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Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

(Manuscript received 1 April 2010, in final form 30 October 2010)

ABSTRACT

Geostrophic adjustment of an isolated axisymmetric lens was examined to better understand the dependence

of radial displacements and the adjusted velocity on the Burger number and the geometry of initial conditions.

The behavior of the adjustment was examined using laboratory experiments and numerical simulations, which

were in turn compared to published analytical solutions. Three defining length scales of the initial conditions

were used to distinguish between various asymptotic behaviors for large and small Burger numbers: the Rossby

radius of deformation, the horizontal length scale of the initial density defect, and the horizontal length scale of

the initial pressure gradient. Numerical simulations for the fully nonlinear time-dependent adjustment agreed

both qualitatively and quantitatively with analogous analytical solutions. For large Burger numbers, similar

agreement was found in laboratory experiments. Results show that a broad range of final states can result from

different initial geometries, depending on the values of the relevant length scales and the Burger number

computed from initial conditions. For Burger numbers much larger or smaller than unity, differences between

different initial geometries can readily exceed an order of magnitude for both displacement and velocity.

1. Introduction

a. Motivation and background

In classic geostrophic adjustment, an initially unbal-

anced state in the form of a front or lens is allowed to

collapse under the combined influence of gravity and

rotation. Through a combination of slumping and radi-

ation of internal waves, a balanced or quasi-balanced

flow is formed in which the pressure gradient is balanced

by rotation and possibly nonlinear terms. In the textbook

problem, the final state can be predicted from initial

parameters in terms of the Rossby radius of deforma-

tion, which is given by the distance a gravity wave will

travel in one inertial period, and geostrophic velocity

scaling, which represents a balance between the Coriolis

and pressure gradient terms in the momentum equation.

When the scale of the adjusting density field is large

compared to the deformation radius, the solution is

generally considered to be well described in terms of

such scaling. However, when the horizontal scale of the

initial density anomaly is of the same order or less than

the deformation radius, the adjustment is somewhat

more complicated. In such cases, the adjustment process

itself can generate order one changes in the horizontal

and vertical scales of the initial pressure anomaly such

that the parameters associated with the final state are

significantly different than those associated with the ini-

tial state. The resultant flow may still be geostrophically

balanced. However, the magnitude of the balanced flow

will depend on a variety factors, including the scales and

specific geometry of the initial density defect.

The general problem of geostrophic adjustment dates

back to Rossby (1937, 1938) and has been well studied in

the literature since then. Reviews of the classic adjustment
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problem, as well as many of its variants, may be found,

for example, in Blumen (1972), Gill (1982), McWilliams

(1985), and Flierl (1987). Subsequent studies have con-

tinued to relate the basic principles to a range of ocean-

ographic phenomena, including the adjustment of density

fronts and their associated meanders (e.g., Ou 1984; van

Heijst 1985; Garvine 1987; Spall 1995; Blumen and Wu

1995), the ocean response to storms (e.g., Geisler 1970;

Price 1981), the dynamics of dense water outflows (e.g.,

Price and O’Neil Baringer 1994; Cenedese et al. 2004),

and ocean convection (e.g., Killworth 1979; Hermann

and Owens 1993; Whitehead et al. 1996; Rubino et al.

2007), to name a few.

In the present study, we are interested in one subclass

of the problem, the adjustment of an isolated lens in a

continuously stratified fluid. This configuration can arise,

for example, as the result of localized internal wave

breaking in the ocean interior. Evidence of patchy mixing

in the ocean has been reported by numerous investigators

(e.g., Grant et al. 1968; Woods and Wiley 1972; Gregg

1980; Gregg et al. 1986; Alford and Pinkel 2000; Oakey

and Greenan 2004; Sundermeyer et al. 2005). Such lo-

calized mixing can lead to gravitational adjustment of

the mixed regions, which, under the influence of rotation,

can in turn lead to small-scale geostrophically balanced

flows (e.g., Garrett and Munk 1972; McWilliams 1985).

These small-scale balanced motions have been referred

to in the literature as the vortical mode, semipermanent

fine structure, pancake eddies, or blini (e.g., Kunze 2001;

Polzin et al. 2003). In practice, they have aspect ratios of

order f/N, similar to the internal wave field, with scales

ranging from hundreds of meters to many kilometers

horizontally and on the order of meters to tens of meters

vertically. As described by Sundermeyer et al. (2005)

and Sundermeyer and Lelong (2005), the motions from

many of these adjustments can also contribute signifi-

cantly to submesoscale lateral dispersion in the ocean

interior. It is the latter that motivates our particular in-

terest in the displacements generated by such eddies.

In addition to localized internal wave breaking, nu-

merous other processes have been hypothesized to con-

tribute to vortical mode energy in the ocean. These

include the downscale transfer of variance associated with

the potential enstrophy cascade of geostrophic turbu-

lence (e.g., Charney 1971), detrainment and subduction

of surface mixed layer water (e.g., Stommel 1979; Marshall

et al. 1993; Spall 1995), and intensified mixing near to-

pography (e.g., D’Asaro 1988; Kunze and Sanford 1993).

In the present context, however, we restrict our atten-

tion to the geometry most appropriate to the adjust-

ment of mixed patches generated by diapycnal mixing

events. For this generation mechanism, the so-called s

vortex described by Morel and McWilliams (1997) is

particularly appropriate. Such a vortex is formed when

a localized region of reduced stratification is allowed to

adjust under the influence of rotation to form a core

anticyclone (associated with vortex compression at the

center of the mixed region), sandwiched above and be-

low by two weaker cyclones (associated with vortex

stretching above and below the main mixed region).

Other vortex geometries (e.g., without the accompa-

nying cyclones above and below, of varying steepness,

and/or isolated versus nonisolated) have also been used

to model oceanic eddies in a variety of contexts and

scales, including Mediterranean eddies (e.g., Armi and

Zenk 1984; Hebert et al. 1990), Gulf Stream warm-core

rings (e.g., Saunders 1971; Robinson et al. 1988; Olson

1991), submesoscale coherent vortices found both in the

open ocean and in coastal waters (e.g., McWilliams

1985; D’Asaro 1988; Dewar and Killworth 1990), and

the order 100 m to a few kilometer submesoscale eddies

envisioned here.

Analytical solutions under varying conditions have

also been discussed in the literature (e.g., Csanady 1979;

Flierl 1979; Ou 1986; McWilliams 1988, hereafter M88;

Killworth 1992; Boss and Thompson 1995; Spall 1995;

Kuo and Polvani 1997; Ungarish and Huppert 1998;

Reznik et al. 2001; Dotsenko and Rubino 2006), and

a number of these are considered in more detail below.

For the purposes of the present study, we will focus in

particular on the semianalytical solutions of M88 for the

adjustment of an axisymmetric lens in a continuously

stratified rotating fluid, which is also discussed below.

Time-dependent numerical solutions of this same con-

figuration were discussed by Lelong and Sundermeyer

(2005) and will also be revisited here.

