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ABSTRACT 

The bamboo pit viper (Trimeresurus albolabris, Gray 1842) is broadly 

distributed through South and Southeast Asia. This venomous snake occurs in high 

abundances in Hong Kong, and frequently comes into contact with humans. Thus it is 

viewed as a ‘nuisance’ species and is commonly translocated away from areas of 

human habitation. Despite being relatively abundant and a frequent focus of human-

snake conflict in the region, very little is known about the ecology, demography, and 

the effects of long-distance translocation on this species. I captured 104 T. albolabris 

from throughout Hong Kong Special Administrative Region, China and collected 

morphometric and reproductive information. I conducted radio-telemetry on 41 

individuals (21 translocated and 20 resident) and obtained information on survival, 

movements, reproduction and brumation. Trimeresurus albolabris exhibited an even 

sex ratio. Females attain sexual maturity at ~460 mm snout-vent length, and males at ~ 

410 mm snout-vent length. Mating occurs between September and November and 

coincides with the onset of spermatogenesis. Trimeresurus albolabris displays post-

nuptial vitellogenesis, and long-term sperm storage in females likely occurs over the 

winter. Females reproduce once every two or more years, except for very large 

females that may reproduce annually. Translocation decreased survival of T. 

albolabris, and translocated snakes were more likely to make unidirectional 

movements away from point of release.  Translocated snakes also displayed aberrant 

movement patterns, with elevated frequency of movements and increased average 

daily movements. Translocation also negatively affected brumation behavior and 

reproduction. Long-distance translocation is not a viable conservation strategy for 



 

 

addressing human-snake conflict in T. albolabris, and alternative strategies should be 

explored for management of this species. Knowledge of the natural history, 

demography, reproductive ecology, and responses to long-distance translocation of T. 

albolabris provide baseline ecological information for a species that contributes 

significantly to medically important snakebite injuries in the region and will be useful 

for prescribing improvements to current management strategies.
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CHAPTER 1 

This chapter is in preparation for submission to Herpetological Conservation and 

Biology. 
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ECOLOGY OF THE BAMBOO PIT VIPER (TRIMERESURUS ALBOLABRIS, GRAY, 1842) IN 

SOUTH CHINA 

 

ANNE DEVAN-SONG1, 3, PAOLO MARTELLI2 AND NANCY KARRAKER1, 3 

 

1 School of Biological Sciences, University of Hong Kong, Kadoorie Biological 

Sciences Building, Pokfulam, Hong Kong; 2 Veterinary Department, Ocean Park 

Corporation, 180 Wong Chuk Hang Rd, Aberdeen, Hong Kong 3Current address: 

Department of Natural Resources Science, University of Rhode Island,1 Greenhouse 

Road, Coastal Institute, Kingston, RI 02882, USA, email: devansong@my.uri.edu 

 

Abstract.—The bamboo pit viper (Trimeresurus albolabris) is broadly distributed 

through South and Southeast Asia. Despite being relatively common in a range of 

habitats, very little is known about the ecology of the species. In this study, we report 

on the ecology and demography of 104 vipers from mark-recapture surveys in Hong 

Kong, China, and reproductive states and growth rates of 20 radio-tagged individuals. 

Trimeresurus albolabris occurs in even sex ratios. This species displays sexual 

dimorphism, with females being larger, and all males, including neonates, displaying a 

white supralabial stripe on the head. Sexual dimorphism in relative tail length is 

apparent from birth, and also increases with age: males display a larger ontogenetic 

increase in tail lengths compared to females. Males attain sexual maturity ~ 410 mm 

snout-vent length or earlier, while females attain sexual maturity at ~ 460 mm snout-

vent length, but only start reproducing at ~ 520 mm snout-vent length. Mating occurs 



 

  3 
 

between September and November, coinciding with the onset of spermatogenesis. 

Trimeresurus albolabris displays post-nuptial vitellogenesis, and long-term sperm 

storage in females likely occurs over the winter. Females gestate over the summer and 

parturition occurs in late July to August. Females reproduce once every two or more 

years, except for very large females that may reproduce annually. Females entered 

brumation within the first three weeks of December, using fossorial crevices or 

burrows for shelter and emerging to bask on sunny days. Understanding its 

demography and reproductive ecology can provide insights into the conservation and 

wildlife management of T. albolabris in the region and increase our understanding of 

sexual dimorphism, reproduction, and evolution of the cryptic Trimeresurus species 

complex.  

 

Key Words.— Trimeresurus albolabris; reproduction; sexual dimorphism; sexual 

maturity; growth rates; Viperidae; brumation; parasites  
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INTRODUCTION 

 

Fifty years after Wilfred Neill’s observations on the ‘egregiously complex’ 

reproductive strategies of Asian snake species (Neill 1964), there is still a paucity of 

data on tropical snakes compared to their temperate counterparts (Böhm et al. 2013), 

and many patterns in the ecology of tropical snake groups have not been identified or 

recognized (Almeida-Santos and Salomao 2002; Scartozzoni et al. 2009). South and 

Southeast Asia, for example, harbor high diversity and endemicity of herpetofauna 

(Das and van Dijk 2013; Ganesh et al. 2013), yet many common and easily-captured 

snakes are not well studied, such as the widespread and abundant species in the genus 

Trimeresurus (Serpentes: Viperidae: Crotalinae). Members of the diverse 

Trimeresurus genus occupy a wide range of habitats and exhibit evidence of great 

variability in habits, ecology, and reproductive strategy (Malhotra and Thorpe 1997; 

McDiarmid et al. 1999; Orlov et al. 2002). Trimeresurus spp. contribute significantly 

to snakebite morbidity in the region (Hutton et al. 1990; Viravan et al. 1992; 

Blessmann et al. 2010), yet the ecology, population densities, and habitat use of these 

species are not well documented. One of the most widespread members of this genus 

is the bamboo pit viper (Trimeresurus albolabris), a small, sexually dimorphic 

arboreal pit viper that ranges from the Nicobar islands in India, to Bangladesh, 

Indochina, Southern China, Malaysia and Indonesia (Orlov et al. 2002). The medical 

significance of T. albolabris in snakebite injuries as well as its contentious phylogeny 

within the cryptic Trimeresurus genus has resulted in significant research into venom 

proteomics(Du et al. 2002; Rojnuckarin et al. 2006; Soogarun et al. 2008), toxicology 
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and bite pathology (Chanhome et al. 2002; Chotenimitkhun and Rojnuckarin 2008; He 

et al. 2008), and phylogeny of this species (Malhotra and Thorpe 2000; Giannasi et al. 

2001; David et al. 2011). However, very little has been published on its natural 

history, demography and ecology, even with much recent research that uses snakes as 

model organisms (Shine and Bonnet 2000).  

Copulation by T. albolabris has been observed between late March to late May in 

northern Vietnam (Orlov et al. 2002) and a captive female was reported to store sperm 

for a year (Kamelin and Lukin 2003). Neonates in North Vietnam are born between 

late July and early August (Orlov et al. 2002) with clutch sizes of 4 to 14 (Orlov et al. 

2002; Kamelin and Lukin 2003). However, given the lability in reproductive strategies 

in single species across a geographic range (Aldridge and Duvall 2002; Sasa et al. 

2009; Siqueira et al. 2013) and that environmental factors correlate strongly with 

reproductive cycles (Tsai and Tu 2000,2001; Sasa et al. 2009), it cannot be assumed 

that other populations throughout its range display the same reproductive cycle seen in 

North Vietnam.  

In Hong Kong, T. albolabris is the most commonly-encountered venomous snake 

(Karsen et al. 1998)  and is by far the most prevalent cause of medically significant 

snakebites (Cockram et al. 1990; Hon et al. 2004; Shek et al. 2009), yet very little is 

known about its ecology in South China. In Hong Kong, the species is described as a 

habitat generalist, occurring in most terrestrial vegetation types at all elevations 

(Karsen et al. 1998).  
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The objective of this study is to shed light on demographic parameters, sexual 

dimorphism, and reproductive ecology of T. albolabris in Hong Kong. In addition, 

observations on parasites, diet and defensive behavior are reported.  
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MATERIALS AND METHODS 

 

Study Site.—This study was conducted in Hong Kong, China (2209’-2237’N, 

11350’-11430’E), a special autonomous region of 1100 km2. Hong Kong harbors a 

high-density urban area but also 23 national parks and expanses of rural land 

containing small traditional villages. Hong Kong occurs in the tropics and exhibits a 

seasonal monsoon climate of hot, humid summers with high precipitation from May to 

September and cool, dry and mild winters from November to February (Dudgeon and 

Corlett 1994). We sampled within active and abandoned agricultural land, secondary 

forest, shrubland, and grassland. 

