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ABSTRACT 

 Exercise is the key to maintaining a healthy lifestyle. However, it is becoming 

more of a challenge for people to break from their busy lives to take the time to do 

some physical activity. This is a problem that is experienced by all different age 

groups, for various different reasons. For younger people, it is difficult to find 

motivation to take time out of the day for exercise. For the elderly population, it is 

difficult to find the energy to exercise. One way to facilitate physical activity for 

people is to increase motivation to do so. This study is designed to test a specific 

device that specializes in personalized motivational messages, called the Activity 

Analyzer for Guided Independent Living Environments, or AAGILE for short. 

 The AAGILE is an exercise monitoring device worn by a person throughout 

the day. At predetermined times, personalized, prerecorded messages play from the 

AAGILE to encourage exercise to the person wearing it. As the wearer exercises and 

creates motion, the AAGILE captures the motion data and applies a scoring scheme to 

the data. The scheme is on a scale from one to ten, with one being the lowest exercise 

score and ten being the highest exercise score. Then, at the end of the day, the user can 

export the data to a PC and inspect the exercise response to the messages throughout 

the day.  

 For this study, the AAGILE was worn by ten subjects between the ages of 18 

and 30 who are in good health. The device is worn for at least six hours, and monitors 

the subject’s activity during that period. Three messages are programmed to be played 

at preselected times unknown to the wearer. The three messages are personalized to 

the wearer. At the message play times, the personalized message is played which 



 

 

 

encourages exercise. At the end of the six hour period, the device is returned and the 

exercise score data is captured on a PC using the AAGILE Windows® application 

graphical user interface. These ten sets of score data are analyzed and presented. 

 All ten subjects had a significant increase of exercise score data immediately 

after a personalized message was played. On average, scores increased by 3.5 points 

after a message was played. The increase in exercise demonstrates the overall 

effectiveness of the AAGILE, in terms of providing encouragement and motivation for 

the user to exercise, and thus, promote healthy lifestyles.  



 

iv 

 

ACKNOWLEDGMENTS 

Completing this thesis took motivation and encouragement from a number of 

people in my life. Without them, I would not have been able to complete this study. 

First, I’d like to thank some of the excellent faculty at URI. Thank you to 

electrical engineering professors Dr. Swaszek, Dr. Boudreaux-Bartels, Dr. Fischer, 

and Dr. Alan Davis. Thank you to biomedical engineering professors Dr. Besio, Dr. 

Helen Huang, Dr. Vetter, and Dr. John DiCecco. Without the knowledge learned from 

these wonderful people, I would be unable to establish my career as an engineer. I 

would also like to thank Dr. Patricia Burbank from the Nursing Department at URI. I 

have been blessed to have met such a caring professor, who not only cares about her 

students, but also cares about the wellbeing of pretty much everyone. Thanks for 

working with me on this study. 

I also would like to thank other people who assisted me with understanding the 

field of electrical engineering, including TAs Andrew O’Shea, Xiaorong Zhang, 

Andrew Burke, and of course, Fu Luo. I’d like to thank my classmates who helped me 

with homework and study for tests. Some include Shane Walton, Erica Duncanson, 

Andrew Dunne, Tonya Ruggieri, and many others. Thanks guys. 

A special thanks to all of the students who have worked on the development of 

the AAGILE over the years. I’d especially like to thank Kyle Rafferty and Tim 

Alberg, who put all of the hard work into bringing up the AAGILE from paper to 

prototype. Without them, understanding the intricate design of the AAGILE would be 

near impossible, which would have prolonged my graduation even further. I am 



 

v 

 

thankful that they are still great friends of mine, and I hope to remain close to them for 

as long as possible. 

Completing this study has proven difficult for me ever since I started working as 

an electrical engineer full time. However, with the motivation of my thesis professor, 

Dr. Ying Sun, I have been able to finally complete it. Dr. Sun was the first professor I 

met at URI, and the first to tell me about the biomedical engineering program. Years 

later, I stuck with the biomedical engineering program and graduated with my 

bachelors in 2011. Thank you so much Dr. Sun for being there for me every step of the 

way throughout my education at URI. Thank you for calling me every week to keep 

me on my toes, and keep me moving forward with the study. I couldn’t have done it 

without you. 

I’d like to thank dad for always being there for me and always believing in me. I 

know it’s been an interesting journey, and I know that the journey does not stop here.  

Finally, I’d like to thank my mom. If it wasn’t for my mom’s enthusiasm for 

college searching, I don’t know where I would have ended up. Thanks for bringing me 

on all of those college tours all around the country. Thanks for continuing to push me 

to finish this study, and please continue pushing me to be the best person I can be. And 

thanks for being a great mom and giving me so much love.  

 

Thanks guys.  



 

vi 

 

PREFACE 

This thesis is divided into seven chapters. Chapter one is an introduction to the 

study. Chapters two through four go into detail on the design of the AAGILE system, 

starting with the electronics, then firmware, then software. Chapter five explains the 

study methodology. Chapter six shows the results of the study and analysis of the data. 

Finally, there is a conclusion at the end of the thesis.  
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CHAPTER 1 

 

INTRODUCTION 

 

“You need to exercise more.” These five words are repeated continuously by 

health care physicians to thousands of Americans each day. Some reasons for the 

repetitive instruction is because people who are physically active generally live longer 

and have lower risk for heart disease, stroke, type 2 diabetes, depression, and some 

types of cancer (CDC 3). In fact, exercise has been linked to facilitate the prevention 

of up to 35 chronic conditions (Booth 1143). According to the Center for Disease 

Control’s 2008 Physical Activity Guidelines for Americans, adults should participate 

in at least 2 hours and 30 minutes a week of moderate-intensity aerobic physical 

activity to obtain the necessary health benefits to reduce the risk of the diseases 

mentioned above (CDC 4). While the benefits of exercise have been studied and 

reported throughout the past number of years, still only about half of adults and less 

than a third of youth meet aerobic physical activity guidelines.  

Other than chronic illnesses, regular exercise is a healthy course of action for 

overweight or obese patients, since obese individuals experience improved insulin 

sensitivity, lipid and lipoprotein profile, and blood pressure (Bouchard 1). Regular 

exercise has been shown to be one of the best predictors of successful weight 

maintenance (McInnis 111).  

Exercising has psychological benefits as well. Exercising regularly has been 

linked to protecting against depression in Alzheimer’s disease (Regan 1). People who 
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exercise regularly admit that they feel that they have a better quality of life, and 

exercising may be a useful intervention strategy for people who are less willing to 

change (Laforge). Studies show that aerobic exercise training is useful for reducing the 

severity and duration of depressive reactions following a stressful life change (Roth). 

In general, findings from research indicate that exercise is associated with 

improvements in mental health, including mood state and self-esteem (Raglin). 

If exercise is so important, and the benefits are widely known, then why do 

Americans still struggle to meet the exercise requirements laid out in published 

guidelines by the CDC? The simple answer is that people are finding other ways to use 

their time. Some people, for example, choose to play videogames for countless hours 

instead of exercising. In fact, videogames are now present in 72% of all American 

homes (“Steinberg 1”). According to the Entertainment Software Rating Board, as of 

2010, the average gamer spends 8 hours a week playing videogames (“Videogame 

statistics”). The increase of gaming time consumption is just one reason for lack of 

exercise. Another reason for lack of exercise is the time consumption of work duties 

(St. Marie). After a long day of work, many people have little energy left to do any 

exercise. Aside from symptoms of ill-health, long work hours have been associated 

with numerous poor lifestyle habits, with lack of exercise included (Sparks 391). The 

overall fatigue due to long work hours have been associated with lack of exercise, as 

well as other negative life-style mechanisms (Hulst 171). 

According to Geoffrey St. Marie, one of the biggest reasons that people neglect to 

exercise enough is that they are not properly motivated, whether that person is a young 

person or an elderly person. In some cases, such as in older adults, the concern for 
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their own health is often strong motivation to increase exercise (Newson 1). For 

others, motivation other than self-motivation is helpful. According to the Virginia 

Anderson and Brunilda Nazario, one effective way for a person to find the motivation 

to exercise is for that person to find friends, family, co-workers, and neighbors that 

can encourage him to take the time from the busy day and do some physical activity 

(Anderson and Nazario). According to the article, Promoting Exercise and Behavior 

Change in Older Adults: Interventions and Transtheoretical Model, “The capability 

for a friend or family member to record personalized caring messages to help motivate 

the person to exercise brings not only the motivational message and instruction, but 

uses the TTM and Motivational Interviewing interventions to increase participation in 

physical activity (Burbank and Riebe).” Unfortunately, oftentimes, people are too busy 

to even encourage someone else to exercise. This is the motivation that lead to the 

invention of the Activity Analyzer for Guided Independent Living Environments, or 

AAGILE.  

The AAGILE is a device that monitors physical motion of a person throughout 

the day (Rafferty et al., Greene et al). Using an accelerometer, the device can measure 

the overall physical activity of the person wearing the device, which can be translated 

into measuring the amount of exercise the wearer does throughout the day. The 

AAGILE also has built in message recording and playback features, which can be 

used to provide the motivation that has been shown to facilitate the increase amount of 

exercise for individuals. For example, a child can record a motivational message to be 

played at different intervals throughout the day to encourage a parent or grandparent to 

exercise for ten minutes or so to assist with maintaining a healthy lifestyle. 
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Furthermore, physical activity has been shown to be important for fall prevention, 

health promotion and maintenance, and reversal of frailty among older adults 

(Burbank and Sun 2). For further motivation, the processor inside the AAGILE 

overlays the raw accelerometer data onto a scoring system from one to ten, which can 

be reviewed after the day is complete. Using a motivational message and a scoring 

system, the AAGILE device provides both peer-motivation and self-motivation for the 

encouragement to do some exercise activity (Wang et al).  

Figure 1. Picture of AAGILE System. Mobile unit is on left. Docking station is on 

right. 

In this study, the effectiveness of AAGILE for the motivational capability to 

encourage exercise in individuals is determined by applying the AAGILE to ten 

different subjects for six hours. Throughout the six hour period, three messages are 

played at predetermined times to attempt to encourage the wearer to exercise for some 

time. The exercise of the subject is monitored with the AAGILE’s onboard 

accelerometer, and the processor extracts a score from the raw data. After the six hour 
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period, the scores are then transferred to a PC and plotted using Microsoft Excel. The 

goal of the study is to determine the effectiveness of the AAGILE in encouraging 

exercise of the wearer by attempting to find a correlation in the message playtimes and 

the subsequent exercise score following the messages.  

