retrieved according to
the following protocol. Using mothur (Schloss et al., 2009),
all reads were trimmed to a length of 225 bp to remove se-
quence fractions with a mean quality score below 30 (fastqc;

www.biogeosciences.net/15/3311/2018/ Biogeosciences, 15, 3311–3329, 2018
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Andrews, 2010). In addition, reads were clipped whenever
the average quality score over a 50 bp window dropped be-
low 30. Sequences with ambiguous bases and homopoly-
mers larger than 6 bp were culled. Only sequences that trans-
lated into uninterrupted protein reading frames (Emboss 6.60
/ transseq; Rice et al., 2000) were kept for further analysis.
Nucleic acid sequences were aligned to a reference dataset of
pmoA sequences (fungene; Fish et al., 2013) and sequences
of a length of at least 220 bp were preclustered (1 % vari-
ability allowed). De novo chimera filtration was run with the
UCHIME (Edgar et al., 2011) wrapper in mothur. A similar-
ity of 93 % between pmoA sequences was defined to match
the 97 % cutoff as species definition for the 16S gene (Lüke
and Frenzel, 2011). PmoA OTUs were built at a maximal
distance of 7 % between the furthest neighbors to maximize
resolution between OTUs due to the short read length and
limited number of unique sequences (Table S1 in the Supple-
ment). To determine the phylogenetic relationship of pmoA
sequences, nucleotide sequences were aligned against se-
lected reference sequences in Mafft 7.017 (Katoh and Stan-
dley, 2013) and a neighbor joining tree calculated in Clustal
2.1 (Larkin et al., 2007) with 1000 replications.

3 Results

3.1 Water column properties

On 7 April 2016, the narrow layer of water between the sedi-
ment and ice in EL (n= 1) had a salinity of 21 and a tem-
perature of −1.5 ◦C. Phosphate and nitrate concentrations
were 0.74 µM and 4.87 µM, respectively. Methane concen-
tration for EL (n= 1) was 53.2 nmol L−1 with a stable iso-
tope ratio of −73.8 ‰ (Fig. 1) and cell density 7.7× 104

cells mL−1. For most days during the sampling period, the
water column at station IMB was characterized by temper-
atures around −1.8 ◦C and salinities of 33.9 to 36.4 (Fig. 1,
Figs. S1 and S2 in the Supplement). Between 11 and 13 April
warmer water (max. temperature observed −0.9 ◦C) was ad-
vected, coinciding with a change in current direction. A
lower salinity of 27.5 at the ice–water interface indicates
melting of the sea ice. Phosphate concentrations at station
IMB were 0.99± 0.33 µM (n= 9) and nitrate 6.59± 4.04 µM
(n= 9), with neither showing any trends in the depth profiles
(data not shown). Nitrite concentrations were below detec-
tion (0.3 µM based on technical replicates). Water column
methane concentrations at station IMB ranged between 9.2
and 25.3 nmol L−1 (16.3± 7.2 nmol L−1, n= 5; Fig. 1), with
stable isotope signatures between −55.4 ‰ and −70.5 ‰
(−60.6 ‰± 6.3 ‰, n= 5). Total prokaryotic cell densities,
determined as SYBR Green stained cells with flow cytome-
try, were 6.9× 104

± 5.7× 103 cells mL−1 (n= 16).

3.2 Ice cores

Temperature and salinity profiles of the two sea-ice cores
sampled on 9 and 15 April are shown in Fig. 2. Brine vol-
ume fractions above 5 % indicate that the ice was permeable
to water and gases (Golden et al., 1998) in the bottom 50–
100 cm, while the upper part of the ice was impermeable.
Methane concentrations in the ice were higher than in the
water (83.9± 35.0 nmol kg−1, n= 9), while the isotope sig-
natures were close to seawater (−60.4 ‰± 3.5 ‰, n= 9).
Ice core 1 (IC1), sampled on 7 April, had generally higher
methane concentrations and more positive isotope signatures
(72.3–144.3 nmol kg−1,−54.4 ‰ to 62.0 ‰ ) than ice core 2
(IC2), sampled on 15 April (53.3–77.6 nmol kg−1, −59.0 ‰
to −61.6 ‰ ). Microbial activity during storage of IC1 at
5 ◦C for 1 week before analysis might have led to the dif-
ferences in methane concentrations and isotope ratios. For
ice samples, cell counts were performed on IC2 only; they
show an increase from 1.0× 104 cells mL−1 in the top layers
to 8.2× 105 cells mL−1 in the bottom two centimeters of the
ice core.

