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ABSTRACT 

 Although, the reduced status of the Earth’s upper mantle is a possible 

controller of the deep, rock-hosted biosphere, knowledge of the redox state of the 

mantle is incomplete. Peridotites (mantle rocks) are composed of ultramafic (Fe, Mg-

rich) minerals such as olivine and pyroxene. During serpentinization, water and 

ultramafic minerals react, generating a package of secondary minerals dominated by 

serpentine. This releases hydrogen gas in amounts dependent on system geochemistry 

and largely controlled by the Fe(II) budget in the protolith, as well as other products. 

Microbial life can be fueled by the hydrogen produced by serpentinization in  

environments that are generally not regarded as hospitable to life—cool, dark, low 

energy, subseafloor settings. Peridotite-hosted vents in the seabed and springs in 

continental ophiolites reveal active microbial communities at work in these distinctive 

serpentinization-associated waters.  

 In this study, 16 variably serpentinized peridotite samples from the Coast 

Range Ophiolite (CRO) (11 core samples and one hand sample) and Zambales 

Ophiolite (ZO) (four hand samples) were selected for study based on mineralogy. The 

objective of this study was to understand better the redox status of Fe in these rocks 

and produce possible H2 generation values for the CRO and ZO. Each sample was 

analyzed using X-ray diffraction and thin sections (when available) to identify 

possible Fe bearing minerals (olivine, spinel, serpentine, pyroxene, magnetite, other 

Fe-oxides). X-ray fluorescence was used to obtain the bulk concentration of Fe in each 

sample (~28,000 to 51,000 ppm (~3.7 to 6.5 wt% FeO)). Mössbauer spectroscopy was 

used to determine the percentage of total Fe that is Fe
2+

 (~23 to 70%), Fe
3+

 (~14 to 



 

 

 

65%), and magnetite (~0 to 63%), which is a combination of Fe
2+

 and Fe
3+

.  The data 

sets were integrated into a hydrogen generation model. I assumed that each sample 

was representative of the peridotite units of the corresponding ophiolite. This 

permitted computation of a range of total hydrogen production possible by the 

peridotite considered, until serpentinization is complete (~900 to 4800 Tmol H2 or 

~2000 to 12,735 Tmol H2 if density is factored into the calculation). The CRO can 

produce less H2 per rock volume than the ZO because the CRO samples generally 

have a lower Fe concentration, but the CRO has a greater volume and can produce a 

larger total amount of H2. 

 Variability in bulk rock Fe concentration and Fe valence states in samples 

taken in close proximity indicate diverse serpentinization reaction paths even in a 

single ultramafic unit. Tectonics, emplacement history, age, climate, composition, and 

hydrology of the ophiolite all influence the redox status in the modern, ophiolite-

hosted ultramafics. 
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PREFACE 

 This thesis is written in manuscript format for the American Geophysical 

Union’s (AGU) peer-reviewed journal Geochemistry, Geophysics, Geosystems 

(G
3
).  
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MANUSCRIPT 

 

 This manuscript is prepared for submission to the American Geophysical 

Union’s (AGU) peer-reviewed journal Geochemistry, Geophysics, Geosystems (G
3
).  
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1. Introduction 

 As the search for the deep extent of life on Earth and other planets progresses, 

it fuels the need to better understand life on Earth and the extreme environments in 

which life is found. Water-rock chemical reactions often provide the energy source(s) 

these extremophile microbes need. As peridotite is serpentinized, Fe can be oxidized 

by water, releasing hydrogen gas, which can be used by microorganisms as an energy 

source.  

 The objective of this study was to determine the redox status of the Coast 

Range Ophiolite (CRO) and Zambales Ophiolite (ZO), based on iron speciation in 

selected mineral phases. Serpentinized peridotite samples were collected from the 

CRO and ZO, their general mineralogy was identified, Fe concentration data were 

obtained, and Mössbauer spectroscopy was utilized. Fe was used as the redox status 

indicator because of its general abundance in the rocks, its multiple valence states, and 

its participation in energy production during serpentinization. Possible energy yield in 

the form of hydrogen released during serpentinization was also calculated. 

 

1.1 Deep life can be fueled by serpentinization  

 Hydrogen is an energy source for various forms of life from man to microbes. 

It can be produced naturally through water-rock reactions by rusting or oxidizing the 

Fe within ultramafic (Mg, Fe-rich) rocks. Serpentinization at its most fundamental 

level is the hydration of Fe
2+

 minerals in ultramafic rocks in an overall reducing, 

anoxic environment. This process can be represented by a redox transformation of 

mineral-hosted Fe from Fe
2+

 to Fe
3+

: 
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(1) 2(Fe
2+

O)rock + H2O → (Fe
3+

2O3)rock +H2   

The hydrogen so generated can be utilized by microbes as hydrogen gas (H2), often 

with metabolic reactions coupled to cycling of methane (CH4) other hydrocarbons, 

and/or complex organic compounds that are also produced in this environment [Ophan 

and Hoehler, 2011; Charlou et al., 2010; McCollom and Seewald, 2013; Schrenk et 

al., 2013].  

 Chemosynthetic ecosystems that are fueled at least in part from hydrogen 

produced by serpentinization have been discovered in/around sites where there is 

active serpentinization occurring, including submarine seeps from fault-bounded 

peridotite blocks like the Lost City hydrothermal field on the Atlantis Massif near the 

Mid-Atlantic Ridge [Kelley et al., 2005]; within ophiolite groundwater and/or 

groundwater springs including the Cedars [Morrill et al., 2013] and CROMO wells 

[Cardace et al., 2013] in California, USA, various locations within the Oman ophiolite 

[Neal and Stranger, 1983; Paukert et al. 2012; Sano et al., 1993], the Tablelands 

ophiolite in Newfoundland [Szponar et al., 2013], the Leka Ophiolite complex in 

Norway [Okland et al., 2012], and Gruppo di Voltri in Italy [Cipolli et al., 2003] to 

name a few.  Serpentinization tied to plate convergence and aqueous alteration of 

mantle wedge material also fosters submarine mud volcanoes such as the Kumano 

Mud Volcano, Nankai Trough, Japan [Case et al., 2013] and the South Chamorro 

Seamount near the Marianas Trench, and mud diapirs. See appendix for a brief 

overview of microbiological diversity of serpentinization-related fluids. 

 Because the oxidation of available Fe and attendant H2 production is expected 

in serpentinization, the redox status of the upper mantle can be considered an indicator 
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of a deep rock-biosphere, at least until temperatures of 121°C, and perhaps 150°C, are 

reached [Kashefi and Lovley, 2003]. Serpentinites are thus one promising 

environment for studying endolithic extremophiles [Schrenk et al., 2013; McCollom 

and Seewald, 2013; Takai et al., 2006;] (microbes that live in rocks and off the energy 

released as the rocks weather). Subsurface lithoautotrophic microbial ecosystems 

(SLiMES) [Nealson et al., 2005; Takai et al., 2006] can be fueled by the hydrogen 

produced during serpentization in an environment that is generally not regarded as 

hospitable to life—cold, dark, possibly high pressure (compared to surface pressure), 

anaerobic, and extremely alkaline with high pH (8-12) formation fluids and potentially 

high levels of metals like Fe, Ni, As and Cr.  

 

1.2   Serpentinization as a geologic process  

 Mantle rocks of the subseafloor can be sampled where exposed by fault action 

or tectonics; diverse dredged peridotite samples from oceanographic expeditions and 

many seafloor drilling projects have also sampled peridotite. However, drilling 

through stratigraphically complete lithosphere to mantle peridotite is exceedingly 

difficult due to the depths (generally 5+ km) of rock that would need to be drilled, 

generally submarine, where there are additional complications and pressure and 

temperature constraints. Geoscientists often rely also on specimens delivered from 

great depth by magma streams as xenoliths [e.g., Pearson et al., 2014]. In this study, 

variably serpentinized (hydrated and altered) peridotite samples from two ophiolites—

Coast Range Ophiolite (CRO) in Northern California, USA, and the Zambales 

Ophiolite (ZO) in the Philippines (Figure 1)—are characterized and compared. The 

peridotite units in ophiolite bodies are mantle rocks that have been uplifted by 
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tectonics. In a naturally reducing environment, ultramafic minerals can react with 

water, a process that often starts on the ocean floor, and alter to serpentine 

assemblages that are stable at the lower temperatures and pressures of Earth’s surface. 

 Serpentinization is the process in which hydrous fluids react with ultramafic 

rocks to produce serpentine and other alteration minerals, and is a volume increasing 

(which can further fracture rocks and expose fresh surfaces), exothermic (adds heat 

energy back into the system to further catalyze the reaction), and, therefore, can be a 

self-sustaining (positive feedback) reaction. For equation 1 to be viable, the 

environment needs to be oxygen-depleted and reducing so that Fe is oxidized by 

oxygen from water while the hydrogen is released. Ultramafic minerals formed at high 

temperatures and pressures undergo chemical weathering (serpentinization) to re-

equilibrate with lower temperatures and pressures. Having a heat source (such as 

magma) nearby, can expedite the serpentinization process, but serpentinization itself is 

exothermic, thus heating and priming regionally associated rocks for further 

serpentinization. 

 Serpentinization is coupled to plate tectonics. Ophiolites that are or were on 

plate boundaries (Figure 2) can record subduction-related plate flexure or regions of 

tension that yield fractured areas with deep faults that allow sea water access to 

ultramafic rocks. For example, ophiolites may result from obduction near the trench of 

oceanic lithosphere formed at a mid-ocean ridge (MOR) [Dickinson et al., 1996]. 

Ophiolites may also form in supra-subduction zone(s) (SSZ) in environments similar 

to nascent spreading centers in backarc or fore-arc settings, which have distinct 

oceanic lithosphere geochemical signatures [McLaughlin et al., 1988; Coleman, 2000; 



  

6 

 

Dickinson et al., 1996; Shervais and Kimbrough, 1985]. All formation mechanisms 

allow for complete or partial ophiolite sequences to be exposed at Earth’s surface.  

 According to the 1972 GSA Penrose Conference, an ophiolite consists of a 

partial or complete sequence consisting of, from bottom to top, an ultramafic complex 

(variably serpentinized mantle peridotite), a gabbroic complex, mafic sheeted dike 

complex, and mafic volcanic complex dominated by pillow basalt overlain by various 

sedimentary rocks (see Figure 3) [Dilek, 2003]. This definition holds true, whatever 

the tectono-magmatic origin may be. Seawater is also mineral-bound within the 

ophiolite when it is uplifted, and continues to serpentinize the ultramafic units, slowly 

exiting through vents/springs, and variably mixing with meteoric surface and 

groundwater. 

 

1.3 Means of inferring serpentinite redox status and relevance to H2 yield 

 The redox status of Fe in variably serpentinized peridotite can give clues to the 

possible hydrogen yield that has occurred and still has the potential to occur because 

Fe is oxidized by the oxygen in water (equation 1) and the hydrogen is released. 

Mössbauer spectroscopy (MOSS) of Fe is one way to determine the redox status of 

multivalent elements in minerals. MOSS determines the proportions of Fe
2+

, Fe
3+

, and 

mixed valence states like magnetite (with both Fe
2+

, Fe
3+

 present in the mineral, see 

Table 1). A stoichiometric conversion can be calculated from concentration of Fe
3+

 to 

quantify possible hydrogen yield over the lifetime of the rock. The larger the quantity 

of Fe
2+

 in the ultramafic protolith, the greater the chance of hydrogen production when 

ultramafic minerals react with water. 
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 The Earth’s mantle is solid and composed primarily of olivine group, pyroxene 

group, spinel, and/or garnet, accompanied by diamond and other minerals that are 

stable at high temperatures and pressures. In the anhydrous upper mantle, Fe
2+

 is 

expected to be found in ultramafic minerals, like olivine, pyroxene, and spinel, 

because it will substitute for Mg in mineral structures (see Table 1). Molecular water 

in the mantle is possibly located mostly in the transition zone between the upper and 

lower mantle [Hirschmann et al., 2005; Pearson, 2014] and the mantle wedge in 

subduction zones where the subducting oceanic slab is releasing water into the mantle. 

 

1.4 Importance of Al-rich phases, spinels, in H2 production 

 Serpentinization can be catalyzed by spinels and is a complicated and highly 

variable process that depends on the starting composition of the rock and primary 

minerals, fluid composition, substitutions between Fe, Mg, and other elements [Evans, 

2008], if and how much Al is present in the system [Andreani et al., 2013; Mayhew et 

al., 2013], system pressure and/or temperature [Mayhew et al., 2013], and even the 

presence of microbes could encourage one mineral to form over another [Nealson et 

al., 2005; Takai et al., 2006]. For example, serpentinization needs olivine and water, 

and responds to additional mineral phases such as spinel and pyroxene. Different 

forms of serpentine can be created along with magnetite, hydrogen, spinel, and other 

minerals. Equation 2 and 3 below provide examples of possible parent and alteration 

mineral combinations. Equation 3 is provided in both mineral names and general 

chemical formulas (Table 1), which help illustrate the complex chemistry observed in 

some serpentinization systems. 
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(2) Olivine + hydrous fluids ± spinel ± pyroxene ↔ serpentine ± brucite ± magnetite ± 

free hydrogen ± other spinel(s) ± quartz ± albite 

  

Or  

 

(3) Olivine ± pyroxene + hydrous fluids = serpentine ± magnetite ± other clays ± free 

hydrogen 

 

and in chemical formulas: 

 (Mg, Fe)2SiO4  ± (Mg, Fe, Al, Mn, Ti, Cr, Ca)2Si2O6 ± (H2O + dissolved ions) = 

(Mg,Fe)3Si2O5(OH)4 ± Fe3O4 ± [Ca0.17(Al,Mg,Fe)2(Si,Al)4O10(OH)2٠nH2O ± 

(Mg,Fe,Al)3(Si,Al)4O10(OH)2٠(Mg,Fe,Al)3(OH)6 ± 

(Mg,Ca)0.3(Mg,Fe
2+

,Fe
3+

,Al)3(Si,Al)4O10(OH)6] ± H2 

[Bach et al., 2006; Sleep et al., 2004]. 

 Spinel group minerals, especially Al-bearing spinels, can act as catalysts for 

hydrogen production. Mayhew et al. [2013] saw a correlation between the quantity 

and surface area of spinel phases (mainly magnetite, chromite, and gahnite) and the 

amount of hydrogen generated, especially at lower temperatures (100 and 55
o
C) where 

microbes can live. Spinels are metal oxide minerals (M
2+

M
3+

2O4; see Table 1), and 

Mayhew et al. [2013] suspect that they encourage H2 generation by acting as an 

electron transfer shuttle surface for aqueous Fe
2+

 and hydrogen/protrons. 

 Spinels can include aluminum in their structures. When Andreani et al. [2013] 

conducted diamond-anvil experiments with olivine, saline water, and aluminum, the 

rate of olivine alteration increased 1-2 orders of magnitude when Al was included at 

natural hydrothermal environment temperatures (200 and 300
o
C) and pressures (200 

MPa). Al seemed to enhance the solubility of the olivine in their experiments allowing 

serpentine to form within ~2 hours of beginning the experiment. The rate of H2 

production could also increase with the increased rate of serpentinization, which may 

allow for economic gain from serpentinization [Andreani et al., 2013]. 
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 The minerals in this study include olivine, pyroxene (cpx and opx), serpentine, 

brucite, spinel, and magnetite (Table 1) in altering peridotites of the Coast Range 

Ophiolite and Zambales Ophiolite. A general serpentinization reaction including these 

minerals is below: 

(4) olivine ± pyroxene ± spinel ± hydrous fluids ↔ serpentine ± brucite ± spinel ± 

magnetite ± hydrogen gas  

 

1.5 Geologic Setting 

 Ophiolites are generally structurally intact blocks of the oceanic lithosphere 

(ocean crust and upper mantle, see Figure 3) that are uplifted and deposited on 

continental crust, or form (essentially in situ) in extensional environments in the back 

arc. Partial, segmented, and/or mélange ophiolite sequences are common because the 

emplacement can be complex. The Coast Range Ophiolite is located on modern 

tectonic plate boundries as illustrated by Figure 2. 

 

1.5.1 Coast Range Ophiolite (CRO) 

 The Coast Range Ophiolite (CRO) is exposed at various locations in the mid-

western portion of California, USA (Figure 1). The CRO exposures and sampling 

locations in this study are near Lower Lake (junction of Lake, Napa, and Yolo 

Counties) on the University of California-Davis, McLaughlin Natural Reserve, and 

near Stonyford (Colusa County) in the confluence of the Hyphus Creek and Little 

Stony Creek. See the appendix Figure A1 for a geologic map of the CRO. The CRO 

formed in a supra-subduction zone (SSZ) setting [Shervais, 2001]. SSZ tectonic 
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settings may include backarc and forearc basins, and arc volcanism in an intra-oceanic 

plate convergent margin [Hawkins, 2003]. The CRO formation (rock age and 

emplacement) is ~163-170 Ma [Coleman, 2000; Shervais et al., 2005; McLaughlin, 

1988] and was associated with an oceanic plate back-arc basin and continent collision 

in a convergent margin. The CRO units are often found between the Franciscan 

Complex (Middle Jurassic or older peridotite wedges [Coleman, 2000]) to the west 

and the Great Valley Sequence (Middle Jurassic calc-alkalic and mafic pillow lava, 

sheeted dikes, and gabbro [Coleman, 2000] to the east. The CRO sequence includes 

mafic rocks, pyroclastic rocks, gabbro, and peridotite [Coleman, 2000]. It is often 

found as mélange. 

 The McLaughlin Natural Reserve is now a research and education-focused 

space, administered by the UC-Davis and supported by a joint initiative between the 

Homestake Mining Inc. Co. (currently engaged in closure of a gold mining operation 

at the site) and local conservation groups.  

 

1.5.2 Zambales Ophiolite (ZO) 

 The Philippine Islands are a mixture of island arcs and continental fragments 

[Hall et al., 1995]. They are bordered by oppositely-dipping subduction trenches 

(Manila Trench to the west and Philippines Trench to the east) and have a complicated 

history of uplift and faulting. The Zambales Ophiolite (ZO), Zambales Range, Luzon, 

Philippines (Figure 1) is a SSZ ophiolite and was derived from interactions of an 

island arc system and back-arc basin [Yumul, 2007; Hawkins and Evans, 1983] during 

the Cenozoic era [Karig et al., 1986], Eocene epoch (33-56Ma) [Yumul, 2007]), which 

implies that the rock and emplacement age are roughly the same. 
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 The ZO is broadly composed of two blocks of uplifted, tilted, and strike-slip 

fault shifted lithosphere that have complete Penrose ophiolite sequences [Yumul, 

2007] and vary in geochemistry and thickness of the crustal section [Hawkins and 

Evans, 1983]. The (1) Acoje block to the north is accreted tholeiitic intraoceanic island 

arc material, while the (2) Coto block to the south is a typical back-arc basin rock 

series [Hawkins and Evans, 1983]. See the appendix Figure A2 for a geologic map of 

the ZO.  
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2. Methods 

2.1 Sample descriptions 

 Samples include serpentinite cores and hand samples from the Coast Range 

Ophiolite (CRO) in Northern CA and hand samples obtained from serpentinites from 

the Zambales (ZO) Ophiolite in the Philippines.  Table 2 gives a summary of sample 

locations, depths, and approximate elevations. Figure 4 presents pictures of each 

sample following collection. Samples collected ranged in mineralogy, depth (surface 

and core samples), and locations within the sampling area. X-ray diffraction analysis 

was performed first on each sample to indentify the main component minerals. Many 

samples of the CRO and ZO were analyzed; however, only variably serpentinized 

peridotite samples’ data are reported here. Chlorite-rich samples are not reported as 

they were interpreted as being from weathered basalt units and not peridotite units 

[Wetzel and Shock, 2000]. Additional data and sample information are reported in the 

appendix. 

2.1.1 Coast Range Ophiolite Samples 

 Coast Range Ophiolite Microbial Observatory (CROMO) wells were drilled 

and cores dominated by serpentinite were collected in 2011 [Cardace, et al., 2013]. 

The CROMO 2 well located in the Quarry Valley area of the McLaughlin Reserve 

bottoms out at ~45.7 m (~152 ft) depth from surface in a serpentinized peridotite layer 

[Cardace, et al., 2013]. CROMO 2 core samples were taken from ~44.5 m (~148 ft) to 

~45.7 m (bottom of hole). CROMO samples were vibrated in distilled/DI water. The 

water and suspended clay minerals were poured into an Al-foil boat. The bulk of the 

samples (not suspended in the water), were also placed on an Al-foil boat. Both parts 
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of the samples were dried at 60
o
C over night and were analyzed with XRD, XRF, and 

MOSS. See appendix for data on the suspended clays. 

 Additionally, the McLaughlin Natural Reserve has archived cores from when 

Homestake Mining Company was surveying the area. Some of the boreholes passed 

through hundreds of feet of variably-serpentinized peridotite, some of which were 

found to contain relict olivine grains. Samples were collected from 3 cores: M81-167, 

M81-309, and M81-313 at various depths (see Table 2). 

  Hand samples from the Stonyford Volcanic Complex [Shervais, et al., 2005] 

were collected as float (cobbles in the creek and not collected in situ) located in the 

Hyphus-Little Stony Creek confluence near Stonyford, California. 

 

2.1.2 Zambales Ophiolite Samples 

 Serpentinized peridotite hand samples were collected in September 2012 from 

the Poon Bato region of the ZO and were analyzed. See Table 2 for latitude and 

longitude data, and Figure 4 for pictures of the samples before being powdered for 

analysis. 

 

2.2 XRD  

 X-ray Diffraction (XRD) analysis determined the bulk mineralogy of the 

samples. A portable Olympus (formerly InXitu) Terra field XRD instrument, with the 

specifications equivalent to the CheMin tool developed for Mars exploration as 

described in Blake et al., [2012], was used for all XRD analyses. The Terra engages a 

Co X-ray source and a cooled charge-coupled device (CCD) detector arranged in 
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transmission geometry with the sample, with angular range of 5
o
 to 50

o
 2θ with < 

0.35
o
 2θ resolution [Blake et al., 2012]. X-ray tube voltage is typically 30 kV, with a 

power of 10 W, a step size of 0.05°, and an exposure time of 10 s per step. Default 

settings were used except the number of exposures was 1000 (total run time is about 

70 min) and the piezo volume was 70. 

 Samples were powdered using a percussion mortar and/or agate mortar and 

pestle; when necessary a Dremel manual drill was used to subsample grains of 

interest. A total of ~9 g of the focus samples were powdered. Powders were passed 

through a standard 150 μm sieve (100-mesh) prior to analysis. The portions of each 

sample selected for analysis were not always completely powdered to ≥150 μm, so 

some of the harder minerals may be under represented in all experiments that required 

a powdered sample. About 15 mg of powdered material was transferred with a spatula 

to the inlet hopper of the standard sample vibration chamber, which continuously 

mixes the powdered sample for the duration of the analysis. Rotation disks (sample is 

rotated instead of vibrated) were also used for some samples and all the standards. 

 The resulting diffractograms were interpreted using XPowder software, which 

is a commercially available peak search-and-match program that queries the PDF2 

database for reference mineral peak information. XPowder allows for identification 

only (not quantification) of major minerals and trace minerals can be easily missed 

and/or masked by peaks of other minerals. Diffractograms have °2θ on the x-axis and 

intensity on the y-axis. An intensity peak is the result of constructive interference 

when Bragg’s law (nλ=2d sin θ, where n is the "order" of reflection, λ is the incident 
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X-rays wavelength, d is spacing between atomic planes in a crystal structure, and θ is 

the incidence angle) is fulfilled by the incoming X-rays.  

 

2.3 Thin section microscopy 

 Thin section (TS) petrography was used to identify relic, accessory, and trace 

minerals, confirm XRD analysis, and observe relationships between minerals at the 

micro-scale. Thin sections (30 μm-thick, standard slides) available of select samples 

were viewed at various magnifications (2-10X) in both plane-polarized (ppl) and 

cross-polarized (xpl) light and photographed (Figures 9-12, 14-21, and 23) using an 

Olympus BH-2 polarizing light microscope, an Olympus DP73 digital color 

microscope camera, and Stream Essentials 1.8 image analysis software.  

 

2.4 XRF  

 X-ray fluorescence (XRF) and scanning electron microscopy (SEM) were used 

to constrain elemental, especially Fe, concentrations in bulk rock and individual 

grains, respectively. Fe concentrations (see Appendix for additional element 

concentrations) were obtained from selected bulk samples (see section 2.1 for 

sampling bias). 

 A Thermo Scientific Niton XL3t portable XRF analyzer desktop laboratory 

unit was used for element analysis. Because the Niton XL3t is a handheld device and 

was used without vacuum conditions, elements lighter than Mg were not detected 

[Rollinson, 1993; Wirth and Barth, 2012; EPA Method 6200, 2007]. An adapted EPA 

Method 6200 was used. Samples were analyzed using soils mode, which is tuned for 
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quantification of elements common in soils and is biased toward those of specific 

interest to the lab analyzing soils. There are other modes (metal, mining, consumer 

goods) generally used with the hand held XRF, but they were not available at time of 

analysis. 

 Samples were sieved to 150 μm (#100 sieve) and ~2 mL of bulk sample was 

analyzed. Samples were run for 200 s and analyzed three times with the sample being 

shaken/agitated between each run. The three values were averaged and the mean was 

normalized using USGS standards described below.   

 Fe precision and accuracy were estimated from replicate sample runs and 

utilizing USGS standards Dunite, Twin Sisters (DTS-1), Dunite, Twin Sisters 

Mountain DTS-2B (DTS-2), and Peridotite, Cedars CA Ultramafic Mass (PCC-1) 

which indicate accuracy within ~24-64% and precision with a standard deviation 

between 170-770ppm.  

 To obtain the normalization factor (Table 5), each standard’s reference value 

was divided by the average observed value (REF/OBS). When REF/OBS was 

calculated, DTS-1 was 0.6133, DTS-2 was 0.8045, and PCC-1 was 0.6096. See 

calculations below used to obtain the normalization factor: 
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 Sample values were normalized to DTS-1 because it had a similar percentage 

difference between the observed value and the published value of PCC-1 which is a 

serpentinized peridotite similar to the samples. See calculations below used to obtain 

general accuracy error: 

        

         
  

                              

                  
  

          

         
                  

                              

                 
  

          

         
                   

                               

                 
  

          

         
                   

 The error for XRF is ±24% based on the discrepancy of DTS-2 after 

normalizing to DTS-1 (Table 5). Additional error could come from samples not being 

homogeneous, so the Fe is not equally distributed resulting in over or under 

exaggerating the concentrations. Standards were run four times and samples were run 

three times. The samples and standards were shaken/agitated between each run to try 

and get a more accurate account of the Fe present.  

 Additional error between reference and observed could occur if the average 

used for the reference data incorporated values that oven dried the samples prior to 

analysis and, therefore, has loss on ignition (LOI). The USGS certificate of analysis 

for DTS-1 and DTS-2 does not include LOI values. The GeoReM database [Jochum et 

al., 2005] reports that the LOI for DTS-1 is 0.2%m/m, DTS-2 is 0.36%m/m, and PCC-

1 is 4.91%m/m. There are more than 100 data sets for PCC-1; however, only two 
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report LOI (4.91 and 5.12%m/m). DTS-1 has more than 80 data sets and only one 

reports LOI (0.2%m/m). DTS-2 only has 22 data sets with only one reporting LOI 

(0.36%m/m). The data sets that report LOI do not always report Fe concentration, so it 

is difficult to gauge how Fe concentration would vary with less water in the samples; 

however, it stands to reason that if concentration data are normalized to 100%, then 

low water contents could result in relatively higher reported concentrations of FeO. 

For instance, the observed Fe concentrations in this case were higher than the 

reference values. The main source of error was probably instrumental. 

 The CROMO 1, CROMO 2, and PHL samples in this study were dried in an 

incubator oven set at 60
o
C (140

o
F). Other CRO samples were air dried at generally 

less than 37
o
F (95

o
F).  Standards were transferred directly from original container to 

sample holders. They were not dried in an oven before analysis. 

 Most of the samples were powdered using a steel percussion mortar, so it is 

possible that the samples were contaminated resulting in higher Fe concentrations. 

This would not account for the higher values of the USGS standards as they were 

already powdered.  

 

2.5 SEM-EDS 

 SEM-EDS was used to measure the concentration of most major elements in 

weight percent (wt%) in specific mineral grains from the thin section of sample 

313_329. A JEOL 5900 scanning electron microscope (SEM) with Energy Dispersive 

X-ray Spectroscopy (SEM-EDS) was used on thin sections to obtain high resolution 

imagery (Figures 13, 18, 20, 22, and 25-29) and spot analysis compositions of major 
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elements in wt% oxides (Tables 7-11) in individual mineral grains and within the 

groundmass. 

  The detection limit for SEM-EDS is 0.5wt%, so the elements with lower 

concentrations have lower accuracy. The SEM-EDS also has limited sensitivity for 

elements with atomic numbers below 11 (Na) [Goldstein, 2003], so the oxygen present 

is not accounted for. The SEM-EDS instrument was set to do a spot analysis for 30 s 

for each spot. With more time (e.g., 5 min instead of 30 s) dedicated to data analysis 

for each spot, the accuracy increases for low concentration elements. Wt% are 

calculated from the area under the curve created from intensity peaks. SEM-EDS data 

are reported in Tables 7-10 and corresponding area images are in Figures 13, and 25-

29. 

 

2.6 Mössbauer spectroscopy (MOSS)  

 The redox status of a system can be broadly determined from the valence state 

of Fe—Fe
2+

 is reduced and Fe
3+ 

is oxidized—and MOSS data provide Fe
2+

 and Fe
3+

 as 

percentages of total Fe. There are limitations to MOSS: it can’t distinguish between 

similar minerals, and results vary as a function of cation substitution and temperature. 

There is better peak resolution at colder temperatures with a recommended 

temperature of 40 K and the magnetic properties can change at temperatures below 

~24 K [Dyar, et al., 2008]).   

 Often MOSS is performed on individual minerals, which will only give the 

redox status of individual mineral types within the sample. In this study, a bulk 

analysis was done to gauge better the redox status of the whole sample. It is also very 



  

20 

 

difficult to hand-pick minerals found in a highly serpentinized rock. Bulk rock 

samples were again powdered and sieved to 150 μm. Samples were prepared, 

analyzed, and modeled similar to the methods used in Evans, et al. [2012], which are 

briefly outlined here. About 40-100 mg of sample were mixed with a sucrose filler and 

mounted in a sample holder confined by Kapton polyimide film tape. Samples were 

run at room temperature (~295 K) using a source of 100-60mCi 
57

Co in Rh on a WEB 

Research Co. model WT302 spectrometer at Mt. Holyoke College (South Hadley, 

MA) for periods of time from 2-24 hours. More time is needed for lower Fe 

concentrations. Spectra were collected over a velocity range of ±4 mm s
-1

 for samples 

without oxides and/or ±10mm/s if Fe oxides, like magnetite, were present. A ±10 mm 

s
-1

 velocity scale is needed to show the magnetite peaks resulting from additional 

quadrupole splitting from the magnetic properties of the Fe.  