If a strong correlation between message playtimes and exercise level exists, then 

it can be determined that the motivation for exercise of the AAGILE is effective 

enough to encourage exercise in individuals. Using the Excel data extrapolated from 

the AAGILE, the increase in exercise score can be used to quantify the effectiveness 

of the AAGILE. If the AAGILE can successfully motivate people to exercise, then it 

can be considered a practical device that can efficiently help prevent against many of 

the chronic conditions mentioned at the beginning of this chapter.  

Before reporting the results of the study, an overview of the AAGILE device is 

discussed, which talks about the hardware and firmware design of the device and how 

the design meets the requirements. Then, the PC software is discussed and explained 

how it interfaces with the AAGILE.  
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CHAPTER 2 

 

AAGILE ELECTRONICS 

 

The AAGILE system has a handful of basic requirements to fulfill in order to 

successfully conduct the essential performance of the device. These basic hardware 

requirements are listed in the table below: 

Requirement 

Number 

Requirement Rationale 

1 The electronics SHALL 

have a 3-axis 

accelerometer. 

Used to detect motion of 

the device in three 

directions. 

2 The electronics SHALL 

have means to record and 

playback voice. 

Used to record the voice of 

a loved one, and played 

back to the patient to 

encourage exercise. 

3  The electronics SHALL 

support a User Interface 

consisting of a character 

LCD and various 

pushbuttons. 

Allows the practitioner to 

program message playing 

times, as well as monitor 

activity levels of the 

wearer. 

4 The electronics SHOULD 

support a PC interface 

Allows for further data 

analysis of the activity 
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scores of the wearer. 

5 The electronics SHALL be 

packaged in a wearable 

box. 

The device needs to be 

portable enough to be worn 

in a fanny-pack. 

6 The electronics SHALL be 

powered with a 9V battery. 

9V batteries are compact 

and have sufficient battery 

life for the portable 

system. 

Table 1. Basic Hardware Requirements for the AAGILE 

The electronics used to satisfy the requirements listed above is broken down into 

three main components. One component is the mobile unit, which comprises of the 

electronics responsible for monitoring the activity and playing back stored messages. 

The electronics in the mobile unit consists of the microcontroller, the voice record IC, 

the speaker, and the accelerometer. The mobile unit is also the component that is worn 

by the user.  

The next component of the device is the docking station electronics. The 

electronics in the docking station are responsible for providing the user interface of the 

system. The UI consists of two pushbuttons, a character LCD, a microphone jack, and 

a mini USB jack. The docking station is to be used by the practitioner, who is 

responsible for recording messages, setting message play times, setting the clock time, 

and connecting to the PC application. The docking station connects to the mobile unit 

during the programming portion of the procedure. Once the message times are squared 
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away, etc., the mobile unit is removed from the docking station, and the docking 

station is left behind. 

The final component of the AAGILE system is the PC interface. Once the mobile 

unit is inserted into the docking station, a USB interface is provided by the docking 

station to the PC application. The PC application is responsible for receiving activity 

scoring data from the mobile unit, and then displays that data onto a PC via a graphical 

user interface. The PC application is a Windows® application, and is described in 

more detail in Chapter 4 of this thesis. 

 

Figure 2. Block Diagram for AAGILE Hardware 

The mobile unit of the AAGILE system houses the microcontroller of the device, 

which is analogous to the brains of the system. The processor is responsible for 
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interfacing with all of the peripherals of the system, including the voice record chip, 

the accelerometer, as well as various components found in the docking station. The 

processor utilizes various IO to control and monitor components of the system, as well 

as contains non-volatile memory to store information even after a power cycle. 

Figure 3. Schematic for the AAGILE hardware. 

The microcontroller implemented in the AAGILE system is the Microchip 

PIC18F452 High-Performance, Enhanced Flash Microcontroller with 10-bit A/D. The 

PIC processor has 32 kilobytes of on-chip flash memory, 1536 bytes of on-chip RAM, 

and 256 bytes of nonvolatile EEPROM (“PIC18FXX2”). The processor has 40 pins 

and operates off of a 4 MHz crystal oscillator. The processor has various timer 

modules, which are used to keep time as well as provide a timing basis for other parts 

of the system. The processor also has an 8-channel 10-bit analog to digital converter, 
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which is used to read in data from the accelerometer. The PIC controller has a SPI bus, 

used to interface with the voice record chip, and a UART module, used to 

communicate to the PC application and the LCD screen via RS232. Finally, the 

processor has numerous GPIO pins for controlling the speaker relay, the digital 

switch, detecting button presses, as well as other components of the system. More 

information on the processor control interface with the peripherals of the system is 

detailed in Chapter 3 of this thesis. 

To monitor activity of the AAGILE wearer, the ST Microelectronics LIS302SG 

3-axis accelerometer is used. The LIS302SD accelerometer is a 3-axis accelerometer 

that detects accelerations within a range of ± 2g (“LIS302SG”). The accelerometer has 

a built in electronics to provide three distinct analog outputs, one for each axis, that all 

have a ratiometric output with sensitivity of 0.145*Vdd V/g. Since the accelerometer 

is powered with 3.3V supply, the sensitivity of the sensor is 0.4785 V/g. The 

AAGILE’s scoring system is not dependent on the acceleration of a specific axis, so 

the three analog outputs of the sensor are averaged together using three 270 Ω 

resistors. Each of the three signals passes through one 270Ω resistor, then wired in 

parallel and connected to a single A/D pin on the processor. By connecting to the 

processor in this fashion, a single A/D pin is used to measure averaged accelerometer 

data from 3 axes down to a signal analog voltage. This method conserves pins on the 

processor, reduces the number of connections required, as well as implements a simple 

averaging of the accelerometer data to sufficiently quantify the amount of activity of 

the wearer. 
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Figure 4. Resulting motion signal shown for various types of activities. 

  In order to record, store, and playback messages to the AAGILE wearer, the 

Nuvoton ISD1750 Multi-Message Voice Record and Playback IC is implemented. The 

voice record chip has built in nonvolatile flash memory for message storage, and 

interfaces with the processor via SPI bus (“ISD1700”). With the SPI interface, the user 

can store and play various messages stored in the chip’s memory, as well as other 

features. Using an external biasing 160 kΩ resistor, the selectable sampling rate is set 

to 4 kHz, allowing for the maximum 100 second message storage time. This allows for 

the AAGILE system to store multiple messages at varying message times, which can 

be used to encourage exercise using different messages during wear. The voice chip 

has built in Automatic Gain Control, which maximizes voice recording quality, as well 

as a smoothing filter and preamplifier, for providing clean voice output to the speaker. 

The microphone’s output is connected to the voice record chip through 100 nF 

capacitors, which are used to block any DC signal through the microphone. The voice 
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record chip provides the AGC to promote a good quality recording. The output of the 

voice record chip goes through two potentiometers to two different audio amplifiers. 

The audio amplifiers used are the Texas Instruments LM386 Low Voltage Audio 

Power Amplifier. The amplifier has an internal gain set to 20, but can be set to any 

gain between 20 and 200 using an external resistor-capacitor network (“LM386”). The 

amplifier inputs are ground referenced, while the output automatically biases to one 

half of the supply voltage. The potentiometers are used to set the input voltage to the 

non-inverting input of the amplifier. By altering the potentiometers, the voice output 

from the speakers can be set with different volume levels and different sound quality 

levels. The gain is set to 20 in the AAGILE, and the outputs of the amplifiers go to the 

input of the speaker. The audio amplifier gain stage allows for the flexibility to tweak 

the speaker output to select a voice signal that has a good sound quality and sufficient 

volume. 

The speaker and supporting circuitry are powered with 9V. To avoid wasting 

battery life when not in use, a single pole, single throw relay is used to allow the 

processor to connect the 9V supply to the speaker. The Mobicon EDR202A0500 relay 

is selected, which is a relay with a coil voltage rating of 5V and a contact rating of 1A 

continuous (“EDR Series”). The current rating is sufficient for powering the speaker 

and amplifiers, and is simple to implement, only requiring an additional flyback diode 

to prevent damage to the relay and other circuitry.  

The voice record circuitry allows for virtually any microphone, since the 

AAGILE docking station contains a simple 1/8 inch audio jack for the microphone 
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input. Furthermore, the voice record circuitry allows for the use of a small size 

computer speaker, which has decent audio quality that comes in a small package.  

While the docking station is responsible for housing the user interface 

components, such as the pushbuttons, LCD, and RS232 output, the docking station 

acts as a dummy terminal. In other words, the components in the docking station 

cannot work standalone, and requires direct control from the processor. There are two 

pushbuttons embedded into the docking station enclosure, where both are used for 

interacting with the user interface menu system. One pushbutton functions as the cycle 

options button, and the other button functions as the select button. Together, these two 

buttons can successfully navigate throughout the entire menu interface. 

The main component that provides feedback to the user during menu cycling is 

the character LCD. The LCD used is from Sparkfun, with part number ADM1602U. 

The LCD uses 5V TTL signals with a Serial UART interface (“SerLCD v2.5”). The 

PIC processor has a UART module that can interface with the LCD without the need 

to write low level driver code. The PIC’s UART library code can sufficiently 

communicate with the LCD with ease. Due to the serial communication feature of the 

LCD, only three wires are required to control the LCD, which is beneficial when 

building prototypes due to the lower amount of connections. The LCD provides a 

good backlight which adequately illuminates the display for excellent readability.  

The component that is used to communicate with the PC application via RS232 is 

the FTDI FT232R USB-UART breakout board. The IC is responsible for converting 

the RS232 signals to USB signals without the need to implement a USB protocol 

(“FT232R”). The IC is directly connected to the processor’s UART module. The 
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processor simply writes characters through the UART module, and the FTDI chip 

outputs a signal compatible with mini USB protocol. This allows for a user to read 

data from the processor’s EEPROM using the PC application. The user simply 

connects a USB cable between the FTDI board found in the docking station to a PC, 

and runs the application. The USB support is especially convenient for most PC users, 

since the RS232 DB9 port is being phased out of most laptops and modern PCs, but 

the USB input is still prevalent in most new computers and tablets. 

The final component that is directly related to the user interface is the digital 

switch, MC14016B, from On Semiconductor. The digital switch is used to control one 

signal line with another (“MC14016B”). In the AAGILE application, the switch is 

controlled by the processor, and is used to determine whether the LCD or the FTDI 

chip is communicating with the processor. Since the PIC18F452 processor only has 

one UART module, but the LCD and FTDI both communicate via UART, the UART 

bus is shared between the two. The processor outputs a GPIO signal to the control of 

the digital switch, which determines whether the UART bus is connected to the LCD 

or to the FTDI chip. Thus, the processor can communicate to two UART devices with 

only one UART module. 

