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ABSTRACT 

The lack of resolution and selectivity in current imagining techniques such as x-

ray, optical, and magnetic resonance imaging (MRI) has excelled the development of 

new biosensor technologies. Cryptophane A, a molecular cage composed of two 

cyclotriveratrylene (CTV) units connected by alkoxy bonds, can be turned into 

biosensors by attaching a target moiety capable of binding to a particular analyte. 

Cryptophanes can encapsulate xenon making it an attractive biosensor candidate for 

detection by hyperpolarized xenon-129 (HP-129Xe) MRI. Further detection 

enhancement is achieved by using a technique called hyperpolarized chemical exchange 

saturation transfer (HYPER-CEST). One of the key challenges in developing Xe-

biosensors is the need for water soluble cryptophanes and their attachment to 

biomolecules that specifically bind physiological targets.  

The first manuscript entitled “Functionalization of Cryptophane cages for Xenon 

MRI” discusses the synthesis of cryptophane cages and their potential to be further 

functionalized. The manuscript centers on synthesizing cryptophanes that are water 

soluble functionalized with gold nanoparticles, which can eventually be further 

modified for imaging molecular events in vivo.  

The second manuscript, “Vanadium Catalyzed Oxidative Coupling of sp3 C-H 

Bonds to Heteroarenes” discusses oxidative aminomethyaltion of imdizolpyridines.  

This manuscript proposes a vanadium catalyzed oxidative coupling of imidazopyridines 

with N-methylmorpholine oxide which serves as both sp3 hybridized coupling partner 

and the oxidant.  The reaction was optimized and performed with a variety of substrates 



 

 

to yield on a library of aminomethylated products. We investigated the mechanism and 

propose that a Mannich-type mechanism is responsible for the formation of the product. 
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PREFACE 

The following work is presented in manuscript format according to the 

guidelines presented by the University of Rhode Island Graduate School. This thesis 

will consist of two manuscripts that are currently in the process of publication. 

Manuscript 1 entitiled, “Functionalization of Cryptophane Cages for 129Xe 

MRI” will be submitted to Bioorganic and Medicinal Chemistry Letters in December 

2014.  

Manuscript 2 entitled, “Vanadium Catalyzed Oxidative Coupling of sp3 C–H 

Bonds to Heteroarenes” will be submitted to Organic Letters for publication in 

November 2014.   
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INTRODUCTION 

 

The ability to make a definitive medical diagnosis and follow the onset of certain 

diseases is vital in treating patients. Current imaging techniques, such as CT, PET, and 

MRI, possess different limitations that lower their overall effectiveness (Table 1). 1 

Computed tomography, a non-invasive imaging method, generates an image by using 

X-rays that are absorbed by tissues.2 Though inexpensive, CT is incapable of molecular 

imaging and exposure to hazardous X-ray radiation renders CT a less attractive method 

for imaging. Positron emission tomography (PET) and single photon emission 

computed tomography (SPECT) are capable of anatomical and molecular imaging. 

These techniques are advantageous as there are no depth detection limits, short temporal 

resolutions, no perturbation of biological systems, and they require very low doses of 

the probe molecules.  However, both techniques lack spatial resolution, require 

exposure to harmful radiation and are very costly.1   

Imaging 

Technique 

Image 

generation  

Spatial 

Resolution 

Temporal 

resolution 

Type of 

probe used 

Principal 

Use 

CT X-rays 50-200 

mm 

10 secs to 

mins 

N.A. Anatomical  

PET γ-rays 1-2 mm Minutes Radio 

labeled 

Gene 

expression 

SPECT γ-rays 1-2 mm Minutes Radio 

labeled 

Gene 

expression 

MRI radiowaves 50-500 

mm 

Minutes 

to hours 

Paramagnetic Physiological, 

anatomical  

 Table 1: Characteristics of different imaging techniques1  

Magnetic resonance imaging (MRI) is widely used for scanning deep tissue in 

the diagnosis of human diseases. Though this technique allows for high spatial 

resolution, only a small percentage of hydrogen nuclei align with the magnetic field, 

rendering this technique inherently insensitive. To increase signal intensity, contrast 



 

2 

 

agents, such as gadolinium or iron oxide-based particles are often employed. These 

contrast agents work by changing the T1 and T2 relaxation times of water, thereby 

enhancing signal intensity.3  However, recent findings suggest that development of 

nephrogenic systemic fibrosis (NSF) in patients can be triggered by the administration 

of gadolinium agents.4  Other MRI contrast agents such as manganese and lanthanides, 

are toxic even at low concentrations and interfere with neuronal functions by blocking 

ion-channels.5 As a result, the need for non-toxic and non-proton MRI contrast agents 

needs to be explored. These issues may be circumvented by incorporating the inert noble 

gas xenon-129 (129Xe) as a molecular probe, since it is not present in the body, it is non-

toxic, and it can be hyperpolarized to enhance its sensitivity. Herein, the use of xenon-

129 in MRI, its ability to be hyperpolarized, Hyper-CEST techniques that allow for 

better detection, and the utilization of water soluble cryptophanes as hosts for Xe will 

be discussed.  

Hyperpolarized Xenon 

  Xe exists as two NMR active isotopes, a spin-1/2 nucleus 129 Xe and spin-3/2 

nucleus 131Xe. Only the former is capable of being hyperpolarized.6  The ability to 

hyperpolarize 129Xe is advantageous, as it allows for a 10,000-times signal enhancement 

as a result of the alignment of more nuclear spins with the magnetic field. Where typical 

proton MRI has only a 15 ppm chemical shift range, 129Xe has range over 200 ppm, 

which allows for chemical shift imaging.7 Solubility of xenon in lipid-rich tissue and 

blood allows for imaging of brain, lung and other regions.8   

 Spin exchange optical pumping (SEOP) is a three-step process used to 

hyperpolarize 129Xe. The first step involves the generation of circular polarized light by 
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a Ti:sapphire laser (Figure 2).  In the second step, a droplet of Rb is heated in a glass 

cell, while exposed to a magnetic field, to produce a vapor, which then absorbs circular 

polarized light, driving the selective excitation of the D1 transition state. The third step 

produces hyperpolarized 129Xe. When polarized Rb collides with 129Xe, it transfers the 

spin of its valence electron to the 129 Xe nucleus. As a result of this dipole interaction, 

xenon is now predominately in the state that is aligned with the external magnetic field. 

9 Once hyperpolarized (HP) 129Xe is achieved, it can be delivered in vivo to be imagined. 

 

Figure 1:  SEOP set up 9 

The delivery of HP -129Xe to the body can be achieved through inhalation or 

injection.  Inhalation of hyperpolarized 129Xe permeates through lung tissue and blood, 

allowing for exploration of certain high concentration of characteristics of lung 
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function.10   Studies have shown that inhalation of HP- 129Xe results in highly spatially 

resolved images (Figure 2). Typical 1H MRI is not a viable option for evaluation of 

patients with chronic obstructive lung disease (COPD) or asthma as it is not capable of 

imaging lungs, due to their low proton density (Figure 2 left). While using HP-129 Xe 

in MRI yields an image that allows for distinction between lung airspaces in patients 

with COPD and asthma, rendering HP-129Xe superior  to 1H MRI. 11 

 

Figure 2: MRIs of a subject with COPD and asthma, left: 1H MRI, right: HP-129Xe 

MRI. 11 

   The polarization lifetime of 129Xe is dependent on its molecular environment. 

In oxygenated blood T1 = 13 s, deoxygenated blood T1 = 4 s, and T1 ≈ 100 s in deuterated 

saline solution.6 While long polarization lifetimes are advantageous, they require longer 

time for imaging, which still does not result in optimal detection. Use of a host for 129Xe 

allows for targeted imaging of molecular events.  Such targeted molecular imaging via 
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129Xe MRI is usually accomplished by employing molecular probes that contain cage-

shaped structures that are capable of encapsulating xenon atoms.  The most common 

molecular cage that is used for this task is called cryptophane A. 

Cryptophanes 
Cryptophanes are molecular cages composed of two cyclotriveratrylenes 

(CTVs) that are connected by alkoxy linkers (Figure 3).12 The lipophilic character of 

cryptophane’s cavity allows for reversible binding of small, non-polar molecules, like 

xenon.  

 

Figure 3: a) Cryptophane A, b) cryptophane 3,3,3, c) cryptophane 1,1,1, d) 

cryptophane TAAC, and TTPC.11,13, 14 

The affinity and exchange rate of xenon depends on the cavity size of the 

cryptophane, which is varied by changing the number of carbons in the alkoxy linkers 

that join the two CTVs (Table 2).  As the cavity size of cryptophanes decreases, there 

is an increase in the xenon binding constant.15 While large binding constants are 

advantageous, the development of new detection techniques require the in and out 

exchange to be fast, and therefore, 129Xe should not be so tightly bound.9  



 

6 

 

Cryptophane Cavity Size 

(Å3) 

Binding constant 

(M-1) 

kin (s-1) kout (s-1) 

(1.1.1) 81 10,000 n.d 2.4 

A (2,2,2) 95 3900 50 25 

E (3,3,3) 121 10 n.d n.d 

TAAC A (2.2.2) 95 17,300 n.d n.d 

TTPC n.d 33,000 n.d n.d 

Table 2: Properties of cryptophanes11,12,13 

When 129Xe is bound in the cavity of a cryptophane cage, it produces a unique 

chemical shift distinct from free 129Xe in the 129Xe NMR spectra. The typical chemical 

shift of Xe@cryptophane complexes is demonstrated in Figure 4, where the larger the 

cavity size, the more the peak corresponding to encapsulated 129Xe is shifted up-field.6 

This trend is broken by Xe@cryptophane-1,1,1 with a chemical shift of 31.1 ppm, 

whereas cryptophane A is at 65 ppm. It has been postulated this anomalous result is 

derived from the absence of methoxy groups, which suggests that modifying cages 

with electron withdrawing or donating groups can alter the chemical shift of 

Xe@cryptophanes. 6   Functionalizing cryptophanes with water solublizing groups, 

which are necessary for use in vivo, results in a higher binding affinity of 129Xe (Table 

2).13,15   
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Figure 4: 129Xe NMR spectra of water soluble cryptophanes 16 

