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ABSTRACT 

Topology optimization is a tool used during the early stages of design to 

identify configurations that might not be intuitive.  In this thesis, topologies that have 

been optimized for static loading are evaluated for their performance under dynamic 

loading conditions.  The response of these structures to dynamic loads is not 

understood and has yet to be investigated.  This study seeks to compare the dynamic 

response of structures that have been optimized for static stiffness to more traditional 

weight minimizing structures consisting of periodic geometric patterns.  A domain is 

optimized for a loading case using an available static optimization scheme.  The 

domain and case were chosen specifically so that it can be tested dynamically in the 

laboratory, using an instrumented drop weight impact test machine.  The drop test 

experiment is simulated using a Finite Element Analysis (FEA).  The experimental 

data for a particular topology with a low volume fraction is used to validate the FEA 

model.  Similar topologies with higher volume fraction are then evaluated by FEA 

simulations.    

Understanding the dynamic response of statically optimized structures will 

provide insight into the development of an algorithm that could optimize a structure 

subjected to dynamic loading conditions.  Such an algorithm would be very useful in 

the design of lightweight bulkheads for underwater vehicles, torpedoes, cruise missiles 

and other aerospace applications.  In such applications, structural weight savings are 

critical and static loads are well defined.  However, these structures are also subjected 

to dynamic loads which must be characterized and taken into account during the 

design phase.   
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As expected, the optimized topologies exhibit very high stiffness when 

subjected to either static or dynamic loading.  At low energy levels where no critical 

damage is observed, optimized topologies perform better with a much high stiffness 

before and after impact and deflected less during the impact.  The optimized 

topologies perform better than the traditional topologies until the kinetic energy 

increases enough to compromise the structure in the form of tensile failures, as 

observed in the lower volume fraction topologies.  At critical high impact conditions, 

however, high stiffness can prove to be a hindrance.  Statically optimized structures 

are uniformly stressed at all material points. Under high impact conditions, the 

structure is quickly loaded to a failure state, typically tensile failure in regions 

subjected to stress concentrations or compressive failure of slender compressive 

members. Such failures dramatically reduce the stiffness of the structure since the 

optimized structure requires all members to remain intact to effectively transmit the 

loads.  As a result, due to their high stiffness and loss of structural integrity after initial 

failure, the statically optimized structures do not allow sufficient time prior to failure 

to decelerate the dropped mass.  By comparison, the more traditional lightweight 

structures have lower stiffness and decelerate the mass over a longer distance and 

time.  These structures also experienced localized failures, most often due to buckling, 

but were able to carry loads effectively after failures because the structure had 

multiple load paths.  Topologies optimized for stiffness do not perform well under 

high impact conditions because some compliance is required to effectively absorb high 

impact energy. 
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One of the objectives of this study is to provide insights that can be used to 

develop new algorithms for the optimization of structures for resisting dynamic loads.  

The results of this study reveal that the optimization schemes for a structure's dynamic 

response will need to identify design parameters that provide an optimal combination 

of initial stiffness, initial failure, and post-failure energy absorption.   

  



v 

 

ACKNOWLEDGEMENT 

 I would like to express my gratitude to my advisor, Professor David 

Taggart, for his support, patience, and encouragement throughout my graduate studies.  

I appreciate how generous he is with his time and his input.  His technical and editorial 

advice was essential to the completion of this thesis.  It is a pleasure to work with him 

and I hope to continue to in the future.   

I would also like to thank the rest of my thesis committee: Professor Shukla, 

Professor Tsiatas, and Professor Bradshaw. 

I would also like to my fellow lab mates, Prathmesh Parrikar, Sachin Gupta, 

Payam Fahr, Emad Makki, and Nicholas Heeder. 

 

  



vi 

 

DEDICATION 

I dedicate this thesis to my family.  My children, Wyatt, Logan, Seana, Marie 

and Elizabeth remind me how far I have come to get to this point.  Norman and Harle 

Phelps, my parents, remind me that hard work and patience pay off.  Tara, my wife, 

challenges me to be spontaneous and keep moving forward. 

 



vii 

 

TABLE OF CONTENTS 

ABSTRACT ....................................................................................................... ii 

ACKNOWLEDGEMENT ................................................................................. v 

DEDICATION .................................................................................................. vi 

TABLE OF CONTENTS ................................................................................. vii 

LIST OF TABLES ............................................................................................ ix 

LIST OF FIGURES ........................................................................................... x 

1. INTRODUCTION ......................................................................................... 1 

1.1 LITERATURE REVIEW ........................................................................ 1 

1.2 PRESCRIBED MATERIAL REDISTRIBUTION .................................. 4 

1.3 TOPOLOGIES OF INTEREST ............................................................... 6 

2. EXPERIMENTAL METHODS ................................................................... 11 

2.1 TEST SAMPLE PREPARATION ......................................................... 11 

2.2 EXPERIMENTAL TEST SETUP ......................................................... 13 

2.3 EXPERIMENTAL RESULTS ............................................................... 17 

3. FINITE ELEMENT ANALYSIS ................................................................. 32 

3.1 MATERIAL MODEL ............................................................................ 36 

3.2 MESH ..................................................................................................... 40 

3.3 STATIC ANALYSIS ............................................................................. 45 

3.4 BUCKLING ANALYSIS ...................................................................... 48 



viii 

 

3.5 DYNAMIC ANALYSIS ........................................................................ 50 

4. VALIDATION OF FEA MODEL ............................................................... 56 

5. EVALUATION OF TOPOLOGIES ............................................................ 64 

6. CONCLUSION ............................................................................................ 68 

APPENDIX 1: Dynamic Results Figures ........................................................ 71 

APPENDIX 2: Abaqus Input Script ................................................................. 87 

APPENDIX 3: PMR Matlab Input File ........................................................... 92 

APPENDIX 4: Drawings ................................................................................. 94 

BIBLIOGRAPHY .......................................................................................... 101 

 

  



ix 

 

LIST OF TABLES 

Table 1 – Profile Designation and Volume Fractions ........................................ 8 

Table 2 – Experimental Test Parameters ......................................................... 16 

Table 3- Sample Masses................................................................................... 17 

Table 4 - Maximum Load Cell Values ............................................................. 18 

Table 5 - Experimental Deflections ................................................................. 18 

Table 6 - Profile Mass and Volume Fraction ................................................... 36 

Table 7- Elastic Material Properties ................................................................. 36 

Table 8 - AL 6061-T651 Johnson-Cook Plasticity Constants ......................... 37 

Table 9 - AL6061-T651 Johnson-Cook Fracture Parameters .......................... 39 

Table 10 - Static Mesh Sensitivity ................................................................... 42 

Table 11 - Eigenvalues for Typical Profiles .................................................... 48 

Table 12 - Eigenvalues PMR Profiles .............................................................. 49 

Table 13 - Dynamic FEA Conditions............................................................... 51 

Table 14- Dynamic Results .............................................................................. 55 

Table 15 - FEA vs Experimental Data ............................................................. 56 

 

 

  



x 

 

LIST OF FIGURES 

Figure 1- Michell Topology ............................................................................... 2 

Figure 2- Minimal Weight Structures (Taggart 2008) ....................................... 4 

Figure 3 - Beta distributions (a) density (b) cumulative, showing transition 

from initial to final densities (Taggat 2010) .................................................................. 5 

Figure 4 - Sample Domain ................................................................................. 6 

Figure 5- Simplified PMR Domain .................................................................... 7 

Figure 6- PMR Progression iterations 2, 29, 44, 56, 75, 88, 94 & 100 .............. 8 

Figure 7- PMR Profiles ...................................................................................... 9 

Figure 8- Typical Truss Structure Volume Fraction 0.25 ................................ 10 

Figure 9 - PMR2 Volume Fraction 0.25 .......................................................... 10 

Figure 10- DXF Overlay of PMR1 Image ....................................................... 12 

Figure 11 - PMR1 Experimental Specimen VF0.20 ........................................ 13 

Figure 12 – TRI1 Truss Experimental Specimen VF0.20................................ 13 

Figure 13 - Experimental Setup ....................................................................... 14 

Figure 14 - Sample Fixture .............................................................................. 15 

Figure 15 - Experimental Loads ....................................................................... 19 

Figure 16 - Experimental Loads First Pair ....................................................... 19 

Figure 17- Kinetic Energy Lost from Crosshead ............................................. 21 

Figure 18 - Velocity of Crosshead ................................................................... 22 

Figure 19- Crosshead Displacements ............................................................... 23 

Figure 20 - Experiment 1 Sample P1 ............................................................... 24 

Figure 21- Sample T1 Top Left Failure ........................................................... 25 



xi 

 

Figure 22 - Sample T2 Member Necking ........................................................ 26 

Figure 23- Experiment 2 Sample T1 ................................................................ 27 

Figure 24- Experiment 3 P2 ............................................................................. 28 

Figure 25- Experiment 4 Sample T2 ................................................................ 29 

Figure 26- Experiment 5 Sample P3 ................................................................ 30 

Figure 27- Experiment 6 Sample T3 ................................................................ 31 

Figure 28- FEA Assembly ............................................................................... 34 

Figure 29 - FEA Topologies ............................................................................ 35 

Figure 30 - JC Plasticity Model for AL6061-T651 .......................................... 38 

Figure 31 - Johnson-Cook Fracture Locus for Aluminum 6061-T651 ............ 39 

Figure 32- Stress-strain curve with progressive damage degradation (Simulia 

2013) ............................................................................................................................ 40 

Figure 33- Static Mesh Size vs Percent Error from Mesh 5 ............................ 43 

Figure 34 - Dynamic Mesh Sensitivity ............................................................ 43 

Figure 35 - Mesh PMR7 ................................................................................... 44 

Figure 36 - Mesh Detail PMR7 ........................................................................ 44 

Figure 37- Static Boundary & Load Conditions .............................................. 45 

Figure 38- PMR3 Static 7kN Load Stain Energy Density ............................... 46 

Figure 39 – TRI3 Static 7kN Load Strain Energy Density .............................. 46 

Figure 40 - Static Deflection of Profiles .......................................................... 47 

Figure 41 - Static Structural Stiffness .............................................................. 48 

Figure 42 - First Positive Eigenvalues ............................................................. 49 

Figure 43 - PMR1 Mode 2 ............................................................................... 50 



xii 

 

Figure 44 - TRI1 Mode 2 ................................................................................. 50 

Figure 45 - Maximum Top Mid-Point Displacement ...................................... 53 

Figure 46 - Dynamic Analyses Peak Loads ..................................................... 54 

Figure 47 - J Impulse ....................................................................................... 54 

Figure 48 - Peak Load Comparison FEA vs Experiment ................................. 57 

Figure 49 - Max Deflection Comparison FEA vs Experiment ........................ 58 

Figure 50 – Load Profile - Experiment 5 vs FEA ............................................ 59 

Figure 51 – Load Profile -  Experiment 6  vs FEA .......................................... 59 

Figure 52 - E1L-PMR1 Mises Stress 21.5 ms ................................................. 61 

Figure 53 - E2L-TRI1 Mises Stress 15ms ....................................................... 62 

