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ABSTRACT 

 Over the past decade, the use of improvised explosive devices (IEDs) has 

increased, domestically and internationally, highlighting a growing need for a method 

to quickly and reliably detect explosive devices in both military and civilian 

environments before the explosive can cause damage.  Conventional techniques have 

been successful in explosive detection, however they typically suffer from enormous 

costs in capital equipment and maintenance, costs in energy consumption, sampling, 

operational related expenses, and lack of continuous and real-time monitoring. The 

goal was thus to produce an inexpensive, portable sensor that continuously monitors 

the environment, quickly detects the presence of explosive compounds and alerts the 

user.  

 In 2012, here at URI, a sensor design was proposed for the detection of 

triacetone triperoxide (TATP). The design entailed a thermodynamic gas sensor that 

measures the heat of decomposition between trace TATP vapor and a metal oxide 

catalyst film.  The sensor was able to detect TATP vapor at the part per million level 

(ppm) and showed great promise for eventual commercial use, however, the sensor 

lacked selectivity.  Thus, the specific objective of this work was to take the original 

sensor design proposed in 2012 and to make several key improvements to advance the 

sensor towards commercialization. 

 It was demonstrated that a sensor can be engineered to detect TATP and ignore 

the effects of interferent H2O2 molecules by doping SnO2 films with varying amounts 

of Pd.  Compared with a pure SnO2 catalyst, a SnO2, film doped with 8 wt. % Pd had 

the highest selectivity between TATP and H2O2.  Also, at 12 wt. % Pd, the response to 



 

 

TATP and H2O2 was enhanced, indicating that sensitivity, not only selectivity, can be 

increased by modifying the composition of the catalyst. 

 An orthogonal detection system was demonstrated.  The platform consists of 

two independent sensing mechanisms, one thermodynamic and one conductometric, 

which take measurements from the same catalyst simultaneously and provide a 

redundancy in response for positive explosive identification.  TATP, 2,6-DNT and 

ammonium nitrate were reliably detected.  Each analyte displayed a unique 

conductometric signature and the results indicated a detection limit at the ppb level. 

 A preconcentrator was designed to enhance the sensitivity of the sensor and 

was successfully demonstrated. The magnitude of the sensor response increased from 

by 50% and the preconcentrator could be operated semi-continuously, maintaining one 

of the most attractive features of this sensor platform:  the capability to operate in real 

time.  A method to filter out extraneous heat signals from sensor response using a 

dynamic control was also successfully demonstrated and will likely be a fixture in all 

sensor experimentation and design moving forward. 

 Finally, two MEMS based sensor platforms were designed and fabricated.  It 

was theoretically demonstrated that the newest iteration of the MEMS sensor 

consumes considerably less power due to thinner membranes, a smaller active surface 

area and an overall smaller thermal mass, allowing for the possibility of creating 

networks of sensor arrays, even in a portable device. 
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CHAPTER 1 

 

INTRODUCTION 

 

 Over the past decade, the use of improvised explosive devices (IEDs) has 

increased, domestically and internationally [1-3].  Explosives are frequently used by 

terrorists to induce fear, and if not stopped, to inflict massive damage and injury.  

Major events in recent history involving IEDs include the 1993 truck bomb that killed 

six people at the World Trade Center, the Oklahoma City bombing in 1995, the 2001 

shoe bombing, the London subway bombing of 2005, and most recently the Boston 

Marathon bombing in 2013, among many others [1-4].  The lives threatened by IEDs 

are also not all civilian.  As of 2013, more than 60% of all combat casualties from 

conflict in Iraq and Afghanistan were the result of IEDs [1].  That amounts to over 

3,200 killed and 33,000 wounded.  Elsewhere in the world, an average of 700 

explosions per month are the result of an improvised explosive attack [2].  This 

highlights a growing need for a method to quickly and reliably detect explosive 

devices in both military and civilian environments before the explosive can cause 

damage.   

 Yet, there are currently few methods available that can be used to successfully 

detect explosive compounds in this way.  Conventional spectroscopy techniques, 

while being very sensitive and selective for the identification of unknown substances, 

are often expensive and require the resources of a full laboratory, impractical in a 

portable device [5]. The current industry standard for explosive detection involves 
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taking a sample of some sort, using a cotton swab.  This type of testing is impractical 

if it is necessary to screen many people in a short time.  It is also rather invasive, as the 

swab must contact the person’s hands, clothing or luggage, and it requires the time for 

collection.  Canine units have also been used throughout history to locate bombs with 

a great degree of accuracy [5].  However, the animals can be expensive and time 

consuming to maintain and many studies have shown that, although dogs have 

incredible olfactory senses, they are not infallible.  Sensors have therefore been 

employed as “electronic noses” to replace the real ones [6-7]. 

 The goal is thus to produce an inexpensive, portable sensor that continuously 

monitors the environment, quickly detects the presence of explosive compounds and 

alerts the user.  In 2012, here at URI, a sensor design was proposed for the detection of 

triacetone triperoxide (TATP), a particularly dangerous explosive frequently used in 

IEDs because of its relatively simple synthesis from commonly found ingredients [8]. 

TATP readily sublimes at room temperature and is in relatively high concentration in 

the vapor phase [9], but is difficult to detect using conventional explosive detection 

techniques because peroxide based explosives are notoriously difficult to detect, 

making it of particular interest [7].   

 The design entailed a thermodynamic gas sensor that measures the heat of 

decomposition between trace TATP vapor and a metal oxide catalyst film [8].  The 

sensor was able to detect TATP vapor at the part per million level (ppm) and due to 

the robust nature of the sensor, it showed great promise for eventual commercial use, 

however, there were a few critical limitations.  An ideal sensor must meet two 

important criteria: (1) the sensor must respond to one environmental stimulus is 
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insensitive to any other stimuli likely to be encountered during its operation and (2) 

the limit of detection (LOD) of the sensor must be below the threshold which the 

stimuli occurs [10].  The proposed thermodynamic sensor, while it was very 

successful detecting TATP at trace levels, would also detect the chemical 

intermediates acetone and hydrogen peroxide (H2O2), resulting in a false positive.  

TATP was also the only explosive analyte under investigation and whether it would be 

able to detect other energetic materials with far lower vapor pressures was uncertain.  

These issues needed to be addressed.  

 Thus, the specific objective of this work was to take the original sensor design 

proposed in 2012 and to make several key improvements to advance the sensor 

towards commercialization.  This was done by increasing the selectivity for TATP of 

the metal oxide catalyst film using combinatorial chemistry techniques.  Also, by 

combining a second independent sensing mechanism with the original thermodynamic 

sensor onto one orthogonal sensor platform, a redundancy system is in place to 

mitigate the detection of false positives.  To increase the sensitivity of the sensor, a 

preconcentrator device was paired with the sensor to lower the limit of detection.  

Finally, in order to make the sensor more portable and efficient, a MEMS version of 

the sensor was designed and fabricated. 
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CHAPTER 2 

 

LITERATURE REVIEW 

 

2.1 Introduction to Explosives  

 An explosive is any substance that undergoes a rapid chemical reaction 

involving a large release of heat and gas byproducts that exert a high pressure on the 

environment [1].  This reaction can be initiated by a variety of factors, including 

friction, impact, shock, spark, flame or heating.  Explosives can be categorized several 

different ways, but adhere to this general definition. 

2.1.1 Classification of Explosive Compounds 

 Generally, most organic explosives have similar chemical structures.  

Covalently bonded chemical groups (nitro, nitramine, nitrate ester, etc.) are common 

since they facilitate internal redox reactions where covalent bonds like N-N and N-O 

break to form gaseous products like N2 and CO2 [1]. Because chemical structure is an 

indicator of how an explosive will behave, energetic compounds can be classified this 

way [2]. 

 Beyond chemical structure explosives are also categorized based on their 

performance [3], as illustrated in Figure 2.1.  An explosive is either a low or high 

energy explosive.  Low energy explosives are propellants, smokeless powder, black 

powder or pyrotechnics.  Low energy explosives deflagrate meaning rapid oxidation 

reactions propagate radially outward through the available explosive material away 

from the point of ignition coupled with a rapid release of gasses and heat.  A low 
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energy explosive thus will burn and not explode unless confined in a vessel.  When a 

low energy explosive is deflagrated in a closed shell, the pressure will increase until it 

reaches the critical pressure required to break the walls of the shell generating a shock 

wave due to the pressure difference between the inside and the outside of the vessel.  

In this way, a low explosive can be made to explode even though that may not be its 

intended purpose.  For example, a pipe bomb, a very common IED, confines a 

deflagrating energetic material, like black powder, and relies on the gas release to 

rupture the pipe and propel the shrapnel through the atmosphere [4].  

  

 

Figure 2.1 Hierarchy of explosives based on structure and performance. 

 High energy explosives do not require a shell or vessel in order to explode.  

Rather than deflagrate, high explosives detonate, meaning the rapid oxidation 

reactions happen at supersonic speeds, generating a shock wave on its own.  High 

energy explosives are divided into two sub-categories based on how easily they are 

ignited.  Primary explosives, often chemically unstable, require minimal energy to 

ignite.  Secondary explosives are more stable and require either more energy or very 
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specific conditions to ignite, but often provide a much stronger explosion [4].  Often 

an easily-ignitable primary explosive will be paired with a secondary explosive to 

provide the necessary ignition energy to cause detonation.   

2.1.2  Common Commercial Explosives 

 2,4,6-trinitrotoluene (TNT) is one of the most common commercially available 

explosives for military and commercial applications. It is valued because it is 

insensitive to shock and friction, which reduces the risk of accidental detonation. TNT 

melts at 80 °C, below its spontaneous detonation temperature, allowing it to be poured 

as well as safely combined with other explosives. TNT neither absorbs nor dissolves 

in water, which allows it to be used effectively in wet environments.  Additionally, it 

is stable compared to other high explosives.  Because of its widespread use, TNT is 

the standard by weight against which all explosives are typically compared [4-5]. 

 

Figure 2.2  Molecular structure of trinitrotoluene (TNT). 

 RDX is another commonly found high explosive, particularly in weaponized 

devices.  It considered to be one of the most powerful high explosives, with a 

detonation power 1.5 times greater by mass than TNT.  It is also one of the most stable 

at room temperature, and will only deflagrate with the application of heat, requiring a 
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significant ignition charge for detonation to occur.  It can be used by itself, but it is 

commonly found in a explosive mixtures [1,6].   

 

 

Figure 2.3 Molecular structure of RDX.  

 Nitroglycerine is an important energetic material historically.  It is a powerful 

high explosive but in its pure form shows a high sensitivity to impact and mechanical 

stimuli.  Thus it was impractical as a commercial explosive until 1867 when Alfred 

Nobel demonstrated how liquid nitroglycerine could be made into a stable gel by 

pairing it with an adsorbent, creating a material that later became known as dynamite.  

Nitroglycerine can be mixed with a range of adsorbents and additives to yield 

gelatinous explosives like dynamite, gelignite, blasting gelatin and propellants like 

cordite and ballistite [4-6]. 
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Figure 2.4 Molecular structure of nitroglycerin. 

 Pentaerythritol tetra nitrate (PETN) is a nitrate ester energetic explosive like 

nitroglycerine and is similarly sensitive to impact and mechanical stimuli in its pure 

form, however it is slightly more stable, thus it is used in many different explosive 

mixtures.  PETN, mixed with TNT, is largely used as a secondary explosive in 

military applications. Associated with triacetone triperoxide (TATP) as an initiator, 

PETN is also used in terrorism attacks [6,7]. 

Figure 2.5 Molecular structure of  pentaerythritol tetra nitrate (PETN)  

 Ammonium nitrate (NH4NO3) is commonly used in agriculture as a nitrogen 

fertilizer, but also as an oxidant agent in explosives. For use in explosives sensitized 

by high explosive ingredients, ammonium nitrate should be of a dense and non-
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absorbent character, while for uses in conjunction with fuel oil, an absorbent form of 

ammonium nitrate is required. Ammonium nitrate is the main component of 

ammonium nitrate fuel oil (ANFO), a widely used bulk industrial explosive mixture 

which accounts for 80% of the explosives used annually in North America [5-6]. 

ANFO is used in coal mining, quarrying, metal mining and civil construction in 

undemanding applications. The popularity of ANFO is largely attributable to its low 

cost and high stability. 

  

Figure 2.6 Molecular structure of ammonium nitrate. 

2.1.3 Common Explosives Used in IEDs 

 Triacetone triperoxide (TATP) is one of the most commonly employed 

explosive compounds in IEDs because it can by synthesized from commonly found, 

inexpensive ingredients [7].  An organic peroxide explosive, TATP is extremely 

sensitive to heat, shock and friction. It is produced from hydrogen peroxide (H2O2)and 

acetone (C3H6O) in presence of strong acid (sulfuric acid) [8]. TATP has a relatively 

high vapor pressure which allows it sublime under room temperature [9]. Also, it is a 

very powerful explosive which produces approximately 80% of outward force that 

TNT produces with the same amount of explosive [4].  
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Figure 2.7 Molecular structure of triacetate triperoxide (TATP). 

 HMTD (hexamethylene triperoxide diamine) is another common homemade 

explosive, also from the peroxide family, used by terrorists in suicide bombings and 

other attacks [7].  HMTD is extremely sensitive to shock, heat and friction, making it 

dangerous to manufacture but ideal as a detonator. HMTD has been used in a large 

number of suicide bombing and other terrorist attacks all over the world [7].   

 

Figure 2.8 Molecular structure of HMTD  

 Ammonium nitrate fuel oil (ANFO) described above as a common commercial 

explosive is also frequently used by terrorists due to its low price, ease of use and 

availability [7]. Similar to ammonium nitrate, urea nitrate ((NH2)2COH-NO3) is 
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another fertilizer- based high explosive that has been used in IEDs in many terrorist 

attacks, including the car bombs in Israel, Iraq and Afghanistan, and various other 

attacks elsewhere in the world [10-11]. Urea nitrate can be produced by simply mixing 

urea and nitric acid under controlled temperature.  

 This overview of explosives is important when considering the threat of IEDs.  

“Improvised” is the key word, for while weapons-grade explosives would better suit 

their purpose, militant groups and terrorists with limited resources will often have to 

get creative.  For instance, peroxide based energetic compounds, like TATP, account 

for no more than 7-8% of all commercial and U. S. military explosive usage combined 

because TATP itself is unstable and dangerous, and their are often safer alternatives 

readily available [6].     But TATP and HMTD are used in IEDs all over the globe 

because of convenience [7].   