3.3 Net methane oxidation/production and isotope
fractionation

The methane oxidation potential of microbial seawater com-
munities at stations EL and IMB was determined from the
methane mass balance in incubation experiments (Table 3;
Uhlig and Loose, 2017a). Final dissolved methane concen-
trations ranged between 3.0 and 4000 nmol L−1, represent-
ing approximately 0.2 times (0.2×) to 200 times (200×) the
in situ concentration. Oxygen concentrations at the end of the
long incubations ranged between 116 and 126 % saturation,
while oxygen concentrations at the end of the short incuba-
tions were not determined.

Net oxidation rates discussed here were published in
Uhlig and Loose (2017a) and are summarized for com-
parison with the microbial community structure. Short in-
cubations (≤ 10 days) did not show significant oxidation,
while long-term incubations (41–46 days) did. Surpris-
ingly, four out of five replicates of treatment 0.2× IMB
showed a statistically significant increase in methane of
about 0.62± 0.21 nmol L−1 (n= 5) within 10 days (Fig. S3).
In long-incubation samples with significant methane oxida-
tion (10× and 200× spikes), the isotopic signature of the
residual methane increased toward heavier (more positive)
signatures with fractionation factors α of 1.0230 (10× EL),
1.0225 (10× IMB), and 1.0103 (200× IMB).

3.4 Bacterial community structure

The V4-V5 region of the 16S rRNA gene was sequenced
from a total of 10 seawater samples and 7 ice samples
(Table 2). Non-metric multidimensional scaling analysis of
the Bray–Curtis diversity revealed high similarity across the
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Table 3. Methane oxidation parameters during long-term incubation experiments. n: number of replicates, c(CH4)initial: approximate initial
methane concentration, kox: net oxidation/production rate constant, rox: net oxidation/production rate at in situ concentration, αox: isotopic
fractionation factor during oxidation. Oxidation rates and rate constants are replicated from Uhlig and Loose (2017a).

Treatment na Incubationb c(CH4)initial c(CH4)final kox rox αox
(days) (nmol L−1) (nmol L−1) (d−1) (nmol L−1d−1)

0.2× EL 1 10 12.7 12.9 0c 0c 0.9591
10× EL 1 46 132.3 67.7 1.01× 10−2 0.54 1.0230

0.2× IMB 1 5 10 4.4± 0.5 5.0± 0.4 −1.05× 10−2 negatived 0.994± 0.0113
2× IMB 2 4 5 37.9± 1.8 36.5± 1.4 0c 0c 0.9898± 0.0104
10× IMB 1 5 46 123.0± 5.5 69.4± 36.5 9.18× 10−3 0.15± 0.02 1.0225± 0.0005
200× IMB 2 short 7 6 3937.9± 148.7 3427.6± 160.4 0c 0c 1.0005± 0.0005
200× IMB 2 long 2 41 4089.5± 26.1 129.6± 95.5 6.62× 10−2 1.08± 0.17 1.0103± 0.0002
200× IMB 2 NaOH 1 41 3953.7 3620.7 0c 0c 0.9998

aReplicates are from different water depth. bThe different incubation times resulted from logistical constraints. cOxidation rate constants were not significantly different from 0 at
a 95 % confidence level. dNegative net oxidation rate constant indicating methane production.
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Figure 1. Water column properties during the time series near Utqiagvik. Salinity (a), temperature (b), density (c), cell abundance (d),
methane concentration (e) and stable isotope ratios (f). Error bars on cell numbers (d) represent the standard deviation on two technical
replicates. Salinity and temperature (a and b) were determined with a YSI hand held (circle) and YSI sonde (triangle). Salinity for the YSI
hand held on 15 April was determined in the laboratory, thus in situ temperature is missing. Salinity for the YSI sonde on 9 and 15 April is
missing due to freezing of the sensor. Methane data is only available for EL on 7 April and for IMB 4 on 15 April.

in situ water samples analyzed for 16S diversity (Fig. 4).
Samples from site IMB clustered together repeatedly, and we
did not observe any differences in community structure coin-
ciding with water depth or temperature (Fig. 4). For the IMB
samples, IMB 2 was the only sample slightly different from
the other in situ samples, though IMB 1, IMB 2, and IMB 4
are all characterized by a colder water mass. Only IMB 3
showed some influence of an incoming warm water mass in
the YSI profile (Fig. 1), though not yet reaching the bottom
(Fig. S1), but this shift is not seen in the community structure.
In contrast to the in situ water samples, the community struc-
ture of incubated samples is driven by incubation time. While
communities in the short-incubation treatments (5–10 days;
0.2×, 2×, 200× short) were similar to the in situ samples, the

long incubations (41–46 days; 10×, 200× long) clearly devi-
ated from the in situ samples. In both the long and short incu-
bated clusters samples originating from IMB 1 (0.2×, 10×)
and IMB 2 (2×, 200×) are present (Fig. 4, Table 2). Micro-
bial communities in ice cores were clearly distinct from those
in the water samples and were more distant to each other than
were the communities in water samples.