 Spectra were processed using two software packages from the University of 

Ghent. Simple paramagnetic doublet (Fe
2+

 and Fe
3+

 ) spectra were modeled using the 

Dist3e program. More complex spectra with sextets (magnetite) and doublets were 

modeled using the MEX FielDD program. While modeling, isomer shifts (IS) and 

quadrupole splitting (QS) were allowed to vary in unison. Peak widths for doublet sets 

were allowed to vary in unison with IS and QS [Evans, et al. 2012] in most cases. 

Some widths were fixed to guarantee a ≥0.23mm/s. Dyar et al. [2008] discusses 

sources of error (low number of recoil-free emissions, temperature and its influence on 

QS, IS, and resulting Fe valence state percentages, etc.) of MOSS measurements 

associated with phyllosilicates (clay minerals), which applies to serpentine minerals 

(and other alteration minerals like chlorite), which are clay minerals. MOSS results are 
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given as area under the curve corresponding to percentages Fe
2+

 and Fe
3+

 (doublets), 

and magnetite (sextet), if present, of the total Fe. Table 3 gives general parameters for 

MOSS data fitting. 

 Some samples for MOSS do not contain magnetite; however, TS and XRD 

indicate that magnetite is present in every sample. For samples with MOSS spectra 

without magnetite, it is assumed that magnetite is less than 1%  of the total Fe. It is 

possible that the XRD and TS splits were more magnetite-rich than the powder 

analyzed by MOSS and/or the magnetite indicated by the XRD was actually a 

different spinel.  

 

2.7 H2 modeling 

 For simplicity, in this model, it is assumed that all the Fe is originally Fe
2+

, that 

the Fe concentration has not changed over time [Adreani et al., 2013B ], and that the 

simplified serpentinization reaction (equation 1) holds true. Peridotite can contain opx, 

cpx, and/or spinel which can house Fe
3+

 (Table 1), so it is basically assumed that the 

samples started out as 100% olivine (only Fe
2+

) (dunite peridotite) or that the Fe in 

other minerals is also only in the 2+ valence state and/or minerals, like spinel, are 

present in trace amounts which are lost within the error of XRF measurements (see 

section 2.4). 

 Using MOSS results, the approximate volume of the CRO or ZO peridotite, the 

Fe concentration, the simplified serpentinization reaction (Eq. 1), and stoichometry, 

the hydrogen yield of the CRO and ZO can be estimated for the life time of the 

peridotite unit. It was estimated using two different conversion factors: one of which 
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was density (g/cm
3
) and mg/kg to convert from ppm to g; the other used mg/L to 

convert from ppm to g. See section 3.4 for worked-out examples.  
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3. Results and Discussion 

 In general, data from XRD, TS, XRF, SEM-EDS, and MOSS analyses confirm 

there are important differences in the proportions of mineral phases and Fe valence 

state in those phases, within a geographic region and also across all samples. 

 

3.1 XRD & Thin section petrography 

 Minerals identified using XRD and/or TS include serpentine, magnetite, other 

spinel group minerals, pyroxenes, olivine, chlorite, other unidentified clay minerals, 

brucite, amphibole, and garnet. On XRD diffractograms, brucite and spinels, including 

magnetite, have overlapping and/or closely spaced intensity peaks that vary in position 

depending on chemical composition, which can make differentiating these minerals 

challenging. Spinels (spinel, magnetite, chromite) and brucite look different under a 

polarizing light microscope. The spinel series in these samples are often reddish-

brown or dark brown to black. Spinel is most often in individual, isolated grains that 

are reddish brown and semi-transparent (Figure 12, 15, 20, among others). Magnetite 

and chromite are opaque and appear black (Figure 9, 11, 14, 15, etc…). They were not 

distinguished from each other and assumed to be magnetite in thin sections. Individual 

mineral elemental analysis would be needed to distinguish them. Brucite is often 

colorless or yellowish and found intermixed with serpentine and/or in veins (Figure 

11, 19). Therefore, thin sections were used to confirm XRD analysis, and identify 

trace or relict minerals that (1) may not have been included in the ~15 mg of powdered 

rock used in XRD and/or (2) were present in amounts too small to be detected by the 
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XRD. Thin sections also allow petrographic study of the spatial distribution of mineral 

grains and textures.  

 

3.1.1 Diffractograms 

 The main two serpentine phases available for peak comparisons in reference 

databases were antigorite and lizardite. While each sample had peaks corresponding to 

one or both of these phases, it is also highly likely that other phases of serpentine like 

chrysotile and greenalite were also present. The serpentine peaks (Figures 5-8) 

generally have the highest intensity in the samples followed by peaks for magnetite, 

spinel, and olivine near 39 to 44°2θ. The intensity indicates diffraction caused by 

mineral crystallinity and helps in mineral identification because each mineral has a 

unique diffraction pattern. Figure 6 is the stacked diffractogram for ZO samples. 

PHL_3 has the strongest peaks for olivine found in any of the samples. Figure 7 is the 

stacked diffractogram for CRO CROMO2 samples. CROMO2_3 has an unknown 

peak with a 2θ of ~31° (i.e., d-spacing of 3.3471Å). The variation of peaks with a 2θ 

of ~40-45° is from magnetite and spinel variations.  

 Overall, XRD data indicate that serpentine, magnetite and/or other spinel are 

present in all the samples. Pyroxene, olivine, chlorite, brucite, amphibole, garnet, 

and/or other clay minerals such as smectite are identified in various samples. 

 

3.1.2 Thin section and SEM images 

 Serpentine is the most abundant mineral based on qualitative assessment of 

mineral abundance in thin sections. Serpentine often forms a square-like mesh or net-
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like texture on the micro- and macro-scale; interlocking veins of serpentine surround 

fractured relict (or variably serpentinized) olivine and/or pyroxene, as seen especially 

in Figures 12, 16, 19, 20, and 23. This mesh texture is often more easily visible in xpl 

with the grey serpentine surrounding the more brightly colored (higher birefringence) 

olivine/pyroxenes. Serpentine is also found in larger veins that show variations in 

color, texture, and/or composition (TS Figures 11a, 16a, and 23a, and SEM-EDS 

Figures 13a & d) from the center to edge of the vein.  The dissolution of olivine can 

also be seen in SEM-EDS images (Figure 22) that show olivine grains with irregular 

grain boundaries (jagged dendritic wedges on the edges), giving the appearance of 

micro-scale reaction zone. 

 

3.1.3 Mineralogical results summary 

 Documenting site-specific mineral assemblages is a first step in characterizing 

the redox status of Fe because Fe occurs in different valence states in different 

minerals (Table 1). The mineral assemblages in the samples are similar to those 

predicted [Wetzel and Shock, 2000; Moody, 1976; McCollom and Seewald, 2013; 

Sleep et al., 2004] and similar to those found in serpentinite cores from Ocean Drilling 

Project (ODP) sites [Bach et al., 2006; Beard et al., 2009 also found plagioclase; Klein 

et al., 2014].  

 All of the target samples contain serpentine (lizardite and/or antigorite, and 

probably greenalite and/or chrysotile) and spinel group minerals such as magnetite 

(Fe), chromite (Fe & Cr), gahnite (Zn & Al), and/or galaxite (Mn, Mg, Al, and/or Fe). 

Different minerals indicate different compositions and temperature and pressure 
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conditions. Olivine and pyroxenes were identified in samples that appear to be less 

serpentinized. Olivine was identified in all the ZO samples and three of the four 

samples from McLaughlin borehole 313, which had hundreds of feet of variably 

serpentinized peridotite recorded on the core log. 

 Chlorite was found in small quantities in samples 313_210 and maybe 

313_356, indicating that there were, at least locally, variations in composition of the 

fluid and/or rock, temperature, and/or pressure that encouraged chlorite instead of 

serpentine to form. From a thermodynamic viewpoint, peridotite alteration modeled in 

the subseafloor at ~350 to 400°C yields much less chlorite than serpentine, but chlorite 

is expected, to some extent, in these ophiolite samples (Wetzel and Shock, 2000). 

 Garnet was found in samples HLSC_1, 313_356, and maybe PHL_3, 

indicating possible high pressure/temperature conditions, likely in a subduction zone 

subsurface environment in the mantle wedge [Liou et al., 2007] and/or during 

emplacement at the continental margin. Andradite garnet (Ca3Fe
3+

2(SiO4)3) was 

identified by XRD in HLSC_1 and 313_356. Andradite garnet can be formed at low 

pressure and high temperatures [Huckenholz and Yoder, 1971; Gustafson, 1974]. 

Chemical analysis is needed to confirm the XRD analysis. The garnet grains in 

313_356 do not appear to be the well-formed, geometric crystals expected if the 

garnets were neoformed minerals, instead suggesting that they may have started to 

undergo dissolution and/or other alteration since their original formation. It is possible 

that these samples were in a relatively shallow area in a subduction zone but still 

exposed to high temperatures (prograde metamorphism), and then uplifted (retrograde 

metamorphism) and emplaced. Sample 313_356 seems to have a more complicated 
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history than some of the other samples as indicated by the garnet and lack of 

serpentine veins or classic serpenitinite mesh textures.  

 The brucite group mineral identified by XRD is portlandite, which is a Ca-rich 

hydroxide instead of the expected Mg-rich (Mg(OH)2) brucite, predicted by 

McCollom and Bach [2009] and references therein. Portlandite was identified in 

samples also containing pyroxene (cpx—hedenbergite and johannsenite—and opx—

enstatite group), which could account for the Ca. However, the Ca could have also 

come from entrapped seawater and/or the sedimentary rock units of the CRO and ZO. 

It is also possible that Fe and Mg-rich brucite is present in the samples. 

 The minerals most likely to contain Fe are magnetite, spinel, olivine, 

pyroxenes, and serpentine. 

 

3. 2 XRF & SEM-EDS 

 In general, the Fe concentrations found in the samples are similar to those 

found in other variably serpentinized peridotite (see Table 6, Figure 24, Table A2 for 

data from literature, and Table A8 for raw XRF data collected). CRO core 313 and the 

ZO samples have the highest concentrations of Fe (Figure 24). They are also the 

samples with more abundant relict olivine and, therefore, are less serpentinized (see 

Figures 10-12, 14, 16-21, 23). This leads to the conclusion that Fe is reapportioned 

into different host minerals through water-rock reaction, may have left the system in 

fluid phases (Fe
2+

) during serpentinization, and/or CRO core 313 and the ZO samples 

parent rocks had more Fe than the other samples. It is possible that Fe
2+

 could have 

been oxidized, precipitated, and accumulated in areas other than where the samples 
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were collected, perhaps in the more hydrothermal areas of the ophiolites where Au, 

Ag, S, and other metals also accumulate. CRO core 313 was located in what was a pit 

mine, so maybe, it was more Fe-rich because more Fe was being deposited, which 

may also account for the higher percent of Fe
3+

 reported in MOSS.  

 Sample 313_210 has the highest bulk concentration of Fe across all samples. It 

also contains large grains of possible Fe-oxide(s) (and/or hydroxides) (Figure 10), 

which may account for the larger bulk concentration of Fe.  

 HLSC_1 has the lowest concentration of Fe and most of the Fe is in magnetite 

instead of the silicates. The TS for HLSC_1 also shows Fe-oxide zones similar to 

313_210 and magnetite scattered throughout (Figure 9). HLSC_1 may be a case of 

under exaggeration of the bulk sample concentration, or the thin section could be an 

over exaggeration and just happens to be a Fe-oxide rich section.  

 SEM-EDS data for sample 313_329 (Tables 7-10, Figures A19-23) indicate 

that the Fe concentration in the minerals analyzed is ≤0.02wt% (200 ppm) (see section 

2.5 for detection limit discussion—0.5 wt%) for olivine (Tables 7, 9, and 10), 

≤11.1wt% (111,000 ppm) for an alteration mineral (probably serpentine) (Table 8) 

next to an olivine grain (Table 7) that had ≤0.02 wt% Fe at its center. The fractured 

spinel (Table 11) had ≤33.3 wt% Fe (332,500 ppm) with the median being 0.03 wt% 

(300 ppm) (of the 10 spots analyzed on the spinel, seven had Fe wt % of 0.03, one 

with 0.02, one with 26.6, and one with 33.3 wt%). According to these numbers and 

mineral observations, the bulk of the Fe is concentrated in spinel group minerals 

including magnetite and other Fe-oxides. There is also Fe in serpentine, possibly 

greenalite, with smaller contributions from olivine. 
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 Spinel also contains large quantities of Al (22.7 to 80.3 wt % or 332,500 to 

803,100 ppm). The smallest concentration of Al occurred at the spot where Fe was 

also the highest. The Al and the spinels could be a catalyst for hydrogen generation 

[Andreani et al., 2013]. Besides spinels, Al can also be hosted in olivine, serpentine, 

pyroxene, and other clay minerals. Al was identified in olivine by SEM-EDS as 

having ≤5.89 wt% (589,000 ppm), which was surprising because olivine is not usually 

thought of as incorporating elements with a 3+ valence state into a 2+ slot. 

 

3. 3 MOSS 

 MOSS parameters (IS, QS, W, A, and Bhf), chi-squared (Χ
2
), and areas under 

the curve (Table 12) are similar to those of serpentine and other minerals reported by 

others (Table 3, Table A2) . Within each MOSS plot (Figures 30-45 ), the best-fit 

curve (red) can be seen as a combination of Fe
2+

, Fe
3+

, and magnetite (Fe2
3+

Fe
2+

O4) 

curves. In practice, curve fitting parameters determine the % area under the curves that 

is tied to Fe
2+

, Fe
3+

, or magnetite. For samples from CRO and ZO, percentages of total 

iron found as Fe
2+

, Fe
3+

, and magnetite-hosted Fe are stacked in Figure 46. Magnetite 

has distinct fit, sextet patterns and curves that are distinguishable from other minerals 

in the sample such as Fe-oxides like hematite. The silicates (serpentine, olivine, 

pyroxene, chlorite, and amphibole), other clay minerals, hydroxides, and/or other 

spinel group minerals account for the Fe
2+

and Fe
3+

 doublet curves. Each the Fe
2+

and 

Fe
3+

 doublet curve could account for a different mineral.  
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3.3.1 MOSS analysis of bulk sample 

 The amount of magnetite in each sample is just a random chance from 

sampling and the magnetite peaks are fit so they can be removed and look more 

directly at the silicates, especially serpentine. Magnetite, however, will be discussed in 

this section in the attempt to gauge the status of the whole bulk rock and not just the 

silicates, which will be discussed in the next section (3.3.2). The %Fe
3+

 and %Fe
2+

 

values that include divided up %magnetite are also utilized in the H2 generation 

calculations. 

 HLSC_1 has the most Fe attributed to magnetite: ~63%. Samples 309_105_A, 

313_210, 313_318, 313_329, 313_356, and PHL_3 have the least Fe attributed to 

magnetite (<1%) and generally have the least visible magnetite in TS.  When 

%magnetite is divided up into Fe
2+

 and Fe
3+

 (see Figure 47) and added to %Fe
3+

 and 

%Fe
2+

, the average Fe
2+

 for CRO is 54% Fe
2+

 (~30% range from 40-70%) and ZO 

averages less at 37% Fe
2+

 (~6% range from 34-40%). In other words, ZO averages 

more Fe
3+

 (~63%, 6% range from 60-66) than the CRO (~46% Fe
3+

, 30% range from 

30-60%). The wide range for CRO samples may largely be due to the larger number of 

samples (12 vs. 4 for ZO). 

 Samples from CRO core 313 had the most variation with ~18% range (~36% 

Fe
3+

 in sample 313_210 to 54% Fe
3+

 in sample 313_356). ZO samples had a smaller 

range (6% from 60-66 %Fe
3+

), but also fewer samples to compare. I suspect, however, 

that even with a similar spread of hand and core samples, the ZO would have closer 

percentages (i.e., tighter range) than the CRO because the ZO rocks have a less 

complicated tectonic history; the CRO, however, is often found reworked in mélanges 
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or mixtures of the classic ophiolite sequence. The ZO hand samples were collected at 

the surface, so it is possible that less serpentinized and weathered samples could be 

found deeper below the surface, which would cause more variation in Fe valence state 

percentages. The CRO was a mix of surface samples, shallow cores, and deep cores 

(>300ft). When all surface and core samples are compared together, there is not a 

direct correlation between depth and %Fe
3+

, possibly due to the mixing and/or 

additional oxidation at the surface when exposed to O2. When cores samples only are 

compared, especially 309 and 313, there is a slight positive correlation between depth 

and %Fe
3+

 (Figure A39). 

 

3.3.2 MOSS analysis of silicates  

 To better understand the redox state of the system, the magnetite was factored 

out (Table 12, Figure 48) to get a Fe
3+

/Fetot in other minerals, especially silicates like 

serpentine. 

 When comparing ZO samples to CRO core 313 samples that still had relict 

olivine, it seems like the more olivine there is, the more Fe
3+

 there is. In other words, 

ZO samples have the highest %Fe
3+

 average (~63%). CRO core 313 samples had 

~45% average). Some samples with little to no olivine, such as CROMO2 samples 1A 

and 4A, and 313_356, actually hover around 50 % Fe
3+

.  Sample167_238 has the 

expected higher %Fe
3+

 (57%), which may have relict olivine and/or pyroxenes similar 

to ZO and 313 samples. HLSC_1, CROMO2 _2, CROMO2_3A, 309_105_A, and 

309_150 have <40 %Fe
3+

. 
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 Variations in Fe valence states were expected because of the varying degree of 

serpentinization, the mineral contents, and environments even within a few feet. It was 

assumed that the Fe would be oxidized during serpentinization, so it was expected that 

samples with trace amounts of olivine would have a higher percentage of Fe
3+

 than 

Fe
2+

; however, the general trend where the more olivine-rich or the less serpentinized 

rocks had higher %Fe
3+

. The Fe
3+

 could be within the pyroxenes, spinel, and 

serpentine and/or it is possible that when the Fe
2+

 was mobilized, it was carried away 

in the fluid while the Fe
3+

 was deposited (recall that Fe
3+

 is not soluble in water at high 

pH, which would apply in this case). As discussed in section 2.7, Adreani et al. 

[2013B] did not see a change in Fe concentration over time, so the Fe is probably 

staying within close proximity to its parent mineral. 

 O’Hanley and Dyar [1993; 1998] (Table A2) analyzed ~35 lizardite and 

chrysotile specimens from Canada with MOSS and found a range of 22-100% Fe
3+

 

(most between 30 and 88 %Fe
3+

 and chrysotile generally had less %Fe
3+

 than 

lizardite). Klein et al. [2014] analyzed 12 samples from the Ocean Drilling Program 

(ODP) and Deep Sea Drilling Project (DSDP) of variably serpentinized peridotites 

(harzburgites and dunites). They found a range from 14-66 %Fe
3+

 and ~54% average 

without factoring in magnetite. The samples also ranged from magnetite-rich to 

magnetite-poor. Canil et al. [1994] found <5 %Fe
3+

 in various African peridotites that 

included garnet harzburgite and iherzolite, and spinel iherzolite. 

 

3. 4 H2 modeling 

 Hydrogen generation was calculated using the normalized average Fe 

concentrations, the estimated volumes of the ZO and CRO, the valence states of Fe 
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obtained from MOSS with %magnetite divided into %Fe
3+

 and %Fe
2+

 values, and the 

simplified serpentinization reaction equation (1). For each sample’s hydrogen yield, it 

is assumed that the Fe concentration for that sample was the same for all of the 

peridotite units of the CRO or ZO. Table 13 and 14 (utilizes density into conversion 

from ppm Fe to possible Tmol H2 (T, Tera=10
12

)) are summaries of normalized Fe 

concentration in ppm (see appendix Table A7 for FeO wt%), Fe valence states in 

percent from MOSS, and possible hydrogen gas yield per 1km
3
 of rock and per the 

total volume of the peridotite units of the corresponding ophiolite. The estimated 

volume of the peridotite units in the CRO is 7730km
3
 [Area (~3865km

2
)—Carnevale, 

2013; depth (~2km)—Coleman, 2000] and 1455 in the ZO [Area (~485km
2
)—

Abrajano and Pasteris, 1989; depth (~3km)—Hawkins and Evans, 1983]. Average 

density (g/cm^3) of variably (40-100%) serpentinized hazburgites and dunites taken 

from Andreani et al. [2013B] and Klein et al. [2013]. 

 Explanations and example calculations starting with CRO sample 167_238 Fe 

concentration (ppm) to possible H2 (Tmol) already released (total %Fe
3+

) are below.  

 Calculation using mg/L to convert ppm to g: 
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 The same conversion, only using mg/kg and density (g/cm
3
):  

 
                          

           

 

   

              
    

      

 
  

  

    

  

 
               

  

      

   
                      

        

         

  

 
                        

        

          

   
                              

         
 

 
        

   

 
                                              

  

   

 
     

       
     

   
 
 

  
     

    
 
 

 
   

     

  

 
                                   

       

 

   
                        

                            
   

 

   The total possible hydrogen production (Tmol) normalized to a volume of one 

1km
3
 (Figure 49 and 51) illustrates that even though the overall volume of the ZO is 

smaller, it can produce more hydrogen per unit volume than the CRO due to the 

generally higher concentration of Fe (Figure 24). The average total hydrogen that 

could be produced-per 1km
3
, given the present Fe valence status of the bulk rock, is 

0.46 Tmol H2(g) for the CRO and 0.64Tmol H2(g) for the ZO. Core 313 samples had the 

highest average for a CRO location at 0.53 Tmol H2(g), followed by 167_238 and 
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CROMO2 (0.43 Tmol H2(g)), and HLSC_1 and core 309 (0.40 Tmol H2(g)). When 

density is used in the calculation, the averages in Tmol are ZO-1.70, CRO-1.22, 313 

core-1.41, and CROMO 1.15. 

 Figure 50 and 51 show hydrogen generation in Tmol using the estimated 

volumes of the ZO and CRO peridotite, as reported in the literature. Due to its total 

smaller volume, the ZO is estimated to produce less hydrogen than the CRO. The 

average hydrogen production for the CRO is 3511 Tmol and 923 Tmol for the ZO. 

The highest CRO site average is 4058 Tmol for core 313 samples, followed by 

CROMO1 (3327 Tmol), 167_328 (3310 Tmol), HLSC_1 (3107 Tmol), and core 309 

(3086 Tmol). When density is used in the calculation, the averages in Tmol are ZO-

2475, CRO-9410, core 313-10,877, and CROMO 8918. 

 

3.5 Implications of rock data and modeling outputs 

 Possible hydrogen yield over the lifetime of the ultramafic peridotite blocks 

considered range from ~2848 Tmol to ~4752 Tmol for the CRO and ~908 Tmol to 

1029 Tmol for the ZO (when density is use it is ~2028 to 2758 for ZO and ~7634 to 

12735 for CRO), and is modeled here as largely controlled by Fe concentration and 

the volume of the ophiolite. The likelihood of water causing oxidization of Fe
2+

 to 

Fe
3+

 and releasing hydrogen is also a factor, but not directly tied into the calculations. 

The range of samples with their different Fe concentrations may give an upper and a 

lower limit of the total hydrogen generation possible from the peridotite units. It is 

also possible to have hydrogen produced from other mafic and ultramafic layers such 

as basalt and gabbros, so the actual hydrogen generation from the entire ophiolite 

could be higher than the simplified model predicts. 
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 Fe is not uniformly distributed and sample concentrations (normalized) range 

from ~28741 to 50673ppm in the CRO and ~58364 to 78265 in the ZO. The valence 

states of the Fe also vary with each sample; the %magnetite ranges from ~0-63%, Fe
3+

 

from ~14 to 65%, and Fe
2+

 from ~23 to 70 %. When magnetite is separated into its 

Fe
2+

 and Fe
3+

 components, total Fe
2+

 ranges from ~34 to 70% and Fe
3+

 ranges from 

~30 to 66%. The range for silicates and factoring out magnetite ranges from 24 to 

66%Fe
3+

. Variation in concentration and valence states indicates different reaction 

histories. On the other hand, if we assume that the olivine had similar starting Fe 

compositions, then the variation in observed concentrations shows that the Fe is not 

constant in the system(s).  

 The more Al-rich a sample is the more hydrogen can be yielded via 

serpentinization [Andreani et al., 2013]. Additional analysis of the bulk samples 

considered in this work and separated mineral grains is required to constrain where 

and how much Al is in the system at the time, to constrain the relative volumes of 

minerals (% serpentine, olivine, chlorite, magnetite, spinel, etc…) to help gage the 

extent of serpentinization (parent vs. alteration minerals), to better identify minerals 

including trace minerals to understand better the chemistry of the system, and to 

analyze fluid data, if possible, of current fluids in the system including dissolved gases 

like hydrogen. 

 Based on TS, XRD, and MOSS, the CRO and ZO are still reactive as both 

ophiolites still have budgets of Fe
2+

 and serpentinization is not complete. However, in 

areas that are mostly serpentinized, the remaining Fe
2+

 budget has been partitioned 

into minerals like spinel, serpentine, and magnetite that are generally chemically stable 
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at surface conditions and based on the sample set, %Fe
2+

 could stay near 50% of the 

total Fe. 
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4. Conclusion  

 Serpentinites evolve complexly in the natural environment. Tectonics, 

emplacement history, age, climate, composition, unit hydrology, etc…all influence the 

redox status of a given ophiolite. The samples presented here give a glimpse into the 

variability of the redox status of ophiolite-hosted ultramafic peridotites, at ZO and 

CRO localities. 

 In general, the ZO has higher Fe concentrations and greater modern Fe
3+

, thus 

could produce more hydrogen per unit volume than the CRO because of the higher Fe 

content in the system. The larger area and volume extent (though poorly constrained) 

of the CRO does mean that the lower hydrogen productivity per unit volume might yet 

yield greater hydrogen in total, if integrated over the entire ultramafic volume, over 

the alteration lifetime of the ultramafic block. Taken together, this work indicatesthat 

geologically long term support of a H2-fueled deep biosphere by serpentinization is 

feasible, and shows that the ultramafic subsurfaces of the CRO and ZO are not yet 

depleted in Fe
2+

. 

 Serpentinizing systems on Earth can be used as an analog for other terrestrial 

planets as we continue to search for the limits of life both on Earth and in the universe. 
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5. Implications for future research 

 A more thorough and accurate chemical (XRF, Mg concentration data for both 

bulk sample and individual minerals) and mineralogical analysis of the samples 

presented here, along with additional samples, are needed to better (1) constrain the 

possible hydrogen generation of the CRO and ZO, (2) understand the Fe and Mg 

concentration, their relationship within the contexts of peridotites, serpentinized or 

not, and which minerals they are partitioned into, (3) differentiate between spinel 

group minerals such as spinel, magnetite, and chromite, (4) obtain mineral specific 

redox status and possible zoning as a marker of the changes the mineral(s) has 

undergone as the rock and ophiolite unit were formed, and (5) provide markers to look 

for as we continue the search for life on Earth and other terrestrial planets. 
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Table 1: Some of the possible minerals involved/created during serpentinization 

[Winter, 2010; Nesse, 2000; Sleep et al., 2004; Mindat.org; webmineral.com].  

Mineral Group Mineral name Chemical Formula 

Fe 

valence 

state 

Olivine  

Olivine  (Mg, Fe)2SiO4 2+ 

Forsterite (Fo) Mg2SiO4 2+ 

Fayalite (Fa)  Fe2SiO4 2+ 

Orthopyroxene 

(opx) 

Orthopyroxene  (Mg, Fe)2Si2O6 2+ 

ferrosilite FeSiO3  (Fe2Si2O6) 2+ 

Clinopyroxene 

(cpx) 

Pigeonite  (Mg, Fe
2+

,Ca)Si2O6 2+ 

Hedenbergite  (CaFeSi2O6) 2+ 

Augite  (Ca, Mg, Fe
2+

, Fe
3+

, Al)2(Si,Al)2O6) Both 

Aegirine-augite (Na,Ca)(Fe
3+

,Fe
2+

,Mg)Si2O6 Both 

Omphacite (Ca,Na)(Mg,Fe
2+

,Fe
3+

,Al) Si2O6 Both 

Amphibole 

Tremolite to  

ferro-actinolite 
Ca2(Mg, Fe)5Si8O22(OH)2 2+ 

Richterite  NaCa2(Mg, Fe)5Si8O22(OH)2 2+ 

Hornblende (Na,K)0-1Ca2(Mg, Fe
2+

, Fe
3+

, Al)5(Si,Al)8O22(OH)2 Both 

Pargasite-

hornblend 
NaCa2(Mg, Fe

2+
)4AlSi6Al2O22(OH)2 2+ 

Spinel 

Spinel 

Spinel group 

MgAl2O4  

(Mg, Fe
2+

, Zn, Mn)(Fe
3+

, Al)2O4  
Both 

Magnetite  Fe3O4  (Fe
2+

Fe
3+

2O4) Both 

Chromite FeCr₂O₄ Both 

Gahnite ZnAl2O4  

Galaxite (Mn,Mg)(Al,Fe
3+

)2O4 3+ 

Serpentine 

Antigorite 
Mg3Si2O5(OH)4 

(Fe, Mg)3Si2O5(OH)4 

2+ 

Chrysotile 2+ 

Lizardite 2+ 

Greenalite (Fe
2+

, Fe
3+

)2-3(Si2O5)(OH)4 Both 

Other clay 

minerals 

Smectite  ~Ca0.17(Al,Mg,Fe)2(Si,Al)4O10(OH)2٠nH2O  2+ 

Chlorite  (Mg,Fe,Al)3(Si,Al)4O10(OH)2٠(Mg,Fe,Al)3(OH)6 2+ 

Vermiculite  ~(Mg,Ca)0.3(Mg,Fe
2+

,Fe
3+

,Al)3(Si,Al)4O10(OH)6 Both 

Talc Mg3Si4O10(OH)2 also (Mg,Fe)3Si4O10(OH)2 2+ 

Hydroxides 
Brucite  Mg(OH)2, also (Mg,Fe,Ca)(OH)2  2+ 

Portlandite Ca(OH)2  

Fe Oxides 

Wüstite FeO 2+ 

Magnetite  Fe3O4  (FeFe2O4) Both 

Hematite  Fe2O3  3+ 

Limonite/ Fe 

oxyhydroxides 

Goethite  FeO(OH) 2+ 

Lepidocrocite FeO(OH) 2+ 

Metals awaruite Ni2-3Fe Both 

 



  

 

 

4
8 

Table 2: Approximate locations, elevations, and depths of samples collected from Hyphus-Little Stoney Creek confluence in northern 

CA, CROMO2 well in Lower Lake, CA, and Zambales Ophiolite sites, Philippines. Homestake Mining Co. drill core sample 

locations, depths, and elevations. 