 Also, a secondary goal in constructing an IED is avoiding detection.  

Commercially made explosives contain a chemical tag, an inert compound that is 

easily detected and identified.  The tag is usually a volatile organic compound easily 

picked up by a sensor or a bomb-sniffing dog [7].  It also has a forensic purpose, 

allowing authorities to trace the materials used in a bomb back to where it was made.  

Recent statistics on IEDS, however, indicate that only approximately 1 in 5 devices 

used in an explosive attack were constructed using commercially purchased or stolen 

explosives [1], meaning most IEDs are constructed with home-made explosives, 

which won’t contain any chemical tag.  To complicate matters, recent trends have 

shown that IEDs are often constructed using explosive chemicals that are deliberately 
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difficult to detect, primarily members of the peroxide explosive family, like TATP, 

making it priority for detection research [3]. 

 

2.2 Spectroscopic Techniques 

 Spectroscopic methods have been widely employed in the detection and 

identification of unknown substances.  Generally speaking, samples are drawn from 

the air into a mass spectrometer where they are ionized.  The resultant ions are 

separated via electrical and magnetic fields according to their mass charge ratio and 

are subsequently detected and quantified.  These methods are typically highly 

selective and sensitive, but suffer from high turnover rates, large equipment and 

operating costs and low portability.  Current research into the use of such devices 

focuses on reducing costs and minimization without sacrificing resolution [3]. 

2.2.1 Infra-red spectroscopy 

 Infra-red (IR) spectroscopy uses the infrared region of the electromagnetic 

spectrum to identify characteristic bonds and functional groups.  Specifically a 

molecule’s resonance frequency is measured—the frequency of the absorbed radiation 

that matches the transition energy of the bond or group that vibrates.  The challenge 

with this technique is that chemical species with similar functional groups are difficult 

to distinguish between.  Primera-Pedroso et al. reported an IR technique for the 

detection of high explosive residues that involve collecting the molecules on a metallic 

surface and obtaining an IR signature using fiber optic coupled Reflection/Absorption 

IR spectroscopy (RAIRS) [12].   
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Figure 2.9 Schematic depicting the specular reflectance technique employs in Reflection/Absorption IR 
spectroscopy (RAIRS). 

 
 The technique relies on specular reflectance, meaning the incident IR beam is 

directed at the sample at an angle, passes through the sample, reflects off the metallic 

surface, passes through the sample again and is finally picked up by an IR detector.  

This method produced reportedly low detection limits for TNT, PETN, DNT and 

HMX but suffered from low selectivity.  TNT, DNT and their analog dinotrobenzene 

(DNB) were nearly indistinguishable [13]. 

2.2.2 Ion mobility spectroscopy  

 Ion mobility spectroscopy (IMS) is one of the most widely used detection 

techniques due to its ability to characterize the sample both qualitatively and 

quantitatively as well as the low detection limits often attainable [14].  IMS works by 

characterizing a sample through the mobility of ions through the gas phase of the 

instrument while an electric field is applied.  The sample vapors are ionized at 

atmospheric pressure before introduction into the drift tube.  The drift times are related 

to the mass of the ions and by determining the mass to charge ratio, it is possible to 

identify components within the sample through comparison with known standards.  

The most commonly used ionization sources are the radioactive isotopes 63Ni and 

241Am, which evoke a safety and environmental concern, especially when considering 

the production of a portable or handheld device.  Investigation into enabling the 
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miniaturization and portability of an IMS apparatus for field deployment has 

increased.  For instance, one particular group attempted to employ a corona discharge 

for ionization to minimize the risk associated with radioactive substances.  However, 

while many groups are focusing on the scaling down of IMS, the size requirements of 

the detection mechanism presents a significant challenge.  Decreasing the length of the 

drift tube, thereby decreasing the distance the ions have to travel to the detector, would 

cause a significant decline in sensitivity. 

 

Figure 2.10 Simplified schematic of ion mobility spectrometer for detection of solids.  

 Concerning specifically the detection of explosives, IMS is the most successful 

and widely used technology for the detection of trace level nitro-organic explosives on 

handbags and carry on-luggage in airports throughout the US [14].  TNT, 2,4-DNT 

and 2,6-DNT, RDX, PETN and TATP have been widely studied with IMS technology 

[14-23], but TNT showed the most favorable response over any other explosives. This 

is likely because the gas phase chemistry of TNT is relatively simple and product ions 

have good thermal and chemical stability. 

 

 

 



 

17 

2.2.3 Mass spectroscopy  

 Mass spectrometry (MS) is a widely used technique in explosives detection 

because of its specificity in identifying substances and the speed at which results are 

obtained.  MS separates and analyzes the chemical composition of an ionic species 

according to its mass/charge ratio.  A sample enters an ionization chamber, then are 

accelerated towards an electromagnet that deflects the ions at an angle directly 

dependent on their mass charge ratio.  They are subsequently collected and 

characterized by how far they’ve been deflected. Coupled technology has been used to 

enhance the mass resolving capability of mass spectrometry, one common 

combination being gas chromatography-mass spectrometry (GC/MS). Different 

particles are pre-separated with a gas chromatograph prior being introduced into ion 

source of mass spectrometer. Bench scale analysis of trace level explosives including 

ethylene glycol dinitrate (EGDN), DNT, TNT, PETN, RDX and Tetryl have been 

reported with great success and sensitivity[24-26].  The greatest barrier preventing MS 

from more widespread use is the substantial costs and space requirements to operate 

the device, coupled with a relatively lengthy sample preparation. 
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Figure 2.11 Simplified schematic of mass spectroscopy.  

2.2.4 Raman spectroscopy  

 Raman spectroscopy measures the vibrational transitions in a sample through 

the collection and analysis of scattered photons once the sample has undergone laser 

excitation.  An energy difference between the incident and the scattered photons can 

be observed when the molecule is excited by photon from ground state to excited state, 

or the other way around. The resulting spectra can be used as a fingerprint that can 

identify individual components of the sample. Due to the near instantaneous results 

and the ability to analyze samples at a substantial distance from the instrumentation, 

Raman spectroscopy has shown potential as an explosives detection system [7] and 

there has been considerable work in the area, especially in the creation of a miniature 

device [27-33]. 
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Figure 2.12 Simplified schematic of Raman spectroscopy.  

 One group was able to show the specific detection of TNT, DNT, RDX, and 

TATP was possible at distances up to 7 meters [33].  Detection limits for Raman 

spectroscopy, however, are not as low as other techniques; the detection limits for 

TNT and RDX were an order of magnitude lower than when using IMS. Also, due to 

ambient light interference, the device must be operated in an indoor, controlled 

environment and in the dark, limiting its current applications in field tests. 

2.2.5 Terahertz spectroscopy  

 Terahertz technology has demonstrated the capabilities to both detect and 

identify trace and bulk explosives. Terahertz region usually refers to the frequency 

range of electromagnetic radiation between 0.1 and 10 THz. The most commonly used 

methods for terahertz spectroscopy are Fourier transform infrared (FTIR) spectroscopy 

and terahertz time-domain (THz-TDS) spectroscopy. Compared with FTIR, THz-TDS 
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spectroscopy has the advantage of more frequency coverage and higher signal-to-noise 

ratio (SNR). With advances in laser technology, small time-domain systems are 

available for handheld or remote detection [34-35]. Other techniques for generation of 

THz radiation include photo-mixing and electronic spectroscopy. 

Detection of DNT, TNT, RDX, PETN and ammonium nitrate using terahertz 

spectroscopy in both gas phase and solid phase have been widely reported [36-44]. 

However, this technology suffers from several drawbacks that include: the frame rate 

speed, a loss of attenuation as distance from sample increases, and power requirements 

for the system [44].  

 

2.3 Sensors 

 The alternative to spectrometry that can potentially address many of its issues 

is the use of low-cost, portable sensors [2].  Sensors contain an immobilized active 

material which can selectively recognize the target explosive via a number of physical 

phenomena.  Transduction then occurs (via optics, electrochemistry or some other 

means) to convert the physical response to a measurable property.  Sensors in general 

are very specific to their target analyte, however sensitivity is an issue.  Most advances 

in sensors specifically for the detection of explosive compounds focuses on increasing 

sensitivity and lowering the detection limit.  Yet, compared with spectroscopic 

instruments, gas sensors have the capability of performing continuous, real-time 

environmental monitoring and require fewer resources to manufacture, operate and 

maintain.  Multiple sensors can also be networked and operated simultaneously to scan 

for several analytes at a time, while keeping the possibility of a portable device due to 
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their size.  There are many types of sensors that operate on a variety of chemical 

properties.  The most common types employed in the detection of explosives are 

outlined here. 

2.3.1 Conductometric Sensors 

 Conductive sensors are a sensing system that measures the change in 

conductivity due to the interaction between a conducting material and the target 

analyte molecule. Conducting polymer composites and metal oxides (mostly 

semiconductors) are the most commonly utilized materials in conductivity sensors 

[45]. 

 Polymer composites contain conducting particles suspended in an insulating 

polymer matrix. Gas molecules diffuse into the polymer, causing the polymer film to 

expand.  The resulting expansion causes a reduction of the conducting pathways for 

charge carriers and an increase in the electrical resistance of the composite [46].  The 

drawbacks of polymers are their constrained detection range with certain gases and 

limited lifetime, though they do not require a heating element to operate. 

 Metal oxide gas sensors are based on measuring the conductivity change of the 

semiconducting material.  Known more popularly as conductometric sensors, they are 

one of the most investigated groups of gas sensors due to the low cost of production, 

the flexibility of their use and their wide range of possible applications [47-48].  The 

conductivity change in the metal oxide is caused by the addition or removal of charge 

carriers by the physical adsorption to the oxide surface by the analyte molecule or the 

molecule’s catalytic decomposition products.  The sensitivity of conductometric 

sensor depends on many parameters, including film quality (thickness, density, grain 
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size, crystal structure and defects, etc.), type and loading of dopants, temperature at 

which the sensor is operated and species of target molecules [49-50]. Film quality 

varies from selected deposition approaches, including but not limited to chemical 

vapor deposition (CVD), RF sputtering or spin-coating, and post-deposition heat 

treatment protocols [51-53].   

 The detection of explosives, including DNT, TNT, RDX, and PETN using 

conductometric sensors has been widely reported [54-56], with detection limits as low 

as part per billion. However, conductometric sensors lack selectivity to molecules with 

similar functional groups, thus limiting their application in explosive recognition.  

2.3.2 Optical Sensors 

 Owing to the number and reliability of optical methods, a vast number of 

optical transduction techniques can be used for sensor development [2]. These may 

employ linear optical phenomena, including absorption, fluorescence, 

phosphorescence, polarization, rotation, interference, etc., or non-linear phenomena, 

such as second harmonic generation. The choice of a particular optical method 

depends on the nature of the application and desired sensitivities.  

 One common type of optical sensor employed to detect explosive compounds 

are fiber optic sensors.  They rely on the changes in the frequency or intensity of 

electromagnetic radiation (e.g. visible, infrared) to detect and identify the presence of 

chemicals. The system employs an array of sensory materials attached to the distal tips 

of an optical fiber bundle. Each sensor within the array responds differentially to 

vapor exposure so the array’s fluorescence response patterns are unique for each 

analyte. Fiber optics are usually coupled with other optical techniques composing a 
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integrated sensor that uses optical fiber to detect chemicals by monitoring the changes 

in the frequency or intensity of electromagnetic radiation. Trace amount of DNT, 

TNT, PETN and RDX were reported being detected employing fiber optic sensors 

[57-59].   

 Fluorescence sensors have been widely used in detecting heavy metals, ions, 

combustible and toxic gases, etc.  Fluorescence occurs when an orbital electron in a 

molecule is excited to a higher quantum state by some type of energy, then relaxes to 

its ground state by emitting a photon [60].  Semiconducting polymers are excellent 

candidates for fluorescent materials due to their electron rich behavior.  Nitro-aromatic 

explosives (which are typically electron deficient) bind to these electron rich 

semiconducting polymers and quench their fluorescence by an electron transfer 

mechanism, generating a measurable electronic signal.  Due to its high sensitivity and 

ease of operation, fluorescence sensors have been used in identification of nitro-

aromatic explosives in recent years, including TNT, DNT, PETN, etc. [60-63]. 

Miniaturization has also been studied and Caron et al. were able to detect trace amount 

of TNT on a piece of cotton using a portable fluorescent device [62].  A major 

disadvantage, however, of fluorescence sensors (and optical sensors in general) is their 

lack of selectivity and several interfering factors (temperature, pressure, humidity, 

etc.) can alter sensor response.  

2.3.3 Mass Sensors 

 Mass sensors typically adsorb the chemicals of interest onto the surface and the 

device detects change in mass. The detection can be accomplished through changes in 

surface acoustic waves (SAW) or by actual bending or a change in the shape of the 
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device as mass is accumulated (micro-cantilever devices) [64].   Mass sensors can be 

very sensitive to trace levels of the target analyte, but suffer from short lifetimes due 

to the irreversible nature of some analyte-sensor interactions. 

 SAW sensors are composed of a piezoelectric substrate with an input and 

output interdigitated transducer deposited on top of the substrate. The sensitive 

membrane, which can be a polymer or liquid crystal, is placed between the transducers 

which measure the disturbance in sound waves caused by the chemical interference of 

the analyte. If a vapor is present on the surface, it will interact and alter the properties 

of the wave (frequency, amplitude, or phase). SAW devices have been used for 

detecting explosives such including DNT and TNT [64]. 

 Quartz crystal microbalance (QCM) based sensors rely on a typical micro-

cantilever that measures the surface force induced by the interaction with the 

substance [2]. The resulting differential stress leads to the bending of the cantilever. 

This QCM sensor has the advantage of superior mass sensitivity, smaller size and low 

cost. Explosives including TNT, RDX, TATP and PETN have been reported of 

successful detection using QCM sensors [65-67].  

2.3.4 Calorimetric Sensors 

 All chemical reactions and physical changes have an associated generation or 

consumption of energy, mostly in the form of heat. Thus, quantitatively measuring this 

thermal energy change can provide a simple and universal method for characterizing 

chemical or physical processes [68]. This type of thermal analysis, also known as 

calorimetry, is a widely used technique for obtaining both qualitative and quantitative 

information about thermal transitions associated with a particular material or process. 
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Explosives and energetic materials are designed to provide enormous amount of 

energy during chemical reaction leading to explosion, making calorimetry an ideal 

technique for their detection [69]. One major disadvantage is the requirement of such a 

device to be in a constrained and isolated space for accurate measurements, and thus 

would be challenging to implement in a portable device and difficult to obtain 

continuous measurements. Differential scanning calorimetry (DSC) can be employed 

to meet all the challenges. It measures the differential heating power between a sample 

and a reference material as their temperature is varied in a range of interest, directly 

determining the thermodynamic properties of the sample [70]. Several researches are 

reported using a DSC technique for explosive detection [71-73]. Still, DSC suffers 

from a lack of stability and is inability to conduct analysis quantitatively. 