The last components that make up the AAGILE electronics are the components 

related to power management. The AAGILE unit is powered with a rechargeable 9V 

battery. The 9V is regulated down to 5V for the logic level circuitry related to the 

processor, and is also regulated down to 3.3V for the accelerometer. The 5V regulator 

is the ST Micro L78L05 linear dropout regulator. The regulator is a basic three 

terminal LDO with output current limit of 100 mA (“L78L”). The regulator is also 
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thermal protected, where if the part heats up past 150°C, the regulator will 

automatically disable the output. The IC also has short-circuit protection, where the 

regulator will also automatically shut down if the output voltage is shorted to ground. 

The 3.3V regulator is also an LDO three pin regulator with part number MCP1702-

3302E, from Microchip. The regulator can output up to 250mA of current with an 

input voltage up to 13.2V (“MCP1702”). The regulator has low quiescent current of 

only 2µA, which makes it ideal for the battery operated AAGILE system. The current 

output is more than enough to power the accelerometer and supporting circuitry. The 

regulator also has short circuit and thermal protection, and requires only an input and 

output decoupling capacitor. 

While the design was successfully implemented in the AAGILE prototype 

system, there are plenty of areas where the electronics can be improved. First, a full 

system power budget should be created to ensure that the 100 mA output of the 5V 

regulator is sufficient enough to power the system when the system is in full operation. 

If the regulator is being overdrawn, the regulator could start to generate heat, or it 

could cause a brown-out situation where the system is running with not enough current 

or voltage. Next, the audio output can be improved significantly. During the testing for 

the study, just about all ten subjects indicated that the AAGILE messages were 

difficult to understand. To improve the audio output, better audio amplifiers can be 

used. Furthermore, the voice record chip can be replaced with a high definition voice 

codec chip that has much better signal-to-noise ratio. There are also audio processor 

ICs that can read and play MP3 audio files, which would also output a message that is 

clearer to hear. The next area that can be improved is the removal of the audio 
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circuitry 9V relay. Relays that only switch low contact voltages tend to waste more 

power to energize the coil than if another switching method was implemented. Instead 

of using a processor controlled relay to switch 9V, a simple MOSFET can be used, 

which can have a very low ON resistance. A lower ON resistance will allow for the 

same switching capability, but without much of the wasted power loss. 

A final improvement to the electronics assembly would be to use a printed circuit 

board. The current prototype unit uses through hole components and is placed on 

proto-board. The connections are made with point-to-point soldering, which takes a lot 

of time to complete, and is also extremely difficult to debug. For example, if there was 

a cold solder joint on a single connection, it could take days to find where the solder 

problem exists. The cost of PCBs has gone down over the years due to improved 

technology. Now, there are PCB houses that provide instant quotes as well as very 

quick turn times, and have low cost solutions for 2 and 4 layer boards. Using surface 

mount parts on a custom PCB for the AAGILE would greatly reduce the probability of 

human error for board assembly, and also decreases the amount of time and effort that 

it takes to debug the circuity. Last, switching to a PCB with surface mounted 

components could significantly reduce the board size. Since the board is meant to be 

portable and worn by the user, a smaller PCB would be ideal.  

Despite the areas of improvement that exist, the AAGILE prototype has 

successfully fulfilled the basic requirements, and has supported the ten-subject study 

without too many challenges along the way. And, as with most projects, the AAGILE 

system is in the prototype stage and will evolve with improvements from revision to 

revision.        
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CHAPTER 3 

 

AAGILE FIRMWARE 

 

The AAGILE firmware consists of the C code that is programmed onto the 

PIC18F452 processor. The firmware is designed to interface the processor control and 

monitoring with the AAGILE electronics to fulfill the basic system requirements. The 

code is compiled using the B Knudsen CC8E compiler, which is a compiler that 

supports Microchip PIC18 devices. The firmware is developed with the MPLab 

integrated development environment (IDE). Lastly, the firmware HEX file is loaded 

onto the processor using the Microchip ICD3 in-circuit debugger, which is a device 

that connects the processor to the PC via a USB port. 

The AAGILE firmware architecture consists of three basic parts. Initially, a 

summary of each part is described. Then, the parts are followed by a more detailed 

description. First, there is the initialization code that takes place immediately after the 

PIC comes out of RESET. The initialization code is responsible for declaring and 

initializing the variables, setting up the PIC’s peripheral modules, configuring various 

processor registers, display the splash text screen on the LCD, prepare the EEPROM 

memory locations for data storage, and set the initial clock time. The next part of the 

architecture is the main loop state machine. The state machine consists of all of the 

top-level code that is navigated via the docking station user interface or via the scoring 

sequence event posted by the lower level timing code. The state machine provides the 

code to allow the user to scroll through the various menus and select various settings 
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of the system. Finally, the last part of the architecture is the lower level code contained 

in the interrupt routine. The interrupt routine runs in the background of the state 

machine, and is responsible for updating variables to be read by the higher level code. 

The interrupt code responds to various inputs either from the user or the processor 

registers, and then posts events which cause for a change of state in the state machine. 

A detailed description of each portion of code is documented below. 

The first part of the initialization code configures the processor registers to 

function as needed to run the program. The registers include the Timer0 Control 

register, the Interrupt Control register, the Tristate registers for Port B and Port D, 

External interrupt trigger register, and ADC register and channel select. The T0CON 

register is initialized to 0x88, which enables timer 0, configures timer 0 as a 16 bit 

timer, sets the timer source clock to the internal instruction cycle clock, and disables 

any prescaler to timer 0.  

The interrupt control register is initialized with a 0xA0. This configures the 

INTCON register to enable global interrupts, enables timer 0 overflow interrupt, and 

disables all other interrupt sources. The code sets the TRISTATE of port B to 0x07, 

which sets all pins of port B to output except bits 2, 1, and 0. TRISTATE for port D is 

set to 0x00, which sets all pins of Port D to output. Finally, interrupts for Timer 0, 1 

and 2 are all enabled, since the timers drive the lower level code under the state 

machine. 

The last initialization to occur is the configuration of the ADC. The ADC is set 

via a function called Setup_adc( char channel). This function is called on initialization 

with setting the ADC channel to 0. The function sets the TRISTATE of port A to all 
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inputs, enables the A/D converter module in the processor, and sets the channel to read 

in to channel 0. Referencing the schematic shows that channel 0 is connected to port A 

bit 0, which is wired to the output of the accelerometer. In fact, the only ADC channel 

used in the AAGILE system is channel 0, since the accelerometer data is the only 

analog signal read in by the processor. For this reason, Setup_adc() is only called once 

in the initialization. 

At this point in the initialization code, all of the necessary registers are initialized 

to allow the state machine to start in the first state properly. It also ensures that the 

lower level code is ready to execute properly. More details on the purpose of the 

initialization of registers are mentioned in the lower level driver code section. 

After initializing the PIC’s registers, many variables are declared with various 

data types. The function and description of the variables will be covered in the 

following sections of this chapter. The final part of the initialization code specifies the 

location of the EEPROM where the scores/message played data will continue from. 

This way, the user can power off the unit and be able to power on again and have the 

scoring data be stored in the next memory location that it would have stored to if the 

unit did not power off. This continuity will allow for the user to operate the device 

across power cycles without losing or overwriting previously stored data. The specify 

EEPROM algorithm works by first reading the last byte of memory in the EEPROM. 

This location holds the last memory location that had a score written to. Now that the 

PIC knows where the last written location was, it checks the first byte and second to 

last byte of the EEPROM. With these three data points, the PIC then does a check on 

these three locations. If the data present in all three of these locations is 0xFF, then the 
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processor determines that the EEPROM has no data stored into it. If this is true, the 

processor resets the EEPROM starting location to the first byte. If not, then the 

processor sets the EEPROM starting location to continue storing data where it last left 

off on the previous power down. 

After initialization, the main loop state machine starts to run. The state machine 

code lies inside an infinite loop, where the actions to occur in the loop are determined 

by the current state that the system is in. The first state of the state machine is the 

scoring state. In the scoring state, the analog input from the accelerometer is measured 

for sixteen data samples and stored in a sixteen character array called “array”, and then 

is averaged over the samples. After the average is computed and stored in a 32-bit 

unsigned long variable called “average,” it is compared to the threshold. If the average 

is greater than the threshold plus three, the motion counter is incremented by one.  

If the code is in the scoring state, and the AAGILE time clock is a multiple of five 

minutes, the motion counter is used to calculate the score for that five minute period. 

Five minute periods were chosen due to the lack of memory. The PIC has 256 bytes of 

EEPROM, so to maximize the data collection time before the memory is full, a five 

minute scoring resolution is used. If the clock is of a five minute interval, the motion 

counter is compared to a basic scoring system where the count is mapped to a score 

between one and ten. The sensitivity mode of the AAGILE determines the motion 

count criteria for each score. The scoring table is as such: 
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Sensitivity Setting Motion Count Range Score 

High 0 to 30 1 

 31 to 60 2 

 61 to 90 3 

 91 to 120 4 

 121 to 150 5 

 151 to 180 6 

 181 to 210 7 

 211 to 240 8 

 241 to 270 9 

 Greater than 270 10 

Medium 0 to 45 1 

 46 to 90 2 

 91 to135 3 

 136 to 180 4 

 181 to 225 5 

 226 to 270 6 

 271 to 315 7 

 315 to 360 8 

 361 to 405 9 

 Greater than 405 10 

Low 0 to 60 1 

 61 to 120 2 

 121 to 180 3 

 181 to 240 4 

 241 to 300 5 

 301 to 360 6 

 361 to 420 7 

 421 to 480 8 

 481 to 540 9 

 Greater than 540 10 

 Table 2. Scoring System Based on Sensitivity 

  After the score is calculated, the timestamp and score are stored in the EEPROM 

at the specified location. The last step of the scoring state is the processor resetting the 

motion counter to zero. 



 

22 

 

The next state of the state machine is the clock sequence state. This state is the 

first state that is displayed on the LCD. The clock sequence state writes the AAGILE 

clock time to the LCD, with hour, minute, second, and AM or PM designation. As 

each second goes by in this state, the clock changes accordingly and the LCD is 

updated with the new time. The state machine will not leave this state unless it is time 

to get an exercise score or if the operator presses either the scroll button or the select 

button. If either of these buttons is pressed, the state machine progresses to the main 

menu sequence state.  

The main menu state is responsible for providing the user interface to the 

operator, with the LCD being the feedback and the pushbuttons acting as the input. As 

the user presses the scroll button, the LCD updates the text to indicate which menu 

item can be selected. There are seven menu options that are selectable. They include 

setting the AAGILE clock, editing the message play times, editing the messages 

themselves, and uploading the AAGILE score data via USB to the PC application, 

clearing the EEPROM memory, changing the exercise sensitivity scale, and exiting the 

main menu and returning to the clock state. Once the LCD displays the menu item that 

the operator wishes to select, the user then presses the select button and the state 

machine enters the corresponding menu item state. 