Sample 
Approx. Depth Collar Elevation 

(ft above sea level) 
Drill Hole 

Total depth of well Coordinates Grid Coordinates 

ft m ft m North East N.W. N.E/S.W 

167_238 238-BOH 73 2019.5 M81-167 249.0 ~75.9 107458.91’ 104156.78 125+96.7’ 9+34.6’ NW 

309_105_A 105 32 

1890.3 M81-309 330 ~100.6 104118.95’ 104022.53’ 101+24.4’ 13+15.1’ SW 309_150 150 32 

309_84 84 46 

313_210 210 64 

1776.2 

 
M81-313 370 ~112.8 103533.86’ 105296.39’ 88+57.4’ 7+15.4’ SW 

313_318 318 97 

313_329 329 100 

313_356 356 109 

 

Sample 
Approx. Depth Collar Elevation 

(ft above sea level) 
Drill Hole 

Total depth of well 
Latitude Longitude 

ft m ft m 

HLSC_1 0 0 ~1230 na 0 0 N 39.32401
o 

W 122.52460
o
 

CROMO2_1A 

144-BOH 44-45.7 ~2120 QV 2, 1 ~150 45.7 N 38°51.724' W 122°25.827' 
CROMO2_2 

CROMO2_3A 

CROMO2_4A 

PHL_1 0 0 

~590 

na 0 0 

N 15
o
 19.333' E 120

o
 04.306' 

PHL_2B 0 0 na 0 0 

PHL_3 0 0 na 0 0 

PHL_5 0 0 na 0 0 

Bottom of hole (BOH).  
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Table 3: Typical 295K Mössbauer spectroscopy (MOSS) data fitting parameters for 

some minerals found in Coast Range Ophiolite and Zambales Ophiolite taken from 

Dyar et al., [2006]. 

Valence state or mineral Doublet/sextet IS (mm/s) QS (mm/s) 
Site occupancy  

or Bhf (tesla) 

Ferric [Fe
3+

] Doublet 0.2-0.5 0.3-1.3  

Ferrous [Fe
2+

] Doublet 1.0-1.5 1.5-4.0   

Magnetite  
Sextet 0.26 -0.02 ~ 490 

Sextet 0.67 0.0 ~ 460 

Hematite Sextet 0.37 -0.02 518 

Spinel 

Doublet 1.11 1.75 M 

Doublet 0.90 0.96 T 

Doublet 0.86 1.63 T 

Doublet 0.31 0.79 M 

Chromite 

Doublet 0.32 0.44  

Doublet 0.22 0.91  

Doublet 0.96 0.50  

Doublet 0.90 1.15  

Olivine (Fa) Doublet 1.14 3.10 M 

Olivine (Fo) Doublet 1.14 2.93 M 

Ferrosilite (opx) 
Doublet 1.18 2.49 M1 

Doublet 1.13 1.91 M2 

Hedenbergite (opx) 
Doublet 1.18 2.21 M1 

Doublet 0.34 0.68 M1 

Diopside (cpx) 
Doublet 1.16 1.87 M1 

Doublet 1.15 2.14 M2 

Amphibole:  

Tremolite-actinolite 

Doublet 1.11 2.85 M1 

Doublet 1.12 1.80 M2 

Doublet 1.11 2.40 M3 

Serpentine: Lizardite 

Doublet 1.14 2.70 M 

Doublet 0.40 0.70 M 

Doublet 0.24 0.39 T 

Serpentine: Chrysotile 

Doublet 1.13 2.75 M 

Doublet 0.31 0.86 M 

Doublet 0.18 0.33 T 

Isomer shift (IS) is the shift up or down of nuclear levels that results from the overlap 

of nuclear and s-electron charge distributions, [Dyar et al., 2006]. Quadrupole splitting 

(QS) is the separation between two component peaks or the difference between two 

transition energies [Dyar et al., 2006]. The magnetic hyperfine field (Bhf) accounts for 

the magnetic field created by the Fe. All peaks had a width ≥0.23 mm/s. Tetrahedral 

site (T) and octahedral site (M) for molecular structure site occupancies. 
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Table 4: Minerals identified using XRD and TS spectroscopy. Bold uppercase X 

indicates mineral identified in both XRD and TS; small x, XRD only; small italicized 

x, TS only.  

Sample 

S
er

p
en

ti
n

e 

M
ag

n
et

it
e 

S
p

in
el

 G
ro

u
p

 

cp
x
 

o
p

x
 

O
li

v
in

e 

C
h

lo
ri

te
 

O
th

er
 c

la
y

s 

(d
-s

p
ac

in
g

  

1
4

-1
6

 Å
) 

B
ru

ci
te

 

A
m

p
h

ib
o

le
 

G
ar

n
et

 

HLSC_1 X X x 
     

X 
 

x 

167_238* x x x 
    

x 
  

 

309_105_A*‡ x x x 
    

x 
  

 

309_150* x x x 
    

x x? 
 

 

313_210‡ X X X 
  

x X x 
 

X  

313_318‡ X X x X X x 
  

X? 
 

 

313_329‡ X X X x x X 
 

x X 
 

 

313_356‡ X X X 
 

x 
 

x? x X? 
 

X 

CROMO2_1A** x x x 
    

x 
  

 

CROMO2_2** x x x 
    

x 
  

 

CROMO2_3A** x x x 
    

x 
  

 

CROMO2_4A** x x x 
    

x 
  

 

PHL_1 X x x x? x X 
    

 

PHL_2B X x X x x X 
 

x X? 
 

 

PHL_3‡ X X X x X X 
 

x X? x? x? 

PHL_5 X X X x? x? x 
 

x X 
 

 

Shading used to group drill holes and localities; (?) indicates minerals may be present; cpx is 

clinopyroxene; opx is orthopyroxene; the most common form of brucite identified by XRD was 

portlandite, which substitutes Ca for Mg. 

*No thin section for comparison. 

**No thin section for direct comparison. Thin section from shallower depths (~2-3m) confirms 

serpentine, magnetite, and other spinel group minerals. 

‡MOSS indicates that the Fe is contained in magnetite <1%, which means that in the portion of sample 

analyzed by MOSS, there was little to no magnetite and the magnetite indicated by XRD could actually 

be another spinel group mineral. 
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Table 5: USGS standards DTS-1, DTS-2, and PCC-1 were used to determine accuracy and 

precision of the Thermo Scientific Niton XL3t and to normalize the Fe concentrations. 
SAMPLE Published 

Std value 

Total Fe as Fe2O3 Wt% Fe2O3 ± Fe ppm ± ppm 

Dunite, Twin 

Sisters, DTS-1* 

8.68 0.24 60710 1679 

Run 1 102595 857 

Run 2 91366 758 

Run 3 107423 886 

Run 4 94530 785 

Run 5 94878 786 

Run 6 94693 786 

  Precision Accuracy 

MEAN 94701 98979 

STDEV 174 7351 

RSD% 0.18 7.43 

OBS/REF   1.63 

normalizing factor (normalized to DTS-1)   0.613 

normalized result   60710 

normalized OBS/REF   1.00 

SAMPLE Published 

Std value 

Total Fe as Fe2O3 Wt% Fe ± Fe ppm ± ppm 

Dunite, Twin Sisters 

Mountain DTS-2* 

7.76 0.21 54275 1469 

Run 1 61917 560 

Run 2 71788 641 

Run 3 63397 575 

Run 4 72856 658 

Run 5 72427 619 

Run 6 73922 660 

  Precision Accuracy 

MEAN 73069 67489 

STDEV 770 5629 

RSD% 1.05 8.34 

OBS/REF   1.24 

normalizing factor (normalized to DTS-1)   0.613 

normalized result   41396 

normalized OBS/REF   0.76 

SAMPLE Published 

Std value 

Total Fe as Fe2O3 Wt% Fe2O3 ± Fe ppm ± ppm 

Peridotite, Cedars 

CA Ultramafic 

Mass, PCC-1 ‡ 

8.35 5 58402 34971 

Run 1 74439 627 

Run 2 126579 1084 

Run 3 73596 618 

Run 4 108576 916 

Run 5 108790 913 

Run 6 108119 916 

  Precision Accuracy 

MEAN 108495 95798 

STDEV 343 26203 

RSD% 0.32 27.35 

OBS/REF   1.64 

normalizing factor (normalized to DTS-1)   0.613 

normalized result   58759 

normalized OBS/REF   1.01 

Precision mean is calculated using runs 4-5 because the sample containers were not moved between 

runs. Accuracy mean was based on runs 1-4 because the sample containers were shaken between each 

run. *Values taken from published USGS powdered standard reference values. ‡Flanagan [1976] mean 

values did not include error values, so an overestimated ±5% error was assigned. 
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Table 6: XRF Fe concentrations and normalized averages in ppm. 

 
Original data 

 

Sample name Run Fe (ppm) 
Fe Error 
(ppm) 

Avg. Conc. 
(ppm) 

Std Dev 
Avg Error 

(ppm) 
Normalized 
Avg. (ppm) 

HLSC_1 

1 46779 442 

46885 1600 445 28741 2 45341 439 

3 48536 454 

167_238 

1 47496 422 

48793 2599 430 29910 2 51786 455 

3 47099 414 

309_105_A 

1 52935 456 

51721 1626 463 31705 2 52355 477 

3 49874 455 

309_105_B 

1 48973 463 

59039 8827 552 36191 2 62686 583 

3 65458 612 

309_150 

1 54727 498 

56527 4022 513 34651 2 61135 553 

3 53719 488 

313_210 

1 93367 729 

82664 12004 664 50673 2 69685 574 

3 84939 687 

313_318 

1 51081 486 

53564 3735 507 32835 2 57860 543 

3 51752 493 

313_329 

1 73110 666 

68497 3851 838 41989 
2 73426 676 

3 66604 611 

4 60849 1398 

313_356 

1 75456 687 

60906 13442 570 37335 2 58312 551 

3 48949 472 
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Table 6 continued 

 
Original data 

 

Sample name Run Fe (ppm) 
Fe Error 
(ppm) 

Avg. 
Conc. 
(ppm) 

Std Dev 
Avg Error 

(ppm) 
Normalized 
Avg. (ppm) 

CROMO2_1A 

1 51628 509 

50250 1560 498 30803 2 48557 478 

3 50565 507 

CROMO2_2 

1 46999 443 

50515 3292 473 30966 2 53526 497 

3 51020 480 

CROMO2_3A 

1 75864 653 

61810 12459 535 37889 2 52121 453 

3 57444 498 

CROMO2_4A 

1 50800 483 

49412 1288 463 30290 2 49182 455 

3 48255 450 

PHL_1 

1 80763 614 

78265 2566 585 47976 2 78395 597 

3 75637 545 

PHL_2B 

1 58751 519 

58364 1006 517 35777 2 57222 509 

3 59120 523 

PHL_3 

1 77208 637 

77887 5112 638 47745 2 73148 597 

3 83305 680 

PHL_5 

1 68477 540 

68465 2298 538 41969 2 66161 523 

3 70757 550 
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Table 7: SEM-EDS elemental concentrations for interior of olivine grains (1) in 

313_329. See Figure 25 for larger image. 

 
313_329, mag 250X_BSE_ROI2_SEI  

Spot Element Wt% Χ
2 

Z Corr A Corr F Corr 
Calculated 

ppm 
*Element present? 

1 Si 63.06 2.41 1.01 1.426 1 630600 yes 

  Mg 36.93 0.67 0.984 1.096 0.982 369300 yes 

  Fe 0.01 1.05 1.136 1.016 1 100 yes 

  Total 100 1.17           

2 Si 61.81 2.81 1.01 1.441 1 618100 yes 

  Mg 38.18 1.44 0.984 1.094 0.982 381800 yes 

  Fe 0.01 1.06 1.137 1.016 1 100 yes 

  Total 100 0.98           

3 Si 63.58 1.26 1.01 1.419 1 635800 yes 

  Mg 36.4 0.4 0.984 1.097 0.982 364000 yes 

  Fe 0.01 0.34 1.136 1.016 1 100 yes 

  Total 100 1.02           

4 Mg 36.01 1.02 0.983 1.097 0.981 360100 yes 

  Fe 0.01 0.05 1.136 1.016 1 100 yes 

  Si 63.98 1.89 1.009 1.414 1 639800 yes 

  Total 100 0.84           

5 Si 71.95 1.1 1.007 1.329 1 719500 yes 

  Mg 23.12 1.04 0.981 1.112 0.975 231200 yes 

  Al 4.92 0.25 0.994 1.443 0.964 49200 yes 

  Fe 0.01 0.77 1.133 1.018 1 100 yes 

  Total 100 1.09           

6 Mg 22.64 0.37 0.981 1.112 0.975 226400 yes 

  Fe 0.01 0.39 1.133 1.018 1 100 yes 

  Si 71.46 3.76 1.007 1.337 1 714600 yes 

  Al 5.89 0.46 0.994 1.434 0.964 58900 yes 

  Total 100 1           

7 Mg 23.89 0.58 0.98 1.115 0.974 238900 yes 

  Si 76.1 2.97 1.006 1.27 1 761000 yes 

  Fe 0.01 2.25 1.133 1.019 1 100 yes 

  

Al            Not included in sum but present 
similar intensity peaks to other spots 
(5-9) in this grain. 

  Total 100 1.87           
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Table 7 continued. 
313_329, mag 250X_BSE_ROI2_SEI  

Spot Element Wt% Χ
2 

Z Corr A Corr F Corr 
Calculated 

ppm 
*Element present? 

8 Mg 22.54 0.22 0.98 1.114 0.974 225400 yes 

  Si 73.48 0.93 1.006 1.309 1 734800 yes 

  Fe 0.01 1.48 1.133 1.018 1 100 yes 

  Al 3.97 0.32 0.994 1.433 0.962 39700 yes 

  Total 100 1.06           

9 Mg 22.73 0.74 0.981 1.113 0.975 227300 yes 

  Si 72.22 3.96 1.007 1.326 1 722200 yes 

  Fe 0.01 0.24 1.133 1.018 1 100 yes 

  Al 5.05 0.31 0.994 1.436 0.964 50500 yes 

  Total 100 1.13           

10 Mg 37.95 1.08 0.984 1.094 0.982 379500 yes 

  Si 62.04 1.34 1.01 1.438 1 620400 yes 

  Fe 0.02 0.89 1.137 1.016 1 200 yes 

  Total 100 1.13           

*Element present is based on a second look at the intensity peaks. Elements labeled as 

no, did not actually have a peak and the values reported are often zero. Those labeled 

as “not likely” or “maybe” may have a presence, but the peaks could be counted as 

noise between other peaks.  Those labeled as yes have distinguished intensity peaks. 

See appendix Figure A19 for peak images. 
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Table 8: SEM-EDS elemental concentrations for the alteration mineral along the 

exterior of the olivine grains in Table 7 in 313_329. See Figure 26 for larger image. 

 
  

313_329_500Xzoom_BSE_extgrain 

Spot 
Elemen

t 
Wt% Χ

2 
Z Corr A Corr F Corr Calculated ppm *Element present? 

1 Mg 32.3 0.63 0.983 1.103 0.979 323300 yes 

  Fe 0.01 1.97 1.135 1.017 1 100 yes 

  Si 67.7 1.15 1.009 1.37 1 676700 yes 

  Total 100 0.99           

2 Mg 33.8 0.01 0.983 1.099 0.98 337700 yes 

  Fe 0 0.97 1.136 1.017 1 0 yes 

  Si 64.9 3.16 1.009 1.406 1 648800 yes 

  Al 1.35 1.3 0.996 1.636 0.971 13500 not likely 

  Total 100 1.15           

3 Mg 33.3 0.22 0.983 1.1 0.98 332700 yes 

  Fe 0.01 0.31 1.136 1.017 1 100 yes 

  Al 1.79 0.58 0.996 1.627 0.971 17900 not likely 

  Si 64.9 3.22 1.009 1.407 1 649300 yes 

  Total 100 0.96           

4 Mg 97.2 0.08 1 1.002 0.999 971700 yes 

  Fe 0.01 1.51 1.154 1.005 1 100 yes 

  Al 2.81 3.66 1.013 2.973 1 28100 not likely 

  
Si            Not included in wt%, but present 

similar to other spots (1-3 & 5-7) 

  Total 100 10.72           

5 Mg 34 0.36 0.983 1.1 0.98 339600 yes 

  Fe 0 1 1.136 1.017 1 0 yes 

  Al 0 0.3 0.996 1.641 0.97 0 not likely 

  Si 66 4.99 1.009 1.389 1 660300 yes 

  Total 100 0.75           

6 Mg 33 1.16 0.983 1.101 0.98 329500 yes 

  Fe 0 2.46 1.135 1.017 1 0 yes 

  Al 0.59 2.64 0.996 1.622 0.97 5900 not likely 

  Si 66.5 2.89 1.009 1.386 1 664600 yes 

  Total 100 0.86           
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Table 8 continued.  

*Element present is based on a second look at the intensity peaks. Elements labeled as 

no, did not actually have a peak and the values reported are often zero. Those labeled 

as “not likely” or “maybe” may have a presence, but the peaks could be counted as 

noise between other peaks.  Those labeled as yes have distinguished intensity peaks. 

See appendix Figure A20 for peak images. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

313_329_500Xzoom_BSE_extgrain 

Spot 
Elemen

t 
Wt% Χ

2 
Z Corr A Corr F Corr Calculated ppm *Element present? 

7 Mg 34.3 1.33 0.983 1.1 0.98 342600 yes 

  Fe 0 0.83 1.136 1.017 1 0 yes 

  Al 0.19 0.68 0.996 1.646 0.971 1900 not likely 

  Si 65.5 4.73 1.009 1.396 1 655400 yes 

  Total 100 1.01           

8 Si 54.8 3.62 0.999 1.498 1 548400 yes 

  Mg 35.6 1.57 0.973 1.286 0.986 356000 yes 

  Fe 9.56 0.34 1.124 1.014 1 95600 yes 

  Total 100 1.24           

9 Fe 11.1 0.9 1.122 1.014 1 111000 yes 

  Si 54.2 0.29 0.996 1.507 1 541700 yes 

  Mg 34.7 0.4 0.97 1.326 0.987 347200 yes 

  Total 100 1.01           

10 Si 66.7 1.25 1.009 1.381 1 667200 yes 

  Mg 33.3 0.92 0.983 1.101 0.98 332700 yes 

  Fe 0.01 0.91 1.135 1.017 1 100 yes 

  Total 100 1.11           
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Table 9: SEM-EDS elemental concentrations for olivine in 313_329. Image is at 250x 

shows serpentine and magnetite in veins and olivine grains. Pit is from ICPMS laser 

oblation (data in appendix). See Figure 27 for larger image. 

 
313_239_250X_BSE_poss_olv_1_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

1 Mg 37.5 0.24 0.984 1.094 0.982 374500 yes 

  Ca 0   1.079 1.165 1 0 no 

  Cr 0   1.119 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.43 1.137 1.016 1 100 yes 

  Si 61.1 0.2 1.01 1.453 1 610700 yes 

  Al 1.48 3.12 0.997 1.705 0.974 14800 yes 

  Total 100 0.85           

2 Mg 37.8 0.43 0.984 1.097 0.983 378200 yes 

  Ca 0.42   1.079 1.164 1 4200 no 

  Cr 0   1.118 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 1.94 1.136 1.016 1 100 yes 

  Si 60.6 1.2 1.01 1.455 1 605900 yes 

  Al 1.16 0.32 0.997 1.714 0.975 11600 yes 

  Total 100 0.81           

3 Mg 40.3 1.7 0.985 1.091 0.983 403400 yes 

  Ca 0   1.08 1.164 1 0 no 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.025 1 0 no 

  Fe 0.01 0.51 1.137 1.016 1 100 yes 

  Si 59.7 3.63 1.011 1.467 1 596600 yes 

  Al 0 6.1 0.998 1.76 0.976 0 not likely 

  Total 100 0.97           

4 Mg 39.6 0.48 0.984 1.093 0.983 395800 yes 

  Ca 0.26   1.08 1.163 1 2600 no 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 1.17 1.137 1.016 1 100 yes 

  Si 59 0.5 1.01 1.476 1 589500 yes 

  Al 1.21 1.56 0.998 1.746 0.976 12100 not likely 

  Total 100 0.79           
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Table 9 continued  

313_239_250X_BSE_poss_olv_1_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

5 Mg 39.1 0.18 0.984 1.092 0.983 391300 yes 

  Ca 0   1.08 1.165 1 0 no 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 1.43 1.137 1.016 1 100 yes 

  Si 60.5 0.21 1.01 1.458 1 604900 yes 

  Al 0.37 0.8 0.998 1.737 0.975 3700 not likely 

  Total 100 0.63           

6 Mg 37.8 0.84 0.984 1.098 0.983 377900 yes 

  Ca 0.55   1.079 1.164 1 5500 no 

  Cr 0   1.118 1.039 1 0 no 

  Mn 0   1.127 1.026 1 0 no 

  Fe 0.01 1.37 1.136 1.016 1 100 yes 

  Si 60.8 0.25 1.01 1.451 1 607900 yes 

  Al 0.86 0.6 0.997 1.715 0.975 8600 yes 

  Total 100 0.95           

7 Mg 38.7 0.22 0.984 1.093 0.983 387400 yes 

  Ca 0.1   1.079 1.164 1 1000 no 

  Cr 0.02 1.14 1.119 1.038 1 200 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.71 1.137 1.016 1 100 yes 

  Si 59.8 3.99 1.01 1.468 1 597700 yes 

  Al 1.37 1.76 0.997 1.73 0.975 13700 not likely 

  Total 100 1.08           

*Element present is based on a second look at the intensity peaks. Elements labeled as 

no, did not actually have a peak and the values reported are often zero. Those labeled 

as “not likely” or “maybe” may have a presence, but the peaks could be counted as 

noise between other peaks.  Those labeled as yes have distinguished intensity peaks. 

See appendix Figure A21 for peak images. 

  



 

60 

 

 

Table 10: SEM-EDS elemental concentrations of pyroxene grains in 313_329. See 

Figure 28 for large image. 

 
313_239_150X_BSE_poss_olv_6_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

1 Si 60.2 0.18 1.01 1.462 1 602100 yes 

  Al 0.62 1.25 0.998 1.737 0.975 6200 not likely 

  Ca 0   1.08 1.164 1 0 no 

  Mg 39.2 1.51 0.984 1.092 0.983 391600 yes 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.49 1.137 1.016 1 100 yes 

  Total 100 0.6           

2 Mg 38.6 0.62 0.984 1.094 0.983 385800 yes 

  Ca 0.02   1.079 1.165 1 200 no 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.8 1.137 1.016 1 100 yes 

  Si 61.4 0.34 1.01 1.446 1 613900 yes 

  Al 0 1.3 0.997 1.727 0.974 0 not likely 

  Total 100 0.62           

3 Mg 38.6 0.83 0.984 1.094 0.983 385900 yes 

  Ca 0.2   1.079 1.164 1 2000 no 

  Cr 0   1.119 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.41 1.137 1.016 1 100 yes 

  Si 60.2 4.29 1.01 1.461 1 602400 yes 

  Al 0.96 1.75 0.997 1.728 0.975 9600 not likely 

  Total 100 0.66           

4 Mg 36.2 0.47 0.984 1.097 0.982 362400 yes 

  Ca 0.09   1.079 1.167 1 900 no 

  Cr 0   1.118 1.039 1 0 no 

  Mn 0   1.127 1.026 1 0 no 

  Fe 0.01 1.23 1.136 1.016 1 100 yes 

  Si 63.1 5.64 1.01 1.426 1 630600 yes 

  Al 0.6 0.5 0.997 1.683 0.973 6000 not likely 

  Total 100 0.96           
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Table 10 continued. 

313_239_150X_BSE_poss_olv_6_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

5 Mg 37.8 0.13 0.984 1.097 0.983 378100 yes 

  Ca 0.49   1.079 1.164 1 4900 no 

  Cr 0   1.118 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 1.46 1.136 1.016 1 100 yes 

  Si 60.1 0.11 1.01 1.461 1 601400 yes 

  Al 1.55 1.15 0.997 1.714 0.975 15500 maybe 

  Total 100 0.69           

6 Mg 37.9 0.11 0.984 1.094 0.982 378900 yes 

  Ca 0   1.079 1.165 1 0 no 

  Cr 0   1.119 1.038 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.29 1.137 1.016 1 100 yes 

  Si 61.2 0.18 1.01 1.451 1 611600 yes 

  Al 0.93 0.4 0.997 1.713 0.974 9300 not likely 

  Total 100 0.52           

7 Mg 37.9 0.45 0.984 1.097 0.983 379200 yes 

  Ca 0.57   1.079 1.164 1 5700 no 

  Cr 0   1.119 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 0.6 1.137 1.016 1 100 yes 

  Si 59.3 0.28 1.01 1.471 1 593300 yes 

  Al 2.17 4.36 0.997 1.717 0.976 21700 not likely 

  Total 100 0.65           

8 Mg 37.2 0.31 0.984 1.096 0.982 372000 yes 

  Ca 0.09   1.079 1.166 1 900 no 

  Cr 0   1.118 1.039 1 0 no 

  Mn 0   1.128 1.026 1 0 no 

  Fe 0.01 2.49 1.136 1.016 1 100 yes 

  Si 62.7 0.55 1.01 1.429 1 627100 yes 

  Al 0 1.2 0.997 1.701 0.973 0 no 

  Total 100 0.69           

*Element present is based on a second look at the intensity peaks. Elements labeled as 

no, did not actually have a peak and the values reported are often zero. Those labeled 

as “not likely” or “maybe” may have a presence, but the peaks could be counted as 

noise between other peaks.  Those labeled as yes have distinguished intensity peaks. 

See appendix Figure A22 for peak images. 
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Table 11: SEM-EDS major element concentrations for a spinel grain in 313_329. 

Image is at 150x shows a spinel grain surrounded by serpentine and olivine grains. Pit 

is from ICPMS laser oblation (data in appendix). See Figure 29 for larger image. 

 
313_239_150X_BSE_spinel4_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

1 Mg 15.8 0.78 0.988 1.058 0.957 158400 yes 

  Fe 0.03 1.09 1.141 1.012 1 300 yes 

  Si 5.1 1.55 1.014 2.395 1 51000 yes 

  Al 78.9 2.38 1.001 1.275 0.999 789400 yes 

  Cr 0.05 2.7 1.123 1.031 1 500 yes 

  Mn 0 2.57 1.132 1.02 1 0 not likely 

  Ca 0.03   1.084 1.144 1 300 no 

  Total 100 0.75           

2 Mg 17.1 0.16 0.988 1.058 0.96 170900 yes 

  Cr 0.06 1.63 1.123 1.031 1 600 yes 

  Fe 0.03 1.81 1.141 1.012 1 300 yes 

  Si 6 3.95 1.014 2.377 1 60000 yes 

  Al 76.8 3.6 1.001 1.298 0.998 768200 yes 

  Mn 0 2.86 1.132 1.02 1 0 not likely 

  Ca 0   1.084 1.144 1 0 no 

  Total 100 1.09           

3 Mg 16.1 0.52 0.988 1.056 0.957 160800 yes 

  Cr 0.07 1.71 1.123 1.031 1 700 no 

  Mn 0 1.37 1.133 1.02 1 0 not likely 

  Fe 0.03 3.33 1.141 1.012 1 300 yes 

  Si 3.52 0.1 1.014 2.423 1 35200 yes 

  Al 80.3 1.02 1.002 1.279 0.999 803100 yes 

  Ca 0   1.084 1.143 1 0 no 

  Total 100 0.62           

4 Cr 17.4 2.97 1.065 1.02 0.943 174200 yes 

  Al 43.1 2.23 0.947 1.776 0.999 431200 yes 

  Mg 10.9 0.14 0.934 1.944 0.988 109000 yes 

  Si 1.95 1.59 0.959 2.134 0.999 19500 yes 

  Fe 26.6 1.29 1.082 1.033 1 266000 yes 

  Total 100 1.07           
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Table 11 continued 

313_239_150X_BSE_spinel4_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

5 Mg 14.5 0.99 0.988 1.061 0.957 145400 yes 

  Ca 0   1.083 1.146 1 0 no 

  Cr 0.05 4.9 1.123 1.032 1 500 yes 

  Mn 0 1.54 1.132 1.021 1 0 not likely 

  Fe 0.03 0.92 1.141 1.012 1 300 yes 

  Si 8.16 2.25 1.014 2.346 1 81600 yes 

  Al 77.2 3.24 1.001 1.254 0.998 772200 yes 

  Total 100 0.64           

6 Mg 16.5 0.19 0.988 1.061 0.959 164900 yes 

  Ca 0.4   1.083 1.143 1 4000 no 

  Cr 0.07 1.84 1.123 1.032 1 700 yes 

  Mn 0 3.79 1.132 1.021 1 0 not likely 

  Fe 0.03 1.15 1.141 1.012 1 300 yes 

  Si 5.3 6.95 1.014 2.385 1 53000 yes 

  Al 77.7 4.1 1.001 1.289 0.999 777200 yes 

  Total 100 1.05           

7 Mg 15.8 0.14 0.988 1.059 0.957 158100 yes 

  Ca 0   1.084 1.144 1 0 no 

  Cr 0.19 129.5 1.123 1.031 1 1900 yes 

  Mn 0.01 10.3 1.132 1.02 1 100 not likely 

  Fe 0.02 3.92 1.141 1.012 1 200 yes 

  Si 4.38 0.7 1.014 2.407 1 43800 yes 

  Al 79.6 4.76 1.001 1.276 0.999 795900 yes 

  Total 100 2.99           

8 Mg 17.4 0.03 0.988 1.061 0.96 173700 yes 

  Ca 0.44   1.083 1.143 1 4400 no 

  Cr 0.06 1.73 1.123 1.032 1 600 yes 

  Mn 0 5.73 1.132 1.021 1 0 not likely 

  Fe 0.03 0.86 1.141 1.012 1 300 yes 

  Si 4.69 0.05 1.014 2.393 1 46900 yes 

  Al 77.4 3.03 1.001 1.305 0.999 774100 yes 

  Total 100 0.54           

9 Mg 18.2 0.59 0.988 1.063 0.961 181600 yes 

  Ca 0.67   1.083 1.142 1 6700 no 

  Cr 0.06 1.78 1.123 1.032 1 600 yes 

  Mn 0 2.14 1.132 1.021 1 0 not likely 

  Fe 0.03 0.55 1.141 1.012 1 300 yes 

  Si 5.42 1.3 1.014 2.375 1 54200 yes 

  Al 75.7 3.29 1.001 1.321 0.999 756700 yes 

  Total 100 0.52           
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Table 11 continued  

313_239_150X_BSE_spinel4_SEI 

Spot Element Wt% Χ
2
 Z Corr A Corr F Corr Calculated ppm *Element present? 

10 Cr 17.4 2.17 1.045 1.036 0.939 173700 yes 

  Fe 33.3 0.08 1.062 1.043 1 332500 yes 

  Al 22.7 1.46 0.928 1.882 0.997 227200 yes 

  Si 7.57 0.31 0.941 1.88 0.998 75700 yes 

  Mg 7.46 0.09 0.916 2.209 0.993 74600 yes 

  Ca 11.6 2.59 1.007 1.088 0.975 116300 yes 

  Total 100 1.02           

*Element present is based on a second look at the intensity peaks. Elements labeled as 

no, did not actually have a peak and the values reported are often zero. Those labeled 

as “not likely” or “maybe” may have a presence, but the peaks could be counted as 

noise between other peaks.  Those labeled as yes have distinguished intensity peaks. 

See appendix Figure A23 for peak images. 
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Table 12: Mössbauer parameters for Coast Range Ophiolite and Zambales Ophiolite 

samples.  