Figure 54 - E3L-PMR1 Mises Stress 7.5ms .................................................... 62 

Figure 55 - E4L-TRI1 Mises Stress 22.5ms .................................................... 62 

Figure 56 - E5L-PMR1 Mises Stress 6ms ....................................................... 63 

Figure 57 - E6L-TRI1 Mises Stress 14.5ms .................................................... 63 

Figure 58 - PMR2 Dynamic Failure 2.1ms ...................................................... 64 

Figure 59 - PMR3 Dynamic Failure 1.2ms ...................................................... 64 

Figure 60 - PMR3 Tensile Failure 1.9ms ......................................................... 64 

Figure 61 - TRI3 Buckling Failure 5.3ms ........................................................ 65 

Figure 62 – Structural Stiffness Pre and Post Dynamic Impact ....................... 66 

Figure 63 – Static Deflection of Profiles Pre and Post Impact ........................ 67 

Figure 64 - PMR1 Experiment 1 - 0.5ms ......................................................... 71 

Figure 65 - PMR1 Experiment 1 - 0.9ms ......................................................... 71 

Figure 66 - PMR1 Experiment 1 - 2.4ms ......................................................... 71 



xiii 

 

Figure 67 - PMR1 Experiment 1 - 14.5ms ....................................................... 72 

Figure 68 - TRI1 Experiment 2 - 0.5ms ........................................................... 72 

Figure 69 - TRI1 Experiment 2 - 3.6ms ........................................................... 72 

Figure 70 - TRI1 Experiment 2 - 14.5ms ......................................................... 73 

Figure 71 – PMR1 Experiment 3 - 0.4ms ........................................................ 73 

Figure 72 - PMR1 Experiment 3 - 7ms ............................................................ 73 

Figure 73- TRI1 Experiment 4 - 0.5ms ............................................................ 74 

Figure 74 - TRI1 Experiment 4 - 23ms ............................................................ 74 

Figure 75 - PMR1 Experiment 5 - 0.5ms ......................................................... 74 

Figure 76 - PMR1 Experiment 5 - 6.5ms ......................................................... 75 

Figure 77 - TRI1 Experiment 6 - 0.5ms ........................................................... 75 

Figure 78 - TRI1 Experiment 6 - 15ms ............................................................ 75 

Figure 79 - PMR2 - 0.5ms ............................................................................... 76 

Figure 80 - PMR2 - 4.5ms ............................................................................... 76 

Figure 81 - TRI2 - 0.5ms ................................................................................. 76 

Figure 82  - TRI2 - 9ms ................................................................................... 77 

Figure 83 - PMR3 - 1.2ms ............................................................................... 77 

Figure 84 - PMR3 - 5.1ms ............................................................................... 77 

Figure 85 - TRI3 - 0.5ms ................................................................................. 78 

Figure 86 - TRI3 - 6.5ms ................................................................................. 78 

Figure 87 - PMR4 - 0.5ms ............................................................................... 78 

Figure 88 - PMR4 - 5.1ms ............................................................................... 79 

Figure 89 - TRI4 - 0.5ms ................................................................................. 79 



xiv 

 

Figure 90 - TRI4 - 4.5ms ................................................................................. 79 

Figure 91 - PMR5 - 0.8ms ............................................................................... 80 

Figure 92  - PMR5 - 5.1ms .............................................................................. 80 

Figure 93 - TRI5 - 0.5ms ................................................................................. 80 

Figure 94 - TRI5 - 4ms .................................................................................... 81 

Figure 95- PMR6 - 0.8ms ................................................................................ 81 

Figure 96- PMR6 - 5ms ................................................................................... 81 

Figure 97 - TRI6 - 2ms .................................................................................... 82 

Figure 98 - TRI6 - 4ms .................................................................................... 82 

Figure 99 - PMR7 - 1.2ms ............................................................................... 82 

Figure 100 - PMR7 - 3.2ms ............................................................................. 83 

Figure 101 - TRI7 - 2ms .................................................................................. 83 

Figure 102 - TRI7 – 3.5ms ............................................................................... 83 

Figure 103 - PMR8 – 0.6ms ............................................................................. 84 

Figure 104- PMR8 – 3ms ................................................................................. 84 

Figure 105 - TRI8 – 1.8ms ............................................................................... 84 

Figure 106- TRI8 – 3.3ms ................................................................................ 85 

Figure 107- PMR9 – 0.6ms .............................................................................. 85 

Figure 108 - PMR9 – 3ms ................................................................................ 85 

Figure 109 - TRI9 – 1.7ms ............................................................................... 86 

Figure 110 - TRI9 – 3.1ms ............................................................................... 86 

 



1 

 

1. INTRODUCTION 

1.1 LITERATURE REVIEW  

Advancements in topology optimization date back to the work of Michell 

(Michell 1904), where he proved that an optimal truss must follow the orthogonal 

network of lines of maximum and minimum strain in a constant-magnitude strain 

field.  The material is optimized such that the structure is stressed evenly throughout.  

Increasing the load to critical levels would theoretically cause the structure to fail 

everywhere at once.  The failure criteria for Michell structures was stated as “the 

greatest tensile stress allowable in the material which is to be employed is P, and the 

greatest compressive stress Q, the least volume of material in a given frame, consistent 

with security” (Michell 1904).  The term security is taken to mean the failure of the 

structure.  Figure 1shows a case described by Michell in his 1904 paper.  The case has 

a single load, a force ‘F’ applied at point ‘A’.  The boundary conditions of this case is 

an equal and opposite force and a couple, of moment ‘F x AB’ applied at ‘B’. 
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Figure 1- Michell Topology 

The minimum weight frame to support the load from B is depicted by the solid 

black lines.  Michell’s work on optimization has been applied and used as a base line 

for the development of several numerical methods based on the finite element method 

to find minimal weight structures for complex problems.  One well known numerical 

optimization method, referred to as "solid, isotropic microstructure with penalty" 

(SIMP) was developed by Rozvany et al. (Rozvany 1992).  The SIMP method requires 

the user to select a penalization factor, typically around 3.0, and filtering parameters to 

avoid a numerical instability known as checker boarding.  A simpler evolutionary 

procedure for structural optimization was proposed by Xie and Steven (Xie 1993).  

This procedure uses an iterative finite element analysis on the domain in which a 

rejection criterion (RC) to remove low stress elements from the domain.  If the RC is 

taken to be the von Mises effective stress, if the rejection criterion of an element is 
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below the rejection ratio (RR) times the maximum von Mises stress for that iteration, 

then that element is deleted from the domain.  The process continues with the RR 

increasing as the iterations advance.  The drawback to this method is that once an 

element is deleted it cannot be reintroduced.  The statically optimized topologies 

investigated in this study are the result of a method called the prescribed material 

redistribution (PMR) developed by Taggart et al. (Taggart 2008) which is described 

below. .  Numerical topology optimization methods such as these have been integrated 

into several leading FEA and CAD software packages such as Abaqus (Simulia) and 

HyperWorks (Altair).  These tools are used to guide designers and engineers by 

showing optimized topologies that they can incorporate into their designs.   

Topology optimization starts by creating a domain to be optimized.  In the 

optimized design, only a fraction of the domain will be solid material and the rest of 

the domain will be void.  The boundary conditions and loads are specified to 

completely define the case.  As stated about, the prescribed material redistribution 

(PMR) method (Taggart 2008) will be used in this study. In previous work by Taggart 

et al. (Taggart 2008) (Taggat 2010), the PMR method has been validated by 

comparison with well-known classical two dimensional topology.  These are shown in 

Figure 2.  Case 1 shows a Michell arch (Michell 1904).  This case has a domain above 

the loading in the center and the simply supported (pin / roller) boundary conditions in 

the corners.  Case 2 is similar to Case 1 but with pin supports a both corners.  

Expanding the domain for Case 3 mirrors the structure of Case 2 below the horizontal.  

Case 4 is a cantilever proven to be the optimal structure by Chan (Chan December 

1960).    
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Figure 2- Minimal Weight Structures (Taggart 2008) 

1.2 PRESCRIBED MATERIAL REDISTRIBUTION 

The Prescribed Material Redistribution (PMR) method was developed by 

Taggart and Dewhurst (Taggart 2008).  In the procedure the fraction of the domain 

that is intended to be filled is specified.  This volume fraction (VF) would be greater 

than zero and less than unity.  Initially, the corresponding total material mass is 

distributed uniformly throughout the domain.  As a result, the initial density of all the 

nodes is given as shown in Equation 1. 

 𝜌 = 𝑉𝑓/𝑉𝐷 (1) 

Where the final volume of the solid material is Vf, and VD is the volume of the 

entire domain.  The PMR algorithm has previously been implemented in MATLAB 

for both 2-D and 3-D (Okruta 2014) topology optimization problems. For these codes, 

the user must create an input file that defines the size of the domain, loads, boundary 

conditions, volume fraction and number of steps.  A finite element analysis is 
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conducted on the domain for every iteration.  Since the density of each node is 

updated in each iteration, the element stiffness matrix for each element must be 

recomputed at every iteration.  The Young’s modulus, Ee, of each element is taken to 

be proportional to fully dense Young’s modulus, Ed and the density, e, of the 

particular element  as shown in Eq. 2. 

 𝐸𝑒 = 𝐸𝑑𝜌𝑒 (2) 

Where the element density is computed as the average of the nodal densities 

for that element. At the end of each iteration, the material is redistributed throughout 

the domain as prescribed below.  The densities of nodes with high strain energy are 

increased and the densities of nodes with low strain energy are reduced.  A gradual 

transition from the initial state of uniformly distributed material to a bi-modal state of 

fully dense and fully voided regions is imposed through a family of Beta functions as 

shown in Figure 3 (Taggat 2010). 

 

Figure 3 - Beta distributions (a) density (b) cumulative, showing transition 

from initial to final densities (Taggat 2010) 
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While the PMR method gives reasonable topologies in just a few iterations, for 

well-defined topologies at least 25 iterations are recommended.  In this study one 

hundred iterations were used when creating topologies with the PMR program.   

1.3 TOPOLOGIES OF INTEREST 

The experimental study required the identification of a topology that could be 

tested in the lab under dynamic conditions.  Hence, the configuration of the drop 

weight test equipment dictated the geometry of the domain, loading conditions and 

boundary conditions.  As shown in Figure 4, the domain to be optimized is a 

rectangular region eight inches wide and four inches high.  The support boundary 

conditions consist of fixed supports on both the left and right hand side of the domain.  

To simulate the effect of the striker, a pressure load is applied on a 1 inch region in the 

center at the top of the h. 