In the set clock state, the user can use the scroll button and select button to set the 

AAGILE clock time. First, the user selects whether the clock is operating in AM or 

PM time. Once the operator uses the scroll button to the desired AM/PM setting, the 

select button is pressed to move onto setting the hours. This is done in a similar 

fashion, where the operator uses the scroll button and select button to finalize the hour 
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of the clock. The code repeats for minutes and seconds. The code is responsible for 

handling the LCD update, ensuring that the seconds and minutes count wraps back to 

“00” after “59”, and handling the two pushbuttons. 

In the set play time state, the user can set different parameters relating to the 

playing of the messages. First, the user can edit the play times. This corresponds to 

what time on the AAGILE clock will cause the selected message to play. If this 

submenu is selected, the user must then scroll through which of the messages to edit 

the play time for. The user can choose to set the play times for messages one through 

nine. Setting the play times for each message calls the same Set_time() function that is 

used by the set clock state. After all of the message play times are selected, the 

message itself has to be selected to play. This is done by navigating through the 

submenu for the edit play time state. After the option to set the play time is the option 

to select the message that was edited. The user simply presses the select button on this 

option and the corresponding message is enabled to be played when the AAGILE 

clock matches the play time set previously by the user. 

The next state in the menu sequence is the edit message state. In the edit 

messages state, the operator can cycle through the messages and choose a message to 

rerecord. The operator can also playback a message, or delete a message altogether. 

The operator uses the scroll button to select a message. After a message is chosen, one 

of the three actions is chosen for the selected message. Finally, the operator presses 

the select button to make the desired action choice. The firmware code handles the 

various message slots, including the recording times available for each message.  
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The next state in the state machine is the check for play time state. This state 

simply compares the AAGILE clock time with the preselected message play time. In 

order to play a message, the processor code checks for a flag indicating which 

message has been selected to be played. If a message has been selected and the time 

for that message matches the AAGILE clock exactly, then the firmware will utilize its 

lower level drivers to turn on the voice record chip and speaker and play the message.  

The last state of the state machine is the sensitivity setting state. In this state, the 

operator uses the scroll button to switch between which sensitivity to set the AAGILE 

to. Once the correct sensitivity is scrolled to, the operator presses the select button to 

switch the sensitivity of the AAGILE. The sensitivity of the AAGILE determines the 

scoring system as mentioned earlier in this chapter. 

   The final pieces of the code are the lower level driver code and interrupt code. 

These final pieces are responsible for linking the higher level state machine code with 

the respective drivers needed to interface with the AAGILE hardware. The interrupt 

code has a higher priority than the main space state machine code. This ensures that 

the time sensitive code is executed on time, despite where the code is in the state 

machine. In the interrupt code for the AAGILE firmware lays the timer handles and 

the button handles. When an interrupt occurs, an interrupt flag is set by the processor. 

In the interrupt service routine (ISR), the code will check the interrupt flag and 

determine which interrupt service to execute.  

One of the interrupt services is initiated by timer0. Timer0 interrupt is a 16-bit 

counter that is set using the high byte and low byte of the TMR0 register. The timer is 

set to 0xFC36, which causes the timer to interrupt every one millisecond due to the 4 
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MHz clock applied to the PIC. This one millisecond timer is the only interrupt driven 

timer in the system. Thus, the time base of all of the code in the AAGILE is one 

millisecond. After a millisecond elapses, the ISR first reads the accelerometer data via 

ADC. Next, the one millisecond software timer is incremented by one millisecond. 

Then, the button debouncing is handled. Last, the AAGILE clock is incremented with 

a one millisecond resolution.  

The next interrupt handled in the ISR is the scroll button. When the scroll button 

is pressed, the main loop code will be interrupted by the ISR, which will start the 

button debouncing process. If the button has been successfully pressed with a 

debouncer, the code will set a flag indicating that the scroll button has been pressed. 

Another interrupt handled in the ISR is the select button, which works identically as 

the scroll button does, but with a different interrupt pin and interrupt flag.  

Underneath the three ISR code functions lays the driver code required to interface 

with the AAGILE hardware. Many of these drivers involve setting up the PIC’s 

peripheral registers and writing or reading data to and from peripheral devices. The 

driver functions are outlined in the table below: 

Driver Function 

Name 

Peripheral 

Used 

Input 

Parameters 

Output 

Parameters 

Description 

Setup_adc() ADC ADC 

channel to 

be used 

Void Sets the ADC control 

registers in the PIC 

to select which ADC 

channel will be read 

from. 
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Read_adc() ADC Void Char 

adc_value 

Sets the ADC 

conversion GO bit 

and waits for the 

ADC to finish the 

conversion. The 

function returns the 

ADC value. 

Setup_SPI() SPI Void Void Sets up the SPI 

register to the correct 

timing parameters to 

interface with the 

voice record chip. 

SPI_read_byte() SPI Void Char value Reads a byte from 

the SPI bus from the 

voice record chip, 

and returns the 

character. 

SPI_write_byte() SPI Char value Void Writes the inputted 

character to the SPI 

bus to the voice 

record chip. 

SPI_write_2bytes() SPI Unsigned 

long value 

Void Writes a 16 bit value 

on the SPI bus to the 
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voice record chip. 

Setup_USART() UART Void Void Sets up the control 

registers for the 

UART protocol 

which interfaces 

with the LCD and 

the USB FTDI chip. 

This sets up the baud 

rate and other 

configuration 

parameters. 

Transmit() UART Char value Void Sends a character 

across the UART bus 

to either the LCD or 

the FTDI USB chip. 

Clear_screen() LCD Void Void Sends a 0xFE to the 

LCD driver via 

UART, which 

corresponds to the 

first LCD location. 

Then, a 0x01 is sent, 

which is the 

command for 
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clearing the LCD 

screen. 

Backlight() LCD Char state Void Sends a 0x7C to the 

LCD driver, and then 

sends another 

character which 

represents the 

desired state of the 

backlight (On/Off). 

Set_position() LCD Char 

position 

Void Sends a command to 

the LCD driver to 

put the character 

cursor to the 

specified location. 

Print_line() LCD String 

pointer, char 

num_chars 

Void Prints the specified 

string of characters 

to the LCD, up to the 

number of characters 

inputted into the 

function. 

readEEPROM() EEPROM Void Char 

EEDATA 

Reads the EEPROM 

character at the 

previously specified 
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location and returns 

the value. 

writeEEPROM() EEPROM Char value Void Writes the input 

value to the 

previously specified 

location. 

INCEEPROM() EEPROM Void Char 

EEADR 

Increments one 

EEPROM location 

and returns the 

selected address. 

SpecifyEEPROM() EEPROM Char 

address 

Char value Sets the memory 

location in EEPROM 

to be accessed. 

Print_2dig_num() LCD Char value, 

char 

position 

Void Prints a two digit 

number to the LCD 

screen at the 

specified location. 

Delay_ms() Software 

Timer 

Char delay 

time 

Void Uses the interrupt 

driven 1 ms timer to 

delay the AAGILE 

system for the 

specified amount of 

milliseconds. 
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Delay_sec() Software 

Timer 

Char delay 

time 

Void Uses the millisecond 

timer interrupt to 

delay the AAGILE 

system by the 

specified number of 

seconds. 

Table 3. Firmware Driver Functions 

The PIC code is written to implement the AAGILE functions in a timely and 

sufficient manner. However, there are some areas of improvement for the AAGILE 

code, including facilitating making changes to the code, reading and understanding the 

code, and optimizing the code for code space preservation. One example that does this 

is modularizing the code. All of the AAGILE code is compiled into one source file, 

resulting in over two thousand lines of code. One way to mitigate this complication is 

to modularize the code by giving the main state machine loop its own source file and 

the driver code its own source file. Going even further, some handler functions can be 

divided into source files with other functions that are related. For example, the LCD 

code can be compiled into one source file, the voice record functions can be compiled 

into a single file, etc.  

Another way to improve the code is to make the code more like an event driven 

state machine, as opposed to using many flags. The AAGILE code has many 

individual flags that have similar names, which can be confusing to someone trying to 

understand the code. Making an event driven state machine means that while the 

system is in a state, only events related to that state will be acted on, and all others will 
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be ignored. For example, when the select button is pressed, the code posts a “button 

press” event. Then, the event is put into a queue. Finally, when in a particular state, the 

state machine will look at the posted event in the queue and check its event table. If 

the event is in the event table, it will act on it accordingly as instructed in the event 

table. 

While the firmware code may not be perfect, it still is able to execute the 

AAGILE functionality with an interrupt driven program. Using a one millisecond time 

base allows for all of the controls and functions to be handled in an organized manner 

with one millisecond timing resolution. By interfacing the processor with the 

hardware, the AAGILE system can successfully monitor the user’s exercise activity 

and play a message when programmed to do so. The code successfully provides a user 

interface to the operator to setup various play times and record new messages.  
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CHAPTER 4 

 

AAGILE SOFTWARE 

 

The AAGILE software consists of the application code written for a Windows® 

PC. The application allows the AAGILE score data to be imported to a PC and 

displayed in an embedded graph. Furthermore, the data can be directly exported into 

an Excel file, or the graph can be saved as an image file. The software code is 

developed as a Windows® Form Application in the Microsoft Visual C# 2010 Express 

development environment. The development environment allows the application to be 

run in debug mode, where the programmer can tweak parts of code and step through 

the lines of code as desired. The application can also be made into a Windows® 

executable, where the user simply needs to open the program as any other Windows® 

application would be opened. The application then runs standalone. 

The application is built using the Windows® form tool, which allows for quick 

development of a graphical user interface. The application uses various forms to 

provide the interface to the user. These forms include a rich text box, a data grid, a 

chart, a label, three buttons, a menu strip, a save file dialog, and a numeric up/down 

box. These interface tools are brought into the Windows® form application, and code 

is implemented to determine what functions are executed with each form. 

The rich text box form is used to display application information to the user, 

including the raw data from the AAGILE and the portioned time and score data. Also, 

the COM port information is displayed. The data grid is used to compile the time and 
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score information in a table. The table is then matched with the chart form. The chart 

form binds to the data grid and plots the data on a line graph. The label form is used to 

display the AAGILE title on the application graphical user interface, or GUI. The 

three buttons are used to allow the user to control the application, including the ability 

to connect to the AAGILE via the COM port, stop the COM port communications, and 

import the data from the AAGILE. The menu strip form allows the menu bar to appear 

in the application. The menu bar for the AAGILE application includes a file menu and 

a help selection. The help selection provides a pop up window to appear which 

describes how to use the application. The File menu has two choices, including saving 

the graph as an image, or export the AAGILE data to Excel. The save file dialog 

allows the user to save the data with the standard Windows® navigation window. 