One of the most promising applications of cryptophanes that encapsulate xenon 

is their ability create biosensors. This can be achieved by conjugating cryptophanes to 

a targeting ligand, which is capable of binding to a specific biological target, such as 

receptors on tumors or sites of inflammation. For example, Dmoschowiski recently 

synthesized a cryptophane that was tethered to the carbonic anhydrase (CA)-specific 

ligand, benzenesulfonamide.17 When the benzensulfanamide cryptophane binds to CA 

isozomes I or II, it produces a distinctive chemical shift from the biosensor when it is 

free in solution.6   Despite the synthesis of new water-soluble and ligand-ligand-

functionalized cryptophanes, more sensitive techniques for detection of HP- 129Xe needs 

to be addressed.  
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Hyper-CEST 

 Despite the high affinity of cryptophanes to bind 129 Xe, long acquisition times 

are necessary to achieve well-resolved spectra of bound 129Xe. This issue is 

circumvented by incorporating a method called chemical exchange saturation transfer 

(CEST) to enhance detection of hyperpolarized 129Xe, when used in conjunction with 

hyperpolarized 129Xe this technique is called Hyper-CEST. Xenon is an ideal candidate 

for this method due to its long relaxation times and large chemical shift difference 

between bound and free 129Xe.14  

 Instead of directly detecting the 129Xe that is bound in a cryptophane, 

HyperCEST detects the depletion of free 129Xe. In order to do this, an off- and on- 

resonance spectra is acquired. The off-resonance spectrum is a reference spectra 

obtained by applying a continuous wave saturation (Figure 5 A).  The on-resonance 

spectrum is obtained by applying a radio frequency pulse tuned to 129Xe@cryptopane 

signal (Figure 5 B).18 The difference of the on and off resonance spectra results in signal 

only arising from the depletion of the free 129Xe peak.19  The exchange of 129Xe from 

inside to outside the cryptophanes results in a reduction of the free 129Xe peak.  
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Figure 5: Depiction of Hyper-CEST: a) off -resonance spectra b) on-resonance 

spectra (modified from ref 18)18 

When hyperpolarized 129Xe (GREEN) enters the cage a radio frequency pulse 

pre-saturates the bound xenon causing removal of polarization (RED) (Figure 6).17  The 

depolarized 129Xe is then replaced by another polarized 129Xe atom through the natural 

in and out exchange. This cycle continues until there is an accumulation of depolarized 

129Xe.  
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Figure 6: Hyper-CEST process 17 

    

Dmochowski applied this technique to detect a water soluble cryptophane 

(Figure 3D) at concentrations as low as 1.4 pM.20  This indicates that HyperCEST 

should be an effective method for molecular imaging, as its detection limits are similar 

to those of PET and SPECT.  HyperCEST has recently been applied to multi-channel 

detection of cryptophane-A and perfluoroctyl bromide nanodroplets as they both act as 

hosts for 129Xe.18  
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MANUSCRIPT 1 

 

Efforts Towards Cryptophanes Functionalized with AuNPs 

Abstract 

 While advances in imaging have made it possible for the diagnosis of certain 

diseases, there are still many drawbacks.  This paper aims to discuss the use of 

hyperpolarized xenon in conjunction with gold nanoparticles that are decorated with as 

a novel probe for magnetic resonance imaging (MRI). The synthesis of cryptophanes, 

optimization of click reactions, and addition of gold nanoparticles will be discussed.  

General Introduction 

While conventional magnetic resonance imaging (MRI) allows for anatomical 

imaging, it is inherently insensitive due to the minimal amount of protons capable of 

aligning with the instrument’s magnetic field. Minimization of the signal to noise issues 

that are inherent in 1H MRI,  can be achieved by using 129Xe as a molecular probe, as it 

is not present in the body and has the ability to be hyperpolarized, thereby giving a 

10,000-times stronger signal.1   When 129Xe is encapsulated by a porous cage-shaped 

molecule, such as a cryptophane, a new signal, which is well resolved from the chemical 

shift of free 129Xe, is produced in the 129Xe NMR spectrum.  In principle, magnetic 

resonance imaging techniques can translate this unique signal into a high-resolution 3D 

image.  If these cryptophanes are attached to target-specific ligands, the cryptophane 

could serve as a biosensor, where its unique signal would be localized at a specific site 

within the body.  This cryptophane-ligand biosensor will allow for the specific detection 

of molecular processes or receptors.  
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Using hyperpolarized chemical exchange saturation transfer (HyperCEST) 

provides another source of signal amplification allowing for detection of sub-

micromolar concentrations of physiological targets. By selectively irradiating the 129Xe-

cryptophane signal, the loss of magnetization of the larger bulk Xe peak is easily 

detected.  This indirect detection method allows for very low detection limits, indicating 

that HyperCEST imaging could be used for true molecular imaging.1  Cryptophanes can 

be synthesized into biosensors by functionalizing cryptophanes with antibodies or 

peptide ligands that are capable of binding to specific targets in the body, such as 

enzymes. By doing this they are capable of being delivered to human cells and achieving 

concentrations that would allow for in vivo hyperpolarized 129Xe MRI studies. 2 Recent 

HyperCEST NMR experiments of water soluble triacetic acid cryptophane A have 

shown depolarization of 129Xe at a rate of 1.2x104 HP 129Xe atoms per second.3 This 

sensitive detection was performed at picomolar concentrations–a huge improvement 

over previous work at micromolar concentrations. 

Selective biosensors can be synthesized by functionalizing cryptophanes with 

antibodies or peptide ligands that are capable of binding to specific targets in the body, 

such as genes, receptors or enzymes. When the ligands on the biosensor bind to a 

specific target, a unique signal is produced allowing for detection of molecular events 

making it ideal for in vivo hyperpolarized 129Xe MRI studies. 2, 4  

Gold nanoparticles (AuNPs) are capable of being functionalized with a myriad 

of organic or biological ligands that bind selectively to small molecules or biological 

targets. This is achieved by varying the type of capping ligand used and fast or slow 

addition of NaBH4.
5 The use of gold nanoparticles in imaging has grown over the years 
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due to their unique optical properties. Along with the use of gold nanoparticles for 

various modes of imaging, they can be also used for drug delivery.7 For instance, Kim 

et al., developed multifunctional gold nanoparticles capable of anticancer therapy and 

computed tomography (CT) imaging of cancer cells.8 Further benefits of using gold 

nanoparticles is that they are nontoxic and non-immunogenic making them ideal drug 

delivery scaffolds.9  Therefore, tethering both cryptophanes and biological ligands to 

gold nanoparticles would allow for targeted imagining via HP-129Xe MRI.  

 

Scheme 1: Click reaction of cryptophane A to AuNPs (where n = # carbons) 

 

The use of gold nanoparticles to facilitate drug delivery and imaging when 

tethered to a cryptophane is unprecedented. The proposed study will focus on efforts 

towards synthesizing a biosensor consisting of a cryptophane tethered to gold 

nanoparticles via a thiol linker. The addition of protected thiol linkers to cryptophanes 

will be accomplished via the copper-catalyzed Huisgen cycloaddition, the so-called 

azide-alkyne click reaction (Scheme 1). After deprotection of the thiol group, gold 

nanoparticles capped with thiol ligands will be added to AuNPs that have been 

previously capped with labile thiol ligands.  These thiols will undergo ligand exchange 

with the thiols on the cryptophanes to yield the desired nanoparticles decorated with 
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cryptophanes.  The amount of cryptophane loaded onto the nanoparticle surface will be 

quantified by infrared spectroscopy. 

Cryptophanes and Gold Nanoparticles  

Over recent years, AuNPs have become increasingly popular in imaging due to 

their unique optical properties and ability to functionalize the surface with a myriad of 

organic compounds or biological ligands that selectively bind small molecules or 

biological targets.5  Additionally, gold nanoparticles are can be used as drug delivery 

vehicles, as gold nanoparticles have been shown to be non-toxic. Browen et al., achieved 

this by tethering the anti-cancer drug oxaliplatin to gold nanoparticles resulting in direct 

site drug delivery.6 

Tethering gadolinium (Gd) chelates to AuNPs has the capability to enhance the 

contrast signal in 1H MRI images. This enhancement is a result of the large number of 

Gd chelates on each AuNP, allowing for a more pronounced enhancement in contrast 

near the site of the AuNps.7 However, as previously discussed, the toxicity of Gd 

chelates renders them as less attractive modes of imaging. The capability to achieve 

signal enhancement utilizing gold nanoparticles initiated our investigation into 

developing AuNP-based 129Xe biosensors using a cryptophane.  

As originally reported by Dmochowski, the tripropargyl cryptophane-2,2,2 (2 

refers to the number of carbons in the alkoxy bridge between cage top and cage bottom), 

derivative can be accomplished in ten steps.4 The top of the cage, 1.3, was synthesized 

in three steps (Scheme 2). Vanily alcohol is protected with an allyl group in order to 

avoid polymerization in the cyclization step (Scheme 2).  Cyclization was achieved 
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through a Friedel-Crafts cyclization using HClO4 and MeOH. Deprotection of the allyl 

group required excess amounts of Pd/C and TsOH.  

 

Scheme 2: Synthesis of cage top  

 

Though the number of carbons in the propargyl linker can be varied, 

incorporating ethylene bridges results in a cryptophane cavity size that allows for 

optimal binding and exchange of 129Xe. Consequently, we set out to synthesize a 

cryptophane cage containing ethylene bridges between the two cyclotriveratrylenes. 

The linker containing the propargyl group was synthesized in five steps (Scheme 3). 

The first step, selective addition of the propargyl linker to the 3-position the linker 

starting material, 3,4 dihydroxybenzaldehyde was achieved using NaH and propargyl 

bromide. Though both phenols are deprotonated, position 4 is stabilized through 

resonance, therefore not as reactive as the 3 position (1.4). Subsequent steps included 

the addition of an ethylene linker (1.5), reduction of the aldehyde (1.6), a Finkelstein 

reaction (1.7) and finally, protection of the benzyl alcohol as a tetrahydropyranyl (THP) 



 

20 

 

ether (1.8). This protection step was necessary to avoid any unwanted side products in 

the final steps, and was easily removed in situ during the last step. Until recently, the 

majority of the aforementioned reactions required purification using flash 

chromatography, but we have recently developed recrystallization conditions that allow 

for easier scale-up of these synthetic steps. Recrystalization using hexanes and minimal 

amounts of ethyl acetate was implemented for the purification of 1.4, 1.5, and 1.6, 

resulting in analytically pure product. Since there is more of a possibility for side 

products during the first reaction, flash chromatography was kept as a purification 

procedure for the first step. When using recrystallization for the second step, a 77% 

yield was obtained, while using flash chromatography for the same step gave a 75% 

yield. Recrystallization for the reduction step resulted in comparable yields to when 

flash chromatography was used. Though similar yields were obtained, recrystallization 

is less time consuming and requires less solvent, so it became our preferred purification 

method.  