In the in situ seawater communities, Proteobacteria were
dominant with relative sequence abundances of 59.5 and
65.5 %± 2.5 % for EL (n= 1) and IMB (n= 9), respectively
(Fig. S4). Within the phylum of Proteobacteria, α- and γ -
Proteobacteria made up the majority. The second most abun-
dant phylum was Bacteroidetes with 23 and 19.6 %± 1.4 %
for EL and IMB, respectively.
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Figure 3. Shannon indices of alpha diversity for V4-V5 amplicons.

Similar to the seawater, sea ice (n= 7) showed a domi-
nance in Proteobacteria (58.9 %± 9.8 %), but Bacteroidetes
sequences (29.1 %± 11.7 %) were slightly more abundant in
the ice than in the water. γ -Proteobacteria dominated in all
but one sample (IC2 30–46 cm). This one sample, which had
clearly visible sediment included into the sea ice structure,
was dominated by α-Proteobacteria.

In all incubated samples that were sequenced (n= 10),
species richness decreased (Fig. 3) and the communi-
ties shifted toward higher fractions of γ -Proteobacteria
over time. In short incubations (5–10 days; n= 5) γ -
Proteobacteria dominated with 61.8 %± 2.9 % of sequences,
while reaching 81.0 %± 11.1 % in long-incubation samples

(41–46 days; n= 4). In particular, one operational taxonomi-
cal unit (OTU), from the genus Oleispira, was very abundant
in the long-incubation samples, with 50.1 to 76.3 %, com-
pared to abundances < 0.04 % in the in situ samples. The
same OTU was only slightly more abundant in the short-
incubation treatments (0.5 to 1.6 %) compared to in situ
abundances. In addition to the shift in community structure,
total cell densities increased to 1.9× 105 and 3.3× 106 cells
mL−1 for short and long incubations, respectively, based on
flow cytometric cell counts.

3.5 Methanotrophs, methylotrophs, and differentially
abundant OTUs

Using their 16S taxonomic annotation, we identified six
groups of aerobic methanotrophs (MOB; Fig. 5). With a max-
imum of 1.76 %± 0.73 %, the relative abundance of MOB
was low in all samples (Table 4). Four MOB grouped in
the Methylococcales (γ -Proteobacteria), specifically Marine
Methylotrophic Group 1 and 2 (MMG1, MMG2), unclassi-
fied Methylococcales and the Milano-WF1B-03 family. The
three remaining MOB OTUs belonged to the genera Methy-
lobacterium and Methyloceanibacter (α-Proteobacteria) and
Candidatus “Methylacidiphilum” (Verrucomicrobia). MOB
OTUs were more abundant in natural seawater samples than
in sea ice (maximal 0.11 % in IC1 0–16 cm), but in contrast
to the seawater, α-Proteobacteria MOB dominated in the sea
ice.

Furthermore, four clades of non-methane-utilizing methy-
lotrophs (non-MOB methylotrophs) were identified, group-
ing into γ -Proteobacteria Marine Methylotrophic Group 3
(MMG3) and Methylophaga, and to the β-Proteobacteria
Methylophilaceae (Methylotenera, OM43 clade). Non-MOB
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Table 4. Relative abundance of methylotroph OTUs in situ, split into methanotrophs (MOB) and non-MOB methylotrophs (Methy)

in situ in situ 0.2×, 2× 10× 200×
sea ice seawater (short) (long) (short+ long)

n 7 10 4 4 2
Mean± sd MOB 0.04 %± 0.04 % 0.24 %± 0.09 % 0.09 %± 0.01 % 0.17 %± 0.15 % 1.76 %± 0.73 %

Methy 0.74 %± 0.50 % 0.65 %± 0.12 % 0.34 %± 0.13 % 0.70 %± 0.62 % 0.61 %± 0.29 %
min. MOB 0.00 % 0.06 % 0.08 % 0.06 % 1.03 %

Methy 0.11 % 0.51 % 0.23 % 0.20 % 0.32 %
max. MOB 0.11 % 0.45 % 0.11 % 0.43 % 2.49 %

Methy 1.53 % 0.83 % 0.56 % 1.72 % 0.90 %
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Figure 4. Non-metric multidimensional scaling analysis (unitless)
of Bray–Curtis dissimilarities of the 16S read data. The low 2-D
stress of 0.06 indicates a good two-dimensional representation of
the multidimensional dataset with very low prospect of misinter-
pretation.

methylotroph OTUs were more abundant than MOB OTUs
with the exception of the 200× incubation treatments (Fig. 5,
Table 4). Ice samples showed the largest difference in abun-
dance between non-MOB methylotrophs and MOB, with a
ratio of 21 : 1 between the two groups. Ice samples also
had the highest overall relative abundance of methylotrophs
(MOB and non-MOB) of all in situ samples (max: 1.63 %,
IC1 0–16 cm). Only the 200× long incubations had a higher
total number of methylotrophs (3.3 %), while this sample was
in addition dominated by MOB (2.49 %). The second high-
est relative abundance of MOB was found for in situ EL and
IMB with 0.24 %± 0.09 % (n= 10).