Finally, the numeric up/down box is used to allow the user to select the COM port for 

the AAGILE communication. 

The AAGILE application is not driven by any timers or by any state machine. 

The application simply waits for user input via the GUI, and responds to the input with 

the coded action. The only code that executes without user input is the initialization 

code. The initialization code first draws the GUI form, then creates a serial COM port 

to interface with the AAGILE, then sets up the data table, and declares various global 

variables.  

After initialization, the GUI application waits for user input. When the user clicks 

the Ready To Connect button, the application code first displays the COM port 

information in the rich text box form. Next, the application tries to open the COM port 

at the preset baud rate of 9800 and with COM port number equal to the number 
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displayed in the numeric up/down box. If the application is able to connect to the 

AAGILE, then the rich text box displays that the application is connected. If not, then 

the application displays in the rich text box that the connection failed, and displays an 

error message provided by Windows® that explains why the connection failed. If 

connection with the AAGILE is successful, the application then waits for user input to 

continue. 

Next, the user clicks the Import button. When this happens the application tries to 

read 256 bytes of data from the COM port. The operator must first navigate the 

AAGILE menu on the docking station and select data USB upload. If this has been 

done, then when the user clicks the Import button, the 256 bytes of data from the 

AAGILE’s EEPROM will be sent across the COM port. If the data read is successful, 

the application code then proceeds to parse the data. First, the application instantiates 

an Excel file to be used to store the data. Next, the data table and chart tools are 

updated with the proper fields including the title fields. Then, the 256 bytes are 

converted from binary data to a string representation of the hex values. The hex values 

are then displayed in the rich text box. Next, the string of hex data is broken up into 

substrings that represent three nibbles of the data. The first nibble represents the score, 

the second represents the hour, and the last nibble represents the minute. The 

score/hour/minute data is displayed in the rich text box.  

After the data is broken up into the score, hour, and minute partitions, the data is 

converted back from a sting to an integer. If the minute data represents zero minutes, 

then the minutes value is converted to a string of double zeros, as traditional time is 

displayed. If the minutes value is equal to five minutes, then the data is converted to a 
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string of “05”, also as traditional time is displayed. Otherwise, the data is ready to be 

stored into the data table as integers.  

If a message is played, the first nibble of the threesome is F. The code handles 

this case, and stores the message played in the chart instead of the score. If the data 

nibbles are FFF, then that means that the data stream has ended, and the AAGILE 

EEPROM has cleared data at that point. If the application sees FFF, then it completes 

the parsing of data, completes the data table form, adds heading to the chart, and binds 

the chart to the data table. The binding of the chart causes the GUI to display the data 

on the chart. If the importing of AAGILE data fails, then the application displays that 

the importing failed, and also displays the Windows® provided error message for the 

cause of failure. Last, the application closes the serial port. 

If the user clicks the help menu item, the application displays a pop up window 

that explains how the AAGILE application is used. If the user navigates the file menu 

bar, and selects save graph, the application opens the Save As dialog window to assist 

the user to choose a location and filename to save the graph to. If the user navigates 

the file menu bar and selects to export data to Excel, the application opens a Save As 

dialog window to assist the user to choose a filename and location of the generated 

Excel file. The user can then open the Excel file at his or her leisure at a later time and 

utilize the data as desired. 

If the user clicks the Stop button, then the application will close the serial port. 

Similarly, if the user closes the application, the code will also close the serial port to 

prevent it from being unintentionally left open upon exit. 
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Figure 5. AAGILE PC Application Screenshot. 

The application is fully functional, but has areas of possible improvement. For 

example, the application requires that the operator clicks the buttons in a required 

sequence that is not intuitive in order to properly read the data from the AAGILE. 

First, the user needs to click the connect button. Then, the user select the USB data 

upload option on the AAGILE’s docking station. Next, the user clicks the Import 

button in the application. Last, the user must close the serial port with either the stop 

button or exiting the application properly. If the operator does not execute this 

sequence properly, the AAGILE data may not import properly, parse the data 

properly, or close the serial port properly, which could cause the computer to work 

inefficiently. One way to fix this would be to integrate all of the functions into the 

Connect button so that once the user connects to the AAGILE, the rest of the data 

handling is done internally without user intervention. For example, the user would 

click the Connect button once, then press the USB data upload selection on the 

docking station. Then, the application would immediately and automatically import 

the data from the data stream and parse the data, then close the serial port. The 
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application would act more like a dumb terminal in that once the COM port is open, 

the application will sit and wait for data on its own.  

Another area of improvement is the correction of the lack of persistency of the 

application. If any of the bytes that come across the COM port are not in proper 

sequence or the correct data format, then the application tries to plot the bad data 

anyway, or simply gives up and throws an error message. The application should be 

made more persistent with parsing the data, in that the code should realize that the data 

is bad, and prevent the displaying of bad data. Furthermore, the application should try 

to skip over the bad data and continue parsing on the next good data byte. This way, if 

the AAGILE transmission gets corrupted for any reason, the application is robust 

enough to handle the situation and still retain some good AAGILE score data without 

losing the day’s work.  

Despite some inefficiency, the AAGILE Windows® application GUI successfully 

provides an easy way for the operator to review the AAGILE data with just a few 

clicks of some buttons. This relieves the operator from manually reading in the 

EEPROM data and parsing the data, as well as plotting the data in a graph. In fact, this 

application has been used for the AAGILE study reported in this thesis, which was a 

crucial timesaver and an easy and quick way to obtain, display, and analyze the 

exercise data.  
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CHAPTER 5 

 

STUDY METHODOLOGY 

 

To demonstrate the effectiveness of the AAGILE, a study is conducted on ten 

human subjects. The study is approved by the Institutional Review Board, with an IRB 

approval number of HU1112-025. The ten subjects are within the age range of 

eighteen to thirty years old. Each of the ten subjects is assigned to wear the AAGILE 

mobile unit for at least a six hour period. During the six hours, three prerecorded 

personalized messages are played at intervals unknown by the wearer. The 

personalized messages encourage the wearer to exercise for some time. Although the 

exact play times are not expressed to the subject, the messages times are selected to 

work around the subject’s schedule to ensure not to disrupt the subject from any 

important meeting, class, etc.   

 



 

39 

 

 

Figure 6. Wearable AAGILE mobile unit. 

 

To setup the study, the experimenter first powers up the AAGILE and clears the 

EEPROM memory. Next, the AAGILE mobile unit is connected to the docking 

station, and the person running the study will use the user interface to set the time, 

record messages, and set the message play times. Once the AAGILE mobile unit is 

programmed, it is put into a fanny pack and handed to the subject. The subject then 

puts on the AAGILE mobile unit and then goes about the day as usual. 

The hypothesis is that the personalized messages of encouragement will result in 

an immediate increase of physical activity to be monitored by the AAGILE’s 

accelerometer. The scoring system to quantify the amount of exercise should then see 

an increase in score as well. This hypothesis is tested three times by three different 
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messages during the six hour period. Another method is also used on the subject to 

determine the effectiveness of the AAGILE. Although more subjective than a discrete 

exercise score, a survey is given to the subject after the six hours expires to be filled 

out honestly and completely. The survey aims to determine the overall experience of 

the subject during the study, the aesthetics of the AAILGE for the user, and the ability 

to motivate the subject to exercise. The survey is pasted in the Appendix of this thesis. 

When the subject completes the six hour study, the device is turned off and 

handed back to the one running the study. Then, the AAGILE is rebooted while being 

connected to the docking station. The AAGILE is then connected to a PC via the USB 

port, and the data is exported to the AAGILE Windows® application. A copy of the 

raw EEPROM data is stored in case it is needed later on. A copy of the AAGILE 

application graph is saved as a picture file. Finally, the data is exported to an Excel file 

to be processed later on if desired. All three sets of data are used to create the 

completed graph of the exercise score of the subject from the six hour test, and the 

results are reported in the Study Results section. 

Using the data extracted from the AAGILE, some statistical analysis is conducted 

to quantify the effectiveness of the AAGILE in encouraging exercise of the subject. 

First, a baseline for each subject is calculated by averaging the score on the times 

when no message has played. Then, the difference in score value from the baseline to 

the score after a message is played is determined, and then this difference is averaged 

for the three instances the messages were played. The difference averages are then 

compared between the ten subjects and the overall effectiveness of the AAGILE is 

determined. 



 

41 

 

 

As a final set of data points, the survey responses are evaluated for each subject. 

The responses in the survey are used to report the subjective feelings of the subjects on 

how effective they thought the AAGILE was at encouraging them to exercise. 

Furthermore, any recommendations for improvement of the AAGILE device dictated 

by the subjects are recorded.  

The results of the study are reported in the next chapter.
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CHAPTER 6 

 

STUDY RESULTS 

 

The results of the study are analyzed by first calculating the baseline for each 

subject. This is done by computing the average score during the period of time where 

no messages were played. The baseline score is enumerated with the variable, SBL. 

Next, the average is computed for scores in the period immediately following the 

message played, and is enumerated with the variable, SMP. The SMP value is 

averaged from the first non-1 score after a message played to when three 1’s are 

recorded in a row. In other words, it is assumed that if no exercise has occurred after 

fifteen minutes elapses after a message is played, then the exercise period for that 

message is considered to be over. Finally, the difference of the score after message 

played and the baseline score is calculated and enumerated with the variable, ∆S. 

Listed below are the results for each subject, as well as the exercise score plot 

extracted from the Excel file generated by the AAGILE Windows® application. The 

data is represented with a dual series line graph, where the x-axis is the time of day, 

and the y-axis represents either the score (blue line) or the message number that was 

played (red line). The title of the graph, S1, S2, etc., indicates the subject number. 

Subject # SBL SMP ∆S. 

1 1.233 4.777 +3.544 

Table 4. Results for Subject 1. 
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 Figure 7. Score data graph for Subject 1. 

 

Subject # SBL SMP ∆S. 

2 1.031 4.100 +3.069 

Table 5. Results for Subject 2. 
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 Figure 8. Score data graph for Subject 2. 

Subject # SBL SMP ∆S. 

3 1.010 6.000 +4.990 

Table 6. Results for Subject 3. 
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 Figure 9. Score data graph for Subject 3. 

Subject # SBL SMP ∆S. 

4 1.000 4.667 +3.667 

Table 7. Results for Subject 4. 
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 Figure 10. Score data graph for Subject 4. 