 

Scheme 3: Synthesis of propargyl linker 
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 Once the linker was synthesized, it was added in excess to the cage top and 

heated for two days under nitrogen at 55 ºC in the presence of the base, cesium carbonate 

(Scheme 4, 1.9). The final step in the synthesis of the conjugatable cryptophane (1.10) 

was the cyclization of the cage bottom, through a second Friedel-Crafts reaction, 

mediated by perchloric acid (Scheme 4). The overall yield of this synthesis is rather low 

due unwanted polymerization.  

 

Scheme 4: Synthesis of tripropargyl cryptophane A 

 The conversion of tri-propargyl Cryptophane A to a biosensor can be achieved 

via copper(I)-catalyzed Hugsien cycloaddition “click” of  a targeting moiety.2 Our aim 

was to decorate gold nanoparticles (AuNPs) with cryptophane cages, which potentially 

could increase the cryptophanes’ water solubility improving their applicability for in-

vivo imaging. Using gold nanoparticles also acts as a second scaffold to which 

biological ligands could be tethered.  

There are multitudes of ways to synthesize gold nanoparticles. For our purposes, 

the Brust-Schiffron method was the most attractive, as the resulting tiol capped AuNPs 

are easily re-dispersed in organic solvents, which we envisioned to be an advantage for 

subsequent modification reactions. Additionally, the dodecanethiol capping ligand used 

in the AuNP synthesis is known to readily undergo ligand exchange of a variety of 

thiols.5, 8 Copper(I) catalyzed azide-alkyne cycloaddition (CuAAC), click chemistry, 
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can be used to modify gold nanoparticles by employing an azide linker containing a 

thiol group.9  

The modification of AuNPs using click chemistry can be achieved via indirect 

and direct pathways. The indirect method involves synthesizing AuNPs with a 

dodecanethiol capping ligand that readily undergoes ligand exchange with a thiol-azide 

linker. At this point click chemistry using the appropriate conditions can be carried out 

between a cryptophane bearing alkyne groups, such as 1.10, and the azide-decorated 

AuNP.9a.9a The direct method involves carrying out the click reaction with a protected-

thiol-azide linker and a cryptophane like 1.10 in solution. Once completed, the thiol, 

which is now tethered to the cryptophane, can be deprotected and added as a capping 

ligand during the synthesis of AuNPs. Recent studies have found this method prevents 

aggregation of the consequent AuNPs.9a As a result, our initial attempts employed this 

method.   

 To carry out the click chemistry with the alkynes on cryptophanes, an azide-thiol 

linker needed to be synthesized. We attempted the synthesis of two azide-thiol linkers 

(Scheme 5).  In order to avoid poisoning of the copper catalyst and unwanted side 

products during the click reaction, the thiol group needed to be protected. This was 

achieved using trityl chloride to protect 2-aminoethanelthiol (1.11, Scheme 5) and 

acetate to protect mercaptopropionic acid (1.14). The synthesis of the azide portion of 

the two possible linkers was carried out by refluxing 3-bromopropionic acid or 2-

bromoethylamine with sodium azide.  Both reactions required extended reaction times 

and, unfortunately, were low yielding.  The synthesis of both azide-thiol linkers was 

then achieved using peptide-coupling conditions.   
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Scheme 5: Synthesis of protected thiol azide linkers.  
 

Previous click conditions utilized by Dmochowski, which required Cu2SO4, 

K2CO3, 2,6-lutidine and sodium ascorbic acid, did not result in any product and also are 

not compatible with gold nanoparticles, as salts cause the aggregation of gold 

nanoparticles.4  Therefore, new click conditions needed to be established and optimized. 

To achieve optimal yields when carrying out the click reaction with cryptophanes, the 

reaction was first optimized using the cryptophane linker, 1.5, with the thiol-azide 

linkers.   

Initially, copper sulfate pentahydrate and sodium ascorbic acid conditions were 

applied to click the trityl-thiol-azide linker (1.13) to 1.5 and eventually to tripropargyl 

cryptophane A, 1.10 (Scheme 4). Though yields were sufficient, the inability to 

deprotect the trityl group after the click reaction, resulting in the need to switch to the 

acetate protected thiol linker (1.16), in hopes that it would be easily deprotected. 
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Originally, the same conditions for the previous click reaction were applied to 

conjugate 1.16 to 1.5, however, no product was formed.  It is possible that the bulky 

trityl group on the thiol prevented the copper catalyst from coordinating with sulfur, 

whereas the thioacetate group may not hinder the poisoning of the catalyst. New click 

reactions involving copper(I) bromide [Cu(I)Br] and the hexabenzyltren (tren) ligand 

turned out to give better yields than the previously described conditions. Due to the air 

sensitivity of Cu(I)Br, these reactions were carried out in a Schlenk tube. The first 

conditions applied were using 1 equivalent of the alkyne, 1.5, and 1.1 equivalents of the 

azide, 1.16, with 30 mol% Cu(I)Br and the tren ligand, resulting in a 46% yield (Table 

1). Decreasing the mole percentage of Cu(I)Br and tren actually led to an increase in 

yield, though the reaction took 72 hr to complete.   Optimal reaction conditions were 

found to be 1 equivalent of 1.5, 1.1 equivalent of 1.16, 10 mol% Cu(I)Br  and tren ligand 

at 65 °C for 48 hr, giving a 64% yield (Table 1).   

 

 

 

 

 

 

 

 

 

 

 

 

 

These optimal conditions were modified to achieve the click reaction at all three 

alkynes on the cryptophane. This was achieved by using 40 mol% Cu(I)Br and 40% tren 

Table 1: Optimization click conditions  

Entry 
1.5 

(equiv) 
1.16 

(equiv) 
Cu(I)Br Tren Ligand Solvent Conditions Yield 

1 1 1.1 30% 30% Toluene 
60 °C 
48 hr 

46% 

2 1 1 10% 10% Toluene 
60 °C 
72 hr 

54% 

3 1 1.1 10% 10% Toluene 
65 °C 
48 hr 

64% 
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ligand. The solvent had to be changed from toluene, as cryptophane would not dissolve 

in it, to THF. This allowed for a tri-subsituted cryptophane with acetate-protected thiol 

linkers, 1.19, in a 59% yield (Scheme 6).  

 

Scheme 6: Click pathways to sulfur functionalized cages  

The next step involved deprotecting the acetate group. A multitude of different 

conditions were applied. Initial attempts involved refluxing 1.19 for three hours in 

hydrochloric acid and methanol.  When this did not work, thionyl chloride and then 

acetyl chloride conditions were applied. Neither of these worked and no starting 

material was recovered, leading us to believe that the product decomposed.  Basic 

conditions were then applied, using ethanol and sodium hydroxide or potassium 

hydroxide.  This did not work for the products of the click reaction, but it did work for 

the thioacetate linker (1.16).  The inability to deprotect the thiol, which was needed to 
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carry out the previously discussed direct method of functionalizing AuNPs, led us to 

explore the indirect method of AuNP functionalization. 

As previously mentioned, the indirect method involved ligand exchange of the 

dodecanethiol capping ligand with an thiol-azide chain. Deprotection of the trityl-thiol-

azide linker, 1.13, was achieved using TFA and triethylsilane in DCM. This was then 

added to AuNPs in DCM and stirred for two days at room temperature. The solution 

was concentrated and washed with ethanol to remove any free ligands.  Successful 

ligand exchange was verified by NMR (see supporting information). The click reaction 

between the azide-tethered AuNPs and cryptophane was performed using Cu(I)Br and 

the tren ligand. Unfortunately, the click reaction was not successful even with adding 

excess amounts of catalyst and extended reaction times.  

Another pathway to functionalize nanoparticles was attempted by performing 

ligand exchange between dodecanethiol capping ligand and 11-bromoundecylthiol, 

which was converted into an azide via an SN2 reaction with sodium azide. The formation 

of the azide-decorated AuNPs was verified via NMR, allowing for click chemistry to be 

carried out with tri-propargyl cryptophane using Cu(I)Br and tren ligand.  While the 

click reaction seemed to be successful, the AuNPs aggregated.  

Conclusion 

Future work involves using different deprotection strategies and/or protecting 

groups. Additional routes for AuNP functionalization could be accomplished by 

synthesizing a different cryptophane starting material by substituting one of the 

propargyl linkers in the cryptophane for a linker that is functionalized with thiol group.  



 

27 

 

References 

 

 

1. Schröder, L.; Lowery, T. J.; Hilty, C.; Wemmer, D. E.; Pines, A., Molecular 

Imaging Using a Targeted Magnetic Resonance Hyperpolarized Biosensor. 

Science 2006, 314 (5798), 446-449. 

2. Chambers, J. M.; Hill, P. A.; Aaron, J. A.; Han, Z.; Christianson, D. W.; Kuzma, 

N. N.; Dmochowski, I. J., Cryptophane Xenon-129 Nuclear Magnetic 

Resonance Biosensors Targeting Human Carbonic Anhydrase. Journal of the 

American Chemical Society 2008, 131 (2), 563-569. 

3. Bai, Y.; Hill, P. A.; Dmochowski, I. J., Utilizing a Water-Soluble Cryptophane 

with Fast Xenon Exchange Rates for Picomolar Sensitivity NMR 

Measurements. Analytical Chemistry 2012, 84 (22), 9935-9941. 

4. Wei, Q.; Seward, G. K.; Hill, P. A.; Patton, B.; Dimitrov, I. E.; Kuzma, N. N.; 

Dmochowski, I. J., Designing 129Xe NMR Biosensors for Matrix 

Metalloproteinase Detection. Journal of the American Chemical Society 2006, 

128 (40), 13274-13283. 

5. Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M., Gold Nanoparticles in 

Chemical and Biological Sensing. Chemical Reviews 2012, 112 (5), 2739-2779. 

6. Brown, S. D.; Nativo, P.; Smith, J.-A.; Stirling, D.; Edwards, P. R.; Venugopal, 

B.; Flint, D. J.; Plumb, J. A.; Graham, D.; Wheate, N. J., Gold Nanoparticles for 

the Improved Anticancer Drug Delivery of the Active Component of 

Oxaliplatin. Journal of the American Chemical Society 2010, 132 (13), 4678-

4684. 