 

Animal sampling and sedation.— We conducted visual encounter surveys in 2012, 

however these efforts were not quantified and only vipers above 50 g were captured. 

From June to December 2013, we employed timed visual encounter surveys to capture 

pit vipers along a combined 32.1 km of hiking trails in 10 sites within Hong Kong 

(Table 1), including three on Lantau Island, two on Hong Kong Island, and five in the 

New Territories (Figure 1). Researchers walked slowly along hiking trails at night, 

scanning vegetation and the ground on and either side of the trail, and all vipers 

encountered were captured. Vipers encountered outside of timed surveys were also 

captured in 2013, although these vipers were not included in the calculation of capture 

rates. All captured vipers were sedated with Isoflurane, an inhalant anesthesia, for 

measurements described in sections below. A subset of vipers in both years were 

implanted with SB-2 or BD-2 radio transmitter (Holohil Systems Ltd, Carp, Ontario, 
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Canada) weighing no more than 6% of viper body mass. Telemetered vipers were 

given two days to recover from surgery while non-telemetered snakes were allowed at 

least three hours for anesthesia recovery. All vipers were released within 5 m of 

capture site. We relocated vipers two to three times a week and recorded their 

locations with a global positioning system unit. Individuals that survived beyond 14 to 

20 weeks had their transmitters replaced with new ones. At the end of each year, we 

captured all surviving telemetered vipers, removed their transmitters, and released 

them within 5 m of location of last capture. 

 

Morphometrics, sexual dimorphism and growth rate.—We measured the mass, 

snout-vent length (hereafter SVL) and tail length of sedated vipers. Injuries and 

truncated tails were noted. Hemipene probing was used to determine sex. In addition, 

presence of a white lateral stripe on the head and body was recorded. We implanted 

vipers subcutaneously with a unique passive integrated transponder (Biomark, Inc., 

Boise, Idaho, USA) using an 18-gauge needle. We did not measure SVL and tail 

length of vipers smaller than 30g that were captured between 4 June and 1 July 2013 

due to logistical difficulties, and only determined sex and mass from these individuals.  

Growth rates were measured using telemetered individuals that survived the tracking 

season. For males and nongravid females, we measured growth rate as the change in 

body condition (mass to SVL ratio) between time of capture (May to July) and 

hibernation (December), and for gravid females, growth rate was measured as the 

change in body condition between parturition (July/August) and hibernation 

(December). Body condition was chosen over SVL as a measure of growth as we were 
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interested to document change in fat storage over the active season, and increases in 

SVL over the season failed to capture the emaciated conditions of some vipers.    

 

Reproduction.—Male vipers’ hemipenes were gently palped without everting them 

to determine if semen was present. We conducted ultrasound on the ovaries of female 

snakes to enumerate and measure follicles or embryos. For telemetered females that 

survived until December of either year, these measurements were obtained in 

June/July as well as December. We estimated parturition date of gravid telemetered 

individuals after weighing them in situ once we obtained visual indication of 

substantial weight loss. We also documented any intraspecific interaction of both 

telemetered and non-study vipers that were suggestive of mating behavior.  

 

Brumation.— We recorded microhabitat (ground/ foliage/ canopy/ tree or rock wall 

crevice/ burrow) and height above ground with each relocation of telemetered snakes, 

and define ‘first brumation event’ as the range of dates between last locating a snake 

above ground, and first locating it in underground, beneath leaf litter or in an artificial 

rock wall crevice. 

 

Parasites and diet.—We obtained fecal samples from 21 sedated vipers to identify 

fecal parasites occurring T. albolabris found in Hong Kong. Direct smears and fecal 

flotation were used to identify parasite ova under a light microscope. Coelomic, 

subcutaneous and intra-organ parasites were retrieved from any vipers during 

necropsies. In addition, we identified mammalian hair to family level if hairs were 
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detected in the direct smears to document diet. Hair identification was aided with 

mammal hair samples from specimens at the Lee Kong Chian Natural History 

Museum, National University of Singapore.  

 

Causes of mortality.—We performed necropsies on vipers that died during the 

radiotelemetry project as well as other carcasses encountered in the field to determine 

causes of death. We examined the carcasses for signs of external and internal infection 

and injury, determined condition of internal organs.   

 

Statistical analyses.—We examined sex ratios for the 2013 survey results using a 

goodness-of-fit test.  We used linear regression to quantify the relationship between 

SVL and clutch size. Male and female SVLs were compared using a Student’s t-test, 

and we used an analysis of covariance to detect differences in tail lengths between 

males and females, and interaction between sex and total length on tail length, using 

total length as the covariate. A Johnson-Neyman procedure was used to identify the 

nonsignificant regions of group mean tail length differences across total lengths. 

Individuals with injured or truncated tails were removed from relative tail length 

analyses. All other metrics are described in SVL to enable comparison across different 

studies and to utilize animals with truncated tails, however relative tail length was 

analyzed using total length instead of SVL.  
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RESULTS 

 

During 204.5 person-hours of visual encounter surveys, we encountered and 

captured 90 vipers, resulting in a capture rate of one viper per every 2.3 person-hours 

of survey effort. If the surveys from the low-yielding Lantau Island transects were 

removed (6 vipers captured in 53 person-hours of survey), the capture rate was one 

viper every 1.8 person-hours. Number of recaptures was extremely low – only 5.5 % 

of the 90 vipers encountered over the seven-month study were recaptured individuals, 

and no vipers encountered incidentally were recaptured. We captured 85 unique vipers 

during visual encounter surveys in 2013, and an additional 19 unique individuals were 

incidentally encountered, for a total of 104 unique vipers captured and measured in 

2013 (Table 1). Of these, SVL and tail length were not obtained for 18 individuals 

captured in June due to logistical difficulties. These 18 vipers were included in capture 

rate and sex ratios but not in any analyses involving SVL, tail length or total length.  

Nine females were radio-tracked in 2012, three of which survived, and another 

seven in 2013, five of which survived. Four males were tracked in 2013, with two 

survivals.  

 

Morphometrics, sexual dimorphism and growth rate.— Of 85 unique vipers 

encountered during the 2013 visual encounter surveys, 49.4% were male; of 19 

incidental encounters, 42.1% were male. Sex ratios were even, regardless of method 

(χ2 = 0.48, df = 3, P = 0.922). Of the 16 neonates captured, 68.8% were male.  
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Hemipene probing to determine sex was 100% consistent with presence or absence 

of white stripe on the head, even for the smallest vipers. All males exhibited a faint to 

prominent lateral white stripe on the head and body, while no females displayed such 

markings on the head (Figure 3). However, it was not uncommon to find females with 

a white to yellow lateral stripe on the body. Ventral scale color varied from white to 

bright yellow to light green or white in both males and females. Females attained 

larger sizes than males, with the largest male measuring 512mm SVL and the largest 

female measuring 810mm (Figure 2). Mean SVL for male vipers was 347.8 mm 

(330.0 – 365.6 mm) and differed significantly (t = 4.16, df = 84, P < 0.001) from mean 

female SVL of 469.5 (446.8 – 492.2 mm). Relationships between body condition and 

SVL were similar between males and females until ~ 524 mm SVL (Figure 4), the 

length that corresponds to the smallest gravid female, and corresponds approximately 

to the largest male (512 mm SVL). Above an apparent 524 mm SVL threshold, body 

condition was extremely variable (Figure 4). We found a significant interaction 

between sex and the covariate of total length on the relative tail length of vipers (F = 

65.37, df = 1, 80, P < 0.001). The limit of nonsignificant values fell between -1.72 and 

195. 84 mm total length, which is smaller than the smallest neonate measured (Figure 

5). Male tail length means were therefore higher than female tail length means at all 

total lengths of snakes.  

Adult males decreased in body condition over the active season, as did two small 

(524 mm and 525 mm in SVL), gravid females (Figure 6). The other two gravid 

females we tracked, which were considerably more robust while gravid (580 mm and 

710 mm SVL), increased slightly in body condition over the months after giving birth.  
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All but one non-gravid female increased in body condition over the active season, with 

two substantially increasing in body condition (Figure 6).  