 

 

2.4 Detection of TATP Using a Thermodynamic Gas Sensor  

 In the fall of 2012, our research group at URI was presented with a unique 

problem:  the specific detection of the triacetone triperoxide (TATP), a dangerous 

explosive compound [71].  Unlike most other explosives, TATP contains no nitro or 

metal groups, instead unstable peroxide bonds facilitate its explosive nature.  As a 

result, it does not fluoresce and has no significant absorption in the ultraviolet region 

of the spectrum, making it difficult to detect with most conventional spectroscopy 

techniques.  Several endeavors were successful in detecting TATP, but many suffered 

from the aforementioned limitations of bench-top techniques, including slow response 

times, low sensitivity, portability issues and barriers preventing continuous 
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monitoring.  TATP however is a volatile compound and readily sublimes at room 

temperature, making it the ideal candidate for vapor phase detection.  A sensor was 

thus developed to continuously detect vapor phase TATP in real-time. 

 In designing the sensor, a thin-film sensor employing a metal oxide catalyst 

was chosen.  The sensor works by measuring the heat generated or consumed by the 

catalyst in the presence of TATP vapor, principles used in calorimetry.  A digital 

control system enables a thin-film microheater, coated with the metal oxide catalyst, to 

be scanned over a specific temperature range.  The power difference caused by the 

catalytic reaction to TATP can be recorded at different temperatures, generating a 

signature curve unique to TATP and the specific metal oxide, which can then be used 

to identify an unknown vapor as TATP. 

 This approach and sensor design has several key advantages.  It was 

hypothesized that TATP and the metal oxides would interact differently at different 

temperatures.  Metal oxide films are robust enough withstand the necessary 

temperatures in a full thermal scan [48].  Other material candidates, like several 

varieties polymers, would not be able to withstand the temperature.  The sensors 

designed in this way can also be produced at a low cost and in bulk, also allowing for 

a great amount of control over the species of metal oxide used [50].  Their dimensions 

allow use in portable devices and for the potential to network multiple sensors at once, 

each employing a different metal oxide. 

 Results from sensor testing confirmed these advantages.  Figure 2.13 shows 

the sensor’s resoponse to 8 ppm TATP using a number of different catalysts including 

WO3-TiO2, V5O5, SnO2-x, ZnO and Nb2O3.  Each of the five oxide catalysts show a 
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unique response as a function of temperature ranging from no significant peak 

response for Nb2O3 to well defined peaks for both SnO2-x and ZnO. Figure 2.14 

compares the sensor’s response as a function of temperature to TATP with that of 

hydrogen peroxide (H2O2), one of the suspected decomposition products of TATP. 

Two different metal oxide catalysts were used and in each plot, the responses to TATP 

and H2O2 were similar in shape and magnitude.  This suggested that the sensors were 

detecting H2O2 when TATP vapors were delivered to the sensor, evidence that H2O2 

was the product of catalytic decomposition.  Under normal conditions, in the absence 

of a catalyst, it is widely reported that the major decomposition product of high purity 

TATP in air is acetone [8-9,74-75].  Therefore, the expected result would have been 

that TATP tracked the response of acetone, and not H2O2.  The fact that the opposite 

had occurred reinforces the idea that catalytic decomposition at elevated temperatures 

is the detection mechanism. 

  

Figure 2.13 Response as a function of temperature using several catalysts to detect TATP (8 
ppm) including WO3–TiO2, V2O5, SnO2−x and ZnO, measured using the static testing approach.  
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Figure 2.14 Percent response in 8 ppm TATP and 9 ppm H2O2 as a function of temperature for (a) tin 
oxide and (b) tungsten oxide catalysts, measured using the static testing approach.  

 In order to investigate this further, the responses to acetone and peroxide using 

both stoichiometric and non-stoichiometric copper oxide to acetone and peroxide were 

obtained, as seen in Figure 2.15.  Using both films, the response to acetone is much 

greater in magnitude than that of H2O2 and again the responses of TATP track 

peroxide.  These plots also show that non-stoichiometric copper oxide (CuO-Cu2O) 

reacts to H2O2, but by changing the catalyst to stoichiometric copper oxide (Cu2O), the 

signal was dampened.  This suggested that results can be improved by specifically 

engineering the catalyst film to select for or against a chemical species, opening up 

several possibilities for catalyst enhancement.   
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Figure 2.15 Response of (a) CuO–Cu2O and (b) Cu2O in acetone and H2O2 at 330 ̊C. 

2.4 Enhancing Detection 

 The original thermodynamic sensor was able to successfully detect TATP vapor 

at the part per million level (ppm) and due to the robust nature of the sensor, it showed 

great promise for eventual commercial use. However, there were a few critical 

limitations.  An ideal sensor must meet two important criteria: (1) the sensor must 

respond to one environmental stimulus and be insensitive to any other stimuli likely to 

be encountered during its operation and (2) the limit of detection (LOD) of the sensor 

must be below the threshold which the stimuli occurs [2].  The proposed 

thermodynamic sensor, while it was very successful detecting TATP at trace levels, 

would also detect the chemical intermediates acetone and hydrogen peroxide (H2O2), 

resulting in a false positive.  The responses to TATP and H2O2 were very similar, 

opening the possibility for false positives.  TATP was also the only explosive analyte 

under investigation and whether it would be able to detect other energetic materials 

with far lower vapor pressures was uncertain.  These issues needed to be addressed. In 

order to address the shortcomings, a variety of methods were employed to increase 
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sensitivity and selectivity in order to progress the sensor towards eventual field testing 

and commercialization. 

2.4.1 Nanocomposite Catalysts  

 A number of investigators have employed metal oxide catalysts in a variety of 

gas sensor platforms. Metal oxide semiconductors, for example, have been 

successfully used to detect trace levels of toxic gases such as CO, HS2, H2 and NOX 

[76-78]. A majority of these conductometric sensors employed metal oxide catalysts, 

and as such exhibited responses that depend on changes in the electrical properties of 

the catalyst when exposed to the target gas. These include changes in electrical 

conductivity [76-78], changes in dielectric constant of the metal oxide [79], and 

change in work function [80-81]. Other responses reflect changes in optical properties 

of the metal oxide catalyst [82-83]. However, one disadvantage in using metal oxides, 

as well as all other types of solid-state gas sensors, is their poor selectivity due to their 

inability to distinguish between complex target molecules [76]. In a previous study, a 

gas sensor was demonstrated, which was capable of detecting TATP at trace levels 

using a SnO2 catalyst based on the catalytic decomposition of TATP to form hydrogen 

peroxide [71]. However, those sensors exhibited little or no selectivity between TATP 

and hydrogen peroxide, making them susceptible to false positives in the presence of 

other peroxides and related precursors.  

 Researchers [83-84] have reported that the sensitivity of metal oxide based 

sensors can be enhanced by the direct exchange of electrons between the oxide 

semiconductor and noble metals such as Pd, Au, and Pt. The addition of such metals 

increased the rate of specific reactions on the surface of oxide crystals due to spill- 
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over effects, which actually changed the reaction mechanism in some cases through 

modification of surface energy states [83-84]. In our case, additions of palladium to 

SnO2 catalysts may not only lower the detection limit by increasing the decomposition 

rate of TATP, but may also provide a different reaction path to avoid forming 

intermediates, such as H2O2 and thus, provide a sensor response to TATP that is 

significantly different from H2O2. Consequently, a gas sensor employing metal oxide 

catalysts with improved sensitivity and selectivity over H2O2 was the motivation for 

this study.  

 In the present investigation, we utilized combinatorial chemistry techniques to 

screen the Pd:SnO2 nanocomposite catalysts with various palladium loadings for the 

purpose of optimizing sensor sensitivity and selectivity. Our thermodynamic sensor 

platform measures the heat effect associated with the interaction of a target gas 

molecule with the nanocomposite metal oxide catalyst deposited over the surface of a 

microheater. The heat effect associated with the catalytic decomposition of TATP was 

monitored by thermally scanning the microheater from room temperature to 450 ̊C. 

The characteristic heat affects were measured as the target molecules of interest such 

as TATP, H2O2 and acetone were passed over the catalyst coated microheater. In this 

way, the controlled addition of palladium to a SnO2 matrix was used to systematically 

investigate sensor response and selectivity of TATP over that of H2O2.  

2.4.2 Orthogonal Gas Sensors  

 Sensors that rely on measuring the electrical conductivity changes in a 

semiconducting metal oxide, also known as conductometric sensors, have been widely 

exploited due to their excellent sensitivity under atmospheric conditions. Metal oxides 
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such as SnO, SnO2, In2O3, WO3, TiO2 and ZrO2 have been used to detect simple gas 

molecules at trace levels and even complex explosive compounds. The change in 

resistivity of the metal oxide when exposed to target molecules is due to adsorption or 

reaction processes when target gases interact with the surface of metal oxide. Here, the 

free charge carriers are transferred from the semiconductor to the target gas or vice 

versa. Gases of the same type, either acceptor gases (which tend to accept free 

electrons) or donor gases (which tend to lose free electrons), will cause similar 

changes in resistivity, which makes it difficult to determine the nature of the 

interactions at the gas/solid interface. All of this translates into poor selectivity, which 

is a major drawback that impedes the application of conductometric sensors [46-53].  

 The original thermodynamic based gas sensor is capable of detecting explosives 

at the part per million level. It measures the heat effect due to the catalytic 

decomposition of target molecules. The sensor has relatively high selectivity down to 

the part per million level among peroxide based compounds [85]. To further improve 

its sensitivity without sacrificing selectivity to threat chemical compounds, this 

thermodynamic sensing platform was combined with a conductometric platform, in 

such a way that the same catalyst was simultaneously interrogated by two techniques. 

Combining these two complimentary sensing techniques provides a certain 

redundancy in sensor response that mitigates the detection of false positives and 

negatives. One major challenge was that most catalysts with stoichiometric amount of 

oxygen exhibited maximum sensitivity in terms of the thermodynamic signal 

(response from thermodynamic platform) while the conductometric signal (response 

from the conductometric platform) requires a catalyst with non-stoichiometric amount 
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of oxygen. Thus, a hybrid catalyst with multiple oxidation states was developed as part 

of the study to fulfill this requirement. Two different metal oxide catalysts were 

employed to detect explosives using this new platform and to confirm that this 

approach is a viable one.  

2.4.3 Preconcentration 

 Modifying the sensor design to intrinsically decrease the limit of detection can 

only go so far.  Air has complex characteristics and there are far more variables to 

consider when moving from a carefully controlled bench-top experiment using 

purified air to an actual realistic air sample from an airplane jetway or other public 

location.  Air is a heterogeneous system composed of gases, liquids and solid particles 

and can easily change due to weather effects.  The particular analyte that is under 

investigation may also be so dilute in the atmosphere that it falls below the already 

low detection limit of the sensor [86]. 

 Further methods can be implemented to increase the surface are of the catalyst to 

ensure more explosive particles come in contact with the film and react, thereby 

increasing the sensor signal. Eventually, however, the detection limit will reach a 

plateau due to the physical limitations of the detection mechanism [48].  Therefore, 

extrinsic methods must be used to ensure more of the analyte is delivered to the 

sensor, and one common method of accomplishing this is pre concentration. Generally 

speaking, the term “preconcentrator” refers to a device used on a gas sample before it 

is delivered to the sensor that collects the analyte under investigation, thus the sensor 

will have more analyte to respond to. In analytical chemistry, preconcentration is often 

used before GC, MS etc. if an analyte is particularly dilute [89].  
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 There are two primary methods of preconcentration: active and passive.  Active 

preconcentration involves a controlled volume of a gas sample through or over an 

absorbent medium that will trap the analyte molecules. This method enables an 

efficient turnover and the adsorbent material can be varied to suit a particular analyte, 

or multiple adsorbents can be used to attract multiple analytes.  However, a pump or 

flow control system is required to control the flow of sampled gas to the adsorbent 

surface [86].  Passive preconcentration relies more on the diffusion of the analyte 

particles through a specific medium to the adsorbent.  It relies on the creation of a 

concentration gradient between the gas sample and the strong adsorbent through the 

medium.  Passive prconcentrators are often simple in design and do not require a 

volume control mechanism.  They do, however, operate on a slower-time scale 

because the rate of preconcentration is wholly dependent on the rate of diffusion 

though the chosen medium.  Additionally, a different device must be made per each 

adsorbent material used.  Passive preconcentration are thus only suited for batch 

processes and for longer collection periods [86]. 

            Equally important to the preconcentrator’s ability to absorb a particular analyte 

is its ability to desorb the analyte when required.  Commercially, this is accomplished 

by use of a solvent or by thermal desorption.  Passive preconcentrators used for batch 

processes will use a solvent, dichloromethane or carbon disulfide being the most 

common, but this method is undesirable because whatever detector or sensor is then 

used for the analyte must be able to discriminate between the trace components and 

the bulk solvent.  Thermal desorption is thus used more often and can be implemented 

in an active or passive preconcentrating system.  It involves heating the absorbent 
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material to force desorption.  It works particularly well with volatile organic 

compounds [86-87].  

          Material selection is thus an important factor in preconcentration design 

[86,97].  The material must be a good adsorbent at cold or room temperatures and 

must be capable of desorption at elevated temperatures.  It must also not react with the 

analyte or change the analyte in any way prior to detection.  Typical adsorbents 

include rubbery polymers, granular polymers and granular carbon nanotube 

structures.  Providers of such adsorbents typically provide extensive absorption and 

desorption data for different volatile organic molecules in order to allow the specific 

selection of a material for a specific purpose.  There is very little data for the same 

absorbents concerning most of the common energetic or explosive materials, so 

adsorption selection can be difficult [91]. 