 

 

Subject # SBL SMP ∆S. 

5 1.000 3.833 +2.833 

Table 8. Results for Subject 5. 
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 Figure 11. Score data graph for Subject 5. 

 

 

Subject # SBL SMP ∆S. 

6 1.000 3.857 +2.857 

Table 9. Results for Subject 6. 
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 Figure 12. Score data graph for Subject 6. 

 

Subject # SBL SMP ∆S. 

7 1.043 6.500 +5.457 

Table 10. Results for Subject 7. 
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 Figure 13. Score data graph for Subject 7. 

 

 

Subject # SBL SMP ∆S. 

8 1.043 6.500 +5.457 

Table 11. Results for Subject 8. 

 

 

 Figure 14. Score data graph for Subject 8. 
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Subject # SBL SMP ∆S. 

9 1.053 3.625 +2.572 

Table 12. Results for Subject 9. 

 

 Figure 15. Score data graph for Subject 9. 

 

 

 

Subject # SBL SMP ∆S. 

10 1.000 2.400 +1.400 

Table 13. Results for Subject 10. 
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 Figure 16. Score data graph for Subject 10. 
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Based on the data collected for the ten subjects, the exercise scores of the subjects 

increased post message-play for all of the subjects. The table below lists more 

statistics on the overall study. 

SBL 

average 

SBL 

maximum 

SBL 

minimum 

SMP 

average 

SMP 

maximum 

SMP 

minimum 

∆S 

average 

∆S 

maximum 

∆S 

minimum  

1.041 1.233 1 4.626 6.500 2.400 +3.585 +5.457 +1.400 

Table 14. Combined Statistics for All Subjects. 

The baseline score for all of the subjects are within a relatively tight range, with 

the maximum baseline equal to 1.233 and the baseline minimum equal to 1. A score of 

1 corresponds to very little movement of the AAGILE since the score is on a scale 

from 1 to 10. However, when the message was played the score increased by a wide 

range of scores. This is best explained because each subject exercised with different 

levels of intensity and duration, yielding an increase in score ranging from 2.4 to 6.5. 

For subject #10, the average score after message only caused for an increase of 1.4, 

meaning that the subject only exerted slightly more movement for the AAGILE. On 

the other hand, subjects #7 and #8 each had an increase in score of 5.457 after a 

message is played, which corresponds to a much larger acceleration applied to the 

AAGILE. Subject #9 has an increase of exercise score after a message had played, but 

due to a longer duration of exercise after each message. Due to the nature of the 

exercise type and that it was not a control for this study, the range for exercise score 

increases is rather high, with a range of 4.1 for score after a message was played. 

Finally, the results of the post-study survey are summarized. All ten subjects had 

said that the AAGILE was easy to use. Usability of a device is very important, since it 

provides benefits to the user with minimal effort. This is especially true for older 
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adults, since they may be less prone to learning how to use new technologies. Eight 

out of the ten subjects said that the messages were easy to hear. This is also important 

for the AAGILE’s effectiveness, since if the message is not easy to hear, then the user 

may not hear the motivational message to cause an increase in exercise.  

Nine out of ten subjects agreed that the message was not easy to understand. This 

may be due to insufficient design in the audio amplifier circuitry. The lack of 

comprehension of a message may significantly hinder the AAGILE’s effectiveness to 

encourage exercise, since the content of the messages are important when the 

messages are personalized for the user.  

Four out of the ten subjects explained that the AAGILE was bulky or 

uncomfortable to wear. The comfortableness of the AAGILE is crucial in that if the 

device is not comfortable for the user to wear, he or she may be less likely to use the 

AAGILE. This indicates that there may be a potential mechanical design flaw in the 

AAGILE design. In order to promote comfort and usability, wearable devices need to 

be sleek and have a natural feel to the wearer. In fact, a successful wearable device 

should have the effect as if the device was not there at all. Some concerns with the 

AAGILE’s mechanical design include that the AAGILE was in the way of seatbelts, 

the AAGILE would constantly bump into objects when walking about, and the 

AAGILE seemed fragile and the wearer was nervous about damaging the device. 

These concerns should be addressed in order to improve upon the AAGILE device in 

the future. 

The final survey question inquires the subject to what extent did the message 

motivate that person to be more active. The results average to 4 out of 5, indicating 
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that the message did encourage an increase in physical activity by a significant 

amount, which correlates to the calculated ∆S average of +3.585. Since this function is 

the key feature of the AAGILE device, the results are promising in that the 

personalized messages do successfully motivate the user to exercise. The tally for this 

question is three subjects gave a 5, four subjects gave a 4, and three subjects gave a 3.  

All of the data presented is compiled and analyzed and summarized in the next 

chapter. 
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CHAPTER 7 

 

CONCLUSION 

 

After analyzing the results of the study, the data can be summarized with two 

statements: the AAGILE can successfully motivate someone to increase exercise 

activity, and the overall design of the AAGILE has plenty room for improvement. The 

AAGILE monitors activity in a well-designed matter, and is capable of recording and 

reporting an averaged exercise score to the user. The AAGILE can correctly keep 

track of the time of day, and can determine when to play a message based on that 

clock. The AAGILE saves score information in non-volatile memory via the 

EEPROM, and the AAGILE can utilize its USB port to communicate with the 

Windows® PC. Lastly, the PC application successfully receives data from the 

AAGILE hardware and correctly displays the data in a clear manner, and also 

conveniently exports the data to an Excel file with a simple and efficient graphic 

interface. 

The AAGILE’s hardware implementation satisfies the self-imposed electronics 

requirements laid out in chapter 2. The AAGILE’s firmware controls the hardware to 

satisfy the functional requirements of the system as a whole. Finally, the AAGILE’s 

Window application software satisfies the graphical user interface requirements. 

Therefore, the AAGILE’s design implementation is sufficient per its system level 

requirements, and the execution of the study further indicates that the design works as 

designed. 
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Besides design verification, the study also sheds some light on the effectiveness 

of the intended design based on the device’s essential performance. As indicated in the 

study results, the message played from the Activity Analyzer did cause for an increase 

of exercise activity in all ten subject cases. This further demonstrates that the AAGILE 

is capable of encouraging physical activity from an individual by using its 

personalized message playing capability. To further support this hypothesis, repeating 

the test with different types of messages, i.e. positive or negative feedback, can be 

done. Another example of an alternative study is to conduct the study on different age 

groups of people. The AAGILE design has been verified in this study, and should be 

able to be a part in the study examples listed above with no additional design changes.  

While the study showed positive results, there were some limitations of the study. 

One example is that there was a relatively small sample size, both in the amount of 

subjects and the amount of data extracted from each subject. In other words, six hours 

of data might not reflect the true effectiveness of the AAGILE throughout all times of 

the day. This limitation is primarily attributed to the lack in EEPROM storage space 

on the processor. Another possible limitation is that some of the subjects were aware 

of the study’s goals. Although the study is meant to be objective, knowing the goal of 

the study could result in biasing of the data by the subjects. Finally, since there was no 

monitoring of the subjects while the study was conducted, there is no guarantee that 

the subject exercised to increase the activity score, or if the subject wore the device 

throughout the entire 6 hour period. As previously mentioned, there are many different 

variations of the study that can be conducted to better support the hypothesis. 



 

57 

 

While the design has been shown to pass all of the system level requirements of 

the device, as well as display that it can also execute its essential performance, the 

design and construction of the device needs to be refined. For a device to be developed 

successfully, it must not only have appropriate functionality, but should also have a 

good sense of usability. Based off of the survey results, there is much room for 

improvement on the usability of the device. This is evident in the survey responses 

related to inability to comprehend messages, discomfort while device is worn, and 

overall lack of esthetics of the device. Design improvements are strongly 

recommended for the AAGILE to ensure its marketability with competing devices 

with similar functions. As existing activity analyzers continue to improve in design, 

functionality, and usability, the AAGILE must too improve to stay competitive. Some 

design improvements that are strongly recommended include significantly shrinking 

the package of the device, improving sound quality of the audio circuitry, and 

simplifying the Windows® application user interface to make it easier to use for 

people with a wide variety of computer skills. 

Despite the design flaws, the firmware bugs, the mechanical construction, etc., 

the AAGILE as a whole shows promise. Using a personalized message to encourage 

exercise is a unique quality of the AAGILE that no other activity analyzer has. From 

this study, the personalized message shows significant capability to motivate the user 

to exercise. The current AAGILE design provides a strong foundation that can support 

future design improvements and maintain a basic, but promising function in 

motivating people to exercise, and thus, encouraging a healthier lifestyle. The 
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AAGILE strives to reach the same single goal for its impact on society as other 

devices, which is to better improve quality of life. 
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APPENDICES 

 

Some code bits for AAGILE firmware: 

// ___________________________ if (main_menu) sequence __________________________ / 

  if (main_menu) { 

   if (update_display) { 

             Clear_screen();    

             Set_position(0);  

             Print_line("Main Menu", 9); 

             Set_position(64); 

             switch (main_menu_mode) { 

             case 0: 

              Print_line("Exit", 4); 

              break;  

             case 1: 

              Print_line("Set Clock", 9); 

              break; 

             case 2: 

              Print_line("Edit Play Times", 14); 

              break; 

             case 3: 

              Print_line("Edit Messages", 13); 

              break;  

             case 4: 

              Print_line("USB Data Upload", 15); 

              break;  

             case 5: 

              Print_line("Erase Memory", 12); 

              break; 

             case 6: 

              Print_line("Sensitivity", 11); 

              break;} 

   update_display = 0; }    

   if (scroll) { 
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    scroll = 0; 

    main_menu_mode++; 

    if (main_menu_mode == 7) main_menu_mode = 0; 

    update_display = 1; } 

   if (select) { 

             select = 0; 

             main_menu = 0; 

             switch (main_menu_mode) { 

             case 0: 

                 clock = 1; 

                 break; 

             case 1: 

                 set_clock = 1; 

                 break; 

                case 2: 

                 set_play_times = 1; 

                 break; 

             case 3: 

                 edit_messages = 1; 

                 break;  

             case 4: 

     //Clear_screen();    

              //Set_position(0);  

     //Print_line("Sending Data...", 15); 

     //Delay_ms(10); 

      

     SpecifyEEPROM(0xFF); 

     unsigned char curLocation = readEEPROM(); 

      

     SpecifyEEPROM(0x00); 

     Delay_ms(10); 

     PORTD.2 = 0; //deselect LCD 

     Delay_ms(10); 

     PORTD.3 = 1; //select USB 

     Delay_ms(10); 
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     while(EEADR != 0xFF) 