 

Figure 4 - Sample Domain 

To save computational time a symmetry plane is imposed at the middle of the 

domain; reducing the domain size in half and changing the boundary condition on the 

right edge to a symmetry condition (see Figure 5).  Along the right hand edge, nodes 

are free to move in the Y direction but are constrained in the X direction. 
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Figure 5- Simplified PMR Domain 

Figure 6 shows the evolution of the PMR imposed density fields.  In iteration 2 

one notices that the domain is largely uniform.  As the iterations continue, low density 

areas are shown in red while higher density areas are shown in blue.  At iteration 100 

the topology has converged to fully dense regions and completely void regions.   
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Figure 6- PMR Progression iterations 2, 29, 44, 56, 75, 88, 94 & 100 

 

Nine topologies were created using the PMR method.  For all cases, the 

domain was discretized into as 240 elements in the X direction and 90 elements in the 

Y direction.  The pressure load was applied over 30 elements in the upper right hand 

corner of the domain.  The profiles are designated PMR1 through PMR9 with 

increasing volume fractions from 0.20 to 0.60.  The resulting profiles are shown in 

Figure 7.  The Matlab input file used to call the PMR program is APPENDIX 3. 

Table 1 – Profile Designation and Volume Fractions 

 PMR1 PMR2 PMR3 PMR4 PMR5 PMR6 PMR7 PMR8 PMR9 

Volume 

Fraction .20 .25 .30 .35 .40 .45 .50 .55 .60 

Figure 7 a) b) c) d) e) f) g) h) i) 
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a)  f)  

b)  g)  

c)  h)  

d)  i)  

e)  

 

Figure 7- PMR Profiles 

The profiles created by the PMR show a similar topology.  The outer members 

are the thickest.  They create an elongated X shape pattern that meets halfway through 

the domain and start and end at the corners of the domain.  The large outer members 

are supported by smaller internal members that reinforce the structure.  The left side of 

the domain bears a strong resemblance to the Chan cantilever shown in Case 4 of 

Figure 2.  The PMR optimized topologies are compared to a more traditional truss 

structure.  A more traditional topology for this kind of application would be a truss 

structure made of elements of similar thicknesses.  For simplicity, a truss structure 
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made of a single row of equilateral triangles (See Figure 8) was selected for 

comparison to the optimized topologies.  Note that the configuration at the impact 

location consists of flat surface reinforced by the peak of the center triangle...  It is of 

interest to note that the PMR profiles share this attribute.  They each have a nearly 

equilateral triangular shaped void below the impact location (See Figure 9) 

 

Figure 8- Typical Truss Structure Volume Fraction 0.25 

For the traditional truss structure, the thickness of the truss members is uniform 

throughout.  This thickness is adjusted until the volume of the truss structure matched 

the corresponding PMR case. The corners of the triangles filleted with a constant 

radius of 7/128”.   

 

Figure 9 - PMR2 Volume Fraction 0.25 
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2. EXPERIMENTAL METHODS 

In order to compare topologies generated by the PMR algorithm compares to 

more traditional truss topologies, a number of profiles need to be evaluated.  Due to 

the time and expense associated with experimental characterizations, only two 

topologies were selected for laboratory testing.  The laboratory experiments consist of 

an instrumented drop weight machine to induce a dynamic impact.  The test specimen 

spans the eight inches and is clamped and supported at both ends.  The specimen is 

impacted on the top side of the span at the midpoint of the specimen.  The results of 

the experiments are correlated with finite element analysis to demonstrate that the 

model accurately simulates the experiment.  Then, additional topologies are evaluated 

numerically under various load condition using FEA.  The maximum and permanent 

deflections at the top and bottom of the midpoint of the specimen are used to validate 

the FEA model and evaluate the performance of each design.  Experimentally, 

replicates of each topology were tested under identical load conditions to verify 

repeatability of the results.     

2.1 TEST SAMPLE PREPARATION 

All PMR generated topologies are converted from a digital image file to a dxf 

file.  A dxf file is drawing interchange format used by AutoCAD, Solidworks and 

many other CAD programs.  The dxf file is created by importing the image file into a 

Solidworks sketch.  The image is scaled so that the width and height of the domain 

match the desired part dimensions.  In this case, 240 nodes equal 4 inches and 90 

nodes equal 1.5 inches.  Then the outline of the profile is drawn in the sketch using the 

Solidworks sketch tools.  As shown in Figure 7, the edges of the profile are not 
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smooth.  Sketching over the profile requires the user to approximate the profile with a 

series of lines shown in blue in Figure 10.  This process is in the spirit of topology 

optimization software in which the results are to be used as a guide for the designer.  

For this study, the profiles were followed as accurately as possible.  Since there is 

human involvement in this step, some error will occur.   

 

Figure 10- DXF Overlay of PMR1 Image 

After smoothing the members, fillets are added in the internal structure.  The 

fillets are necessary both to minimize stress concentration effects and machining of 

sharp internal corners is not feasible.  The radius of these fillets was taken to be 7/128 

of an inch.  Through smoothing of the members and addition of fillets, the volume 

added to the original PMR profile was 0.53% of the entire design domain.  For 

attachment to the support fixtures, solid blocks of material are added to the left and 

right of the design domain.  Bolted joints are used to rigidly attach the specimen to the 

fixture, creating the desired fixed boundary condition on the left and right side of the 

design domain.  The front face of the profile is saved as a dxf file (See Figure 11).  

The CNC milling machine can use this file to machine the samples.  This profile can 

also be used later by Abaqus for the FEA. 
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Figure 11 - PMR1 Experimental Specimen VF0.20 

 

Figure 12 – TRI1 Truss Experimental Specimen VF0.20 

Samples were machined from Aluminum 6061-T651 bar stock 1.5” in height 

and 0.5 inches thick.  The stock was cut to a length of 9.5”.  The interior profile was 

then milled on a CNC machine.  The dxf profile was read by the CNC machine and a 

two stage cutting profile was created.  A large diameter end mill was used to remove 

the bulk of the material.  Then, the smaller 7/64” end mill removed the remainder of 

the material and created the small fillets as required. 

2.2 EXPERIMENTAL TEST SETUP 

The experimental testing was conducted using an Instron 9210 model drop 

tower impact tester.  The tester is equipped with a one channel load cell that captures 

load, energy, velocity, and deflection at a frequency of 410 kHz. The mounting fixture 
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is installed below the impact table so that high speed images of the experiments could 

be recorded.  A digital high speed camera is used to record the events at 27,000 frames 

per second.   The test samples are painted white with black speckles so that subsequent 

Digital Image Correlation (DIC) can be applied to determine the experimental 

displacement fields.   

 

Figure 13 - Experimental Setup 

As shown in Figure 13, a specialized fixture is used to mount the specimens 

beneath the base of the Instron machine.  The drawings for the fixture are given in 

APPENDIX 4.  As shown in Figure 11 and Figure 12, each sample has a clamping 

area at each end of the design domain.  The clamping area is inserted into the steel end 
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blocks on each side of the fixture.  Then four quarter inch shoulder bolts are passed 

through the end blocks and specimen.  Two shoulder bolts are on each side of the 

fixture.  The specimen fits snugly into the end blocks.  Each face of the clamping area 

is flush with either the end blocks or the crossbar below.  Only the top of the clamping 

area is exposed.  In this case the shoulder bolts and static friction keep the specimen 

from moving upward.  The end blocks are bolted and pinned to the crossbar below.  

This part is also made of steel.  The crossbar is bolted to a steel beam support below 

the Instron using four 3/8” bolts (see Figure 14). 

 

Figure 14 - Sample Fixture 

Six experiments were conducted.  A one inch in diameter flat cylindrical steel 

tup was used at the striker in each experiment.  The tup and bolt have a combined 

mass of 1.08 kg.  The reaction plate and bolts have a mass of 1.39 kg.  The cross head 

has a mass of 4.79 kg.  The mass of the total assembly is 7.26 kg.  Two blocks with a 

mass of 5.02 kg each were added to the assembly for experiments 1 and 2.  For 

experiments 3 through 6 only one block with a mass of 5.02 kg is used.  And for 

experiments 5 and 6 the drop height was reduced from 0.675 meters to 0.525 meters.  
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The impact speed and kinetic energy are calculated from the total mass of the 

crosshead assembly and the drop height.  Neglecting friction, the potential energy of 

the crosshead equals the kinetic energy at impact (Equation 3). 

 
𝑃𝐸 = 𝑚𝑔ℎ = 𝐾𝐸 =

1

2
 𝑚𝑉2 (3) 

Solving for velocity gives 

   

 𝑉 = √2𝑔ℎ (4) 

The three different combinations of drop height and mass resulted in three 

different kinetic energies at impact as shown in Table 2.  Samples designated P1 

through P3 have the profile PMR1 machined into the design area.  Samples designated 

T1 through T3 have the profile TRI1 machined into the design area. 

Table 2 – Experimental Test Parameters 

Experiment Sample 

Total Weight 

[kg] 

Drop 

Height [m] 

Impact Speed 

[m/s] 

Kinetic 

Energy [J] 

1 P1 17.300 0.6750 3.639 114.6 

2 T1 17.300 0.6750 3.639 114.6 

3 P2 12.280 0.6750 3.639 81.3 

4 T2 12.280 0.6750 3.639 81.3 

5 P3 12.280 0.5250 3.209 63.2 

6 T3 12.280 0.5250 3.209 63.2 

 

The mass of each sample (see Table 3) was measured before drop testing.  For 

each replicate pair experiment, the mass of the traditional sample is a greater than that 

of the PMR optimized sample.  This difference may lead to improved performance of 

give the traditional samples as compared to the PMR samples.  The largest difference 

was between sample P3 and T3.  The difference was 1.4 grams.  Due to a 



17 

 

manufacturing error, samples P1 through P3 and T1 through T3 had larger holes 

drilled into the clamping area.  The holes were specified to be 0.25” but were drilled 

out to 0.27”.  Sample T3 is manufactured without this error and as a result has a 

greater mass.  This explains why sample T3 has the highest mass of all the samples 

tested.  Samples with the larger holes were repaired by machining the holes to 5/16 of 

an inch and then pressing brass bushings into the holes.  The bushings have an 

external diameter of 5/16” and an internal diameter of ¼”.  Without the manufacturing 

anomaly, the difference in the mass of the samples is small, 0.6% at maximum. 

 

Table 3- Sample Masses 

Sample Weight [g] Sample Weight [g] 

P1 97.1 T1 97.4 

P2 96.5 T2 97.1 

P3 96.9 T3 98.3 

 

 

2.3 EXPERIMENTAL RESULTS 

The data acquisition during the drop test machine was limited to only 13 

milliseconds after impact.  In all the experiments the contact time between the tup and 

sample were longer than this.  The samples with the PMR1 profile, designated P1 

through P3, showed considerably higher peak loads than the samples with the 

traditional profile TRI1 as shown in Figure 15 and Table 4.   
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Table 4 - Maximum Load Cell Values 

 

Sample Max Load [kN] Max Energy [J] Max Velocity [m/s] 

Experiment 1 P1 15.3 117.0 3.700 

Experiment 2 T1 8.4 119.5 3.682 

Experiment 3 P2 15.0 84.9 3.678 

Experiment 4 T2 9.3 85.1 3.690 

Experiment 5 P3 14.8 66.4 3.260 

Experiment 6 T3 9.8 66.0 3.253 

 

The traditional profiles plateau at their peak load for over two milliseconds 

before finally dropping.  Comparing the load curves between the PMR samples and 

traditional samples reveals that these topologies exhibit dramatic differences under 

dynamic loading conditions.  Figure 16 shows the first pair of samples, sample P1 and 

T1.  These samples are impacted by the highest kinetic energy, 118 Joules.  They are 

both good representative of the load profile for each topology.  The PMR profiles 

show a high load initially followed by a rapid drop in load.  By comparison, the 

traditional profiles reach a peak load far below the corresponding PMR response but 

maintain that load level for a longer time period. The test samples were too thin to 

acquire the displacements across the entire sample.  However, the displacements at the 

middle of the sample on the top and bottom were determined from the images (See 

Table 5).   