Sample HLSC_1‡ 167_238‡ 309_105_A 309_150 313_210 

Sextet 1 

Magnetite 

IS 0.27 0.27   0.26   

QS -0.04 -0.01   -0.01   

W 0.24 0.230*   0.23   

A 25 12   12   

Bhf 490.1 490.3   489.6   

Sextet 2 

Magnetite 

IS 0.67 0.67   0.67   

QS -0.01 -0.03   -0.02   

W 0.28 0.26   0.30   

A 38 18   22   

Bhf 459.2 459.7   459.7   

Ferric 1 

Silicate 

IS 0.33 0.25 0.38 0.38 0.37 

QS 0.69 0.47 0.71 0.64 0.71 

W 0.72 0.51 0.41 0.56 0.67 

A 14 40 18 16 36 

Ferric 2 

Silicate 

IS     0.45     

QS     1.16     

W     0.81     

A     11     

Ferrous 1 

Silicate 

IS 1.16 1.14 1.14 1.15 1.14 

QS 2.67 2.72 2.73 2.71 2.70 

W 0.37 0.31 0.25 0.33 0.24 

A 23 9 70 50 65 

Ferrous 2 

Silicate 

IS   1.45       

QS   1.20       

W   0.46       

A   21       

X
2
 849.88 1690.49 484.52 2096.67 1228.27 

|X
2
| 1.6593 3.3028 0.9456 4.0934 2.3749 

Sum areas 100 100 100 100 100 

Magnetite 63 30 0 34 0 

%Fe 
3+ 

  14 40 30 16 36 

%Fe 
2+ 

  23 30 70 50 65 

%Fe 
3+ 

 excluding 

magnetite 
39 57 30 24 36 
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Table 12 continued 

Sample 313_318 313_329 313_356 CROMO2_1A‡ CROMO2_2‡ 

Sextet 1 

Magnetite 

IS       0.25 0.24 

QS       -0.02 -0.04 

W       0.30 0.30 

A       11 10 

Bhf       488.9 489.3 

Sextet 2 

Magnetite 

IS       0.69 0.67 

QS       -0.01 -0.02 

W       0.32 0.30 

A       16 12 

Bhf       459.6 459.7 

Ferric 1 

Silicate 

IS 0.36 0.35 0.37 0.35 0.34 

QS 0.68 0.52 0.64 0.69 0.66 

W 0.56 0.40 0.45 0.60 0.56 

A 49 25 41 35 28 

Ferric 2 

Silicate 

IS   0.36 0.47     

QS   1.24 1.17     

W   0.65 0.61     

A   17 13     

Ferrous 1 

Silicate 

IS 1.14 1.14 1.14 1.14 1.14 

QS 2.71 2.71 2.62 2.69 2.67 

W 0.23* 0.23* 0.33 0.30 0.31 

A 51 58 28 38 50 

Ferrous 2 

Silicate 

IS     1.13     

QS     2.78     

W     0.25     

A     19     

X
2
 512.83 483.88 1283.09 1284.9 953.84 

|X
2
| 1.0018 0.9459 2.499 2.5003 1.8534 

Sum areas 100 100 100 100 100 

Magnetite 0 0 0 26 22 

%Fe 
3+ 

  49 42 54 35 28 

%Fe 
2+ 

  51 58 46 38 50 

%Fe 
3+ 

 excluding  

magnetite 
49 42 54 48 36 
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Table 12 continued 

Sample CROMO2_3A‡ CROMO2_4A‡ PHL_1‡ PHL_2B‡ PHL_3 PHL_5‡ 

Sextet 1 

Magnetite 

IS 0.28 0.27 0.30 0.33   0.29 

QS 0.00 -0.01 -0.02 -0.01   -0.02 

W 0.30 0.23 0.35 0.35   0.35 

A 10 12 19 6   21 

Bhf 489.9 489.4 498.6 501.5   495.5 

Sextet 2 

Magnetite 

IS 0.67 0.67 0.88 1.07   0.72 

QS -0.01 0.00 0.16 0.23   -0.03 

W 0.30 0.30 0.30 0.30   0.30 

A 12 21 8 6   9 

Bhf 458.5 459.0 476.1 499.5   464.3 

Ferric 1 

Silicate 

IS 0.35 0.36 0.34 0.35 0.35 0.35 

QS 0.65 0.67 0.66 0.68 0.56 0.65 

W 0.55 0.61 0.59 0.63 0.36 0.59 

A 29 32 42 54 45 47 

Ferric 2 

Silicate 

IS         0.42   

QS         1.25   

W         0.66   

A         20   

Ferrous 1 

Silicate 

IS 1.14 1.13 1.15 1.14 1.14 1.14 

QS 2.66 2.69 2.82 2.69 2.13 2.69 

W 0.31 0.31 0.37 0.37 0.26 0.32 

A 49 35 31 34 10 24 

Ferrous 2 

Silicate 

IS         1.13   

QS         2.78   

W         0.23*   

A         24   

X
2
 1334.05 15229.04 1218.41 2457.07 577.59 1395.6 

|X
2
| 2.5859 29.1855 2.3508 0.7119 1.1233 2.6954 

Sum areas 100 100 100 100 100 100 

Magnetite 22 33 27 12 0 30 

%Fe 
3+ 

  29 32 42 54 65 47 

%Fe 
2+ 

  49 35 31 34 35 24 

%Fe 
3+ 

 excluding  

magnetite 
37 47 57 62 65 66 

Isomer shift (IS) is in mm/s; Quadrupole splitting (QS) is in mm/s; Peak width (W) is 

in mm/s; magnetic hyperfine field (Bhf) is in tesla; % Area (A) under the curve; CHI-

squared (Χ
2
), and normalized CHI-squared (|Χ

2
|). Silicates are serpentine, pyroxene, 

and/or chlorite. *Indicates restricted (fixed) parameter. ‡MOSS curves fit by M.Nelms 

in Dyar Lab at Mout Holyoke College and rest were fit by A.Stander. 

 

  



 

 

 

6
8 

Table 13: Summary table of Fe concentration (ppm), Fe valence states in percent from MOSS, and possible hydrogen gas yield per 

1km
3
 of rock and per the total volume of the peridotite units of the ophiolite. 

Sample 

Normalized 

Fe average 

conc (ppm) 

Mössbauer results H gas (Tmoles) per 1 km
3
 Volume 

ophiolite 

peridotite 

(km
3
)** 

H gas (Tmoles) per volume oph. 

% 

Magnetite 

% Ferric 

(Fe
3+

) 

% Ferrous 

(Fe
2+

) 

Released 

(‡Fe
3+

)* 

To be released 

(†Fe
2+

)* 

Released 

(‡Fe
3+

) 

To be released 

(†Fe
2+

) 

HLSC_1 28741 63 14 23 0.29 0.11 7730 2235 872 

167_238 29910 30 40 30 0.32 0.11 7730 2481 829 

309_105_A 31705 0 30 70 0.17 0.20 7730 1308 1540 

309_150 34651 34 16 50 0.24 0.19 7730 1850 1473 

313_210 50673 0 36 65 0.32 0.29 7730 2490 2262 

313_318 32835 0 49 51 0.29 0.15 7730 2223 1161 

313_329 41989 0 42 58 0.32 0.22 7730 2450 1681 

313_356 37335 0 54 46 0.36 0.16 7730 2767 1200 

CROMO2_1A 30803 26 35 38 0.29 0.13 7730 2261 1001 

CROMO2_2 30966 22 28 50 0.24 0.16 7730 1825 1231 

CROMO2_3A 37889 22 29 49 0.30 0.19 7730 2289 1478 

CROMO2_4A 30290 33 32 35 0.29 0.13 7730 2258 967 

PHL_1 47976 27 42 31 0.51 0.17 1455 747 251 

PHL_2B 35777 12 54 34 0.40 0.12 1455 581 175 

PHL_3 47745 0 65 35 0.56 0.15 1455 814 215 

PHL_5 41969 30 47 24 0.50 0.13 1455 724 184 

Hydrogen values are calculated assuming that all of the peridotite units of the ophiolite have the same composition as the sample. Tmoles (10
12

 = tera T) 

† To be released values use the total % Fe
2+

 in sample (calculated using MOSS Fe
2+

 + 1/3 of the % magnetite), and it is assumed that the Fe(II) in the system can 

still react with water to produce hydrogen. ‡ Released values use the total % Fe
3+

 in sample (calculated using MOSS Fe
3+

 + 2/3 of the % magnetite), and that all 

of the Fe(III) has reacted with water to produce hydrogen.  * Normalized volume to 1km
3
 to eliminate volume as a controlling factor of hydrogen production 

from the ZO and CRO.  ** Estimated volume of the peridotite units in the CRO [Area (~3865km
2
)—Carnevale, 2013; depth (~2km)—Coleman, 2000] and the 

ZO [Area (~485km
2
)—Abrajano and Pasteris, 1989; depth (~3km)—Hawkins and Evans, 1983]. Values in FeO wt% are in the appendix, Table A7. 
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Table 14: Summary table of Fe concentration (ppm), and possible hydrogen gas yield per 1km
3
 of rock calculated using an 

approximate density (2.68g/cm
3
), and per the total volume of the peridotite units of the ophiolite. 

Sample 

Normalized 

Fe average 

conc (ppm) 

moles H gas per 1 kg rock Density 

(g/cm
3
) 

*** 

H gas (Tmoles) per 1 km
3
 Volume 

ophiolite 

peridotite 

(km
3
)** 

H gas (Tmoles) per volume oph. 

Released 

(‡Fe
3+

)* 

To be released 

(†Fe
2+

)* 

Released 

(‡Fe
3+

)* 

To be 

released 

(†Fe
2+

)* 

Released 

(‡Fe
3+

) 

To be 

released 

(†Fe
2+

) 

HLSC_1 28741 0.29 0.11 2.68 0.77 0.30 7730 5989 2336 

167_238 29910 0.32 0.11 2.68 0.86 0.29 7730 6650 2222 

309_105_A 31705 0.17 0.20 2.68 0.45 0.53 7730 3506 4128 

309_150 34651 0.24 0.19 2.68 0.64 0.51 7730 4959 3947 

313_210 50673 0.32 0.29 2.68 0.86 0.78 7730 6673 6062 

313_318 32835 0.29 0.15 2.68 0.77 0.40 7730 5958 3111 

313_329 41989 0.32 0.22 2.68 0.85 0.58 7730 6566 4505 

313_356 37335 0.36 0.16 2.68 0.96 0.42 7730 7415 3217 

CROMO2_1A 30803 0.29 0.13 2.68 0.78 0.35 7730 6059 2684 

CROMO2_2 30966 0.24 0.16 2.68 0.63 0.43 7730 4891 3298 

CROMO2_3A 37889 0.30 0.19 2.68 0.79 0.51 7730 6136 3960 

CROMO2_4A 30290 0.29 0.13 2.68 0.78 0.34 7730 6051 2592 

PHL_1 47976 0.51 0.17 2.68 1.38 0.46 1455 2003 674 

PHL_2B 35777 0.40 0.12 2.68 1.07 0.32 1455 1558 470 

PHL_3 47745 0.56 0.15 2.68 1.50 0.40 1455 2182 576 

PHL_5 41969 0.50 0.13 2.68 1.33 0.34 1455 1941 494 

Hydrogen values are calculated assuming that all of the peridotite units of the ophiolite have the same composition as the sample. Tmoles (10
12

 = tera T) 

† To be released values use the total % Fe
2+

 in sample (calculated using MOSS Fe
2+

 + 1/3 of the % magnetite), and it is assumed that the Fe(II) in the system can 

still react with water to produce hydrogen. ‡ Released values use the total % Fe
3+

 in sample (calculated using MOSS Fe
3+

 + 2/3 of the % magnetite), and that all 

of the Fe(III) has reacted with water to produce hydrogen.  * Normalized volume to 1km
3
 to eliminate volume as a controlling factor of hydrogen production 

from the ZO and CRO.  ** Estimated volume of the peridotite units in the CRO [Area (~3865km
2
)—Carnevale, 2013; depth (~2km)—Coleman, 2000] and the 

ZO [Area (~485km
2
)—Abrajano and Pasteris, 1989; depth (~3km)—Hawkins and Evans, 1983]  ***Average density (g/cm^3) of variably serpentinized 

hazburgites and dunites taken from Andreani et al. 2013B and Klein et al., 2013.   
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Figure 1. Map of field locations in the Philippines and CA, USA (made from images from Google map data [2014] and their image 

data providers—TerraMetrics and NASA [2014]). Approximate locations for ophiolites (yellow) and field sites (red dots) in the 

Zambales Ophiolite (ZO) in the Poon Bato region of the Philippines [Yumul, 2007] and the Coast Range Ophiolite (CRO) near Lower 

Lake, CA, USA [Shervais et al., 2005]. See appendix Figures A1 and A2 for geologic maps. 
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Figure 2. Global ophiolite distribution map adapted from Vaughan and Scarrow [2003]. Green marks are approximate locations of 

ophiolites Eocene to Cambrian in age (~34-540Ma). Pink lines are approximate locations of modern tectonic plate boundaries [USGS, 

2011, tectonic plate boundary graphic]. Arrows indicate locations of the Coast Range Ophiolite (yellow) and Zambales Ophiolite 

(red). Both ophiolites are located on/very close to modern plate boundries.  
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Ocean floor Ophiolite sequence 

 

Sediments Sedimentary rocks 

O
ce

an
 C

ru
st

 
Pillow basalt Mafic volcanic complex 

Dikes Mafic sheeted dike complex 

Massive 

Gabbro 

 

 

Sheeted Gabbro 

Gabbroic complex 

U
p
p
er

 M
an

tl
e 

Peridotite Ultramafic complex 

 

Figure 3. Simplified ophiolite sequence adapted from Coleman [1981] and Dilek 

[2003]. 
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Figure 4. Pictures of samples before being powdered. (a) HLSC_1; (b) 167_238; (c) 

309_105_A; (d) 309_150; (e) 313_210; (f) 313_318; (g) 313_329; (h) 313_356; (i) 

CROMO2_1A; (j) CROMO2_2; (k) CROMO2_3A; (l) CROMO2_4A; (m) PHL_1; 

(n) PHL_2B; (o) PHL_3; (p) PHL_5. Except for a,d, f, and g, the sample pictured is a 

smaller piece(s) of sample that was powdered and not the whole sample. 
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Figure 5. Representative XRD diffractograms with 2θ on the x-axis and intensity on the y-axis and with their peaks labeled according 

to the mineral constituents and corresponding Miller indices with labeled peaks. (A) CRO core sample from CROMO 2_4A and (B) 

ZO hand sample PHL_2 indicate serpentine, magnetite, and other clay mineral. Smectite clays (Smectite), magnetite (mag), serpentine 

(serp) including lizardite (liz), and antigorite (ant). Numbers (001) indicate the Miller indices associated with that peak. 
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Figure 6. XRD diffractograms with 2θ on the x-axis and intensity on the y-axis for ZO samples showing similarities and small 

variations in mineral assemblages among samples for a given locality. 
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Figure 7. XRD diffractograms with 2θ on the x-axis and intensity on the y-axis for CROMO 2 samples showing similarities and slight 

differences between samples. 
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Figure 8. XRD diffractograms with 2θ on the x-axis and intensity on the y-axis for Homestake Mine prospecting cores 309, 313, and 

167. (A) Diffractograms for 313_356, 313_329, 313_210, 309_150, 309_105, and 167_238 are stacked. (B) Diffractogram for 

313_318 has a greater intensity than the other diffractograms. Serpentine (serp), magnetite (mag), spinel (sp), and possibly olivine 

(ol). 
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Figure 9.  Thin section images of Hyphus-Little Stony Creek confluence float 

(HLSC_1) in (a) plane polarized light (ppl) and (b) cross polarized light (xpl). 

Serpentine (serp) (possibly antigorite?), magnetite (mag) and/or other spinel, and 

possibly brucite (yellow-orange in xpl) veins are visible. The brown “fuzz” around 

magnetite may be another Fe-oxide such as hematite or clay mineral like smectite. 

Scale bar represents 500 μm. 
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Figure 10. Thin section images 313_210 include serpentine (serp) (a-d), magnetite 

(mag), chlorite(?) (chl)(a,b), olivine (ol)(c,d) and a brown Fe-oxide (a-d). Sections are 

in plane-polarized light (left) and cross-polarized light (right). a-c are at 2x (scale bar 

represents 500μm) and d is a 10x (scale bar 100μm) section of c in the red box. The 

Fe-oxide phase may be a reaction rind that protected the interior of the large olivine 
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grain (c) as fluids flowed around it; or it could be further oxidation of the magnetite 

into hematite. The presence of chlorite in small volumes is not unexpected. Wetzel and 

Shock [2000] conducted theoretical experiments at 500 bars and 350 and 400°C, 

which predict that serpentinization should yield 10 to 25 vol% of chlorite, considering 

peridotites of diverse starting compositions.  
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Figure 11. Thin section images of 313_318 include serpentine (serp) (a-c), magnetite 

(mag), magnetite and/or spinel group (mag/sp) (a-c), and olivine (ol)(b,c). The 

yellowing of serpentine in ppl may be due to and yellow grains in xpl (a-b) may be 

brucite. Sections are in plane-polarized light (ppl) (left) and cross-polarized light 

(xpl)(right). A-b are at 2x (scale bar is 500μm) and c is a 10x (scale bar is 100μm) 

section of b (red box). The yellow serpenitine veins and mag/sp grain in (a) appear 

fractured indicating that there were multiple stages of cracking and serpentinization—

as would be expected throughout subseafloor serpentinization, during uplift, and post-

emplacement alteration. Original mineral grain boundaries are visible as crack-like 

features in serpentine surrounding the relict olivine in (c). 
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Figure 12. Thin section images of 313_329 in (a) ppl and (b) xpl. Serpentine (serp) 

mesh texture (possibly lizardite), spinel (sp), orthopyroxene (opx), and olivine (ol) are 

visible. The yellowing of serpentine in ppl may be due to brucite and yellow grains in 

xpl may be brucite. Blue spots in ppl are dyed epoxy. 3 pits are visible from ICP-MS 

laser ablation. Scale bar represents 500μm. Cpx was visible elsewhere on the slide.   
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Figure 13. SEM thin section images of 313_329. Serpentine (gray background in a-d) 

spinel (b), pyroxene (px), and olivine (c-d) are visible. (a) large grains maybe 

pyroxenes. The light-colored microcrystals ~10μm wide seen in veins are probably 

magnetite (a, c, d). The light colored areas are more reflective to electrons and more 

metal-rich. SEM-EDS backscatter images are able to show slight variations in 

composition (like zoning in veins) that cannot be seen with a light microscope. Pits (b 

& d) are from ICP-MS laser ablation (Table A12, Figures A40-42). SEM-EDS 

chemical data for a-d are reported in Tables 7-10.  
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Figure 14. Thin section images of 313_356 in plane polarized light and cross 

polarized light. Serpentine (serp), magnetite (mag) and/or spinel (sp), pyroxene (px), 

garnet(?)(gt) and other Fe-oxide veins and around grains are visible. The yellowing of 

serpentine in ppl may be due to brucite and yellow grains in xpl may be brucite. Scale 

bar represents 500μm. The garnet (andradite) indicates that this sample may have 

undergone metamorphism prior to serpentinization because garnet is generally thought 

of as a higher pressure and temperature mineral. The garnet grains are not well formed 

crystals, which mean that they could be remnants from the original peridotite body. 

This sample seems to have a more complicated history than some of the other samples 

as indicated by the garnet and lack of serpentine veins or classic serpenitinite mesh 

textures seen in other samples.  
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Figure 15. Thin section images of CROMO 2 at shallower depths (~2-3m) than the 

presented samples confirm the presence of serpentine (possibly antigorite and 

lizardite), magnetite, and other spinel group minerals. Magnetite seems concentrated 

on the outside edges of veins and also scattered throughout the other parts of the thin 

section. (a) plane polarized light and (b) cross polarized light. Serpentine (serp), 

magnetite (mag), and spinel (sp) are visible. Scale bar represents 500μm  
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Figure 16. Thin section images of PHL_1 in plane polarized light and cross polarized 

light. Serpentine (possibly lizardite in the mesh texture and smaller, cross-cutting 

veins possibly chrysotile) (a-c), olivine (bright and colorful under xpl)(a-c), and spinel 

(sp)(a-c) are visible. Scale bar represents 500μm.  
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Figure 17. Thin section images of PHL_2 in (a) plane polarized light and (b) cross 

polarized light. Serpentine (serp), olivine (ol), clinopyroxene (cpx), and spinel (sp) are 

visible. Scale bar represents 500μm. Cpx grains are larger in size than the olivine 
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grains and highly fractured. Some of the serpentine veins cut through the cpx grains 

and show zoning in plane-polarized light between light-colored and rust-colored (Fe-

oxide) serpentine. Spinel is often located in veins or on the edges of cpx grains and is 

likely to be alteration minerals that form as the olivine and cpx serpentinize. 
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Figure 18. Thin section images of serpentine, cpx, and spinel in PHL_3 in (a) plane 

polarized light (10x, scale bar represents 100μm.), (b) cross polarized light, and (c) 

SEM backscatter image. The yellowing of serpentine in ppl may be due to brucite. 

Detail of a spinel with an interesting shape that appears to be bisecting a cpx grain. 

The spinel also has inclusions of the cpx grain in legs of the spinel, which indicates 

that the cpx grain existed before the spinel, which, therefore, is an alteration mineral. 

The SEM BSE image of the spinel shows micro-cracks in the spinel and variations in 

its composition (shading differences).   
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Figure 19. Thin section images of PHL_3 including the spinel in Figure 18 in (a) 

plane polarized light, (b) cross polarized light, and (c) SEM. Serpentine, cpx, opx, and 

spinel are visible. Scale bar represents 500μm. The yellowing of serpentine in ppl may 

be due to brucite and yellow grains in xpl may be brucite. Serpentine mesh and veins 

(possibly lizardite), cpx, opx, and spinel are visible. There are various Fe-oxides 

present in this sample indicated by the colors varying from red-orange to dark brown. 
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Figure 20. Thin section images of PHL_3 in (a) plane polarized light, (b) cross 

polarized light, and (c) SEM. Scale bars represent 100μm. Serpentine (serp), pyroxene 

(opx, cpx), and spinel are visible. (c) shows that the spinel grains are much more rich 

in metals than the surrounding pyroxene and serpentine. The yellowing of serpentine 

in ppl may be due to brucite. 

  

(a) 

(b) 

(c) 

sp 

cpx 

cpx 

sp 
opx 

opx 

Serp/br? 



 

93 

 

 
Figure 21. Thin section images of PHL_3 in (a) plane polarized light (scale bar 

represents 500μm), (b) cross polarized light. Serpentine (serp), pyroxene (opx, cpx), 

spinel, and relict olivine are visible. The yellowing of serpentine in ppl may be due to 

brucite. This is a zoomed-out view of Figure 20 
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Figure 22. SEM images of thin section of PHL_3 including serpentine and olivine(?) 

are visible. The serpentine veins show zoning of lighter color near the olivine grains 

and darker towards the center of veins; and there are areas where the reverse is true. 

The jagged-edged dissolution of the olivine(?) grains into serpentine are also visible.   
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Figure 23. Thin section images of PHL_5 include serpentine (serp) (a-d), 

magnetite/Fe oxide (a-d), relict pyroxene (px) (b,c), relict olivine (ol)(b-d), and 

brucite(?)(br)(c-d). Sections are in ppl (left) and xpl (right). (a-c) scale bar is 500μm 

and (d) scale bar is 100μm. (d) is the section of (c) in the red box. Serpentine veins 
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include a braid-like texture and the mesh is saturated with dark brown Fe-oxides. The 

yellowing of serpentine in ppl may be due to brucite.
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Figure 24. Average normalized Fe concentration (ppm) in standards and samples from CRO and ZO obtained from XRF 

analysis. Error bars are at 24% to reflect the error after normalizing of DTS-2.  
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 Figure 25. SEM image showing point locations for SEM-EDS elemental 

concentrations for 313_329 Table 7. Image is at 250x shows serpentine veins and 

olivine grains.  
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Figure 26. SEM image showing point locations for SEM-EDS elemental 

concentrations for 313_329 Table 8. It is a 500x detail of image of Figure 25 which 

shows serpentine veins and olivine grains.  
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 Figure 27. SEM image showing point locations for SEM-EDS elemental 

concentrations for 313_329 Table 9. Image is at 250x shows serpentine and magnetite 

in veins and olivine grains. Pit is from ICPMS laser oblation. 
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Figure 28. SEM image showing point locations for SEM-EDS elemental 

concentrations for 313_329 Table 10. Image is at 150x shows serpentine and 

magnetite in veins and possibly pyroxene grains. 
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Figure 29. SEM image showing point locations for SEM-EDS elemental 

concentrations for 313_329 Table 11. Image is at 150x shows a spinel grain 

surrounded by serpentine and olivine grains. Pit is from ICPMS laser oblation.  
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Figure 30. Mössbauer Spectroscopy 309_105_A plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), Fe
3+

 (blue and green) and Fe
2+

 (brown) curves. 
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Figure 31. Mössbauer Spectroscopy 309__150 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves.  
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Figure 32. Mössbauer Spectroscopy 313_210 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue), and Fe
2+

 (green) curves.  
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Figure 33. Mössbauer Spectroscopy 313_318 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue and green) and Fe
2+

 (brown) curves.   
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Figure 34. Mössbauer Spectroscopy 313_329 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue and green) and Fe
2+

 (brown) curves. 
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Figure 35. Mössbauer Spectroscopy 313_356 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue and green) and Fe
2+

 (brown and purple) curves.  
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Figure 36. Mössbauer Spectroscopy CROMO2_1A plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves. 
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Figure 37. Mössbauer Spectroscopy CROMO2_2 plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves. 
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Figure 38. Mössbauer Spectroscopy CROMO2_3A plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves. 
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Figure 39. Mössbauer Spectroscopy CROMO2_4A plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue & green) curves. 
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Figure 40. Mössbauer Spectroscopy HLSC_1 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves.  
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Figure 41. Mössbauer Spectroscopy 167_238 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (black), Fe
2+

 (brown and purple), and magnetite (blue and green) curves. 
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Figure 42. Mössbauer Spectroscopy PHL_1 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves. 
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Figure 43. Mössbauer Spectroscopy PHL_2B plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves. 
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Figure 44. Mössbauer Spectroscopy PHL_3 plot. The data (black dots) were fit using the Ghent program to obtain a best fit (red), 

Fe
3+

 (blue and green), and Fe
2+

 (brown and purple) curves.   
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Figure 45. Mössbauer Spectroscopy PHL_5 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red) and Fe
3+

 (purple), Fe
2+

 (brown), and magnetite (blue and green) curves.  
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Figure 46. Percentages of Fe valence states for samples from CRO and ZO. The total area or the percentages of Fe valence states vary 

between ophiolites and between samples of the same ophiolite. %Fe
2+

 and %Fe
3+

 in mineral phases (serpentine, pyroxene, olivine, 

spinel) other than magnetite, and %magnetite. 
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Figure 47. Total percent of Fe

2+
 and Fe

3+
 from MOSS and assuming magnetite is Fe

2+
Fe

3+
2O4. Total % Fe

2+
 in sample is calculated 

using (%Fe
2+

 + 1/3 magnetite) and total % Fe
3+

 in sample using (%Fe
2+

 + 2/3 magnetite).  
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Figure 48. Total percent of Fe

2+
 and Fe

3+
 from MOSS in silicates (mostly serpentine but pyroxene, chlorite, etc…also may be 

represented) and factoring out magnetite.  
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Figure 49. Possible hydrogen production normalized to a volume of one 1km

3
 of rock with the same compositions as each individual 

sample. This illustrates that even though the overall volume of the ZO is smaller, in general, it can produce more total hydrogen than 

the CRO based on the Fe concentration and the MOSS results. Red are calculated from the %Fe
3+

 assuming that H2 was released as 

the Fe
2+

 was oxidized. Green are calculated from the %Fe
2+

 assuming that H2 can be released as the Fe
2+

 is oxidized. 
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Figure 50. ZO and CRO calculated hydrogen generation in Tmoles (10

12
 = tera T) of H2g. Red are calculated from the %Fe

3+
 

assuming that H2 was released as the Fe
2+

 was oxidized. Green are calculated from the %Fe
2+

 assuming that H2 can be released as the 

Fe
2+

 is oxidized.  
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Figure 51. Total calculated hydrogen generation in Tmoles (10
12

 = tera T) of H2g that 

could be released over the lifetime of the peridotite unit per km
3
 (a) and for the whole 

peridotite unti (b). The total height of the bar (sum of both Fe
3+

 and Fe
2+

) indicates the 

total amount of H2 that could be released assuming that the whole volume of the 

peridotite unit of the ophiolite has the same composition as the individual sample.   
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Figure A1: Geologic map of the Coast Range Ophiolite and approximate location of sampling sites (stars). The peridotite unit, or 

ultramafic unit (um) is purple. Sample HLSC_1 is um float found in Kl (northern star). Image is taken from the California geologic 

map (http://www.quake.ca.gov/gmaps/GMC/stategeologicmap.html, September 2014). 
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Figure A2: Regional geologic map of the Zambales Ophiolite taken from Abrajano 

and Pasteris [1989] showing the location of the Acoje massif. Approximate sampling 

location is indicated by a red dot. Black dots indicate the Acoje and Coto mines 

[Hawkins and Evan, 1983].  
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Table A1: Short literature review of microbiology of serpentinization sites, H2, and additional references. 

Location Water source Microbiology Hydrogen in 

fluids 

Source(s) 

Lost City hydrothermal 

field on the Atlantis 

Massif near the Mid-

Atlantic Ridge 

White smokers; 

submarine seeps 

from fault-bounded 

peridotite 

sulfur-cycling bacteria; methane-

cycling archaea (Anaerobic 

methane-oxidizing Archaea 

(ANME-1); Methanosarcinales) and 

bacteria (methylobacter, 

methylophaga); H2-utilizing and 

producing; aerobic carbon monoxide 

utilization and anaerobic carbon 

fixation 

<14mmol/kg H2; 

<1-2mmol/kg 

methane 

Kelley et al., 2005; 

Kelley et al., 2007; 

Brazeton et al., 2006; 

Brazeton et al., 2012; 

Schrenk et al., 2004; 

Tablelands ophiolite in 

Newfoundland 

Ground water 

springs 

H2-utilizing and producing; aerobic 

carbon monoxide utilization and 

anaerobic carbon fixation  

<~500μM H2  Szponar et al., 2013; 

Brazeton et al., 2012 

Additional references 

Schrenk, Brazelton, and Lang [2013] have compiled types of analysis performed and characteristic Achaea found in both marine and 

terrestrial serpentinite habitats including Rainbow and Lost City hydrothermal fields, CRO, South Chamorro Seamount, 

Tablelands, and more.  

 

Iron utilizing microorganisms: Chan et al. [2009], Iron oxyhydroxide mineralization on microbial extracellular polysaccharides, 

Geochim. Cosmochim. Acta, 73(13), 3807-3818.  

 

Limiting factors on microbial life at depth: Hellevang et al. [2011], The potential for low-temperature abiotic hydrogen generation and 

a hydrogen-driven deep biosphere, Astrobiology, 11(7), 711-724. 