            Polymers are a frequently used sorbent material, likely because different 

polymer films can be made with a variety of monomers with an assortment of 

functional groups fairly easily [94].  As a result, polymer films are often rather 

specific adsorbents, only attracting certain chemicals or chemical groups.  Polystyrene 

is a common sorbent that has had much success in attracting volatile oxygenated 

compounds and (important for our purpose) nitro-amines like TNT.  Polystyrene is 

often used because the as deposited surface area of a film is porous and has relatively 

high (around 350 m2/g) giving polystyrene films a high retention volume.  Another 

common polymer sorbent is poly(2,6-diphenyl-p-phenylene oxide), better known by 

its commercial moniker Tenax.  Unlike polystyrene and other highly specific polymer 

sorbents, Tenax is a non-discriminating sorbent that will trap most organic compounds 
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with few exceptions, but by comparison the as deposited surface area is much lower at 

30m2/g thus it has a far lower retention volume.  A serious drawback for polymer 

sorbents in general is their limited temperature stability.  Many organic polymers 

begin to decompose at temperatures exceeding 200 ̊C, restricting the use of thermal 

desorption [86,94].   

 Graphitized carbon blacks are also used as a non-specific, non-porous sorbents.  

The graphitization process eliminates specific adsorption sites and hinders the 

formation of hydrogen bonds, resulting in the poor adsorption of small polar 

molecules.  This in an attractive material choice for high moisture environments, 

because graphitized carbon blacks have a low affinity for moisture [86]. 

 Carbon molecular sieves (CMSs), which are microporous materials with a 

narrow pore-size distribution, intended to adsorb light hydrocarbons, which has been 

accomplished successfully for several applications.  Often CMSs must be paired with 

a second type of sorbent to attract larger compounds because once adsorbed into the 

pores of a CMS, larger molecules desorb with great difficulty at much higher 

temperatures.  They also have a strong affinity for water molecules, an undesirable 

characteristic for ambient air sampling where humidity is a constantly changing 

variable [86]. 

 Carbon nanotubes have recently attracted attention due to their properties.  They 

are essentially a sheet of graphite rolled into a tube as either single or multi-walled 

structures.  The result is a very porous structure capable of adsorbing a variety of 

organic compounds. Nanotubes have shown highly favorable adsorption and 
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desorption with a relatively large retention volume, all while remaining unaffected by 

humidity, but lack the analyte specificity of other sorbents [86].   

 The most common sorbent used in air sampling is activated charcoal.  It is useful 

in several preconcentration applications because it has a high specific surface area 

(800-1500 m2/g), a broad pore-size distribution and excellent thermal stability.  The 

drawbacks of charcoal, unfortunately, are many, including poor specificity, high water 

retention, the irreversible adsorption of compounds with certain functional groups, and 

a slight tendency to catalytically decompose certain analytes [86-91]. 

            Challenges arise, however, when attempting to adapt preconcentration to a 

continuous monitoring system.  Most conventional techniques are intended for batch 

use.  For a preconcentrator to be used for the thermodynamic sensor design, it will 

have to be operated continuously, or at least semi-continuously.  The most common 

method of real-time preconcentration is cryotrapping, which involves cooling the 

absorbent material to temperatures well below the boiling point of the volatile 

compounds being targeted [86].  The analyte would condense on the sorbent surface 

and then be siphoned off for analysis.  This method enhances the trapping ability of 

the sorbent material, but with a few drawbacks.  Compounds can condense onto the 

absorbent indiscriminately if the temperature is not tightly controlled.  Cyotrapping 

can also be a troublesome method to use in a high moisture environment, since the 

primary condensate would be water.  The analyte in question would still be diluted, 

defeating the preconcentrator’s purpose.  Another common method of continuous 

preconcentration is the use of sophisticated membrane systems to selectively filter 

incoming air samples of impurities for detection [93].  This method, however, is 
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mostly applied to particulates, as the engineering of membranes to filter vapors is a far 

more specific and daunting task. 

 Thus, in the realm of explosive detection, a preconcentrator designed for the 

specific purpose of real-time, continuous collection of vapor phase explosive 

molecules is desirable.  This particular application requires efficiency in the 

adsorption and desorption of the analyte, as well as the efficiency switching from 

adsorption to desorption mode.  Above all, it must also be cost effective, easily 

maintained and robust.  This particular work investigates the design of a simple and 

inexpensive preconcentrator for the detection of explosive compounds, such as TATP, 

DNT and AN, which relies on spin-coated polymer films as the adsorbent. 

Experiments were designed to evaluate the efficiency of polystyrene as an adsorbent 

and to evaluate its effectiveness during continuous operation. 

2.4.4 MEMS 

 A limitation of the thermodynamic sensor is its size.  The time it takes to heat 

the sensor to a predetermined set-point and the time it takes for the sensor to 

thermodynamically respond to explosive molecules is dependent on the thermal mass 

of the sensor.  In terms of portability, it is desirable to minimize the power 

requirements of the sensor.  Its physical size also limits the amount of sensors that can 

be organized into sensor arrays.  The next logical step to improve the performance of 

the sensor is to minimize the design, thus a microelectromechanical system (MEMS) 

based sensor has been proposed to address the shortcomings of the solid state sensor. 

 Microelectromechanical systems are microscopic devices that utilize the 

mechanical properties of silicon to form flexible membranes capable of moving in 
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response to changes in pressure, rather than on the electrical properties of silicon like 

an integrated circuit.  By detecting this motion and converting it to an electrically 

measurable signal, pressure can be accurately sensed.  Examples of MEMS based 

sensors include acceleration sensors used for automobile air bag deployment control, 

pressure sensors mounted on the tip of catheters for use in intracardiac monitoring of 

blood pressure, and chemical sensors that quantitatively detect gaseous compounds. 

MEMS based sensors yield many advantages which make it an ideal platform for 

repeatability and mass production. Due to the relatively small scale, integrated circuit 

fabrication techniques allow hundreds or thousands of identical devices to be built 

simultaneously on a single silicon wafer. Compared to building up a device from 

individual components, the simplicity of fabrication greatly reduces the cost and 

improves the reliability. Meanwhile, MEMS can be packaged into arrays and 

integrated with electronics that require much less power, which often find applications 

where weight, power and space are critical [95-98].  

 For sensor application, one of the most important advantages of MEMS is that 

they improve sensitivity and reduce the response time.. With smaller scale, much less 

heat consumption is required for MEMS devices, which would greatly benefit sensors 

where most of the energy is spent to heat the ceramic substrate. Silicon which usually 

is employed as the substrate material of MEMS device, has relatively small heat 

capacity (19.79 J/mol·K) but larger thermal conductivity (149 W/m·K), and thus can 

reach designated temperature in a shorter period of time, compared with other 

materials, i.e. aluminum oxide. As a result, faster response time can be expected.
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Sensor fabrication and characterization  

 Alumina substrates were pre-sputtered in an MRC 8667 sputtering system to 

deposit an alumina film to promote adhesion of Ni.  Thin film nickel microheaters, 

having a nominal thickness of 4.5 µm, were deposited onto laser-perforated alumina 

substrates using an MRC Model 822 sputtering system. The Ni microheaters were 

annealed in flowing nitrogen at 900°C for 5 hours to improve the electrical stability 

and eliminate point defects as a result of the sputtering process. A 1μm thick alumina 

film was then deposited over the microheaters to prevent electrical shorts between the 

Ni and the oxide catalyst. The alumina film was also used to prevent the microheaters 

from interacting with oxygen and other gases present in the atmosphere. This 

microheater described here provides the foundation for all subsequent sensor designs. 

3.1.1 SnO2/Pd nanocomposite catalyst fabrication 

 SnO2/Pd nanocomposite catalysts were co-sputtered from simultaneously 

energized SnO2 and Pd targets in pure Ar onto an array of microheater sensors on 

alumina substrates in an MRC Model 8667 sputtering machine. A schematic of sensor 

placement relative to the sputtering targets is shown in Figure 3.1 and the sputtering 

parameters used for the deposition of the nanocomposite catalyst are given in Table 

3.1. This approach generated a large number of essentially different catalysts with a 

continuously varying, spatially dependent chemistry.  
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Table 3.1 Parameters applied to SnO2 and Pd targets during co-sputtering. 

Palladium loadings ranged from 1 wt.% to 25 wt.% in the nanocomposite film.  

A cutaway view of the various layers comprising the sensor is shown in Figure 3.2. 

Following deposition, the films were annealed at 550°C in air to promote 

crystallization and further stabilize the oxide catalysts. The chemical composition and 

morphology of these catalysts were characterized using scanning electron microscopy 

(SEM) equipped with energy dispersive X-ray spectroscopy (EDS). The catalysts were 

also characterized using X-ray diffraction (XRD) and X-ray photoelectron 

spectroscopy (XPS). Pure tin oxide films were also prepared as catalysts for 

comparison purposes. 
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Figure 3.1 Overview of the Pd:SnO2 co-sputtering process, in which an array of sensors were placed 
between two energized targets, resulting in that the sensors were coated with varying composition of 

catalysts.  
 

 
 
 

Figure 3.2 Actual picture and schematic demonstrating the size and structure of thermodynamic based 
sensor platform: (a) an actual picture, (b) top view and (c) expended view of schematic of the sensor 
showing catalyst film (1), alumina passivation layer (2), nickel microheater (3) and alumina substrate 

(4).  
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3.1.2 Orthogonal Sensor Fabrication 

 Over the serpentine area of a microheater, a 150 μm high purity alumina cement 

coating was applied. Both the sputtered alumina film and the thick alumina cement 

function as insulation layers to prevent the Ni microheaters from direct exposure to 

gas molecules and to prevent electrical shorts to the marginally conductive oxide 

catalyst. The cement is polished and the edges are beveled to accommodate the 

conductometric electrodes that are deposited next.  

 

Figure 3.3 Schematic of orthogonal sensor showing an actual picture (a), the top view (b) and expanded 
views (c) of the metal oxide catalyst layer (1), nickel electrodes (2), alumina coatings (3-4), nickel 

microheater (5) and alumina substrate (6). 
 

 Ni electrodes were deposited over the alumina cement using an MRC 822 

puttering system.  Their purpose is to measure the change in electrical resistivity of the 

metal oxides when exposed to the target gas.  SnO2 and ZnO were subsequently 

deposited using a MRC 8667 sputtering system in pure argon, which produced a 

nonstoichiometric oxide. Both catalysts were then annealed at 450°C in nitrogen for 5 

hours, densifying the film, eliminating point defects and releasing trapped argon 
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atoms. This was followed by a second heat treatment in a nitrogen/oxygen atmosphere 

(volume ratio of 95:5) for 5 minutes at the same annealing temperature. The second 

heat treatment ensured that the surface of catalyst film was stoichiometric, favorable 

for thermodynamic interactions between the catalyst and the analyte. Underneath the 

stoichiometric oxide was a much thicker nonstoichiometric oxide that was tailored for 

the conductivity measurement. The oxidation states of the metal oxide as a function of 

depth were characterized using X-ray photoelectron spectroscopy (XPS) to establish 

depth profiles and confirm the oxidation state in the oxide layer. A full schematic of 

the orthogonal sensor design is depicted in Figure 3.3. 

3.1.3 Preconcentrator Design 

 The design of the preconcentrator is depicted in Figure 3.4.  A K-type 

thermocouple was added to the sensor design to precisely monitor temperature. The 

sputtered alumina dielectric was deposited over both the microheater and the 

thermocouple.  A polystyrene film was then deposited over the sensor surface using 

spin coating.  Polystyrene beads were dissolved in dichloromethane, forming a viscous 

liquid.  The microheater was masked to protect the electrical contacts and the viscous 

solution was decanted onto the surface and spun off at speeds in excess of 500 rpm.  

Factors that affect the thickness of the resulting film include the viscosity of the 

solution, controlled by the mass of polymer dissolved into a fixed volume of 

dischloromethane, and the rotational speed (higher speeds produce thinner films). 

Films were made of varying thickness to determine how film depths affects retention 

volume.    
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Figure 3.4 The pre-concentrator is comprised of (A) an alumina substrate, (B) a Ni microheater, (C) a 
K-type thin film thermocouple, (D) porous, sputtered alumina coating and (E) spin-coated polystyrene 

film. 
 
3.2 Testing apparatus and protocol 

 The flow rate of inert gas (dry air) and target gas was precisely metered into the 

test chamber using two mass flow controllers and a digital flow meter, which 

produced a constant mass flow and allowed precise control over the target gas and 

inert gas mixtures delivered to the testbed. The desired vapor phase concentration of 

TATP was achieved by passing the carrier gas over a piece of filter paper impregnated 

with high purity TATP crystals in a flask maintained at constant temperature. When 

the target molecules were derived from liquid-based chemical solutions such as H2O2, 

or acetone in deionized water, air was bubbled through the flask containing dilute 

solutions to establish an equilibrium partial pressure in the vapor phase. A schematic 

of the test bed used to evaluate sensor performance is shown in Figure 3.5.  
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Figure 3.5 Apparatus used for the detection of TATP and H2O2 using a micro-calorimetric sensor.  
 

 The catalytic response was determined by measuring the heat affect associated 

with the interaction of the target molecules with a catalyst using a dynamic testing 

protocol. The catalyst-coated microheater was heated to a number of predetermined 

temperature set points by controlling the electrical resistance of the microheater, using 

a four-point probe method. The temperature coefficient of resistance (TCR) of the 

nickel microheater was independently calibrated and verified prior to each sensor test. 

The gas delivery system consisted of a series of mass flow controllers interfaced to a 

computer. In addition, a data acquisition system was also interfaced to a computer and 

controlled using LabView software. After reaching each temperature set point, the 

sensor was allowed to equilibrate for 360 seconds under constant inert gas flow. The 

target gas was then introduced into the test chamber for 180 seconds and then the 

reference gas was introduced for 180 seconds before the microheater was ramped to 

the next temperature set point. This testing sequence is referred to as an “off-on-off” 

protocol. The power required to maintain the sensor at a particular temperature was 
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recorded after the target gas was introduced and this temperature was maintained until 

the start of next step-increase in temperature. The heat effect at each temperature set 

point was measured by taking the difference in power required to maintain the 

temperature in the presence of the target gas and the power required to maintain the 

temperature in the presence of the inert gas. Prior to measuring the sensor response, 

the background power (sensor drift) was subtracted from the sensor response. 

Typically, all responses smaller than ±1.0 mW were considered background (noise), 

commonly due to small variations in the target and inert gas flow rates, drift in the 

baseline resistance of the nickel microheaters and other electrical instabilities.  TATP, 

H2O2 and acetone were all tested using this protocol in combination with the co-

sputtered SnO2/Pd composite catalyst for the thermodynamic sensor.   