 

Reproduction.— The smallest gravid female encountered was 524 mm SVL, and 

the smallest sexually mature female found was 463 mm SVL. Two of the six (33.3%) 

adult female vipers encountered during the gestation period in 2013 were gravid, while 

50% of the four adult female vipers encountered during that period in 2012 were 

gravid. It was not possible to tell if a female had been gravid that year if we 

encountered it after the gestation period. Clutch sizes of three gravid individuals 

captured in May and June 2012 and two gravid individuals captured in June 2013 

ranged from 5 to 20 embryos (Figure 7). A clear positive relationship existed between 

SVL and clutch size (R2 = 0.98, P = 0.001). The largest gravid viper gestated at least 

20 embryos that overlapped within the body cavity, while smaller vipers had only five 

to six non-overlapping embryos.  

Due to the low probability of seeing individuals when relocating vipers in dense 

vegetation, the exact date of parturition is unknown for all vipers. However we were 

able to estimate parturition within a few days based on dates where visual observations 

were obtained. All gravid vipers gave birth between 15 July and 9 August in both 

years (Figure 8). No post-parturition parental care was observed, and we did not 

observe any neonates in the vicinity of the female post-parturition. Our data suggest a 

relationship between large clutch size and earlier parturition dates (Figure 8) although 

sample size was too small for statistical analyses. Females were extremely emaciated 

following parturition, and lost ~3 g in mass per embryo. A necropsy of a telemetered 
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female snake that was killed by a vehicle a few weeks after parturition revealed 

depleted fat reserves. Another female died of apparent starvation three months after 

parturition and had not been observed to eat for the entire period from parturition until 

death.   

Follicle size at the end of the active season was reduced to inactive size (< 5 mm) in 

vipers that had been gravid in the summer of that season except for one individual that 

had enlarged follicles in December (Figure 9). This individual, tracked in 2012, was a 

very large female with substantial body mass even post-parturition and gained body 

mass over the active season after giving birth. Small adults retained primary follicles 

throughout the study period (Figure 9). Large adults that were not gravid in the 

summer and gained substantial mass over the active season (July-Nov), increased 

follicle size by the end of the year (7 – 15+ mm), corresponding to stage II- III 

vitellogenesis in the closely-related Trimeresurus stejnegeri (Tsai and Tu 2001). 

Over the course of two years, five instances of adult male vipers attending large 

females were observed between 17 August and 15 October. In all observations, males 

were perched on the same branch approximately 10 to 50 cm away from the large 

female viper with its head orientated towards the female. No two individuals of this 

solitary species were observed within such close proximity outside of the putative 

mating season, even on surveys where a high number of vipers were captured within a 

short stretch of forest trail. No copulation or other interaction was observed. On one of 

the five abovementioned occasions, two male adults were attending one large female. 

Five adult males ranging from 412 to 512 mm in SVL that were caught between 5 

September and 15 October 2013 secreted semen when hemipenes were palped. One of 
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these five adult males was captured while attending a large female, and the other four 

were solitary males captured during the visual encounter surveys.  

In 2013, we observed large movements in males characteristic of mate-finding, with 

males moving an average of 12.6 m (10.9 –14.3 m) per day and females moving only 

4.0 m (3.6 – 4.4 m) per day during the putative mating period (mid-August to late-

October).   

 

Brumation.—Brumation was observed in all female vipers that survived to the end 

of the project (either December 2012 or December 2013). Three types of brumation 

refugia were identified: small crevices in the ground covered by leaves, logs or other 

plant debris, crevices inside low human-made rock walls, and small mammal burrows 

either in soil, under loose stones, boulders or tree roots (Figure 10). A few vipers were 

found as far as 0.5m below the surface. The onset of brumation ranged between 9 to 

12 December 2012, and 6 to 12 December 2013 (Figure 11). In December of both 

years, vipers emerged to bask on warm sunny days in low shrubs, on the ground or 

occasionally in trees. Vipers were not confined to one brumation site, and shifted 

between brumation sites within a few meters of each other. No communal brumation 

was observed. Neither of the two surviving males brumated over the winter and both 

were still active in low shrubs in December.  

 

Parasites and diet.—Multiple parasite ova were found in fecal matter of 

Trimeresurus albolabris comprised of the following groups: Kalicephalus sp., 
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Strongyloides sp., Capillaria sp., Oxyuris sp., ascarids, and other hookworms. An 

unidentified coccidian parasite was also observed in several vipers.   

Ascarid larvae were also found buried subcutaneously and within the coelomic 

cavities of several vipers. In one instance, a necropsy performed on a female revealed 

ascarid infection throughout the coelomic cavity, fat bodies, kidneys, liver, and loose 

subcutaneous parasites (Figure 12). This individual had been suffering from severe 

hepatitis with lesions around an inflamed, mottled and pale liver, with numerous 

hepatic nodular masses with parasites inside the cysts (Figure 12). The cause of death 

was due to asphyxiation during regurgitation and not infection, although it appeared 

that the viper would have eventually succumbed to the infection. The fish and bird 

tapeworm Ligula intestinalis, not previously recorded to infect Trimeresurus 

albolabris, was also found subcutaneously and retrieved from a sedated live viper.   

We observed one individual eat a Chinese gecko (Gekko chinensis) during the study 

period, and no other predation events were observed. This same individual was noted 

to have eaten again seven days after consuming the gecko. Examination of fecal 

matter from vipers revealed Muridae hairs for several vipers and Soricidae hair for one 

viper. 

 

Causes of mortality.—In addition to the two females described above that died after 

parturition (one from a vehicle and one from apparent starvation), seven other 

mortalities were confirmed in telemetered snakes, six of which were eaten by other 

animals. One individual was eaten by a king cobra (Ophiophagus hannah), and several 

individuals were tracked to a transmitter that had been defecated by a snake predator. 
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These defecated transmitters were discovered at the base of very thick vegetation or in 

underground burrows, ruling out avian predators, and transmitters were covered in uric 

acid, ruling out mammalian predators. Trimeresurus albolabris is probably prey to a 

variety of ophiophagous snakes such as the commonly-encountered Chinese cobra 

(Naja atra) and many-banded krait (Bungarus multicinctus), and the less common 

king cobra (Ophiophagus hannah) and banded krait (Bungarus fasciatus). All six 

predation events on radiotagged snakes took place in the first two weeks of October in 

both years. The last mortality was caused by tissue and liver infections that were 

unrelated to the study. In 2012, we encountered a live non-study viper that had been 

attacked by a mammal. Deep lesions suggestive of small mammal claws or teeth were 

present on the dorsal and lateral sides of the body, and its spine was broken.  

No mortalities were associated with either the mark-recapture or radiotelemetry 

projects. Pathology was confined to infections surrounding the surgery site in several 

vipers and infected tissue was encapsulated by healthy tissue.     

 

Notes on defensive behavior.—We found T. albolabris in Hong Kong to strike 

readily upon disturbance, although most individuals attempted to rely on crypsis as a 

first line of defense. Larger individuals, and particularly very large females, were more 

likely to strike at researchers compared to smaller individuals. Tail-vibrating behavior 

was also observed in several disturbed individuals, in which they would strike their 

tails rapidly against the nearest surface to create a rattling sound, presumably as a 

warning. Tail vibration was always accompanied with striking behavior as we made 
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movements towards the viper. We observed no defensive behavior in any of the 

neonates encountered. 
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DISCUSSION 

 

Because of a low recapture rate of 5.5%, we could not estimate population sizes 

based on the mark-recapture data, and more exhaustive sampling efforts or different 

methods to sample vipers, or both, are necessary. Radio-tagged vipers were found to 

traverse the entire canopy, perching as high as 15 m, but only those < 4 m high were 

likely to be spotted by an averaged-height researcher during the visual encounter 

surveys, and such surveys are not an ideal method for surveying arboreal snakes. Low 

detection and recapture rates for snakes and difficulties measuring population 

parameters are not unusual (Parker and Plummer 1987; Steen 2010). Increased 

sampling effort (Steen 2010), and the use of other methods such as trapping or canopy 

searches across multiple seasons are necessary before population parameters can be 

estimated for this species.  

 

Demography.—We documented even sex ratios of Trimeresurus albolabris 

encountered in Hong Kong. Too few neonates were captured in 2013 to detect a 

difference in sex ratio (5 F: 11 M). Sample size of sexually mature vipers during the 

gestation period was very low (four in 2012 and six in 2013). However, the ratios of 

gravid to nongravid females during this period (1.0 in 2012 and 0.5 in 2013) suggest 

that female vipers reproduce biennially or even less frequently. This is also consistent 

with body condition and vitellogenesis patterns observed in females. Females that 

were gravid in May-July exhibited primary follicles in November-December of that 

year and only one gained substantial mass. However, both large nongravid females 
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showed follicle size increase from primary follicles in May-July to enlarged follicles 

by November-December and both increased substantially in body condition over this 

period (Figures 6 and 9).  

