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ABSTRACT 

Microarray technology is a high-throughput technique that allows a researcher to 

reduce the amount of reagents for each experiment as well as conduct multiple 

experiments with varying conditions simultaneously with the capability of analyzing 

this data quickly. Such microarray techniques have been applied in different fields 

such as environmental, pharmaceutical, microbiology, and biomedical among others 

(Kricka 2001).  

Chapter 1 provides an introduction to microarray technology with a description of 

three different techniques: Phenotypic Microarray, DNA Microarray and Protein 

Microarray, used to study different aspects of microorganisms. 

Chapter 2 presents the first manuscript, “A novel application of microarray 

technology to respiration study of Escherichia coli”, with a focus on the development 

of a respirometric protocol to monitor the respiration of Escherichia coli over time.  

Chapter 3 presents the second manuscript, “Effect of Dysprosium oxide 

nanoparticles on Escherichia coli”, with a focus on the application of the developed 

respirometric methodology in Chapter 2 to the toxicity effect of dysprosium oxide 

nanoparticles on Escherichia coli.  

Chapter 4 presents the third manuscript, “Anaerobic growth of Acidithiobacillus 

ferrooxidans using microarray technology”, with a focus on the development of an 

anaerobic growth methodology for the reduction of iron to be used in future 

nanotoxicity studies.  
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PREFACE 

The format utilized for this thesis is the manuscript format instructed by the 

Graduate School. There will be three manuscripts that encompass the thesis. 

Chapter 2 presents the first manuscript entitled, “A novel application of 

microarray technology to respiration study of E. coli”.  

Chapter 3 presents the second manuscript entitled, “Effect of Dysprosium oxide 

nanoparticles on Escherichia coli” is in preparation by Nelson Anaya, Farrah 

Solomon, and Vinka Oyanedel-Craver. 

Chapter 4 presents the third manuscript entitled, “Anaerobic growth of 

Acidithiobacillus ferrooxidans using microarray technology” is in preparation by 

Farrah Solomon, Dr. Dawn Cardace, and Vinka Oyanedel-Craver. 
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CHAPTER 1 

 

INTRODUCTION 

Environmental microbiology techniques used to study growth and respiration 

processes of microorganisms have been used for as water quality management, 

nanotoxicology and environmental biogeochemical studies (Fuma et al. 2005; Koster 

et al. 2003; Giller et al. 1998). Traditional techniques such as growth inhibition using 

agar plates (Agarwal et al. 2012), respirometric tests with manometric bottles (Tzoris 

et al. 2005; (Zhang and Oyanedel-Craver 2012) and microcosms constructed to model 

a niche (Fuma et al. 2005), use large amounts of resources and time. To overcome 

these challenges, microarray-based techniques can be applied to conduct experiments 

in an efficient and effective manner.     

Microarray techniques use an array (alignment of rows and columns) to analyze 

multiple conditions in a single run. These arrays can be developed on chips or within 

microplates (Heller 2002; Howbrook et al. 2003; Jacobsen et al. 2007). Microarray 

techniques use volumes of reagent in the microliter scale. The high-throughput nature 

of this technique makes its application possible to a wide variety of fields such as: 

environmental, pharmaceutical, microbiology, biomedical, and clinical research 

(Kricka et al. 2001). Examples of microarray-based techniques are phenotype 

microarray, DNA microarray and protein microarray.  

Phenotype microarray (PM) techniques uses a microplate, either commercially or 

custom made, to analyze the metabolic functions of microorganisms based on different 

growth conditions (Borglin et al. 2012). Previous studies have demonstrated the ability 
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to measure cell growth and cell respiration using tetrazolium dye (Bochner 2008; 

(Bochner et al. 2001). Reduction of the tetrazolium dye can occur at the cellular 

membrane or intracellular at the mitochondria level, for microorganisms and 

mammalian cells. When a carbon source is consumed (Figure 1-1), metabolic activity 

transports electrons from that carbon source to the electron transport chain in the cell 

membrane or mitochondria where the tetrazolium dye is reduced and as a result it 

produces a purple color (Bochner et al. 2001; Tremaroli et al. 2009). 

 
Figure 1- 1 Reduction of Tetrazolium violet by cellular electron transport chain 

(Bochner et al. 2001). 

 

The purple color can be quantified using a microplate reader at a wavelength of 

590nm (Klimek et al. 2007). PM techniques have been primarily developed for growth 

assays requiring nutrients for the microorganisms to grow (Bochner et al. 2001; 

Bochner 2008; Borglin et al. 2012). Additionally, this technology has been used to 

monitor respiration of bacteria for non-growth application that studies metabolic 

activity only in a stable population of microorganisms under different conditions 

(Omsland et al. 2011). The isolation of bacterium, Coxiella burnetti, from its host 



3 

 

animal cell was placed within a constructed stable environment where microarray 

technology was used to study non-growth conditions within a microplate to measure 

the effects of different nutrients through cellular respiration (Omsland et al. 2011). 

DNA and protein microarray methodologies are used to analyze gene expression 

(Howbrook et al. 2003) and protein identification (Templin et al. 2002), respectively, 

using either a chip and/or microplates. These methodologies can be used for 

phylogenetic identification of microorganisms in ecological communities (Zhou et al. 

2002) and biomedical studies for cancer and drug analysis (Afshari et al. 1999; Liotta 

et al. 2003). Unlike the phenotype microarray methodologies, DNA and protein 

microarray methodologies require the extraction of the DNA or protein from the cell 

type in study or from microorganisms. An example of a DNA microarray based 

methodology uses a fluorescence compound called SYBR Green I to quantify DNA 

(Leggate et al. 2006). For protein array based methods the Bradford Assay that uses 

Coosmassie Blue G-250 and the bicinchoninic acid (BCA) assay both quantify protein 

(Sapan et al. 1999).  

PM, DNA and protein microarray techniques have been used to primarily study 

aerobic microorganism. However, recent studies have been intended to apply 

microarray techniques under anaerobic conditions and have reported microarray 

procedures for anaerobic growth studies of Desulfovibrio vulgaris and Paracoccus 

denitrificans (Borglin et al. 2009; Koutny et al. 2005). Studying anaerobic growth is 

essential to understand some biogeochemical cycles, that could be used for 

applications such as remediation of acid mine drainage sites or enhanced wastewater 

treatment (Gadd 2004; Natarajan et al. 2008; Narihiro et al. 2007).  
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Microarray techniques can be used to study the effect of new materials released in 

the environment such as nanoparticles (NPs).  NPs are defined as particles less than 

100nm and can be found in different shapes such as spherical or tubular (Nowack et 

al. 2007; Handy et al. 2008). They can occur naturally or engineered through various 

methods. Some examples of naturally occurring NPs are soot, organic colloids or 

humic acids (Nowack et al. 2007). Naturally occurring NPs can also be found in 

natural waters (Handy et al. 2008). Naturally inorganic NPs are iron oxides or aerosols 

such as sea salt (Nowack et al. 2007). Anthropogenic NPs can be manufactured by 

various methods resulting in different sizes, shapes and surface functionalizations. 