3.2.1 Orthogonal Sensor Testing 

 For the orthogonal sensor, the flasks shown in the testing schematic, better 

suited for liquid based analyte testing, were replaced with stainless steel sample 

chambers as seen in Figure 3.6, to better test the TATP impregnated filter paper 

training aids as well as powder based explosives like 2,6-DNT and ammonium nitrate 

(AN). For the conductometric half of the orthogonal sensor, a voltage measurements 

across the semi-conductive SnO2 or ZnO film was recorded by the data acquisition 

system. When target gas molecules contacted the metal oxide, the number of available 

charge carriers changed, resulting in a corresponding drop or rise in voltage. The same 

testing protocol described for the thermodynamic sensor is applied here, except the 

voltage across the conductometric electrodes and the power supplied to the 

microheater are measured and recorded simultaneously.  Sensor responses to explosive 
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vapors as a function of target gas concentration were determined. The sensitivity, 

detection limit, response time and recovery time for AN, 2,6-DNT and TATP were 

evaluated for the conductometric platform and thermodynamic platform in the 

orthogonal sensor.  

Figure 3.6 Apparatus used for TATP, 2,6-DNT and AN detection using orthogonal sensors.  
 

 These particular analytes (TATP, 2,6-DNT and AN) were chosen to evaluate the 

orthogonal sensor for a variety of reasons.  All three explosives belong to different 

chemical groupings of energetic materials:  TATP from the peroxides, 2,6-DNT from 

the aromatic nitro- group and AN from the acid salts [1].  TATP and AN were also 

chosen because they are commonly found in homemade explosives and are far more 

likely to be involved in a terrorist attack [2].  2,6-DNT, while not as widely used as an 

explosive in industry as 2,4,6-trinitrotoluene (TNT), is a less dangerous alternative 

that has similar chemical structure and behavior [3].  Furthermore, DNT is a precursor 

to the synthesis of TNT, thus a homemade batch of TNT is likely to contain larger 

quantities of DNT over the commercially prepared explosive.  2,6-DNT was chosen 



 

63 

specifically over its isomer 2,4-DNT because 2,6-DNT has a higher ambient vapor 

pressure [4].  Finally, these three explosives represent a range of vapor pressures.  

TATP is a volatile compound and will thus have a high concentration in the vapor 

phase [5-6].  2,6-DNT has a much lower vapor pressure but still within a detectable 

range [4,7].  AN has the lowest vapor pressure and represents a challenge for this 

vapor detection technique [4,7]. 

3.2.2 Dynamic Testing Protocol for Preconcentration Testing 

 Testing with the preconcentrator required modifications to the original testing 

apparatus.  Immediately downstream from the explosive sample chamber a vessel was 

placed to contain the preconcentrator.  The preconcentrator must be heated for the 

thermal desorption of the collected analyte to occur, so the microheater embedded 

underneath the polystyrene is connected to a constant current source and the voltage is 

measured across the thermocouple to precisely control and monitor the temperature.  

The added heat upstream from the sensor would result in a power change, independent 

of any catalyst-analyte interaction, thus a method needed to be devised to filter out any 

extraneous heat changes to isolate catalytic activity.   

 To accomplish this, downstream from the preconcentrator, the air was siphoned 

off into two different chambers, precisely monitored with mass flow controllers to 

ensure both chambers receive the same volume of air.  In one chamber is a sensor 

coated with a passivating layer of alumina cement and a metal oxide catalyst, but in 

the other is a microheater coated with only with the cement dielectric.  This sensor 

acts as a dynamic control.  Both sensors were tested according to the thermodynamic 

testing protocol, all the while mirroring the other’s temperature.  The dynamic control 
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sensor responded to heat changes like the thermal desorption during preconcentrator 

operation, sensible heat effects, adsorption heat effects to the alumina dielectric and 

flow rate changes.  The catalyst coated sensor picked up those same heat changes plus 

the heat change associated with any catalyst-analyte interactions, thus by subtracting 

the two signals, the extraneous heat effects can be filtered out, completely isolating the 

sensor response due to catalytic activity.  A schematic of this modified testing 

apparatus is available in Figure 3.7.  Because it is critical for the catalyst coated sensor 

and the dynamic control sensor to respond similarly to these extraneous heat effects, 

individual sensors were pre-screened for similar electrical and thermal properties and 

paired prior to testing.  

Figure 3.7 Apparatus used for preconcentrator testing, including using two sensors simultaneously: one 
coated with a catalyst and the other functioning as a dynamic control.  

 

 Several single-step tests were conducted in this apparatus.  Air was passed over 

the preconcentrator and delivered to the sensor chambers for 60 seconds as a 

reference.  Then target molecules were delivered to the preconcentrator and the sensor 

for 180 seconds.  During this time, the preconcentrator was in a “collection phase” 



 

65 

meaning the polystyrene film was maintained at room temperature in order to allow 

any target explosive molecules to adsorb to the polymer surface.  After the 180 

seconds, current was applied to the microheater to rapidly heat the polymer film to 

95ºC, allowing desorption to occur.  This temperature is below the glass transition 

temperature of polystyrene, thus not warm enough to cause the polymer film to begin 

to flow.  Analyte desorption continues for 120 more seconds, then the constant current 

source was turned off, allowing the preconcentrator to passively cool.  Reference air is 

then passed through the system to observe the sensor’s recovery time.   

 Tests such as this were completed while varying several different test parameters 

including polymer film thickness, analyte used, collection time and flow rate.  Also, 

the effluent gas coming off the sensor and the preconcentrator was collected and 

analyzed using GC/MS to evaluate the effectiveness of the adsorbent as well as to 

determine whether the catalytic decomposition of TATP, DNT or AN takes place. 

  

3.3 MEMS design 

 The main purpose of transferring the sensor platform to MEMS based platform 

was to produce a smaller footprint that consumes less heat. In addition to the 

thermodynamic sensor and conductometric sensor, a K-type thermocouple was 

incorporated into the MEMS system to monitor temperature activity. A schematic of 

the MEMS sensor is shown in Figure 3.8. The fabricated dimension of MEMS 

platform was 2.8 mm x 1.8 mm x 0.7 mm. One of the most important processes 

involved in the fabrication was etching processes, which in this study was used to 
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create a suspended plane (1 mm x 1 mm x 5 μm) which was supported by tiny bridges 

(0.1 mm x 0.1 mm x 5 μm) to reduce heat sink.  

 Etching in micromachining is a process in which layers are chemically removed 

from wafer during manufacturing. Etching pattern can be controlled by masking layers 

applied through photolithography processes. Isotropic etching refers to process in 

which etchant erode the substrate material equally in all directions, while anisotropic 

etching is controlled in limited directions to certain materials, which could avoid 

formation of cavities under masking layer.  A (100) oriented silicon wafer was 

selected as the substrate material for this MEMS platform to favor anisotropic etching 

[8-9].  

 

Figure 3.8 Schematics showing top view (left) and expanded view (right) of orthogonal sensor on a 
MEMS platform. Elements including (A) pyrex substrate, (B) silicon wafer, (C) nickel microheater, (D) 

type K thermocouple, (E) silicon oxide layer, (F) platinum electrodes and (G) metal oxide catalysts. 
 

 A 1.5 µm SiO2 layer was thermally grown on both sides of the (100) oriented 

silicon wafer by heating at 1000°C for 48 hours. The wafer was then patterned using a 

positive photoresist and windows were etched into the SiO2 using a hydrofluoric acid 

(HF) and ammonium fluoride (NH4F) etchant.  Since formation of extra hydrogen ions 
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is impeded by NH4F this etching solution favored the etching of SiO2 over Si.  The 

photoresist was lifted off and a potassium hydroxide (KOH) etch was used to etch 

anisotropically into the Si at an elevated temperature resulting in the shape seen in 

Figure 3.9.  The remaining thickness of Si was estimated to be less than 10 µm. A 

pyrex wafer was then anodically bonded to the Si wafer to fortify the substrate, 

forming a cavity in between the two wafers. Using photolithography and RF plasma 

sputtering, Ni microheaters and a type-K thermocouple were then deposited onto this 

reinforced wafer, followed by a SiO2 insulation layer on top. Pt conductometric 

electrodes and a metal oxide catalyst layer were then sputtered over the SiO2 

insulation layer.  Windows were etched to further reduce the thermal mass of the 

suspended plane using a third etchant, tetramethylammonium hydroxide (TMAH, 

(CH3)4NOH).  Finally, the wafer was diced resulting in the finished MEMS sensor 

depicted in Figure 3.10. 

 

Figure 3.9 Etched shape using (a) an isotropic etch and (b) using an anisotropic etch. 
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 Figure 3.10  Photograph comparing the relative sizes of the solid state thermodynamic sensor 
(left), a solid state orthogonal sensor (center) and the MEMS design (right). 

 
 

 A second MEMS design was also produced with the assistance of the US Army 

Labs, depicted in Figure 3.11, and were manufactured using a similar procedure.  This 

particular iteration incorporates four thermodynamic sensors with individual 

thermocouples onto one chip, allowing for the implementation of several different 

catalysts at once, or even a dynamic control.  Each microheater is a Ti/Ni composite 

on top of Ti/Au bond pads and the active area is 0.25 mm x 0.25 mm, over 10 times 

smaller than the active area of the microheater in the single sensor MEMS design, 

providing an even smaller thermal mass.  The membrane is also constructed using a 

stack of plasma-enhanced chemical vapor deposition (PECVD) films (150 nm SiO2 / 

100 nm Si3N4 / 100 nm SiO2) and then back etched with xenon difluoride (XeF2). 
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Figure 3.11 Latest MEMS design, incorporating four sensors to one 5 mm by 5 mm chip.  
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CHAPTER 4 

 

FINDINGS 

 

4.1 Effect of Pd doped SnO2 on the selective detection of TATP 

4.1.1 Chemical characterization and surface morphology 

 The morphology of the different nanocomposite catalysts were characterized 

by SEM and TEM, as shown in Figure 4.1. While most of the as-deposited catalysts 

are featureless, as might be expected given the non-equilibrium deposition processes 

used to form the composites, extensive micro-cracking was observed after annealing. 

This was attributed to the large volume change associated with crystallization of the 

amorphous phases in the nanocomposite [1]. In addition, as the palladium content in 

the nanocomposite was increased, the density of micro-cracks diminished and 

eventually disappeared from the microstructure when palladium loadings greater than 

25 wt.%. EDS analysis was used in conjunction with TEM to confirm the chemistry of 

the dark, spherical particles observed in the SnO2 matrix. These palladium particles 

had an average diameter of 20 nm, and EDS confirmed these were palladium particles 

in the SnO2 matrix. 



 

73 

 

Figure 4.1 SEM image of as-annealed nanocomposite catalyst with palladium doping amount of (a) 
2.2% wt.%, (b) 8 wt.% and (c) 12 wt.%, and (d) TEM micrographs of as-annealed nanocomposite 

catalyst with a 12 wt.% palladium loading. 
 

 The nano-composite catalysts, comprised of Pd nanoparticles in a SnO2 matrix, 

were characterized by XRD, in the as-deposited and annealed condition (Figure 4.2). 

All nanocomposite catalysts, regardless of palladium loading, were amorphous in the 

as-deposited condition and became partially or fully crystalline after subsequent 

annealing steps. Peaks corresponding to the tetragonal form of SnO2 were observed in 

the XRD patterns of the annealed catalysts with no preferred orientation or texture 

evident. A uniform 2θ shift of (0.01Å) was observed for the SnO2 diffraction peaks 

relative to the literature values, which was likely caused by substitutional defects in 

the oxide. The PdO (101) peak was observed in all Pd “alloyed”  
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nanocomposites. However, the Pd (110) and Pd (220) peaks observed at higher 

palladium loadings all but disappear as the Pd loading decreases, as shown in Figure. 

4.2, (3) through (5).  

 To further explore this phenomenon, the oxidation states of the as-annealed 

nanocomposite catalysts were characterized using XPS. As shown in Figure 4.3, the 

XPS spectra of pure SnO2 and Pd: SnO2 nanocomposites exhibited the same Sn 3d5/2 

core level peak at 486.5 eV, suggesting that tin was present in +4 oxidation states in 

both specimens. Pure SnO2 contains the +2 Sn state as indicated by the lower intensity 

and slight shifting of the main Sn peak. The Pd 3d5/2 peaks in the 2.2 wt.% 

nanocomposite were observed at 336.4 eV and 337.5 eV respectively, which is in 

good agreement with literature values corresponding to palladium in the +2 and +4 

states [2-6]. The exact composition (at.%) was 0.17:0.83 (PdO2:PdO), based on the 

peak area. As the palladium loading was increased to 12 wt.%, metallic palladium 

began to phase separate and the composition of PdO2:PdO:Pd phases tended towards 

0.084:0.723:0.193, respectively. When the palladium loading reached 32 wt.%, the 

metallic phase became dominant and the PdO2 and PdO peaks disappeared. This was 

attributed to the differences in oxidation between palladium single crystals, which are 

more difficult to oxidize and the palladium particles in the SnO2 [4]. This finding was 

in agreement with the disappearance of the palladium (110) and (220) peaks in the 

XRD patterns shown in Figure 4.2. It should be noted that XPS was also performed 

after the catalysts were exposed to peroxides, in which case the oxidation state of 

palladium remained the same.  
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Figure 4.2 XRD patterns of as-deposited film with (1) 12 wt.% and (2) 2.2 wt.% loading palladium and 
annealed films with (3) 12 wt.% loading Pd, (4) 8 wt.% loading Pd, and (5) 2.2 wt.% loading Pd in the 

Pd: SnO2 
nanocomposite catalyst.  
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Figure 4.3 XPS spectra of (a) Sn 3d3/2 and 3d5/2 doublet for Pd doped and un-doped SnO2, and (b) Pd 
3d3/2 and 3d5/2 doublet corresponding to 2.2 wt.% loading Pd, 12 wt.% loading Pd and 38 wt.% 

loading Pd in the PdSnO2 nanocomposite.  