The problem of geostrophic adjustment has also been

studied in a variety of forms in the laboratory. Relevant

to the present study, Saunders (1973) as well as Rubino

and Brandt (2003) conducted experiments to test the

simplest form of geostrophic adjustment in which they

removed a thin-walled cylinder that separated higher

and lower density fluids in a rotating cylindrical tank.

Stegner et al. (2004) conducted similar two-layer ad-

justment experiments, but with a separate shallow layer

of less dense water and without extending the cylinder

walls to the tank bottom. Hedstrom and Armi (1988)

studied the geostrophic adjustment of homogeneous den-

sity patches within a linearly stratified, rotating back-

ground. In their study, the density patches were formed

by injecting fluid volumes at middepth. Numerous labo-

ratory studies have also examined the behavior of iso-

lated vortices in various fluid environments, ignoring the

dynamics of eddy formation. An extensive review of the

behavior of vortices in rotating fluids was provided by

Hopfinger and van Heijst (1993). Finally, although not
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in a rotating environment, experiments examining col-

lapsing turbulent regions were studied by De Silva and

Fernando (1998). Although they did not specifically

study the problem of geostrophic adjustment, we note

their work here because the experimental technique

used in their study was similar to the present study.

b. Scope and outline

Among the many theoretical, numerical, and labora-

tory studies of geostrophic adjustment, a consistent find-

ing is that both the velocity and length scales of the

adjusted state depend on the value of a key nondimen-

sional parameter, the Burger number (Bu). However,

the details of this dependence vary from one study to

another, depending on the exact geometry of the prob-

lem examined. In the present study we revisit the prob-

lem of the geostrophic adjustment of an isolated lens

in a rotating stratified fluid with an eye toward under-

standing this dependence and why it arises. As discussed

above, the motivation for our interest in this particular

problem is the effect of small-scale geostrophic motions

on lateral dispersion. However, we believe the problem

is also of more general interest. In section 2, we review

selected analytical solutions by previous authors, with

emphasis on the adjustment length and velocity scales

and the behavior of various analytical solutions in the

limits of small and large Burger numbers. In sections 3

and 4, numerical and laboratory results, respectively, for

the adjustment of an isolated lens in a continuously

stratified fluid are compared with theoretical solutions.

Implications for submesoscale coherent vortices in terms

of generation scales and their final balanced states are

discussed in section 5. Section 6 summarizes and concludes.

2. Theoretical background

a. A progression of adjustment solutions

Consider the problem of a density/pressure anomaly,

initially at rest, which is allowed to relax under the in-

fluence of rotation, ultimately to a geostrophically bal-

anced state. To better understand how the geometry of

the initial condition affects the final state, we begin by

examining a progression of analytical adjustment solu-

tions found in the literature, with initial conditions rang-

ing from a two-layer two-dimensional (2D) step function,

to an axisymmetric lens in a three-dimensional contin-

uously stratified fluid. Specifically, we revisit the basic

two-dimensional dam break problem described in many

oceanography textbooks (e.g., Gill 1982; Cushman-Roisin

1994), the axisymmetric two-layer ‘‘top hat’’ solutions of

Csanady (1979, linear case) and Flierl (1979, nonlinear

case) and the two- and three-dimensional five-layer and

continuously stratified nonlinear adjustment solutions of

M88. Recognizing that analytical solutions for numerous

other configurations exist in the literature (e.g., see ref-

erences cited above), we choose these solutions because

their particular geometries highlight key aspects of the

problem. Of particular interest here is the behavior of

each of these solutions in terms of the radial displace-

ments generated during the adjustment and the maxi-

mum velocity of the adjusted state. For all solutions

considered here, the initial condition is a state of rest.

Key features of the different geometries are depicted

schematically in Fig. 1.

Before we begin, it is useful to distinguish a number

of length scales relative to the geostrophic adjustment

problem. First, regarding the initial state of the density

anomaly, we define the initial horizontal length scale of

the density defect Ld (e.g., the radius of the initial den-

sity anomaly). Second, we define the horizontal length

scale of the pressure gradient Lp, which may or may not

equal Ld. For example, for the top-hat initial conditions

of Csanady (1979) and Flierl (1979), although the length

scale of the density defect Ld is nonzero, the length scale

of the initial pressure gradient Lp is zero, because in this

case the density is a step function. By contrast, for the

parabolic lens initial condition of M88, the two length

scales are comparable in size, because the pressure varies

gradually from the center to the edge of the anomaly.

Third, we define the traditional Rossby radius of de-

formation, either as R 5
ffiffiffiffiffiffiffi
g9h

p
/f for layered configu-

rations or analogously as R 5 Nh/f for continuously

stratified cases, where g9 is reduced gravity based on

the density difference between the two layers; f is the

Coriolis parameter; and h and N are the initial height and

stratification, respectively. Note that, for each of the three

length scales defined in the initial condition, there are also

corresponding final length scales associated with the ad-

justed state. In general, these final length scales may be

different from the initial values.

With the above length scales in mind, we pose the

following question: given an initial density/pressure anom-

aly, under what conditions is there a simple relationship

between the final state of the adjustment and initial pa-

rameters of the problem? The answer depends on the

value of the Burger number, Bu 5 R2/L2: that is, the ratio

of the deformation radius to the inherent length scale

of the problem. Classically, for small Bu, the adjustment

reverts more or less to geostrophic scaling so that the

final state is well predicted by the initial parameters

of the problem. However, for Bu of order 1 or greater,

significant deformations of the initial density/pressure

field can occur, and the problem becomes more com-

plex. To better understand both the limits of large and

small Bu, as well as the behavior at intermediate Bu, we

now revisit the above referenced analytical solutions with
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an eye toward the understanding their Burger number

dependence. These solutions are then used to interpret

the behavior of numerical simulations and laboratory

experiments of the adjustment of an isolated lens.

b. Burger number dependence

For the geostrophic adjustment problem envisioned

here, the Burger number can be thought of as an in-

dicator of whether, based on its initial length scale, L,

a horizontal density defect is likely to feel the effects

of rotation during gravitational collapse. For Bu� 1, L

is large compared to R and the adjustment is strongly

constrained by rotation. For Bu� 1, the opposite is true:

rotation is negligible and the motion is dominantly down

pressure gradient, presumably either as an accelerating

flow or balanced ultimately by friction. For Bu ; O(1),

the problem is more complex: initially, the density de-

fect may be of small enough horizontal scale to not be

significantly influenced by rotation, but as it slumps un-

der gravity its horizontal scale increases. Even if Bu . 1

initially, if frictional effects are small, Bu may approach

unity during the adjustment such that ultimately the

adjustment feels the effect of rotation.