 

28 

 

7. Debouttière, P. J.; Roux, S.; Vocanson, F.; Billotey, C.; Beuf, O.; Favre-

Réguillon, A.; Lin, Y.; Pellet-Rostaing, S.; Lamartine, R.; Perriat, P.; Tillement, 

O., Design of Gold Nanoparticles for Magnetic Resonance Imaging. Advanced 

Functional Materials 2006, 16 (18), 2330-2339. 

8. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of 

thiol-derivatised gold nanoparticles in a two-phase Liquid-Liquid system. 

Journal of the Chemical Society, Chemical Communications 1994,  (7), 801-

802. 

9. (a) Li, N.; Zhao, P.; Salmon, L.; Ruiz, J.; Zabawa, M.; Hosmane, N. S.; Astruc, 

D., “Click” Star-Shaped and Dendritic PEGylated Gold Nanoparticle-Carborane 

Assemblies. Inorganic Chemistry 2013, 52 (19), 11146-11155; (b) Lim, J.; 

Yang, H.; Paek, K.; Cho, C.-H.; Kim, S.; Bang, J.; Kim, B. J., “Click” synthesis 

of thermally stable au nanoparticles with highly grafted polymer shell and 

control of their behavior in polymer matrix. Journal of Polymer Science Part A: 

Polymer Chemistry 2011, 49 (16), 3464-3474; (c) Sommer, W. J.; Weck, M., 

Facile Functionalization of Gold Nanoparticles via Microwave-Assisted 1,3 

Dipolar Cycloaddition. Langmuir 2007, 23 (24), 11991-11995; (d) Fleming, D. 

A.; Thode, C. J.; Williams, M. E., Triazole Cycloaddition as a General Route for 

Functionalization of Au Nanoparticles. Chemistry of Materials 2006, 18 (9), 

2327-2334. 

  



 

29 

 

Supporting Information 

 

Efforts Towards Functionalization of Cryptophanes for MRI 

Marissa Simone, and Brenton DeBoef 

University of Rhode Island, Department of Chemistry, 51 Lower College Road, 

Kingston, RI 02881 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

30 

 

Experimental Section 

 

Reagents 

All substrates and solvents were purchased from Sigma-Aldrich and Fisher Scientific. 

Flash chromatography was performed using hand columns or a Teledyne ISCO 

CombiFlashRf apparatus using RediSep Rf Silica gel (60 Å, 40-60 m). 

 

Instrumentation 

GC/MS analysis was carried out on an Agilent Technologies 6890 GC system fixed 

with a 5973 mass selective detector. NMR spectra were acquired with a Bruker 

Avance III 300 MHz spectrometer. 

 

 

Compound 1.1: 3-methoxy-4-(2-propenyloxy) benzenemethanol: 

 
Acetone, vanillyl alcohol (15.48 g, 97.29 mmol), and allyl bromide (12.94 g, 107.01 

mmol) were added to round bottom flask and stirred until homogeneous. K2CO3 (13.44 

g, 97.29 mmol) was added slowly and the mixture was refluxed overnight. The next 

day, the reaction was cooled to room temperature while stirring. Acetone was then 

removed under vacuum.  The resulting white residue was dissolved in 50 mL of DCM 

and 40 mL of H2O. The biphasic solution was transferred to a separatory funnel, and 

the aqueous layer was removed, and the organic layer was washed with 1 M NaOH (3 

x 50 mL) and brine (1 x 50 mL). The organic layer was collected, dried over MgSO4, 

filtered and the solvent was removed under vacuum to yield a yellow powder. 50 mL 
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of EtOAc was added, and then removed under vacuum (to remove excess allyl 

bromide), resulting in 1.1 (15.54 g, 82%) as a fine white powder. All spectral 

information matched literature values.1 

 

Compound 1.2: 2,7,12-Trimethoxy-3,8,13-tris(2-propenyloxy)-10,15-dihydro-5H-

tribenzo cycloononene 

 

 
 

In a round bottom flask equipped with a stir bar, 1.1 (4.91 g, 25.29 mmol) was 

dissolved in methanol (36 mL) and cooled to 0 °C in an ice bath. Perchloric acid (15 

mL) was added dropwise to the flask under N2.  The solution turned magenta while it 

stirred overnight.  The following day, DCM was added to the solution, and it was 

cooled again to 0 °C for 5 min. Then 32 mL of 5 M NaOH was added dropwise over 

10 min followed by the dropwise addition of saturated NaHCO3 (32 mL). The reaction 

was stirred at room temperature for 1-2 hours. The organic layer was then filtered, 

dried with MgSO4 and concentrated. Diethyl ether was added and the resulting 

suspension wad sonicated for 1 hr. The suspension was allowed to stir overnight at 

room temperature. The thickened product was isolated by filtration and the solid was 

dried under high vacuum to yield 1.2 (2.01 g, 15%) as an off -white solid. All spectral 

information matched literature values.1 

 

Compound 1.3 
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In a round bottom 1.2 (3.36 g, 6.34 mmol) was dissolved in THF (100 mL) and EtOH 

(68 mL) in a vacuum-dried flask under N2.  In a separate round bottom flask Pd/C 

(4.06 g, mmol) and TsOH (0.72 g, 4.22 mmol) was dissolved in 25 mL of H2O and 

then added to the other flask. The solution was heated to 75 °C for 2 days. Upon 

completion, the reaction was cooled to room temperature, and filtered over celite. The 

filtrate was concentrated and dissolved with THF and EtOAc. The organic solutions 

was washed 3x with 100 mL of saturated solution of NaHCO3 and 2x with 100 mL of 

brine. The organic layers were isolated, dried over MgSO4, and concentrated to 

dryness. The solid was then digested by stirring in chloroform for 1 hr.  The solid was 

filtered to obtain 1.3 (1.68 g, 35%) as a fine white powder. All spectral information 

matched literature values.1 

 

Compound 1.4: 3 propargyloxy-4-hydroxybenzaldehyde: 

 

 

 
 

To a flame dried 3-neck flask, NaH (0.96 g, 40 mmol) was added, followed by the 

addition of 20mL of DMSO in one portion, and was stirred until dissolved.  3,4- 

dihydroxy benzaldehyde (2.76 g, 20 mmol) was then dissolved in DMSO (12 mL) and 

was added all once at 0C. Once all aldehyde was added, the flask was removed from 

the ice bath, and propargyl bromide (2.37g, 20mmole) was added drop wise by 

syringe. The reaction was stirred overnight at room temperature. Reaction was poured 

over ice and neutralized with 1M HCl and extracted with EtOAc (3 x 75 mL). Organic 
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layers were washed with brine (3 x 50 mL), died over MgSO4, filtered, and the solvent 

was removed under pressure.  Flash chromatography to separated, using 20/80/1 of 

ethyl acetate/hexane/ glacial acetic acid. Pure product, 1.4 (2.60 g, 74%) was isolated. 

All spectral information matched literature values.1 

 

Compound 1.5 propargyloxy-4-(2-bromoethoxy)benzaldehyde: 

 
Added 1.4, propargyloxy-4-hydroxybenzaldehyde (1.65 g, 9.4 mmol), K2CO3 (6.00 g, 

46.9 mmol), and DMF to a three neck flask. Reaction was stirred at room temperature 

for 30 minutes. Dibromoethane (94 mmol, 6 mL) was then added in one portion and 

heated overnight at 60 °C under N2 atmosphere. Mixture was poured over 350 mL of 

water and was extracted using 3 x 10 mL (4 x 75mL) of ethyl acetate. Organic layers 

were washed with NaOH 1M (2 x 75 mL), H2O (75 mL), then brine (3 x 75 mL). 

Organic layer dried over MgSO4, filtered and solvent removed under vacuum. Using 

hexanes and minimal ethyl acetate product was recrystallized to give 1.5 (2.06 g, 77%) 

as a white solid. All spectral information matched literature values.1 

 

Compound 1.6 [3 propargyloxy-4-(2-bromoethoxy)phenyl]methanol 

 
 

To a three neck flask with N2 inlet, 1.5 (1.58 g, 5.60 mmol), was dissolved in 

methanol/THF solvent. Solution was cooled to -9°C in (MeOH/ice) followed by 
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addition NaBH4 (0.25g, 6.70mmole). Mixture was stirred at 0°C for 20 min then 

allowed to warm to rt for an additional 40 min. Mixture was concentrated under 

vacuum and then cooled to 0 °C and acidified with 150 mL of dilute HCl. Sample was 

extracted with ethyl acetate (3 x 50 mL), then washed with brine (3 x 50 mL) and 

dried over MgSO4. Sample was filtered, and concentrated in vacuum and purified 

using recrystallization with hexanes to yield 1.6 (1.48g, 92%) as a white solid. All 

spectral information matched literature values.1 

 

Compound 1.7 [3 propargyloxy-4-(2-iodoethoxy)phenyl]methanol: 

 

 
 

In a round bottom flask, sodium iodide (4.86 g, 32.46 mmol) and 1.6 (2.30 g, 8.11 

mmol) were dissolved in acetone and refluxed overnight. Solvent was removed under 

vacuum and solid was dissolved in DCM and subsequently washed with sodium 

thiosulfate (2 x 50 mL), water (50 mL) and brine (2 x 50 mL). The organic layer was 

dried over MgSO4, filtered and solvent was removed under vacuum to yield pure 1.7 

(2.44 g, 98%) as a white solid. All spectral information matched literature values.1 

 

Compound 1.8 [3-propargyloxy-4-(2-iodoethoxy)phenyl]methanol:  
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In a three neck flask 1.7 (1.82 g, 5.48mmol) was dissolved in THF, to which DHP 

(0.55 g, 6.58 mmol) was then added. In a separate flask PPTS (0.13 g, 0.54 mmol) was 

dissolved in DCM and then added to main reaction flask. The reaction was stirred at 

room temperature overnight. Upon completion the reaction was concentrated under 

reduced pressure and subsequently diluted with EtOAc and washed with water and 

brine. It was then dried over MgSO4, filtered and concentrated by vacuum. The crude 

product was purified using flash chromatography with 20/80 EtOAc/Hexane. Product 

isolated to yield 1.8 (2.08 g, 91%) as yellow oil. All spectral information matched 

literature values.1 

 