 

Sleep et al. [2004], H2-rich fluids from serpentinization: Geochemical and biotic implications, Proc. Natl. Acad. Sci. U. S. A., 101(35), 

12818-12823.  

 

McCollom and Seewald (2013), Serpentinites, hydrogen, and life, Elements, 9(2), 129-134.  
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Table A2: Mössbauer and wet chemistry %Fe
3+

, and Fe concentrations from literature for fresh and serpentinized peridotites. 

Site Peridotite Type/ Geologic Setting/ Mineralogy 
Fe conc. 

(ppm) 

Fe
3+

 

%Fe 
Citation 

Cassiar Serpentinite, North-

central British Columbia 
100% serpentinized harzburgite tectonite; 

~13,400 - 

25,000 

22-

88‡ 

O’Hanley and Dyar, 1993; 

O’Hanley and Dyar, 1998 

United Mine Serpentinite, 

East-Central Ontario 

100% serpentinized dunite cumulate from 

differentiated mafic-utlramafic sill  
~88‡ O’Hanley and Dyar, 1993 

Jeffery Serpentinite, 

Southeastern Quebec 

Partially to completely serpentinized and 

recrystallized harzburgite tectonite; part of 

Ordovician ophiolite 

~12,100 - 

12,000 

33-

53‡ 

O’Hanley and Dyar, 1993; 

O’Hanley and Dyar, 1998 

Woodsreef Serpentinite, 

Eastern New South Wales 

Partially to completely serpentinized harzburgite 

tectonite 

~17,200 – 

29,000 

40-

72‡ 

O’Hanley and Dyar, 1993; 

O’Hanley and Dyar, 1998 

ODP leg 125 
40-100% serpentinized harzburgites and dunites; 

Marina Forarc; subduction zone forearc 

~51,800 - 

57,100 

14-

46‡ 
Klein et al., 2013 

ODP leg 153, MARK area 
40-100% serpentinized harzburgites and dunites; 

mid-ocean ridge 

~54,800 – 

65,600 

59-

66‡ 
Klein et al., 2013 

ODP leg 153, MARK 7, 

bulk rock 
50-100% serpentinized harzburgites ~54344 ~69* Andreani et al., 2013B 

MARK 7** 100% serpentinized harzburgites ~13059 ~61† Andreani et al., 2013B 

ODP leg 153, MARK 9, 

bulk rock 
50-100% serpentinized harzburgites ~50917 ~66* Andreani et al., 2013B 

MARK 9** 100% serpentinized harzburgites 
~11,300-

15,400 

54-

100† 
Andreani et al., 2013B 
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Table A2: Continued 

Site 
Peridotite Type/ Geologic Setting/ 

Mineralogy 

Fe conc. 

(ppm) 

Fe
3+

 

%Fe 
Citation 

ODP leg 153, MARK 11, 

bulk rock 
50-100% serpentinized harzburgites ~58611 ~34* Andreani et al., 2013B 

MARK 11** 55-79 % serpentinized harzburgites 
~31,900-

42,700 

58-

63† 
Andreani et al., 2013B 

ODP leg 153, MARK 24, 

bulk rock 
50-100% serpentinized harzburgites ~59660 ~42* Andreani et al., 2013B 

MARK 24** 17-98% serpentinized harzburgites 
~23,000-

59,100 

~4-

77† 
Andreani et al., 2013B 

ODP leg 173 
40-100% serpentinized harzburgites and 

dunites; Iberia Margin; passive margin 

~54,400 – 

59,200 

~58-

63‡ 
Klein et al., 2013 

84-402 
Spinel lherzolite from Porndon, Southeastern 

Australia 
~60631 ~2 Canil et al., 1994 

89-772 Dunite from Olmani Tanzania ~97164 ~0 Canil et al., 1994 

89-680 Garnet harzburgite; Lashaine, Tanzania ~51303 ~2 Canil et al., 1994 

89-719 Garnet harzburgite; Lashaine, Tanzania ~52857 ~1 Canil et al., 1994 

89-773 Harzburgite; Olmani Tanzania ~46406 ~1 Canil et al., 1994 

BD1201 
Garnet lherzolite, coarse, Low T; Wesselton, 

Southern Africa 
~52857 ~3 Canil et al., 1994 

PHN5273 
Garnet harzburgite, coarse, Low T; Premier, 

Southern Africa 
~50525 ~0 Canil et al., 1994 
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Table A2: Continued 

Site 

Peridotite Type/ Geologic Setting/ 

Mineralogy 

Fe conc. 

(ppm) 

Fe
3+

 

%Fe Citation 

FRB909 

Garnet lherzolite, sheared, high T; Premier, 

Southern Africa ~62963 ~2 Canil et al., 1994 

F865 

Garnet harzburgite, coarse, Low T; Finsch, 

Southern Africa ~52857 ~1 Canil et al., 1994 

F556 

Garnet harzburgite, coarse, Low T; Finsch, 

Southern Africa ~71513 ~2 Canil et al., 1994 

UV417/89 

Garnet lherzolite, coarse, low T; Udachnaya, 

Siberia ~64517 ~2 Canil et al., 1994 

Fr1 Spinel lherzolite; Landoz, Massif Central ~58765 ~4 Canil et al., 1994 

Monte Fico North quarry 

Recrystallized, granoblastic lizardite; Monte 

Fico, Island of Elba, Italy   ~40 Fuch et al., 1998 

American-Antarctic Ridge Spinels from abyssal spinel peridotites 

~95800-

114,000 

~13-

15 Bryndzia and Wood, 1990 

South West Indian Ridge Spinels from abyssal spinel peridotites 

~85700-

125,000 ~5-15 Bryndzia and Wood, 1990 

Mid-Atlantic Ridge Spinels from abyssal spinel peridotites 

~101,000-

129,000 

~11-

22 Bryndzia and Wood, 1990 

Mid Cayman Rift Spinels from abyssal spinel peridotites 

~94400-

105,000 ~9 Bryndzia and Wood, 1990 

Central Indian Ridge Spinels from abyssal spinel peridotites 

~102,000-

158,000 

~11-

25 Bryndzia and Wood, 1990 
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Table A2: Continued 

Site 
Peridotite Type/ Geologic Setting/ 

Mineralogy 

Fe conc. 

(ppm) 

Fe
3+

 

%Fe 
Citation 

9 spinel separates 
Spinel and garnet peridotite zenoliths in the 

Udachnaya kimerlite  

~10-

27 
Goncharov et al., 2012 

28 garnet separates 
Spinel and garnet peridotite zenoliths in the 

Udachnaya kimerlite  
~2-19 Goncharov et al., 2012 

Mexico spinels Spinel-peridotite xenoliths 
 

~3-28 Peslier et al., 2002 

Simcoe, WA, USA spinels Spinel-peridotite xenoliths 
 

~27-

39 
Peslier et al., 2002 

Abyssal Serp, average 20 

bulk samples 
Dunite ~59870 

 
Deschamps et al., 2013 

Abyssal Serp, average of 

48 bulk samples 
Harzburgite ~50428 

 
Deschamps et al., 2013 

Mantle wedge, average of 

88 bulk samples 
Dunite ~52596 

 
Deschamps et al., 2013 

Mantle wedge, average of 

73 bulk samples 
Harzburgite ~53505 

 
Deschamps et al., 2013 

Subducted serp, average of 

39 bulk samples 
Dunite ~56163 

 
Deschamps et al., 2013 

Subducted serp, average of 

109 bulk samples 
Harzburgite ~55463 

 
Deschamps et al., 2013 

Mag= magnetite. ODP=Drilling Project. ‡Magnetite factored out as an impurity. *Obtained from titration of bulk samples. 

**Measurements from veins, mesh rims and mesh cores. †μXANES measurements. 
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STANDARDS 
 

Table A3: Normalized average Fe concentration converted to FeO wt%. 

Sample name 
Fe avg. normalized 

concentration (ppm) 

Fe avg. normalized 

concentration (FeO wt%) 

DTS-1 60710 7.81 

DTS-2 41396 5.33 

PCC-1 58759 7.56 

XRF Empty sample holder 170 0.02 
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Table A4: Raw XRF elemental data for USGS standards—Mo, Zr, Sr, Rb, Th, Pb, Zn, 

Cu, Ni, Co, Fe, Mn, Cr, V, Ti, Sc, Ca, K. 
SAMPLE Type Duration (s) Units Run Mo Mo Error Zr Zr Error 

BCR-2 SOIL 201.41 ppm 1 163.11 7.43 210.17 11.02 

BCR-2 SOIL 201.41 ppm 2 127.55 7.50 195.04 11.68 

BCR-2 SOIL 201.77 ppm 3 175.62 8.02 233.21 12.05 

BCR-2 SOIL 207.85 ppm 4 142.62 7.56 193.18 11.34 

BCR-2 SOIL 204.05 ppm 5 141.53 7.74 208.14 11.89 

BCR-2 SOIL 201.59 ppm 6 143.30 7.88 205.58 12.02 

BHVO-2 SOIL 202.00 ppm 1 < LOD 7.11 215.17 11.57 

BHVO-2 SOIL 201.95 ppm 2 < LOD 8.35 203.72 12.83 

BHVO-2 SOIL 201.95 ppm 3 < LOD 8.19 200.48 12.78 

BHVO-2 SOIL 201.89 ppm 4 < LOD 7.09 192.87 11.04 

BHVO-2 SOIL 200.85 ppm 5 < LOD 7.22 197.42 11.36 

BHVO-2 SOIL 201.26 ppm 6 < LOD 7.01 188.96 11.04 

BIR-1 SOIL 201.33 ppm 1 < LOD 6.68 < LOD 8.56 

BIR-1 SOIL 200.98 ppm 2 < LOD 7.12 12.49 6.41 

BIR-1 SOIL 201.10 ppm 3 < LOD 6.92 < LOD 9.01 

BIR-1 SOIL 201.10 ppm 4 < LOD 7.23 < LOD 9.40 

BIR-1 SOIL 200.89 ppm 5 < LOD 7.23 < LOD 9.36 

BIR-1 SOIL 201.13 ppm 6 < LOD 7.17 10.20 6.28 

DTS-1 SOIL 200.88 ppm 1 < LOD 6.77 < LOD 6.56 

DTS-1 SOIL 201.06 ppm 2 < LOD 6.18 < LOD 6.07 

DTS-1 SOIL 201.19 ppm 3 < LOD 6.83 < LOD 6.27 

DTS-1 SOIL 201.80 ppm 4 < LOD 6.47 < LOD 5.86 

DTS-1 SOIL 201.06 ppm 5 < LOD 6.31 < LOD 6.11 

DTS-1 SOIL 201.12 ppm 6 < LOD 6.26 < LOD 6.16 

DTS-2 SOIL 201.90 ppm 1 < LOD 5.29 < LOD 5.12 

DTS-2 SOIL 201.29 ppm 2 < LOD 5.69 < LOD 5.45 

DTS-2 SOIL 201.18 ppm 3 < LOD 5.49 < LOD 5.16 

DTS-2 SOIL 200.85 ppm 4 < LOD 5.89 < LOD 5.49 

DTS-2 SOIL 210.19 ppm 5 < LOD 5.59 < LOD 5.18 

DTS-2 SOIL 201.08 ppm 6 < LOD 5.92 < LOD 5.62 

PCC-1 SOIL 201.24 ppm 1 < LOD 5.44 < LOD 5.20 

PCC-1 SOIL 200.72 ppm 2 < LOD 7.73 < LOD 7.99 

PCC-1 SOIL 201.87 ppm 3 < LOD 5.62 < LOD 5.15 

PCC-1 SOIL 200.90 ppm 4 < LOD 6.96 < LOD 6.80 

PCC-1 SOIL 201.37 ppm 5 < LOD 6.90 < LOD 6.74 

PCC-1 SOIL 200.72 ppm 6 < LOD 7.01 < LOD 6.87 
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Table A4: continued 
SAMPLE Sr Sr Error Rb Rb Error Th Th Error Pb Pb Error 

BCR-2 352.95 11.09 45.89 5.02 < LOD 8.74 15.87 7.62 

BCR-2 355.72 12.04 45.45 5.43 10.56 6.58 17.59 8.62 

BCR-2 379.48 12.07 50.16 5.51 < LOD 8.72 17.87 8.36 

BCR-2 346.74 11.60 43.14 5.26 10.15 6.43 24.58 8.95 

BCR-2 348.12 11.91 35.33 5.05 12.49 6.75 21.56 9.06 

BCR-2 349.85 12.12 43.06 5.39 < LOD 9.49 19.43 8.96 

BHVO-2 433.20 12.51 7.85 3.06 < LOD 7.38 < LOD 10.63 

BHVO-2 447.31 14.17 9.80 3.78 11.29 6.79 < LOD 12.28 

BHVO-2 442.44 14.14 7.45 3.73 < LOD 9.45 < LOD 12.35 

BHVO-2 408.74 12.06 7.31 3.21 < LOD 7.55 < LOD 9.94 

BHVO-2 421.17 12.46 10.39 3.41 < LOD 8.05 < LOD 11.06 

BHVO-2 403.35 12.07 5.83 3.08 < LOD 7.96 < LOD 9.70 

BIR-1 108.25 6.66 < LOD 3.58 < LOD 7.93 < LOD 10.96 

BIR-1 123.61 7.46 < LOD 3.88 < LOD 7.71 14.34 8.09 

BIR-1 116.95 7.08 < LOD 3.63 < LOD 7.73 < LOD 11.12 

BIR-1 128.61 7.58 < LOD 3.90 < LOD 7.42 19.14 8.41 

BIR-1 127.05 7.51 < LOD 4.05 < LOD 7.56 < LOD 10.98 

BIR-1 121.85 7.36 < LOD 3.66 < LOD 7.35 < LOD 11.59 

DTS-1 < LOD 3.33 < LOD 3.19 < LOD 7.28 22.68 8.23 

DTS-1 < LOD 3.01 < LOD 3.05 < LOD 6.91 14.85 7.01 

DTS-1 < LOD 3.37 < LOD 3.41 < LOD 6.82 21.91 8.02 

DTS-1 < LOD 3.22 < LOD 2.89 < LOD 5.88 12.91 6.96 

DTS-1 < LOD 3.12 < LOD 2.92 < LOD 6.54 < LOD 9.71 

DTS-1 < LOD 3.07 < LOD 2.97 < LOD 6.77 14.41 7.05 

DTS-2 < LOD 2.53 < LOD 2.62 < LOD 5.81 < LOD 8.31 

DTS-2 < LOD 2.82 < LOD 2.71 < LOD 6.27 < LOD 8.36 

DTS-2 < LOD 2.51 < LOD 2.41 < LOD 5.19 < LOD 7.81 

DTS-2 < LOD 2.89 < LOD 2.92 < LOD 5.89 < LOD 9.06 

DTS-2 < LOD 2.78 < LOD 2.50 < LOD 6.03 8.85 5.84 

DTS-2 < LOD 2.86 < LOD 2.91 < LOD 5.78 < LOD 8.90 

PCC-1 < LOD 2.70 < LOD 2.56 < LOD 6.06 14.76 6.25 

PCC-1 < LOD 4.16 < LOD 3.61 < LOD 8.45 < LOD 12.54 

PCC-1 < LOD 2.72 < LOD 2.44 < LOD 5.31 15.95 6.25 

PCC-1 < LOD 3.40 < LOD 3.31 < LOD 7.48 11.73 7.31 

PCC-1 < LOD 3.46 < LOD 3.44 < LOD 7.64 11.29 7.36 

PCC-1 < LOD 3.21 < LOD 3.62 < LOD 7.71 26.59 8.70 
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Table A4: continued 
SAMPLE Zn Zn Error Cu Cu Error Ni Ni Error Co Co Error 

BCR-2 82.96 21.04 < LOD 37.90 < LOD 79.20 < LOD 387.80 

BCR-2 92.26 23.79 < LOD 44.96 < LOD 90.20 < LOD 444.58 

BCR-2 93.07 22.81 < LOD 43.56 < LOD 86.00 < LOD 423.38 

BCR-2 91.64 23.81 < LOD 46.31 < LOD 84.90 < LOD 443.12 

BCR-2 103.66 24.52 < LOD 45.46 < LOD 90.35 < LOD 448.93 

BCR-2 81.80 23.97 < LOD 45.05 < LOD 90.68 < LOD 458.09 

BHVO-2 81.85 21.24 132.61 35.13 < LOD 85.02 < LOD 372.17 

BHVO-2 66.59 24.08 125.11 41.97 139.78 74.87 < LOD 466.87 

BHVO-2 104.21 26.40 142.90 42.71 < LOD 105.95 < LOD 464.04 

BHVO-2 60.65 19.79 57.64 31.56 < LOD 88.23 < LOD 371.92 

BHVO-2 64.21 20.43 111.00 34.56 < LOD 87.69 < LOD 381.10 

BHVO-2 58.86 20.01 112.45 34.20 < LOD 88.96 < LOD 374.23 

BIR-1 32.38 18.50 128.31 36.25 125.96 62.73 < LOD 369.37 

BIR-1 < LOD 29.82 147.63 40.33 175.56 70.15 < LOD 410.78 

BIR-1 38.68 19.53 121.71 37.36 167.08 65.73 < LOD 383.69 

BIR-1 < LOD 29.23 117.33 38.63 < LOD 100.06 < LOD 410.21 

BIR-1 49.35 21.36 121.62 38.85 164.54 68.58 < LOD 406.36 

BIR-1 37.99 20.81 105.08 38.27 199.97 69.50 < LOD 404.38 

DTS-1 < LOD 25.64 < LOD 54.95 4146.43 150.38 475.82 248.05 

DTS-1 < LOD 22.06 < LOD 46.85 3651.22 132.19 < LOD 326.74 

DTS-1 < LOD 26.50 < LOD 53.70 4282.54 153.40 < LOD 377.08 

DTS-1 30.40 16.85 < LOD 51.49 3795.93 137.28 434.34 227.00 

DTS-1 < LOD 23.48 < LOD 49.50 3668.76 135.22 359.13 226.72 

DTS-1 < LOD 25.13 < LOD 49.79 3687.61 135.10 < LOD 336.68 

DTS-2 < LOD 19.19 < LOD 42.75 4716.41 131.07 < LOD 242.14 

DTS-2 < LOD 21.42 < LOD 48.84 5379.99 148.73 < LOD 276.93 

DTS-2 < LOD 19.16 < LOD 44.67 4805.85 133.99 < LOD 247.15 

DTS-2 < LOD 21.72 < LOD 51.09 5522.56 153.54 400.32 191.01 

DTS-2 25.48 14.37 < LOD 47.83 5411.46 143.44 389.15 179.57 

DTS-2 27.14 15.38 < LOD 50.52 5605.10 153.74 < LOD 284.56 

PCC-1 < LOD 19.84 < LOD 41.47 3144.28 112.68 388.91 181.99 

PCC-1 < LOD 33.01 < LOD 68.72 5481.92 194.52 < LOD 458.34 

PCC-1 < LOD 19.63 < LOD 40.39 3025.99 109.50 < LOD 266.63 

PCC-1 < LOD 27.57 < LOD 56.97 4565.26 162.60 < LOD 390.11 

PCC-1 < LOD 26.89 < LOD 61.33 4619.18 162.94 < LOD 390.08 

PCC-1 < LOD 27.71 < LOD 59.14 4551.79 163.12 < LOD 393.04 
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Table A4: continued 
SAMPLE Fe Fe Error Mn Mn Error Cr Cr Error V V Error 

BCR-2 118422.48 902.64 1810.10 173.09 < LOD 44.35 385.33 84.37 

BCR-2 134716.19 1040.08 2087.95 199.76 < LOD 40.39 372.72 76.74 

BCR-2 128138.24 986.22 2299.80 200.45 < LOD 42.31 373.39 81.17 

BCR-2 138761.06 1029.92 2411.87 205.95 < LOD 41.20 305.31 78.75 

BCR-2 138442.64 1054.00 2503.39 214.18 < LOD 40.92 343.15 78.53 

BCR-2 139390.48 1073.77 2441.34 215.53 < LOD 41.91 382.65 78.47 

BHVO-2 105403.20 870.43 1590.76 168.56 195.31 30.48 324.85 75.21 

BHVO-2 132517.16 1087.61 2150.53 215.56 227.56 31.61 231.66 77.38 

BHVO-2 131647.09 1087.53 2266.48 219.06 204.84 30.44 277.31 74.30 

BHVO-2 105036.20 861.68 1787.37 174.30 220.24 31.74 226.50 76.97 

BHVO-2 106298.99 882.36 1628.76 171.90 213.18 31.62 279.84 77.30 

BHVO-2 104927.68 867.36 1825.57 176.00 220.57 31.52 352.46 77.30 

BIR-1 98982.34 858.50 1919.08 182.26 240.77 29.03 244.71 50.12 

BIR-1 110751.69 958.69 2087.59 201.06 255.49 29.19 225.61 50.03 

BIR-1 103446.48 900.34 1897.47 187.17 263.62 29.04 192.86 48.82 

BIR-1 109882.01 951.75 2029.93 197.53 206.54 28.32 260.58 50.64 

BIR-1 110774.65 952.85 1937.77 194.13 265.55 29.53 214.23 49.57 

BIR-1 110449.42 952.44 1959.26 195.61 211.18 28.53 253.55 51.06 

DTS-1 102595.43 857.46 1731.42 205.56 3528.99 71.97 < LOD 44.92 

DTS-1 91365.79 758.47 1683.11 184.24 3584.77 72.66 < LOD 44.66 

DTS-1 107422.77 885.72 1908.17 214.26 3695.75 73.41 < LOD 45.15 

DTS-1 94530.18 784.71 1577.97 186.17 3557.05 72.22 < LOD 45.30 

DTS-1 94878.32 786.38 1735.92 190.35 3445.07 71.32 < LOD 46.29 

DTS-1 94693.48 785.56 1711.26 189.53 3461.89 72.12 < LOD 45.08 

DTS-2 61917.10 559.98 1118.93 197.26 14467.74 138.63 < LOD 45.93 

DTS-2 71787.61 641.33 1073.31 220.55 14141.71 136.65 < LOD 47.42 

DTS-2 63397.38 574.63 1262.48 204.84 14683.96 139.97 < LOD 50.03 

DTS-2 72855.77 657.59 1502.78 233.74 13919.52 135.79 < LOD 47.13 

DTS-2 72427.46 618.50 1423.95 216.76 13848.33 133.45 < LOD 46.14 

DTS-2 73922.34 659.74 1242.54 227.31 13853.78 135.77 < LOD 46.97 

PCC-1 74439.40 627.28 1347.29 145.93 2538.99 62.65 51.34 30.53 

PCC-1 126578.55 1084.25 2381.20 252.56 2557.21 61.27 64.58 30.15 

PCC-1 73596.48 618.22 1332.83 143.42 2449.48 61.38 < LOD 43.29 

PCC-1 108575.68 915.84 1777.29 206.35 2448.98 59.57 < LOD 42.22 

PCC-1 108789.84 913.47 1930.45 210.22 2497.66 60.56 < LOD 45.01 

PCC-1 108119.17 916.32 1867.04 209.94 2452.03 60.07 < LOD 44.92 
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Table A4: continued 
SAMPLE Ti Ti Error Sc Sc Error Ca Ca Error K K Error 

BCR-2 11454.68 246.05 79.51 35.53 37052.39 570.29 12599.45 497.13 

BCR-2 10481.78 224.12 79.29 34.28 37466.61 551.76 12507.76 477.42 

BCR-2 11586.90 238.82 69.71 34.86 37771.21 563.19 12923.05 492.12 

BCR-2 10513.73 230.70 < LOD 50.42 37284.17 555.15 12632.83 483.29 

BCR-2 10420.38 228.46 < LOD 50.74 37214.88 552.07 13510.72 494.64 

BCR-2 10511.71 227.88 < LOD 50.47 37436.92 557.63 12967.36 489.85 

BHVO-2 11557.15 226.36 84.89 42.32 63066.06 691.18 3664.64 309.37 

BHVO-2 11970.98 236.56 77.35 42.96 62741.05 702.75 3769.00 318.08 

BHVO-2 11574.00 226.30 88.18 42.43 62904.45 692.43 3674.35 310.63 

BHVO-2 11992.14 236.50 69.50 43.28 63116.95 709.81 3649.93 317.35 

BHVO-2 11935.86 234.86 < LOD 64.22 63156.02 706.53 3434.22 310.36 

BHVO-2 11892.21 231.98 93.98 43.03 63540.17 701.10 3741.23 315.08 

BIR-1 3811.98 137.51 122.61 44.10 74997.05 719.07 326.24 208.31 

BIR-1 3966.46 138.96 104.85 43.84 74882.21 717.79 < LOD 306.93 

BIR-1 3810.69 136.31 70.54 43.29 75768.41 715.25 < LOD 304.81 

BIR-1 3912.17 138.10 < LOD 65.48 76268.52 724.19 < LOD 307.04 

BIR-1 3759.29 137.47 115.70 44.54 76237.20 727.94 413.64 213.32 

BIR-1 3757.72 138.71 79.01 44.12 76339.86 727.51 < LOD 307.53 

DTS-1 < LOD 101.21 < LOD 14.48 297.37 111.94 267.11 142.80 

DTS-1 < LOD 102.71 < LOD 14.39 487.19 117.99 < LOD 204.12 

DTS-1 < LOD 97.98 < LOD 14.29 435.33 115.78 < LOD 210.23 

DTS-1 < LOD 97.50 < LOD 13.66 344.30 113.23 < LOD 206.72 

DTS-1 < LOD 101.80 < LOD 13.27 333.95 112.92 < LOD 206.81 

DTS-1 < LOD 97.68 < LOD 13.92 348.65 114.32 < LOD 204.26 

DTS-2 < LOD 102.33 < LOD 14.94 261.46 112.62 288.59 145.97 

DTS-2 < LOD 105.37 < LOD 13.80 356.81 115.38 287.72 145.60 

DTS-2 < LOD 112.71 < LOD 13.92 232.34 112.22 228.91 143.60 

DTS-2 < LOD 105.10 < LOD 13.71 256.19 111.74 < LOD 208.96 

DTS-2 < LOD 102.71 < LOD 13.20 342.70 112.79 < LOD 206.57 

DTS-2 < LOD 102.37 < LOD 13.14 279.83 112.75 239.43 143.54 

PCC-1 < LOD 96.98 < LOD 18.18 2990.79 177.43 < LOD 211.66 

PCC-1 < LOD 94.68 < LOD 18.26 2973.70 172.99 < LOD 207.11 

PCC-1 < LOD 96.09 19.29 12.58 2676.08 169.63 < LOD 195.55 

PCC-1 93.65 60.84 < LOD 17.45 2648.24 164.48 207.24 137.44 

PCC-1 < LOD 97.38 < LOD 17.56 2693.53 166.45 < LOD 195.50 

PCC-1 < LOD 96.57 < LOD 17.04 2771.80 168.21 < LOD 207.31 

The first 4 runs were shaken between each run and used to gauge accuracy. The last 3 

runs (4-6) were not shaken between each run and used to gauge precision.  
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Figure A3: XRD diffractograms for USGS rock standards DTS-1 (a) and DTS-2 (b). 
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Figure A4: XRD diffractograms for USGS rock standards PCC-1 (a) and BIR-1 (b). 
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Figure A5: XRD diffractograms for USGS rock standards BCR-2 (a) and BHVO-2 (b). 
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SAMPLES 

 

Table A5: Full sample names and shortened name. 

SAMPLE Sample short name 

HLSC_1_A HLSC_1 

HLSC_4 HLSC_4 

McL_81-167_238 to EOH_B22_B 167_238 

McL_M81-309_84_B8_A1 309_84 

McL_M81-309_105_B11_B1 309_105_A 

McL_M81-309_105_B11_B2 309_105_B 

McL_M81-309_150_B15_A 309_150 

McL_M81-313_210_B22_A3 313_210 

McL_M81-313_318_B34_B 313_318 

McL_M81-313_329 313_329 

McL_M81-313_356-356.6_B38_B 313_356 

CSW1_27/28_SHOE?_A* CROMO1_1_A 

CSW1_27/28_SHOE?_B* CROMO1_1_B 

CSW1_28a_CLAY_A* CROMO1_2_AA 

CSW1_28a_CLAY_B* CROMO1_2_AB 

CSW1_28a_hard CROMO1_2_AC 

CSW1_28c_A* CROMO1_2_CA 

CSW1_28c_B* CROMO1_2_CB 

MLC_QV1_140_M-BMIX_A* CROMO2_1A 

MLC_QV1_140_M-BMIX_B* CROMO2_1B 

MLC_QV1_140_Mdkgrn CROMO2_2 

MLC_QV1_140_SERPMUD_A* CROMO2_3A 

MLC_QV1_140_SERPMUD_B* CROMO2_3B 

MLC_QV2_140_SHOE_A* CROMO2_4A 

MLC_QV2_140_SHOE_B* CROMO2_4B 

PHL_PB_1_BULK PHL_1 

PHL_PB_2_GRN_BULK PHL_2A 

PHL_PB_2_MIX_BULK PHL_2B 

PHL_PB_2_RED_BULK PHL_2C 

PHL_PB_3_BULK PHL_3 

PHL_PB_4_BULK PHL_4 

PHL_PB_5_BULK PHL_5 

Empty sample holder ESH 

Body of thesis/ main samples Appendix/ additional samples 

* ‘A’ samples are the harder residue left after vibrating the samples in water; ‘B’ 

samples are the clay minerals suspended in the water during vibration. Both A and B 

samples were oven-dried at 60
o
C.  
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Figure A6: XRD diffractograms for sample HLSC_4 (a) with background subtracted and (b) peak d-spacing numbers and mineral 

diffraction patterns identified (serpentine, garnet, magnetite/spinel, chlorite, and possibly brucite) using XPowder.   
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Figure A7: XRD diffractograms for sample HLSC_2 chrysotile raw file without background subtraction. Peak locations probably 

indicate serpentine, spinel group minerals, and possibly other minerals. 
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Figure A8: XRD diffractograms for sample 309_84 (a) with background subtracted and (b) peak d-spacing numbers and mineral 

diffraction patterns identified ((serpentine, pyroxene, chlorite, and calcite) using XPowder.  
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Figure A9: XRD diffractograms for sample 309_105_B (a) with background subtracted and (b) peak d-spacing numbers and mineral 

diffraction patterns identified (serpentine, magnetite/spinel, chlorite, and possibly olivine) using XPowder.  
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Figure A10: Stacked XRD diffractograms for samples CROMO1_1_B, CROMO1_1_A, CROMO1_2_CB, CROMO1_2_AC, 

CROMO1_2_AB, and CROMO1_2_AA 
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Figure A11: XRD diffractograms for samples CROMO1_1_A (a) with background subtracted and (b) peak d-spacing numbers and 

mineral diffraction patterns identified (chlorite and amphiboles) using XPowder. 
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Figure A12: XRD diffractograms for sample CROMO1_1_B (a) with background subtracted and (b) peak d-spacing numbers and 

mineral diffraction patterns identified (chlorite and amphiboles) using XPowder. 
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Figure A13: XRD diffractograms for sample CROMO1_2_AA (a) with background subtracted and (b) peak d-spacing numbers and 

mineral diffraction patterns identified (chlorite and amphiboles) using XPowder. 

a 

b 



 

154 

 

 
Figure A14: XRD diffractograms for sample CROMO1_2_CA (a) with background 

subtracted and peak mineral diffraction patterns identified (b-amphiboles, c-chlorite, 

d-serpentine and maybe cordierite) using XPowder. 
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Figure A15: XRD diffractograms with peak d-spacing numbers for samples (a) CROMO2_1B and (b) CROMO2_3B. 