In addition to the Burger number dependence, the

precise behavior of adjustment, both in terms of the

degree of slumping that occurs before the pressure gra-

dient is balanced by rotation and in terms of the ensuing

geostrophically balanced flow, will also depend on the

geometry of the initial condition. This can be illustrated

by considering the above adjustment solutions in terms

of two metrics: the difference between the initial and

final horizontal length scales of the density defect DL 5

Ld f
� Ldi

and the maximum geostrophically balanced

velocity Umax generated by the adjustment. Noteworthy

here is that, thus far, we have not defined which of the

two horizontal length scales, Ld or Lp, is the correct one

to use in the Burger number. Because the pressure gra-

dient force is what ultimately balances the Coriolis force,

formally L should be given by Lp. However, for layer

solutions involving step functions in the initial density

FIG. 1. Progression of geostrophic adjustment configurations considered in the present study,

after (a) Gill (1982), (b) Csanady (1979) and Flierl (1979), and (c),(d) M88.
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distribution, Ld is frequently used, because in those cases

Lp 5 0. Because the initial conditions discussed here have

Ld 5 Lp whenever Lp is nonzero, henceforth we shall as-

sume that the L (without subscript) is given by Ld. Also,

in the discussion that follows, we shall nondimensionalize

DL by R and Umax by fL.

The Burger number dependence of the adjustment

distance and maximum geostrophic velocity for each of

the above analytical solutions is shown in Figs. 2 and 3,

respectively. Considering the simplest initial condition

first, the dam break problem described by Gill (1982),

the initial density is a step function such that the initial

pressure gradient is a delta function. The horizontal

scale of the pressure gradient Lp is thus zero, whereas

the horizontal scale of the density defect Ld is infinite.

The Burger number, defined in terms of the scale of the

density defect is therefore zero. In this limiting case, the

scale over which the adjustment occurs is given exactly

by the deformation radius R 5
ffiffiffiffiffiffiffi
g9h

p
/ f . The value of DL

is thus exactly equal to R. Meanwhile, the maximum

geostrophically balanced velocity is U
max

5
ffiffiffiffiffiffiffi
g9h

p
. Al-

though R/L is formally infinite for this solution, DL/R

is well defined and equal to 1 for all R. We can thus

represent this solution as unity on a DL/R versus R/L

plot (Fig. 2). Similarly, Umax normalized by fL yields

R/L, giving a line of slope 1 on a Umax/fL versus R/L plot

(Fig. 3).

Considering next the top-hat solutions of Csanady

(1979) and Flierl (1979), again the initial density is a step

function. However, this time the horizontal scale of the

density defect Ld is finite. In this case, Bu and hence

the final solution for DL depend on the initial scale of the

density defect Ld. For Bu � 1 (i.e., L � R), the geo-

metry approaches that of Gill (1982) and the adjustment

distance DL approaches R (Fig. 2). For Bu � 1, how-

ever, the adjustment distance DL becomes much less

than R estimated from the initial condition. This is be-

cause the finite volume of the density defect leads to a

decrease in h as the density slumps during adjustment,

which in turn reduces the effective R compared to its

initial value. For Bu . 1, the result is a tailing off of

DL/R compared to the small Bu limit of unity. Similarly

for Umax, the solution of Csanady (1979) and Flierl

(1979) both approach Gill’s (1982) solution in the limit

of Bu� 1, whereas for Bu . 1 their solutions are again

less than Gill’s Umax 5
ffiffiffiffiffiffiffi
g9h

p
(Fig. 3). The reason for

this can again be understood in terms of the decrease

in h and increase in L during the adjustment, both of

which contribute to a smaller pressure gradient and

hence smaller velocity associated with the balanced

state.

Turning to M88’s solutions, his five-layer solutions

behave somewhat analogous to those of Csanady (1979)

and Flierl (1979), except that this time the initial condition

FIG. 2. Normalized adjustment distance plotted vs Bu1/2 5 R/L for various analytical, nu-

merical, and laboratory results discussed in the text. Data from laboratory experiments based

on both dye (triangles) and PIV (circles) are also shown.
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is parabolic rather than a step function, which results

in a nonzero pressure gradient length scale Lp. For

Bu� 1, both the two- and three-dimensional solutions

of M88 have an adjustment distance DL that behaves

similarly to the Csanady (1979) and Flierl (1979) solu-

tions, although they differ slightly in magnitude (Fig. 2).

This again highlights the fact that, for large Bu, the

decrease in h caused by slumping results in an adjust-

ment that never reaches the deformation scale R, as

determined from the initial conditions. For Bu ; O(1),

the solutions for DL and Umax both approach the result

of Gill (1982) (see also Fig. 3). However, for Bu� 1, the

M88 solutions for DL and Umax are smaller than the

previous solutions. This is because, in M88’s parabolic

initial condition, when Ld is large, Lp is also large. As

such, for the same density difference Dr between the

respective layers, the pressure gradient and hence the

resulting displacement DL and adjusted velocity Umax are

both smaller compared to the analogous step function

initial condition. Noteworthy here is that, for Bu� 1, the

adjusted velocity scales as Umax/fL ; R2/L2 (i.e., a slope

of 2 on the normalized Umax versus R/L plot of Fig. 3),

consistent with pressure gradient scaling. Furthermore,

the adjustment distance approaches DL/R ; R/L. The

latter can be interpreted as the advective length scale

associated with this Umax acting over a time scale 1/f : that

is, the canonical ‘‘distance a gravity wave will travel over

one inertial period.’’

Finally, considering M88’s continuously stratified so-

lution, we find similar dependence on Bu for both DL

and Umax compared to his parabolic layer solutions, al-

though again they differ slightly in magnitude from the

previous results. Also, for this case, as noted above, the

deformation radius and the normalization for Umax are

given in terms of their continuously stratified analogs.

3. Results from numerical simulations

a. Numerical model setup

As confirmation of the analytical solutions above and

to complement the laboratory experiments to follow, we

next examine results from numerical simulations of the

adjustment of a continuously stratified lens based on

a three-dimensional numerical model. The geometry of

the initial stratification anomaly is the same as in the

continuously stratified analytical solution of M88. How-

ever, here the numerical solutions are for the fully non-

linear time-dependent geostrophic adjustment problem,

after Lelong and Sundermeyer (2005) and Sundermeyer

and Lelong (2005). The simulations use the numeri-

cal model of Winters et al. (2004) to solve the three-

dimensional f-plane Boussinesq equations. The model

FIG. 3. Normalized maximum adjusted velocity Umax plotted vs Bu1/2 5 R/L for various

analytical, numerical, and laboratory results discussed in the text. Data from laboratory ex-

periments based on both dye (triangles) and PIV (circles) are also shown. A line for normalized

Umax 5 fL (i.e., Rossby number 5 1) is also shown for reference.
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equations were solved spectrally on a triply periodic

domain via

Du

Dt
1 f i

3
3 u 5� 1

r
o

$P� i
3

g

r
o

r 1 n
6
$6u, (1)

Dr

Dt
5 k

6
$6r, and (2)

$ � u 5 0, (3)

where all variables have their traditional meanings. Ad-

ditional details regarding the model can be found in the

Lelong and Sundermeyer (2005) and Sundermeyer and

Lelong (2005) and will not be reviewed here.