This includes silver nanoparticles (AgNPs), which are used to eliminate and prevent 

antimicrobial growth for medical applications because of their antimicrobial properties 

(Kaler et al. 2010). Also, iron oxide and dysprosium oxide nanoparticles are 

commonly used as contrasting agents in magnetic resonance images (Hofmann-

Amtenbrinka et al. 2010).  

Engineered nanoparticles can have unique physiochemical properties not typically 

compared to naturally occurring NPs. These may include larger surface area, increased 

purity, specific controllable shapes and surface structure (Nowack et al. 2007; Nel et 

al. 2006). As a result, these engineered NPs may remain longer in the environment 

which poses a threat to microorganisms and larger organisms before finally degrading 

and becoming inert. Therefore, it is very important to study the effects of these 

engineered NPs on microorganisms to determine potential risks of their release into 

the environment.  
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This study aims to develop two microarray methodologies: respirometric assay 

for the evaluation of dysprosium oxide nanoparticles (nDyO) toxicity effect on 

Escherichia coli (E. coli) and anaerobic growth for future nanotoxicity studies of 

Acidithiobacillus ferrooxidans (A. ferro.) under anaerobic conditions The second 

chapter will present a methodology manuscript describing the development of the 

respirometric methodology for E. coli. The third chapter will present the application of 

the respirometric methodology to conduct toxicity studies in order to evaluate the 

toxic effect of nDyO on E. coli. Lastly, the fourth chapter will present data on 

development of an anaerobic methodology for the growth of A. ferro. 
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CHAPTER 2 

 

A novel application of microarray technology to respiration study of E. coli 

2.1 Abstract 

Current advancements in techniques for biotechnology applications has created an 

ongoing paradigm shift from traditional techniques to effective high-throughput 

techniques. Microarray technology allows for the analysis of multiple conditions 

simultaneously. The objective of this study is to develop a non-growth microarray 

based technique to measure the respiration of E. coli for future nanoparticle toxicity 

studies. Initial non-growth conditions incorporated the use of a tetrazolium dye, that 

can be reduced through metabolic activity of E. coli to produce a quantitative purple 

color, a PM-MTOX1 plate containing eight carbon substrates to assess different stages 

of the metabolic process in E. coli (concentration measured at Abs670nm at 3.0) and the 

Biolog OmniLog microplate reader that can measure the dye color change over time at 

35
o
C. Final non-growth conditions used an in house prepared microplate instead of the 

PM-MTOX1 to test different concentrations of glucose which resulted in the use of 

glucose concentrations 140 mg/L and below for future nanotoxicity tests since glucose 

concentration 210 mg/L and above exhibited an inhibitory effect on E. coli. Lastly, 

initial toxicity testing using dysprosium oxide nanoparticles (nDyO) were compared 

within the Biolog OmniLog and the Synergy
TM

 microplate reader. The Biolog 

OmniLog uses a colorimetric proprietorial method and the Synergy
TM

 MX microplate 

reader takes absorbance measurements of the dye. Percent Remaining Respiration 

(PRR) of the bacteria unaffected by nDyO was calculated for each microplate reader 
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and similar trends observed. The results were as followed for 0.1 mg/L, 0.5 mg/L and 

1.0 mg/L nDyO: Biolog Omnilog PRR was 90.0%, 60.4% and 32.1%, respectively 

and Synergy
TM 

MX microplate reader PRR was 95.1%, 55.7% and 22.5%, 

respectively. Both microplate readers showed similar trends and therefore could 

measure the toxicity of nDyO on E. coli, however the Synergy
TM 

MX microplate 

reader was selected for future nanoparticle toxicity studies because of its highly 

customizable protocols and different shaker speeds.  

2.2 Introduction 

Activity of microorganisms can be study using growth and respiration assays 

(Giller et al. 1998; Koster et al. 2003; Fuma et al. 2005). Examples of some techniques 

are manometric bottles to assess changes in respiration (Tzoris et al. 2005; Zhang and 

Oyanedel-Craver 2012), inhibition agar plates for growth of specific microorganisms 

only or to test the ability of microorganisms to resist certain inhibitors (Agarwal et al. 

2012) and microcosms constructed to model a niche for specific impact studies (Fuma 

et al. 2005). However, it is known that these techniques require the use of large 

amounts of reagents and time. To overcome these challenges, a novel microarray-

based technique has been developed to conduct experiments efficiently and in a cost 

effective way.  

Microarray techniques use an array to analyze multiple conditions simultaneously 

and only use reagent volumes in a microliter scale compared to the respirometric 

manometric bottle test (i.e. milliliter volume). The high-throughput nature of this 

technique has been applied to environmental studies, pharmaceutical, microbiology, 

biomedical and clinical research (Kricka et al. 2001). Phenotype Microarray (PM) is 
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an example of a microarray technique used to analyze the metabolic functions of 

microorganisms based on different growth conditions with the use of a tetrazolium dye 

indicator (Bochner et al. 2001).  The tetrazolium dye is reduced by active cellular 

respiration (producing a purple color) that can be measured by a microplate reader to 

assess growth and cell respiration as proven in previous studies (Bochner 2008; 

Bochner et al. 2001; Tremaroli et al. 2009; Klimek et al. 2007). 

PM techniques are primarily based on growth assays that require nutrients for the 

microorganisms to grow, however this technique has been used to monitor respiration 

of bacteria within non-growth conditions (Bochner et al. 2001; Borglin et al. 2012). 

Omsland (2011) studied the isolation of Coxiella burnetti from its host animal cell and 

its placement within a constructed stable environment to measure the effects of 

different nutrients on cellular respiration using this technique.  

This study aims to implement microarray techniques to adapt the traditional 

respirometric technique to a microarray based technique. The implementation of a 

non-growth or respiration microarray based technique will allow for initial toxicity 

testing within two microplate readers, the Biolog OmniLog and the Synergy
TM

 MX 

microplate reader, for result and capability comparison for future nanotoxicity testing.  

2.3 Materials 

A nonpathogenic wild strain of E. coli purchased from IDEXX laboratory was 

selected for this study because it has been extensively studied. E. coli is a gram 

negative bacterium that has been found to be metabolically active in saline solution 

without growth (Doudoroff 1940) also, is a candid microorganism for 

nanotoxicological studies. Growth media for this bacteria consisted of 10 g/L NaCl, 5 
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g/L yeast extract, 10 g/L Tryptone (purchased from Sigma Aldrich). A centrifuge 

(ThemoScientific Sorvall Legend x1R) was used for the collection of E. coli at 2000 

rpm for 15min.  

Dysprosium oxide nanoparticles (nDyO) (99.9%), glucose and NaCl were 

purchased from Signma Aldrich. The concentration range of nDyO, 0.1 mg/L, 0.5 

mg/L and 1.0 mg/L, were used to cover background environmental concentrations 

while simultaneously covering higher concentrations of nanoparticle exposure for 

worst case scenarios. Glucose conditions 140 mg/L and 210 mg/L were used as a 

carbon source for E. coli, unless stated differently, to ensure measureable metabolic 

responses. One water chemistry condition, 85 mg/L NaCl (ionic strength of 1.45 mM), 

remained constant throughout all preliminary experiments, unless otherwise specified. 