Table 5 - Experimental Deflections 

Sample 

DIC Max 

Deflection 

Top Middle 

[mm] 

Time to Max 

Deflection 

[ms] Sample 

DIC Max 

Deflection 

Top Middle 

[mm] 

Time to Max 

Deflection 

[ms] 

P1 31.0 12.0 T1 23.8 10.3 

P2 25.7 11.4 T2 15.2 11.4 

P3 17.0 15.6 T3 9.7 6.5 
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Figure 15 - Experimental Loads 

 

Figure 16 - Experimental Loads First Pair 
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The kinetic energy lost from the crosshead was recorded by the drop test 

machine.  Figure 17 shows the plot for all six experiments.  The typical samples are 

represented as dashed lines while the PMR samples are solid.  In all the experiments 

half of the energy is absorbed by the sample in the first two milliseconds.  This is 

typically when the sample undergoes the most deformation either by buckling or 

tensile failure.  During this time, the PMR samples show a steeper slope than their 

typical profiles.  This indicates that the PMR samples are absorbing energy more 

quickly than the typical sample.  By four milliseconds all typical samples surpass their 

PMR counterparts in energy absorbed.   It can be clearly seen that in the case of 

sample T3 energy is returned to the crosshead.  Sample T3 was able to absorb kinetic 

energy of the crosshead, store it as elastic strain energy and return that energy back to 

the crosshead in the form of kinetic energy.  This can also be seen in sample T2 but it 

is not as prominent.  This is a desired attribute in structures designed for impact 

loadings. 
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Figure 17- Kinetic Energy Lost from Crosshead 

 

Four experiments were conducted with an impact velocity of 3.6 meters per 

second.   Two experiments were conducted with an impact velocity of 3.2 meters per 

second.  Figure 18 shows us that the PMR profiles quickly decelerate the crosshead 

during the first two milliseconds.  The velocity profiles of P1 through P3 are irregular 

while the typical samples show as steady deceleration.   This change from a quick 

deceleration to a more gradual one happens early and allows for the typical profiles to 

stop the mass of the crosshead before the PMR profiles.  In fact sample T2 was a high 

velocity impact and was able to stop its mass in 8.6 milliseconds.  This faster than 

sample P3 which was a lower velocity impact.  It took sample P3 9 milliseconds to 

arrest the crosshead. 
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Figure 18 - Velocity of Crosshead 

 

The experimental displacements again show us that the PMR profiles are 

indeed stiffer initially but lose their stiffness over time.  It should be noted that the 

difference in displacements initially is small (See Figure 19).  The PMR profiles differ 

much greater at the experiment comes to close.  Sample P3 shows a steady trend up in 

displacement, then levels off and returns back to zero. 
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Figure 19- Crosshead Displacements 

 

For the first experiment, Figure 19 shows results the deformation of sample P1 

at several points during the impact event.  This experiment is one of the highest energy 

experiments.  Sample P1 begins to buckle after 0.66 milliseconds of contact, at the 

time of the peak load.  It can be seen that even with a high speed camera, the image is 

blurry because it is buckling at a high rate of speed.  After 6.5 milliseconds the 

internal member touches the bottom member and shears into three pieces.  It takes 12 

milliseconds for the structure to arrest the crosshead and reach its maximum deflection 

of 31 millimeters.  After this experiment, sample P1 is observed to have four members 
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and rebounded slightly.  The two internal members below the point of impact buckled 

severely and one eventually failed. 

 

 

Figure 20 - Experiment 1 Sample P1 
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The second experiment is also a high energy impact.  The kinetic energy of the 

cross head is 114 Joules.  Sample T1 reached its max load sooner at .47 milliseconds.  

A member on the top of the domain was the first to buckle as shown in Figure 23.  

This is not surprising since it is in direct contact with the tup.  The load plateaus until 

2.62 milliseconds when the load drops and a member on the top far right side breaks.  

After 4.4 milliseconds the member on the top far left side breaks in a similar fashion.  

Both members were under tension and necking at the point of failure is present.  Both 

failure surfaces are rough (See Figure 21).  This indicates a high energy crack because 

the surface area created is large when compared to the nominal cross sectional area at 

this point.   

 

 

Figure 21- Sample T1 Top Left Failure 
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The crosshead is arrested after 11.4 milliseconds.  At this time the max 

deflection of the top mid point of the sample occurs and it is 23.8 millimeters.  After 

20.5 milliseconds the tup loses contact with the sample.  After the event four members 

were severly damaged.  Two members failed in tension and two buckled completely. 

Experiment 3 was conducted with sample P2.  The kinetic energy of the 

crosshead at impact is 81 Joules.  The max load occurred after 0.8 milliseconds. After 

9.6 milliseconds an internal member shears after severe buckling.  The crosshead is 

arrested after 15.6 milliseconds.  The max deflection of the top middle is 25.7 

millimeters.  The tup loses contact with the sample after 24.5 milliseconds. 

The reduction in kinetic energy used for Experiment 4 allowed for Sample T2 

to escape without any failures in tension.  However, at the locations where Sample T1 

failed in tension slight necking can be observed.  A top view of this inelastic 

deformation can be seen in Figure 22. 

 

Figure 22 - Sample T2 Member Necking 
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Figure 23- Experiment 2 Sample T1 
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Figure 24- Experiment 3 P2 
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Figure 25- Experiment 4 Sample T2 
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Sample P3 withstood the lowest kinetic energy impact without any shear or 

tension failure.  The structure may be able to hold considerable load even after the 

impact. 

 

 

Figure 26- Experiment 5 Sample P3 

 

Sample T4 showed the highest peak load of all the typical samples.  This may 

be due to the fact that the sample deformed symmetrically for the first half of a 

millisecond.  As shown in Figure 27, the top two members to the left and right of the 

tup buckle slightly in a mirror image.  Then the right member begins to buckle 
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severely.  This weakens the right side of the structure.  As a result the top right 

member fails in tension as seen in Sample T1 and T2. 

 

Figure 27- Experiment 6 Sample T3 
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 3. FINITE ELEMENT ANALYSIS 

The experimental results showed little out of plane deflections.  Some minor 

necking of the material was evident when the specimens failed in tension but this 

effect is negligible.  Hence, finite element simulations of the experiments assume two 

dimensional plane stress conditions. These analyses were performed using Abaqus 6-

13.  To reduce computation time, vertical symmetry conditions down the center of the 

part were imposed.  Nodes on this plane are constrained from movement in the X 

direction.  The assembly is composed of a rigid striker, the tup, the specific topology 

being evaluated, a fixture base and two shoulder bolts.  Only two of these parts are 

meshed, the topology and the tup, the rest are analytical rigid parts.  The fixture base 

and bolts are rigid and immovable.  They interact with the topology by means of 

contact condition along their adjoining surfaces.  The normal behavior is a “hard” 

contact.  The tangential behavior uses a penalty friction formulation with a coefficient 

of friction of 0.61.  The rigid striker is constrained to move only in the Y direction.   

The tup is the only part of the crosshead assembly that is meshed.  It is constrained to 

move with the adjoining face of the rigid striker and an X symmetry condition is 

imposed.  The contact conditions between the tup and the topology are the same as 

between the topology and the fixture.  The rigid striker is used to model the rest of the 

crosshead.  It has a reference point where the mass of the crosshead is applied to this 

singular point.  This point mass is the total mass of the crosshead minus the mass of 

the meshed tup.  In the experiments, crosshead assembly was equipped with a load 

cell.  This load cell provided the acceleration of the crosshead.  The acceleration is 

then multiplied by the mass of the crosshead to give the loads as shown in Figure 16.  
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To get similar data from the finite element analysis one could sum all the reaction 

forces between the tup and topology for every time increment.  This is impractical 

since there are thousands of time increments.  To get around this problem, the 

acceleration of the rigid striker is compared to the load cell data.   The contact forces 

between the tup and the topology travel up the tup as a pressure wave.  When the wave 

reaches the rigid striker they are summed by the program and act as one force on the 

rigid striker.  Unlike the tup, the rigid striker has one node.  The displacement, 

acceleration and velocity of this node are recorded at every time increment.  The 

forces acting on the rigid striker can be obtained by multiplying the numerical 

acceleration results of the striker by the mass of the striker.  These results are 

compared with the experimental load cell measurements.   
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Figure 28- FEA Assembly 

Buckling, static stress, dynamic impact and post impact static stress analyses 

are conducted on the eighteen topologies shown in Figure 29.  Each PMR profile 

(Figures 28 a-i) has a comparable traditional profile (Figures 28 j-r) with the same 

mass.  
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a)  j)  

b)  k)  

c)  l)  

d)  m)  

e)  n)  

f)  o)  

g)  p)  

h)  q)  

i)  r)  

Figure 29 - FEA Topologies 
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The mass of each profile is shown in Table 6. 

Table 6 - Profile Mass and Volume Fraction 

PMR 

Profile 

PMR 

Actual VF 

PMR 

Mass [g] 

TRI 

Profile 

TRI Actual 

VF 

TRI Mass 

[g] 

PMR1 22.6% 30.00 TRI1 22.6% 30.00 

PMR2 26.5% 35.17 TRI2 26.5% 35.17 

PMR3 31.9% 42.28 TRI3 31.9% 42.28 

PMR4 37.1% 49.27 TRI4 37.1% 49.27 

PMR5 42.6% 56.54 TRI5 42.6% 56.54 

PMR6 47.1% 62.51 TRI6 47.1% 62.51 

PMR7 52.5% 69.65 TRI7 52.5% 69.65 

PMR8 57.6% 76.48 TRI8 57.6% 76.48 

PMR9 63.3% 83.99 TRI9 63.3% 83.99 

 

3.1 MATERIAL MODEL 

Aluminum 6061-T651 is a common material in manufacturing and the 

mechanical properties have been extensively studied.  Material testing was not 

required.  The data is collected from literature (See Table 7) (ASM Aerospace 

Specification Metals Inc. n.d.). 

 

Table 7- Elastic Material Properties 

 Young’s 

Modulus 

[MPa] 

Poisson’s 

Ratio 

Density 

[tonne/mm
3
] 

KIc         

[MPa-m
1/2

] 

AL 6061-T651 69000 .33 2.69E-9 29 

Steel AISI 

4340 

205000 .29 7.85E-9  
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The Johnson-Cook constitutive model is used to simulate the plasticity of the 

sample material.  The flow stress is represented by Eq. 5 (Johnson G. 1985). 