 

4.1.2 Sensor Measurements 

 Control experiments using un-doped SnO2 catalysts at several temperature set 

points in the presence of 0.68 µg/ml TATP were conducted. Figure 4.4(a) illustrates 

the “off-on-off” testing protocol used for each run. Power difference was used to 

describe the sensor response, and was defined as power used to maintain temperature 
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in presence of target gas at each stage minus power used to maintain temperature in 

presence of an inert gas at the same stage. At temperatures below 240°C, a slightly 

exothermic reaction was observed at the surface of the SnO2 catalyst, which was due 

to the decomposition reaction of TATP into diacetone diperoxide (DADP), acetone, 

H2O and O2/O3 [7]. However, as the temperature was increased beyond 240°C, the 

reaction tended to become endothermic and peaked at 395 ̊C. Accompanying this 

change in sign of the response was a change in the reaction kinetics, which was 

apparent from the reduced response time for the exothermic reaction compared to the 

endothermic sensor response. As the temperature was increased, TATP and its 

intermediate decomposition products continued to oxidize in the presence of air and a 

large amount of H2O was generated. Heat absorbed by H2O overwhelmed the heat 

released by the decomposition and oxidation reactions of TATP, which led to a power 

increase to maintain temperature. These sign changes are very telling with respect to 

the uniqueness of the sensor response (signature) and along with the magnitude of 

response can alleviate false positives. The details of reaction path remained unknown 

to researchers to date due to the complexity of the reaction. 
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Figure 4.4 Response of thermodynamic sensor to 0.68µg/ml TATP using a SnO2 catalyst, which was 
thermally scanned various temperature steps between 135°C – 435°C using (a) compressed dry air and 

(b) compressed nitrogen as carrier gas.  
 

 A comparative experiment was conducted to confirm this conclusion by using 

nitrogen as carrier gas to get the TATP molecules into the gas stream. As shown in 

Figure 4.4(b), the heat effect in the low temperature range (120°C – 240°C) exhibited 

the same sign and magnitude (response), and the same transition temperature; i.e. from 

a negative heat effect to a positive heat effect compared with results in Figure 4.4(a). 

This indicates that the same catalytic decomposition process was taking place. 

However, the magnitude of the response to TATP at high temperature range (280°C – 

455°C) when using nitrogen as the carrier gas was much smaller which suggests that 

much less heat was consumed by H2O to maintain temperature. This is because TATP 
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was not completely oxidized due to the absence of an oxidant and thus, much less H2O 

was generated. 

 

Figure 4.5Response of thermodynamic sensor using a 12 wt.% loading Pd nanocomposite catalyst to (a) 
0. 68µg/ml TATP and (b) 0.225 µg/ml H2O2 at various temperature steps.  

 
 When compared to tests performed using pure SnO2, the Pd: SnO2 

nanocomposite catalysts showed very different behavior (sensor response versus 

temperature) when exposed to TATP and H2O2 as shown in Figure 4.5(a). Unlike pure 

SnO2, the nanocomposite catalyst clearly exhibited a positive response to TATP at low 

temperatures (120°C – 240°C) and reached a maximum with amplified response at 



 

80 

395°C without the obvious exothermic reaction. This suggested that a large amount of 

H2O had already been generated at low temperature. This change in behavior from that 

of pure SnO2clearly shows the role that palladium played in modification of reaction 

mechanism. However, as shown in Figure 4.5(b), the catalyst exhibited little or no 

response to H2O2 until a temperature of 275°C was reached, and then kept increasing 

as temperature was raised to 455°C.  

 The sensor responses as a function of vapor concentration were also performed 

in both H2O2 and TATP to determine the sensitivity and detection limit of our 

thermodynamic sensor and the results shown in Figure 4.6(a) and 4.6(b). For 

comparison purposes between different species, the term “percentage response” was 

used, which is defined as the power differences at each temperature stage divided by 

power used to maintain temperature in presence of inert gas at such stage. The 

concentration tests were performed at 400°C and the response of the nanocomposite 

catalyst loaded with 12 wt.% Pd was linear with respect to TATP and H2O2 as shown 

in Figure 4.6(a) and 4.6(b). Both responses were repeatable when the vapor 

concentration was reduced to 0.045 µg/ml and 0.14 µg/ml, respectively. The sensor 

exhibited a response time of less than 5 seconds whereas recovery took significantly 

longer to reach baseline. The additional time required for recovery was caused by the 

slow depletion of residual target gas after the supply was cut off.  
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Figure 4.6 Response of a 12 wt.% Pd nanocomposite to (a) H2O2 and (b) TATP as a function of 
concentration in the vapor phase at 400°C.  

 
 
 
 

 Figure 4.7 shows the magnitude of the heat effect observed for a number of 

nanocomposite catalysts as a function of palladium loading in the presence of 0.68 

µg/ml TATP and 0.225 µg/ml H2O2. At palladium loadings less than 8 wt.%, the 

sensors exhibit a relatively poor response compared to the un-doped SnO2 catalysts. 
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However, at higher palladium loadings, there was a substantial increase in sensor 

response, which abruptly decreased when more than 12 wt.% Pd was incorporated into 

the catalyst. Higher palladium loadings in the catalyst showed almost no response to 

TATP and H2O2. While there was a substantial improvement in the maximum 

response to the two target molecules at a 12 wt.% palladium loading, the selectivity 

between these two target molecules was also significantly improved. A nanocomposite 

catalyst with a 8 wt.% palladium loading yielded the greatest selectivity (H2O2 relative 

to TATP) while a 12 wt.% palladium loading yielded the greatest sensitivity as shown 

in Figure 4.10.  

 

 
Figure 4.7 Summary of sensitivity and selectivity of Pd:SnO2 nanocomposite catalyst with various Pd 

loadings to H2O2 and TATP at 400°C.  
 

 

4.1.3 Effect of palladium doping amount 

 The role that palladium additions play when added to a metal oxide matrix 

such as SnO2 has been addressed to some extent in the literature [8-17]. However, the 
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exact nature depended on variables including loading method [8-9], loading 

concentration [9-10], working temperature [11] and species of analytic gases [12-15], 

each of which played important roles in identifying the specific mechanism. In the 

current study, sensors using stoichiometric SnO2 catalysts in the absence of Pd 

particles exhibited higher sensitivity to oxidizing vapors such as H2O2 and TATP 

compared to sensors using sub-stoichiometric SnO2-x. At low Pd loadings, Pd atoms 

diffused uniformly into SnO2 matrix and formed two possible bond types: (1) a strong 

Pd-Sn alloy metallic bond which was suggested by Tsud, et al [16] and (2) a Pd-O and 

O-Pd-O ionic bond which was confirmed in XPS. The first type of bond reduced the 

number of active SnO2 molecules per unit surface area while the second type of bond 

essentially gettered oxygen atoms from the stoichiometric SnO2 leaving a non- 

stoichiometric SnO2. This can be a possible cause for the reduction in sensor response 

for palladium loadings in the range 0 - 8 wt.%. Meanwhile, both O-Pd-O bonds and 

Pd-O bonds were present in this loading range, as confirmed by XPS but the 

sensitivity of this catalyst decreased as shown in Figure 4.10. This suggests that 

neither O-Pd-O nor Pd-O independently functioned in a catalytic role.  

 As the Pd loading was increased, metastable oxygen molecules in the catalyst 

were released during annealing and diffused throughout the film. However, this 

oxygen was insufficient for Pd atoms to form O-Pd-O bonds, resulting in the 

disappearance of the PdO2 peak as indicated by XPS and shown in Figure 4.3(b). 

Instead, relatively small Pd metallic clusters encapsulated in a PdO-SnO2 matrix were 

formed, resulting in an increase in the Pd peak [16]. In addition, the Sn 3d peak 

intensity remained constant, whose presence corresponds to stoichiometric SnO2. This 



 

84 

observation could occur by sharing oxygen atoms associated with PdO as indicated by 

the XPS spectra in Figure 4.3(a). Nanocomposite catalysts fabricated with 12 wt.% Pd 

and 88wt.% SnO2 lead to a maximum in response, regardless of Pd loading in the 

Pd:SnO2 nanocomposite. As the Pd loading was increased beyond this level, the size 

of Pd clusters increased, resulting in a relatively large Pd metallic XPS peak. As a 

result, the Pd clusters displaced the SnO2 and caused an additional decrease in amount 

of SnO2 and thus, a decrease in sensor response. Also, those sensors with palladium 

loadings greater than 22% showed no response to peroxides, indicating that neither the 

palladium nor the Pd2+ could function as catalysts.  

 The experiments suggest that the palladium itself, regardless of its oxidation 

state, did not affect the sensitivity of the Pd:SnO2 catalyst but instead, appeared to 

amplify the signal by varying the oxidation state of SnO2. Sensors with palladium 

loadings of 12 wt.% exhibited the maximum sensitivity (sensor response) to both 

TATP and H2O2.  

4.1.4 Protocol of TATP identification 

 As indicated in Figure 4.7, a SnO2 catalyst with a 12 wt.% palladium loading  

provided the greatest response to both TATP and H2O2at a temperature of 395°C. 

Thus, sensors with a 12 wt.% Pd loading were selected for long term exposure tests 

and were maintained at 400°C for prolonged periods as an early warning indicator; i.e. 

once a positive signal was received for an unknown vapor, measures could be taken to 

further identify the species of the suspect vapor. The sensor was then scanned at 

various temperature setpoints ranging from 150°C to 450°C to collect a characteristic 

signature as a function of temperature. H2O2 and TATP have significantly different 
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positive trigger points and their peak response temperatures can be used as a unique 

signature to distinguish TATP from H2O2. The Pd: SnO2 nanocomposites with 5 wt.% 

and 8 wt.% palladium loadings were also employed. The 5 wt.% palladium catalysts 

only responded to TATP and showed no response to H2O2 while the 8 wt.% palladium 

catalysts gave opposite responses, as shown in Figure 4.7. These two sets of sensors 

provided a certain redundancy in response, which will help mitigate false positives.  

 

4.2 Evaluation of the orthogonal sensor platform 

4.2.1 Catalyst characterization  

 Oxidation states of metallic species in the SnO2 and ZnO catalyst as a function 

of depth were characterized by XPS as shown in Figure 4.8. Position 1, 2 and 3 in both 

figures refer to the as-annealed surface 100Å and 600Å below the surface of the 

catalyst, respectively. Energy states associated with the Sn 3d5/2 and Sn 3d3/2 electrons 

show only slight changes as a function of depth with the exception that both 3d peaks 

taken at position 1 appear sharper, as shown in Figure 4.8(b). When sampled from 

position 1 to position 3, as shown in Figure 4.8(c), a phase transition was observed, 

during which the Sn 4d peak at 27.2 eV (+4 state) decreased and a shoulder associated 

with the Sn 4d peak at 26.6 eV (+2 state) increased and eventually formed a new peak. 

This indicated that a transition from stoichiometric SnO2 at surface of catalyst to a 

nonstoichiometric SnO2-x had occurred below the surface. From Figure 4.8(d), Zn 2p 

doublets can be observed, indicating that multiple oxidation states exist at the surface 

of ZnO catalyst most likely due to the oxygen introduced during annealing processes. 

Also the Zn 2p3/2 peaks at positions 2 and 3 shifted to lower binding energies and 
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appear sharper when compared to the peak at position 1, indicating that a 

uniformZnO1-Y ayer had formed below the surface. This assumption was confirmed in 

Figure 4.8(e) by the disappearance of ZnO secondary peaks corresponding to the 3s 

and 3p states and an increase in intensity of the 3d peak as a function of position, 

which was verified as a transition in oxidation state.  

 

Figure 4.8 X-ray photoelectron spectra (XPS) results of SnO2 catalyst. 3(a) indicates the sampling 
position in a cross-section diagram of catalyst; Sn 3d5/2 and Sn 3d3/2 states were shown in 3(b) and 4d 
states in 3(c). XPS results of ZnO catalyst. 3(d) indicates the Zn 2p states and 3s, 3p and 3d states in 

3(e).  
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4.2.2 Sensor characteristics 

Figure 4.9 shows a typical response from orthogonal sensors using SnO2 and 

ZnO as catalysts in presence of 2,6-DNT. Responses using SnO2 atalyst are presented 

in Figure 9(a), and responses using ZnO catalyst were initially collected from separate 

platforms, each individually tuned for optimal thermodynamic and conductometric 

response. Each sensor was pre-stabilized at 410°C for 15 minutes before recording 

data. DNT was then introduced into the test chamber after 1 minute for a period of 360 

seconds as shown along the horizontal axis in Figure 4.9(a) and 4.9(b). The sensor 

employing SnO2 catalyst exhibited the fastest thermodynamic response time (less than 

5 seconds) whereas the conductometric response took significantly longer (60 - 80 

seconds) to reach equilibrium and did not show a sharp transition after introduction of 

target gas. However, both thermodynamic and conductometric signals completely 

recovered to the baseline values within 5 minutes. Both the thermodynamic and 

conductometric signals using a ZnO catalyst demonstrated a rapid response time (less 

than 10 seconds). However, both responses took a longer time to reach equilibrium 

and recover, compared to those produced with a SnO2 catalyst.  
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Figure 4.9 Thermodynamic response (blue) and conductometric response (red) to 2, 6-DNT at 410 °C 
taken simultaneously with SnO2 (a) and ZnO (b) orthogonal sensor.  

 
The difference in response times and recovery times between the two sensing 

platforms was attributed to their detection mechanisms. The thermodynamic platform 

measures the heat effect associated with the catalytic decomposition of the target gas, 

which was initiated instantly as the target gas molecules interact with the surface of 
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catalyst. When additional target gas molecules are introduced, same decomposition 

occurs immediately. This formed a dynamic equilibrium where decomposition rate 

was the rate-controlling step. The conductometric platform measures the charge carrier 

concentration which depended on donating or accepting extra charge carriers as the 

target gas molecule was adsorbed onto or desorbed from the surface of catalyst. This 

process also resulted in a dynamic equilibrium where the adsorption and desorption 

rate is the rate-controlling step. Since the chemical reaction rate is an order of 

magnitude faster than physical adsorption rate, the thermodynamic signal exhibits a 

much faster response time and recovery time compared to that of conductometric 

signal. 

 

 

Figure 4.10 Orthogonal response of SnO2 (where conductometric response is presented in red and 
thermodynamic response in blue) as a function of 2,6-DNT vapor concentration (black dashed line) at 

410°C. 
 

The orthogonal sensor response to 2,6-DNT as a function of DNT vapor concentration 

(at 410°C employing SnO2) is shown in Figure 4.10. Here, the thermodynamic 
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response was linear with respect to DNT vapor concentration whereas the 

conductometric response remained the same as the DNT vapor concentration 

decreased. Both responses were repeatable when the vapor concentration was reduced 

from 0.5 ppm to 0.2 ppm.  

 

Figure 4.11 Conductometric response of SnO2 (a) and ZnO (b) to ammonia nitrate (blue), 2,6- DNT 
(red) and TATP (green) as a function of temperature.  