This concentration was selected because it was based on ionic surface water 

concentrations (Hoecke et al. 2011).  

Tetrazolium dye (Redox Dye Mix A; information about Redox Dye Mix A is 

available from Biolog, Hayward, CA) purchased from Biolog was used to measure the 

respiratory activity of E. coli. The tetrazolium dye is reduced by active cellular 

respiration and produces a purple color (Bochner et al. 2001; Tremaroli et al. 2009) 

measurable by a microplate reader at wavelength of 590nm (Klimek et al. 2007) or by 

photometric measurements, over time.  

Two different microplates were used during the development of the respirometric 

microarray based methodology: PM-M TOX1 and blank, 96-half area, flat-bottomed, 

clear polystyrene microplate (Costar
TM

 brand) microplates. 
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2.4 The development of the respirometric microplate methodology  

Initial experiments were performed in the Biolog OmniLog to establish growth 

and non-growth conditions because this equipment was calibrated to measure changes 

in the reduced tetrazolium dye. Initial growth and non-growth conditions were 

established using the PM-MTOX1 microplate. After growth and non-growth 

conditions were achieved, there was a transition to prepare user made plates instead of 

PM-MTOX1 so that different concentrations of carbon substrates could be tested. The 

further improved methodology was tested within two different microplate readers. The 

Biolog OmniLog uses a colorimetric method and the Synergy
TM

 MX takes absorbance 

measurements to detect changes within the dye. Preliminary toxicity experiments 

using nDyO were conducted within each microplate reader and their results compared. 

Capabilities of the instruments were also taken into consideration before the final 

selection was made to use for future nanotoxicity experiments.  

2.4.1 Growth conditions using a PM-MTOX1 microplate within the Biolog 

OmniLog 

Microplate growth and non-growth conditions used a PM-MTOX1 microplate 

because it contained eight carbon substrates. In Figure 2-1, the PM-MTOX1 

microplate layout is provided. A single carbon substrate in a single row does not vary 

in concentration. Exact concentrations of each type of carbon source were not 

provided by the manufacturer; however they are within the range of 5 mM to 10 mM. 

This plate was selected because it is commonly used for toxicity testing and provides 

carbon substrates found in different metabolic stages of E. coli. 
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Figure 2- 1 PM-MTOX1 microplate layout consisting of 8 carbon 

substrates. 

 

Growth conditions within the PM-MTOX1 microplate consisted of a yeast culture 

media, bacteria solution and 1% dye added (Tremaroli et al. 2009) (Table 2-1).  E. coli 

concentration was fixed to OD670nm 0.07 before the addition of dye to the media. Cell 

solution of 100 µl was evenly inoculated into each well of the microplate (B. Bochner, 

personal communication, October 17, 2012) and incubated at 35
o
C.  

 Table 2- 1 Grow conditions within the Biolog OmniLog 

Media yeast culture media 

Carbon Substrate  multiple substrates  

Tetrazolium Dye 1% 

Microplate Type PM-M TOX1  

Temperature 
o
C  35  

Bacteria (E. coli) inoculum  85% Turbidity = Abs670nm 0.07 

Time (hrs) 24 

 

Figure 2-2 represents a growth curve produced by the Biolog OmniLog. The 

typical growth curve stages: Lag phase, Exponential phase, and Stationary phase are 

identified with arrows in the graph. A control lacking bacteria was used to determine 

minimal background coloration of the tetrazolium dye and culture media, and to 
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ensure non-spontaneous reduction of the dye. Expected coloration in the plate due to 

the growth of E. coli did occur and validated use of the tetrazolium dye. 

     
Figure 2- 2 Growth of E. coli over 24 hrs using the Biolog OmniLog  

on α-D-Glucose. Each line consisted of an average of 9 wells.  

 

2.4.2 Non-growth conditions using a PM-MTOX1 microplate within the Biolog 

OmniLog 

Establishing a non-growth methodology allows quantitative information to be 

gathered on a stable microorganism population in regards to nanoparticle toxicity 

studies easier than on a growing and constantly changing population of 

microorganisms. The transition from growth conditions to non-growth conditions 

using a microplate incorporated the basic methodology used for the conventional 

manometric respirometric bottle test. A brief summary of the conventional 

manometric respirometric bottle test is followed by a summary of preliminary test 

conditions conducted to establish the non-growth conditions within the microplate. 
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2.4.2.1 Conventional manometric respirometric bottle test  

The conventional manometric respirometric bottle tests are used to measure 

bacterial inactivation batch tests using small bottle that consist of a magnetic stirrer 

and a small container that fits within the bottle that contains NaOH to absorb the CO2 

produced. An electronic pressure sensor based on the piezoresistive ideology measures 

kinetic pressure changes equivalent to the O2 depletion in the attached measuring 

head. The measurements taken by the measuring head are under sealed and constant 

temperature conditions which are recorded by the OxiTop controller (OxiTop control 

system, WTW Weilheim, Germany).   

The procedure used by Zhang and Oyanedel-Craver (2012) for toxicity testing of 

silver nanoparticles (nAg) served as the basis for the developed respirometric 

microarray based methodology. Briefly, bacteria were incubated at different water 

chemistry conditions and constant temperature (25
o
C) and before the addition of 

glucose and nAg and the endogenous respiration of the system measured by pressure 

drop over 2 to 3 hrs. In the next 2 to 3 hrs the oxygen uptake rate (OUR) of the system 

was measured after the injection of 0.5 ml of glucose followed by the injection of 0.25 

ml nAg for the remainder of the experiment. The altered OUR of the system measured 

after the injection of nAg determined the amount of bacteria reduced. The total 

duration of the experiment was about 20 hrs. The survival rate was calculated using an 

equation modified from Tzoris et al. (2005):   

Survival rate(%)
Pt P

Pc P
100     

where, 
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P = Endogenous respiration of bacteria measured as OUR before the addition of 

carbon source and nAg.  

Pc = pressure drop after glucose injected.  

Pt = OUR after nAg injected.  

 
Figure 2- 3 Example bacteria deactivation respiration curve (Zhang and 

Oyanedel-Craver, 2012). 

 

2.4.2.2 Non-growth conditions within the PM-MTOX1 microplate  

The manometric respirometric bottle tests conducted by Zhang and Oyanedel-

Craver (2012) served as the basis for the non-growth conditions tested within the PM-

MTOX1 microplate. Table 2-2 summarizes the non-growth conditions for both the 

manometric respirometric bottle test and the conditions tested for the PM-MTOX1 

microplate.  
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Table 2- 2 Non-growth conditions of the manometric respirometric bottle test 

and the non-growth conditions tested using the PM-MTOX1 microplate. 

 

 

 

 

 

 

 

Different carbon sources were tested via the PM-MTOX1 microplate to determine 

which one would be used for future toxicity tests using nanoparticles. A range of E. 

coli concentrations were tested to determine which would provide enough reduction of 

the tetrazolium dye to produce a quantifiable amount of color change. The temperature 

of the microplate experiments were conducted at 35
o
C to ensure the metabolic 

response was strong enough to reduce the tetrazolium dye and provide enough color 

change. Lastly, the duration of the experiments initially started at 48 hrs and decreased 

overtime due to no change in measurable dye over a certain period of time.   