 

a 

b 



1
5
6 

 

 

 

 
 

 
Figure A16: XRD diffractograms with peak d-spacing numbers for samples (a) CROMO2_4B and (b) PHL_2A. 
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Figure A17: XRD diffractogram for sample PHL_3 with background subtracted, peak d-spacing numbers, and mineral diffraction 

patterns identified (serpentine, olivine, spinel, pyroxene, and chlorite) using XPowder 
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Figure A18: XRD diffractograms with peak d-spacing numbers for sample PHL_4 (a) with background subtracted and (b) peak d-

spacing numbers and mineral diffraction patterns identified (amphibole, pyroxene) using XPowder. 
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Table A6: Additional samples’ Fe concentrations averaged and normalized to DTS-1. 

Sample Run Fe (ppm) 

Fe 

Error 

(ppm) 

Avg. 

(ppm) 

Std 

Dev 

Avg 

Error 

of 3 

runs 

Norm. 

factor 

(DTS-1) 

Norm. 

Avg 

(ppm) 

309_84 

1 225056.98 1270.07 

221539 5948 1251 0.613 135803 2 224888.53 1267.51 

3 214671.36 1215.55 

309_105_B 

1 48973.15 462.79 

59039 8827 552 0.613 36191 2 62686.34 582.55 

3 65457.8 611.89 

CROMO1_1_A 

1 80662.95 702.97 

72875 11914 637 0.613 44672 2 59160.3 521.08 

3 78801.42 688.07 

CROMO1_1_B 

1 116188.96 1092.01 

116675 3584 1089 0.613 71522 2 120477.61 1105.82 

3 113358.7 1070.41 

CROMO1_2_AA 

1 53738.29 507.00 

54678 1137 513 0.613 33518 2 54353.24 507.37 

3 55942.11 524.35 

CROMO1_2_AB 

1 97748.95 801.78 

98824 2342 807 0.613 60579 2 97212.96 793.13 

3 101510.9 825.13 

CROMO1_2_AC 

1 91002.48 702.93 

87714 3743 680 0.613 53768 2 88496.77 686.92 

3 83641.25 650.70 

CROMO1_2_CA 

1 88302.38 752.58 

89281 3076 767 0.613 54729 2 86812.97 749.12 

3 92726.28 798.86 

CROMO1_2_CB 

1 110297.95 1019.36 

115318 9048 1079 0.613 70690 2 109892.79 1039.11 

3 125762.21 1178.53 

CROMO2_1B 

1 69066.38 724.97 

72767 3347 753 0.613 44606 2 75582.87 780.68 

3 73652.82 753.47 

CROMO2_3B 

1 134003.28 1149.10 

136339 9007 1187 0.613 83576 2 128730.48 1109.87 

3 146283.61 1301.87 

CROMO2_4B 

1 119009.69 1025.93 

132135 13883 1157 0.613 80999 2 130727.7 1141.79 

3 146668.91 1302.27 

PHL_2A 

1 59311.35 529.75 

54264 4731 485 0.613 33264 2 49929.81 448.40 

3 53550.11 476.96 

PHL_2C 

1 78372.31 619.80 

66184 17951 529 0.613 40571 2 74610.47 592.38 

3 45569.93 374.98 

 

 



 

160 

 

Table A6: continued  

Sample Run 
Fe 

(ppm) 

Fe Error 

(ppm) 

Avg. 

(ppm) 

Std 

Dev 

Avg 

Error of 3 

runs 

Norm. 

factor 

(DTS-1) 

Norm. 

Avg 

(ppm) 

PHL_4 

1 50564.68 507.16 

50585 385 510 0.613 31009 2 50980.34 517.53 

3 50210.2 504.86 

HLSC_4 

1 72466.3 614.58 

71320 10220 597 0.613 43719 2 60575.23 521.90 

3 80918.5 654.09 

ESH 

1 408.6 128.14 

278 115 100 0.613 170 2 196.51 84.89 

3 227.71 87.57 

Empty sample holder (ESH) 
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Table A7: Normalized average Fe concentration in ppm and FeO wt%. 

Sample name 
Fe avg. normalized 

concentration (ppm) 

Fe avg. normalized 

concentration (FeO wt%) 

HLSC_1 28741 3.7 

167_238 29910 3.8 

309_105_A 31705 4.1 

309_105_B 36191 4.7 

309_150 34651 4.5 

309_84 135803 17.5 

313_210 50673 6.5 

313_318 32835 4.2 

313_329 41989 5.4 

313_356 37335 4.8 

CROMO1_1_A 44672 5.7 

CROMO1_1_B 71522 9.2 

CROMO1_2_AA 33518 4.3 

CROMO1_2_AB 60579 7.8 

CROMO1_2_AC 53768 6.9 

CROMO1_2_CA 54729 7.0 

CROMO1_2_CB 70690 9.1 

CROMO2_1A 30803 4.0 

CROMO2_1B 44606 5.7 

CROMO2_2 30966 4.0 

CROMO2_3A 37889 4.9 

CROMO2_3B 83576 10.8 

CROMO2_4A 30290 3.9 

CROMO2_4B 80999 10.4 

PHL_1 47976 6.2 

PHL_2A 33264 4.3 

PHL_2B 35777 4.6 

PHL_2C 40571 5.2 

PHL_3 47745 6.1 

PHL_4 31009 4.0 

HLSC_4 43719 5.6 

PHL_5 41969 5.4 

 



 

 

 

1
6
2 

Table A8: Samples raw elemental XRF data. Elements analyzed for include As, Ca, Co, Cr, Cu, Fe, Hg, K, Mn, Mo, Ni, Pb, Rb, S, Sb, 

Sc, Se, Sr, Th, Ti, V, Zn, and Zr. Additional elements below the limits of detection (<LOD): U, W, Ba, Cs, Te, Sn, Cd, Ag and Pd. 

SAMPLE 
Sample short 

name 
Type 

Duration 
(s) 

Units Mo 
Mo 

Error 
Zr 

Zr 
Error 

Sr 
Sr 

Error 
Rb 

Rb 
Error 

McL_81-167_238 to EOH_B22_B 167_238 SOIL 208.70 ppm < LOD 4.48 < LOD 5.46 153.78 5.51 < LOD 2.27 

McL_81-167_238 to EOH_B22_B 167_238 SOIL 243.97 ppm < LOD 4.74 < LOD 5.88 171.78 5.99 < LOD 2.51 

McL_81-167_238 to EOH_B22_B 167_238 SOIL 244.33 ppm < LOD 4.42 < LOD 5.45 154.06 5.43 < LOD 2.18 

HLSC_1_A HLSC_1 SOIL 221.31 ppm < LOD 4.83 < LOD 6.03 177.18 6.21 < LOD 2.42 

HLSC_1_A HLSC_1 SOIL 207.46 ppm < LOD 4.83 < LOD 6.17 180.12 6.31 < LOD 2.45 

HLSC_1_A HLSC_1 SOIL 213.75 ppm < LOD 4.99 < LOD 6.25 183.16 6.36 < LOD 2.51 

HLSC_4 HLSC_4 SOIL 205.99 ppm < LOD 5.53 < LOD 5.70 < LOD 2.84 < LOD 2.73 

HLSC_4 HLSC_4 SOIL 205.52 ppm < LOD 4.95 < LOD 5.01 < LOD 2.49 < LOD 2.33 

HLSC_4 HLSC_4 SOIL 228.54 ppm < LOD 5.60 < LOD 5.75 < LOD 2.85 < LOD 2.56 

McL_M81-313_210_B22_A3 313_210 SOIL 219.25 ppm < LOD 5.93 < LOD 6.63 69.24 4.80 < LOD 2.97 

McL_M81-313_210_B22_A3 313_210 SOIL 204.64 ppm < LOD 5.07 < LOD 6.01 66.03 4.27 < LOD 2.34 

McL_M81-313_210_B22_A3 313_210 SOIL 205.33 ppm < LOD 5.78 < LOD 6.64 61.47 4.50 < LOD 2.95 

McL_M81-313_329 313_329 SOIL 203.86 ppm < LOD 6.30 < LOD 6.57 39.55 3.96 < LOD 2.87 

McL_M81-313_329 313_329 SOIL 202.94 ppm < LOD 6.33 < LOD 6.39 41.89 4.09 < LOD 2.82 

McL_M81-313_329 313_329 SOIL 203.45 ppm < LOD 5.85 < LOD 6.11 37.01 3.70 < LOD 2.73 

McL_M81-313_356-356.6_B38_B 313_356 SOIL 210.15 ppm < LOD 6.22 < LOD 6.42 44.53 4.22 < LOD 3.06 

McL_M81-313_356-356.6_B38_B 313_356 SOIL 204.20 ppm < LOD 5.50 < LOD 5.84 44.22 3.82 < LOD 2.61 

McL_M81-313_356-356.6_B38_B 313_356 SOIL 202.49 ppm < LOD 5.03 < LOD 5.30 37.84 3.36 < LOD 2.50 

McL_M81-313_318_B34_B 313_318 SOIL 202.64 ppm < LOD 5.12 < LOD 5.24 36.70 3.35 < LOD 2.53 

McL_M81-313_318_B34_B 313_318 SOIL 202.81 ppm < LOD 5.41 < LOD 5.73 41.44 3.68 < LOD 2.59 

McL_M81-313_318_B34_B 313_318 SOIL 202.57 ppm < LOD 5.25 < LOD 5.45 34.98 3.31 < LOD 2.49 

McL_M81-309_105_B11_B2 309_105_B SOIL 202.69 ppm < LOD 4.92 < LOD 5.03 3.88 1.92 < LOD 2.25 

McL_M81-309_105_B11_B2 309_105_B SOIL 203.18 ppm < LOD 5.67 < LOD 6.08 < LOD 3.21 < LOD 2.73 

McL_M81-309_105_B11_B2 309_105_B SOIL 203.16 ppm < LOD 5.83 < LOD 6.14 6.97 2.42 < LOD 2.78 

McL_M81-309_105_B11_B1 309_105_A SOIL 217.46 ppm < LOD 4.69 < LOD 4.61 10.21 2.12 < LOD 2.15 

McL_M81-309_105_B11_B1 309_105_A SOIL 202.94 ppm < LOD 4.92 < LOD 5.07 8.57 2.15 < LOD 2.17 

McL_M81-309_105_B11_B1 309_105_A SOIL 202.41 ppm < LOD 4.73 < LOD 4.74 7.12 2.03 < LOD 2.20 



 

 

 

1
6
3 

Table A8: continued  
SAMPLE Sample short name Type Duration (s) Units Mo Mo Error Zr Zr Error Sr Sr Error Rb Rb Error 

McL_M81-309_150_B15_A 309_150 SOIL 202.48 ppm < LOD 5.05 < LOD 5.09 16.11 2.54 < LOD 2.22 

McL_M81-309_150_B15_A 309_150 SOIL 202.19 ppm < LOD 5.46 < LOD 5.33 16.93 2.72 < LOD 2.58 

McL_M81-309_150_B15_A 309_150 SOIL 202.17 ppm < LOD 4.99 < LOD 4.75 11.45 2.29 < LOD 2.27 

McL_M81-309_84_B8_A1 309_84 SOIL 202.26 ppm < LOD 6.61 96.96 7.79 44.44 4.53 8.96 3.04 

McL_M81-309_84_B8_A1 309_84 SOIL 203.76 ppm < LOD 6.62 96.01 7.79 47.81 4.66 8.80 2.96 

McL_M81-309_84_B8_A1 309_84 SOIL 203.67 ppm < LOD 6.50 99.03 7.68 43.76 4.42 7.42 2.97 

Empty sample holder ESH SOIL 202.11 ppm < LOD 13.82 < LOD 12.64 < LOD 7.54 < LOD 6.98 

Empty sample holder ESH SOIL 205.11 ppm < LOD 11.04 < LOD 10.59 < LOD 6.20 < LOD 5.82 

Empty sample holder ESH SOIL 203.07 ppm < LOD 10.91 < LOD 10.78 < LOD 6.02 < LOD 6.11 

CSW1_28a_hard CROMO1_2_AC SOIL 202.68 ppm < LOD 5.39 < LOD 7.03 130.29 6.16 < LOD 3.24 

CSW1_28a_hard CROMO1_2_AC SOIL 202.35 ppm < LOD 5.33 < LOD 7.07 129.26 6.08 < LOD 3.28 

CSW1_28a_hard CROMO1_2_AC SOIL 202.70 ppm < LOD 5.20 12.92 4.89 124.57 5.82 3.67 2.14 

CSW1_28a_CLAY_A CROMO1_2_AA SOIL 201.69 ppm < LOD 5.03 < LOD 6.66 128.83 5.74 < LOD 2.51 

CSW1_28a_CLAY_A CROMO1_2_AA SOIL 203.03 ppm < LOD 5.07 < LOD 6.52 119.70 5.52 < LOD 2.33 

CSW1_28a_CLAY_A CROMO1_2_AA SOIL 203.22 ppm < LOD 5.13 < LOD 6.88 124.85 5.74 < LOD 2.70 

CSW1_28a_CLAY_B CROMO1_2_AB SOIL 202.09 ppm < LOD 6.41 < LOD 9.00 225.43 8.75 < LOD 3.39 

CSW1_28a_CLAY_B CROMO1_2_AB SOIL 202.72 ppm < LOD 6.44 < LOD 8.84 229.80 8.76 < LOD 3.35 

CSW1_28a_CLAY_B CROMO1_2_AB SOIL 202.40 ppm < LOD 6.45 < LOD 9.03 232.53 8.97 < LOD 3.31 

CSW1_27/28_SHOE?_A CROMO1_1_A SOIL 202.70 ppm < LOD 6.14 20.76 6.08 200.68 7.99 6.49 2.60 

CSW1_27/28_SHOE?_A CROMO1_1_A SOIL 202.50 ppm < LOD 4.91 18.15 4.93 160.55 6.22 4.30 2.04 

CSW1_27/28_SHOE?_A CROMO1_1_A SOIL 202.26 ppm < LOD 6.02 17.44 5.91 201.57 7.93 5.51 2.62 

CSW1_27/28_SHOE?_B CROMO1_1_B SOIL 202.83 ppm < LOD 8.61 < LOD 11.39 207.32 10.54 < LOD 5.23 

CSW1_27/28_SHOE?_B CROMO1_1_B SOIL 208.08 ppm < LOD 8.64 < LOD 11.45 194.11 10.17 < LOD 5.14 

CSW1_27/28_SHOE?_B CROMO1_1_B SOIL 203.42 ppm < LOD 8.60 < LOD 11.44 207.37 10.45 7.05 3.56 
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Table A8: continued 

SAMPLE 
Sample short 

name 
Type 

Duration 
(s) 

Units Mo 
Mo 

Error 
Zr 

Zr 
Error 

Sr 
Sr 

Error 
Rb 

Rb 
Error 

CSW1_28c_A CROMO1_2_CA SOIL 202.04 ppm < LOD 6.26 < LOD 8.73 185.00 7.87 < LOD 3.43 

CSW1_28c_A CROMO1_2_CA SOIL 201.72 ppm < LOD 6.44 10.66 5.91 184.69 7.89 < LOD 3.57 

CSW1_28c_A CROMO1_2_CA SOIL 201.77 ppm < LOD 6.54 20.21 6.32 178.74 8.02 < LOD 3.62 

CSW1_28c_B CROMO1_2_CB SOIL 203.87 ppm < LOD 8.13 < LOD 10.80 228.04 10.54 < LOD 4.43 

CSW1_28c_B CROMO1_2_CB SOIL 201.59 ppm < LOD 8.27 < LOD 11.01 227.66 10.77 < LOD 4.76 

CSW1_28c_B CROMO1_2_CB SOIL 202.28 ppm 9.24 6.05 < LOD 11.95 239.25 11.69 < LOD 4.79 

MLC_QV2_140_SHOE_A CROMO2_4A SOIL 202.47 ppm < LOD 5.16 < LOD 4.97 8.23 2.19 < LOD 2.48 

MLC_QV2_140_SHOE_A CROMO2_4A SOIL 202.78 ppm < LOD 4.82 < LOD 4.51 7.30 2.04 < LOD 2.04 

MLC_QV2_140_SHOE_A CROMO2_4A SOIL 202.60 ppm < LOD 4.86 < LOD 4.58 8.28 2.08 < LOD 2.11 

MLC_QV2_140_SHOE_B CROMO2_4B SOIL 202.34 ppm 9.02 5.31 < LOD 7.71 21.30 3.95 < LOD 3.93 

MLC_QV2_140_SHOE_B CROMO2_4B SOIL 202.49 ppm < LOD 8.38 < LOD 8.36 17.64 4.03 < LOD 4.26 

MLC_QV2_140_SHOE_B CROMO2_4B SOIL 202.72 ppm < LOD 8.99 < LOD 9.50 21.67 4.64 < LOD 4.39 

MLC_QV1_140_Mdkgrn CROMO2_2 SOIL 202.68 ppm < LOD 4.72 < LOD 4.78 18.73 2.54 < LOD 2.20 

MLC_QV1_140_Mdkgrn CROMO2_2 SOIL 204.20 ppm < LOD 5.19 < LOD 5.02 20.31 2.73 < LOD 2.28 

MLC_QV1_140_Mdkgrn CROMO2_2 SOIL 203.48 ppm < LOD 5.05 < LOD 4.79 12.10 2.37 < LOD 2.46 

MLC_QV1_140_SERPMUD_A CROMO2_3A SOIL 202.06 ppm < LOD 5.88 19.86 4.87 40.29 3.83 6.05 2.35 

MLC_QV1_140_SERPMUD_A CROMO2_3A SOIL 202.22 ppm < LOD 4.60 7.65 3.63 30.80 2.90 4.65 1.86 

MLC_QV1_140_SERPMUD_A CROMO2_3A SOIL 202.19 ppm < LOD 4.99 10.77 3.93 30.97 3.04 6.05 2.04 

MLC_QV1_140_SERPMUD_B CROMO2_3B SOIL 204.18 ppm < LOD 8.35 27.97 7.08 47.86 5.54 6.95 3.51 

MLC_QV1_140_SERPMUD_B CROMO2_3B SOIL 202.41 ppm < LOD 8.08 15.77 6.51 45.84 5.33 8.32 3.54 

MLC_QV1_140_SERPMUD_B CROMO2_3B SOIL 201.88 ppm < LOD 8.97 21.87 7.46 43.81 5.80 6.57 3.93 

MLC_QV1_140_M-BMIX_A CROMO2_1A SOIL 202.41 ppm < LOD 5.44 < LOD 5.31 11.05 2.43 < LOD 2.52 

MLC_QV1_140_M-BMIX_A CROMO2_1A SOIL 203.12 ppm < LOD 5.21 < LOD 5.15 8.28 2.22 < LOD 2.57 

MLC_QV1_140_M-BMIX_A CROMO2_1A SOIL 201.84 ppm < LOD 5.40 < LOD 5.50 9.66 2.38 < LOD 2.53 

MLC_QV1_140_M-BMIX_B CROMO2_1B SOIL 202.15 ppm < LOD 6.95 < LOD 6.84 5.30 2.73 < LOD 3.46 

MLC_QV1_140_M-BMIX_B CROMO2_1B SOIL 202.67 ppm < LOD 7.31 < LOD 7.12 5.33 2.78 < LOD 3.22 

MLC_QV1_140_M-BMIX_B CROMO2_1B SOIL 201.74 ppm < LOD 7.04 < LOD 7.22 6.63 2.80 < LOD 3.38 
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Table A8: continued  
SAMPLE Sample short name Type Duration (s) Units Mo Mo Error Zr Zr Error Sr Sr Error Rb Rb Error 

PHL_PB_1_BULK PHL_1 SOIL 202.49 ppm < LOD 5.07 < LOD 4.66 < LOD 2.65 < LOD 2.37 

PHL_PB_1_BULK PHL_1 SOIL 202.71 ppm < LOD 4.94 < LOD 4.83 < LOD 2.59 < LOD 2.26 

PHL_PB_1_BULK PHL_1 SOIL 214.89 ppm < LOD 4.57 < LOD 4.45 < LOD 2.29 < LOD 2.17 

PHL_PB_2_MIX_BULK PHL_2B SOIL 202.57 ppm < LOD 4.95 < LOD 4.86 < LOD 2.60 < LOD 2.25 

PHL_PB_2_MIX_BULK PHL_2B SOIL 201.42 ppm < LOD 5.00 < LOD 4.90 < LOD 2.62 < LOD 2.12 

PHL_PB_2_MIX_BULK PHL_2B SOIL 202.66 ppm < LOD 5.09 < LOD 4.87 < LOD 2.75 < LOD 2.28 

PHL_PB_2_RED_BULK PHL_2C SOIL 201.71 ppm < LOD 5.17 < LOD 4.99 < LOD 2.64 < LOD 2.49 

PHL_PB_2_RED_BULK PHL_2C SOIL 201.43 ppm < LOD 5.08 < LOD 4.87 < LOD 2.39 < LOD 2.37 

PHL_PB_2_RED_BULK PHL_2C SOIL 201.75 ppm < LOD 3.80 < LOD 3.35 < LOD 1.78 < LOD 1.83 

PHL_PB_2_GRN_BULK PHL_2A SOIL 201.49 ppm < LOD 5.01 < LOD 4.76 < LOD 2.68 < LOD 2.27 

PHL_PB_2_GRN_BULK PHL_2A SOIL 201.62 ppm < LOD 4.56 < LOD 4.48 < LOD 2.53 < LOD 2.10 

PHL_PB_2_GRN_BULK PHL_2A SOIL 202.47 ppm < LOD 4.77 < LOD 4.56 < LOD 2.36 < LOD 2.28 

PHL_PB_3_BULK PHL_3 SOIL 201.52 ppm < LOD 5.49 < LOD 5.29 < LOD 2.87 < LOD 2.42 

PHL_PB_3_BULK PHL_3 SOIL 201.98 ppm < LOD 5.22 < LOD 5.07 < LOD 2.71 < LOD 2.66 

PHL_PB_3_BULK PHL_3 SOIL 201.87 ppm < LOD 5.74 < LOD 5.51 < LOD 2.92 < LOD 2.61 

PHL_PB_4_BULK PHL_4 SOIL 202.54 ppm < LOD 5.25 < LOD 10.32 632.79 12.63 < LOD 3.27 

PHL_PB_4_BULK PHL_4 SOIL 201.35 ppm < LOD 5.29 < LOD 10.52 623.33 12.74 < LOD 3.13 

PHL_PB_4_BULK PHL_4 SOIL 201.76 ppm < LOD 5.16 < LOD 10.40 607.21 12.37 < LOD 3.08 

PHL_PB_5_BULK PHL_5 SOIL 201.78 ppm < LOD 4.73 < LOD 4.48 < LOD 2.09 < LOD 2.23 

PHL_PB_5_BULK PHL_5 SOIL 201.83 ppm < LOD 4.65 < LOD 4.40 < LOD 2.25 < LOD 2.10 

PHL_PB_5_BULK PHL_5 SOIL 203.28 ppm < LOD 4.79 < LOD 4.42 < LOD 2.38 < LOD 2.22 
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Table A8: continued 
Sample Th Th Error Pb Pb Error Se Se Error As As Error Hg Hg Error Zn Zn Error Cu Cu Error 

167_238 < LOD 4.60 < LOD 6.13 < LOD 4.12 < LOD 5.13 < LOD 10.83 < LOD 13.38 < LOD 33.70 

167_238 < LOD 5.22 < LOD 6.25 < LOD 4.07 < LOD 5.10 < LOD 11.83 < LOD 13.35 < LOD 35.84 

167_238 < LOD 4.09 < LOD 6.46 < LOD 4.06 < LOD 5.15 < LOD 10.48 < LOD 13.12 < LOD 34.05 

HLSC_1 < LOD 5.47 < LOD 6.94 < LOD 4.45 < LOD 5.66 < LOD 11.93 < LOD 15.67 < LOD 34.02 

HLSC_1 < LOD 4.68 < LOD 7.08 < LOD 4.63 < LOD 5.89 < LOD 11.73 < LOD 16.19 < LOD 34.67 

HLSC_1 < LOD 4.88 < LOD 7.42 < LOD 4.94 < LOD 5.75 < LOD 12.22 17.77 11.45 < LOD 36.75 

HLSC_4 < LOD 5.48 < LOD 6.88 < LOD 5.08 < LOD 5.67 < LOD 13.05 < LOD 17.91 < LOD 41.58 

HLSC_4 < LOD 5.31 < LOD 6.81 < LOD 4.32 < LOD 5.56 < LOD 11.01 < LOD 15.17 < LOD 34.45 

HLSC_4 < LOD 5.88 < LOD 8.45 < LOD 5.37 < LOD 5.97 < LOD 13.90 < LOD 20.04 < LOD 43.36 

313_210 < LOD 5.63 < LOD 8.26 < LOD 5.49 < LOD 6.28 < LOD 14.63 < LOD 22.86 < LOD 47.97 

313_210 < LOD 5.33 < LOD 7.81 < LOD 4.42 < LOD 5.65 < LOD 11.87 < LOD 18.04 < LOD 35.98 

313_210 < LOD 6.75 < LOD 7.83 < LOD 5.64 < LOD 6.11 < LOD 13.85 < LOD 20.67 < LOD 43.44 

313_329 < LOD 6.67 < LOD 8.62 < LOD 5.90 < LOD 6.54 < LOD 14.41 < LOD 20.25 < LOD 44.27 

313_329 < LOD 5.42 < LOD 8.66 < LOD 5.84 < LOD 6.74 < LOD 14.63 < LOD 21.11 < LOD 44.17 

313_329 < LOD 5.99 < LOD 7.27 < LOD 5.25 < LOD 5.66 < LOD 12.44 < LOD 19.21 < LOD 40.92 

313_356 < LOD 6.02 < LOD 8.25 < LOD 6.06 < LOD 6.37 < LOD 16.66 < LOD 21.98 < LOD 51.66 

313_356 < LOD 5.69 < LOD 8.11 < LOD 5.11 < LOD 5.79 < LOD 13.75 < LOD 18.46 < LOD 41.69 

313_356 < LOD 5.05 < LOD 7.43 < LOD 4.49 < LOD 5.61 < LOD 11.69 < LOD 15.89 < LOD 35.67 

313_318 < LOD 5.25 < LOD 6.91 < LOD 4.67 < LOD 5.18 < LOD 11.82 40.35 12.77 < LOD 37.26 

313_318 < LOD 5.50 < LOD 7.58 < LOD 5.08 < LOD 6.17 < LOD 13.13 27.51 13.41 53.19 29.90 

313_318 < LOD 4.75 < LOD 6.50 < LOD 4.72 < LOD 5.26 < LOD 12.33 26.04 12.31 < LOD 38.27 

309_105_B < LOD 4.46 < LOD 7.00 < LOD 4.69 21.23 5.04 < LOD 13.73 43.41 13.01 < LOD 41.37 

309_105_B < LOD 5.77 < LOD 7.55 < LOD 5.59 32.88 6.20 20.99 11.13 37.56 14.89 < LOD 50.01 

309_105_B < LOD 6.44 < LOD 7.74 < LOD 6.10 32.66 6.37 < LOD 18.05 26.41 15.39 < LOD 53.55 

309_105_A < LOD 4.62 < LOD 6.48 < LOD 4.27 22.32 4.78 < LOD 12.63 25.49 11.51 < LOD 37.13 

309_105_A < LOD 5.03 < LOD 6.96 < LOD 4.63 24.44 5.17 < LOD 12.96 27.35 12.09 < LOD 40.14 

309_105_A < LOD 4.39 < LOD 7.04 < LOD 4.33 17.30 4.78 < LOD 12.56 41.62 12.33 < LOD 36.23 
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Table A8: continued  
Sample Th Th Error Pb Pb Error Se Se Error As As Error Hg Hg Error Zn Zn Error Cu Cu Error 

309_150 < LOD 4.97 < LOD 6.56 < LOD 4.44 < LOD 5.43 < LOD 11.82 23.41 11.93 < LOD 36.22 

309_150 < LOD 5.20 < LOD 8.11 < LOD 4.71 < LOD 5.94 < LOD 12.87 33.20 13.53 < LOD 39.14 

309_150 < LOD 4.77 < LOD 6.77 < LOD 4.37 < LOD 5.30 < LOD 11.13 36.89 12.45 < LOD 34.56 

309_84 < LOD 6.80 < LOD 9.78 < LOD 6.28 41.29 8.26 < LOD 14.47 112.58 26.10 175.11 36.96 

309_84 < LOD 7.70 < LOD 9.81 < LOD 6.25 49.36 8.69 < LOD 14.88 141.25 27.23 186.84 37.51 

309_84 < LOD 7.11 < LOD 9.24 < LOD 5.97 45.60 8.20 < LOD 13.96 139.79 26.28 180.32 36.05 

ESH < LOD 16.74 < LOD 25.86 < LOD 19.53 < LOD 19.03 < LOD 45.36 < LOD 54.90 < LOD 125.35 

ESH 22.44 10.71 23.06 14.10 < LOD 13.71 < LOD 15.17 < LOD 29.85 49.10 26.99 < LOD 96.80 

ESH < LOD 14.17 < LOD 20.15 16.26 9.63 < LOD 15.60 < LOD 30.09 < LOD 35.01 < LOD 94.00 

CROMO1_2_AC < LOD 5.75 < LOD 7.50 < LOD 4.93 < LOD 5.61 < LOD 10.65 < LOD 20.88 57.12 24.85 

CROMO1_2_AC < LOD 5.25 < LOD 6.91 < LOD 4.68 < LOD 5.63 < LOD 10.17 21.48 13.87 85.50 25.70 

CROMO1_2_AC < LOD 5.48 < LOD 7.43 < LOD 4.33 < LOD 5.85 < LOD 9.95 < LOD 19.78 62.67 23.59 

CROMO1_2_AA < LOD 5.17 < LOD 8.08 < LOD 4.57 < LOD 5.99 < LOD 10.84 20.26 11.69 < LOD 33.40 

CROMO1_2_AA < LOD 4.84 < LOD 7.25 < LOD 4.39 < LOD 6.17 < LOD 11.44 < LOD 16.73 < LOD 32.98 

CROMO1_2_AA < LOD 5.75 < LOD 8.29 < LOD 4.40 < LOD 6.35 < LOD 11.31 29.66 12.78 < LOD 36.00 

CROMO1_2_AB < LOD 6.48 < LOD 9.12 < LOD 6.21 < LOD 7.31 < LOD 15.31 < LOD 23.53 < LOD 51.00 

CROMO1_2_AB < LOD 6.64 < LOD 9.62 < LOD 5.93 < LOD 7.15 < LOD 16.07 < LOD 23.20 < LOD 47.40 

CROMO1_2_AB < LOD 6.82 < LOD 9.70 < LOD 6.13 < LOD 7.72 < LOD 16.40 < LOD 23.66 < LOD 47.97 

CROMO1_1_A < LOD 6.91 < LOD 8.61 < LOD 5.10 < LOD 6.54 < LOD 12.33 < LOD 19.09 < LOD 34.39 

CROMO1_1_A < LOD 4.85 < LOD 6.86 < LOD 4.30 < LOD 5.59 < LOD 8.68 < LOD 13.76 < LOD 26.86 

CROMO1_1_A < LOD 5.79 14.29 6.75 < LOD 5.14 < LOD 7.16 < LOD 11.73 < LOD 18.01 < LOD 33.37 

CROMO1_1_B < LOD 9.00 < LOD 12.65 < LOD 8.84 < LOD 10.05 < LOD 20.09 < LOD 30.76 < LOD 58.88 

CROMO1_1_B < LOD 9.49 < LOD 13.03 < LOD 9.15 < LOD 9.71 < LOD 21.34 < LOD 33.20 < LOD 60.12 

CROMO1_1_B < LOD 9.67 < LOD 11.01 < LOD 8.36 < LOD 9.65 < LOD 20.85 < LOD 31.31 < LOD 61.08 
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Table A8: continued  
Sample Th Th Error Pb Pb Error Se Se Error As As Error Hg Hg Error Zn Zn Error Cu Cu Error 