Compound 1.9 

 
Cesium carbonate (1.27 g, 3.89 mmol) and 1.3 (0.26 g, 0.65 mmol) were added to a 

dried three neck flask with a stir bar and purged with nitrogen. Dry DMF was then 

added with a syringe and mixture was allowed to stir for 30 minutes at room 

temperature. Then using minimal amounts of DMF, 1.8 was added (1.07 g, 2.59 

mmol). The reaction was stirred under N2 at 65°C for 48 hours. Upon completion the 

reaction was cooled to room temperature and was poured into 100 mL of water. The 

aqueous layer was then extracted with 3 x 75 mL of EtOAc. Combined organic layers 

were washed with 3 x 100 mL of brine. The organic layer was isolated, dried over 
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MgSO4 and concentrated under vacuum. The crude product was purified by flash 

chromatography using 50/50, 60/40, and 75/25 EtOAc/Hex. Product was isolated and 

concentrated down to yield 1.9 (0.52 g, 63%). All spectral information matched 

literature values.1 

 

 

Compound 1.10 Tri-Propargyl Cryptophane A  

 

 
 

To a round bottom containing methanol (165 mL), 1.9 (0.21 g, 0.16 mmol) dissolved 

in DCM (5mL) was added. The reaction mixture was then cooled to 0°C and HClO4 

(165 mL) is added in a drop-wise fashion. Reaction was stirred at room temperature 

for 48 hrs. Upon completion the reaction was quenched with H2O (165 mL) and brine 

(165 mL) and stirred for 1 hour. Half of the mixture was extracted with 4 x 100mL of 

DCM, the organic layer is put aside and the second half of the reaction mixture was 

extracted with 4x100mL of DCM. Organic layers were combined and washed with 

H2O, saturated NaHCO3, and brine. Flash chromatography was performed using a 

gradient of DCM/Acetone 2%-10% to afford pure 1.10 (0.054g, 34%) as a white solid. 

All spectral information matched literature values.1  

 

Compound 1.11: 2-(tritylthio)ethanamine 
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To a round bottom containing thiol ethylamine (1 g, 8.8 mmol), TFA(6.3 mL) was 

added followed by the addition of trityl chloride (2.45 g, 8.8 mmol) and stirred at 

room temperature for three hours. The reaction was then concentrated, diluted with 

EtOAC, washed with 3N NaOH (4 x 15 mL), H2O (15 mL), and saturated NaHCO3 

(15 mL), and brine (15 mL). The organic layer was dried over MgSO4 and 

concentrated down. The reaction was recrystallized using DCM and hexanes yielding 

1.11 (2.68 g, 95%) as white solid.  All spectral information matched literature values.2 

 

Compound 1.12: 3-(azido)propionic acid 

 

Bromopropionic acid (1.52 g, 10mmol) was dissolved in acetonitrile (20 mL) and to it 

NaN3 (1.3 g, 20 mmol) was added. Reaction was refluxed overnight. Acetonitrile was 

removed under vacuum and resulting solid was dissolved in EtOAc (100 mL), washed 

with 0.1M HCl (3 x 60 mL), water (3 x 60 mL), and brine (100 mL). Organic layer 

dried with MgSO4 and concentrated down yielding 3-(azido)propionic acid, 1.12 

(0.50g, 43%) as a yellow oil. All spectral information matched literature values.3  

Compound 1.13:   

 

 
 

To a round bottom equipped with a stir bar, compounds 1.11 (1.16 g, 3.6 mmol), and 

1.12 (0.38 g, 3.3 mmol) were added. Followed by the addition of HBTU (1.50 g, 3.96 

mmol), round bottom was purged with N2 and then dry DCM (20 mL) was added 

followed by DIPEA (1.2 mL, 6.6 mmol). Reaction was stirred at room temperature, 
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under N2 for two days. Upon completion the reaction was washed with NaHCO3 (50 

mL) and brine (50 mL). Organic layer dried with MgSO4, filtered,  and concentrated 

down onto silica. The crude product was purified using a 20/80 - 70/30 solvent 

gradient of EtOAC/Hex. The product was isolated and concentrated down to yield 

1.13 (78%) as a white solid.  

1H NMR (300 MHz, CDCl3): δ 7.46 – 7.35 (Ar CH, m, 6H), 7.33 – 7.27 (Ar CH, m, 

6H), 7.25 – 7.19 (Ar CH m, 3H), 3.57 (COCH2, t, J = 6.5 Hz, 2H), 3.10 (-NHCH2, q, J 

= 6.1 Hz, 2H), 2.44 ( -N3CH2-, t, J = 6.3 Hz, 2H), 2.32 (SCH2- ,t, J = 6.5 Hz, 2H). 
13C NMR (75 MHz, CDCl3): δ 169.72, 144.65, 129.57, 128.06, 126.90, 66.90, 47.31, 

38.35, 35.67, 31.87. 

 
Compound 1.14: Propionicthioacetate  

 
Mercaptopropionic acid (1.4 mL 20mmol)  was added to NaOH (2 M) at 0°C. Acetic 

anhydride was then added and reaction was stirred for 30 minutes at 0°C. Reaction 

was acidified to a pH ≈2 with 6N HCl. Then the mixture was extracted with EtOAc (3 

x 30 mL). Organic layers were combined, dried with MgSO4, and concentrated down 

reduced pressure to yield 1.14 (2.68 g, 91%) as white crystals. All spectral information 

matched literature values.4  

Compound 1.15: 2-azidoethylamine 

 
Bromoethylamine (2.5 g, 12.20 mmol) was dissolved in 10 mL of water, followed by 

the addition of NaN3 (2.38 g, 36.36 mmol) and was refluxed for 21 hrs. Reaction was 

then cooled to 0°C and KOH (4g) was slowly added. The reaction mixture was then 

extracted using diethyl ether (3 x 10 mL) and organic layers were collected, dried over 

MgSO4 and concentrated until 10 mL was left (0.41g, 40%). All spectral information 

matched literature values. 5 

 



 

39 

 

Compound 1.16 

 
To round bottom containing 1.15 (0.67 g, 4.5mmol) and 1.14 (0.43 g, 5.00 mmol) 

were dissolved in DMF. EDC (2.96 g, 15.4 mmol) and HOBT (1.25 g, 8.19 mmol) 

were then added and the reaction was stirred at room temperature for two days. 

Reaction was diluted with water and extracted with DCM (3 x 50 mL). Organic layers 

were then washed with brine, isolated, dried over MgSO4, filtered and concentrated 

down. Purification was performed using flash chromatography (gradient of 

EtOAc/Hexane) to give pure  1.16, (0.42g 44%) as a yellow oil.  

1H NMR (300 MHz, CDCl3): δ 5.92 (NH, s, 1H), 3.38 (d, J = 3.9 Hz, 4H), 3.08 (t, J 

= 7.0 Hz, 2H), 2.45 (t, J = 7.0 Hz, 2H), 2.27 (CH3-CO s, 3H). 
13C NMR (75 MHz, CDCl3): δ 196.21, 170.95, 50.85, 38.97, 36.20, 30.61, 24.85. 

 

Compound 1.17 

 
 

Tris (2 aminoethyl) amine (0.18 g, 1.3 mmol), phenylbenzylbromde (1.05 mL, 8.8 

mmol), and K2CO3 (1.90 g, 13.8 mmol), were refluxed in CH3CN under N2 for 48 hrs. 

Upon completion it was cooled on an ice bath and washed with acetonitrile, water, 

methanol and then dissolved in hot toluene. Toluene washed with brine and dried over 

MgSO4 and solvent was removed. Product was precipitated in methanol giving 1.17 

(0.69 g, 77%) as a yellow oil. All spectral information matched literature values.6   

 

 

Compound 1.18 
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To a vial equipped with a stir bar, 1.10 (0.11 g, 0.11mmol) and 1.13 (0.14 g, 0.33 

mmol) were dissolved in THF (5 mL). An aqueous solution of CuSO4 5H2O was 

added, followed by the slow addition of a freshly prepared aqueous solution of sodium 

ascorbic acid. Reaction was monitored by TLC (98%DCM/2%Acetone), upon 

disappearance of 1.10, THF was removed under vacuum.  

DCM and 3mL of concentrated NH3OH were added and stirred for 30 minutes. The 

organic layer was then washed with water and brine, dried over MgSO4 and filtered. 

Crude product was dried onto silica and purified using a 25 gram column (gradient of 

2/98-20/80 acetone/DCM) on the combi-fash. Product was isolated to yield 1.18 

(52%) as a white solid.   

1H NMR (300 MHz, CDCl3): δ 7.72 (tetrazole CH, s, 3H), 7.42 – 7.36 (m, 20H), 7.30 

– 7.19 (m, 32H), 6.81 (s, 3H), 6.77 (d, J = 1.4 Hz, 6H), 6.66 (s, 3H), 5.52 (-NH, t, J = 

5.7 Hz, 3H), 5.15 – 4.98 (-OCH2C, m, 6H), 4.67 (-COCH2, t, J = 6.4 Hz, 6H), 4.53 (-

OCH2CH2O-, dd, J = 13.6, 6.3 Hz, 6H), 4.17 (-ArCH2, s, 12H), 3.56 (-OCH3, s, 9H), 

3.37 (-OCH2CH2O-, dd, J = 14.2, 3.9 Hz, 6H), 3.03 (-NHCH2-, dt, J = 7.3, 3.6 Hz, 

6H), 2.75 (-NCH2-, t, J = 6.4 Hz, 6H), 2.40 (-CH2S-, t, J = 6.3 Hz, 6H). 
13C NMR (75 MHz, CDCl3): δ 168.85, 149.63, 148.37, 147.71, 146.52, 144.52, 

134.06, 133.23, 131.63, 129.47, 128.01, 126.87, 123.98, 121.65, 120.72, 117.99, 

114.46, 69.26, 66.93, 63.81, 56.03, 45.90, 38.33, 36.13, 31.64. 
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Compound 1.19 

 

 

 
 

To a Shlenk tube equipped with a stir bar, 1.10 (61 mg, 0.064 mmol), 1.16 (41 mg, 

0.19 mmol), and 1.17 (35 mg, 0.051 mmol) were added under N2 and dissolved in 2 

mL of THF. In the glove box Cu(I)Br (7.3 mg, 0.051mmol) was added to the Shlenk 

tube. The reaction was heated at 65°C for two days and monitored by TLC (2/98 

acetone/DCM), upon disappearance of 1.10, the reaction was worked up by removing  

THF under reduced pressure. Then DCM was added and the organic layer was washed 

with water and brine, dried over MgSO4, filtered and then dried onto silica for 

purification. Purified using 25 gram column and a gradient (2/98-20/80) of 

acetone/DCM on combi-fash. The product was isolated to yield 1.19 (59%) as a white 

solid.   