 
𝜎 =  [𝐴 + 𝐵𝜀𝑛] [1 + 𝐶𝑙𝑛

𝜀�̇�𝑙

𝜀0̇
] [1 − (

𝑇 − 𝑇𝑎

𝑇𝑚 − 𝑇𝑎
)

𝑚

] 
(5) 

The JC constitutive law is the product of the three terms shown in square 

brackets.  The first term models the stress strain curve.  Parameter A is the elastic limit 

of the material.  Parameters B and n describe the plastic behavior of the material and 

its hardening.  The second term models the effect of strain rate on the material.  The 

parameter, C, describes the influence of strain rate.  𝜀�̇�𝑙 is the plastic strain rate and  𝜀0̇ 

is the reference strain rate.  The third term describes the effect of temperature on the 

stress strain curve.  T is the material temperature. Ta is the ambient temperature at 

which the tests have been done and Tm is the melting temperature of the material.  The 

parameter m is a material characteristic parameter.  Our experiments were conducted 

at ambient temperature and the finite element model will not include temperature 

effects.  Therefore, temperature effects will be neglected in this study.  The JC model 

is easily implemented into commercial finite element codes and is the standard 

plasticity model in Abaqus 6.13.  The parameters used for the Johnson-Cook plasticity 

model is shown in Table 8 (Lesuer D. 2001).  The maximum strain rate observed 

during finite element analysis is on the order of 300 s-1.  The stress-strain curve for 

the Johnson-Cook plasticity model for strain rates 1 and 300 s-1 is plotted in Figure 

30. 

Table 8 - AL 6061-T651 Johnson-Cook Plasticity Constants 

A [MPa] B [MPa] n C m 𝜀0̇ [s-1] 

324 114 .42 .002 1.34 1 
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Figure 30 - JC Plasticity Model for AL6061-T651 

 

In combination with the Johnson-Cook plasticity model a general expression 

for the strain at the initiation of damage is available as described by Eq. 6 (Johnson G. 

1985). 

 
𝜀𝑓 = [𝐷1 + 𝐷2𝑒𝑥𝑝 (𝐷3

𝜎ℎ

𝜎𝑉𝑀
)] [1 + 𝐷4𝑙𝑛 (

𝜀�̇�𝑙

𝜀0̇
)] [1 + 𝐷5

𝑇 − 𝑇𝑎

𝑇𝑚 − 𝑇𝑎
] 

(6) 

Like the plasticity model, the expression for the strain at damage initiation is 

the product of three terms that describe the effect of stress triaxiality, strain rate and 

temperature effects, respectively.  Stress triaxiality is defined as 𝜎ℎ, the average of the 

three normal stresses or pressure, divided by 𝜎𝑉𝑀, the von Mises equivalent stress.  

The von Mises stress is defined in Eq. 7 (Budynas 2008).  Where σ1, σ2, and σ3 are the 

three principal stresses.  The term defining strain rate dependence is very similar to the 

term in the plasticity model.  Again, 𝜀�̇�𝑙  is the plastic strain rate and  𝜀0̇ is the 
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reference strain rate.  The parameters used for the Johnson-Cook fracture model are 

listed in Table 9 (Lesuer D. 2001). 

 

𝜎𝑉𝑀 = √
(𝜎1 − 𝜎2)2 + (𝜎2 − 𝜎3)2 + (𝜎1 − 𝜎3)2

2
 

(7) 

Tm and Ta are the melting temperature of the material and ambient temperature 

of the testing. 

Table 9 - AL6061-T651 Johnson-Cook Fracture Parameters 

D1 D2 D3 D4 D5 Tm [°K] To [°K] 𝜀0̇ [s
-1

] 

-0.77 1.45 0.47 0 1.6 925 293.2 1 

 

 

Figure 31 - Johnson-Cook Fracture Locus for Aluminum 6061-T651 
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Once damage initiation has occurred, the material begins to lose the ability to 

carry load until it reaches strain at failure, at which point  the element is removed from 

the mesh. 

 

 

Figure 32- Stress-strain curve with progressive damage degradation (Simulia 2013) 

 

The damage evolution law is specified in terms of fracture energy dissipation, 

Gf.  The value for fracture dissipation can be derived from fracture toughness and 

Young’s modulus using Eq. (8) (Shukla 2005).  

 𝐺 = 𝐾𝐼𝑐
2/𝐸 (8)  

Evaluating equation 8 for Aluminum 6061-T651 using the properties listed in 

Table 7 gives fracture dissipation energy of 12.2 Joules per millimeter. 

3.2 MESH 

A mesh sensitivity study was conducted to determine the best element size for 

the dynamic and static analyses.  In general, the finer the mesh becomes the closer the 
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results approach the exact solution.  Reducing the size of the elements increased 

computation time for each iteration and increases the number of iterations that must be 

performed.  In dynamic analyses the increment time is governed by the smallest stable 

time increment.  This is computed automatically by Abaqus.  The explicit dynamics 

procedure in Abaqus, solves every problem as a wave propagation problem.  The out 

of balance forces are propagated as stress waves between neighboring elements.  The 

dilatational wave speed, Cd, for a linear elastic material is defined by equation 9 

(Shukla 2005).  Where E is the elastic modulus of the material and ρ is the density of 

the material. 

 

𝐶𝑑 = √
𝐸

𝜌
 

(9) 

 

The stable time increment of an element is expressed in equation 10.  Where ∆t 

is the stable time increment of an element, Le is the element length and Cd is the wave 

speed of the material.  Abaqus determines the time increment for the analysis by 

finding the smallest element length in the whole model and using it to find the stable 

time increment for the analysis. 

 
∆𝑡 =

𝐿𝑒

𝐶𝑑
 

(10) 

The aluminum used in our study has a waves speed of 5,064 meters per 

second.  The average elements size is 0.3 millimeters.  The time it would take for the 

dilatational wave to travel across the average element is 5.9E-8 seconds.  This is the 

stable increment time for the average element.  The longest analysis time from 

beginning to end is 0.03 seconds. Using the above increment time the longest analysis 
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would require five hundred thousand increments.  Abaqus calculate the smallest stable 

increment time for each mesh generated.  For the analyses performed in this study the 

smallest stable increment times were between 5E-9  and  2E-8 seconds. 

Two types of elements were used all the analyses.  CPS4R is a 4 node bilinear 

plane stress quadrilateral with hourglass control.  SPS3 is a 3 node linear plane stress 

triangle.  Each used second-order accuracy and element deletion.  A single mesh is 

used for both the static and the dynamic analyses.  The static mesh sensitivity study 

(see Figure 33) converges quickly to a solution.  The mesh sensitivity study consisted 

of five static analyses on the PMR1 profile subjected to a 10 kN load.  Each analysis 

used a different mesh starting with Mesh 1, the coarsest and ending with Mesh 5, the 

finest mesh.  Since Mesh 5 is the finest mesh, it is assumed to be the most accurate.  

The midpoint deflection of for each analysis is recorded (See Table 10).  The percent 

errors for meshes 1 through 5 are based on Mesh 5’s deflection.   The dynamic study 

was more difficult to evaluate.  The first 3 milliseconds of experiment 1 is performed 

with four different average mesh sizes, 0.4mm, 0.3mm, 0.25 mm and 0.15mm  (See 

Figure 34).  The data from the experiment was much smoother than the data from the 

finite element analysis.   

Table 10 - Static Mesh Sensitivity 

 

Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5 

Global Element Size 

(G) [mm] 
0.5 0.4 0.3 0.2 0.1 

Number of Elements 8,162 12,721 22,888 52,377 218,022 

Deflection [mm] 0.54570 0.54600 0.54600 0.54700 0.54700 

Percent Error from 

Mesh 5 
0.238% 0.183% 0.183% 0.000% 0.000% 
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Figure 33- Static Mesh Size vs Percent Error from Mesh 5 

 

 

 

Figure 34 - Dynamic Mesh Sensitivity 
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The finer mesh sizes (0.25mm and 0.15mm) showed unrealistic data after 0.5 

milliseconds.  The best choice of mesh size is clearly a seed size of 0.3 millimeter.  

This seed size was used for the internal structure of the topology and creates a very 

fine mesh Figure 35.  A closer look at the mesh shows that it is dominated by four 

sided elements with some three sided elements Figure 36.  The clamping area used a 

coarser seed size of 1 millimeter to save computational time during dynamic analysis. 

 

Figure 35 - Mesh PMR7 

 

Figure 36 - Mesh Detail PMR7 
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3.3 STATIC ANALYSIS 

Each topology was partitioned into five areas.  The design area of the topology 

is one section.  A load area 12.7 mm in length is created at the top right corner of the 

design area.  Outside the design area the clamping area is partitioned into three 

sections.  The largest with be a coarse mesh section and the two smaller section will be 

used to transition from the fine mesh of the design area to the coarse mesh of the 

clamping area.  For the static analyses the entire clamping area will be fixed and no 

nodes in this area will be allowed to move.  A symmetry condition is again applied to 

the right side of the domain.  A general traction load is applied to loading area on the 

top right of design domain as shown in Figure 37.  The total force of this traction is 7 

kN. 

 

Figure 37- Static Boundary & Load Conditions 

The strain energy density of PMR3 and TRI3 is shown in Figure 38 and Figure 

39 respectively.  The maximum strain energy density for PMR3 is 0.9 and for TRI3 it 

is 0.97.  It is not surprising that it is slightly higher.  The most interesting difference is 

the pattern of the strain energy densities.  PMR3 has the load quite evenly throughout 

the structure with higher levels at member intersections.  In contrast, TRI3 has two full 
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members with an almost zero strain energy density throughout.  The four corners of 

the domain in both structures show elevated stress levels but this cannot be avoided 

since no more material can be added to these areas. 

 

Figure 38- PMR3 Static 7kN Load Stain Energy Density 

 

 

Figure 39 – TRI3 Static 7kN Load Strain Energy Density 

This pattern repeats it’s self for the rest of the pairs of topologies.  The PMR 

consistently distributes the strain energy better than the typical equilateral triangle 

structure.  The PMR profiles performed better under static loading.  The deflection, 
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U2, of the top mid-point was consistently better than the typical profiles (See Figure 

40).  The top mid-point is located in the top right corner of the domain along the axis 

of symmetry. Profiles TRI1 and TRI2 could not hold the 7 kN load and failure to 

converge to a solution.  The load was reduced to 5 kN for these two profiles and their 

deflections are still more than their paired PMR profiles under 7 kN.  The structural 

stiffness of the profiles was obtained by dividing the applied load by the deflection of 

the top midpoint of the structure as shown in Figure 41.  It is clear that the PMR series 

is stiffer than the traditional series. 