Taking into account the total cell number, a strong increase
in MOB groups MMG1 (2 to 700 times) and Milano-WF1B-
03 (25 to 75 times) was observed for the 10× and 200× long-
incubation samples compared to in situ conditions (Fig. 5b).

Taxonomic groups that became differentially more abun-
dant in the incubated samples than in natural communi-
ties were the y-Proteobacteria Oleispira, Colwellia, and
Glaciecola, as well as Rhodobacteracea (α-Proteobacteria).

Except for Oleispira, which became dominant, the other taxa
had relative sequence read abundances from 1.1 to 12.6 %
after the oxidation experiments, compared to abundances
< 0.25 % for in situ samples (Fig. S5).

3.6 Particulate methane monooxygenase (pmoA)
sequences

A 225 bp section of the particulate methane monooxygenase
gene (pmoA) was sequenced in a total of 15 samples (Ta-
ble 2). The absolute abundance of pmoA fragments obtained
in sequences ranged from 9331 (IMB in situ, 6.5 m depth) to
72781 (IMB 200× long) reads. In general, incubations with
higher methane concentration had more pmoA reads than in-
cubations with lower methane concentration or in situ sam-
ples. About three times more reads were filtered from the EL
in situ sample (33 844 reads, n= 1) than the IMB in situ sam-
ples (11700± 1833, n= 4).

Two of the 59 pmoA OTUs made up 96.8 % of all
sequences, while all other OTUs individually represented
≤ 1 % of the pmoA sequences. The most abundant OTU
(71.0 % of all sequences) clustered with two uncultured
isolates from methane seeps (NCBI accession: HQ738559,
EU444875) in the deep sea-3/OPU3 subgroup of γ -
Proteobacteria Type I MOB (Hansman et al., 2017; Knief,
2015; Lüke and Frenzel, 2011). The second most abundant
(25.8 %) OTU was related to Methyloprofundus sedimentii,
another Type I MOB. Most of the low-abundance OTUs
also clustered within the Type I MOB, while only three
OTUs (0.07 % of all pmoA sequences) clustered with Type
II α-Proteobacteria MOB pmoA sequences (Methylocystis,
Methylosinus).

4 Discussion

4.1 Methane concentration and stable isotope ratios in
seawater and ice

Seawater methane concentrations in April 2016 close to
Utqiagvik, Alaska were supersaturated 2.5 times to 7 times
compared to atmospheric equilibrium (3.6 nmol L−1).
The concentration at site EL (52.90 nmol L−1, n= 1,
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Figure 5. Relative abundances (a) and inferred cell numbers (b) of methylotroph OTUs by family. Sampling sites for water samples are
Elson Lagoon (EL) and ice mass balance buoy (IMB). Ice cores (IC1 and IC2) were collected at site IMB on 9 and 15 April, respectively.
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Biogeosciences, 15, 3311–3329, 2018 www.biogeosciences.net/15/3311/2018/



C. Uhlig et al.: Methane-oxidizing seawater microbial communities from an Arctic shelf 3321

7 April 2016) was in the range of a study by Lecher
et al. (2016) in EL under ice-free conditions (3.3–
124.0 nmol L−1). At site IMB, concentrations were slightly
lower (9.5–25.2 nmol L−1

: n= 5, 15 April 2018) than pre-
viously reported from the same area for ice-free (Lecher et
al., 2016; mean: 40.6 nmol L−1), and ice-covered conditions
(Zhou et al., 2014; March/April: 37.5± 6 nmol L−1). Shal-
lower depths at IMB exhibit lower methane concentrations
(Fig. 2), and the isotopic signature mirrors this pattern with
more positive values toward the surface. This indicates that
methane might be biologically oxidized on the way through
the water column, after being released from the sediment.

The sea-ice bulk methane concentrations observed in this
study (53–144 nmol kg−1) are significantly higher than in a
study from the same area (Zhou et al., 2014), but fall within
values reported for the Beaufort Sea (5–1260 nM, Lorenson
and Kvenvolden, 1995). Methane carbon isotopic signatures
(−54.4 to−63.8 ‰) are comparable to the higher end of pre-
vious studies for bulk sea ice (−52.1 to −83.4 ‰ , Lorenson
and Kvenvolden, 1995) and sea-ice brine (−75 ‰ , Damm et
al., 2015).