One preliminary experiment illustrated in Figure 2-4 show two E. coli inoculum 

concentrations (Abs670nm 0.30 and 3.0) tested on three different carbon substrates over 

24 hrs. Based on the curves, it was determined that glucose would be used as a carbon 

source and an Abs670nm value of 3.0 would be used for E. coli concentration for future 

experiments (Table 2-3).  

Respirometric Bottle Conditions 

Microplate Non-Growth 

Conditions Tested 

Media NaCl [85 - 8500 mg/L] NaCl [85 mg/L] 

Carbon Substrate  Glucose [70 - 210 mg/L] multiple 

Tetrazolium Dye No 1% 

Microplate Type No PM-M TOX1 

Temperature 25
o
C 35 

E. Coli  

Abs670nm 0.30 ≈ 10
9  

CFU/mL  Abs670nm 0.03 - 3.0 

Time (hrs) 20 12 to 48 
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Figure 2-4 Non-growth curves of E. coli over 24 hrs using the Biolog 

OmniLog on α-D-Glucose, D-Galactose and D-Glucose-1-Phosphate. Blue 

curves indicated an Abs590nm 0.30 and green curves of 3.0. Each curve 

consisted of an average of 4 wells. 

 

Table 2- 3 Best Non-growth conditions using the PM-MTOX1 microplate. 

Best Microplate Non-Growth Conditions  

Media NaCl [85 mg/L] 

Carbon Substrate  α-D-Glucose  

Tetrazolium Dye 1%  

Microplate Type PM-M TOX1  

Temperature 
o
C  35 

E. coli density w/in microplate  Abs670nm 3.0  

Time (hrs) 24  

 

2.4.3 Non-growth conditions using a in-house made microplate 

Non-growth conditions using a PM-MTOX1 microplate provided limited control 

over using different concentrations of glucose. By using the in-house prepared plate, 

glucose concentrations could be varied. Also, all materials could now be prepared in a 

background of 85 mg/L NaCl except the tetrazolium dye. Glucose range of 0 mg/L to 

350 mg/L were tested and the results shown in Figure 2-5. It is important to mention 
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that at this time, E. coli solutions were refrigerated at least 30 min prior to inoculation 

into the microplate. Refrigeration decreased the metabolism of the bacteria and 

allowed for a homogenous metabolic reaction to the glucose.  

 

Figure 2- 5 E. coli (Abs670nm 0.30) respiration curves on 4 concentrations of 

glucose with a control of [0mg/L] of glucose. Each curve consisted of an 

average of 12 normalized wells. 

 

Based on the results in Figure 2-5, optimal glucose concentrations of 140 mg/L 

and below were chosen for future nanoparticle toxicity tests. Higher glucose 

concentrations were not considered because our experiments showed that they have an 

inhibitory effect on metabolic processes on E. coli. To ensure changes in metabolic 

activity were accurately measured, well values were normalized by their initial 

absorbance values considering metabolic activity is a function of bacteria 

concentration.  The experimental duration was further shortened to 12 hrs since 

changes in the reduction of the dye remained unchanged.   
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2.5 Biolog OmniLog vs Synergy
Tm

 Microplate reader  

The Biolog OmniLog and the Synergy
Tm

 Microplate reader measure changes in 

the tetrazolium dye by using two different methods, colorimetrically and by 

absorbance, respectively. The Biolog OmniLog uses a color camera that takes images 

from the top of the microplate over time to quantify the reduced dye (Bochner et al. 

2001). The Synergy
Tm

 Microplate reader can measure the changes in the reduced dye 

by measuring the absorbance of light at a particular wavelength (590 nm) over time. 

To determine if the Synergy
Tm

 Microplate reader could be used for future nanoparticle 

toxicity studies, a comparison test between the two microplate readers was conducted.  

Figure 2-6 (a) and (b) are respiration curves of E. coli (Abs670nm 3.0) (70 µl) using 

three concentrations of nDyO 0.1 mg/L, 0.5 mg/L and 1.0 mg/L (10 µl) with 140 mg/L 

glucose (10 µl) in 85 mg/L NaCl. 10 µl of tetrazolium dye was added to all wells 

within both microplates and all wells mixed 10 times using a multichannel pipette. 

Both tests for each microplate reader were conducted at 35
o
C and readings were taken 

after 15 min for a total of 18 hrs. A section of the curve from 1 to 2 hrs was analyzed 

for their slope values and compared with the control within the microplate which  
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Figure 2- 6 Respiration curves of E. coli on three concentrations of nDyO.  

Each curve produced from the Biolog OmniLog (a) consisted of an average 

of 6 normalized wells. The Synergy
TM

 MX microplate reader (b) produced 

curves consisting of an average of 12 normalized wells. 

 

contained no nDyO. Table 2-4 shows the toxicity results of nDyO on E. coli between 

hours 1 and 2. The results show a very similar trend, which suggest that both methods 

are capable of measuring toxicity effects of nDyO on E. coli through respiration or 
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non-growth conditions. The values variability may be attributed to the difference in 

instrumental measurements and variation between microplates.  

Table 2- 4 Percent Remaining Respiration (PRR) between the Biolog OmniLog 

and the Synergy
TM

 Mx microplate readers between 1 and 2 hrs.  
Biolog OmniLog Synergy

TM
 MX microplate reader 

Slopes 

(BCUdye/(hrs•BCUb)) PRR (%) 

Slopes  

(Absdye/(hrs•Absb )) PRR (%) 

Control 1.72  control 0.54  

nDyO [0.1 mg/L] 1.57 90.9 nDyO [0.1 mg/L] 0.52 95.1 

nDyO [0.5 mg/L] 1.04 60.4 nDyO [0.5mg/L ] 0.30 55.7 

nDyO [1.0 mg/L] 0.55 32.1 nDyO [1.0 mg/L] 0.12 22.5 

 

With further investigation into the capabilities of the Biolog OmniLog and the 

Synergy
TM

 MX microplate reader, the Synergy
TM

 MX microplate reader proved to be 

more advantageous to future nanoparticles toxicity studies. Observed disadvantages of 

the Biolog OmniLog were the main mechanism of measuring the tetrazolium dye, lack 

of shaking capability and the limited ability to customize a protocol for measuring 

changes in the reduced dye. Unlike the Synergy
TM

 MX microplate reader which uses 

absorbance to measure changes in the tetrazolium dye, the Biolog OmniLog uses the 

change of pixel density recorded by a camera (Bochner et al. 2001) making 

understanding the unit of measurements difficult and incomparable. Furthermore, the 

Synergy
TM

 MX microplate reader can perform other methods of measurements such as 

fluorescent for fluorescent assays. The Synergy
TM

 MX microplate reader also has a 

highly customizable protocol that can even allow the user to inject reagents into each 

microplate well. In addition, the microplate reader has the capability to shake 

horizontally from size to size or back to front with different shaker speed settings. The 

main disadvantage of the Synergy
TM

 MX microplate reader is that the user can only 

read one microplate at a time, as opposed to the Biolog OmniLog that can read up to 
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20 microplates at one time.   