1H NMR (300 MHz, CDCl3): δ 7.60 (s, 3H), 6.80 (s, 3H), 6.69 (d, J = 13.4 Hz, 6H), 

6.59 (s, 3H), 6.12 (s, 2H), 5.15 – 5.00 (m, 6H), 4.49 (q, J = 6.7, 6.3 Hz, 12H), 4.12 (s, 

12H), 3.75 (d, J = 5.6 Hz, 6H), 3.56 (-OCH3, s, 9H), 3.32 (d, J = 13.7 Hz, 6H), 3.06 (t, 

J = 7.0 Hz, 7H), 2.42 (t, J = 6.9 Hz, 6H), 2.25 (-COCH3, s, 9H). 
13C NMR (75 MHz, CDCl3): δ 196.01, 171.30, 149.56, 148.29, 147.77, 146.45, 

134.10, 133.37, 131.68, 129.57, 123.70, 121.40, 120.58, 114.41, 69.20, 63.93, 56.07, 

49.71, 39.46, 36.11, 30.63, 24.76. 
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Compound 1.20: AuNPs 

  

  Gold nanoparticles were synthesized with dodecanethiol capping ligands using 

the Brust-Schiffrin “two-phase” method.7 An aqueous solution of HAuCl4 H2O (0.10 

g, 0.30 mmol) was mixed with tetraoctylammonium bromide (0.71 g, 1.31 mmol) in 

toluene. The solution was stirred vigorously until all of the gold was transferred into 

the organic layer. Dodecanethiol (0.055g, 0.27 mmol) was then added and stirred for 

20 mins, at which point the solution turned clear. An aqueous solution of NaBH4 (0.12 

g. 3.24 mmol) was slowly added and the resulting solution turned brown. The reaction 

was then stirred for 3 hrs at room temperature. The organic phase was then isolated 

and concentrated down to ~5 mL, which was then mixed with 200 mL of EtOH and 

kept at -18° C for 4 hours. The dark brown precipitate was then filtered off and re-

dissolved in 5 mL of toluene, which was then precipitated again using 100 mL EtOH. 

The suspension was then filtered and washed with copious amounts of EtOH to 

remove any free dodecane thiol, product was dried under vacuum overnight. 

Transmission electron miscopy validated the presence of AuNPs.  

 

Compound 1.21: Azide-AuNPs 

The 11-bomoundecylthioacetate (0.10 g, 0.32 mmol) was dissolved in 1 mL of 

ethanol. NaOH was added (0.1 mL) and reaction mixture was refluxed for 2 hrs. The 

reaction was then neutralized with 6 mL of 2 M HCl. The mixture was transferred to 

separatory funnel and then 10 mL of diethyl ether was added followed by the addition 

of with 5 mL of H2O. The organic layer was washed with 5 mL of H2O, isolated, dried 

of MgSO4 and then filter. The solvent was removed and product was left to dry under 
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vacuum overnight. The deprotected 11-bomoundecylthiol was then dissolved in DCM 

and added to AuNPs.  AuNPs functionalized with 11-bromoundecylthiol (28 mg) were 

dissolved in DCM (6 mL) and added to a solution of sodium azide (70 mg) in DMSO 

(6 mL). The solution was stirred for 2 days at room temperature. An IR was taken to 

verify the presence of an azide and once complete water was added and the organic 

layer was isolated. The AuNPs were washed with ethanol and then dried under 

vacuum to yield AuNPs-N3 (0.021 g). FTIR: 2094.06 cm-1 

 

 
1H NMR spectra of compound 1.13 

 
 

 

 

 
13C NMR spectra of compound 1.13 
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1H NMR spectra of compound 1.16 
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13C NMR spectra of compound 1.16 
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1H NMR spectra of compound 1.18 
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13C NMR spectra of compound 1.18 
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COSY of 1.18 
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HMQC of Compound 1.18 
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1H NMR spectra of compound 1.19 
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Transmission Electron Microscopy (TEM) images of 1.20
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Transmission Electron Microscopy (TEM) images of 1.20
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MANUSCRIPT 2 

 

Vanadium Catalyzed Oxidative Coupling of sp3 C-H Bonds to Heteroarenes 

 

Abstract 

The vanadium-catalyzed oxidative coupling of substituted 2-phenyl-

imidiazo[1,2-a]pyridines to N-methylmorpholine which acts as the sacrificial oxidant 

has been achieved. This reaction was applied to various 2-phenyl-imidiazo[1,2-

a]pyridines substrates resulting in yields as high as 90%. 

Introduction 

 

Incorporating new carbon–carbon and carbon–nitrogen bonds into organic 

molecules is an apparent need in today’s chemical industry. There have been many 

recent advances in this field, most using metal catalysis, however most require pre-

functionalization steps and have poor atom economy.1 The ability to oxidatively couple 

two carbon hydrogen bonds (or carbon–hydrogen and nitrogen –hydrogen) to form a 

carbon-carbon bond (or carbon–nitrogen bond) with no pre-functionalization would be 

ideal.2  Incorporating C–N bonds via cross dehydrogenative coupling can be 

accomplished through direct oxidative amination or oxidative aminomethylation.   The 

direct formation of C–N bonds under oxidative conditions has been achieved through 

various methods.3 Ami-nomethylation is an alternative and convenient way to incor-

porate C–N bonds (Scheme 1). The less common oxidative aminomethylation is shown 

by Uang et al., who achieved oxidative aminomethylation of naphthalenes.5   Another 

example of aminomethylation is shown by Mitchel et al., who developed a method for 

installing N-methylmorpholine on imidazopyridines structures, a precursor to an active 
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pharmaceutical ingredient that could serve as a treatment of several myeloproliferative 

disorders.10   

 

There are numerous methods to oxidatively couple two sp2 hybridized carbons 

in high yields.2  The coupling of an sp3 to an sp2 hybridized carbon is much less common 

due to the less reactive nature of sp3 hybridized C–H bonds compared to that of sp2 ¬C–

H bonds.4 In order to achieve sp3 C–H bond activation, reactive directing groups are 

often needed.3 Another difficulty is the potential for β-hydride elimination after C–H 

activation of sp3 bonds.4 The oxidative coupling of a sp3 C–H bond to a sp2 C–H bond 

has received little attention,4,5,6,7 so there is still a great need to invent new ways of 

oxidatevly coupling sp3- sp2 carbon bonds in an efficient and green way.  

Pharmaceuticals such as necopidem, saripidem, and zolpidem contain a 

substituted imidazo[1,2-a]pyridines back bone (Figure 1).8  Providing a way to 

oxidatively couple the 3 position of 2-phenyl-imidazo[1,2-a]pyridine with alkyl 

derivatives would be a useful tool to have when synthesizing pharmaceuticals. This 

paper proposes a vanadium catalyzed oxidative coupling of imidazopyridines with N-

methylmorpholine oxide which serves as both sp3 hybridized coupling partner and the 

sacrificial oxidant. Using these conditions we were able to perform oxidative 

aminomethylation of imidazopyridines.  

Scheme 1- Amination vs Aminomethylation 
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Figure 1: Pharmaceuticals with imidazo[1,2-a]pyridines backbones 

 

  The synthesis of the starting material is accomplished in one step via an 

imminium formation followed by a nucleophlic cyclization (Scheme 2).9 The nature of 

the substituents on pyridine or bromoacetophenone did not greatly affect the starting 

material yields 1.  

 

Scheme 2: Synthesis of Starting Material 

 

Results and Discussion 

 

In order to achieve optimum conditions we screened solvent, catalys, catalyst 

loading, time, and equivalents of NMO. Ethanol, toluene, and tetrahydrofuran were 

initially tested as alternative solvents (Table 1 entries 4, 5, and 6). Nevertheless, none 

had comparable yields to methylene chloride.  The mole percent of vanadium (III) 

acetylacetonate, VO(acac)2 was varied from 25% to 10%,  showing that lower catalyst 

loading provided minimal impurities. To ensure that VO(acac)2 was the ideal catalyst 

to use we tested V2O5 ( entries 9,10.16 and 17).  While it eliminated the formation of the 

impurity, 3, it required longer reaction times and low amounts of NMO (entry 16), 

which still did not result in comparable yields to when VO(acac)2 was used under the 

same conditions (entry 14) .  The best yield was achieved using 10% of 
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(VO(acac)2), 5 equivalents of NMO for 6  hours in methylene chloride (entry 12). 

However by changing the solvent from methylene chloride to 1,4 - dioxane and 

increasing the catalyst loading VO(acac)2, we were able to avoid any of 3 from forming 

and achieve an 80% yield.  Performing a GC time study gave further insight into when 

the reaction would produce the least impurity (see Chart 1). The starting material was 

always present in small amounts as was 3. We stopped the reaction at 12 hours despite 

VO(acac)2 Time

Mol% (hrs)

1 25 10 DCM 18 59 3.7

2 10 10 DCM 18 68 0.3

3 20 10 DCM 18 62 2.7

4 20 10 Ethanol 18 33 1.5

5 20 10 Toluene 18 30 28.5

6 20 10 THF 18 57 1.3

7 20 10 DCM 18 68 2.2

8 20 5 DCM 18 68 10.7

9 20
b 5 DCM 5 58 15

10 20
b 5 DCM 4 31 14.9

11 10 5 DCM 18 72 4.6

12 10 5 DCM 6 88 5.8

13 20 5 Dioxane 12 80
c 0

14 20 3 DCM 18 69 18.7

15 20 3 DCM 4
incomplete 

conversion
--

16 20
b 3 DCM 18 57 0

17 20
b 1.2 DCM 18 36 5

18 20 1 DCM 18 52 34.2

(a) Product yield determined by NMR (b) V2O­5 used as catalyst (c) Actual yield

entry NMO Solvent
Product 

Yield 
a 3

Table 1- Optimization of the Reaction Conditions 
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the presence of starting material to avoid product decomposition. As such we decided 

to perform our substrate scope using entry 13 as our optimized conditions. 