Although both ice cores were sampled within 300 m dis-
tance from each other at site IMB, they differ in concentra-
tion and isotope signature. These differences could either be
caused by spatial variability between the two ice cores or dif-
ferences in the processing procedure described in Sect. 2.2.
Spatial variability as driving difference between the two ice
cores is corroborated by the sediment present at 30–46 cm
depth in IC1, which was not observed in IC2, indicating that
both ice cores have different freezing histories. The same
event that led to inclusion of the sediment into IC1 possibly
resulted in inclusion of higher methane concentrations into
IC1 compared to IC2 during freeze-up. In addition, micro-
bial processes like oxidation of methane or methanogenesis
could have taken place in situ or during sample processing
and storage. Microbial oxidation of methane, particularly in
the two middle sections (30–46 and 52–86 cm depth), might
have led to the observed shift toward more positive carbon
isotope ratios (Fig. 2). The different bacterial community in-
troduced through the sediment (Fig. S4) might have favored
oxidation in those two sections compared to the top and bot-
tom sections. MOB identified by our approach were, how-
ever, neither more abundant nor phylogenetically distinct in
the sediment-loaded section compared to the other sections
(Fig. 4a). Another microbial process that may have led to the
discrepancies between IC1 and IC2 could be methane pro-
duction from ice algae-derived organic carbon in IC1. With
typical carbon isotopic signatures of −20 to −30 ‰ for ice-
derived carbon (e.g., Wang et al., 2014), methane produced
from this substrate would be enriched in 13C (more posi-
tive) compared to the initial pool of methane (about −60 ‰,
Figs. 2 and 6). Yet sequences of bacterial taxa that might indi-
cate anoxic conditions (Eronen-Rasimus et al., 2017), which
would favor anaerobic methane production, were not signifi-
cantly more abundant in IC1 than in IC2 (Table S2).
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Figure 6. δ13CH4 vs. reciprocal of CH4 concentration (Keeling-
type plot) of ice cores. Within each ice core, a shift to more positive
δ13CH4 values in combination with a decrease in CH4 concentra-
tion indicates microbial oxidation. Comparing IC2 to IC1, the shift
toward higher concentrations and more positive δ13CH4 (see also
Fig. 2) in IC1 might indicate CH4 production from a substrate with
heavier isotope signature, compared to the values in IC2.

Compared to the underlying water column, methane con-
centrations in the sea ice were 2 to 5 times higher. Further, the
isotope signatures indicate less oxidized methane (−60.4 to
−63.8 ‰) in most of the ice sections compared to the upper
water column (−55 ‰). Lorenson and Kvenvolden (1995)
report higher methane concentrations in sea ice than in
the water column for the Beaufort Sea. They attributed the
high methane concentrations in the fast ice to inclusion of
sediment-sourced methane during the initial freeze-up over
the shallow shelf at < 10 m water depth (Lorenson et al.,
2016). Methane concentrations in IC2, which are close to
water column concentrations reported in previous studies for
our study region (Lecher et al., 2016; Zhou et al., 2014),
suggest the same process for our ice cores. Further, in our
study, the lower methane concentrations together with more
positive (heavier) isotopic signature in seawater compared to
ice, might indicate that the microbial community in the wa-
ter column is oxidizing more methane during the ice-covered
period than in the freeze-up period. Higher oxidation rates
during ice-covered periods compared to ice-free conditions
were previously reported for the Beaufort Sea. Due to re-
duced sea–air gas exchange, higher methane concentrations
can build up under sea-ice cover, which might lead to higher
oxidation rates (Lorenson and Kvenvolden, 1995).

4.2 Methane dynamics at different methane
concentrations

Net methane oxidation/production rates were determined
from water sampled at stations IMB 1 and IMB 2 on 7 and
9 April 2016. Both days were characterized by the cold wa-
ter temperatures (≤−1.8 ◦C; Fig. 1). Different water masses
have previously been reported to influence the methane oxi-
dation potential of water column microbial communities off
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Svalbard (Steinle et al., 2015). In this study, we observed a
change in current direction and water temperature consistent
with advection of a different water mass into the study area
(Fig. S1). However, this change occurred on 12 April sub-
sequent to sampling IMB 3, and thus this event would not
have influenced the net oxidation potential determined in this
study.