2.6 Conclusion   

The respirometric microarray methodology developed in this study was able to be 

used for initial toxicity studies of nDyO on E. coli using both the Biolog OmniLog and 

the Synergy
TM

 MX microplate reader. After comparison toxicity tests with nDyO on 

E. coli between the Biolog OmniLog and the Synergy
TM

 MX microplate reader and 

evaluating each microplate reader’s capabilities, it was decided that the Synergy
TM

 

MX microplate reader would be used for future nanoparticle toxicity tests. nDyO 

toxicity results obtained using this respirometric microplate methodology will be 

further discussed in chapter 3 in relation to the author’s contributions in the 

manuscript, “Effect of Dysprosium oxide nanoparticles on Escherichia coli.” 
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CHAPTER 3 

Effect of Dysprosium oxide nanoparticles on Escherichia coli 

3.1 Abstract 

Rare Earth Element oxide nanoparticles such as dysprosium oxide nanoparticles 

(nDyO) are increasingly being applied to the biomedical field due to their 

paramagnetic properties. Appropriate recycling systems for nDyO are thereof deficient 

and will result in nDyO entering into the environment in high concentrations through 

various pathways.  The objective of this study is to assess the toxicity effects of nDyO 

on E. coli. Standardization of two toxicity array-based methodologies was used to 

evaluate the physiological and metabolic response of E. coli at different environmental 

conditions: dual staining with fluorescent dyes (Live/Dead BacLight viability kit) and 

respirometric assays. Toxicology results showed that nDyO is most toxic at high 

concentrations of 2.0 mg/L after 2 hrs in 85 mg/L NaCl. Dy ions were measured and 

found to exhibit a sudden increase in concentration from 0 hrs to 0.25 hrs before 

achieving a plateau in concentration by 2 hrs leading to the possibility of another 

contributor of nDyO toxicity effect. Respirometric test showed a higher toxic response 

than membrane permeation assays indicating that metabolic processes are more 

affected than physical cell structures when exposed to nDyO. The array-based 

methodologies used in this study could be used to assess the toxicity of different 

nanoparticles on various microorganisms enabling cost efficient analysis of multiple 

conditions in a short amount of time. 

3.2 Introduction 

Nanotechnology and its widespread applications are becoming more prevalent in 
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the global market. Rare Earth Elements (REEs) are used to manufacture several 

nanoparticles and nano-based products (EPA 2012). Market applications are found in 

the glass industry, phosphor, metallurgy and catalysts (Goonan 2011). In addition REE 

nanoparticles (nREEs) are used in applications related but not limited to: magnets, 

batteries, automobiles, monitors, contrasting agents for Magnetic Resonance Imaging 

(MRI), biosensors, drugs delivery, and cancer diagnostic and therapy (Kubik et al. 

2005; Kattel et al. 2012; Hofmann-Amtenbrinka et al. 2010; EPA 2012). More 

specifically, one REE, nDyO, has gained increased application in the biomedical field. 

nDyO has specific paramagnetic properties that enhance the contrast in MRI images 

and are small enough to be passed through renal excretion (Kubik et al. 2005; Kattel 

2012). Other potential applications of nDyO in the biomedical field consist of the 

ability to screen new drugs, for cancer research and therapy applications, and as a 

delivery vehicle for drug application (Goonan 2011; Hofmann-Amtenbrinka et al. 

2010).  

Due to the lack of appropriate recycling systems, the fate of nanoparticles, 

especially those containing REEs, and their effects on biological systems within the 

environment is a growing concern (Valavanidis et al. 2012). It is likely that nDyO will 

enter into aquatic and land environments through wastewater treatment facility 

effluent and wastewater sludge due to the inability to recover these nanoparticles 

completely (Brar et al. 2010). Direct release into aquatic environments could occur 

through treated wastewater effluent. Mean-while release onto land environments from 

agricultural application could exposure nanoparticles to surface waters by storm water 

runoff and to subsurface waters via infiltration through the soil (Batley et al. 2013; 
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Brar et al. 2010).  

In this study we propose the use of microarray techniques to evaluate the effects 

of nanoparticles on the environment. Successful application of microarray techniques 

will provide a fast and effective way to perform nanotoxicological studies. 

3.3 Materials and methods 

A nonpathogenic wild strain of E. coli purchased from IDEXX laboratory was 

selected for this study because it has been extensively studied. E. coli is a gram 

negative bacterium that has been found to be metabolically active in saline solution 

without growth (Doudoroff 1940) and is a candid microorganism for 

nanotoxicological studies (Zhang and Oyanedel-Craver 2012; Zhang and Oyandel-

Craver 2013). Growth media for this bacteria consisted of 10 g/L NaCl, 5 g/L yeast 

extract, 10 g/L Tryptone (which can all be purchased from Sigma Aldrich). A 

centrifuge (ThemoScientific Sorvall Legend x1R) was used for the collection of E. 

coli at 2000 rpm for 15 min.  

Different water chemistry conditions were used with NaCl concentrations of 85 

mg/L, 850 mg/L and 8500 mg/L (ionic strength 1.45 mM, 14.5 mM and 145 mM 

respectively). The lowest concentration was based on ionic strength found in surface 

waters (Hoecke et al. 2011). The highest concentration was based on the live/dead test 

manufacturer’s recommendation of 8500 mg/L NaCl and a middle value was chosen 

for a three tier comparison.  

Tetrazolium dye (Redox Dye Mix A; information about Redox Dye Mix A is 

available from Biolog, Hayward, CA) purchased from Biolog was used to measure the 

respiratory responses of E. coli. The tetrazolium dye is reduced by active cellular 
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respiration and produces a purple color (Bochner et al. 2001; Tremaroli et al. 2009) 

measurable by a microplate reader at wavelength of 590 nm over time (Klimek et al. 

2007). 

A range of glucose concentrations, 35 mg/L to 140 mg/L, was used to evaluate 

nDyO toxicity under different aerobic metabolic levels. The glucose concentration of 

35 mg/L was the lowest limit of respiratory detection for the microplate reader with 

the tetrazolium dye under these non-growth conditions. 

Three concentrations of non-coated Dy2O3 nanoparticles, 0.02 mg/L, 0.2 mg/L 

and 2.0 mg/L, were used to simulate environmental concentrations and at the same 

time cover higher concentrations to quantify nanoparticle exposure in worst case 

scenario. Non-coated Dy2O3 nanoparticles were prepared based on the method used by 

Kattel et al. (2011).   

3.3.1 Growth of E. coli 

A nonpathogenic wild strain of E. coli was purchased from IDEXX laboratory 

and grown for 12 hrs in a culture media consisting of 10 g/L NaCl, 5 g/L yeast extract, 

10 g/L tryptone and incubated at 37
o
C. Growth media was autoclaved before the 

addition of E. coli cells. E. coli was harvested during the logarithmic growth phase and 

centrifuged at 2000 rpm for 15 min. The supernatant was discarded and the pellet re-

suspended in NaCl solution (concentrations varied between 85 mg/L and 850 mg/L as 

needed for the experimental setup).  