 

Sexual dimorphism, sexual maturity and growth rate.—Sexual dimorphism is 

pronounced in this species, with females attaining much larger sizes. Sexual size 

dimorphism in this species is particularly interesting considering the relatively long 

distances that males move during the breeding season compared to females. Males, 

including neonates, displayed a white stripe above the supralabial scales; no females 

exhibited this characteristic. Sex could also be determined by hemipene probing at all 

ages.   

Our relative tail length analysis is missing males between 333 to 450 mm in total 

length (or 271 to 355 mm SVL), possibly due to the fact that we did not sample 

between Jan-June of 2013. However, a clear pattern is detectible: sexual dimorphism 

in relative tail lengths increases with age, with males displaying a larger ontogenetic 

increase in tail lengths compared to females. The tendency for relative tail length 

dimorphism between the sexes to increase with age is well-documented (Klauber 

1943), however, T. albolabris also displays distinct sexual dimorphism in relative tail 

length at the neonate stage. Sexual dimorphism in T. albolabris is present from birth, 

and it is possible to determine the sex of T. albolabris at all ages by the diagnostic 

white stripe on the head, the relative tail length to total length ratio, or by hemipene 

probing.  
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Sexual maturity in males probably occurs at or before ~ 410 mm SVL. The smallest 

male found retaining semen in our study was 412 mm, however, the closely-related 

Trimeresurus stejnegeri matures at ~370 mm SVL (Tsai and Tu 2000), and it is 

possible the T. albolabris males mature earlier than 412 mm SVL. Female T. 

albolabris mature sexually at ~460 mm SVL but probably do not start reproducing 

before ~520 mm SVL. This is supported by three lines of evidence: First, the smallest 

sexually mature female measured 463 mm in SVL, but the smallest gravid viper found 

was 524 mm. Second, growth trajectories are similar in males and females until 

females attain larger SVLs than males, which occurs at ~ 512 mm SVL. Finally, the 

great variation in body condition of telemetered female vipers appears to be related to 

reproductive state (Figure 6), with nonreproductive females increasing substantially in 

body condition over the active season, and gravid females increasing less in body 

condition, or even in decreasing body condition post-parturition. Sexual maturity in 

females probably occurs at ~ 460 mm, but reproduction is only initiated when body 

reserves exceed a threshold value, as in other snakes (Bonnet et al. 2002).  

 

Reproduction.—Based on our observed data, we constructed a probable 

reproductive cycle for T. albolabris in Hong Kong (Figure 13). Our study provides 

evidence of gestation in May to July, parturition in July to August, mating in August 

to November coinciding with presence of semen in males, and onset of vitellogenesis 

before December. All of the above point to a post-nuptial vitellogenesis, or 

vitellogenesis following mating, and long-term sperm storage over winter, both 

characteristics of temperate snakes (Schuett 1992; Aldridge and Duvall 2002; Shine 
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2003). We hypothesize extension of vitellogenesis into the following year based on a 

post-nuptial vitellogenesis and long-term sperm storage, and estimated ovulation 

period based on gestation, vitellogenesis and parturition dates.  

As we did not conduct surveys or track snakes from Jan-May 2013, we are unable to 

rule out the possibility of two mating seasons of T. albolabris in Hong Kong, as seen 

in some temperate pit vipers in the genera Agkistrodon and Crotalus (Aldridge and 

Duvall 2002) . However, based on 2012 surveys that began in February, we conclude 

that a spring mating season is unlikely. Although our 2012 survey efforts were not 

quantified, we observed very little viper activity and low capture rates from February 

to March 2012, and by the time substantial numbers of vipers had been captured (May 

2012), gravid females with fully-formed embryos had already been found.  

Ratios of nongravid to gravid vipers during gestation periods as well as follicle 

measurements suggest that females reproduce biennially or even less frequently. 

Biennial or less frequently reproducing snakes are unable to complete all events 

necessary for yearly reproduction within twelve months (Bull and Shine 1979) and is 

more common in temperate than in tropical species. For T. albolabris females, 

infrequent reproduction may be indicated by poor recovery of body condition after 

giving birth, that nongravid females begin vitellogenesis before winter, and that gravid 

females reduce follicle size to inactive sizes (<5 mm) after parturition. However, in 

one case, a gravid female appeared to undergo vitellogenesis in the same year after 

giving birth. Notably, this was the largest female tracked and second largest female 

captured in this study. Very large females may therefore have sufficient fat reserves 

and efficient postpartum body condition recovery to reproduce in consecutive years, as 
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has been observed in captive T. albolabris (Kamelin and Lukin 2003). Reproductive 

output may therefore be determined by body reserves, similar to a typical ‘capital 

breeder’ Vipera aspis (Bonnet et al. 2002) 

The temperate pit viper mating system, with temporally separated mating and 

fertilization events, evolved from the tropical pit viper reproductive pattern as a result 

of colder temperatures punctuating vitellogenesis (Aldridge and Duvall 2002). This 

temporal distinction may reflect the high cost of mating such as increased predation 

during the mating season (Aldridge and Duvall 2002). Interestingly, 100% of the 

predation events in 2012 and 2013 coincided with the mating season in our study. 

Mate-searching in males also appears to be costly to overall health, with low body 

condition and dehydration of males post-breeding season.  

Our results highlight lability in reproductive traits of the same species across its 

geographic range. Trimeresurus albolabris in northern Vietnam appears to mate in 

spring (Orlov et al. 2002), despite being capable of long-term sperm storage (Kamelin 

and Lukin 2003). In contrast, T. albolabris in Hong Kong mates at the end of summer 

in the year preceding ovulation and fertilization. Other members of the Trimeresurus 

genus also display a variety of reproductive strategies. Trimeresurus stejnegeri in 

Taiwan display a postnuptial spermatogenesis and type II vitellogenesis, with 

vitellogenesis in females starting in the fall post-parturition, and copulation and the 

height of spermatogenesis occurring in the fall to winter (Tsai and Tu 2000,2001). 

Trimeresurus flavoviridis in the Ryukyu Islands of Japan copulate in spring, 

coinciding with vitellogenesis (Yokoyama and Yoshida 1994). Interestingly, the 

latitudes and climates of North Vietnam, Hong Kong, Taiwan and Ryukyu islands are 
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not starkly different, and variation in reproductive strategies even within a species’ 

geographic range is usually accompanied by distinctions in environmental factors 

(Aldridge and Duvall 2002; Sasa et al. 2009; Siqueira et al. 2013). Trimeresurus 

albolabris exhibits relatively high variability in reproductive traits within a small 

geographic zone with little climactic variation. The evolution of mating systems in the 

Trimeresurus genus, especially in relation to other crotalids and viperids is a topic that 

deserves further study.  

 

Brumation.—Hibernation is an important life history event in ectotherms living in 

seasonal climates and can be critical for survival during the winter (Gregory 1982). 

The near-synchronized brumation of T. albolabris was observed in all female 

survivors within days of each other, suggesting an environmental cue such as 

temperature drops or reduced daylight hours.  

Communal hibernation is common in many snake species (Hirth 1966; Rudolph et 

al. 2007; Gienger and Beck 2011), is characteristic of areas with more severe winters 

(Shine 1979), and may reflect scarcity of suitable refugia (Harvey and Weatherhead 

2006). Conversely, solitary hibernation, such as seen in Sistrurus catenatus catenatus 

(Harvey and Weatherhead 2006), suggests refugia are not limiting. Based on our field 

research, we speculate that refugia are not limiting for T. albolabris, in which 

individuals brumate in multiple refugia over the season. The use of shallow refugia (0 

to 0.5 m below surface) by T. albolabris also indicates overwintering areas are 

relatively warmer in Hong Kong compared with those available to temperate species 

(Shine 1979) and facilitates the basking behavior that we observed on warmer days.  
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Notably, neither male survivor occupied a brumation refugia in December. In Hong 

Kong, January is the coldest month of the year (Dudgeon and Corlett 1994), and mean 

minimum temperature is 16 ˚C (Hong Kong Observatory, Hong Kong). We speculate 

that males may brumate later in the winter when temperatures decline significantly, 

but our study did not extend beyond December in either year. These adult males could 

be exploiting food resources while conspecifics and ectothermic predators are 

hibernating, as the highly taxing large movements during the breeding season rendered 

both adult males dehydrated with poor body condition. We also cannot overlook the 

possibility that male mate-searching in this species carries on through December, as 

adult females still bask on sunny days and true dormancy over the winter probably 

does not occur. Our ability to make inferences about males’ activities during the cold, 

dry season is limited by the low number that survived to this season. 