 

Figure 40 - Static Deflection of Profiles 
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Figure 41 - Static Structural Stiffness 

3.4 BUCKLING ANALYSIS 

The first six Eigenvalues for all eighteen profiles are obtained by a linear 

perturbation step.  The tup part was removed from this analysis.  The rigid striker 

provided a load of 1N to determine the eigenvalues of the profiles (See Table 11 and 

Table 12) 

Table 11 - Eigenvalues for Typical Profiles 

Profile 

Volume 

Fraction Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

TRI1 0.23 -11204 15198 -17019 -18291 18989 21502 

TRI2 0.26 -18536 25287 -28197 -30597 31872 35720 

TRI3 0.32 -35924 49675 -54853 -60564 63353 65586 

TRI4 0.37 -62336 87216 -95839 106658 -107614 113312 

TRI5 0.43 -102890 145239 -159614 174638 -182283 191630 

TRI6 0.47 -149033 211534 -233934 250873 -270084 277584 

TRI7 0.52 -224574 317764 -357807 368269 384243 405813 

TRI8 0.58 -322892 404205 447875 479886 504604 517932 

TRI9 0.63 399700 -469189 473986 513556 523120 625103 
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Table 12 - Eigenvalues PMR Profiles 

Profile 

Volume 

Fraction Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 

PMR1 0.23 -14379 17991 35901 -50951 -52852 54184 

PMR2 0.26 -37408 64863 70652 -74701 80849 -82875 

PMR3 0.32 -71263 -77586 135204 -142975 -142975 -149650 

PMR4 0.37 104631 -106490 -116694 125880 -135046 -180828 

PMR5 0.43 108175 -155158 199828 -201062 -276736 -297546 

PMR6 0.47 106267 197829 206387 -288109 344948 -378609 

PMR7 0.52 249437 357600 365730 414088 -430997 482591 

PMR8 0.58 346135 388018 536211 571590 -580660 673075 

PMR9 0.63 395706 479127 485489 682750 736729 742059 

 

The first positive eigenvalue is of most concern.  This can predict at what load 

the structure starts to buckle.  These values are plotted in Figure 42.  Starting with the 

lowest volume fraction the PMR profile has a higher eigenvalue for the first four 

profile pairs.  A higher eigenvalue indicates that it will buckle at a higher load. 

 

Figure 42 - First Positive Eigenvalues 
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The mode 2 eigenvalue for PMR1 shows the thin internal member below the 

point of impact deflecting inward (See Figure 43).  The mode 2 eigenvalue for TRI1 

shows a member in the center of structure buckling (See Figure 44).   

 

Figure 43 - PMR1 Mode 2 

 

Figure 44 - TRI1 Mode 2 

3.5 DYNAMIC ANALYSIS 

The dynamic analysis is conducted using Abaqus Explicit.  The initial velocity 

of the tup and rigid striker is set as a predefined field.  The initial velocity of the tup 

and rigid striker combined with their masses provide the kinetic energy of the impact.  
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Six analyses emulate the conditions of the experiments performed in the laboratory.  

These are used to validate the FEA model.  The impact energy density is defined as 

the kinetic energy at impact divided by the profile’s design area mass.  Profiles with a 

higher mass are hit with a higher kinetic energy.  The mass of the tup and rigid striker 

remains constant while the initial velocity is increased to obtain the desired kinetic 

energy.  An impact energy level of 1.06 Joules per gram is chosen for the remaining 

profiles PMR1 through PMR9 and TRI1 through TRI9 as shown in Table 13.  This is 

the same energy level as Experiment 5 and 6.  The Abaqus input file is for the 

dynamic analysis is given in APPENDIX 2. 

 

Table 13 - Dynamic FEA Conditions 

Profile 

Volume 

Fraction 

Design 

Area 

Mass [g] 

Mass of 

Rigid 

Striker 

[kg] 

Mass 

of Tup 

[kg] 

Total 

Mass 

[kg] 

Initial 

Velocity 

[mm/s] 

Impact 

Kinetic 

Energy 

[J] 

Impact 

Energy 

Density 

[J/g] 

PMR1 

& TRI1 
0.23 29.9 8.5255 0.127 8.6525 3639 57.3 1.92 

PMR1 

& TRI1 
0.23 29.9 6.0155 0.127 6.1425 3639 40.7 1.36 

PMR1 

& TRI1 
0.23 29.9 6.0155 0.127 6.1425 3209 31.6 1.06 

PMR2 

& TRI2 
0.26 35.0 6.0155 0.127 6.1425 3475 37.1 1.06 

PMR3 

& TRI3 
0.32 42.1 6.0155 0.127 6.1425 3810 44.6 1.06 

PMR4 

& TRI4 
0.37 49.1 6.0155 0.127 6.1425 4113 51.9 1.06 

PMR5 

& TRI5 
0.43 56.3 6.0155 0.127 6.1425 4406 59.6 1.06 

PMR6 

& TRI6 
0.47 62.3 6.0155 0.127 6.1425 4633 65.9 1.06 

PMR7 

& TRI7 
0.52 69.4 6.0155 0.127 6.1425 4890 73.4 1.06 

PMR8 

& TRI8 
0.58 76.2 6.0155 0.127 6.1425 5124 80.6 1.06 

PMR9 

& TRI9 
0.63 83.7 6.0155 0.127 6.1425 5370 88.6 1.06 
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The maximum displacement of the top midpoint of the topology is recorded in 

each analysis.  Every topology was impacted with an impact energy density of 1.06 

Joules per gram.  The maximum displacements, peak loads and J Impulse are shown in 

Figure 45, Figure 46 and Figure 47 respectfully.  Apart from the traditional series 

gross deflections for TRI1, TRI2 and TRI3, the maximum deflections of the top 

midpoint ranged between 4.4 and 5.9 millimeters.  The PMR series has a lower 

maximum deflection eight times out of nine, but this does not mean the PMR series 

performed necessary better as will be discuss later.  The traditional series performed 

very consistently at higher volume fractions with a maximum displacement of 5.3 

millimeters for the six highest volume fractions.  The PMR series showed in a higher 

peak loads for most of the volume fractions.  This is unsurprising given the stiffness of 

the PMR topologies.  The total impulse applied to the striker can be determined by 

looking at the change in momentum of the striker itself.  Impulse, J, is defined as the 

integral of force, F(t), overtime and this is equal to the change in momentum of the 

particle (Eq. 11) (Serway 1997).  Since the striker mass remains constant and is 

denoted by m.  The impact velocity is V1 and the rebound velocity is V2.  The rebound 

velocity has an opposite sign to V1.  The mass and velocities of the striker are easily 

obtained from the analysis.  The rebound velocity for the experiments was not 

obtainable. 

 
𝐽 = ∫ 𝐹(𝑡) 𝑑𝑡

𝑡𝑓

𝑡𝑖

= ∆𝑝 = 𝑚𝑉1 − 𝑚𝑉2 
(11) 

The failure mode of each analysis is shown in Table 14 along with the number 

of elements used and the CPU time to perform the analysis.  It took over one hundred 

hours to perform all the analyses in this study. 
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The PMR series the traditional series showed similar J impulses except when 

the PMR topologies failed in tension.  In these cases the PMR topologies fell below 

the traditional series.  The impulses are similar even with the large difference in 

loading profiles because the traditional series has a lower load profile but for a longer 

time than the high load profile of the PMR series over a short time. 

 

Figure 45 - Maximum Top Mid-Point Displacement 
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Figure 46 - Dynamic Analyses Peak Loads 

 

Figure 47 - J Impulse 
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Table 14- Dynamic Results 

 
PMR Traditional 

Volume 
Fraction 

Analysis 
Number of 
Elements 

CPU Time 
[hours] 

Failure 
Mode 

Analysis 
Number of 
Elements 

CPU 

Time 

[hours] 

Failure 
Mode 

0.23 PMR1-E1 15748 6.5 Buckling TRI1-E2 15160 11.6 
Tensile & 

Buckling 

0.23 PMR1-E3 15748 6.5 Buckling TRI1-E4 15160 11.5 
Tensile & 

Buckling 

0.23 PMR1-E5 15748 6.4 Buckling TRI1-E6 15160 5.8 
Tensile & 

Buckling 

0.26 PMR2 17867 2.1 Buckling TRI2 17528 2.9 Buckling 

0.32 PMR3 20364 2.3 Tensile TRI3 19931 3.2 Buckling 

0.37 PMR4 23188 1.7 Tensile TRI4 23087 2.6 Plastic 

0.43 PMR5 26535 3.6 Tensile TRI5 26651 3.7 Plastic 

0.47 PMR6 29048 3.2 Tensile TRI6 28210 3.0 Plastic 

0.52 PMR7 32125 5.4 Plastic TRI7 31418 3.3 Plastic 

0.58 PMR8 34732 3.8 Plastic TRI8 34161 3.8 Plastic 

0.63 PMR9 38036 4.4 Plastic TRI9 37464 2.7 Plastic 

 

The complete series of plots of the von Mises stress for each profile shortly 

after impact and after the tup loses contact with the topology are given in APPENDIX 

1.  
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4. VALIDATION OF FEA MODEL 

The six experiments were reproduced using finite element analysis.  Two 

metrics are used to evaluate the finite element model, maximum deflection of the top 

mid-point of the structure and the peak load (See Table 15).  The analysis of the first 

experiment, PMR1-E1 recorded a maximum deflection much less than the experiment.  

The peak load was recorded from the FEA was around 83% recorded by the Instron.  

In contrast the analysis of experiment 2, TRI1-E2 failed to arrest the tup and rigid 

striker after 30 milliseconds.  As a result its max deflection far exceeds that recorded 

in experiments.   

Table 15 - FEA vs Experimental Data 

Analysis 

FEA Max 

Deflection Top 

Mid [mm] 

DIC Max 

Deflection Top 

Mid [mm] 

FEA Peak 

Load [kN] 

Instron 

Peak Load 

[kN] 

PMR1-E1 17.8 31.0 12.8 15.3 

TRI1-E2 41.1 23.8 9.1 8.4 

PMR1-E3 6.7 25.7 12.9 15.0 

TRI1-E4 17.4 15.2 9.0 9.3 

PMR1-E5 5.2 17.0 12.3 14.8 

TRI1-E6 11.2 9.7 8.8 9.8 

 

The peak loads showed good correlation between experimental results and 

finite elements analyses.  The FEA peak loads ranged from 83% and 108% of the 

experimental data.  The data collected from experiments was generally higher than 

FEA (See Figure 48).  The traditional topologies correlated better than the PMR 

topologies.   
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Figure 48 - Peak Load Comparison FEA vs Experiment 

Figure 49 shows the maximum midpoint deflection of the FEA analyses versus 

the experimental values.  The analyses of the PMR showed that they were much stiffer 

in FEA that in the experiments.  The deflection in the FEA was much less than the 

experimental values.  While conversely the typical structures showed more deflection 

in FEA than in experiments.  The lower energy experiments, Experiments 5 and 6 

showed the best correlation to the finite element model results as a pair.   
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Figure 49 - Max Deflection Comparison FEA vs Experiment 

It is also interesting to compare the load over time and how the FEA differs 

from the experimental results.   The following two charts compare the load profile of 

experiment 5 and 6 with the load profile from their respective finite element analysis 

(See Figure 50 and Figure 51).  As stated the peak loads are lower for the FEA than in 

the experiments.  The general shape of the profiles does match up.  The PMR shows a 

sudden peak and a quick reduction followed by the gentle decay.  The traditional 

profiles shows a peak with a plateau followed by a sudden drop.  After which the FEA 

becomes erratic and difficult to compare to the experimental results. 
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Figure 50 – Load Profile - Experiment 5 vs FEA  

 

Figure 51 – Load Profile -  Experiment 6  vs FEA 
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Figure 52 through Figure 57 show the tup losing contact in each of the 

dynamic analysis performed with the exception of E2L-TRI1.  In this analysis the tup 

and rigid striker are not arrested by the end of the analysis.  Figure 52 shows the 

results of PMR1 after being exposed to the same loading as conducted in experiment 

1.  The buckling failure is similar to the Mode 2 failure predicted by the buckling 

analysis.  In this case however the member buckles outward to the left side instead of 

inward as with the experiment.  The direction of the buckling is difficult to predict and 

plays little role in the overall outcome.  The FEA predicts the same failure as seen in 

the experiments (See Figure 20) 

Figure 53 shows the dynamic FEA of the traditional profile exposed to the 

same loading as experiment 2.  The FEA differs from the experiment in that the 

analysis does not show the sample arresting the crosshead.  The simulation continues 

until the maximum time of 30 milliseconds without the crosshead coming to a stop.  