Simulations were run using 64 grid points in the ver-

tical by 128 3 128 grid points in the horizontal. Fol-

lowing Lelong and Sundermeyer (2005), in all runs, the

Coriolis frequency was increased by a factor of 10 rel-

ative to realistic values. This reduced the ratio of the

buoyancy frequency to the Coriolis frequency N/f from

a realistic value of approximately 200 to a more tractable

value of approximately 20. This allowed us to capture

the dynamics associated with both of these time scales

(i.e., internal waves and geostrophic adjustment) with-

out having to perform prohibitively long numerical inte-

grations or use prohibitively small time steps. Horizontal

and vertical domain sizes for the base case were Lx, Ly 5

500 m (equivalently Lx, Ly 5 5000 m after N/f scaling)

and Lz 5 12.5 m, respectively. Finally, our runs were

effectively inviscid, with the exception of a hyperviscosity

that removed energy at the smallest scales.

In all cases, the initial condition in the model was a

state of rest and uniform stratification, superimposed by

a Gaussian-shaped stratification anomaly similar to the

three-dimensional continuously stratified analytical form

used by M88. From this initial condition, the stratifi-

cation anomaly was allowed to freely adjust to form a

geostrophically balanced eddy plus internal waves. Note-

worthy here is that, in general, the partition of energy

between the balanced vortex and radiated waves will

depend not only on the Burger number but also on the

initialization procedure used to create the vortex, as

discussed, for example, by Dritschel and Viúdez (2007).

Relating the present initialization to theirs, we effec-

tively generate our anomalies instantaneously. The ki-

netic and potential energy partition between the wave

and vortex for this configuration is described in detail by

Lelong and Sundermeyer (2005).

Analysis of the numerical solutions in terms of the

initial and final length scales was done by fitting a Gauss-

ian to the stratification anomaly at the vertical center of

the mixed patch and taking the horizontal e-folding scale

both from the prescribed initial condition (L
di

) and

averaged between 2 and 3 inertial periods following

release of the mixed patch (L
d f

). Similarly, the adjusted

velocity scale was taken as the maximum azimuthal ve-

locity averaged over the same time period. The delay of

2 inertial periods rather than using the first or second

inertial period avoided the largest transients in the ve-

locity. Averaging over 1 complete inertial period limited

contamination by any transients that remained. Note

that, because our model is triply periodic, waves that ra-

diate away during the initial adjustment re-enter the

domain after as little as a few inertial periods. We have

performed simulations with larger domain sizes and

found that the dynamics of the adjustment and the above

metrics for the eventual balanced vortex are not partic-

ularly sensitive to domain size and hence the re-entry of

waves (see also Lelong and Sundermeyer 2005). This

finding is supported by previous studies suggesting that

interaction between waves (particularly higher-frequency

waves) and the geostrophic component are likely weak

(e.g., Bartello 1995; Dritschel and Viúdez 2007).

b. Burger number dependence

The difference between the initial and final length

scales for the density defect DL and the maximum azi-

muthal velocity Umax of the numerical solutions for a

range of Burger numbers are overplotted in Figs. 2 and 3,

respectively. The results have been normalized in the

same manner as the analytical solutions. Considering both

DL and Umax and allowing for a constant scale factor, the

numerical solutions show good agreement with analogous

analytical solutions by M88 for a continuously stratified

axisymmetric lens for the range of Bu examined. As with

the continuously stratified analytical solutions, DL and

Umax for the numerical results are consistently lower than

the other analytical cases for Bu $ 1. However, Umax

approaches geostrophic scaling and DL/R approaches

R/L for small Bu. The numerical results are thus con-

sistent with the idea that the behavior for small Bu is the

result of the nonzero length scale associated with the

pressure gradient, whereas the rolloff at large Bu is due

to volumetric effects associated with the initial slumping

of the density defect.

4. Results from laboratory experiments

Using the above analytical and numerical simulations

as a baseline for understanding the Burger number de-

pendence of the adjustment problem, we next examine

laboratory experiments of the adjustment of an isolated

lens in a continuously stratified rotating fluid. Again, our

experiments are performed having in mind spatial scales

associated with the problem of mixed patches created

by internal wave breaking in the ocean. We reiterate,
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however, that, because the problem is readily non-

dimensionalized, the results can be easily generalized

to larger-scale contexts. In what follows, we also note

that because of limitations related to the size of the ex-

perimental setup, the laboratory results presented are

limited to Burger numbers greater than one.

a. Experimental setup

Laboratory experiments were conducted on a high-

precision rotating table, manufactured by Australian

Scientific Instruments (Australian Scientific Instruments

2010) and housed at the Geophysical Fluid Dynamics

laboratory of the University of Rhode Island’s Graduate

School of Oceanography. The experimental tank used in

all experiments was a cylindrical acrylic tank with a di-

ameter of 1.0 m (Fig. 4). To correct for optical distor-

tions when viewing from the side, the cylindrical tank

was enclosed by a larger square acrylic tank. The volume

between the two tanks was filled with fluid of the same

density and stratification. A single, angled flat mirror at

the perimeter of the tank allowed overhead cameras to

photograph both plan and side views simultaneously.

An acrylic lid was used to eliminate surface stress effects

on the fluid.

All experiments were conducted with a linearly strati-

fied salt solution using the two-tank method (Fortuin

1960). The buoyancy frequency N of the linearly salt-

stratified tank was predetermined based on the initial

densities of the two tanks. This was also verified by mea-

suring the density of fluid samples drawn from the bottom

and top of the experiment tank using a refractometer.

To ensure there were no vertical temperature gradients,

the salt fluid was equilibrated overnight to ambient room

temperature. This also allowed it to de-gas prior to each

experiment. The table rotated counterclockwise as viewed

from above, with various rotation rates set for different

experiments. The depth of the fluid for all experiments

was 30 cm.

Localized mixed regions of fluid were formed by ver-

tically oscillating a horizontal grid positioned at mid-

depth (z 5 15 cm, Fig. 4). The stainless steel mesh grid

was a 5.1-cm-diameter circular disk painted with a mix-

ture of black and rhodamine WT fluorescent dye to

minimize specular reflection by the laser during parti-

cle image velocimetry (PIV) visualization. A slider-crank

mechanism was used to oscillate the mixing grids through

a vertical stroke distance of 3.0 cm at a frequency of

approximately 1.0 Hz. The mixer was activated for 25 s

FIG. 4. Tank schematic for laboratory experiments showing (a) vertical cross-sectional and

(b) plan views.
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to ensure that the mixed patch was thoroughly mixed: that

is, Npatch 5 0. This allowed the difference in stratification

DN between the mixed patch and the stratified background

(i.e., DN 5 N 2 Npatch) to equal the value of the buoy-

ancy frequency N. A wireless, remote PC control using

LabView software and a National Instruments Field-

point relay module enabled automated start/stop func-

tion for consistency between experiments. An example

of both plan and side views of a mixed patch, visualized

using dye, is shown in Fig. 5.

b. DL and Umax from dye measurements

A passive tracer was used to visualize the adjustment

and to estimate the radial displacement and eddy ve-

locity for 5 of a total of 10 adjustment experiments ex-

amined. For each of these experiments, dye was mixed

with an appropriate ratio of ethyl alcohol (e.g., 20:1 for

N 5 0.86 rad s21 using 91% ethanol solution) to make

the dye neutrally buoyant at the nominal middepth of

the mixed patch. A syringe pump injected the dye at

1 mL min21 for 3 table rotations at the equilibrium depth

at the center of the mixer. A digital camera was used

to take high-resolution images of the dye during the

experiments. The evolution of the dye patch was also

recorded continuously using a digital video camcorder.