Further research should be conducted to understand brumation site selection and use 

by T. albolabris. Questions of site fidelity, overwintering survival rates, and activity 

patterns, end dates of brumation, environmental brumation cues, and seasonal changes 

in body condition should be explored.  

 

Parasites and diet.—The fecal parasite ova that we discovered in T. albolabris have 

been documented in the species previously. Kalicephalus laticaudae, Capillaria sp. 

and Oxyurus sp. was found in the feces of captive T. albolabris in Thailand 

(Chaiyabutr and Chanhome 2002). However, we were unable to identify the coccidian 

parasite present. We observed severe parasite-induced hepatitis in one individual 

infected with ascarid larvae; we suspect the individual probably would have 
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succumbed to this infection eventually. Subcutaneous ascarid larvae also appear to be 

important parasites as they were found in fairly high numbers in several individuals.  

Although diet was not a primary focus of this study, we found that T. albolabris 

prey on geckos, mice/rats and shrews. Brief notes in the literature suggest frogs (such 

as Polypedates spp.) form the bulk of the diet of T. albolabris (Orlov et al. 2002; 

Kamelin and Lukin 2003). However, small mammals may be important sources of 

prey especially for larger vipers, and high abundance of geckos encountered during 

visual encounter surveys suggests that geckos may be a food source. Asiatic toads 

Duttaphrynus melanostictus were common in the study area, but their skin is toxic and 

they are unlikely to be eaten by T. albolabris. Gunther’s frogs (Hylarana guentheri) 

were more common in the sites we surveyed than brown tree frogs (Polypedates 

megacephalus), and geckos, particularly Gekko chinensis and Hemidactylus bowringii, 

were more common than any frog species encountered. We made a few observations 

on the diet of the species, but the diet of T. albolabris and shifts in diet related to 

habitat or season remain largely unknown.  

 

Notes on defensive behavior.—We observed striking and tail vibrating exhibited as 

defensive behaviors in T. albolabris. Tail vibrations, as a form of warning, have been 

widely reported in many snakes (Carpenter and Ferguson 1977; Greene 1988), but the 

significance of this behavior is poorly understood  (Young 2003). We observed that T. 

albolabris striking may be correlated with tail vibrations, and this is consistent with 

observations of Chinese pit vipers (Gloydius shedaoensis) striking more frequently in 

individuals that tail-vibrated (Shine et al. 2002). However, these behaviors are not 
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correlated in other vipers such as the North American species Agkistrodon piscivorus 

(Glaudas and Winne 2007), and the relationship between T. albolabris tail vibrations 

and striking should be examined further. Our observations on propensity for striking 

in larger individuals are anecdotal and contradict reports of juvenile pit vipers being 

more likely to strike and display anti-predator behavior (Sweet 1985; Greene 1988). 

Additionally, decline through ontogeny in anti-predator behavior is postulated in 

Gloydius shedaoensis (Shine et al. 2002). Questions addressing strike willingness in 

relation to body size and ontogenetic shifts in defensive behavior should be explored.   

 

In this study, we have constructed the reproductive cycle of T. albolabris in south 

China, and demonstrated sexual differences in behavior and ontogeny, and substantial 

sexual dimorphism, even at the neonate stage. Knowledge of the natural history, 

reproductive ecology and demography of T. albolabris contributes to baseline 

ecological data of this poorly-studied species, and may be useful for conservation and 

management of this medically significant venomous snake. Geographic variation in 

response to environmental factors may have important implications understanding the 

evolution of this cryptic genus, as well as predictions of this species’ response to 

changes in climate.  
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Table 1. Transect locations, distance, and search effort for surveys of Trimeresurus 

albolabris in Hong Kong.  

District Location 
Distance 

(km) 
Search effort 

(# person hours) 

Lantau Shek Pik 7.2 27.5 

 
Ngong Ping 4.4 18.5 

 
Mui Wo 2.4 7.0 

Hong Kong Island Pokfulam Reservoir 2.9 8.5 

 
Lady Clementi's Ride 3.4 21.0 

New Territories Shek Kong 4.3 4.0 

 
Ha Fa Shan 1.5 5.5 

 
Pakfalam 2.1 4.5 

 
Yan Yee Rd 3.2 76.0 

 
Pak Sha O 0.7 32.0 

Total: 
 

32.1 204.5 
 
Table 2. Trimeresurus albolabris captured in Hong Kong in 2013.  

Method # Vipers # Recaptures # Used for telemetry in 
2013 

Timed VES 
(189 Person-Hours) 

90 5 10 

Incidental encounters 19 0 1 
Total unique individuals 104 5 11 
Measurement data obtained 86 — — 
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Figure Legends 

 

Figure 1. Location of transects surveyed for Trimeresurus albolabris in Hong Kong, 

China. 

 

Figure 2. Frequency distribution of male and female snout-vent length for 

Trimeresurus albolabris in Hong Kong, China. 

 

Figure 3. Sexual dimorphism in Trimeresurus albolabris. Males (left) have a lateral 

white stripe above the supralabial scales, a characteristic absent in females (right). 

Both individuals depicted are adults. Photos by A. Devan-Song. 

 

Figure 4. Relationship between body condition and snout-vent length of male and 

female Trimeresurus albolabris in Hong Kong in 2013. Arrow indicates the snout-

vent length of the smallest gravid female found (545 mm SVL)  

 

Figure 5: Johnson-Neyman technique scatterplot of tail length against total length of T. 

albolabris in Hong Kong.  Limits of nonsignificant regions are from y = -1.73 to y = 

195.84. Two males with damaged tails were removed from this analysis.  

 

Figure 6: Change in body condition over the active season for T. albolabris radio-

tagged in 2012 and 2013in Hong Kong. Change in gravid females is measured from 
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parturition (August) until brumation, while all others are measured from capture date 

(Jun-July) until brumation. 

 

Figure 7: Minimum clutch sizes of female T. albolabris in Hong Kong. Each data 

point represents lowest confirmed number of embryos within a gravid individual (n = 

5).   

 

Figure 8: Parturition date for 5 gravid T. albolabris in Hong Kong. Labels indicate 

SVL in mm and clutch size for each snake.  

 

Figure 9: Change in follicle size over the active season for female T. albolabris in 

2012 and 2013. Each bar represents one viper. Small adults stay in stage V 

vitellogenesis the whole season with primary follicles, while larger adults that were 

not gravid and gained mass over the active season had enlarged follicles characteristic 

of Stage II-II vitellogenesis. All but one of the gravid females returned to stage V 

vitellogenesis (with primary follicles) by the end of the year. 

 

Figure 10:  Brumation sites of the primarily arboreal Trimeresurus albolabris. A: 

under leaf litter and plant debris, B: inside man-made rock walls with white arrow 

pointing to body coil of snake, C: crevices under boulders, D: under a tree root and E: 

a snake basking on the ground outside entrance to its brumation site of small mammal 

burrow at the base of a plant. 

 



 

  40 
 

Figure 11: First brumation event for surviving T. albolabris in Hong Kong. 

 

Figure 12: Severe ascarid larve infection in Trimeresurus albolabris. A: Parasites 

within the coelomic cavity, B: loose subcutaneous parasites, C: severe hepatitis with 

lesions D: ascarid larvae within liver cyst.  

 

Figure 13: Probable reproductive cycle of T. albolabris in Hong Kong.    
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ABSTRACT:  

Translocation of ‘nuisance’ snakes is often employed on a large scale in densely 

populated areas in order to mitigate human-wildlife conflict. However, the methods 

used are often applied haphazardly and are rarely evaluated, especially in tropical 

Asia. The objective of this study was to assess the effects of long-distance 

translocation on the bamboo pit viper (Trimeresurus albolabris) in South China, 

where they are routinely removed from urban areas or homes and translocated into 

national parks. With the aid of radio telemetry, we compared the ecology and biology 

of ‘resident’ and ‘translocated’ snakes to determine if long-distance translocation is a 

viable conservation option. Translocation extended the period over which predation 

occurred and significantly decreased survival. Translocated snakes made 

unidirectional movements away from points of release, yet these movements were not 

oriented towards point of origin and there was no evidence for homing behavior. The 

effects of translocation also manifest very differently in males and females. 