 
 

 The conductometric response to ammonium nitrate, DNT and TATP vapor as a 

function of temperature employing SnO2 and ZnO as catalysts are shown in Figure 

4.11. The responses of both catalysts to ammonium nitrate was proportional to 

temperature at low temperature ranges (<250°C) and then decreased with temperature 

as it was raised over 350°C. 2, 6-DNT showed similar behavior relative to ammonium 

nitrate but only exhibited a shallow peak at 280°C with both catalysts. The TATP 

signal produced from the SnO2 catalyst changed very little with the temperature, 

whereas these sensors employing ZnO catalyst did not show a conductometric 

response to TATP and therefore, were not included here. These differences in sensor 

response could be caused by the differences in vapor pressure of target molecules and 

differences in the functional groups and molecular structures between the target 

molecules. However, the exact mechanism remains unknown due to the complexity of 
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the processes. As a result, all three compounds (TATP, DNT and ammonium nitrate) 

exhibited unique signatures (orthogonal responses), which could be used to further 

characterize their presence and mitigate false positives and negatives.  

 

4.3 Preconcentrator Evaluation 

4.3.1 Effectiveness of using a dynamic control 

 

Figure 4.12 Thermodynamic response of SnO2 catalyst to 2,6- DNT (red) and the simultaneously 
responding dynamic control (blue). 

 
 Before the preconcentrator is discussed in detail, it is worth detailing the 

benefits of using a dynamic control sensor to eliminate extraneous heat signals.  Take 

for instance Figure 4.12, depicting a single step test at 400ºC for 2,6-DNT using a 

stoichiometric SnO2 catalyst.  The step response from the catalyst microheater is 

plotted on the same axes as the response from the control, and it can be observed that 

the catalyst response is much larger.  Both the dynamic control and the catalyst coated 

sensor responds to the adsorption and desorption of molecules on the alumina surface.  

Adsorption can either be chemiadsorption , the result of a covalent bond between the 
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adsorbent and the analyte causing a relatively large heat effect, or physiadsorption, the 

result of weak van der Waals attractions causing a relatively smaller heat effect.  

Alumina is mostly non-reactive thus will likely physiadsorb any analytes or vapors 

[18, 19].  Another contributing thermodynamic effect is the sensible heat effect change 

that occurs when the explosive vapors are introduced to the sensor.  Though the 

explosive vapors are only present at trace levels, the heat capacity of many of these 

energetic materials are so large relative to that of air, that the change can be registered 

by our thermodynamic sensor.  If the incoming gas to the sensor is considered as a 

“coolant,” the air containing trace explosive molecules is a better coolant than pure air 

and thus the sensor requires slightly more power to maintain a constant temperature.  

A small contributing heat effect could also be the presence of nickel oxide on the 

surface of the microheater.  Previous study has shown that NiO reacts with a few 

target explosives [20], and can form on the surface of the microheaters after sputtering 

before the it is coated with the dielectric.  Although, any NiO present is embedded 

under alumina cement and is unlikely to be a major contributing thermodynamic 

factor. 

 That leaves the catalyst coated sensor only to catalytically react to the analyte, 

resulting in a larger thermodynamic signal than that of the dynamic control.  Thus, 

when determining the power difference at this temperature set point, the crest of the 

dynamic control response is used as a baseline instead of the power requirements 

during the flow of pure air.  Signatures that can be used to identify a particular 

explosive using a particular catalyst can now be obtained with more clarity because 

the pure catalytic heat effects can be isolated.   
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Figure 4.13 Thermodynamic signal of a ZnO catalyst detecting 7 ppm TATP. 
 

 Figure 4.13 shows one such signature obtained for TATP using a ZnO film.  

On the same axes are signatures from two different sensors that do not have the benefit 

of a thermodynamic control.  Between 125ºC-300ºC the new signature falls below the 

previous signature, indicating that there are heat affects that the old signal is 

accounting for that are indeed filtered from the latest result.  Also, there is a very 

pronounced peak at 375ºC, much larger in magnitude than before.  The resolution of 

this peak is due to the use of a dynamic control to filter out the extraneous heat 

signals, but the magnitude change was due to another reason entirely.  
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Figure 4.14 Thermodynamic signatures of SnO2 (blue) and ZnO (green) to 7ppm TATP. 
 

 An added benefit of this approach is the enhancement in sensitivity due to the 

high surface area of the alumina cement.  The primary purpose of the cement was as a 

dielectric to prevent electrical shorts between the Ni microheater and the semi-

conductive catalyst film.  In the orthogonal sensor, Ni electrodes were placed on top of 

the cement as well, making it necessary to polish the cement surface and bevel the 

edges to make the surface conducive to deposition by sputtering.  In these 

thermodynamic sensors used for evaluation of the dynamic control, the cement films 

were left as is, remaining highly porous.  It is also the nature of sputtered films that 

they coat the substrate surface, preserving any and all surface features.  The result was 

a high-surface area catalyst surface with a much higher density of catalytic sites, 

directly improving sensitivity.  Testing with these sensors yielded a large increase in 

magnitude of the thermodynamic signal for testing with ZnO and SnO2, as seen in 

Figure 4.14.  An interesting feature of this plot is the shift in peak placement in the 
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signature for each catalyst.  The peak occurs at 375ºC with ZnO, but using SnO2 the 

peak occurs at 325ºC.  This peak corresponds to the largest catalytic heat effect, and 

because it occurs at different temperatures for different catalysts, it reinforces that 

these signals are unique and can be used to identify an unknown vapor as TATP.  

Finally, a concentration test was conducted using SnO2 to determine if the detection 

limit for TATP had changed (Figure 4.15) .  Without the alumina cement, the sensor 

was able to detect TATP at 537 parts per billion (ppb), but with the enhanced surface 

area, the detection limit was reduced to 134 ppb. 

 

Figure 4.15 Concentration test illustrating the detection limit of TATP using a SnO2 catalyst. 
 

4.3.2 Preconcentrator results 

 The first polystyrene preconcentration test was conducted using a 

stoichiometric SnO2 catalyst and 2,6-DNT, resulting in the step response in Figure 

4.16.  The polystyrene film used in this test was measured to be approximately 10 µm. 
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Partway through the step, a small peak is observed, corresponding to the start of the 

preconcentrator’s desorption phase.  The power change as a result of these 

preconcentrated molecules was small.  However, the expected power change as a 

result of the added heat from the preconcentrator was expected to be negative.  The 

fact that the direction of the response is positive led to the determination that a method 

to filter out the thermal desorption heat effects was necessary to resolve any increase 

in sensitivity. 

 

Figure 4.16 Preconcentration test conducted using a stoichiometric SnO2 catalyst and 2,6-DNT 
 

 Implementing a dynamic control sensor along with the SnO2 sensor, and 

conducting the same experiment with DNT, yielded the signal seen in Figure 4.17.  

The signal on top is from the catalyst coated sensor and closely resembled the sensor 

response in Figure 4.16.  However, the figure on the bottom from the dynamic control 

sensor shows the negative change in power associated with the thermal desorption 

phase of the preconcentrator.  There are three significant changes in the signal, as 
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indicated in Figure ## by the numbers (1) through (3).  (1) marks the beginning of 

DNT delivery to both the preconcentrator and the sensors further downstream.  During 

this time the preconcentrator was collecting DNT molecules and was thus maintained 

at room temperature. (2) indicates when the preconcentrator is heated from 20ºC to 

97ºC to begin the thermal desorption of the trapped DNT molecules.  At this point the 

dynamic control exhibits a downward power change, responding to the rise in the 

temperature of the incoming air, which is expected.  The catalyst coated sensor 

exhibits a positive change, indicating that more DNT is reaching the catalyst surface, 

thereby increasing the magnitude of the response.  Finally, (3) is the point at which the 

preconcentrator is turned off and reference gas is reintroduced to the chambers to 

observe the sensor’s recovery.   

 

Figure 4.17 Preconcentration test conducted using a stoichiometric SnO2 catalyst and 2,6-DNT using the 
dynamic control method: (1) beginning of DNT delivery to sensors (2) preconcentrator begins thermal 

desorption (3) preconcentrator is turned off and reference gas is reintroduced to the chambers   
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 Using this dynamic control method, the extraneous heat activity, which now 

encompasses the thermal desorption of the preconcentrator, can be filtered from the 

catalyst signal.  The new power change is determined by measuring the difference 

between the power of the catalyst sensor signal between points (2) and (3) and the 

power of the dynamic control in that same interval.  It can be seen on this signal that 

using the preconcentrator increases the magnitude of this power difference, from 0.1% 

to 0.15%. 

4.3.3 Factors affecting preconcentrator operation 

 Additional tests were then conducted, using the same testing protocol and 

sensor configuration while varying some key test parameters.  A second 

preconcentrator, with a much thinner polystyrene film, was interchanged with the first.  

The thickness was measured to be less than 1 µm.  It was expected that the decrease in 

thickness of the adsorbent film would lower the retention volume, thus resulting in a 

smaller thermodynamic signal during thermal adsorption.  What was observed was no 

significant change in the magnitude of the thermodynamic signal, indicating that the 

retention volume of the sorbent was independent of the thickness of the film.  The 

spin-coated polymer films are likely dense and nonporous, only allowing the 

adsorption of molecular species on the planar polymer surface. 

 It was then hypothesized that shortening or lengthening the collection time 

would decrease or increase the thermodynamic sensor response respectively.  Figure 

4.18 shows the effect of collection time on the magnitude of the change.  At low 

collection times, the relationship is almost linear indicating that longer collection 

times result in proportionally larger responses.  This was true until collection was 
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allowed to occur for 200 seconds or longer.  Increasing the time any further yielded 

diminishing returns.  It appears that after 200 seconds of collection, the adsorption 

sites on the polystyrene film are all occupied and the film becomes saturated.  It is also 

worth noting that at time 0, there is a power difference between the two sensors.  This 

is likely due to heat losses that occur in the distance between the preconcentrator and 

the sensor chambers. 

 

Figure 4.18 Effect of preconcentrator collection time on the magnitude of the thermodynamic sensor 
response. 

 

 Some sources also report that flow rate is an important factor in the adsorption 

process [18-19].  Figure 4.19 shows different power changes recorded at different flow 

rates.  It was important for this test to vary the flow rate, but maintain the same 

volume of air that passes over the sensors.  For instance, when the flow rate was at 100 

sccm, the collection period lasted 2 minutes.  When the flow rate was reduced to 50 

sccm, the collection period was lengthened to 4 minutes, making the total volume (and 
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thus total amount of analyte) the same in both experiments.  The result was a 

proportional relationship between the flow rate of the gas and the resulting 

thermodynamic signal.  Several sources indicate that the increased pressure in the 

preconcentrator favors the adsorption process.  This is a positive result for 

preconcentration because it indicates that in order to accelerate the adsorption process, 

the flow rate could be increased.  The preconcentrator geometry in this case is also 

such that not every analyte molecule comes in contact with the adsorbent film and is 

captured.  If an increased flow rate could be paired with a preconcentrator design that 

ensured contact with a greater percentage of the incoming air, a larger increase in 

response would be observed. 

 

Figure 4.19 Effect of flow rate on the magnitude of the thermodynamic sensor response. 
 

 Other analytes were also tested to determine any and all changes in 

preconcentrator design.  Out of all the analytes tested, 2,6-DNT had the most dramatic 

results, and this agrees with many sources that indicate polystyrene has a high affinity 
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for nitroaromatic compounds.  Tests were conducted with both TATP and AN as the 

analyte.  TATP did adsorb to the polymer surface, however the resulting increase in 

power difference during thermal desorption was less than 0.05%, suggesting either a 

low adsorption or desorption rate for TATP using polystyrene.  AN did not show any 

measurable response, even at large collection times, confirming many sources that 

indicate ammonium nitrate adsorbs with great difficulty. 

4.3.4 Implications 

 Overall, the preconcentrator was successful in increasing the sensitivity of the 

sensor.  At the same target gas concentration, the magnitude of the sensor response 

increased from 0.1% to 0.15%.  The dynamic control method is also successful on its 

own and will likely be a fixture in all of the experimentation moving forward. As it 

stands based on these experiments, the preconcentrator can be operated successfully in 

a semi-continuous process, albeit with a longer than desired time constant.  When 

considering the practical application of this method, a timing scheme could be 

developed that cycles the preconcentrator between collection and desorption 

repeatedly.  Figure 4.18 indicated that a maximum analyte retention occurred at 

collection times as low as 200 seconds, and 120 seconds would be a reasonable 

amount of time to desorb enough analyte to illicit a response.  In addition, time must 

be allowed for the preconcentrator to cool back to its collection temperature, which it 

currently does passively in approximately 60 seconds. The attractiveness of this vapor 

sensor in general is the potential for instantaneous results, thus adding a waiting period 

totaling more than 4 minutes between results is undesirable.  To implement this 

preconcentrator in real time, steps will have to be taken to reduce the collection time 
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and to boost the retention volume of the adsorbent.  This could be done by increasing 

the size and changing the geometry  

 These experiments also reveal that the preconcentrator requires a specific 

adsorbent to attract a specific analyte.  Polystyrene was only successful in adsorbing, 

2,6-DNT, but a different sorbent could easily be implemented in its place.  Polystyrene 

also has a thermal limitation.  Its glass transition temperature at 100ºC places a 

restriction on thermal desorption, however, some sources indicate that higher 

temperatures are necessary for more complete desorption of collected DNT.  Spin 

coating the polystyrene also resulted in a dense film that was evidently only capable of 

surface adsorption.  Experimentation will have to be done into sorbents that vary 

according to specificity, thermal stability and deposition technique. 

 

4.4 Thermodynamic analysis of the MEMS platform 

4.4.1 Solid State Sensor 

 As a reference, the energy input required for the operation of the solid-state 

sensor will be calculated here.  The energy, q, required to heat the sensor from room 

temperature to an elevated operating temperature is:  

! = !! ! − !! ! 

where Cp is the heat capacity of the substrate, n is the number of moles in the 

substrate, Ti is room temperature and T is the desired operating temperature, which on 

average is approximately 400°C.  We will assume for simplicity that the contributions 

to thermal mass of the microheater and dielectric films are negligible with respect to 

the bulk alumina.  Thus the total heat capacity can be taken as the specific heat 
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capacity of alumina (79.04 J/mol-K).  The number of moles can substituted by density 

resulting in the following: 

! = !!!"
! ! − !!  

where ρ is the density of alumina (3.9 g/cm3), V is the volume (calculated to be 0.063 

cm3 based on the dimensions of the sensor) and M is the molecular mass of alumina 

(102 g/mol).  Thus, substituting all of these values yields a total heat of 72.35 J.  In 

order to determine the heat required to maintain the sensor at that elevated 

temperature, Fourier’s Law will be applied.  For simplicity, we will assume that the 

bulk of the heat lost by the sensor occurs in the direction normal to the plane of the 

microheater.  If we consider only the active area of the microheater, this direction has 

the largest cross sectional area and will contribute the most to heat loss.  The 

simplification will be made that the primary means of heat transfer are convection and 

conduction, ignoring radiation.  The heat lost, using a modification of Fourier’s Law 

of combined conduction and convection is: 

! = !"Δ! 