Performing this reaction using substrates with electron withdrawing groups on 

the para position of the phenyl substituent resulted in less favorable yields or did not 

react. While electron donating groups in the para position lead to higher yields. Looking 

at the substrate scope (table 2) entry 10 has a nitro substituent in the para position 

resulted in no product while entry 8 with an ether substituent in the same position gave 

us an 84% yield.  The addition of a second electron donating substituent led to lower 

yields than only one electron donating group (4). Changing the position of the methyl 

group at C6 (entry 6) as to C8 (entry 7) gave a slightly higher yield. Yields varied with 

different halogens substituted at the phenyl para position.  For instance, a chlorine 

substituted phenyl ring had a much higher yield than when a bromine or fluorine was 

substituted in the same position. The addition of a methyl group at C7 on the Br para 

substituted ring gave a lower yield then fluorine. Methyl groups at the C6 position for 

both fluorine and chlorine substituted rings had high yields.  
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Table 2: Substrate Scope  

 

Previous studies of vanadium oxidative coupling of structures similar to 1 

propose a radical mechanism,10
  while others theorize product is formed by way of a 
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Mannich-type reaction.5 We propose a Mannich type mechanism is responsible for the 

formation of our product (Scheme 4). This was determined by running a Mannich 

reaction using 1, formaldehyde, and morpholine to make the imminium in situ resulting 

in yields up to 98% (scheme 3).  Running our normal reaction conditions in the presence 

of TEMPO, a radical inhibitor, did not prevent product from forming further proving 

this reaction a Mannich-type mechanism is responsible.  

 
Scheme 3-Pure Mannich Conditions 

 

As such we believe the product is formed by the following mechanism (scheme 

4). The N- methyl morpholine oxidizes the VO(acac)2 catalyst resulting in the formation 

of the imminium ion. The vanadium species extracts a proton from 1 which then attacks 

the immionium ion forming our product 2. The elimination of water from vanadium 

regenerates the catalyst. We believe the main impurity is formed when the imminiom 

reacts with one of the ligands from the vanadium catalyst.  
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Scheme 4- Proposed mechanism of product and impurity 

 

Conclusions 

  

 The vanadium cataylzed oxidative coupling of substituted imidazole pyridines 

to nmethylmorpholene was achieved in yields up to 90%. Despite the ability to 

produce this product using true mannich conditions we believe this to useful method to 

demonstrate oxidative coupling.  
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Experimental Section 

 

Reagents 

All substrates were purchased from Sigma Aldrich and Fisher Scientific. Flash 

chromatography was performed using Teledyne ISCO CombiFlashRf Apparatus using 

RediSep Rf Silica gel (60 Angstroms, 40-60 microns). 

Instrumentation 

GC/MS analysis was carried out on an Agilent Technologies 6890 GC system fixed 

with a 5973 mass selective detector]. NMR spectra were acquired with a Bruker 

Avance III 300 MHz spectrometer. 

 

 

 

 

 

 

 

 

 

 

 

 

 

General Synthesis of 2-phenyl- Imidazo[ 1,2-a] pyridines: 
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2-amino pyridine (1.3 g 13.8 mmol), 1-bromoacetophenone (2.19 g, 11.1 mmol), 

sodium bicarbonate (1.45 g, 17.25 mmol) and ethanol (9 ml) were added to a flask. A 

stir bar was added and the reaction was stirred at 60°C for 4hrs. The reaction was 

monitored by TLC at a 50:50 ethyl acetate: hexanes solvent system. After reaction was 

completed, the ethanol was rotavapped off, and 50mL of water was added in portions 

to dissolve the solid. The water was then extracted with two 50mL portions of ethyl 

acetate and dried with sodium sulfate. The filtrate was rotavapped off. A column was 

ran (80 g column on a gradient) to yield 1.66 g (78%) of product. All spectral 

information matched literature values.1 

Representative Procedure for Synthesis of substituted imidazole pyridines with 

N- methylmorpholene 

Imidazo[1,2-a]pyridine (1 mmol), NMO (5 mmol), VO(acac)2 (20 mol%), were 

dissolved in 1,4-dioxane (4 mL), and refluxed for 12 hrs. Upon completion the 

reaction was evaporated and diluted with water (10mL) and extracted with EtOAc 

(2x10mL). Organic layers were dried of Na2SO4 and concentrated. Purified by column 

chromatography using 4/1 EtOAc:Hex.  
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Characterization of Compounds: 

Characterization of Compound 2 

 
1H NMR (300 MHz, CDCl3): δ 8.43 (dd), 7.80 (m), 7.64(dt,), 7.46(m), 7.38 (m), 7.22 

(ddd), 3.98 (s), 3.67(t), 2.48 (t)  
13C NMR (101 MHz, CDCl3): δ 145.35, 145.10, 134.46, 128.87, 128.44, 127.74, 

125.29, 124.53, 117.29, 115.88, 111.85, 66.98, 53.19, 52.12. 

LRMS EI (m/z): [M+] calc’d for C18H19N3O 293.15, observed 293.10 
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Spectroscopic Data for Novel Compounds in Table 3: 

Characterization of Compound 3.4 

 
1H NMR (400 MHz, CDCl3): δ 8.42 (d,J =6.9 Hz, 1H) 7.70 (d, J=8.39 Hz, 2H), 

7.63(d, J=9.2hz, 1H), 7.27(d, J= 7.9 Hz, 2H), 7.24 – 7.17 (m, 1H), 6.82(t J=6.4 Hz, 

1H), 3.96(s, 2H), 3.67 (t, J=4.6 Hz, 4H), 2.48 (t, J=4.6Hz, 4H), 2.41 (s, 3H) 
13C NMR (101 MHz, CDCl3) δ 145.40, 145.04, 137.51, 131.55, 129.17, 128.17, 

125.24, 124.41, 117.20, 115.61, 111.75, 66.99, 53.19, 52.16, 21.28. 

LRMS EI (m/z): [M+] calc’d for C19H21N3O 307.17, observed 307.20  
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Characterization of Compound 3.5 

 
1H NMR (400 MHz, CDCl3): δ 8.51 (s, 1H), 7.69 (d, J= 8.0, 2H ), 7.53 (d, J=9.0, 

1H), 7.26 (d, J = 7.4, 2H), 7.06 (d, J = 9.3,1H), 3.93 (s, 2H),  3.67 (t, J=4.4 , 4H), 2.48 

(t, J=4.4, 4H), 2.40 (s, 3H), 2.37 (s,3H)  
13C NMR (101 MHz, CDCl3): 145.23, 144.10, 137.35, 131.73, 129.13, 128.66, 127.53, 

122.72, 121.31, 116.53, 115.36, 67.02, 53.20, 52.10, 21.27, 18.53. 
LRMS EI (m/z): [M+] calc’d for C20H23N3O 321.18, observed 321.20 
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Characterization of Compound 3.6 

 
1H NMR (300 MHz, CDCl3): δ 8.15, (s, 1H), 7.75 (d, J=8.72 Hz, 2H), 7.53 (d, J= 

9.55 Hz 1H), 7.08 (d, J=9.45 Hz, 1H), 7.00 (d, J=8.86 Hz, 2H), 3.92 (s,2H), 3.87 (s, 

3H), 3.69 (t, J= 4.47 Hz, 4H), 2.49 (t, J =4.49 Hz ,4H), 2.38 (s, 3H) 
13C NMR (75 MHz, CDCl3): δ 159.36, 143.87, 130.03, 127.84, 122.70, 121.59, 

121.00, 120.32, 116.35, 115.06, 113.93, 77.44, 67.01, 55.31, 53.20, 52.07, 18.54.  

LRMS EI (m/z): [M+] calc’d for C20H23N3O2 337.18, observed 337.20 
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Characterization of Compound 3.7 

 
1H NMR (400 MHz, CDCl3): δ 8.15 (s, 1H), 7.55 (d, J=9.2 Hz 1H), 7.33 – 7.41 (m, 

3H), 7.07 (d, J =9.2 Hz 1H), 6.92 (d, J = 7.5 1H), 3.94 (s, 2H), 3.88 (s, 3H), 3.68 (t, J = 

4.4 Hz, 4H), 2.50 (t, 4H), 2.38 (s, 3H) 
13C NMR (101 MHz, CDCl3): δ 159.67, 145.09, 144.10, 135.99, 129.36, 127.68, 

122.66, 121.49, 121.24, 116.65, 115.74, 113.86, 67.01, 55.34, 53.20, 52.01, 18.54. 

LRMS EI (m/z): [M+] calc’d for C20H23N3O2 337.18, observed 337.20 
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Characterization of Compound 3.8 

 
1H NMR (300 MHz, CDCl3): δ 8.13 (s, 1H), 7.55 (d, J = 9.2 Hz, 1H), 7.49 (s, 1H), 

7.37 (d, J = 8.3, 1H), 7.08 (d, J = 9.6 Hz, 1H), 6.96 (d, J = 8.2 Hz, 1H), 3.98 (s, 3H), 

3.94 (s, 3H), 3.70 (t, J = 4.4 Hz, 4H), 2.52 (t, J = 4.5 Hz, 4H), 2.39 (s, 3H). 
13C NMR (75 MHz, CDCl3): δ 148.95, 148.76, 145.01, 143.95, 127.72, 127.32, 

122.47, 121.58, 121.11, 116.44, 115.19, 112.02, 110.95, 67.02, 55.99, 55.91, 53.23, 

52.04, 18.55. 

LRMS EI (m/z): [M+] calc’d for C21H25N3O3 367.19, observed 368.0 
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Characterization of Compound 3.9 

 
1H NMR (300 MHz, CDCl3):  δ 8.27 (d, J = 6.8 Hz, 1H), 7.44 (d, J = 1.9 Hz, 1H), 

7.39 – 7.29 (m, 1H), 7.02 (d, J =  7.0 Hz, 1H), 6.96 (d, J = 8.3 Hz, 7.6 Hz, 1H), 6.76 (t, 

J = 6.8 Hz, 1H), 3.98 (s, 3H), 3.94 (s, 3H), 3.93 (s, 2H), 3.68 (t, J = 4.5 Hz, 4H), 2.67 

(s, 3H), 2.50 (t, J = 4.5 Hz, 3H). 
13C NMR (75 MHz, CDCl3) δ 148.95, 148.81, 145.27, 144.77, 127.34, 127.05, 

123.51, 122.82, 121.43, 115.83, 112.37, 112.03, 111.02, 67.01, 55.97, 55.94, 53.22, 

52.16, 17.18. 