Translocation significantly increased distances females moved from release sites and 

average daily movements, but no such differences were detected between resident and 

translocated males. However, translocated males exhibited a 100% mortality and 
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~71% of translocated females died. Overall, long-distance translocation increases 

mortality and has a negative effect on brumation, reproduction and movement of T. 

albolabris. Our results suggest that long-distance translocation is not a viable 

management or conservation option for this species. Findings of this study can be used 

to prescribe improvements for current strategies to deal with nuisance snakes in Hong 

Kong and around the region.  

Keywords: Viperidae; Crotalinae: wildlife management; human-wildlife conflict; 
survival; movement patterns; reproduction; brumation; sexual dimorphism; Hong 
Kong.  
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1. Introduction 

 

Human encroachment on natural habitats has led to a rise in human-wildlife 

interactions (Reinert and Rupert 1999), and these interactions are increasingly viewed 

as conflicting, especially in the urban environment (Craven et al. 1998) and at the 

interface of urban and rural areas. However, increases in human-wildlife conflict in 

recent decades has also come hand-in-hand with added pressure from the public to use 

alternative management methods rather than traditional lethal methods of shooting, 

culling, and poisoning (Massei et al. 2010), which are generally perceived to be 

inhumane. As a result, translocation of ‘nuisance’ wildlife – or the assisted movement 

of conflict animals from their origin to another – has become the preferred mitigation 

tool for many agencies (Brown et al. 2009; Butler et al. 2005b; Fischer and 

Lindenmayer 2000; Massei et al. 2010), and is generally focused on conservation of 

the species (Treves et al. 2009) rather than simply addressing management of an 

individual ‘nuisance’ animal. Translocation is a tool employed in many non-conflict 

situations including establishment or reintroduction of threatened or locally extirpated 

species (Griffiths and Pavajeau 2008; Moorhouse et al. 2009; Pedrono and Sarovy 

2000; Tuberville et al. 2005), shielding threatened populations from direct 

anthropogenic impacts (Armstrong 2008), or introductions to increase genetic 

variation in existing populations (Madsen et al. 1999). Success therefore varies 

depending on source and number of translocated animals (Harvey et al. 2013; Roe et 

al. 2010), desired outcomes, and parameters examined (Harvey et al. 2013; Pinter-

Wollman et al. 2009; Riedl et al. 2008). Translocation, when used to mitigate conflict 
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that arises from the presence of ‘nuisance’ or unwanted animals, generally has lower 

success than other non-conflict motivated translocations (Germano and Bishop 2009). 

The appeal of translocation as a human-wildlife mitigation tool arises from the 

widespread notion that it is a humane strategy (Craven et al. 1998; Dodd and Seigel 

1991; Massei et al. 2010; Reinert 1991; Reinert and Rupert 1999) because 

translocation does not lead to the immediate death of the individual (Riedl et al. 2008), 

unlike euthanasia. The public perceives that the translocated animal will thrive in its 

new location (Mosillo et al. 1999), and that translocation programs are successful. 

‘Success’ can be defined in various ways depending on the desired outcome and 

reasons for translocation (Fischer and Lindenmayer 2000), however in conflict-

mitigating translocations, we define a program as ‘successful’ if no significant adverse 

effects on mortality, behavior and reproduction are detected in translocated 

individuals.  

A closer inspection of the broad impacts of translocation on the subjects, 

however, reveals that this approach is often not always successful (Dodd and Seigel 

1991; Germano and Bishop 2009; Massei et al. 2010; Plummer and Mills 2000). 

Despite this, translocation is often chosen over alternate methods, as management 

policies are often influenced by public pressure rather than being supported by 

scientific evidence or cost-benefit analysis (Sarrazin and Barbault 1996), even when 

alternatives may offer more effective long-term solutions (Craven et al. 1998). Many 

agencies involved in wildlife management are still plagued by a deficiency of 

supporting data in the published literature arising from poorly documented 

translocations and the reluctance to publish negative data (Dodd and Seigel 1991; 
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Fischer and Lindenmayer 2000; Germano and Bishop 2009). If progress is to be made 

towards more effective policies for addressing human-wildlife conflict, however, the 

impacts of translocation on wildlife require further investigation for informed 

management decisions to be made (Germano and Bishop 2009).  

Reptiles represent a particularly threatened and data-deficient taxon (Böhm et 

al. 2013; Gibbons et al. 2000), and snakes are of particular interest in human-wildlife 

conflict mitigation. Human-wildlife interaction results in a greater likelihood of 

intentional mortality of snakes compared to other taxa, as they are viewed as 

potentially dangerous animals (Bonnet et al. 1999; Hardy et al. 2001; Nowak et al. 

2002). Additionally, translocation of reptiles has a low success compared to other 

vertebrates (Dodd and Seigel 1991). Erratic movements in displaced snakes have been 

documented (Fitch and Hampton 1971; Landreth 1973), and controlled experiments on 

the effects of long-distance translocation on snakes to mitigate human-wildlife conflict 

have revealed adverse effects on individuals, with increased sizes of home ranges as 

snakes try to adjust to unknown habitats and increased mortality (Butler et al. 2005b; 

Nowak et al. 2002; Plummer and Mills 2000; Reinert and Rupert 1999). These 

findings are of concern for managing human-snake interactions, as long-distance 

translocation appears, on its surface, to be the better solution for achieving both human 

safety and protection of persecuted snakes. Lack of baseline biological and ecological 

data on snakes, compared to mammals and birds, also limits the inferences that can be 

made from studies of snake translocation and reduces the success of snake 

management programs (Plummer and Mills 2000).   
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 Even with significant efforts to understand the effects of long-distance 

translocation on snakes, however, controlled experimental studies have been almost 

entirely restricted to snakes of North America and elapids in Australia (Butler et al. 

2005a, b; Nowak et al. 2002; Plummer and Mills 2000; Reinert and Rupert 1999; Roe 

et al. 2010). Two studies have been published on Asian species- the effects of 

translocation on a single Ophiophagus hannah in India (Barve et al. 2013), and the 

spatial ecology of 11 translocated Elaphe schrenkii in South Korea (Lee and Park 

2011). However, the effects of translocation on Asian snake taxa remain understudied, 

even though translocation is widely used in tropical Asia as a tool to alleviate human-

wildlife conflict (Barve et al. 2013). Our limited understanding of the effects of 

translocation on these snakes is alarming considering the funds and labor required for 

snake management programs.  

 The overarching goal of this study was to determine if translocation is a viable 

management option for the bamboo pit viper (Trimeresurus albolabris), a common 

and widespread species that is translocated in large numbers in Hong Kong, China. 

Our objectives were to compare survival, movements, reproduction, and brumation 

between ‘resident’ and ‘translocated’ snakes. Besides being one of the most 

commonly translocated snakes in Hong Kong (Kadoorie Farm and Botanic Gardens, 

unpublished data), T. albolabris, a venomous species, is by far the most common 

cause of snakebite injury there (Hon et al. 2004) and an assessment of current and 

alternative management strategies is pertinent from both conservation and public 

health perspectives. 
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2. Methods 
 

We conducted this experiment from May to December 2012 and June to December 

2013 in the Hong Kong Special Administrative Region of China (2209’-2237’N, 

11350’-11430’E).  Hong Kong encompasses about 1,100 km2, and is made up of over 

250 islands and a section of mainland China. Although part of Hong Kong is high-

density urban area, much of the land comprises rural and small villages and 

communities within or around 23 national parks and other reserves. This proximity of 

high human population densities and natural tropical forests creates the conditions that 

lead to human-wildlife conflict. 

In Hong Kong, ‘nuisance’ snakes are generally those that find their way into or 

near houses or businesses and are captured by the Hong Kong Police. We obtained 

snakes from Kadoorie Farm and Botanic Garden that had been transported from 

districts all over Hong Kong. In a few cases, we received snakes directly from 

residents on private property. Resident snakes were captured during visual encounter 

surveys conducted along hiking trails in the Sai Kung and Ng Tung Chai districts of 

Hong Kong.   