A series of images taken within the first few inertial

periods of the adjustment for the base case dye run is

shown in Fig. 6. These reveal the horizontal adjustment

and spinup of an anticyclonic vortex. The growing dye

patch, as well as dye wisps visible around its perimeter,

shows the slumping and spinup of the adjusted eddy.

From these dye images, both an adjustment distance and

a representative velocity were estimated. Specifically,

the initial dye patch radius L
di

was estimated by aver-

aging the radius of 2 concentric circles shortly after the

dye was injected, whereas Ld
f

was estimated after ap-

proximately 2 inertial periods after an eddy had formed

(panels 2 and 5 of Fig. 6). Differencing these two values,

for the experiment shown we obtained an adjusted ra-

dius of approximately DL 5 8.8 6 1.6 cm, where the dif-

ference between the radii of two concentric circles in the

relevant subpanels was used to estimate the uncertainty.

Meanwhile, to estimate angular displacement and

hence adjusted velocity Umax, distinct features in the

dye images were tracked for 1–2 inertial periods (e.g.,

panels 4 and 6 of Fig. 6) and used to estimate an angular

velocity and radial location, giving a tangential velocity.

Multiple such measurements were made to estimate, from

the dye, Umax for each experiment. For these measure-

ments, uncertainties were computed from the relative

error averaged over all the experiments, with standard

deviation taken as the absolute error for each experi-

ment. This yielded a mean normalized uncertainty es-

timate of 24%.

Regarding the dye images shown in Fig. 6, a few points

merit further mention. The first is the asymmetry seen

in the dye patch at later times in its evolution. We be-

lieve this is at least in part the result of small-scale mo-

tions driven by the grid mixer, which in practice are not

negligible compared to the overall scale of the mixed

patch. In fact, from panel 1 of Fig. 6, they are on the

order of 1/10 the size of the overall mixed patch, consis-

tent with the grid mixer having of order 10 wires/grid

cells across its diameter. These small features, evident in

the first few panels of Fig. 6, eventually coalesce into the

larger features evident at later times; the latter, being

fewer in number, appear as asymmetries. Regarding the

significance of these asymmetries, we note that the dye is

not a perfect marker of the adjusting vortices: that is, not

all fluid involved in the adjustment is marked with dye.

By the nature of how the mixed patch was created, there

are inevitably some regions of fluid near the perimeter

of the grid mixer that mix without dye (recall the dye was

injected only at the center of the grid mixer). These pe-

rimeter regions are thus also part of the adjustment (but

without dye) after the grid mixing has stopped. This is

FIG. 5. Example of geostrophically adjusted eddy for base case

laboratory experiment. (a) Side view of density anomaly stained by

dye. The parameters h and L are indicated. (b) Plan view of same

eddy. Note for scale that the diameter of the mixer is 5.08 cm and

the concentric circles on the bottom of the tank are at 5-cm in-

tervals.
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borne out by the PIV measurements described in the

next section, which shows no systematic asymmetries in

the eddy velocities. In short, the dye should be viewed

only as an approximate indicator of the eddy location–

size, and we have attempted to reflect this in the above

stated uncertainties of the dye-derived measurements of

DL and Umax.

c. DL and Umax from PIV measurements

Additional independent estimates of the adjustment

distance DL and adjusted velocity Umax were made using

PIV. For this, a second set of five experiments was run

using the same parameters as in the dye runs, except that

the fluid was seeded with neutrally buoyant reflective

particles prior to each fill rather than being injected with

dye. The PIV system consisted of a twin-cavity neodymium-

doped yttrium aluminum garnet crystal (Nd:YAG) laser

and two LaVision FlowMaster charge-coupled device

(CCD) cameras equipped with bandpass filters to detect

only the laser wavelength. A 2.0-mm horizontal laser

light sheet illuminated the target depth at d 5 15 cm:

that is, the mid stroke depth of the grid mixer (see Fig. 4).

PIV image pairs were taken 10 times per table rotation

for 20–30 inertial periods. Image analysis was performed

using the DaVis 7.1 PIV software (LaVision, GmbH

2005).

For the base case PIV run, velocity fields associated

with the adjustment and spinup of a coherent eddy are

shown in Fig. 7. Initially, the turbulent action of the mixer

can be seen for t , 0 (the time before the mixer stops),

followed by the formation of a stable coherent eddy and

its subsequent frictional decay. Notable in the later im-

ages is a 5-cm region of near-0 velocity at the center of the

adjusted eddy. This is the result of contamination in the

PIV analysis caused by the motionless grid mixer. Note,

however, that we minimize the effect of the stopped

mixer on the actual vortex velocities by ‘‘parking’’ the

mixer above the core anticyclone after the initial mixing

has stopped.

For all PIV runs, both the radius of maximum velocity

and the maximum velocity itself Umax were estimated

directly from the PIV fields for each time snapshot. For

FIG. 6. Time evolution of geostrophic adjustment in plan view. Concentric white circles indicate estimates of the minimum and max-

imum extent of the mixed patch at t 5 7 s and of the adjusted eddy radius at t 5 46 s. The start (point A) and end (point B) positions used to

estimate the velocity of a wisp located along the perimeter of the patch are marked by circles near A and B. Background grid is drawn at

5-cm increments radially and 308 azimuthally. Note the variable time between successive images.
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the radius of maximum velocity, the eddy radius was

taken as the average distance from the eddy center to

each of the x, y components of maximum velocity. The

resulting eddy radii were then averaged over the first

two inertial periods following the mixer shutoff to ob-

tain the average radius of maximum velocity for the

experiment. Coincident with this analysis, the azimuth-

ally averaged maximum velocity was also estimated by

averaging the azimuthal velocity in a band Dr 5 60.5 cm

about the estimated radius of maximum velocity. As

with the radius, the time average over the first two in-

ertial periods following mixer shutoff was used to obtain

the final value of Umax.

The time evolution of the radius of maximum velocity

and its value over the course of the adjustment for the

base case run are shown in Fig. 8. Noteworthy is the clear

exponential decay with time of the eddy velocity and

corresponding increase in the eddy radius. The e-folding

time scale estimated using an exponential fit to this de-

cay was 264 s or about 10.5 inertial periods. Given the

vertical scale of the eddy, this is about 10 times faster

than would be expected because of molecular viscosity.

Whether this is due to internal wave radiation, the

presence of the grid mixer ultimately retarding the flow

or other processes is not known. However, a key point is

that the Ekman number associated with the vortex is still

small, so that to lowest order the mixed patch adjust-

ment is geostrophic.