Net oxidation rates of the long-incubation treatments at
10× (46 days) and 200× (41 days) methane concentration
fall into the mid-range of rates published for Arctic and sub-
arctic environments (Damm et al., 2015; Gentz et al., 2014;
Lorenson et al., 2016; Mau et al., 2013, 2017; Steinle et al.,
2015) or marine sites with high oxidation rates at oil spills or
gas flares (Leonte et al., 2017; Redmond et al., 2010; Valen-
tine et al., 2010), as discussed in Uhlig and Loose (2017a).
The fractionation factors (αox) that we observed are higher
than previously reported from cold marine environments
with a range of αox from 1.002 to 1.017 (Cowen et al., 2002;
Damm et al., 2008; Grant and Whiticar, 2002; Heeschen et
al., 2004; Keir et al., 2009; Tsunogai et al., 2000). However,
some of these fractionation factors, which were calculated
from in situ data, might be underestimates due to mixing ef-
fects in the water column (Grant and Whiticar, 2002). The
fractionation factors in our study seem to be inversely depen-
dent on the methane spike concentration, with higher frac-
tionation in the 50× (1.023, n= 6) treatments than in the
200× (1.010, n= 2) treatments. The relative and absolute
abundances of MOB, as well as the dominant MOB types,
differed between both treatments, possibly providing expla-
nations for the differences in fractionation rates. Logistical
constraints forced us to stop several incubations already after
5 to 6 days. These short-incubation 2× and 200× treatments
did not resolve oxidation of methane. While the 2× treat-
ments did not meet the sensitivity threshold for the method
(Uhlig and Loose, 2017a), the 200× short treatments were
likely just about to leave the lag phase when the experiments
were stopped. A lag phase of 6 days was observed for the
long-incubation 200× samples, in which the microbial com-
munity possibly shifted toward an abundance of MOB that
was large enough to cause detectable methane oxidation. To
facilitate comparisons between treatments, incubation dura-
tion should be kept constant in future studies.

The increase in methane concentration in treatment IMB
0.2× (10 days incubation) is surprising since experiments
were performed under aerobic conditions. Since the sea-
water was not pre-filtered through a larger pore-size fil-
ter, which would exclude larger particles but allow bacte-
rial cells to pass, production of methane in microanoxic
zones (de Angelis and Lee, 1994; Oremland, 1979) should
be considered. Furthermore, several studies suggested path-
ways for methane production in oxygenated marine sys-
tems from methylated compounds or dissolved organic mat-
ter (Damm et al., 2010; Florez-Leiva et al., 2010; Karl et al.,
2008; Repeta et al., 2016). The methane production rate of
0.06 nmol L−1 d−1 observed in our study is 2 to 6 orders of
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Figure 7. Correlation between net oxidation rate constant (kox)
and the relative abundance of sequences in 16S-MOB-OTUs,
R2
(MOB−OTUs∼kox) = 0.84 (a) and number of pmoA sequences with

R2
(pmoA∼kox) = 0.85 (b). For correlation to the number of total

methylotroph OTUs (which includes MOB and non-MOB methy-
lotrophs in total 16S) R2

(Meth−OTUs∼kox) = 0.81. The gray shaded
area shows the 95 % confidence interval of the correlation.

magnitude lower than previously published methane produc-
tion rates under aerobic conditions (Damm et al., 2010; Karl
et al., 2008). In addition to biological processes, we cannot
rule out an abiotic effect leading to the increased methane
concentrations, since our experimental setup did not include
a killed control at the same methane concentration.

4.3 Abundances of MOB and non-MOB methylotrophs
control the methane oxidation potential

We found a strong linear correlation between the net oxida-
tion rate constant (kox) and the relative abundance of 16S
MOB sequences (Spearman rank order coefficient ρs = 0.79,
p= 0.006; Fig. 7a, Table 5). This strong correlation is con-
firmed when correlating against the total abundance or DE-
Seq2 normalized abundance of 16S MOB sequences (Ta-
ble 5). The correlation to kox is even stronger for the absolute
abundance of pmoA sequences retrieved from the respective
datasets (ρs = 0.86, p= 0.006; Fig. 7b). This presentation of
a direct and statistically significant linear relationship is the
first to our knowledge. It agrees with other qualitative reports
of positive correlations between methane oxidation rates and
abundance of pmoA or MOB 16S rRNA genes determined
using a variety of methods – quantitative PCR, FISH, or
sequencing – for marine water column and lake sediments
(Crespo-Medina et al., 2014; Deutzmann et al., 2011; Ra-
halkar et al., 2009; Steinle et al., 2015). Future application
of marine-specific pmoA primers may further improve this
correlation (Tavormina et al., 2008).

Cell-specific net oxidation rates in our study (3.2–
7.5 fmol cell−1 h−1) were relatively constant between treat-
ments. They are 2 orders of magnitude higher than reported
for subarctic seawater (Steinle et al., 2016). Since the cell-
specific rates only span a narrow range, the ultimate control
on the methane oxidation potential is the number of MOB,
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Table 5. Spearman rank order correlations coefficients (ρS) of kox vs. the number of sequences of pmoA, MOB and non-MOB methylotrophs,
and candidate OTUs. Candidate OTUs are OTUs that were differentially more abundant in 10× and 200× incubated samples.

Total Normalized1 Relative abundance Inferred cell density2

pmoA −0.86∗∗3 n.d. n.d. n.d.
methylotrophs −0.81∗∗ −0.97∗∗∗ −0.79∗∗ −0.63.