We transported snakes to the Veterinary Hospital of Ocean Park Corporation, 

and anesthetized them using vaporized Isoflurane, an inhalant anesthetic. Radio 

transmitters (Model SB-2 or BD-2, Holohil Systems Ltd., Carp, Ontario, Canada) 

weighing no more than 6% of the body mass of the snakes were surgically implanted 

into the coelomic cavity, posterior to the cloaca, and antennae were threaded 

subcutaneously, following the procedures described by Reinert (1992) and Hardy and 

Greene (1999). While the snakes were under anesthesia, we measured snout-vent 
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length, tail length, and body mass. We measured the presence, number and 

measurements of ovarian follicles or embryos in female snakes using ultrasound 

(Hitachi-Aloka Medical Ltd. Prosound SSD 4000, Tokyo, Japan or Esaote Mylab™ 

35, Indianapolis, Indiana, USA). We allowed the vipers two days for recovery, before 

releasing the resident snakes within five meters of capture site. Translocated snakes 

were released between 3 and 30 km from point of capture, and resident snakes were 

released within 5 m of capture site. Translocated snakes in 2012 were released in 

mixed shrubland/grassland/abandoned agricultural ponds habitat (hereafter referred to 

as shrubland), and those in 2013 were released in mixed broadleaf evergreen 

secondary forest/active or abandoned agricultural land (hereafter referred to as 

woodland). All residents were released in woodland in both years.  

All vipers were relocated two to three times per week (with ‘relocation’ 

indicating every event a snake was located via radio tracking), except during periods 

of extreme weather, such as tropical cyclones, when vipers were relocated once a 

week. We recorded snake locations using a global positioning system. If the individual 

survived to the end of the transmitter battery life (14 to 20 weeks), the snake was 

recaptured and the transmitter was replaced using the procedures described above. All 

vipers that survived to the end of the year were recaptured, transmitters were removed 

under anesthesia, and snout-vent lengths, tail lengths and masses were obtained. We 

released these snakes at last point of capture after two days of recovery.  
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2.1 Data analysis 

 

We used Kaplan-Meier survival estimates to obtain survival of resident and 

translocated snakes over the study period in both years, and we used a log-rank test to 

compare survival between translocated and resident snakes in 2013. We extrapolated 

survival over the study period to annual survival for both years for comparison with 

prior studies.  

Three different metrics were used to quantify differences in movements 

between resident and translocated snakes: analysis of independence of linear 

parameters and orientation of trajectories, frequency of movements, and average daily 

movements. For the first analysis, trajectories were drawn for individual snakes using 

straight lines between consecutive GPS coordinates obtained during relocations. We 

used a test of independence (Wald and Wolfowitz 1944) to measure sequential 

autocorrelation linear parameters (change in X- and Y- coordinates; adehabitatLT 

0.3.16 package for R; Calenge 2006). We used a goodness-of fit test to test for 

difference in proportion of snakes that made unidirectional movements between 

resident and translocated snakes. We also determined if homing patterns could be 

detected for translocated snakes using the following equation for orientation 

efficiency:  

(Di - Df)/L,  

where Di = displacement distance, Df = distance between last point of trajectory and 

original home, L = path length (Bodin et al. 2006; Pittman et al. 2014). Positive 

orientation efficiencies indicate homing behavior, and we used a one-tailed t-test to 
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determine if the average orientation efficiency was positive and different than 0. For 

the second movement analysis, we calculated the frequency of movement for each 

snake by dividing the total number of times a snake moved > 5 m in between 

relocations by the total number of relocations for that individual. For females, we used 

a two-way analysis of variance to test for differences in movement frequencies, using 

experimental group (translocated/ resident) and year (2012/ 2013) as factors. We used 

a Student’s t-test to test for differences between experimental and control frequencies 

of movement for males. For the last movement analysis, we calculated the average 

daily movements of each snake by dividing the total distance moved over the active 

season by the total number of days tracked over the active season. For females, we 

used a two-way analysis of variance to test for differences in average daily 

movements, using experimental group (translocated vs resident) and year (2012/ 2013) 

as factors. For males, we used a Student’s t-test to test for differences between 

experimental and control average daily movements.  

Data were log-transformed if they failed to meet assumptions of equal variance 

and normality of residuals for analysis of variance. All averages are reported with 

(SE). Spatial analyses for trajectories, average daily movements and statistical 

analyses were conducted in R 3.0.2 (R Development Core Team) and SAS 9.3. (SAS 

Institute, Cary, North Carolina, USA). ArcGIS 10.1 (ESRI, Redlands, California, 

USA) was used for visualization of spatial data.  

Brumation and reproduction events were compared between surviving resident 

and translocated snakes. However no statistical analyses were conducted because of 

low survival and resulting low sample sizes.  
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3.  Results 
 

We radio-tracked 18 females (nine resident, nine translocated) in 2012 and 15 females 

(seven resident, eight translocated) and eight males (four resident, four translocated) in 

2013. Different females were tracked between years (Table 1). Tracking took place 

over 31 weeks in 2012 (Figure 1) and over 26 weeks in 2013 (Figure 2). We obtained 

a total of 1245 relocations of 41 snakes over 2012 and 2013.  No mortalities of study 

snakes were associated with capture, handling, sedation, surgery, transport or 

recovery.  

 

3.1. Survival 

 

Survival for 2012 resident snakes over 31 weeks (0.342 ) was similar to that of 

translocated snakes over 18 weeks (0.333). Extrapolation of survival of translocated 

snakes to 31 weeks (0.181) revealed lower survival than resident snakes over 31 

weeks (Table 2). In 2013, resident snakes had a higher probability (χ2 = 5.27, d.f. = 1) 

of survival (0.71) over the 26-week study period than did translocated snakes (0.25).  

We extrapolated survival over a year to obtain annual survivorship, and 

translocated snakes exhibited very low annual survival (0.042 in 2012 and 0.063 in 

2013) compared with those of resident snakes (0.136 in 2012 and 0.499 in 2013).  

 

3.2. Mortality 
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Predation was by far the most common cause of death among both resident and 

translocated snakes, however a higher percentage of translocated snakes were predated 

(Figure 3).  Additionally, nearly 20% (4 of 21) of translocated snakes died under 

unusual circumstances with no clear explanation for their cause of death. Two 

translocated individuals were found as intact healthy carcasses, and necropsies by a 

veterinarian revealed no underlying infection, disease, predation, injury, or any other 

explanation for the cause of death. One individual was found desiccated but intact. 

One translocated snake was found being consumed alive by ants and another 

translocated snake was found intact but dead, with no signs of injury or illness except 

wasps eating the inside of its mouth. We could not determine the cause of death for 

any of these five translocated individuals.  

We noticed temporal differences in dates of predation between resident and 

translocated snakes. All five predation events of resident snakes (three in 2012 and 

two in 2013) occurred in the first two weeks of October, but predation events occurred 

in translocated snakes over more than three months from 10 July to 19 November 

(Figure 4). 

 

3.3. Movements  

 

Trajectories of all individual snakes were projected in the same geographic scale for 

visual comparison. Resident females appeared to have more nucleated movement 

patterns with evidence of backtracking, but translocated females made larger, 

apparently unidirectional movements (Figure 5). Interestingly, we saw an opposite 
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pattern in male snakes, wherein residents made large movements characteristic of 

mate-finding, and translocated snakes either did not attempt to find mates, or died 

before doing so (Figure 6). None of the 16 resident trajectories displayed non-

independent sequential linear parameters, but six of the 17 trajectories for translocated 

snakes exhibited non-independent linear parameters, indicating uni-directionality 

patterns of movement in these snakes. One of these six non-independent trajectories 

belonged to a male, and the other five were female trajectories. Of these five females, 

two were translocated in woodland and three in shrubland. Translocated snakes were 

more likely to make unidirectional movements than resident snakes (χ 2 = 4.73, df = 1, 

P = 0.030).  

Translocated snakes had an average orientation efficiency of 0.010 ± 0.126, 

and we detected no clear homing patterns (t = 0.12, df = 18, P = 0.452). We found no 

evidence of homing in translocated snakes and their trajectories were not orientated 

towards points of origin. We documented no discernable relationship between positive 

orientation efficiencies and autocorrelated linear trajectories; of the six individuals that 

displayed non-independent linear parameters, four had positive orientation 

efficiencies.  

We found that regardless of year tracked, translocated snakes moved more 

frequency than resident snakes (F = 8.440, df = 1, 24, P = 0.008, Figure 7), and 

females moved more frequently in 2012 than 2013 (F = 4.95, df = 1, 24, P = 0.036). 

There was no interaction between experimental group and year for the frequency of 

movement analysis for females (F = 0.19, df = 1, 23, P = 0.670). We found no 
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differences between translocated and resident male frequency of relocations (F = 

0.885, df = 1, 6, P = 0.383, Figure 8).  