     { 

//      PORTD.3 = 1; //select USB 

//      PORTD.2 = 0; //deselect LCD  

  

 

      ARHG = readEEPROM(); 

      Transmit(ARHG); 

      INCEEPROM();  

     } 

      

     ARHG = readEEPROM(); 

     Transmit(ARHG); 

      

     Delay_ms(10); 

     SpecifyEEPROM(curLocation); 

     usb = 0; 

                 main_menu = 1;  

                 PORTD.3 = 0; //deselect USB 

     Delay_ms(10); 

     PORTD.2 = 1; //select LCD 

     Delay_ms(10); 

                 break; 

    case 5: 

     Clear_screen();    

              Set_position(0);  

     Print_line("Erasing...", 10); 

     SpecifyEEPROM(0x00); 

     while(EEADR != 0xFF){ 

      writeEEPROM(0xFF); 

      INCEEPROM();} 

     SpecifyEEPROM(0xFF); 

     writeEEPROM(0x00); 

     SpecifyEEPROM(0x00); 
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     messageaddr = 0x00; 

     stop_save = 0; 

                 main_menu = 1;  

        break; 

    case 6: 

     set_sensitivity = 1; 

        break;} 

  main_menu_mode = 0; 

  update_display = 1;}} 

 

// ____________________________ Setup for Scoring _____________________________ / 

//Motion detection algorithm: Every few seconds, a 16 point array will be populated 

//with 16 consecutive data points from the accelerometer. These points are then  

//averaged into the value 'average'. We then compare all incoming data to this  

//average and compare it to a threshold. If data is 3 points higher than threshold, 

//then we increase motion counter. This algorithm takes drift of accelerometer into 

//account as average is constantly recalculated around the current acc. data 

  if(counter == 0){ 

   total = 0; 

   for(i=0; i<16; i++) array[i] = ad_input;   

   for(i=0; i<16; i++) total += array[i]; 

   average = total/16;  

   counter = 250; }  

  data0 = ad_input; 

  threshold = average + 3; 

  if(data0 < threshold)baseline = 0; 

  if((data0 > threshold) && baseline == 0){ 

   baseline = 1; 

   motion++; 

   Delay_ms(70); }   

 

 if((minute==1||minute==6||minute==11||minute==16||minute==21||minute==26||minute==31||minute==36||minute==41

|| 

   minute==46||minute==51||minute==56)&&TimeF==1)TimeF = exercise2f = 0; 
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// ____________________________ Score/Save Motion _____________________________ / 

//Save to memory every minutes: we had to choose five minute resolution for mem. 

//space reasons. Every time we save data to memory, we need to save the score,  

//hour, and minute for data analysis at the end of the day. The EEPROM of the  

//PIC has 256 bytes of memory. Using a full byte of memory for score, hour, and  

//minute would only allow for 7 hours of storage. To get around this, we created 

//an algorithm that only uses half of a byte for each, or one and a half bytes 

//per storage which doubles the memory storage capability. 

 

 if((minute==0||minute==5||minute==10||minute==15||minute==20||minute==25||minute==30||minute==35||minute==40

|| 

   minute==45||minute==50||minute==55)&& TimeF==0 && stop_save == 0){ 

   TimeF = 1;  //Flag used to make sure we only save data once 

   counter = 0; 

   Delay_ms(70); 

//The following are different sensitivity settings for people with more motion 

   if (high == 0 && medium == 0 && low == 0) high = 1; 

   if (high == 1){ 

    if(motion >= 0 && motion <= 30) motion = 1; 

    if(motion > 30 && motion <= 60) motion = 2; 

    if(motion > 60 && motion <= 90) motion = 3; 

    if(motion > 90 && motion <= 120) motion = 4; 

    if(motion > 120 && motion <= 150) motion = 5; 

    if(motion > 150 && motion <= 180) motion = 6; 

    if(motion > 180 && motion <= 210) motion = 7; 

    if(motion > 210 && motion <= 240) motion = 8; 

    if(motion > 240 && motion <= 270) motion = 9; 

    if(motion > 270) motion = 10; 

    score = motion;} 

   if (medium == 1){ 

    if(motion >= 0 && motion <= 45) motion = 1; 

    if(motion > 45 && motion <= 90) motion = 2; 

    if(motion > 90 && motion <= 135) motion = 3; 

    if(motion > 135 && motion <= 180) motion = 4; 

    if(motion > 180 && motion <= 225) motion = 5; 
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    if(motion > 225 && motion <= 270) motion = 6; 

    if(motion > 270 && motion <= 315) motion = 7; 

    if(motion > 315 && motion <= 360) motion = 8; 

    if(motion > 360 && motion <= 405) motion = 9; 

    if(motion > 405) motion = 10; 

    score = motion;} 

   if (low == 1){ 

    if(motion >= 0 && motion <= 60) motion = 1; 

    if(motion > 60 && motion <= 120) motion = 2; 

    if(motion > 120 && motion <= 180) motion = 3; 

    if(motion > 180 && motion <= 240) motion = 4; 

    if(motion > 240 && motion <= 300) motion = 5; 

    if(motion > 300 && motion <= 360) motion = 6; 

    if(motion > 360 && motion <= 420) motion = 7; 

    if(motion > 420 && motion <= 480) motion = 8; 

    if(motion > 480 && motion <= 540) motion = 9; 

    if(motion > 540) motion = 10; 

    score = motion;} 

//The following code is used to determine what should be save to memory and 

//the actual saving of that data. Explaining how it works can be complicated 

//so the variables are named to to represent their function. Going through 

//the code and writing a flow chart is the best way to understand what is  

//being done. There is a lot of manipulation of memory and data to break the 

//bytes in memory in half. Also, it should be noted that the scores and times 

//are stored in decimal form. This allowed us to debug more efficiently as we 

//did not have to convert everything from hex to decimal. Last note: The mem. 

//is stored as follows: score, hour, minute. to find the minute, multiply  

//whatever is stored in memory by five. 

//Example from memory: 1C 34 C4. This would mean that their was a score of 1 

//at 12 (C) fifteen (3*5) and a score of 4 at 12 (C) 20 (4*5) 

            readEEPROM(); 

            if(EEDATA == 255){ 

    mincheck = 0;  

    hour1 = hour; minute1 = minute;  

    if(score == 1) score = 16;  
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    if(score == 2) score = 32;  

    if(score == 3) score = 48;  

    if(score == 4) score = 64;  

    if(score == 5) score = 80;  

    if(score == 6) score = 96;  

    if(score == 7) score = 112;  

    if(score == 8) score = 128;  

    if(score == 9) score = 144;  

    if(score == 10) score = 160;  

    data = score + hour1; 

    if(score == 16) exercise++; } 

   if(EEDATA != 255){ 

    mincheck = 1; 

    hour1 = hour; minute1 = minute;  

    readEEPROM(); 

    data = (EEDATA - 15) + score;  

    if(score == 1) exercise++; } 

   writeEEPROM(data); 

   Delay_ms(100); 

   INCEEPROM(); 

   Delay_ms(100); 

   readEEPROM(); 

   if(EEDATA == 255 && mincheck == 0){ 

    hour1 = hour; minute1 = minute;  

    if(minute1 == 0) minute1 = 15;  

    if(minute1 == 5) minute1 = 31;  

    if(minute1 == 10) minute1 = 47;  

    if(minute1 == 15) minute1 = 63;  

    if(minute1 == 20) minute1 = 79;  

    if(minute1 == 25) minute1 = 95;  

    if(minute1 == 30) minute1 = 111;  

    if(minute1 == 35) minute1 = 127;  

    if(minute1 == 40) minute1 = 143;  

    if(minute1 == 45) minute1 = 159;  

    if(minute1 == 50) minute1 = 175;  
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    if(minute1 == 55) minute1 = 191; 

    data = minute1; } 

   if(EEDATA == 255 && mincheck == 1){ 

    hour1 = hour; minute1 = minute;  

    if(hour1 == 1) hour1 = 16;  

    if(hour1 == 2) hour1 = 32;  

    if(hour1 == 3) hour1 = 48;  

    if(hour1 == 4) hour1 = 64;  

    if(hour1 == 5) hour1 = 80;  

    if(hour1 == 6) hour1 = 96;  

    if(hour1 == 7) hour1 = 112;  

    if(hour1 == 8) hour1 = 128;  

    if(hour1 == 9) hour1 = 144;  

    if(hour1 == 10) hour1 = 160;  

    if(hour1 == 11) hour1 = 176; 

    if(hour1 == 12) hour1 = 192;   

    if(minute1 == 0) minute1 = 0;  

    if(minute1 == 5) minute1 = 1;  

    if(minute1 == 10) minute1 = 2;  

    if(minute1 == 15) minute1 = 3;  

    if(minute1 == 20) minute1 = 4;  

    if(minute1 == 25) minute1 = 5;  

    if(minute1 == 30) minute1 = 6;  

    if(minute1 == 35) minute1 = 7;  

    if(minute1 == 40) minute1 = 8;  

    if(minute1 == 45) minute1 = 9;  

    if(minute1 == 50) minute1 = 10;  

    if(minute1 == 55) minute1 = 11; 

    data1 = hour1 + minute1; } 

   if(mincheck == 0)writeEEPROM(data); 

   if(mincheck == 1){ 

    writeEEPROM(data1); 

    Delay_ms(100); 

    INCEEPROM(); }  

   messageaddr = EEADR; 
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   SpecifyEEPROM(0xFF); 

   Delay_ms(100); 

   writeEEPROM(messageaddr); 

   Delay_ms(100); 

   SpecifyEEPROM(messageaddr);  

   Delay_ms(100);   

   motion = 0; } 

// _____________ Define High Priority Interrupt Service Routine _________________ / 

#pragma origin 0x8  

interrupt highPriorityInterrupt (void) { 

 #pragma fastMode 

 _highPriorityInt (); } 

void _highPriorityInt (void) {  

checkflags: 

 if (TMR0IF == 1) {  

  TMR0IE = 0; 

  TMR0IF = 0; 

  TMR0H = 0xFC; 