3.3.2 Microplate preparation 

The following was directly inoculated into a blank 96 half area well microplate in 

the specified order: NaCl (amount varied due to different controls within the 
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microplate), 10 µl of glucose, 10 µl of nDyO, 10 µl of tetrazolium dye, and 70 ul of 

cell solution (previously refrigerated). The final volume within each well was 100 ul 

and mixed thoroughly by pipetting at least 10 times for each well. Glucose, nDyO, and 

cell solutions were all prepared in the respective saline solution. The tetrazolium dye 

is added directly into the microplate and is reduced by active cellular respiration which 

produces a purple color (Bochner et al. 2001; Tremaroli et al. 2009) that can be 

measured using absorbance (Abs) by the microplate reader at 590 nm. The duration of 

each experiment lasted for 4 hrs with readings taken every 15 min in between 

horizontal shaking (medium setting) performed by the microplate reader. The 

microplates were incubated at 25
o
C.  

A detailed description of the microplate set up is presented in Figure 3-1. The 

various sections labeled within the microplate, represent the quality control/ quality 

assurance (QC/QA) measures implemented in each microplate experiment 

constructed. Sections of the microplate such as, nDyO blank, bacteria blank and 

background correction, represent sections to detect false positives since no coloration 

should develop in these wells during the testing period. No coloration in the nDyO 

blank section indicates no reduction interactions between nDyO and the tetrazolium  
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Figure 3-1 Respirometric plate map used to conduct the nDyO toxicity 

experiments. Each plate tested one water chemistry condition and one 

concentration of glucose while concentrations of nDyO were varied. All 

wells contained tetrazolium dye.   

dye that would produce color. The Bacteria Blank section should remain colorless 

because there is no glucose present therefore not possible electron transfer. To account 

for background absorbance of nDyO, the Background Correction section was 

subtracted from the Experiment section and also served as a secondary control to 

further confirm that experimental conditions had no reducing effect on the tetrazolium 

dye without the presences of bacteria. Lastly, the Reference condition contained no 

nDyO and was the experimental control used to compare all experimental values to.  

3.4 Results 

Physiochemical characterization of nDyO consisted of size and zeta potential 

measurements in two water chemistry conditions. Due to a problem with 8500 mg/L 

NaCl which will be explained shortly, experiments associated with that condition were 

not continued. Ion release experiments were also conducted to determine the amount 
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of dissolution over time for nDyO.  

Figure 3-2 shows the results for size measurements (a) and zeta potential 

measurements (b) taken at initial conditions, 0.25 hrs and 2.0 hrs for the highest 

concentration of 2.0 mg/L nDyO. Control measurements were taken in a background 

of DI water only with no glucose followed by experimental conditions. Experimental 

conditions for 0 hrs and 0.25 hrs size measurements show nDyO for all water 

chemistry conditions to be in a range of 75 nm to 150 nm. Size measurements for 2 hrs 

show an increase in larger nDyO particle size indicating aggregation. This is observed 

more significantly in water chemistry conditions of 850 mg/L NaCl in all 

concentrations of glucose. Zeta potential measurements were found to be relatively 

more stable in all NaCl water chemistry and glucose conditions than in the control 

conditions of DI water with no glucose present suggesting that the presence of glucose 

increased the stability of nDyO.   
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Figure 3- 2 represents physiochemical conditions (size (a) and zeta potential (b)) 

in DI water (red) and 0 mg/L glucose as the control, and experimental conditions 

of water chemistry conditions NaCl 85 mg/L (purple) and 850 mg/L (blue), 

glucose 35 mg/L, 70 mg/L, and 140 mg/L and for 2.0mg/L nDyO. Time 

measurements were taken at 0 hrs, 0.25 hrs and 2 hrs.  

 

Ion release experiments were conducted by Nelson Anaya for the highest 

concentration of 2.0mg/L nDyO in all water chemistry and glucose conditions. Table 

3-1 shows a sudden increase in Dy ions measured between 0 hrs and 0.25 hrs with a 

plateau effect occurring at 2.0 hrs.  

Table 3-1 Ion release results for 2.0mg/L nDyO in both water chemistry 

conditions NaCl, 85 mg/L and 850 mg/L, and all glucose concentrations 35 

mg/L, 70 mg/L and 140 mg/L. Measurements were taken at 0 hrs, 0.25 hrs 

and 2.0 hrs.    

NaCl  Glucose Dy ion [mg/L] 

[mg/L] [mg/L] t = 0 hrs  t = 0.25 hrs  t = 2 hrs 

85 

35 0.40 0.65 0.70 

70 0.42 0.68 0.72 

140 0.43 0.69 0.75 

850 

35 0.47 0.64 0.73 

70 0.48 0.68 0.75 

140 0.49 0.68 0.79 

 

At 8500 mg/L NaCl interaction between the tetrazolium dye and NaCl were 
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detected. This is suggested by two reasons: the control slope (no nDyO present) also 

exhibits this decreasing behavior and that E. coli is known to survive in higher ionic 

strengths than present in this study, both short-term and long-term (Vaccaro et al. 

1950; Rozen et al. 2001; Arense et al. 2010). The concentration of glucose is also not a 

factor considering it works well with the other conditions in lower ionic strengths. The 

inability to analyze this curve beyond 2 hrs lies in the fact the slopes are decreasing 

which would suggest degradation of the tetrazolium dye, however this is not the case 

since once the dye is reduced, it remains present within the well (Bochner et al. 2001).  

 

 
Figure 3- 3 Respirometric results for 8500 mg/L NaCl.   

 

Duplicate plates for the remaining water chemistry conditions were conducted to 

quantify the Percent of Remaining Respiration (PRR). The PRR compares the slope 

values representing respiration of the remaining bacteria unaffected by nDyO 

exposure to the control slope values representing respiration of bacteria not exposed to 

nDyO through division and then multiples these values by 100 for percent values of 
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remaining respiration. Figure 3-4 shows the PRR for both water chemistry conditions 

NaCl, 85 mg/L and 850 mg/L, all three glucose concentrations 35 mg/L, 70 mg/L and 

140 mg/L, and all three nDyO concentrations, 0.02 mg/L, 0.2 mg/L and 2.0 mg/L 

analyzed at 0.25 hrs and 2hrs. PRR time measurements were evaluated for 0.25 hrs 

and 2 hrs based on the physiochemical characterization of nDyO, before and after 

aggregation of nDyO. For 0.25 hrs, there was no significant toxicity effect observed 

for all conditions, however after 2.0 hrs, there was significant toxicity effect observed 

for certain water chemistry conditions. For the highest concentration of 2.0 mg/L 

nDyO a greater toxicity effect was observed across all glucose conditions and NaCl 

water chemistry conditions, with the greatest toxicity effect occurring at 85 mg/L 

NaCl and 140 mg/L glucose. Toxicity effect was also observed for water chemistry 

condition 85 mg/L NaCl and 35 mg/L glucose for all three concentration of nDyO. 
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Figure 3- 4 represents the percent remaining respiration of E. coli under two 

water chemistry conditions NaCl, 85 mg/L (blue) and 850 mg/L (green) and three 

concentrations of glucose, 35 mg/L, 70 mg/L and 140 mg/L. Percent remaining 

respiration values were calculated for three concentrations of nDyO, 0.02 mg/L, 

0.2 mg/L and 2.0 mg/L at (a) 0.25 hrs and (b) 2.0 hrs. Each value represents an 

average of 4 wells from two duplicate plates.  