The FEA does predict the similar failures observed in the experiment (See Figure 23).  

The sample fails in tension in the same location and the internal member below the 

structure buckles internally as it did in the experiment.  One explanation for the 

difference may be that the material model undervalues the energy of fracture.  In that 

the energy required to make the tensile fracture is more than what the program has 

allocated.  This could be because the fracture in the FEA is very smooth as compared 

to the fracture observed in the experiments (See Figure 21).  Rough cracks are high 

energy because a rough crack has a high surface area.  In the FEA the crack surface 

area is lower and therefor the energy required  to create that fracture is less than 

observed in the experiments. 
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Figure 54 and Figure 55 show the results of the FEA of Experiments 3 and 4.  

The failures observed in the analysis again match what was observed in the 

experiments.  In these cases both were able to arrest the crosshead.  However the FEA 

of experiment 4 shown in Figure 55 predicts the tensile failure of the member in the 

upper left corner.  While the experimental specimen did show some plastic 

deformation in this area in the way of necking (See Figure 22), it did not in fact break 

as shown in the FEA.  This again indicates that the dynamic analysis undervalues the 

energy required to break the specimen in tension. 

 

Figure 52 - E1L-PMR1 Mises Stress 21.5 ms 
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Figure 53 - E2L-TRI1 Mises Stress 15ms 

 

Figure 54 - E3L-PMR1 Mises Stress 7.5ms 

 

Figure 55 - E4L-TRI1 Mises Stress 22.5ms 
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Figure 56 - E5L-PMR1 Mises Stress 6ms 

 

Figure 57 - E6L-TRI1 Mises Stress 14.5ms 

The finite element model does predict how the profiles tested fail.  While the 

higher kinetic energy impacts do not correlate well with the experimental results.  The 

lower energy impacts E5L-PMR1 and E6L-TRI1 provide the best correlation between 

FEA and experimental results.  The higher volume fraction topologies are tested at 

similar energy levels. 
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5. EVALUATION OF TOPOLOGIES 

Three main sources of failures are observed, plastic deformation, buckling, and 

tensile failure.  The first two PMR profiles failed due to buckling while PMR3 through 

PMR6 failed in tension in the upper left corner of the domain (See Figure 58, Figure 

59 & Figure 60).   

 

Figure 58 - PMR2 Dynamic Failure 2.1ms 

 

Figure 59 - PMR3 Dynamic Failure 1.2ms 

 

Figure 60 - PMR3 Tensile Failure 1.9ms 
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TRI1 suffered from both buckling and tensile failure.  TRI2 and TRI3 also 

buckled but did not fail in tension anywhere. 

 

Figure 61 - TRI3 Buckling Failure 5.3ms 

PMR7 through PMR9 and TRI4 through TRI9 suffered only plastic 

deformation at the around the left side of the design domain.  After dynamic analysis 

the stiffness of the profiles is again obtained.  The post impact static analysis uses the 

original mesh from the dynamic analysis.  All variable from the last increment of the 

dynamic analysis are imported into the static analysis as a predefined field.  This 

includes stress, displacement, velocity, acceleration etc.  Also the status variable is 

also imported.  The status variable keeps track of element deletion.  Any elements 

deleted in the dynamic analysis are also deleted from the dynamic analysis.  The post 

and pre impact structural stiffness of all the profiles are shown in Figure 63. 
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Figure 62 – Structural Stiffness Pre and Post Dynamic Impact 

 

The PMR structures that suffered tensile failure at the attachment point showed 

severe reduction in stiffness.   The stiffness of these structures fell well below their 

typical counterparts.  The three smallest typical structures buckled and showed a large 

drop in stiffness.  The larger typical profiles underwent plastic deformation and saw 

little reduction in structural stiffness.  Of all the failure mechanism seen, tensile failure 

causes the greatest reduction in stiffness for these cases. 
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Figure 63 – Static Deflection of Profiles Pre and Post Impact  
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6. CONCLUSION 

It is clear that topologies that are optimized for stiffness perform extremely 

well under static loading conditions as compared to traditional lightweight structures.   

Under dynamic impact conditions, the stiffness of the structure determines the load.  

The stiffer the structure the higher the load response will be.  This was observed in 

both the experimental and FEA results.  The PMR series of topologies showed high 

load response that slowed the impact load more quickly than the traditional series.  

The lighter topologies with lower volume fraction sustained large deformation and 

damage.   

At higher volume fractions (0.52, 0.58 and 0.68), where the structures are 

larger and more robust, the impact is less severe and the topologies, PMR and 

traditional, are able to withstand the impact with only slight plastic deformation.  The 

kinetic energy is increased linearly as the volume fraction is increased, but the results 

are not uniform.  The low volume fraction topologies saw high damage and as the 

volume fraction was increased the damage observed decreased.  The traditional series 

saw marked improvement with only slight plastic deformation starting at a volume 

fraction of 0.37.  The PMR series began showing only plastic deformation at a volume 

fraction of 0.52.  However once both topologies showed only plastic deformation the 

PMR topologies clearly performed better with a much high stiffness before and after 

impact and deflected less during the impact.   

The PMR series performs better than the traditional series until the kinetic 

energy increases enough to compromise the structure in the form of tensile failures, as 

observed in the lower volume fraction topologies. 
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Once the impacts are large enough to cause large deformation failures like 

buckling or tensile failures, the traditional structures with an equilateral triangle 

topology tend to perform better because they are able to arrest the impact over a longer 

time period of time because of their reduced load response.  When the traditional 

structures did fail due to tension or buckling, another load path was available to 

transmit the load, allowing the structure to absorb additional energy.  The enhanced 

static strength of the optimized topologies was a hindrance at critical levels of 

dynamic loading.  The optimized structures are so stiff they do not allow for the mass 

to be slowed gradually over time.  This caused high member loads leading to tensile 

failures.  The tensile failure did absorb energy and allowed the impact to be arrested 

quickly.  But these failures severely reduced the load bearing capacity of the overall 

structure because the optimized structure depends on all members to remain intact in 

order to effectively carry the load.  The statically optimized structures performed well 

for low kinetic energy levels but tended to fail critically before the traditional series 

and once they had failed they did not carry loads as effectively as the traditional series.  

Structures optimized for stiffness can be used when the dynamic impacts are expected 

to be low and when minimal deflection in static and dynamic situations is desirable.  

In situations where high energy impacts must be accounted for, some stiffness must be 

sacrificed in order to reduce damage.  The addition of members might be required to 

provide additional load paths in the event of any failed members. 

In order to optimize the structural resistance to high energy impact, the results 

indicate the need for alternative optimization procedures for use in the design of these 

structures.  Future work will focus on creating a new optimization algorithm.  This 
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algorithm will use an iterative prescribed material distribution scheme but instead of 

performing a static analysis for each iteration, a dynamic analysis will be performed 

instead.  The results of the dynamic analysis will be used by the PMR to redistribute 

material from low strain energy locations to high strain energy locations.  This new 

method may be able to optimized structures for dynamic loading conditions. 
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APPENDIX 1: Dynamic Results Figures 

 

Figure 64 - PMR1 Experiment 1 - 0.5ms 

 

 

Figure 65 - PMR1 Experiment 1 - 0.9ms 

 

Figure 66 - PMR1 Experiment 1 - 2.4ms 
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Figure 67 - PMR1 Experiment 1 - 14.5ms 

 

Figure 68 - TRI1 Experiment 2 - 0.5ms 

 

Figure 69 - TRI1 Experiment 2 - 3.6ms 
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Figure 70 - TRI1 Experiment 2 - 14.5ms 

 

Figure 71 – PMR1 Experiment 3 - 0.4ms 

 

Figure 72 - PMR1 Experiment 3 - 7ms 
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Figure 73- TRI1 Experiment 4 - 0.5ms 

 

Figure 74 - TRI1 Experiment 4 - 23ms 

 

Figure 75 - PMR1 Experiment 5 - 0.5ms 
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Figure 76 - PMR1 Experiment 5 - 6.5ms 

 

Figure 77 - TRI1 Experiment 6 - 0.5ms 

 

Figure 78 - TRI1 Experiment 6 - 15ms 
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Figure 79 - PMR2 - 0.5ms 

 

Figure 80 - PMR2 - 4.5ms 

 

Figure 81 - TRI2 - 0.5ms 
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Figure 82  - TRI2 - 9ms 

 

Figure 83 - PMR3 - 1.2ms 

 

Figure 84 - PMR3 - 5.1ms 
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Figure 85 - TRI3 - 0.5ms 

 

Figure 86 - TRI3 - 6.5ms 

 

Figure 87 - PMR4 - 0.5ms 
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Figure 88 - PMR4 - 5.1ms 

 

Figure 89 - TRI4 - 0.5ms 

 

Figure 90 - TRI4 - 4.5ms 
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Figure 91 - PMR5 - 0.8ms 

 

Figure 92  - PMR5 - 5.1ms 

 

Figure 93 - TRI5 - 0.5ms 
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Figure 94 - TRI5 - 4ms 

 

Figure 95- PMR6 - 0.8ms 

 

Figure 96- PMR6 - 5ms 
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Figure 97 - TRI6 - 2ms 

 

Figure 98 - TRI6 - 4ms 

 

Figure 99 - PMR7 - 1.2ms 
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Figure 100 - PMR7 - 3.2ms 

 

Figure 101 - TRI7 - 2ms 

 

Figure 102 - TRI7 – 3.5ms 
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Figure 103 - PMR8 – 0.6ms 

 

Figure 104- PMR8 – 3ms 

 

Figure 105 - TRI8 – 1.8ms 
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Figure 106- TRI8 – 3.3ms 

 

Figure 107- PMR9 – 0.6ms 

 

Figure 108 - PMR9 – 3ms 
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Figure 109 - TRI9 – 1.7ms 

 

Figure 110 - TRI9 – 3.1ms 
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APPENDIX 2: Abaqus Input Script 

*Heading 

** Job name: TRI2-V3475 Model name: Model-1 

** Generated by: Abaqus/CAE 6.13-1 

*Preprint, echo=NO, model=NO, history=NO, contact=NO 

** PARTS 

*Part, name=fixture 

*End Part 

**   

*Part, name=sample 

*Element, type=CPS4R 

*Nset, nset=sampleXsym 

   45,   46,   50,   51, 1835, 1836, 1837, 1838, 1839, 1840, 

1841, 1842, 2013, 2014, 2015, 2016 

 2017, 2018, 2019, 2020, 2021, 2022, 2023, 2024, 2025, 2026, 

2027, 2028 

*Elset, elset=sampleXsym 

 3592, 3595, 3836, 3838, 3844, 3848, 3852, 3856, 3860, 3864, 

3865, 6858, 6859, 6860, 6861, 6862 

 6863, 6905, 6907, 6908, 6909, 7189, 8796, 8799, 8800, 8804 

*Nset, nset=wholesample, generate 

     1,  16132,      1 

*Elset, elset=wholesample, generate 

     1,  14832,      1 

*Nset, nset=topmid 

 51, 

*Nset, nset=botmid 

 45, 

** Section: AL 

*Solid Section, elset=wholesample, controls=EC-1, material="AL 

6061-T6mm Rule G375" 

12.7, 

*End Part  

*Part, name=striker 

*End Part  

*Part, name=strikerhead 

*Element, type=CPS3 

    

** Section: steel 

*Solid Section, elset=Set-1, controls=EC-2, material="AISI4340 

E" 

12.7, 

*End Part 

**   

*Part, name=topbolt 

*Element, type=R2D2 

*End Part 

** ASSEMBLY 

*Assembly, name=Assembly   

*Instance, name=Tri-1, part=sample 
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  -70.374997,      -22.775,           0. 