LRMS EI (m/z): [M+] calc’d for C21H25N3O3 367.19, observed 367.20 
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Characterization of Compound 3.10 

 
1H NMR (400 MHz, CDCl3): δ 8.40 (d, J = 7.1 Hz, 1H), 7.81 – 7.74 (m, 2H), 7.64 (d, 

J = 9.06 Hz, 1H), 7.22 (t, J = 6.7Hz, 1H), 7.11 (m, 2H), 6.83 (t, J = 6.7 Hz, 1H), 3.93 

(s, 2H), 3.67 (t, J = 4.4 Hz, 4H), 2.47 (t, J = 4.4 Hz, 4H).  
13C NMR (101 MHz, CDCl3): δ 162.57 (JCF = 253 Hz), 145.07, 144.48, 130.63, 

130.53 (JCF = 9 Hz), 125.18, 124.67, 117.28, 115.42 (JCF 21 Hz), 115.32, 111.98, 

66.96, 53.20, 52.05. 

LRMS EI (m/z): [M+] calc’d for C18H18FN3O 311.14, observed 311.10  
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Characterization of Compound 3.11 

 
1H NMR (400 MHz, CDCl3): δ 8.13 (s, 1H), 7.81 – 7.74 (m, 2H), 7.51 (d, J = 9.2 Hz, 

1H), 7.16 – 7.09 (m, 2H), 7.06 (dd, J = 9.2, 1.7 Hz, 1H), 3.88 (s, 2H), 3.66 (t, J = 4.6 

Hz, 4H), 2.46 (t, J = 4.6 Hz, 4H), 2.36 (s, 3H). 
13C NMR (101 MHz, CDCl3): δ 162.50 (JCF = 245 Hz), 161.28, 144.32, 144.13, 

130.45 (JCF = 8 Hz), 127.79, 122.64, 121.57, 116.61, 115.51, 115.37 (JCF = 21 Hz), 

66.98, 53.20, 51.98, 18.53. 

LRMS EI (m/z): [M+] calc’d for C19H20FN3O 325.16, observed 325.20 
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Characterization of Compound 3.12 

 
1H NMR (400 MHz, CDCl3): δ 8.27 (d, J = 6.9 Hz, 1H), 7.80 – 7.72 (m, 2H), 7.36 (s,  

1H), 7.18 – 7.08 (m, 2H), 6.66 (dd, J = 7.1, 1.7 Hz, 1H), 3.89 (s, 2H), 3.65 (t, J = 4.6 

Hz, 4H), 2.45 (t, J = 4.4, 4H), 2.40 (s, 3H).  

13C NMR (101 MHz, CDCl3): δ162.4 (JCF = 250 Hz), 161.28, 145.49, 144.11, 135.64, 

130.45 (JCF = 9 Hz), 124.37, 115.55 (JCF = 20 Hz), 115.16, 115.26, 114.62, 66.97, 

53.17, 52.04, 21.34. 

LRMS EI (m/z): [M+] calc’d for C19H20FN3O 325.16, observed 325.20 
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Characterization of Compound 3.13 

 
1H NMR (400 MHz, CDCl3): δ 8.40 (d, J = 7.0, 1.2 Hz, 1H), 7.78 – 7.72 (m, 2H), 

7.62 (d, J = 9.0Hz, 1H), 7.45 – 7.39 (m, 2H), 7.22 (ddd, J = 9.2, 6.7, 1.3 Hz, 1H), 6.83 

(t, J = 6.9 Hz, 1H), 3.93 (s, 2H), 3.66 (t, J = 4.6 Hz, 4H), 2.46 (t, J = 4.6 Hz, 4H). 
13C NMR (101 MHz, CDCl3) δ 145.13, 144.18, 133.74, 133.00, 130.06, 128.67, 

125.18, 124.77, 117.33, 116.07, 112.05, 66.93, 53.19, 52.02. 

LRMS EI (m/z): [M+] calc’d for C18H18ClN3O 327.11, observed 327.10 
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Characterization of Compound 3.14 

 
1H NMR (400 MHz, CDCl3): δ 8.14 (s, 1H), 7.78 – 7.74 (m, 2H), 7.52 (d, J = 9.2 Hz, 

1H), 7.43 – 7.38 (m, 2H) 7.07 (dd, J = 9.1, 1.7 Hz, 1H), 3.89 (s, 2H), 3.66 (t, J= 4.6 

Hz, 4H), 2.46 (t, J = 4.6 Hz, 4 H), 2.36 (s, 3H)  
13C NMR (101 MHz, CDCl3) δ 144.21, 144.03, 133.58, 133.20, 130.00, 128.61, 

127.90, 122.62, 121.67, 116.67, 115.82, 66.96, 53.19, 51.96, 18.54. 

LRMS EI (m/z): [M+] calc’d for C19H20ClN3O 341.13, 342.0 
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Characterization of Compound 3.15 

 
1H NMR (400 MHz, CDCl3): δ 8.58 (s, 1H), 7.74 – 7.69 (m, 2H), 7.52 (d, J = 9.5 Hz, 

1H), 7.45 – 7.41 (m, 2H), 7.29 (dd, J = 9.5, 1.9 Hz, 1H), 3.92 (s, 2H), 3.68 (t, J = 4.6 

Hz, 4H), 2.46 (t, J = 4.6 Hz, 4H). 
13C NMR (101 MHz, CDCl3): δ 144.94, 143.56, 134.11, 132.45, 130.03, 128.78, 

128.22, 125.38, 117.96, 116.48, 106.73, 66.89, 53.21, 52.04. 

LRMS EI (m/z): [M+] calc’d for C18H17BrClN3O 405.02, 407.00 
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Characterization of Compound 3.16 

 
1H NMR (400 MHz, CDCl3): δ 8.40 (d, J = 7.0 Hz, 1H), 7.72 – 7.66 (m, 2H), 7.62 (d, 

J = 9.1 Hz, 1H), 7.59 – 7.55 (m, 2H), 7.25 – 7.20 (m, 1H), 3.93 (s, 2H), 3.66 (t, J = 4.6 

Hz, 4H), 2.46 (t, J = 4.6 Hz, 4H). 
13C NMR (101 MHz, CDCl3): δ 145.15, 144.19, 133.45, 131.62, 130.36, 125.18, 

124.80, 122.00, 117.35, 116.10, 112.07, 66.93, 53.19, 52.03. 

LRMS EI (m/z): [M+] calc’d for C18H18BrN3O 371.06, observed 371.10 
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Characterization of Compound 3.17 

 
1H NMR (300 MHz, CDCl3): δ 8.28 (d, J = 7.1 Hz, 1H), 7.69 (d, J = 8.6 Hz, 2H), 

7.58 (d, J = 8.5 Hz, 2H), 7.38 (s, 1H), 6.68 (d, J = 6.7 Hz, 1H), 3.91 (s, 2H), 3.67 (t, J 

= 4.6 Hz, 4H), 2.47 (t, J = 4.6 Hz, 4H), 2.43 (s, 3H). 
13C NMR (101 MHz, CDCl3): δ 145.60, 143.86, 135.79, 133.63, 131.58, 130.31, 

124.38, 121.84, 115.71, 115.52, 114.73, 66.97, 53.17, 52.03, 21.38. 

LRMS EI (m/z): [M+] calc’d for C19H20BrN3O 385.08, observed 385.10   
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Characterization of Compound 3.18 

 
1H NMR (400 MHz, CDCl3): δ 8.59 (s, 1H), 7.69 – 7.64 (m, 2H), 7.62 – 7.57 (m, 

2H), 7.53 (dd, J = 9.5, 0.8 Hz, 1H), 7.29 (dd, J = 9.5, 1.9 Hz, 1H), 3.93 (s, 2H), 3.69 

(t, J = 4.5 Hz, 4H), 2.47 (t, J = 4.5 Hz, 4H). 
13C NMR (101 MHz, CDCl3): δ 144.93, 143.56, 132.89, 131.72, 130.31, 128.24, 

125.37, 122.35, 117.95, 116.49, 106.75, 66.88, 53.20, 52.02. 

LRMS EI (m/z): [M+] calc’d for C18H17Br2N3O 448.97, observed 451.00 
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Characterization of Compound 3.19 

 
1H NMR (400 MHz, CDCl3):) δ 8.59 (s, 1H), 7.71 – 7.61 (m, 2H), 7.52 (d, J = 9.5, 

1H), 7.33 – 7.19 (m, 3H), 3.95 (s, 2H), 3.68 (t, J = 4.6 Hz, 4H), 2.46 (s, 4H), 2.41 (s, 

3H). 
13C NMR (101 MHz, CDCl3): δ 146.18, 143.46, 137.86, 131.02, 129.26, 128.67, 

127.77, 125.41, 117.81, 116.06, 106.37, 66.93, 53.19, 52.15, 21.29. 

LRMS EI (m/z): [M+] calc’d for C19H20BrN3O 385.08, observed 385.10 
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Characterization of Compound 3.21 

 
1H NMR (400 MHz, CDCl3): δ 8.57 (s, 1H), 7.73 – 7.67 (m, 2H), 7.51 (d, J = 9.4 Hz, 

1H), 7.28 – 7.24 (m, 1H), 7.03 – 6.96 (m, 2H), 3.94 (s, 2H), 3.86 (s, 3H), 3.69 (t, J = 

4.6 Hz, 4H), 2.47 (t, J = 4.6 Hz, 4H). 
13C NMR (101 MHz, CDCl3) δ 159.54 , 145.98 , 143.41 , 130.00 , 127.71 , 126.45 , 

125.31 , 117.71 , 115.73, 113.99 , 106.31 , 66.93 , 55.30 , 53.20 , 52.15 . 

LRMS EI (m/z): [M+] calc’d for C19H20BrN3O2 401.07, observed 403.10 
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Characterization of Compound 3.22 

 
1H NMR (400 MHz, CDCl3): δ 8.90 (s, 1H), 8.27 (d, J =7.6 Hz, 1H), 8.22 (d. J = 6.9 

Hz, 1H) , 8.19 (d, J = 8.39, 1H ) 7.61 (t, J = 8.0 Hz, 1H), 7.04 (d, J = 6.8, 1H), 6.79 (t, 

J = 6.9 Hz, 1H), 3.91 (s, 2H), 3.70 (t, J = 4.6 Hz, 4H), 2.65(s, 3H), 2.52 (t, J = 4.6 Hz, 

4H). 
13C NMR (101 MHz, CDCl3) δ 148.44 , 145.67, 142.39, 136.60 , 134.65 , 129.37 , 

127.64 , 123.88 , 123.79 , 122.43 , 122.24 , 117.55 , 112.60 , 66.91 , 53.11 , 51.75 , 

17.05 . 

LRMS EI (m/z): [M+] calc’d for C19H20N4O3 352.15, observed 352.20 
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