Although not a direct measurement of the adjustment

distance DL, the radius of maximum velocity is also re-

lated to the deformation radius R. The radius of maxi-

mum velocity thus provides an independent estimate

of the horizontal scale of the adjustment. For the base

case PIV run, from the time series shown in Fig. 8, we

obtain a radius of maximum velocity of 5.2 6 0.5 cm,

which was slightly less than the adjustment length esti-

mated from the dye method DL 5 8.8 cm. Meanwhile,

also for the base case, the maximum velocity esti-

mated using PIV was Umax 5 0.26 6 0.07 cm s21,

compared to Umax 5 0.24 cm s21 estimated from the

dye; that is, these 2 estimates were equal to within

measurement uncertainty.

An additional feature worth noting in the time series

in Fig. 8 are the smaller-scale fluctuations superimposed

FIG. 7. Example of geostrophic adjustment based on 2D PIV image time series from a base run experiment ( f 5 0.25 rad s21 and

DN 5 0.86 rad s21). Note the variable time between successive images.
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on the longer time-scale exponential decay. These fluc-

tuations as well as clear evidence in our numerical ex-

periments (not shown) suggest the presence of internal

waves, including near-inertial oscillations, radiating from

the mixed region during the adjustment. It is tempting

to consider the relationship that these oscillations may

have, for example, to the pulson solutions described in

the literature (e.g., Cushman-Roisin 1987; Rubino and

Brandt 2003). The radiation of waves during the ad-

justment is discussed in more detail by Lelong and

Sundermeyer (2005) in the context of the numerical so-

lutions. However, in the present study, we are more in-

terested in the balanced state of the resulting vortex.

Because our analysis of velocities from the laboratory

experiments averages over one or more inertial periods,

such waves are averaged out of our final results. Also,

the evidence for such oscillations in the laboratory anal-

yses presented here is tenuous at best; the time series

of maximum velocity in Fig. 8, for example, shows only

subtle oscillations, not all of which are inertial, over the

lifetime of the eddy.

Returning to the full PIV fields shown in Fig. 7 again,

a few points merit further discussion. First, we noted that

we use two CCD cameras to create stereographic images

of particles within the laser sheet. This allows us to com-

pute three-dimensional velocities for each PIV snapshot.

In our analysis, however, we are most interested in the

horizontal velocities associated with the adjusting mixed

patch. As such, our primary purpose for using 3D PIV

is to avoid having vertical velocities aliased into our

horizontal velocity estimates, as can occur with single

camera PIV observations. Nevertheless, the vertical ve-

locities and hence the horizontal velocities as well are still

prone to errors inherent in the measurement technique.

Postprocessing of the PIV velocity estimates attempts to

remove spurious velocities using critical threshold cri-

teria as well as median filtering. However, inevitably the

measurements still contain errors and spurious data.

Relating this to our PIV-derived velocities of Fig. 7,

we note that the large velocities in and around the mixer

in the first figure panel are likely a combination of real

horizontal velocities and vertical velocities aliased into

the horizontal velocity signal. What effect these vertical

velocities ultimately have on the developing vortex is

not known and is beyond the scope of this study; again,

we focus here only on the eventual balanced eddy. How-

ever, we do note that, despite the presumably large ver-

tical velocities early in the experiment, the horizontal

velocities appear to organize themselves rather rapidly

into a coherent eddy after a remarkably short time, on the

order of an inertial period.

Regarding the localized regions of high velocities near

the top-left corner of the various panels in Fig. 7, we note

that this region is neither near the tank boundary nor

near any other structure or feature within the tank. Given

the localized nature of this anomalous velocity, plus the

fact that it changes/reverses direction multiple times over

the course of the experiment, we believe it is a result of

the PIV measurement technique and associated process-

ing and not a real feature. That this region repeatedly

showed spurious velocities may, for example, be the re-

sult of a poor calibration of the PIV grid and associated

corrections in that portion of the domain.

Finally, in all of the above, we note that the way in which

we use the PIV data, identifying the radius of maximum

velocity based on both x- and y-velocity profiles and az-

imuthally averaging to obtain the maximum eddy ve-

locity, means that localized velocity errors, particularly

FIG. 8. Time series of (a) the maximum azimuthal velocity Umax and (b) the radius at which it occurred. Thick solid

curve in (a) is an exponential fit to the velocity decay, corresponding to an e-folding time scale of 264 s or 10.5

inertial periods. In both (a) and (b), t 5 0 corresponds to the end of the mechanical mixing and the beginning of the

adjustment.
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ones outside the main eddy, have little effect on our

analysis and hence our main conclusions.

d. Comparison with theoretical parameter
dependence

Using the above described experiment as a base and

following the same analysis techniques, experiments were

repeated but varying the buoyancy frequency N and the

rotation rate f by a factor of 2 up or down compared to

the base case. Specifically, experiments were run dou-

bling and halving f holding DN constant, doubling DN

holding f constant, and doubling both DN and f. These

initial conditions thus resulted in three R/L ratios,

namely 2.1, 4.3, and 8.6, corresponding to a variation in

Bu of a factor of 16. The initial parameters for each

experiment and the observed velocities and adjust-

ment lengths are listed in Table 1. The initial param-

eters and observed values for both the PIV and dye

base run experiments are also listed in the table for

comparison.

The observed adjustment distances DL and maximum

adjusted velocities Umax for the 10 laboratory experi-

ments listed in Table 1 are plotted against their cor-

responding R/L ratios in Figs. 2 and 3, along with the

analytical and numerical results. As noted above, the

dye and PIV estimates of the adjustment distances dif-

fered somewhat for the base run. This can be seen in

Fig. 2, where for R/L 5 4.3 the base case dye estimate

(i.e., the triangle closest to the M88 curve) is distinctly

higher than the other three measurements for the same

R/L value (note that these three points appear as one

because their values are almost identical). Note, how-

ever, that the other observed PIV and dye adjustment

lengths for R/L 5 4.3, corresponding to both DN and f

being doubled, were equal to within measurement un-

certainty (i.e., radius of Umax 5 5.1 6 0.3 cm from PIV

versus DL 5 5.3 6 1.8 cm from dye). Similarly, the ob-

served adjusted velocities for both dye and PIV are

shown in Fig. 3 plotted as a function of corresponding

R/L ratios for each run. Particularly noteworthy is the

rolloff with increasing R/L for Bu . 1, in agreement with

both the analytical and numerical solutions.

5. Discussion

Analytical solutions of the adjustment of an isolated

lens reveal key differences at large and small Burger

number between solutions stemming from different but

closely related initial condition geometries. Considering

radial displacements and maximum velocities, the dif-

ferent initial conditions examined here can be grouped

into three categories based on three defining factors.