*End Instance 

*Instance, name=striker-1, part=striker 

       122.6,      144.075,           0. 

*Node 

      1,   -2.4749999,         6.25,           0. 

*Nset, nset=striker-1-RefPt_, internal 

1,  

*Nset, nset=_PickedSet11, internal 

 1, 

*Surface, type=SEGMENTS, name=bottom 

START,       -8.825,         6.25 

 LINE,        3.875,         6.25 

 LINE,        3.875,        -1.75 

 LINE,       -8.825,        -1.75 

 LINE,       -8.825,         6.25 

*Rigid Body, ref node=striker-1-RefPt_, analytical 

surface=bottom 

*Element, type=MASS, elset=_PickedSet11_Inertia-1_MASS_ 

1, 1 

*Mass, elset=_PickedSet11_Inertia-1_MASS_ 

0.0060155,  

*Element, type=ROTARYI, elset=_PickedSet11_Inertia-1_ROTI_ 

2, 1 

*Rotary Inertia, elset=_PickedSet11_Inertia-1_ROTI_ 

1., 1., 1., 0., 0., 0. 

*End Instance 

**   

*Instance, name=strikerhead-1, part=strikerhead 

     113.775,      129.625,           0. 

*End Instance 

**   

*Instance, name=fixture-1, part=fixture 

      24.875,        2.625,           0. 

*Node 

      1,      -24.875,       -2.625,           0. 

*Nset, nset=fixture-1-RefPt_, internal 

1,  

*Surface, type=SEGMENTS, name=leftbottom 

START,       -19.05,           0. 

 LINE,           0.,           0. 

 LINE,           0.,       -2.625 

 LINE,      -24.875,       -2.625 

 LINE,      -24.875,         38.1 

 LINE,       -19.05,         38.1 

 LINE,       -19.05,           0. 

*Rigid Body, ref node=fixture-1-RefPt_, analytical 

surface=leftbottom 

*End Instance 

**   

*Instance, name=topbolt-1, part=topbolt 

       15.35,         31.2,           0. 
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*End Instance 

**   

*Instance, name=bottombolt, part=topbolt 

       15.35,        12.15,           0. 

*End Instance 

*End Assembly 

**  

** ELEMENT CONTROLS 

**  

*Section Controls, name=EC-1, DISTORTION CONTROL=YES, ELEMENT 

DELETION=YES, hourglass=ENHANCED, second order accuracy=YES 

1., 1., 1. 

*Section Controls, name=EC-2, second order accuracy=YES 

1., 1., 1. 

**  

** MATERIALS 

**  

** Steel AISI 4340 Elastic mm 

*Material, name="AISI4340 E" 

*Density 

 7.75e-09, 

*Elastic 

205000., 0.3 

** Aluminum 6061-T6 units mm Ref Rule 

*Material, name="AL 6061-T6mm Rule G375" 

*Damage Initiation, criterion=JOHNSON COOK 

 -0.77, 1.45, 0.47,   0.,  1.6, 925., 294.,   1. 

*Damage Evolution, type=ENERGY 

60., 

*Density 

 2.69e-09, 

*Elastic 

69000., 0.33 

*Plastic, hardening=JOHNSON COOK 

324.,  114.,  0.42,    0.,  925., 293.2 

*Rate Dependent, type=JOHNSON COOK 

 0.002,1. 

**  

** INTERACTION PROPERTIES 

**  

*Surface Interaction, name=Contact 

*Friction 

 0.61, 

*Surface Behavior, pressure-overclosure=HARD 

*Time Points, name=Coarse, GENERATE 

0., 3e-05, 1e-06 

3e-05, 0.0001, 2e-06 

0.0001, 0.025, 0.0001 

*Time Points, name=Fine, GENERATE 

0., 0.001, 1e-05 

0.001, 0.005, 1e-05 

0.005, 0.025, 0.0005 
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**  

** PREDEFINED FIELDS 

**  

** Name: Predefined Field-1   Type: Velocity 

*Initial Conditions, type=VELOCITY 

Set-10, 1, 0. 

Set-10, 2, -3475. 

** ------------------------------------------------------------

---- 

**  

** STEP: Step-1 

**  

*Step, name=Step-1, nlgeom=YES 

*Dynamic, Explicit 

, 0.012 

*Bulk Viscosity 

0.06, 1.2 

**  

** BOUNDARY CONDITIONS 

**  

** Name: SampleXsym Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Tri-1.sampleXsym, XSYMM 

** Name: encastre Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Set-17, ENCASTRE 

** Name: xsym Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Set-19, XSYMM 

** Name: zsym Type: Symmetry/Antisymmetry/Encastre 

*Boundary 

Set-18, ZSYMM 

**  

** LOADS 

**  

** Name: Load-1   Type: Gravity 

*Dload 

, GRAV, 9810., 0., -1. 

**  

** INTERACTIONS 

**  

** Interaction: Leftbottom 

*Contact Pair, interaction=Contact, mechanical 

constraint=KINEMATIC, cpset=Leftbottom 

fixture-1.leftbottom, Tri-1.leftbottom 

** Interaction: bottomhole 

*Contact Pair, interaction=Contact, mechanical 

constraint=KINEMATIC, cpset=bottomhole 

bottombolt.boltsurf, Tri-1.bottomhole 

** Interaction: contact 

*Contact Pair, interaction=Contact, mechanical 

constraint=KINEMATIC, cpset=contact 
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strikerhead-1.strikerplatebot, Tri-1.sampetop 

** Interaction: tophole 

*Contact Pair, interaction=Contact, mechanical 

constraint=KINEMATIC, cpset=tophole 

topbolt-1.boltsurf, Tri-1.tophole 

**  

** OUTPUT REQUESTS 

**  

*Restart, write, number interval=1, time marks=NO 

**  

** FIELD OUTPUT: F-Output-1 

**  

*Output, field, time points=Coarse 

*Node Output, nset=Tri-1.wholesample 

U,  

*Element Output, elset=Tri-1.wholesample, directions=YES 

EDCDEN, EDT, ELEDEN, ELEN, ENER, ER, LE, MISES, PEEQ, S, 

STATUS, TRIAX 

**  

** FIELD OUTPUT: Loadcell 

**  

*Output, field, time points=Fine 

*Node Output, nset=Set-6 

A, U, V 

**  

** HISTORY OUTPUT: striker 

**  

*Output, history 

*Energy Output, elset=strikerwhole 

ALLAE, ALLCD, ALLCW, ALLDC, ALLDMD, ALLFD, ALLIE, ALLKE, ALLMW, 

ALLPD, ALLPW, ALLSE, ALLVD, ALLWK, ETOTAL 

**  

** HISTORY OUTPUT: H-Output-1 

**  

*Output, history, variable=PRESELECT 

**  

** HISTORY OUTPUT: sample 

**  

*Output, history 

*Node Output, nset=Tri-1.wholesample, variable=PRESELECT 

*Element Output, elset=Tri-1.wholesample, variable=PRESELECT 

*Integrated Output, elset=Tri-1.wholesample, variable=PRESELECT 

*Energy Output, elset=Tri-1.wholesample, variable=PRESELECT 

*Incrementation Output, variable=PRESELECT 

*End Step 
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APPENDIX 3: PMR Matlab Input File 

function PMR_threepointbend 
clc; clear all; close all 
%60 elements per inch 
t=0; %thickness of outline 
w=30; %striker half width 0.5 inches 
nelx=240; %base half width   
nely=90; %domain height 
vol_frac=.3; 

  
%clear common variables between cases to prevent contamination 
clear fixeddofs F node_type node_F node inode jnode design_node_flag 

x y dense_node  
global fixeddofs F node_type 
%ForceD=.01; %40 nodes on top 

  
iter=100; 
% 
F=sparse(2*(nely+1)*(nelx+1),1); 
%node numbers for top pressure load 
node_F = (1+(nely+1)*(nelx-w)):(nely+1):(1+(nely+1)*(nelx)); 

  
% fixeddofs=[2*nely,2*nely+1,2*(nelx+1)*(nely+1)-

1,2*(nelx+1)*(nely+1)]; 

  
%fixes left edge, then applies symetry in x to right edge 
fixeddofs=[[1:1:2*(nely+1)],[(2*(nely+1)*nelx)+1:2:(2*(nelx+1)*(nely+

1)-1)]]; 
F(2*node_F,1)=-1; 
% 
% define node numbers 
% 
node=0; 
for inode=1:nelx+1 
    for jnode=1:nely+1 
        node=node+1; 
        x(node)=inode-1; 
        y(node)=nely-(jnode-1); 
        node_type(node)=1; 
    end 
end 
design_node_flag=ones(node,1); 
plot(x,y,'b.') 
hold on 
x0=mean(x); 
y0=mean(y); 
numdense=0; 

  
if t>0 
    for i=1:node 
        if y(i)<=t||y(i)>=nely-t||x(i)<=t 

             
            numdense=numdense+1; 
            dense_node(numdense)=i; 
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            node_type(i)=3; 
        end 
    end 

     
    % node_type' 
    plot(x(dense_node(1:numdense)),y(dense_node(1:numdense)),'ko') 
    axis equal 
    figure 
end 
tic 
pmr_3_2013_predefined_regions(nelx,nely,vol_frac,iter) 
toc 
filename=['L' num2str(nelx) '_h' num2str(nely) '_w' num2str(w) '_VF' 

num2str(vol_frac) '.jpg']; 
saveas(gcf,filename) 
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APPENDIX 4: Drawings 
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