MOB −0.82∗∗ −0.66∗ −0.82∗∗ −0.61.
non-MOB −0.71∗ −0.80∗∗ −0.69∗ −0.58.

candidate OTUs −0.07ns
−0.23ns

−0.03ns n.d.

1Normalized to total abundance of reads using the DESeq2 package. 2Inferred cell density was calculated from relative
abundance and flow cytometry cell counts, weighted for copy number of 16S for respective OTUs. 3Significance
levels: 0 ’∗∗∗’ 0.001 ’∗∗’ 0.01 ’∗’ 0.05 ’.’ 0.1 ’ns’ 1.

as reported in previous studies (Crespo-Medina et al., 2014;
Kessler et al., 2011; Steinle et al., 2015).

Despite the long incubation time in our experiments and
the fact that methane was the only added source of carbon,
the relative abundance of MOB determined from 16S reads
was low (< 2.5 %, Table 4). Other studies of natural or man-
made gas or oil spills, with dissolved methane concentrations
comparably high to our 10× and 200× treatments, reported
maximal values of 8 to 34 % of MOB (Crespo-Medina et al.,
2014; Kessler et al., 2011; Steinle et al., 2015, 2016). Sur-
prisingly, relative sequence abundances of MOB in the natu-
ral seawater communities were higher than in the incubations
except for the 200× treatment (Table 4). Inferred absolute
MOB numbers were higher in 10× and 200× incubations
than in situ (Fig. 5b). In contrast, absolute MOB numbers in
0.2× and 2× incubations were very similar to in situ abun-
dances, indicating that either the provided methane concen-
tration was too low or the incubation time too short to stimu-
late MOB growth.

It is puzzling why the fraction of methane oxidizers in
the bacterial community did not increase above the observed
low percentages although the cell-specific oxidation rates
were high and sufficient methane was available, particu-
larly in the 10× and 200× treatments. Oxygen and methane
can be ruled out as limiting factors, since both were abun-
dant. Copper, which is essential for expression of partic-
ulate methane monooxygenase, can restrict MOB growth
(Avdeeva and Gvozdev, 2017; Zhivotchenko et al., 1995).
In the absence of copper, many MOB express a copper-
independent soluble methane monooxygenase (Hakemian
and Rosenzweig, 2007). Since we neither determined cop-
per concentrations nor the expression of particulate and solu-
ble methane monooxygenase, we cannot exclude that copper
was limiting in our study. Further, the low relative abundance
of MOB sequences could be due to competition with other
bacterial taxa for other macro- or micronutrients. In the ab-
sence of other added C substrates, these other taxa could have
utilized the initial pool of dissolved organic carbon (DOC).
DOC concentration is about 68 µM carbon in the southern
Chukchi Sea (Tanaka et al., 2016), which is in the same range
as the amount of consumed methane carbon in the 200×

treatments and 2 orders of magnitude higher than the con-
sumed carbon in the 10× treatments.

As a result of the low MOB abundances, the potential
of the microbial community to mitigate release of dissolved
methane to the atmosphere by oxidation is small. For exam-
ple, for methane concentrations in the Laptev Sea area, the
rates observed in this study would result in 0.2 % consump-
tion during the ice-covered period. This supports the results
from a previous study for the Beaufort Sea, where 1 to 2 % of
dissolved methane was calculated to be oxidized (Lorenson
et al., 2016).

4.4 Structure of the methane degrading microbial
community

This first study based on 16S MiSeq sequencing of methane-
oxidizing seawater communities in the Arctic provides a
broader view of the community structure than approaches
with FISH and DGGE. The dominance of γ -Proteobacteria
MOB in our natural and incubated seawater samples agrees
with previous records of MOB diversity for polar and subpo-
lar waters (Mau et al., 2013; Steinle et al., 2015; Verdugo et
al., 2016). In addition, non-methane-utilizing methylotrophs
were present in all of our samples. The relative read abun-
dance of non-MOB methylotrophs were, similar to MOB,
tightly correlated to kox, and the same correlation holds for
the relative abundance of total methylotrophs (MOB plus
non-MOB). In contrast, the correlation between OTUs that
were differentially more abundant in the incubated samples
and kox was weak (Table 5). This points toward a possi-
ble link between the MOB and non-MOB in this methane-
oxidizing microbial community, in which non-MOB methy-
lotrophs might play a role for community methane oxidation,
whereas the OTUs that were differentially more abundant are
not directly linked to methane oxidation.

Methylophilaceae, the most abundant non-MOB methy-
lotroph in our experiments, have been found to be abun-
dant in sediment methane-oxidizing communities in lakes
and marine systems (Beck et al., 2013; Redmond et
al., 2010). Possible cooperative behavior between methan-
otrophs (Methylococcaceae) and non-MOB methylotrophs
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Figure 8. Ratio of methane-carbon assimilated (CH4-Cassim) to
cell-C gained during growth (cell-Cgrowth), based on flow cytomet-
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standard deviation between replicates was 10 to 20 %. The verti-
cal line indicates a ratio of 1. Above 1, the entire cell gain can be
explained by the assimilated CH4.