 

 

Live/Dead experiments resulted in minimal toxicity effect of nDyO on E. coli 

under the same conditions the respirometric microarray tests were conducted. This test 

indicates no significant membrane permeation of the cell, thus indicating minimal to 

no physical damage to E. coli cells by nDyO. 

3.5 Discussion 

Comparison of both methods of measurements, respirometric and Live/Dead 

tests, which measure the metabolic and physical integrity of E. coli respectively, 

showed significantly different results between the two methods. The respirometric 

microarray tests showed significantly higher toxicity effect of nDyO on E. coli than 

the Live/Dead test. Results indicate that toxicity effect is concentration dependent with 

the most significant toxicity occurring with the highest concentration of nDyO in the 
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lowest 85 mg/L NaCl water chemistry condition. Toxicity effect is also observed to be 

time dependant and indicates that it can also be attributed to Dy ions. Ion release 

experiments indicate a sudden increase in Dy ions from 0 hrs to 0.25 hrs before 

achieving a plateau in concentration by 2 hrs.   

To understand the exact contributor of the toxicity effect of nDyO on E. coli is 

not presented in this portion of the thesis. 

3.6 Conclusion 

Our results show that the implementation of microarray technology to 

respirometric studies of microorganisms can be used to provide an effective and 

alternative tool to study nanoparticle toxicity on microorganisms. This study has 

assessed two methodologies, the Live/Dead test which is primarily used to evaluate 

toxicity of nanoparticles on microorganisms through membrane permeation and the 

respirometric microarray tests used to evaluate the metabolic activity of 

microorganism in response to nanoparticles. The respirometric microarray test proved 

to be more sensitive compared to the Live/Dead test in measuring nanoparticle toxicity 

which indicates a need to be selective among toxicity methodologies. For nDyO, 

toxicity effects are observed through changes in metabolic activity rather than physical 

integrity, but this could be different for other metal nanoparticles.  

By understanding the fate of nanoparticles in the aqueous media, careful selection 

of appropriate toxicological methodologies will improve the accuracy of future 

nanotoxicological studies.  
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CHAPTER 4 

Anaerobic growth of Acidithiobacillus ferrooxidans using microarray technology 

4.1 Abstract 

Application of microarray technology as an effective tool to evaluate the growth 

of microorganisms under anaerobic conditions has shown a good possibility of 

anaerobic growth of Acidithiobacillus ferrooxidans (A. ferrooxidans) over the course 

of 12 days with the highest bacteria density of Abs500nm 0.5. Microplates containing A. 

ferrooxidans and nitrogen purged Basal Salt media supplemented with Fe
3+

 were 

grown under anaerobic conditions consisting of H2:CO2 [80:20] atmosphere under 

25
o
C . Proposed methodologies will provide a more robust tool that could be used for 

future studies in relation anaerobic nanotoxicology studies.   

4.2 Introduction 

Anaerobic metabolisms and habitats have an important role in biogeochemical 

cycles such as iron, sulfur and nitrogen cycles (Falkowski et al. 2008). Anaerobic 

microorganisms can release minerals and nutrients from an inorganic environment 

making them bioavailable for primary producers, which in combination with CO2 can 

synthesize organic matter (Willey et al. 2008). Decomposers, such as fungi, are 

necessary because they drive the flow of inorganic and organic compounds to 

maintain a constant supply of materials for primary producers (Daufresne et al. 2001). 

The importance of studying anaerobic microorganisms are often overlooked due to the 

extreme environments in which they inhabit and the limitations of maintaining 

anaerobic environments in vitro.  
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The objective of this study is to develop a microarray-based procedure to monitor 

the metabolic activity of Acidithiobacillus ferrooxidans in anaerobic conditions. 

Acidithiobacillus ferrooxidans (initially known as Thiobacillus ferrooxidans (Dumett 

et al. 2013)) has gained recent attention due to its metabolic activity that accelerates 

acid mine drainage, leading to increased heavy metal pollution at mine sites 

(Mahmoud et al. 2005; Natarajan et al. 2008). However, these bacteria are also useful 

in bio-mining operations and bioremediation because of their ability to dissolve and 

mobilize metals within an acidic environment (Gadd 2004; Natarajan et al. 2008).  

Acidithiobacillus ferrooxidans has been shown to exhibit both aerobic and 

anaerobic metabolisms; these bacteria can survive in extreme environments such as 

the Rio Tinto mining site and its associated Tinto River. The Tinto River extreme 

environment consists of low pH (0.8 to 3) sulfate-enriched waters that contain high 

concentrations of ferric iron (up to 30 g/L) resulting from the metabolic activity of A. 

ferrooxidans and Leptospirillum ferrooxidans (L. ferrooxidans) (Fernandez-Remolar  

et al. 2004). A. ferrooxidans employs metabolic processes including the following: 

aerobic growth using H2/O2 or Fe
2+

 with Oxygen being the electron acceptor, and 

anaerobic growth using H2/S0, H2/Fe
3+

 or S0/Fe
3+

 with the electron donors being 

Hydrogen and Sulfur (Pronk et al. 1992; Ohmura et al. 2002; Hedrich et al. 2013).   A. 

ferrooxidans can also fix carbon directly from carbon dioxide (Levican et al. 2008; 

Gale et al. 1967).   

It is expected that the development of a microarray procedure for the anaerobic 

growth of A. ferrooxidans will provide a tool for environmental related studies.  
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4.3 Materials and Methods 

4.3.1 Aerobic growth and medium  

A. ferrooxidans was obtained from the American Type Culture Collection: ATCC 

19859 and grown aerobically for easier maintenance before transitioning over to 

anaerobic conditions. In brief, the aerobic growth conditions consisted of Basal Salt 

Medium (BSM) acidified to a pH of 1.9 with H2SO4 and then autoclaved. Basal salt 

media was used to because it could be autoclaved and the iron components added 

separately.  Fe
2+

 (4 g/L) in the form of FeSO4•7H2O was added after autoclaving. 

Growth of A. ferrooxidans occurred in 250 ml flasks containing 100 ml to 125 ml of 

BSM under 25
o
C. Cells were harvested after 4 days and transferred to fresh BSM 

containing Fe
2+

 weekly.  

Cultures of A. ferrooxidans were harvested after 4 days growth and were filtered 

to remove visible orange flakes (attributed to iron formation from previous studies 

(Yates et al. 1987; Wang et al. 2010; Tapia et al. 2013) formed during aerobic growth.  

Iron and bacteria were centrifuged (ThemoScientific Sorvall Legend x1R) at 4,680 g 

for 20 min. The supernatant was discarded and the pellet was re-suspended with 0.1 M 

K- Phosphate Buffer (PBS) and washed two times. Large orange iron flakes were 

allowed to settle out of the bacteria before transferring it to a new centrifuge tube. 