First, the 2D layered dam break problem, described by

Gill (1982), is unique in that its initial condition con-

tains only one inherent length scale, the deformation

radius R. For this case, the maximum adjusted velocity

Umax corresponds to the reduced-gravity wave speedffiffiffiffiffiffiffiffiffi
g9H

p
, whereas the adjustment distance DL corresponds

exactly to the deformation radius R (the latter can also be

interpreted as the advective length scale with 1/f as the

time scale of advection and Umax as the relevant velocity;

i.e., DL 5 U
max

/f 5
ffiffiffiffiffiffiffiffiffi
g9H

p
/ f 5 R). Second are the top-

hat solutions of Csanady (1979) and Flierl (1979), which

contain a second length scale, the finite size of the

density perturbation Ld. This has the effect of modifying

the solution for Bu . 1, such that both the adjustment

distance DL and the adjusted velocity scale Umax are

reduced compared to the case of infinite Ld. This re-

duction can be attributed to the finite volume of the ini-

tial anomaly, which leads to a decrease in h (and hence

the effective R) as the horizontal scale of the density

defect Ld increases (slumps) during the adjustment. Third,

the layered parabolic and continuously stratified lens so-

lutions of M88 contain a third (nonzero) length scale as-

sociated with the initial pressure gradient Lp. For large Bu,

by virtue of the finite horizontal scale of the initial density

defect Ld, these cases behave in a similar manner as the

second case. However, for small Bu, they exhibit a de-

crease in both the adjustment distance DL and the ad-

justed velocity Umax compared to the first two scenarios.

TABLE 1. Summary of parameter values for laboratory experiments.

Expt PIV or dye f (rad s21) DN (rad s21) Bu1/2 (R/L) DL, radius of Umax (cm) Umax (cm s21)

Base run dye 0.25 0.86 4.3 8.8 0.24

PIV 0.25 0.86 4.3 5.2 0.26

2f dye 0.50 0.86 2.1 4.1 0.33

PIV 0.50 0.86 2.1 4.9 0.36

0.5f dye 0.125 0.86 8.6 8.9 0.24

PIV 0.125 0.86 8.6 7.1 0.11

2DN dye 0.25 1.72 8.6 7.4 0.52

PIV 0.25 1.72 8.6 6.5 0.41

2DN, 2Df dye 0.50 1.72 4.3 5.3 0.93

PIV 0.50 1.72 4.3 5.1 0.66
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This decrease at small Bu can be attributed to the reduced

pressure gradient compared to the previous cases: that is,

one that occurs over a finite scale rather than as a delta

function corresponding to a density discontinuity. Note-

worthy in this third case is that, for small Bu, the maximum

adjusted velocity Umax is exactly equal to that obtained

from pressure gradient scaling, Umax 5 N2h2/fL, whereas

the adjustment distance DL is again equal to the cor-

responding advective length scale with 1/f as the time

scale of advection: that is, DL 5 Umax/f 5 (N2h2/fL)/f 5

R2/L or DL/R 5 R/L.

For the case of an isolated lens in a continuously

stratified fluid, comparing the analytical solutions to the

numerical solutions, we find that both the adjustment

distance DL and the maximum adjusted velocity Umax

bear out the large and small Bu dependence seen in the

analogous analytical solutions. Despite the much more

limited parameter range spanned by the laboratory ex-

periments, they too are consistent with the predicted

rolloff for large Burger numbers. Particularly notewor-

thy in the latter is the simple point that, even for Bu� 1,

the adjustment ultimately results in a geostrophically

balanced state, albeit with scales that are considerably

different than simple scaling based on initial conditions

might suggest. That the adjusted state is indeed balanced

can has been confirmed in the numerical solutions by

computing geostrophic velocities from the model pres-

sure field and comparing them to the actual velocities

in the model (not shown). Also noteworthy here is that

both our laboratory simulations and our numerical results

allow for nonhydrostatic effects. This notwithstanding, aside

from the initial radiation of internal waves associated with

geostrophic adjustment, the motions associated with the

vortices themselves are approximately hydrostatic, because

vertical velocities are relatively small in the balanced state

of the vortex (e.g., see also Dritschel and Viúdez 2007).

The key point here, however, is that, even for Bu� 1, the

adjustment can still proceed to a stable, geostrophically

balanced state, provided the effect of friction (i.e., the

Ekman number) is small.

The latter point also raises the question of how the

behavior depicted in Figs. 2 and 3 would be modified

in the presence of frictional effects. Regarding DL, re-

gardless of Burger number, we expect the radial ad-

justment distance to be greater than the geostrophically

constrained case because R would no longer be a lim-

iting length scale. This assumes, of course, that the

density anomaly is not first dissipated away by diffusive

processes. In terms of Umax, we would expect the azi-

muthal velocity associated with the balanced part of

the motion to be reduced compared to the geostrophic

adjustment case, because, in the frictional case, a por-

tion of the kinetic energy would be tied up in the radial

motion and the azimuthal motion itself would be re-

duced by friction. Of course, in the frictional case, the

adjustment would also not achieve a steady state until

all motion had ceased.

Noteworthy regarding the analytical solutions depic-

ted in Figs. 2 and 3 is the somewhat muted effect that the

inclusion/exclusion of nonlinear terms has on the final

adjusted solution in terms of DL and Umax when com-

pared to the variations due to Bu dependence. Although

a twofold to fourfold difference in the two-dimensional

versus three-dimensional scenarios is certainly an order

one effect, this pales compared to the more than order

of magnitude differences for Bu � 1 and Bu � 1 seen

between the step function solution (e.g., Gill 1982;

Cushman-Roisin 1994) and the localized continuous pres-

sure gradient solutions M88.

Also noteworthy for the continuously stratified solu-

tion of M88, as well as the numerical and laboratory

results presented here, is that the Rossby number U/fL

of the adjusted state is always less than 1 (see Fig. 3).

This follows directly from gradient wind balance for

high pressure anticyclonic eddies. As noted by Olson

(1991) in his survey of ocean rings, anticyclones in gen-

eral may thus be less nonlinear and hence potentially

more stable than cyclonic eddies. Note also that the

vortices in the present study are ‘‘shielded’’ vortices in

the sense that they consist of an anticyclonic core sur-

rounded by a ring of positive vorticity. As discussed, for

example, by Kloosterziel and Carnevale (1999), the sta-

bility of such vortices depends not only on whether the

vorticity changes sign but also on the steepness of the

vorticity profile with respect to the radial coordinate:

the steeper the vorticity profile, the faster the instability

growth rate for higher wavenumbers. Thus, steeper vor-

ticity profiles successively lead to the formation of di-

poles, tripoles, and higher mode structures such as those

reported by Rubino et al. (2002) and elsewhere in the

literature. Conversely, shallower vorticity profiles have

longer instability growth times and hence are more stable.

Putting the above in the context of the present study,

we believe the vortices examined here are comfortably

in the regime of being stable with relatively slow in-

stability growth rates. This is evidenced by the fact that

in both the laboratory and our numerical simulations

our vortices are remarkably coherent and symmetric

for a considerable time: at least 10 inertial periods (the

e-folding decay time scale of our eddies) in the labora-

tory and hundreds of inertial periods in the model. That

said, we have conducted additional numerical investi-

gations using the same numerical model and have found

that indeed, when seeded with noise, our vortices do

eventually become unstable (i.e., after hundreds of in-

ertial periods; results not shown). In the absence of other
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forcing, we believe this instability ultimately is the re-

sult of barotropic instability, because the growth time is

consistent with theoretical predictions for this process.