  TMR0L = 0x36; 

  ad_input = Read_adc(); 

  if(counter != 0) counter --;    

  if (button_delay != 0) button_delay--; 

  if (millisec < 999) millisec++; 

  else if (second < 59){ 

   update_display = 1; 

   millisec = 0; 

   second++; 

   relay_time++; 

   relay_time1++; 

  if (message_timer) { 

   message_timer_count_short++; 

   message_timer_count_long++; }  

  else message_timer_count_short = message_timer_count_long = 0;} 

  else if (minute < 59) { 

   update_display = 1; 
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   millisec = 0; 

   second = 0; 

   minute++;  

   no_play = 1;} 

  else if (hour < 12) { 

   update_display = 1; 

   millisec = 0; 

   second = 0; 

   minute = 0; 

   hour++; 

   if (hour == 12) pm = !pm; } 

  else { 

   update_display = 1; 

   millisec = 0; 

   second = 0; 

   minute = 0; 

   hour = 1; } 

  TMR0IE = 1; } 

 if(INT0IF == 1){  

  INT0IF = 0; 

  if(button_delay == 0){ 

   usb = !usb; 

   scroll = !scroll;  

   button_delay = 200; 

   goto checkflags;}} 

 if(INT1IF == 1){  

  INT1IF = 0; 

  if(button_delay == 0){ 

   select = !select; 

   button_delay = 200; 

   goto checkflags;}} 

 if(INT2IF == 1){  

  INT2IF = 0; 

  if(button_delay == 0){ 

   replay = !replay; 
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   button_delay = 200; 

   goto checkflags;}}} 

 

Some code bits for AAGILE software: 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Linq; 
using System.Text; 
using System.Windows.Forms; 
using System.IO.Ports; 
using Excel = Microsoft.Office.Interop.Excel; 
 
namespace AAVIDinterface 
{ 
    public partial class Form1 : Form 
    { 
         
 
        public Form1() 
        { 
            InitializeComponent(); 
        } 
 
         
 
        public static SerialPort sp = new SerialPort(); 
        public static DataTable dt; 
        public static DataColumn dc; 
        public static int strindex = 0; 
        public static string shm; 
 
        byte[] input = new byte[256]; // should be 255 
        int recv; 
 
        public static Excel.Application xl; 
        public static Excel.Workbook xlWorkBook; 
        public static Excel.Worksheet xlWorkSheet; 
        public static int rowindex; 
 
        public static int ihour, iminute, iscore; 
 
 
        private void readyToConnect_Click(object sender, EventArgs e) 
        { 
            if (SIM == 0) 
            { 
                richTextBox1.Text = "BaudRate = " + sp.BaudRate.ToString(); 
                richTextBox1.Text += "\nStop Bit = " + sp.StopBits.ToString(); 
                richTextBox1.Text += "\nDataBits = " + sp.DataBits.ToString(); 
                richTextBox1.Text += "\nParity = " + sp.Parity.ToString(); 
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                richTextBox1.Text += "\nReadTimeout = " + 
sp.ReadTimeout.ToString(); 
 
                string comportnum = numericUpDown1.Value.ToString(); 
                sp.PortName = "COM" + comportnum; // set COM port here 
                richTextBox1.Text += "\nCOM Port = " + sp.PortName.ToString(); 
 
                try 
                { 
                    //open serial port 
                    sp.Open(); 
                    sp.ReadTimeout = 3000; 
                    richTextBox1.Text += "\nStatus...Connected\n"; 
                } 
                catch (System.Exception ex) 
                { 
                    richTextBox1.Text += "\nStatus...Failed to Connect ---> " + 
ex.Message + "\n"; 
                } 
            } 
            else 
            { 
                richTextBox1.Text += "\nStatus...Connected\n"; 
            } 
        } 
 
        private void import_Click(object sender, EventArgs e) 
        { 
 
 
                try 
                { 
                    if (SIM == 0) 
                    { 
 
 
                        //int dec = sp.ReadByte(); 
 
                        recv = sp.Read(input, 0, 256); //should be 0,256 
 
                    } 
                    else 
                    { 
                        input = sim_input; 
                    } 
                    xl = new Excel.Application(); 
                    xlWorkBook = xl.Workbooks.Add(Type.Missing); 
                    xlWorkSheet = 
(Excel.Worksheet)xlWorkBook.Worksheets.get_Item(1); 
                    rowindex = 2; 
                    dt = new DataTable(); 
                    dc = new DataColumn(); 
                    dc.ColumnName = "Time"; // x-axis title; 
                    dt.Columns.Add(dc); 
                    dc = new DataColumn(); 
                    dc.ColumnName = "Score"; // y-axis title 
                    dt.Columns.Add(dc); 
                    dc = new DataColumn(); 
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                    dc.ColumnName = "Message Played"; // message title 
                    dt.Columns.Add(dc); 
 
                    xl.Cells[1, 1] = "Time"; 
                    xl.Cells[1, 2] = "Score"; 
 
                        //richTextBox1.Text = 
System.Text.Encoding.UTF8.GetString(input, 0, 240); 
 
                        string hex = BitConverter.ToString(input); 
                        hex = hex.Replace("-", "") + "\n"; 
                        richTextBox1.Text += hex + "\n"; 
 
                        //now make substrings with 3 chunks at a time 
                        for (int w = 0; w < 510; w += 3) 
                        { 
                            shm = hex.Substring(w, 3); 
                            richTextBox1.Text += shm + "\n"; 
 
 
 
 
                        //    //string test = "A42"; 
                            string score = shm.Substring(0, 1); 
                            string hour = shm.Substring(1, 1); 
                            string minute = shm.Substring(2, 1); 
 
                            richTextBox1.Text += "score: " + score + " hour: " 
+ hour + " minute: " + minute + "\n"; 
 
                            if (shm != "FFF") 
                            { 
                                if (score != "F") 
                                { 
                                    //***Converts string hex values to 
decimal*** 
                                    if (score == "A") 
                                        score = "10"; 
 
                                    if (hour == "A") 
                                        hour = "10"; 
                                    else if (hour == "B") 
                                        hour = "11"; 
                                    else if (hour == "C") 
                                        hour = "12"; 
 
                                    if (minute == "A") 
                                        minute = "10"; 
                                    else if (minute == "B") 
                                        minute = "11"; 
 
                                    richTextBox1.Text += "score: " + score + " 
hour: " + hour + " minute: " + minute + "\n"; 
 
 
                                    iscore = Convert.ToInt32(score); 
//***Converts string to int*** 
                                    ihour = Convert.ToInt32(hour); 
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                                    iminute = Convert.ToInt32(minute) * 5; 
                                    string doublezero = "00"; 
 
                                    DataRow dr;//add rows 
                                    dr = dt.NewRow(); 
                                    if (iminute == 0) 
                                    { 
                                        dr["Time"] = ihour.ToString() + ":" + 
doublezero;//Concatonate hour and minute to make a full time 
                                        xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + doublezero; 
                                    } 
                                    else if (iminute == 5) 
                                    { 
                                        doublezero = "05"; 
                                        dr["Time"] = ihour.ToString() + ":" + 
doublezero; 
                                        xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + doublezero; 
                                    } 
                                    else 
                                    { 
                                        dr["Time"] = ihour.ToString() + ":" + 
iminute.ToString(); 
                                        xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + iminute.ToString(); 
                                    } 
 
                                    dr["Score"] = iscore; 
                                    dr["Message Played"] = 0; 
 
                                    dt.Rows.Add(dr); 
                                    xl.Cells[rowindex, 2] = iscore; 
 
                                    rowindex++; 
                                } 
                                else  //score = F, message played here instead 
of a score. Message played will be minute, score will remain the same 
                                { 
                                    string doublezero = "00"; 
 
                                    DataRow dr;//add rows 
                                    dr = dt.NewRow(); 
                                    if (iminute == 0) 
                                    { 
                                        dr["Time"] = ihour.ToString() + ":" + 
doublezero;//Concatonate hour and minute to make a full time 
                                        //xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + doublezero; 
                                    } 
                                    else if (iminute == 5) 
                                    { 
                                        doublezero = "05"; 
                                        dr["Time"] = ihour.ToString() + ":" + 
doublezero; 
                                        //xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + doublezero; 
                                    } 



 

73 

 

                                    else 
                                    { 
                                        dr["Time"] = ihour.ToString() + ":" + 
iminute.ToString(); 
                                        //xl.Cells[rowindex, 1] = 
ihour.ToString() + ":" + iminute.ToString(); 
                                    } 
 
                                    dr["Score"] = iscore; 
                                    dr["Message Played"] = 
Convert.ToInt32(minute); 
 
                                    dt.Rows.Add(dr); 
                                } 
 
                                dataGridView1.DataSource = dt; 
                                chart1.DataSource = dt; 
                                chart1.Series["Series1"].XValueMember = "Time"; 
                                chart1.Series["Series1"].YValueMembers = 
"Score"; 
                                chart1.Series["Series2"].XValueMember = "Time"; 
                                chart1.Series["Series2"].YValueMembers = 
"Message Played"; 
                                chart1.DataBind(); 
 
                            } 
                        } 
                 
            } 
                catch (System.Exception ex) 
                { 
                    richTextBox1.Text += "Status...Read Failed ---> " + 
ex.Message; 
                    sp.Close(); 
                } 
             
        } 
 
        private void helpToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
            MessageBox.Show("Welcome to the Activity Analyzer with 
Individualized Voice Direction (AAVID) computer program. This program enables 
the user to evaluate the amount of activity that was completed throughout the 
day. The program has features that include saving the activity graph, exporting 
data to Excel, etc. Click 'Ready' to connect to the docking station. Then press 
the button on the docking station to send the data. Last, click on the 'Import' 
button to get the data and display on the graph.","Help");  
                 
        } 
 
        private void saveasToolStripMenuItem_Click(object sender, EventArgs e) 
        { 
            saveFileDialog1.Filter = "Image Files (*.jpg)|*.jpg"; 
 
            if (saveFileDialog1.ShowDialog() == 
System.Windows.Forms.DialogResult.OK 
                && saveFileDialog1.FileName.Length > 0) 
            { 
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chart1.SaveImage(saveFileDialog1.FileName,System.Drawing.Imaging.ImageFormat.Jp
eg); 
            } 
        } 
 
        private void exportToolStripMenuItem_Click(object sender, EventArgs e) 
        {             
 
 
            saveFileDialog1.Filter = "Excel Files (*.xls)|*.xls"; 
 
            if (saveFileDialog1.ShowDialog() == 
System.Windows.Forms.DialogResult.OK 
                && saveFileDialog1.FileName.Length > 0) 
            { 
                 xl.ActiveWorkbook.SaveCopyAs(saveFileDialog1.FileName); 
                 xl.ActiveWorkbook.Saved = true; 
 
                 xl.Quit(); 
            } 
        } 
 
        private void button1_Click(object sender, EventArgs e) //close 
        { 
            if (sp.IsOpen) 
            { 
                sp.Close(); 
                richTextBox1.Text += "Serial Port Closed\n"; 
            } 
        } 
 
        private void Form1_FormClosing(object sender, FormClosingEventArgs e) 
        { 
            if (sp.IsOpen) sp.Close(); 
        } 
 
 
 
    } 
} 
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