Bacteria was allowed to stand for a few minutes while smaller pieces settled out at 

which point, suspended bacteria was collected from the upper ¾ volume of the 

centrifuge tube.  Collected bacteria were then used for anaerobic growth experiments.   
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4.3.2 Transition from aerobic to anaerobic experimental growth  

The transition to anaerobic growth conditions required the previously collected, 

aerobically grown A. ferrooxidans cells to be placed with an oxygen deficient 

medium. BSM (300 ml) lacking an iron component, was purged under a positive 

pressure N2 environment with N2 for 30 min to ensure all oxygen was removed 

(modified from (Bauermeister et al. 2014)). A. ferrooxidans cells were re-spun and re-

suspended in the nitrogen purged BSM (BSM-N2). Initial cells concentration were 

measured to different Abs500nm (0.02, 0.2 and 0.5) and re-suspended in BSM-N2 

containing 1.5 g/L Fe
3+

 (Iron (III) sulfate hydrate). A control of BSM-N2 containing 

Fe
3+

 without A. ferrooxidans was included.  

 

Figure 4- 1 Illustration of anaerobic setup under positive pressure N2 

conditions.  

 

Under a positive pressure N2 environment (Figure 4-2), 100 µl of cell solution 

was inoculated into an empty 96-half area, flat-bottomed, clear polystyrene microplate 

(Costar
TM

 brand). Each microplate was placed within a pre-cut tedlar bag (Zefon 

International, 0.5L) and heat sealed (8’’ Easyway Impulse Heat Sealer). Each tedlar 

bag containing an inoculated microplate was flushed three times with N2 before 

replacing the atmospheric environment with H2/CO2 [80:20]. H2/CO2 was flushed 
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through the bag three times to remove all excess N2. For protective measures, the 

H2/CO2 filled microplate tedlar bags were placed into individual larger tedlar bags 

(Zefon International, 3 L) and flushed with N2 three times before filling completely 

with N2.  

Absorbance values within the microplate were measured and recorded as Day 0. 

Microplates were incubated at 25
o
C and taken out for sampling after every 4 days for 

12 days. Microplates were carefully removed from the tedlar bags under a fume hood 

and the Abs500nm was recorded.  

4.4 Results 

The atmospheric condition chosen for this experiment represent the anaerobic 

atmosphere this microorganism is capable of growing under using ferric iron. Figure 

4-2 shows the anaerobic growth of A. ferrooxidans on ferric iron (electron acceptor) 

and H2/CO2 (H2 as the electron donor) over 12 days within a microplate. Since there 

was no elemental sulfur added to the media, this is the only redox reaction occurring 

under these conditions (Ohmura et al. 2002). Three initial concentrations of bacteria 

were measured outside of the microplate (Abs500nm: 0.5, 0.2 and 0.02) before ferric 

sulfate hydrate was added to the BSM-N2 media and inoculated into the plate. The 

control containing BSM-N2 media and ferric sulfate hydrate was also included within 

the plate to account for background measurements of ferric sulfate hydrate. 

Discrepancy between the initial cell density measured and the absorbance values 

measured by the plate reader could be attributed to the addition of ferric sulfate 

hydrate after initial cell measurements were taken. This is indicated by the black line 

in Figure 4-2 to show all measurements taken within the microplate reader were for 
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microplate incubated under anaerobic conditions. Each time point was normalized by 

the control and then an average of 6 microplate wells were taken. Growth of bacteria 

at Abs500nm concentrations of 0.5 and 0.2 showed after Day 4, with continued signs of 

increase to Day 12.  

 

 

Figure 4- 2 Anaerobic growth of A. ferrooxidans on Day 0, 4, 8 and 12. Initial 

Absorbance values were measured outside of the microplate, under aerobic 

conditions without ferric iron added as represented by the black line. 

represent initial Abs500nm at 0.5,  at 0.2, and  at 0.02. All points were 

normalized by a control of BSM-N2 containing ferric iron and consisted of an 

average of 6 microplate wells.  

 

4.5 Discussion 

Previous experiments using similar strains of A. ferrooxidans have proven its 

capability to grow under such anaerobic conditions (Bauermeister et al. 2014; Ohmura 

et al. 2002). Although not taken into explicit consideration in this study, anaerobic 

growth of A. ferrooxidans can be strongly influenced by the amount of elemental 
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sulfur present in the media as seen in previous studies however, elemental sulfur does 

not need to be present for anaerobic growth (Suzuki et al. 1990; Pronk et al. 1992; 

Ohmura et al. 2002).  

The importance of establishing anaerobic growth of A. ferrooxidans within a 

microplate will allow for future studies on the impact of engineered nanoparticles on 

anaerobic microorganisms. With the growing application of engineered nanoparticles 

to industrial and consumer products, it is highly likely that these engineered 

nanoparticles will enter into the environment through various pathways and pose an 

ecological threat to the environment (Batley et al. 2013; Valavanidis et al. 2012). 

Before adequately moving forward, it is important to assess the efficiency of this 

microarray methodology and to adapt other analytical techniques to the microplate to 

overcome certain limitations of this study. 

For more accurate growth assessment using a fluorescent, such as SYBR Green I, 

can be used to measure the increase of biomass over time. SYBR Green I fluorescent 

dye is a dye that can be used to quantify DNA due to its cell-permeating nature and its 

ability to intercalate with DNA (Dragan et al. 2012; Vitova et al. 2005). An example 

of a DNA microarray based methodology uses this same fluorescent dye to quantify 

DNA (Leggate et al. 2006). To assess respiratory iron reduction processes, a Ferrozine 

Assay (Stookey 1970) is proposed to measure increases in reduced iron over time. A 

modified Ferrozine Assay using hydrochloric acid (HCL) and ferrozine solution to 

microarray technology has been previously established in a recent study related to the 

study of potential metabolic processes of Pelosinus sp. Strain HCF1 one of which 

included using ferric iron as an electron acceptor (Beller et al. 2013). 
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4.6 Conclusions  

Preliminary results show a good possibility of anaerobic growth of A. 

ferrooxidans on ferric iron under an experimentally controlled H2/CO2 atmosphere 

over a minimum of 12 days, as observed using microarray technology. The results also 

indicate that a cell density of Abs500nm 0.5 would be needed to detect significant 

cellular growth.  
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APPENDIX A 

 
Figure A- 1 First preliminary growth results of Acidithiobacillus 

ferrooxidans over 4 days. Acidithiobacillus ferrooxidans was measured to 

an absorbance (500nm) of 0.216 outside the microplate before the addition 

of ferric sulfate. Microplates were incubated under H2:CO2 (80/20) 

anaerobic conditions at 25
o
C.  

 

 
 

Figure A- 2 Second preliminary growth results of Acidithiobacillus 

ferrooxidans over 12 days. Acidithiobacillus ferrooxidans was measured to 

an absorbance (500nm) of 0.2 outside the microplate before the addition of 

ferric sulfate. Microplates were incubated under H2:CO2 (80/20) anaerobic 

conditions at 25
o
C (Possible tedlar bag leakage of anaerobic gas on 12th 

day). 
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