CROMO1_2_CA < LOD 7.43 < LOD 8.93 < LOD 5.83 < LOD 7.09 < LOD 12.51 < LOD 21.15 < LOD 34.07 

CROMO1_2_CA < LOD 7.37 < LOD 9.64 < LOD 6.22 < LOD 7.28 < LOD 12.49 < LOD 21.84 < LOD 36.77 

CROMO1_2_CA < LOD 6.66 < LOD 9.44 < LOD 6.21 < LOD 7.28 < LOD 12.95 < LOD 22.08 < LOD 36.84 

CROMO1_2_CB < LOD 9.59 < LOD 11.99 < LOD 7.90 < LOD 9.45 < LOD 18.34 < LOD 29.32 < LOD 53.68 

CROMO1_2_CB < LOD 8.13 < LOD 12.16 < LOD 8.99 < LOD 10.03 < LOD 20.27 < LOD 30.46 < LOD 57.97 

CROMO1_2_CB < LOD 9.22 < LOD 11.28 < LOD 9.93 < LOD 10.00 < LOD 21.24 < LOD 31.12 < LOD 64.45 

CROMO2_4A < LOD 5.21 < LOD 6.87 < LOD 4.58 < LOD 5.35 < LOD 13.26 < LOD 15.74 < LOD 40.59 

CROMO2_4A < LOD 4.79 < LOD 7.30 < LOD 4.34 < LOD 5.17 < LOD 11.90 < LOD 14.07 < LOD 36.27 

CROMO2_4A < LOD 4.61 < LOD 6.76 < LOD 4.24 < LOD 5.15 < LOD 11.65 < LOD 13.82 < LOD 37.20 

CROMO2_4B < LOD 8.06 < LOD 11.40 < LOD 8.37 < LOD 8.53 < LOD 22.69 < LOD 30.35 < LOD 70.75 

CROMO2_4B < LOD 9.12 < LOD 12.48 < LOD 9.15 < LOD 10.03 < LOD 26.03 < LOD 34.49 < LOD 76.67 

CROMO2_4B < LOD 9.03 < LOD 12.99 12.98 7.61 < LOD 10.24 < LOD 29.90 < LOD 38.43 < LOD 89.08 

CROMO2_2 < LOD 4.34 < LOD 6.97 < LOD 4.38 < LOD 4.96 < LOD 12.64 < LOD 13.56 < LOD 38.84 

CROMO2_2 < LOD 4.46 < LOD 6.61 < LOD 4.64 < LOD 5.34 < LOD 13.98 < LOD 16.18 < LOD 44.38 

CROMO2_2 < LOD 5.15 < LOD 7.34 < LOD 4.71 < LOD 5.29 < LOD 13.40 < LOD 15.40 < LOD 42.83 

CROMO2_3A < LOD 5.84 < LOD 8.23 < LOD 5.63 < LOD 6.68 < LOD 13.91 23.70 14.32 < LOD 44.62 

CROMO2_3A < LOD 4.53 < LOD 6.84 < LOD 4.19 < LOD 5.61 < LOD 10.18 23.71 10.69 < LOD 30.05 

CROMO2_3A < LOD 5.61 < LOD 7.15 < LOD 4.37 < LOD 5.63 < LOD 11.22 < LOD 16.70 < LOD 34.94 

CROMO2_3B < LOD 8.91 < LOD 12.52 < LOD 8.57 < LOD 9.95 29.55 15.92 88.83 26.88 < LOD 75.50 

CROMO2_3B < LOD 9.05 < LOD 12.63 < LOD 8.74 < LOD 10.44 < LOD 23.96 81.33 26.59 < LOD 72.00 

CROMO2_3B < LOD 8.78 < LOD 14.88 < LOD 10.82 < LOD 11.45 < LOD 28.24 51.21 28.79 < LOD 86.45 

CROMO2_1A < LOD 5.30 < LOD 6.75 < LOD 5.04 < LOD 5.40 < LOD 13.48 < LOD 17.39 < LOD 41.69 

CROMO2_1A < LOD 5.02 < LOD 7.92 < LOD 4.36 < LOD 5.56 < LOD 12.65 < LOD 15.25 < LOD 39.72 

CROMO2_1A < LOD 5.51 < LOD 7.58 < LOD 5.16 < LOD 5.72 < LOD 13.56 < LOD 16.17 < LOD 42.08 

CROMO2_1B < LOD 6.52 < LOD 9.90 < LOD 7.46 < LOD 7.99 < LOD 19.49 < LOD 24.36 < LOD 59.70 

CROMO2_1B < LOD 6.59 < LOD 10.46 < LOD 7.46 < LOD 8.45 < LOD 21.63 < LOD 24.79 < LOD 65.10 

CROMO2_1B < LOD 6.85 < LOD 10.75 < LOD 7.48 < LOD 7.88 < LOD 20.31 < LOD 24.85 < LOD 61.38 
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Table A8: continued  
Sample Th Th Error Pb Pb Error Se Se Error As As Error Hg Hg Error Zn Zn Error Cu Cu Error 

PHL_1 < LOD 5.11 < LOD 6.99 < LOD 4.36 < LOD 5.13 < LOD 11.70 < LOD 18.14 < LOD 36.29 

PHL_1 < LOD 5.05 < LOD 7.04 < LOD 4.24 < LOD 5.45 < LOD 11.34 < LOD 17.29 < LOD 35.99 

PHL_1 < LOD 4.43 < LOD 6.50 < LOD 4.03 < LOD 4.74 < LOD 10.48 < LOD 16.78 < LOD 32.40 

PHL_2B < LOD 4.85 < LOD 6.45 < LOD 4.39 < LOD 4.98 < LOD 11.28 < LOD 16.63 57.51 25.97 

PHL_2B < LOD 4.89 < LOD 6.60 < LOD 4.19 < LOD 4.77 < LOD 11.51 < LOD 16.23 53.96 25.43 

PHL_2B < LOD 4.98 < LOD 7.08 < LOD 4.54 < LOD 5.39 < LOD 11.10 < LOD 16.39 62.91 26.38 

PHL_2C < LOD 5.08 < LOD 7.18 < LOD 5.00 < LOD 5.64 < LOD 12.51 < LOD 17.65 < LOD 36.40 

PHL_2C < LOD 5.13 < LOD 7.33 < LOD 4.63 < LOD 5.59 < LOD 11.86 < LOD 17.19 < LOD 37.50 

PHL_2C < LOD 4.15 < LOD 5.15 < LOD 3.34 < LOD 3.98 < LOD 8.07 < LOD 11.79 < LOD 23.99 

PHL_2A < LOD 4.59 < LOD 6.88 < LOD 4.58 < LOD 5.09 < LOD 11.75 < LOD 16.76 86.12 28.72 

PHL_2A < LOD 4.66 < LOD 6.05 < LOD 4.14 < LOD 4.82 < LOD 10.54 < LOD 14.73 51.04 23.88 

PHL_2A < LOD 4.78 < LOD 6.63 < LOD 4.12 < LOD 4.90 < LOD 11.24 < LOD 15.52 72.82 25.95 

PHL_3 < LOD 5.39 < LOD 7.02 < LOD 5.06 < LOD 5.73 < LOD 12.94 < LOD 18.55 < LOD 41.02 

PHL_3 < LOD 5.09 < LOD 6.93 < LOD 4.47 < LOD 5.52 < LOD 12.53 < LOD 16.84 < LOD 38.14 

PHL_3 < LOD 6.08 < LOD 7.68 < LOD 5.30 < LOD 5.82 < LOD 13.69 < LOD 19.47 < LOD 43.66 

PHL_4 < LOD 5.46 < LOD 7.18 < LOD 4.55 < LOD 5.87 < LOD 10.20 < LOD 18.18 348.63 34.59 

PHL_4 < LOD 5.94 < LOD 7.34 < LOD 4.82 < LOD 6.25 < LOD 10.37 25.36 13.18 358.54 35.52 

PHL_4 < LOD 6.13 < LOD 8.04 < LOD 4.70 < LOD 6.02 < LOD 10.34 < LOD 18.10 374.58 35.35 

PHL_5 < LOD 5.03 < LOD 6.40 < LOD 4.26 < LOD 4.77 < LOD 10.81 < LOD 15.22 < LOD 32.71 

PHL_5 < LOD 4.28 < LOD 5.86 < LOD 4.12 < LOD 4.46 < LOD 10.53 < LOD 14.15 < LOD 33.58 

PHL_5 < LOD 5.15 < LOD 7.08 < LOD 4.06 < LOD 5.24 < LOD 11.00 < LOD 16.05 < LOD 33.31 
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Table A8: continued 

Sample Ni 
Ni 

Error 
Co 

Co 
Error 

Fe Fe Error Mn 
Mn 

Error 
Cr 

Cr 
Error 

V 
V 

Error 

167_238 3334.03 95.64 186.19 122.01 47495.71 422.28 1331.67 109.26 1080.69 41.72 43.87 27.12 

167_238 3805.79 105.31 324.75 132.66 51785.91 454.97 1495.75 118.36 1069.95 33.35 < LOD 32.60 

167_238 3538.81 96.89 311.18 120.94 47098.51 414.06 1227.17 103.52 984.76 32.46 < LOD 31.24 

HLSC_1 2852.23 94.72 237.31 128.24 46779.33 441.75 1268.17 118.04 2005.01 44.56 51.52 23.50 

HLSC_1 2670.33 92.73 258.89 127.66 45341.33 438.63 1297.06 119.07 1967.19 47.14 < LOD 38.50 

HLSC_1 2903.19 96.42 219.96 131.52 48535.79 454.10 1390.14 122.17 1941.42 46.39 42.05 25.41 

HLSC_4 2787.01 106.26 296.41 177.49 72466.30 614.58 1447.33 141.13 1617.09 49.79 47.82 29.36 

HLSC_4 2292.47 89.87 < LOD 225.64 60575.23 521.90 1165.44 118.78 1576.32 48.63 49.89 28.71 

HLSC_4 3158.89 113.58 294.50 188.54 80918.50 654.09 1450.29 145.01 1564.19 43.92 62.29 26.45 

313_210 3214.69 119.01 < LOD 311.55 93366.91 729.15 1409.90 150.80 1392.28 45.96 67.16 29.37 

313_210 2442.97 95.16 < LOD 247.86 69685.15 574.34 1032.01 118.53 1395.20 49.29 < LOD 48.92 

313_210 2923.15 112.70 321.92 198.19 84939.34 687.18 1331.50 143.34 1421.55 49.10 80.17 32.64 

313_329 1992.64 100.63 < LOD 285.99 73110.38 666.21 1345.43 145.65 990.13 39.00 40.45 26.96 

313_329 1956.37 101.33 < LOD 290.85 73426.34 676.01 1268.54 143.73 927.04 37.42 42.75 25.93 

313_329 1882.79 94.19 353.63 177.28 66603.80 610.67 1227.87 133.17 910.61 37.79 41.11 26.42 

313_356 3896.19 135.41 < LOD 293.79 75455.58 687.13 1391.53 155.00 1458.91 43.79 < LOD 38.62 

313_356 3052.59 109.86 270.22 159.48 58312.07 550.53 1105.34 126.26 1384.70 43.75 59.23 25.78 

313_356 2682.63 96.24 < LOD 204.37 48949.02 472.13 952.46 109.34 1372.99 42.69 < LOD 38.48 

313_318 2848.42 99.59 < LOD 210.60 51081.21 485.88 1268.37 131.57 3634.48 67.26 77.48 30.52 

313_318 3242.36 111.34 < LOD 234.72 57859.56 543.31 1410.06 147.05 3556.75 65.74 69.91 28.96 

313_318 3051.70 103.67 302.97 143.45 51752.05 492.80 1314.07 135.06 3559.70 66.66 86.03 30.40 

309_105_B 4726.52 121.47 335.73 135.38 48973.15 462.79 876.07 102.55 1111.61 41.22 < LOD 39.77 

309_105_B 5789.82 149.30 310.35 168.99 62686.34 582.55 1237.33 131.67 1016.32 39.87 46.79 26.33 

309_105_B 6155.90 158.37 467.39 179.05 65457.80 611.89 1227.78 135.97 1065.65 40.20 < LOD 36.93 

309_105_A 4129.92 108.24 299.99 132.63 52935.22 455.82 1106.13 119.60 4391.95 73.44 59.54 29.22 

309_105_A 4085.77 113.18 307.97 138.78 52355.28 476.57 1117.27 124.14 4230.49 74.62 49.13 30.23 

309_105_A 4073.97 110.30 198.45 131.62 49873.58 455.36 1100.50 120.57 4354.20 76.24 63.79 30.54 
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Table A8: continued  

Sample Ni 
Ni 

Error 
Co 

Co 
Error 

Fe Fe Error Mn 
Mn 

Error 
Cr 

Cr 
Error 

V 
V 

Error 

309_150 2703.41 96.50 < LOD 215.22 54727.32 498.42 994.61 121.21 2939.46 60.11 83.34 30.93 

309_150 2889.50 105.20 337.20 160.80 61134.53 553.21 964.81 128.69 2889.03 60.26 75.84 29.79 

309_150 2541.58 92.84 < LOD 211.23 53718.55 488.20 987.27 117.59 2825.78 58.97 82.96 29.90 

309_84 148.18 65.73 < LOD 536.78 225056.98 1270.07 4678.70 270.79 295.94 49.87 582.32 103.13 

309_84 150.69 67.15 < LOD 538.82 224888.53 1267.51 4457.99 264.96 284.90 47.50 589.07 97.41 

309_84 126.08 63.40 < LOD 515.48 214671.36 1215.55 4414.56 257.70 218.22 45.50 448.94 96.39 

ESH < LOD 187.95 < LOD 77.79 408.60 128.14 < LOD 153.28 13.21 8.28 < LOD 14.25 

ESH < LOD 136.16 < LOD 54.54 196.51 84.89 < LOD 125.28 < LOD 12.30 < LOD 13.55 

ESH < LOD 146.53 < LOD 66.70 227.71 87.57 < LOD 120.65 < LOD 12.60 < LOD 13.88 

CROMO1_2_AC < LOD 64.51 < LOD 300.04 91002.48 702.93 1699.55 145.11 < LOD 42.05 359.02 56.38 

CROMO1_2_AC < LOD 64.39 < LOD 295.44 88496.77 686.92 1562.83 139.14 < LOD 42.89 306.36 54.22 

CROMO1_2_AC < LOD 57.62 < LOD 277.02 83641.25 650.70 1520.65 133.73 < LOD 41.17 305.27 55.67 

CROMO1_2_AA 1780.69 83.36 < LOD 218.26 53738.29 507.00 963.57 116.12 1531.57 48.18 114.72 35.33 

CROMO1_2_AA 1729.61 82.26 < LOD 219.66 54353.24 507.37 951.29 114.94 1616.50 49.58 93.99 36.11 

CROMO1_2_AA 1815.98 85.74 262.51 151.92 55942.11 524.35 973.41 123.40 1970.29 53.10 131.05 35.37 

CROMO1_2_AB 3046.67 125.68 < LOD 345.26 97748.95 801.78 1376.59 165.22 2109.70 58.47 96.94 37.87 

CROMO1_2_AB 3026.97 124.39 < LOD 342.24 97212.96 793.13 1292.00 161.72 2092.50 58.24 90.16 36.59 

CROMO1_2_AB 3047.88 127.17 < LOD 354.77 101510.90 825.13 1493.67 173.73 2124.97 59.00 97.44 36.28 

CROMO1_1_A < LOD 68.19 < LOD 300.31 80662.95 702.97 1761.48 154.26 < LOD 33.88 166.88 41.36 

CROMO1_1_A < LOD 53.33 < LOD 220.84 59160.30 521.08 1236.31 113.37 < LOD 34.81 191.92 41.58 

CROMO1_1_A < LOD 65.74 < LOD 293.60 78801.42 688.07 1766.78 152.69 < LOD 34.32 156.65 40.88 

CROMO1_1_B < LOD 116.02 < LOD 454.88 116188.96 1092.01 2763.97 246.26 < LOD 32.47 129.57 35.82 

CROMO1_1_B < LOD 113.68 < LOD 461.79 120477.61 1105.82 2881.82 249.92 66.23 22.34 121.86 35.63 

CROMO1_1_B 164.88 80.49 < LOD 452.58 113358.70 1070.41 2720.24 243.21 43.36 22.08 160.69 36.42 
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Table A8: continued  

Sample Ni 
Ni 

Error 
Co 

Co 
Error 

Fe Fe Error Mn 
Mn 

Error 
Cr 

Cr 
Error 

V 
V 

Error 

CROMO1_2_CA < LOD 74.47 < LOD 323.36 88302.38 752.58 1922.24 165.20 < LOD 34.59 172.09 41.65 

CROMO1_2_CA < LOD 73.16 < LOD 322.22 86812.97 749.12 2089.01 169.94 < LOD 35.99 184.11 41.48 

CROMO1_2_CA < LOD 77.52 < LOD 341.55 92726.28 798.86 2047.86 175.91 < LOD 35.22 212.81 41.66 

CROMO1_2_CB 392.55 81.99 < LOD 420.07 110297.95 1019.36 2532.72 229.70 161.84 25.03 130.18 35.67 

CROMO1_2_CB 289.43 81.63 < LOD 434.50 109892.79 1039.11 2586.39 235.22 174.84 24.89 128.43 34.47 

CROMO1_2_CB 331.24 90.38 < LOD 487.48 125762.21 1178.53 2860.96 263.62 168.69 25.04 143.31 35.70 

CROMO2_4A 4451.60 121.52 452.80 142.47 50800.18 483.10 648.93 95.99 561.95 30.47 < LOD 33.69 

CROMO2_4A 4107.47 111.42 210.64 131.63 49182.21 454.53 541.97 86.73 549.55 31.19 < LOD 35.20 

CROMO2_4A 4016.99 110.27 264.43 130.95 48254.96 449.99 522.42 87.07 770.91 33.87 < LOD 35.20 

CROMO2_4B 6630.28 206.33 < LOD 433.30 119009.69 1025.93 1134.67 173.47 257.44 26.02 < LOD 37.39 

CROMO2_4B 7505.56 233.52 < LOD 489.13 130727.70 1141.79 1181.14 190.39 321.03 26.49 < LOD 34.47 

CROMO2_4B 8186.73 262.21 < LOD 547.51 146668.91 1302.27 1390.38 219.02 306.31 25.96 < LOD 35.48 

CROMO2_2 4824.22 119.55 308.86 129.44 46999.31 442.87 769.95 96.70 752.70 35.28 47.93 25.34 

CROMO2_2 5554.99 134.65 386.05 145.49 53525.53 496.68 752.67 104.64 761.68 35.69 < LOD 38.29 

CROMO2_2 5317.52 130.39 232.53 139.21 51019.72 480.18 713.58 102.07 792.77 35.73 < LOD 38.13 

CROMO2_3A 3781.32 126.12 373.79 189.22 75864.01 652.94 1397.20 154.75 2192.13 55.32 < LOD 50.02 

CROMO2_3A 2431.36 85.51 246.60 131.35 52121.28 453.27 1090.27 112.19 2285.62 57.41 67.18 34.68 

CROMO2_3A 2671.35 93.61 < LOD 215.40 57443.68 498.23 1055.18 118.69 1972.33 53.67 71.61 33.81 

CROMO2_3B 5515.54 201.58 < LOD 482.18 134003.28 1149.10 2001.84 232.71 980.44 39.73 74.19 32.69 

CROMO2_3B 5405.32 197.64 < LOD 475.09 128730.48 1109.87 1819.99 220.39 933.86 39.10 < LOD 47.05 

CROMO2_3B 5918.07 226.97 < LOD 544.64 146283.61 1301.87 2074.58 259.90 962.38 38.48 59.77 31.84 

CROMO2_1A 4047.89 121.96 338.93 148.86 51628.15 509.48 708.01 100.84 327.33 26.01 < LOD 32.91 

CROMO2_1A 3690.55 112.90 354.39 140.02 48556.89 477.83 777.45 98.93 269.99 25.22 < LOD 33.56 

CROMO2_1A 3904.00 121.09 530.16 150.54 50564.79 507.40 639.82 98.01 306.99 25.83 < LOD 34.29 

CROMO2_1B 5034.05 167.60 < LOD 310.29 69066.38 724.97 857.96 136.11 208.50 22.75 < LOD 32.03 

CROMO2_1B 5744.64 184.06 < LOD 337.80 75582.87 780.68 1220.76 157.63 206.43 22.87 < LOD 32.48 

CROMO2_1B 5310.24 173.17 < LOD 324.03 73652.82 753.47 993.46 144.15 185.59 22.54 < LOD 31.99 
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Table A8: continued  

Sample Ni 
Ni 

Error 
Co 

Co 
Error 

Fe Fe Error Mn 
Mn 

Error 
Cr 

Cr 
Error 

V 
V 

Error 

PHL_1 2809.97 100.50 382.58 177.62 80763.18 613.56 1329.35 130.23 1313.04 51.12 < LOD 47.89 

PHL_1 2718.53 97.71 368.13 172.82 78394.73 597.02 1241.70 127.23 1530.65 54.58 < LOD 50.27 

PHL_1 2646.27 89.51 299.13 157.29 75637.00 545.04 1357.92 122.21 1939.61 58.26 < LOD 48.51 

PHL_2B 2165.92 88.67 284.31 150.29 58750.50 518.51 1037.73 117.61 1890.39 53.50 76.64 31.92 

PHL_2B 2069.52 86.61 340.77 148.29 57221.90 509.30 984.15 114.64 1835.24 52.78 65.26 31.23 

PHL_2B 2229.52 90.06 227.43 150.91 59120.38 522.72 1043.06 118.36 1884.94 52.96 63.59 30.35 

PHL_2C 2831.10 103.33 288.56 178.69 78372.31 619.80 1244.51 133.04 1479.67 51.92 < LOD 44.27 

PHL_2C 2745.78 99.63 280.58 170.85 74610.47 592.38 1198.55 127.61 1390.46 51.50 < LOD 46.37 

PHL_2C 1650.42 63.35 181.48 108.39 45569.93 374.98 751.84 81.31 1238.46 49.20 < LOD 46.73 

PHL_2A 2896.22 101.63 < LOD 227.61 59311.35 529.75 911.61 118.74 2231.59 57.08 68.84 31.34 

PHL_2A 2504.46 87.45 199.40 129.62 49929.81 448.40 776.82 101.74 2292.26 57.92 51.90 30.00 

PHL_2A 2686.15 92.93 218.94 137.89 53550.11 476.96 870.66 108.86 2240.21 57.71 < LOD 46.48 

PHL_3 3090.42 111.86 531.18 186.09 77207.58 637.25 1294.85 141.89 2247.84 60.00 66.98 32.92 

PHL_3 2859.16 103.49 287.34 172.43 73148.43 597.45 1315.76 135.68 2190.65 59.25 < LOD 48.07 

PHL_3 3317.70 118.01 < LOD 291.03 83304.90 679.64 1364.77 151.06 2329.26 61.07 < LOD 47.72 

PHL_4 270.34 48.94 < LOD 216.10 50564.68 507.16 959.80 108.47 < LOD 33.59 343.84 59.18 

PHL_4 275.62 50.24 < LOD 221.40 50980.34 517.53 919.52 108.46 < LOD 33.30 346.40 58.34 

PHL_4 290.88 50.32 < LOD 218.71 50210.20 504.86 889.23 105.60 < LOD 33.35 318.87 57.88 

PHL_5 2752.68 94.60 373.12 156.82 68477.06 539.98 1161.57 117.71 1685.87 55.47 < LOD 47.12 

PHL_5 2627.79 91.12 301.64 151.42 66160.68 523.18 1079.51 111.73 1411.48 51.90 < LOD 47.53 

PHL_5 3031.60 98.77 240.46 158.50 70756.62 550.29 1195.72 120.63 1723.83 55.70 < LOD 51.22 
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Table A8: continued  
Sample Ti Ti Error Sc Sc Error Ca Ca Error K K Error S S Error Sb Sb Error 

167_238 < LOD 85.99 < LOD 27.55 13070.62 297.21 212.63 137.52 < LOD 739.55 < LOD 12.16 

167_238 < LOD 70.67 < LOD 22.30 12805.88 237.21 296.90 113.94 < LOD 598.73 < LOD 12.04 

167_238 < LOD 67.88 < LOD 22.36 12666.83 236.63 < LOD 162.89 < LOD 591.75 < LOD 12.23 

HLSC_1 136.15 51.93 33.65 20.30 22904.92 328.43 < LOD 181.11 < LOD 665.47 < LOD 12.00 

HLSC_1 93.15 57.52 < LOD 31.85 22381.04 345.71 < LOD 191.34 < LOD 666.33 < LOD 12.11 

HLSC_1 99.69 56.77 < LOD 31.64 22360.15 342.46 < LOD 188.63 < LOD 617.68 < LOD 12.21 

HLSC_4 98.84 65.00 < LOD 33.66 18098.57 357.12 < LOD 222.14 < LOD 731.40 < LOD 13.35 

HLSC_4 113.85 63.45 36.85 21.67 16943.48 341.81 < LOD 219.18 < LOD 790.22 < LOD 13.36 

HLSC_4 145.63 58.11 < LOD 29.51 17343.23 313.73 238.51 134.92 < LOD 712.76 < LOD 13.12 

313_210 222.35 64.88 31.12 18.01 10792.62 276.00 302.37 144.29 < LOD 835.33 < LOD 13.55 

313_210 354.05 75.67 < LOD 30.53 13694.44 327.67 275.48 155.21 < LOD 850.42 < LOD 12.82 

313_210 262.82 72.14 < LOD 29.04 11376.88 298.27 < LOD 210.89 < LOD 909.39 < LOD 12.43 

313_329 < LOD 87.69 < LOD 14.97 1973.56 135.00 256.16 125.05 < LOD 658.25 < LOD 12.24 

313_329 < LOD 83.32 < LOD 13.83 1973.72 132.82 354.66 127.74 < LOD 626.39 < LOD 12.51 

313_329 < LOD 84.26 < LOD 13.88 1933.40 133.31 < LOD 180.43 < LOD 611.46 < LOD 11.86 

313_356 < LOD 84.30 < LOD 14.73 2538.72 142.47 289.38 124.44 < LOD 665.21 < LOD 12.17 

313_356 112.34 53.75 < LOD 15.26 2446.29 142.92 317.67 126.78 < LOD 687.09 < LOD 11.85 

313_356 < LOD 85.48 < LOD 15.07 2448.41 139.68 290.87 122.45 < LOD 676.22 < LOD 11.63 

313_318 144.76 65.63 < LOD 26.38 12075.60 283.91 < LOD 201.40 < LOD 747.90 < LOD 11.82 

313_318 147.77 62.33 < LOD 26.64 12582.32 285.72 284.11 138.62 < LOD 769.40 < LOD 11.64 

313_318 181.28 65.02 < LOD 27.54 13523.69 299.09 208.29 137.83 < LOD 709.60 < LOD 11.71 

309_105_B 89.80 58.20 < LOD 11.30 238.99 90.27 275.52 124.28 847.59 491.64 < LOD 11.81 

309_105_B 111.20 55.78 < LOD 11.21 382.41 94.48 < LOD 172.91 1174.84 521.26 < LOD 12.10 

309_105_B < LOD 83.13 < LOD 11.68 270.48 90.44 < LOD 178.24 1458.22 542.67 < LOD 11.84 

309_105_A 223.07 63.47 < LOD 12.41 480.62 103.59 < LOD 181.53 1177.78 547.57 < LOD 12.16 

309_105_A 159.67 65.90 < LOD 12.80 447.40 105.83 < LOD 189.02 837.16 533.21 < LOD 11.94 

309_105_A 149.47 65.04 < LOD 13.16 553.11 110.16 < LOD 194.40 < LOD 760.00 < LOD 12.40 
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Table A8: continued.  
Sample Ti Ti Error Sc Sc Error Ca Ca Error K K Error S S Error Sb Sb Error 

309_150 470.44 69.70 < LOD 12.03 414.00 95.87 270.83 124.29 < LOD 697.44 < LOD 12.12 

309_150 548.06 67.86 < LOD 11.70 376.19 95.72 218.03 123.11 < LOD 685.38 < LOD 12.07 

309_150 489.67 67.20 < LOD 12.02 473.42 97.53 265.77 124.03 754.28 484.39 < LOD 12.17 

309_84 9243.00 283.21 78.17 39.94 25707.33 612.95 760.39 279.72 < LOD 1627.94 < LOD 18.48 

309_84 8624.25 264.79 61.60 37.97 25474.83 588.84 980.24 279.19 < LOD 1439.50 < LOD 18.89 

309_84 8484.45 267.09 63.46 37.70 25324.74 582.82 861.54 271.50 < LOD 1616.48 21.29 13.44 

ESH < LOD 28.90 < LOD 3.92 635.81 40.89 < LOD 101.36 < LOD 229.90 < LOD 19.62 

ESH < LOD 27.60 < LOD 4.02 584.23 39.32 < LOD 101.82 < LOD 253.06 < LOD 18.98 

ESH < LOD 28.51 < LOD 4.01 591.12 39.65 124.66 68.97 < LOD 238.16 < LOD 17.99 

CROMO1_2_AC 2566.92 138.48 94.47 43.25 57789.48 702.56 2247.04 283.50 < LOD 1143.99 < LOD 16.79 

CROMO1_2_AC 2635.52 136.47 83.68 42.71 57737.67 696.31 2559.25 290.23 < LOD 1133.94 < LOD 16.92 

CROMO1_2_AC 2521.87 139.00 < LOD 63.79 58853.18 699.14 2124.58 276.77 < LOD 1202.31 < LOD 16.07 

CROMO1_2_AA 1096.15 88.83 < LOD 58.41 62509.09 643.36 321.61 192.05 < LOD 1006.23 < LOD 14.50 

CROMO1_2_AA 986.21 91.25 70.38 39.53 62990.42 650.18 < LOD 280.41 < LOD 1034.89 < LOD 14.46 

CROMO1_2_AA 1020.89 87.22 60.66 38.92 62655.52 642.18 < LOD 282.72 < LOD 1014.69 < LOD 14.33 

CROMO1_2_AB 617.37 88.65 < LOD 32.22 14209.68 337.12 < LOD 232.43 < LOD 866.85 < LOD 12.91 

CROMO1_2_AB 639.46 85.91 < LOD 31.97 14338.89 338.54 293.01 160.36 < LOD 820.15 < LOD 13.00 

CROMO1_2_AB 681.88 85.09 < LOD 32.66 14527.41 343.08 387.73 166.11 < LOD 944.59 < LOD 12.78 

CROMO1_1_A 1884.52 105.47 52.65 29.10 33313.57 471.35 2725.73 244.10 < LOD 848.24 < LOD 13.27 

CROMO1_1_A 2015.25 105.52 47.98 29.41 33565.10 477.80 2620.74 243.57 < LOD 853.74 < LOD 14.01 

CROMO1_1_A 1949.93 105.78 82.44 30.03 33962.97 479.34 2269.19 233.85 < LOD 862.71 < LOD 13.58 

CROMO1_1_B 1239.37 89.55 73.71 27.53 31582.04 440.25 1864.44 209.93 < LOD 848.38 < LOD 14.43 

CROMO1_1_B 1116.47 88.70 79.32 27.67 31524.12 441.14 2097.57 217.26 < LOD 849.55 < LOD 15.20 

CROMO1_1_B 1267.81 89.28 58.48 27.48 31749.75 443.24 1930.24 212.81 < LOD 861.80 < LOD 14.58 
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Table A8: continued  
Sample Ti Ti Error Sc Sc Error Ca Ca Error K K Error S S Error Sb Sb Error 