Where A is the cross sectional area of the active area of the microheater (calculated to 

be 0.3338 cm2 based on sensor dimensions), ΔT is 400°C - 20°C = 380°C, and U is the 

overall heat transfer coefficient, which in the +x direction is: 

! = 1
ℎ +

Δ!
!

!!
 

where h is the convection heat transfer coefficient of air (approximately 55.6 W/m2-K 

for the natural convection of air over a static plate of this size), k is the thermal 
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conductivity of alumina (30 W/m-K) and Δx is the thickness of the alumina substrate 

(0.5 mm).  In the –x direction U = h. Thus: 

!!"!#$ = !!! + !!! = !
1
ℎ +

Δ!
!

!!
!Δ! + ℎ!Δ! 

which when all of the appropriate values are substituted in corresponds to 1.410 W.  

This value is in agreement with typical power requirements for microheaters at 400°C, 

which can require anywhere from 1.5 W to 2.0 W to maintain constant elevated 

temperature.  This theoretical value is an underestimation because it does not take into 

account conduction and convection heat losses in the y or z directions.  It will be noted 

that contributions to heat loss are largely due to natural convection, conduction 

playing only a small role. 

4.4.2 URI MEMS sensor 

The same equation from the solid state calculations can be used to calculate the 

heat required to elevate the single sensor MEMS to 400°C from room temperature: 

! = !!!"
! ! − !!  

however, this time there are two different substrate materials to consider: Si and Pyrex 

glass.  There is also a cavity underneath the active microheater, so the equation must 

now account for the reduced mass, therefore: 

!!"!#$ = !!" + !!"#$$ =
!!,!"!!"!!"

!!"
+ !!,!"#$$!!"#$$ ! − !!  

The values of each of these parameters is summarized in Table 4.1.  Substituting all of 

these values yields a total heat of 1.178 J. 
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 Silicon Pyrex Glass 

Thermal 

conductivity, k 

149 W/m-K 1.005 W/m-K 

Density, ρ 2.329 g/cm3 2.23 g/cm3 

Volume, V 4.93 x 10-4 cm3 1.24 x 10-3 cm3 

Molar mass, M 28.085 g/mol - 

Heat Capacity, Cp 19.789 J/mol-K 0.84J/g-K 

 

Table 4.1.  Summary of material properties in the URI MEMS sensor. 

 

Figure 4.20. Cross sectional schematic of the URI MEMS sensor.  The Si membrane is 0.5 um thick, the 
empty cavity is 0.195 mm thick, and the Pyrex wafer is 0.5 mm thick. The active microheater surface is 

1 mm x 1 mm. 
 

The heat required to maintain temperature will also be calculated using Fourier’s Law.  

A cross-section is available in Figure 4.20 illustrating this configuration.  Applying 

Fourier’s law,  

! = !"Δ! 
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In the upward direction, heat loss is due to natural convection, thus: 

! = ℎ!Δ! 

The heat transfer coefficient for air, h, is recalculated to be 10.45 W/m2-K because the 

geometry is much smaller.  In the downward direction, heat loss is due to combined 

conduction and convection: 

! = !"Δ! 

! = 1
ℎ +

Δ!!"
!!"

+ Δ!!"#!!"#
+ Δ!!"#$%!!"#$%

+ 1ℎ
!!

 

The values for the parameters in this equation are available in Table 4.1.  Substituting 

these values into the equation yields an operating power of 1.97 mW. 

4.4.3 Latest MEMS design 

Again, the same equation from the solid state calculations can be used to 

calculate the heat required to elevate the MEMS chip to 400°C from room 

temperature: 

! = !!!"
! ! − !!  

The materials to consider are the substrate, which is silicon wafer with a cavity etched 

into it, and the suspended membrane, composed of stacked layers of silicon dioxide 

and silicon nitride.  Thus, 

!!"!#$ = !!" + !!"#! + !!"!!! 

 

!!"!#$ =
!!,!"!!"!!"

!!"
+ !!,!"#!!!"#!!!"#!!!"#!

+ !!,!"!!!!!"!!!!!"!!!!!"!!!
! − !!  
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The values needed for this calculation are provided in Table 4.2 and substituting them 

into the previous equation yields a total heat of 0.3144 J (or 0.0789 J for each sensor 

on the chip). 

 Silicon Silicon 
Dioxide 

Silicon 
Nitride 

Thermal conductivity, k, W/m-
K 149 1.4 26.5 

Density, ρ, g/cm3 2.329 2.648 3.44 
Volume, V, cm3 4.93 x 10-4 6.25 x 10-6 2.50 x 10-6 
Molar mass, M, g/mol 28.085 60.08 140.28 
Heat Capacity, Cp, J/mol-K 19.789 43.98 99.68 
 

Table 4.2.  Summary of material properties for new MEMS sensor design. 

 

 

Figure 4.21. Cross sectional schematic of the new MEMS sensor.  The membrane is composed of 150 
nm SiO2 / 100 nm Si3N4 / 100 nm SiO2, the empty cavity is 0.19 mm thick, and the etched Si wafer is 

10um thick. The active microheater surface is 0.25 mm x 0.25 mm. 
 

The heat required to maintain temperature will also be calculated using Fourier’s Law.  

A cross-section is available in Figure 4.21 illustrating this configuration.  Applying 

Fourier’s law,  
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!!"!#$ = !"Δ! 

In the upward direction, heat loss is due to natural convection, thus: 

!!" = ℎ!Δ! 

The heat transfer coefficient h is the same as in the URI MEMS, 10.45 W/m2-K. In the 

downward direction, heat loss is due to combined conduction and convection: 

!!"#$ = !"Δ! 

! = 1
ℎ +

Δ!!"#!
!!"#!

+ Δ!!"!!!!!"!!!
+ Δ!!"#!!!"#!

+ Δ!!"#!!"#
+ Δ!!"!!"

+ 1ℎ
!!

 

Substituting the values available in Table 4.2, the total power necessary to maintain 

one of the four sensors on the new MEMS chip design is 0.495 mW. 

4.4.4 Overall Comparison 

 Solid State 
 

URI MEMS New MEMS 

Energy required to 
heat from 20°C to 
400°C 

72.35 J 1.178 J 0.079 J 

Power required to 
maintain 400°C 

1.410 W 1.97 mW 0.495 mW 

Catalyst area 0.33 cm2 0.01 cm2 6.25 x 10-4 
cm2 

 
Table 4.3 Comparing the heat requirements for all three sensor platforms. 

 
Table 4.3 summarizes the estimations of the previous sections. These 

calculations exclude heat losses due to radiation and the conduction heat loss in the 

horizontal direction (across the suspended bridges in the MEMS), but it is a reasonable 

assumption that the largest heat loss is due to natural convection, and that is the means 

of comparison here.  The results indicate that the MEMS sensors consume 

considerably less power than their solid-state counterpart.  Furthermore, the newest 

iteration of the MEMS sensor consumes even less, due to thinner membranes, a 
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smaller active surface area and an overall smaller thermal mass. It will be noted, 

however, that the smaller active surface area of the microheater on the MEMS devices 

are orders of magnitude smaller than the solid state device.  The catalyst film on the 

solid-state sensor also has the benefit of the porosity of the alumina film underneath it, 

increasing surface area further.  The MEMS catalyst would be featureless and planar.  

Results from a previous section in this paper indicate that surface is a crucial feature of 

a catalyst film to ensure sensitivity.  It is unclear whether the measured surface are 

listed in Table 4.3 would be substantial enough to illicit a sensor response, even 

considering the expected rise in sensitivity that comes with a drastically reduced 

thermal mass. 
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CHAPTER 5 

 

CONCLUSION 

 

5.1 Conclusion  

 The specific objective of this work was to take a solid state sensor that was 

successful in detecting vapor phase explosive molecules and make several key 

improvements to enhance the selectivity and sensitivity so that the sensor can one day 

be implemented in a real, portable device.  These improvements were to be made in 

four specific ways:  (1) Increasing the selectivity for TATP of the metal oxide catalyst 

film using combinatorial chemistry techniques, (2) combining a second independent 

sensing mechanism with the original thermodynamic sensor onto one orthogonal 

sensor platform to mitigate the detection of false positives, (3) increasing sensitivity 

and lowering the detection limit by implementing a preconcentrating device without 

compromising continuous detection, and finally, (4) migrating the sensor design to a 

smaller, more thermally efficient MEMS platform. 

 It was demonstrated that a sensor can be engineered to detect TATP and ignore 

the effects of interferent H2O2 molecules by doping SnO2 films with Pd nanoparticles.  

Compared with a pure SnO2 catalyst, incremental Pd additions modified the catalytic 

decomposition of TATP, resulting in unique sensor responses.  At 5 wt. % Pd in SnO2, 

the sensor responded to TATP but did not respond at all to H2O2.  Also, at 12 wt. % 

Pd, the response to TATP and H2O2 was enhanced, indicating that sensitivity, not only 

selectivity, can be increased by modifying the composition of the catalyst. 
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 An orthogonal detection system was also introduced to sense various 

explosives at increasingly lower concentrations, and more importantly, to minimize 

the frequency of false positives. The orthogonal detection system was composed of 

two independent sensing platforms, a thermodynamic based sensor and a 

conductometric based sensor.  Both sensors obtain measurements from the same 

catalyst simultaneously and provide a redundancy in response for explosive 

identification. TATP, 2,6-DNT and ammonium nitrate were reliably detected.  Each 

analyte displayed a unique conductometric signature and the results indicated a 

detection limit at the ppb level. 

 A preconcentrator was designed to enhance the sensitivity of the sensor and 

was successfully demonstrated. The magnitude of the sensor response increased by 

50% and the preconcentrator could be operated in a semi-continuously, maintaining 

one of the most attractive features of this sensor platform:  the capability to operate in 

real time.  The dynamic control method was also successfully demonstrated and will 

likely be a fixture in all sensor experimentation and design moving forward. 

 Finally, two MEMS based sensor platforms were designed and fabricated.  It 

was theoretically demonstrated that the newest iteration of the MEMS sensor 

consumes considerably less power, due to thinner membranes, a smaller active surface 

area and an overall smaller thermal mass, allowing for the possibility of creating 

networks of sensor arrays, even in a portable device. 
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5.2 Future Work 

 The end goal of this project has always been the real-world implementation of 

this vapor detection system in a practical, usable device.  Towards that end, several 

areas of interest warrant further investigation including continued MEMS and 

preconcentrator development, research into how humidity affects explosive vapor 

detection, and the study of a wider range of analytes. 

5.2.1 Preconcentration 

 A preconcentrator was successfully demonstrated, but improvements need to 

be made in a few key areas before it can be fully implemented.  Research must be 

done into other sorbent polymers.  Polystyrene was successful in adsorbing DNT, but 

not TATP or AN.  Some alternatives include Tenax, which is an excellent sorbent for 

a wide range of molecules, and polycarbonate, polyvinylpyrrolidone and polyaniline, 

which have selective affinity for certain chemical groups.  It will also be important 

moving forward to get quantitative results on the surface structure of the polymer and 

to determine how well the sorbent adsorbs and desorbs a particular analyte, instead of 

qualitatively and indirectly measuring that using our sensor [1-3]. 

5.2.2 MEMS 

 A working, testable MEMS device has yet to be developed.  The platform isn’t 

practical for research purposes because solid state sensors can be made quickly and in 

smaller batches to accommodate frequent changes in sensor or catalyst design.  

However, MEMS sensors are the essential next step towards commercialization.  The 

thermodynamic analysis presented earlier in this work demonstrates how much more 

efficient the smaller platform is, opening up the possibility of operating hundreds of 



 

117 

sensors in networks and arrays simultaneously, even in a handheld or portable device 

[4]. 

 A critical factor moving forward with the MEMS platform will be 

investigation into surface area.  Use of the high surface area alumina cement showed 

that magnitude of the sensor response had nearly doubled.  A quick comparison of the 

platforms, however, reveals that the area dedicated to the catalyst in the MEMS 

platform is orders of magnitude smaller than the catalyst on a solid state sensor.  In 

order to fit a large amount of surface area into a small amount of space, a high surface 

area film would have to be deposited underneath the catalyst.  This cannot be done 

with a material like alumina cement because the features are too small and the thin 

membrane would not be able to support its weight.  A solution could be to grow 

nanowires. Sputtered films characteristically coat its substrate surface and preserve 

any porosity, surface structures or features.  ZnO is a common nanowire material, and 

it could be left as is to act as the catalyst itself, or another oxide could be sputtered on 

top to inherit the high surface nanowire structure [5-6]. 

5.2.3 Humidity 

 Humidity has been known to play an important role in sensing mechanisms of 

many gas detection techniques [7-9]. Currently, our sensor is tested using dry air as 

the carrier gas, but a more realistic scenario would involve our sensor sampling air 

with unpredictable humidity, varying with climate and location.  The effect of 

humidity toward sensor response, or at least a precise measurement of humidity in the 

current vapor sample, would be valuable information.  We had proposed augmenting 

our current orthogonal system with a humidity sensor, a proposed design is depicted in 
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Figure 5.1.  The polymer acts as a sorbent that selectively attracts water molecules.  

This would cause the film to swell, changing the capacitance of polymer which can 

then be recorded by the electrodes.  The ultimate goal would be to establish a protocol 

that allows us to eliminate the influence of humidity on our sensor response.  

 

Figure 5.1 Proposed design of a humidity sensor. 
 

5.2.4 Additional analytes 

 Finally, the only analytes that have been tested using this sensor have been 

TATP, 2,6-DNT and AN.  It will be useful to demonstrate that the sensor has a wider 

range by testing other explosive compounds.  It will also be necessary to demonstrate 

that the sensor can detect these specific analytes in the presence of a potential 

interferent.  For instance, a field-test experiment can be conducted to test for TATP in 

the presence of water, hydrogen peroxide, acetone and DADP, or to test for TNT in 

the presence of 2,4-DNT, 2,6-DNT and other aromatic compounds like dinitrobenzene 

(DNB) [10]. 
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