Conversely, when superimposed on larger-scale back-

ground vertical shears, we find that our vortices go un-

stable more quickly, with grow rates in that case more

consistent with those expected for baroclinic instability.

That the eventual instability of the unforced eddies is

barotropic rather than baroclinic is similar to findings

of Beckers et al. (2003) for shielded vortices in a non-

rotating fluid. A more in depth treatment of the stability

of s vortices is a subject for ongoing investigation.

Stability aside, a significant result of the present study

is the simple fact that results from both numerical simu-

lations and laboratory experiments were in good agree-

ment with semianalytical solutions by M88 for the

adjustment of a continuously stratified isolated lens for

a wide range of Bu. In all cases, an axisymmetric lens

beginning from a state of rest was allowed to adjust under

the influence of gravity and rotation to form a geo-

strophically balanced eddy. Regarding adjustment dis-

tances, the laboratory results were slightly larger than

corresponding numerical and analytical solutions. How-

ever, they were only between a factor of 1 to 3 larger: that

is, consistent to within an order 1 scale factor. Meanwhile,

the maximum adjusted velocity Umax exhibited strong Bu

dependence in both the numerical and laboratory simu-

lations, in close agreement with the M88 solutions. Most

importantly, however, was that both the numerical and

laboratory results, as well as the analytical solutions of

M88, all differed significantly from geostrophic scaling

based on the parameters of the initial mixed patch. In

fact, the solutions for Umax were as much as two orders

of magnitude smaller than geostrophic scaling in the

Bu� 1 regime where the laboratory experiments were

conducted, despite the experiments clearly resulting

in a geostrophically balanced end state. Any reason-

able prediction of the adjusted state, particularly for

Bu significantly different from unity, must take this into

account.

Finally, regarding the laboratory experiments, a limi-

tation of the present study is that less than an order of

magnitude range of R/L ratios was spanned in the pres-

ent experiments (see data shown in Figs. 2, 3) because

of constraints of the experimental setup. In particular,

Bu , 1 could not be reached because of a number of

reasons. First, the 1.0-m-diameter tank size limited how

large the initial mixed patch could be without feeling

sidewall effects. Also, the value of R was constrained

by DN, h, and f. That is, the value of h was already small

and hence constrained by the Ekman number so as to

avoid frictional effects. Any substantial decrease in h

would cause the Ekman number to approach unity, thereby

changing the dynamics of the adjustment. Meanwhile,

increasing f or decreasing N further would have brought

these two time scales too close together and, for the as-

pect ratio of the present experiments (i.e., h/L), would

have approached an unstable eddy regime (e.g., Stegner

et al. 2004).

6. Summary and conclusions

In this study we revisited the problem of geostrophic

adjustment of an isolated lens in a stratified fluid. A

progression of published analytical solutions for the

Rossby adjustment problem was reexamined for initial

conditions ranging from a 2D dam break to a continu-

ously stratified axisymmetric lens. These solutions were

then compared to numerical simulations and laboratory

experiments of the adjustment of an isolated lens in a

continuously stratified rotating environment. Major re-

sults of this study are as follows.

Using a progression of analytical solutions, we iden-

tified the roles of three distinct length scales associated

with the adjustment problem, the Rossby radius of de-

formation R, the length scale associated with the dens-

ity defect Ld, and the length scale associated with the

pressure gradient Lp. For Bu� 1, the adjusted velocity

approaches one of two solutions, depending on the ge-

ometry of the initial condition. When no initial length

scale of the pressure gradient is defined (i.e., density is

a step function such that Lp 5 0), velocity scales as the

reduced-gravity wave speed, whereas the adjustment

distance DL scales as the advective length scale associ-

ated with an inertial time scale (i.e., DL 5 Umax/f).

When the initial pressure gradient scale Lp is nonzero,

velocity scales according to geostrophic pressure gradi-

ent scaling via the momentum equations, whereas the

adjustment distance DL again scales as DL 5 Umax/f, this

time with Umax given by geostrophic scaling. For Bu� 1,

all solutions with finite Ld scale such that both the geo-

strophically balanced velocity and the adjustment length

scale are less than the reduced-gravity wave speed and

its associated advective length scale. This reduction can

be attributed to volumetric effects, which reduce the

effective pressure gradient during the adjustment and

hence limit both the velocity and the displacement by an

amount proportional to Bu. Noteworthy is that differ-

ences between the respective solutions can be manyfold,

up to an order of magnitude, as Bu becomes either large

or small. This highlights the importance of properly iden-

tifying and estimating the relevant length scales when

predicting the adjusted state based on initial conditions.

Regarding the initial and final states, we note that the

final solutions can achieve geostrophically balanced states

even when Bu based on initial parameters is large. This
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is because, during the adjustment, the initial slumping

of the density defect modifies both the vertical and

horizontal scales of the density defect such that, as L

increases, h decreases, leading to a decrease in the hori-

zontal pressure gradient. Thus, the effective deformation

radius decreases, whereas the relevant horizontal length

scale of the density defect increases. The adjustment

itself thus causes the Bu of the adjusted state to ap-

proach unity. Presumably, however, this can only occur

if viscosity or diffusion is not so large that it limits the

adjustment before rotation becomes important.

Considering the numerical simulations, we found that

for a continuously stratified isolated lens, the end state

computed from the fully nonlinear time-dependent so-

lution agreed both qualitatively and quantitatively with

the analytical solution of M88 for the same geometry.

Although the behavior of such numerical solutions was

examined in detail by Lelong and Sundermeyer (2005),

the interpretation in the context of other related initial

geometries and in terms of the Burger number depen-

dence of adjustment distance and adjusted velocity is new

to the present study.

Finally, regarding the laboratory experiments, we find

that experiments conducted at large Bu are consistent

with both numerical and analogous analytical solutions

for an axisymmetric lens in terms of adjustment distance

and maximum adjusted velocity. To our knowledge, this

is the first time that laboratory results using this form of

initial condition have been reported in the literature

(i.e., the generation of a mixed patch in a continuously

stratified rotating fluid via mixing, as opposed to mass

injection or direct velocity forcing).

Relevant to all of the analyses presented here is that

the dynamics of geostrophic adjustment can be applied

to a variety of scales, from mesoscale to submesoscale,

by appropriately rescaling the relevant nondimensional

parameters. At one end of the spectrum is the con-

text envisioned by Csanady (1979) and Flierl (1979) (i.e.,

Mediterranean eddies, or meddies). At intermediate scales,

M88 relates his solutions to the problem of submesoscale

coherent vortices on the order of 10 km horizontally and

100 m vertically. Finally, at still smaller scales, Lelong

and Sundermeyer (2005) and Sundermeyer and Lelong

(2005) relate their findings to mixed patches generated by

internal wave breaking on scales of hundreds of meters to

a few kilometers horizontally and on the order of 0.5–10 m

vertically. In all of these cases, an effective deformation

radius can be clearly defined, and the adjustment can be

interpreted in the context of geostrophic adjustment. As

evidenced by the present laboratory experiments in par-

ticular, even at very small scales and for large Bu based on

initial conditions, geostrophic adjustment can still occur

as long as friction does not dominate.
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