(Methylophilaceae) was suggested (Beck et al., 2013), in
which the latter cross-feeds on intermediate metabolic prod-
ucts of the MOB, i.e., methanol, and can even positively al-
ter the metabolism of the MOB toward methane assimilation
(Krause et al., 2017).

To test if the non-methane MOB could be supported by the
intermediate substrates produced by MOB, we calculated a
budget between the methane carbon assimilated by the grow-
ing microbial population (CCH4,assim), and the cell carbon
gained during growth (Ccell−growth) (Fig. 8). We assumed (i) a
cellular carbon content of 150 fg for exponentially growing
bacterial cells (Vrede et al., 2002) and (ii) that about one-
third of consumed CH4 carbon is assimilated, with the re-
maining two-thirds respired to CO2 (Bastviken et al., 2003;
Roslev et al., 1997). CCH4,assim exceeds MOB-Ccell−growth by
a factor of 9 to 17, indicating that some of the CCH4,assim was
available for secondary consumption by non-MOB. The en-
tire methylotrophic community (MOB + non-MOB methy-
lotroph) growth can also be explained solely by CCH4,assim,
supporting the possible link of non-MOB methylotrophs to
methane consumption. In contrast, only about 0.1 % of the
total community growth could be supported by CCH4,assim in
the 10× treatment and 15 % in the 200× treatment. The re-
maining cell growth, e.g., of the differentially more abundant
OTUs, must have been supported by other carbon sources,
such as initially available DOC.

4.5 MOB and methylotrophs in sea ice

The two sea-ice cores analyzed in this study give a first in-
sight into the possible role of methane oxidizers in sea ice. In
contrast to seawater samples, MOB found in sea ice sam-
ples were mostly α-Proteobacteria. The relative sequence
read abundance of MOB in the ice was very low (maximal

0.1 %), pointing to an overall low contribution of methane
oxidation inside sea ice. The highest relative abundances of
MOB were found in the top-most ice sections in both ice
cores (Fig. 5a). This coincided with the highest methane con-
centration in the case of IC2, whereas the top-most section of
IC1 had the second smallest concentration of methane in this
ice core (Fig. 2e). Relative abundances of MOB in the inner
and bottom sections of the ice cores were even lower, with 0
to 0.02 % only.

The top-most section of IC1 and the biologically rich bot-
tom section of IC2 had the highest relative abundances of β-
Proteobacteria Methylophilaceae, a non-MOB methylotroph.
Recently identified as DMS degraders (Eyice et al., 2015),
Methylophilaceae might use DMS, a methylated compound
abundant in sea ice, as substrate (Kirst et al., 1991).

5 Summary

We studied the structure and methane oxidation potential of
microbial communities from Arctic seawater and sea ice.
The natural seawater community had relative sequence abun-
dances of MOB of 0.24 %± 0.09 % and was dominated by
γ -Proteobacteria MOB, while α-Proteobacteria MOB dom-
inated in sea ice with maximal fractions of ≤ 0.1 % in the
surface of the sea ice. In seawater incubations under differ-
ent methane concentrations, the overall relative abundance
of methane oxidizers (MOB) was low, with a maximum of
2.5 % and the dominant MOB types were γ -Proteobacteria.
A tight correlation between the rate constant of methane
oxidation and relative abundances of MOB and non-MOB
methylotrophs (Fig. 7, Table 5) suggests that the abundance
of MOB is a control on the magnitude of methane oxidation.
It also suggests that non-MOB methylotrophs might play a
role in methane oxidation. The reasons for low MOB abun-
dance, despite ample methane availability, along with the role
of methylotrophs in methane oxidation are both open ques-
tions.

Higher methane concentrations in the sea ice compared to
the underlying water and an offset in stable isotope ratios
suggest that either fractionation and solute concentration oc-
curred during freeze-up or different microbial processes took
place within the ice and water. Possible causes explaining
this observation include (i) microbial production of methane,
even within the ice (Damm et al., 2015), and (ii) microbial
oxidation in the water column and at lower rates in sea ice. To
address these hypotheses, future studies should directly com-
pare both sea ice and water, particularly during ice freeze-up,
and involve investigation of the microbial processes.

Data availability. Raw sequence reads are available at NCBI
under accession numbers SRP144338 (V4-V5) and SRP144333
(pmoA). Physicochemical parameters including methane concen-
tration and isotope ratios were archived at PANGAEA and can
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be accessed via DOIs https://doi.pangaea.de/10.1594/PANGAEA.
889726 (Uhlig and Loose, 2018) and https://doi.org/10.1594/
PANGAEA.874893 (Uhlig and Loose, 2017b).
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