CROMO1_2_CA 1688.89 104.26 60.27 27.92 28821.60 446.19 922.04 189.01 < LOD 892.00 < LOD 13.11 

CROMO1_2_CA 1853.60 104.16 < LOD 40.79 29381.91 446.11 949.56 188.99 < LOD 968.44 < LOD 13.51 

CROMO1_2_CA 1718.14 101.89 < LOD 40.61 29012.79 443.96 1149.43 195.67 < LOD 876.79 < LOD 13.22 

CROMO1_2_CB 967.63 86.02 37.07 23.60 22760.47 379.15 738.17 168.65 < LOD 805.33 < LOD 13.96 

CROMO1_2_CB 1024.33 83.43 < LOD 34.38 22850.04 374.11 555.88 159.40 < LOD 727.45 < LOD 14.42 

CROMO1_2_CB 1089.99 86.38 39.63 23.45 22517.97 375.86 845.84 171.83 < LOD 772.05 < LOD 14.60 

CROMO2_4A < LOD 71.71 < LOD 9.71 < LOD 110.99 < LOD 154.87 < LOD 616.98 < LOD 11.52 

CROMO2_4A < LOD 73.73 < LOD 9.71 186.67 79.56 < LOD 160.08 < LOD 640.06 < LOD 12.02 

CROMO2_4A < LOD 75.93 < LOD 9.15 125.31 76.27 < LOD 160.45 < LOD 614.34 < LOD 12.00 

CROMO2_4B < LOD 81.08 < LOD 10.99 385.29 90.82 < LOD 171.74 < LOD 681.27 < LOD 13.19 

CROMO2_4B < LOD 74.72 < LOD 10.38 376.71 88.48 < LOD 168.64 681.21 445.42 < LOD 14.08 

CROMO2_4B < LOD 77.17 < LOD 10.35 322.13 85.96 < LOD 165.17 906.34 463.66 < LOD 15.32 

CROMO2_2 102.79 53.02 < LOD 10.28 201.17 85.21 184.56 115.91 864.37 476.41 < LOD 11.90 

CROMO2_2 < LOD 81.66 < LOD 11.05 271.74 88.47 < LOD 172.43 946.84 489.24 < LOD 11.73 

CROMO2_2 < LOD 81.83 < LOD 10.63 343.82 89.68 192.47 117.68 952.46 484.46 < LOD 11.18 

CROMO2_3A 653.79 80.35 < LOD 16.24 2253.23 151.97 1756.12 192.76 < LOD 752.95 < LOD 12.23 

CROMO2_3A 742.60 82.97 < LOD 16.92 2745.11 165.08 1788.79 197.39 < LOD 751.12 < LOD 12.53 

CROMO2_3A 736.91 80.53 < LOD 16.94 2725.02 163.74 1955.59 201.69 < LOD 808.44 < LOD 12.33 

CROMO2_3B 685.47 77.78 < LOD 13.64 1704.22 137.49 1748.40 191.16 < LOD 734.80 < LOD 14.57 

CROMO2_3B 737.62 78.39 < LOD 14.22 1410.96 130.70 1711.15 189.62 < LOD 666.29 < LOD 14.25 

CROMO2_3B 691.00 77.18 < LOD 14.01 1570.50 130.97 1634.79 184.01 < LOD 658.15 < LOD 15.12 

CROMO2_1A < LOD 71.30 < LOD 10.23 327.28 79.07 < LOD 159.27 1054.57 449.48 < LOD 11.24 

CROMO2_1A < LOD 72.96 < LOD 9.68 259.57 77.68 < LOD 159.13 < LOD 569.54 < LOD 11.38 

CROMO2_1A < LOD 72.71 < LOD 9.79 346.40 79.95 < LOD 157.58 < LOD 575.05 < LOD 11.67 

CROMO2_1B < LOD 68.84 < LOD 8.58 < LOD 102.93 < LOD 158.49 < LOD 590.82 < LOD 12.69 

CROMO2_1B < LOD 69.86 < LOD 8.50 124.29 70.59 221.26 109.31 796.53 416.76 < LOD 13.02 

CROMO2_1B < LOD 69.46 < LOD 8.77 109.98 70.27 190.43 107.92 < LOD 542.77 < LOD 12.85 
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Table A8: continued 
Sample Ti Ti Error Sc Sc Error Ca Ca Error K K Error S S Error Sb Sb Error 

PHL_1 < LOD 106.88 < LOD 13.55 < LOD 154.23 290.94 150.55 < LOD 858.98 < LOD 12.85 

PHL_1 < LOD 110.58 < LOD 14.63 < LOD 158.15 310.18 152.86 < LOD 826.60 < LOD 12.58 

PHL_1 132.73 71.13 < LOD 13.61 < LOD 144.17 < LOD 207.09 < LOD 798.40 < LOD 12.67 

PHL_2B 270.15 70.92 37.49 19.34 11906.07 296.57 < LOD 214.40 < LOD 662.92 < LOD 12.36 

PHL_2B 313.15 70.16 < LOD 27.15 10903.87 284.72 215.57 142.96 < LOD 806.94 < LOD 12.49 

PHL_2B 250.91 67.29 < LOD 27.52 11476.23 289.15 < LOD 209.00 < LOD 791.43 < LOD 12.25 

PHL_2C 105.18 64.19 < LOD 13.87 < LOD 161.36 < LOD 209.75 < LOD 780.89 < LOD 12.65 

PHL_2C < LOD 99.99 < LOD 14.42 < LOD 166.59 269.26 147.49 < LOD 781.86 < LOD 12.56 

PHL_2C < LOD 104.22 < LOD 14.03 < LOD 168.51 278.64 146.45 < LOD 828.34 < LOD 12.29 

PHL_2A 311.34 70.22 < LOD 28.36 12224.85 299.55 < LOD 208.01 < LOD 826.52 < LOD 12.30 

PHL_2A 336.36 68.47 < LOD 30.08 13823.78 318.20 224.89 147.33 < LOD 681.76 < LOD 12.90 

PHL_2A 265.46 70.77 < LOD 29.48 13245.48 313.65 < LOD 213.90 < LOD 782.31 < LOD 13.11 

PHL_3 139.63 71.20 < LOD 21.28 4857.25 213.29 < LOD 213.06 < LOD 789.13 < LOD 12.71 

PHL_3 120.34 71.87 < LOD 21.10 4859.33 212.99 < LOD 213.38 < LOD 707.96 < LOD 12.83 

PHL_3 140.82 71.33 < LOD 20.45 4920.45 215.53 < LOD 216.99 < LOD 799.55 < LOD 12.66 

PHL_4 7456.69 170.75 105.87 44.99 87853.82 740.54 < LOD 308.32 < LOD 998.59 < LOD 16.23 

PHL_4 7462.30 168.70 128.41 44.80 87578.43 733.80 < LOD 303.14 < LOD 1061.48 < LOD 16.20 

PHL_4 7394.78 167.93 106.52 44.31 87460.70 729.08 < LOD 302.50 < LOD 1063.51 < LOD 15.89 

PHL_5 < LOD 102.88 < LOD 13.17 < LOD 151.99 < LOD 212.40 < LOD 785.08 < LOD 13.02 

PHL_5 < LOD 102.51 < LOD 14.18 < LOD 154.46 < LOD 211.62 < LOD 793.93 < LOD 12.88 

PHL_5 < LOD 114.87 < LOD 13.24 < LOD 149.84 < LOD 207.49 < LOD 766.64 < LOD 12.88 
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Figure A19: SEM-EDS spectra images for sample 313_329 for the inside of olivine grains (1). See also Table 7 and Figure 25.  
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Figure A20: SEM-EDS spectra images for sample 313_329 along edges of olivine grains. See also Table 8 and Figure 26.  
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Figure A21: SEM-EDS spectra for sample 313_329 for the inside of olivine grains. See also Table 9 and Figure 27. 
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Figure A22: SEM-EDS spectra for sample 313_329 for the inside of pyroxene grains. See also Table 10 and Figure 28. 
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Figure A23: SEM-EDS spectra for sample 313_329 inside of a spinel grain. See also Table 11 and Figure 29. 
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Table A9: Mössbauer parameters for other samples collected from prospecting cores, 

CROMO well cores, and Philippines hand samples.  

Sample 309_84 309_105_B CROMO1_1_A‡ CROMO1_1_B‡ 

Sextet 1 

Magnetite 

IS         

QS         

W         

A         

Bhf         

Sextet 2 

Magnetite 

IS         

QS         

W         

A         

Bhf         

Ferric 1 

Silicate 

IS 0.30 0.30* 0.30* 0.37 

QS 0.66 0.41 0.41 1.17 

W 0.53 0.50 0.50 0.50 

A 17 8 8 12 

Ferric 2 

Silicate 

IS   0.77 0.77 0.02 

QS   1.20 1.20 0.58 

W   0.40* 0.40* 0.52 

A   8 8 6 

Ferrous 1 

Silicate 

IS 1.14 1.13 1.13 1.13 

QS 2.66 2.67 2.67 2.69 

W 0.23* 0.25 0.25 0.23* 

A 83 79 79 82 

Ferrous 2 

Silicate 

IS   0.71 0.71   

QS   2.77 2.77   

W   0.30* 0.30*   

A   5 5   

X
2
 3081.07 575.85 534.21 520.74 

|X
2
| 5.6865 1.1206 1.0436 1.0125 

Sum areas 100 100 100 100 

Magnetite 0 0 0 0 

Fe(III) 17 32 16 18 

Fe(II) 83 68 84 82 

%Fe 
3+ 

 in silicates 17 32 16 18 
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Table A9: continued 

Sample CROMO1_2_AA CROMO1_2_AB CROMO1_2_AC‡ 

Sextet 1 

Magnetite 

IS       

QS       

W       

A       

Bhf       

Sextet 2 

Magnetite 

IS       

QS       

W       

A       

Bhf       

Ferric 1 

Silicate 

IS 0.33 0.39 0.45 

QS 0.67 1.19 0.41 

W 0.49 0.49 0.50 

A 13 37 15 

Ferric 2 

Silicate 

IS 0.42     

QS 1.23     

W 0.52     

A 16     

Ferrous 1 

Silicate 

IS 1.16 1.13 1.14 

QS 1.88 2.71 2.71 

W 0.25 0.23* 0.20 

A 12 63 78 

Ferrous 2 

Silicate 

IS 1.13   0.36 

QS 2.77   2.04 

W 0.23*   0.30 

A 60   7 

X
2
 597.75 684.34 760.45 

|X
2
| 1.1645 1.3276 1.4754 

Sum areas 100 100 100 

Magnetite 0 0 0 

Fe(III) 29 37 15 

Fe(II) 71 63 85 

%Fe 
3+ 

 in silicates 29 37 15 
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Table A9: continued 

Sample CROMO1_2_CA‡ CROMO1_2_CB‡ CROMO2_1B‡ CROMO2_3B‡ 

Sextet 1 

Magnetite 

IS     0.28 0.26 

QS     0.00 -0.04 

W     0.30 0.30 

A     10 13 

Bhf     493.1 488.6 

Sextet 2 

Magnetite 

IS     0.69 0.68 

QS     -0.01 -0.02 

W     0.32 0.25 

A     11 17 

Bhf     461.5 461.2 

Ferric 1 

Silicate 

IS 0.43 0.31 0.36 0.35 

QS 0.82 1.03 0.71 0.68 

W 0.50 0.91 0.64 0.56 

A 8 25 42 27 

Ferric 2 

Silicate 

IS 0.99       

QS 0.80       

W 0.34       

A 4       

Ferrous 1 

Silicate 

IS 1.13 1.13 1.15 1.14 

QS 2.69 2.69 2.70 2.67 

W 0.20 0.12 0.31 0.30 

A 88 75 37 44 

Ferrous 2 

Silicate 

IS         

QS         

W         

A         

X
2
 1012.73 481.61 959.7 1582.26 

|X
2
| 1.9766 0.9379 1.8725 3.086 

Sum areas 100 100 100 100 

Magnetite 0 0 21 29 

Fe(III) 12 25 42 27 

Fe(II) 88 75 37 44 

%Fe 
3+ 

 in silicates 12 25 53 38 

 

  



 

191 

  

Table A9: continued 

Sample CROMO2_4B‡ PHL_2A‡ PHL_2C‡ PHL_4 

Sextet 1 

Magnetite 

IS 0.27 0.30 0.29   

QS -0.02 -0.06 0.02   

W 0.23 0.35 0.35   

A 19 4 14   

Bhf 488.8 499.5 500.2   

Sextet 2 

Magnetite 

IS 0.67 1.16 1.01   

QS 0.00 0.45 0.31   

W 0.30 0.30 0.35   

A 33 4 5   

Bhf 458.7 413.3 331.4   

Ferric 1 

Silicate 

IS 0.34 0.35 0.35 0.54 

QS 0.70 0.67 0.67 0.55 

W 0.60 0.62 0.57 0.25* 

A 23 58 56 5 

Ferric 2 

Silicate 

IS       1.03 

QS       0.76 

W       0.33 

A       8 

Ferrous 1 

Silicate 

IS 1.13 1.14 1.14 0.54 

QS 2.68 2.67 2.79 1.68 

W 0.29 0.37 0.38 0.3* 

A 25 34 25 9 

Ferrous 2 

Silicate 

IS       0.64 

QS       2.67 

W       0.3* 

A       6 

Ferrous 3 

Silicate 

IS       1.15 

QS       2.66 

W       0.25* 

A       72 

X
2
 965.96 1975.26 1483.44 1321.81 

|X
2
| 1.8841 3.7966 2.8448 2.5599 

Sum areas 100 100 100 100 

Magnetite 52 8 19 0 

Fe(III) 23 58 56 14 

Fe(II) 25 34 25 86 

%Fe 
3+ 

 in silicates 48 63 69 14 

Isomer shift (IS) is in mm/s; Quadrupole splitting (QS) is in mm/s; Peak width (W) is 

in mm/s; magnetic hyperfine field (Bhf) is in tesla; % Area (A) under the curve; CHI-

squared (Χ
2
), and normalized CHI-squared (|Χ

2
|). Silicates are serpentine, pyroxene, 

and/or chlorite.  

*Indicates restricted (fixed) parameter. 

‡MOSS curves fit by M.Nelms in Dyar Lab and rest were fit by A.Stander.
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Figure A24. Mössbauer Spectroscopy 309_84 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue) and Fe
2+

 (green) curves. 
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Figure A25. Mössbauer Spectroscopy 309_105_B plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), Fe
3+

 (blue) and Fe
2+

 (green) curves. 
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Figure A26. Mössbauer Spectroscopy CROMO1_1_A plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), Fe
3+

 (blue and green) and Fe
2+

 (brown and purple) curves. 
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Figure A27. Mössbauer Spectroscopy CROMO1_1_B plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), Fe
3+

 (blue and green) and Fe
2+

 (brown) curves.  
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Figure A28. Mössbauer Spectroscopy CROMO1_2_AA plot. The data (black dots) were fit using the Ghent program to obtain a best 

fit curve (red), Fe
3+

 (blue and green) and Fe
2+

 (brown and purple) curves. 
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Figure A29. Mössbauer Spectroscopy CROMO1_2_AB plot. The data (black dots) were fit using the Ghent program to obtain a best 

fit curve (red), Fe
3+

 (blue) and Fe
2+

 (green) curves. 
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Figure A30. Mössbauer Spectroscopy CROMO1_2_AC plot. The data (black dots) were fit using the Ghent program to obtain a best 

fit curve (red), Fe
3+

 (blue) and Fe
2+

 (green and brown) curves. 
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Figure A31. Mössbauer Spectroscopy CROMO1_2_CA plot. The data (black dots) were fit using the Ghent program to obtain a best 

fit curve (red), Fe
3+

 (blue and brown) and Fe
2+

 (green) curves. 
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Figure A32. Mössbauer Spectroscopy CROMO1_2_CB plot. The data (black dots) were fit using the Ghent program to obtain a best 

fit curve (red), Fe
3+

 (blue) and Fe
2+

 (green) curves. 
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Figure A33. Mössbauer Spectroscopy CROMO2_1B plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), magnetite (blue and green), Fe
3+ 

(purple) and Fe
2+

 (brown) curves. 
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Figure A34. Mössbauer Spectroscopy CROMO2_3B plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), magnetite (blue and green), Fe
3+ 

(purple) and Fe
2+

 (brown) curves. 
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Figure A35. Mössbauer Spectroscopy CROMO2_4B plot. The data (black dots) were fit using the Ghent program to obtain a best fit 

curve (red), magnetite (blue and green), Fe
3+ 

(purple) and Fe
2+

 (brown) curves. 
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Figure A36. Mössbauer Spectroscopy PHL_2A plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), magnetite (blue and green), Fe
3+ 

(purple) and Fe
2+

 (brown) curves. 
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Figure A37. Mössbauer Spectroscopy PHL_2C plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), magnetite (blue and green), Fe
3+ 

(purple) and Fe
2+

 (brown) curves. 
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Figure A38. Mössbauer Spectroscopy PHL_4 plot. The data (black dots) were fit using the Ghent program to obtain a best fit curve 

(red), Fe
3+

 (blue and green) and Fe
2+

 (purple, brown, black) curves. PHL_4 still requires additional fitting because the parameters are 

not within the general range of values for Fe
2+

 and Fe
3+

. 
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Figure A39. Sample depth vs. %Fe
3+

. (a) All samples with magnetite split up and included in %Fe
3+

 and (b) only cores 309 and 313; 

(c) Silicates only (no magnetite) %Fe
3+

 for all samples and (d) only cores 309 and 313  
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Table A10: H2 generation using average density (2.68g cm
-3

) and mg/kg conversion. 

Sample 

MOSS 

Fe 

conc. 

(ppm)* 

mol 

H2/kg 

rock to 

be 

released 

mol 

H2/kg 

rock 

released 

Volume 

Peridotite 

(km
3
)* 

H gas 

released 

per 

1km
3
 

(Tmol) 

H gas to 

be 

released 

per 

1km
3
 

(Tmol) 

H gas released 

(mol) 

H gas to be 

released 

(mol) 

H gas 

released 

(Tmol) 

H gas to 

be 

released 

(Tmol) 

% 

Mag 

% 

Fe
3+

 

% 

Fe
2+

 

309_84 0 17 83 135803 1.01 0.40 7730 1.08 2.72 8.34182E+15 2.10157E+16 8342 21016 

309_105_B 0 32 68 36191 0.22 0.21 7730 0.55 0.59 4.27296E+15 4.57567E+15 4273 4576 

CROMO1_1_A 0 16 84 44672 0.34 0.13 7730 0.34 0.90 2.64195E+15 6.96427E+15 2642 6964 

CROMO1_1_B 0 18 82 71522 0.53 0.23 7730 0.62 1.41 4.75782E+15 1.08864E+16 4758 10886 

CROMO1_2_AA 0 29 71 33518 0.21 0.17 7730 0.46 0.57 3.57319E+15 4.42981E+15 3573 4430 

CROMO1_2_AB 0 37 63 60579 0.34 0.40 7730 1.07 0.92 8.3096E+15 7.08046E+15 8310 7080 

CROMO1_2_AC 0 15 85 53768 0.41 0.15 7730 0.39 1.10 3.01156E+15 8.46598E+15 3012 8466 

CROMO1_2_CA 0 12 88 54729 0.43 0.12 7730 0.32 1.15 2.46652E+15 8.91703E+15 2467 8917 

CROMO1_2_CB 0 25 75 70690 0.48 0.31 7730 0.84 1.28 6.50281E+15 9.85909E+15 6503 9859 

CROMO2_1B 21 42 37 44606 0.18 0.44 7730 1.19 0.47 9.20347E+15 3.67085E+15 9203 3671 

CROMO2_3B 29 27 44 83576 0.40 0.69 7730 1.85 1.08 1.43079E+16 8.34644E+15 14308 8346 

CROMO2_4B 52 23 25 80999 0.31 0.83 7730 2.23 0.83 1.72738E+16 6.38554E+15 17274 6386 

PHL_2A 8 58 34 33264 0.11 0.38 1455 1.02 0.29 1.48001E+15 4.2133E+14 1480 421 

PHL_2C 19 56 25 40571 0.11 0.50 1455 1.34 0.30 1.94876E+15 4.42009E+14 1949 442 

PHL_4 0 14 86 31009 0.24 0.08 1455 0.20 0.64 2.93101E+14 9.35928E+14 293 936 

Mag = % Fe in magnetite; mol is mole; *normalized average Fe concentration in ppm; % Fe
3+

 was used in H2gas released calculations; 

% Fe
2+

 was used in H2gas to be released calculations. 
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Table A11: H2 generation using mg/L conversion units. 

Sample 
mol H2/L rock 

to be released 

mol H2/L 

rock released 

H gas released 

(mol) 

H gas   to be 

released (mol) 

H gas released 

per 1km
3
 

(Tmol) 

H gas to be 

released per 1km
3
 

(Tmol) 

H gas 

released 

(Tmol) 

H gas to be 

released 

(Tmol) 

309_84 1.01 0.40 3.1126E+15 7.8417E+15 0.40 1.01 3113 7842 

309_105_B 0.22 0.21 1.5944E+15 1.7073E+15 0.21 0.22 1594 1707 

CROMO1_1_A 0.34 0.13 1.6082E+15 4.2392E+15 0.13 0.34 1608 4239 

CROMO1_1_B 0.53 0.23 2.8961E+15 6.6266E+15 0.23 0.53 2896 6627 

CROMO1_2_AA 0.21 0.17 2.175E+15 2.6964E+15 0.17 0.21 2175 2696 

CROMO1_2_AB 0.34 0.40 5.0581E+15 4.3099E+15 0.40 0.34 5058 4310 

CROMO1_2_AC 0.41 0.15 1.8332E+15 5.1533E+15 0.15 0.41 1833 5153 

CROMO1_2_CA 0.43 0.12 1.5014E+15 5.4278E+15 0.12 0.43 1501 5428 

CROMO1_2_CB 0.48 0.31 3.9583E+15 6.0012E+15 0.31 0.48 3958 6001 

CROMO2_1B 0.18 0.44 3.4341E+15 1.3697E+15 0.44 0.18 3434 1370 

CROMO2_3B 0.40 0.69 5.3388E+15 3.1143E+15 0.69 0.40 5339 3114 

CROMO2_4B 0.31 0.83 6.4455E+15 2.3827E+15 0.83 0.31 6445 2383 

PHL_2A 0.11 0.38 5.5224E+14 1.5721E+14 0.38 0.11 552 157 

PHL_2C 0.11 0.50 7.2715E+14 1.6493E+14 0.50 0.11 727 165 

PHL_4 0.24 0.08 1.7841E+14 5.697E+14 0.08 0.24 178 570 

% Fe3+ (Table A10) was used in H2gas released calculations; % Fe2+ was used in H2gas to be released calculations. 
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Table A12: IC-PMS concentration data for standards and CRO sample 313-329. Standards analyzed include BCR, BHVO, BIR, GOR, 

StHls, T1, ML3B, KL2, and San Carlos olivine. Data was collected in 4 different areas of the thin section and the mineral grains are 

labeled accordingly (sp1 for spinel grain in area 1, opx1 orthopyroxene grain in area 1, ol 1 for olivine grain in area 1, cpx2 for 

clinopyroxene in area 2, etc…). Ol3-2 is probably actually cpx or opx based on the chemical data below and opx3 maybe cpx 

(exsolution lamelle) due to the high CaO concentrations measured. The raw data was input into the “LazyBoy” version 3.73 macro 

spreadsheet developed by Joel Sparks (jwsparks@bu.edu; ©2011; version date 2/1/2013). Figures A40-42 illustrate the mineral grains 

sampled. Concentrations are in ppm unless indicated as wt%. Electron microprobe data of major cations in spinel(s) (Mg, Al, Cr, Fe) 

are needed to better assess the IC-PMS data, especially in regards to further analysis of the partitioning of the trace elements, such as 

V which has multiple valence states and may be another way to understand the redox status of rocks [Mallmann and O’Neill, 2009]. 
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Table A12: IC-PMS concentration data for standards and CRO sample 313-329. 
Atomic number 

 
26 27 43 45 47 51 52 55 57 59 60 65 66 85 88 89 208 

Sample/ Beam 

information 
M026 

 Conc. 
MgO% Al2O3% CaO% Sc TiO2% V Cr MnO% FeO*% Co Ni Cu Zn Rb Sr Y Pb 

BCR 70% 10hz 80um 

1 
3.56 3.56 13.41 6.94 31.15 2.28 401.44 20.92 0.19 11.20 34.71 12.28 17.37 149.50 45.71 332.33 34.64 10.91 

BHVO 70% 10Hz 80 

um 
7.13 7.13 13.62 11.57 31.24 2.75 296.68 306.94 0.17 11.32 42.80 112.01 122.93 115.40 8.98 399.53 26.27 1.80 

BIR 70% 10hz 80um 9.4 9.40 15.46 13.17 41.71 0.91 283.90 385.87 0.17 9.87 46.36 149.34 109.48 62.90 0.20 106.95 16.41 3.16 

GOR132 70% 10hz 

80um 
22.4 22.40 10.33 7.91 33.32 0.27 207.82 2,522.57 0.17 10.95 95.18 1,188.10 211.28 66.17 2.12 14.00 13.68 20.25 

StHls 70% 10hz 80um 1.97 1.97 17.99 5.15 12.89 0.71 76.35 20.83 0.07 4.25 12.44 20.90 36.42 54.76 28.51 471.49 12.91 10.30 

T1 70% 10hz 80um 3.75 3.75 16.67 6.69 24.79 0.73 178.70 23.07 0.13 6.39 18.15 9.58 18.80 67.80 85.11 270.63 23.86 10.42 

ML3B 70% 10hz 

80um 
6.59 6.59 14.24 10.95 30.90 2.18 271.98 175.26 0.17 11.13 41.67 100.06 115.55 112.03 5.98 329.28 26.76 1.39 

KL2 70% 10hz 80um 7.34 7.34 13.52 11.36 30.75 2.61 296.47 303.48 0.17 11.05 41.18 104.84 90.28 111.92 8.63 370.67 26.50 2.10 

San Carlos Olivine 49.42 49.42 0.02 0.07 6.80 0.00 3.15 188.18 0.14 7.84 124.40 2,281.98 1.69 50.71 0.01 0.00 0.01 0.01 

SP1 5 hz 80um 70% 23.14 23.14 64.11 0.19 0.27 0.11 552.49 78,659.60 0.12 12.77 346.14 2,630.19 1.67 1,843.97 0.18 0.00 -0.01 0.03 

OPX1 5hz 95um 70% 34.42 34.42 4.42 0.72 25.16 0.13 149.51 3,840.76 0.18 7.66 63.65 711.77 0.97 42.11 0.17 0.58 1.30 0.02 

OL1 10hz 40um 70% 48.74 48.74 0.01 0.04 3.62 0.00 0.49 15.69 0.15 10.09 130.78 2,786.68 0.51 23.01 0.08 0.18 -0.02 0.02 

cpx2-1 10hz 30um 

70% 
16.7 16.70 6.69 25.82 90.14 0.48 262.90 5,568.98 0.09 2.45 17.69 275.76 0.48 5.94 -0.22 10.49 32.48 0.00 

opx3-1 10hz 80um 

70% 
34.74 34.74 4.95 0.63 27.63 0.12 125.96 2,874.02 0.16 6.92 53.27 591.79 0.25 32.22 0.13 0.15 1.23 0.02 

opx3-2 10hz 60um 

70% 
34.82 34.82 5.26 0.82 27.71 0.13 123.21 3,059.35 0.16 6.73 55.77 657.34 0.56 35.32 0.04 0.25 1.36 0.00 

ol3-1 10hz 80um 70% 49.09 49.09 0.00 0.01 3.22 0.00 0.34 8.30 0.15 9.34 124.92 2,510.58 0.48 25.88 0.01 0.01 0.00 0.01 

ol3-2 10hz 60um 70% 16.59 16.59 6.19 25.15 90.50 0.45 271.20 4,426.63 0.09 2.73 19.70 278.52 0.21 8.61 0.04 10.95 27.09 0.00 

sp4 10hz 80um 70% 21.18 21.18 67.42 0.08 0.18 0.06 464.45 69,469.90 0.10 11.40 315.43 2,420.44 0.51 1,518.13 0.19 0.06 -0.01 0.03 
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Figure A40: Thin section images of sample 313-329 ICPMS area 1 before laser ablation. Areas of analysis are indicated by red circle; 

spinel 1 (sp1), orthopyroxene 1(opx1), and olivine 1 (ol1). From right to left, images are in plane polarized light (scale bar is 

~500μm), cross-polarized light, and reflected light. See Figure 12 for thin section images after laser ablation and general field of view.  
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Figure A41: Thin section images of sample 313-329 ICPMS area 2 before laser ablation. Area of analysis is indicated by red circle; 

clinopyroxene (cpx2). From right to left, images are in plane polarized light (scale bar is ~500μm), cross-polarized light, and reflected 

light. 
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Figure A42: Thin section images of sample 313-329 ICPMS area 3 before laser ablation. Areas of analysis are indicated by red circle; 

orthopyroxene 3 (opx3), and olivine 3 (ol3). Ol3-2 is probably cpx not ol based on chemical analysis and the opx may be cpx based on 

the high Ca concentration, or an exsolution lamelle. From right to left, images are in plane polarized light (scale bar is ~500μm), 

cross-polarized light, and reflected light.  
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