We found that regardless of year tracked, translocated females moved more per 

unit time than resident females (F = 17.32, df = 1, 23, P < 0.001, Figure 9), and there 

was no difference between years (F = 2.66, df = 1, 23, P = 0.117). We found no 

interaction between experimental group and year for the average daily movements for 

females (F = 3.10, df = 1, 22, P = 0.092). There were no differences found between 

translocated and resident male average daily movements (F = 0.29, df = 1, 6, P = 

0.610, Figure 10).  

 

3.4 Reproduction  

 

We only compared reproduction between translocated and resident snakes in 2013, as 

their reproductive status during the gestation period (June– July) was known. Several 

snakes tracked in 2012 were captured after the gestation period, and their reproductive 

status during the gestation period were unknown.  

 Of the five surviving resident females in 2013, two were large females that 

gained substantial mass over the active season (101% and 57% increase in body 

condition, measured by mass/snout-vent length). Neither female was gravid in June or 

July 2013, and both were undergoing stage II-II vitellogenesis in December 2013, 

suggesting preparation for ovulation the following spring (Table 4). In contrast, two of 

the three surviving translocated females in 2013 were large females that increased 

substantially in body condition (72% and 52%) over the active season, were not gravid 
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in June - July 2013, yet still displayed primary follicles in December 2013 (Table 4). 

These two translocated females were unlikely to be preparing to reproduce the 

following spring.   

 Translocated males did not appear to successfully make large mate-searching 

movements, and all of them died well before the end of the active season. Resident 

males, on the other hand, made large movements characteristic of mate-searching, 

some moving large distances (Figure 6). Two of the resident males survived the active 

season, although both exhibited decreased body condition (Table 4).  

 

3.5. Brumation 

 

Differences in brumation patterns between resident and translocated snakes were 

observed in 2012 and 2013. In 2012, all three surviving females found brumation 

refugia on the ground within days of each other, yet only one surviving translocated 

female of three displayed brumating behavior (Figure 11). The other two translocated 

females were still active in the vegetation above ground until the end of the 2012 study 

period. In 2013, all translocated and resident females moved to brumation refugia, 

however the timing of brumation for resident and translocated females differed. In 

2013, the date of the first brumation event for translocated snakes ranged from mid-

November until the end of December. In contrast, all resident snakes commenced 

brumation within a few days of each other in mid-December (Figure 12). None of the 

resident males brumated, however comparisons cannot be made as no translocated 

males survived to winter.  
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4. Discussion 

 

There is a growing body of research detailing the negative impacts of long-distance 

translocation on snakes, and our results are congruent with previous studies in which 

survival or movements or both are negatively impacted by long-distance translocation 

(Barve et al. 2013; Butler et al. 2005a; Lee and Park 2011; Nowak et al. 2002; 

Plummer and Mills 2000; Reinert and Rupert 1999). Key results of other translocation 

studies suggest that T. albolabris should be a good candidate for translocation. 

Although no related information is available for snakes, at least in mammals and birds, 

threatened or sensitive species generally have lower translocation success than 

common and widespread species (Griffith et al. 1989). Second, sedentary snakes that 

operate as sit-and-wait predators are hypothesized to be less affected by translocation 

than active foragers or wide-ranging snakes if released in optimal habitat (Plummer 

and Mills 2000; Shine and Fitzgerald 1996). Trimeresurus albolabris is widespread 

and common in Hong Kong and is a sedentary, sit-and-wait predator (Karsen et al. 

1998), and, thus, theoretically a good candidate for translocation. We suggest the 

relative severity of translocation effects on T. albolabris compared to that of other 

snake taxa results from either or both of the following reasons: low background 

survival in resident populations compared to other crotalid snakes, and considerable 

sexual size dimorphism in this species and a corresponding inverse relationship 

between body size and magnitude of movements between the sexes. 

 Differences in survival between resident and translocated snakes in 2013 are 

indisputable; translocation clearly impacted survival. In 2012, however, relationships 
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are less clear, with a difference in survival observed only when survival of 

translocated snakes is extrapolated to match the tracking period of the 2012 resident 

snakes. Differences in survival in 2012 could not be statistically compared because of 

unequal tracking periods. However a 0.34 probability of survival for residents 

compared with an extrapolated 0.18 probability of survival in translocated snakes 

suggests that a difference may exist. Extrapolated over a year, survival in resident 

snakes is starkly different from that of translocated snakes, and this difference may be 

underestimated because of temporal differences in causes of death.  ‘Unexplained’ 

causes of death attributed by 20% of translocated snakes represents a significant 

source of mortality that appears aseasonal and may persist throughout the year for the 

translocated snakes. Survival among resident and translocated snakes may not exhibit 

similar trajectories across the year for, with overall survival prospects for translocated 

snakes appearing bleaker than for resident snakes.  

The eightfold decrease in annual survivorship in translocated snakes observed 

in 2013 is more severe than that of translocated Crotalus spp., which display a two to 

threefold decrease (Hare and McNally 1997; Nowak et al. 2002; Reinert and Rupert 

1999) or in Notechis scutatus which had no discernable difference over six-month 

study period (Butler et al. 2005a). The only published study reporting decreases in 

survival of the magnitude we observed in 2013, was on the colubrid Heterodon 

platirhinos (Plummer and Mills 2000). This suggests that snake species exhibiting 

naturally-low survival probabilities may be more adversely impacted by translocation. 

Notably, the aquatic colubrid Nerodia sipedon has resident survival probabilities 

similar to those of T. albolabris and H. platirhinos, yet this species’ survival is not as 
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severely affected by translocation as the latter two (Roe et al. 2010). However, there is 

evidence that reptiles constrained by habitat preference (such as highly aquatic 

species) are less likely to stray from translocated release sites, and are therefore better 

candidates for translocation (Attum et al. 2013). The results of my study suggest that 

snakes with little habitat specificity and low background survival levels may respond 

poorly to translocation compared to other snake taxa, and translocation programs 

should take into account natural survival and natural history traits of species targeted 

for translocation.  

 Translocation results in a higher likelihood of unidirectional movements in T. 

albolabris. Interestingly, these unidirectional movements were not oriented to the 

snakes’ points of origin, as we found no evidence for homing in translocated snakes. 

Non-native Burmese pythons (Python molorus) in Everglades National Park in the 

U.S. orient towards point of origin after being displaced, with an average orientation 

efficiency of 0.55 ± 0.18 (Pittman et al. 2014), and several long- and short- distance 

snake translocation studies report that individuals made straight-line or parallel 

movements, eventually returning home (Brown et al. 2009; Hare and McNally 1997; 

Nowak et al. 2002; Reinert and Rupert 1999). However, we found no relationship 

between directional movements of translocated snakes and place of origin.  

Unidirectional movements made by translocated vipers may instead be driven by 

fleeing from the point of release or exploration to find a new home range, without 

navigational cues influencing direction of travel. Alternatively, these translocated 

snakes may have been experiencing distorted navigational cognition, where an 
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individual may have attempted to home, but lacked the spatial cognition to orientate 

itself accurately.  

 Translocation appeared to severely affect movements of female snakes, but not 

those of male snakes. Translocated females displayed different movement patterns 

than those of resident females for all movement metrics assessed, with a clear trend of 

unidirectional and large movements away from point of release and larger distances 

moved per unit time. Differences in sex ratios and unequal sampling periods resulting 

from the premature death of all translocated males, rendered combined sex models 

incapable of teasing out any relationships between season, experimental group, and 

sex. The aberrant and highly variable movements observed in translocated T. 

albolabris were consistent with movements following long-distance translocations in 

other snake taxa (Barve et al. 2013; Butler et al. 2005b; Lee and Park 2011; Plummer 

and Mills 2000; Reinert and Rupert 1999; Roe et al. 2010). Increases in the frequency 

of movements and distances moved by snakes are strongly correlated with increased 

risk of predation (Bonnet et al. 1999; Madsen and Shine 1993; Shine and Fitzgerald 

1996), and results from the study on T. albolabris suggest a causal relationship 

between increased movements and increased predation. This relationship is also 

strongly implied in other long-distance translocation studies of crotalids (Nowak et al. 

2002; Reinert and Rupert 1999).  

While translocation has a negative impact on the movement and brumation 

patterns of females, the habitat in which snakes are translocated to appears to 

exacerbate negative effects on T. albolabris. In both shrubland and woodland, 

translocated snakes are more likely to make unidirectional movements away from 
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point of release than resident snakes, and move larger distances per unit time. 

However in shrubland, two of the three surviving translocated snakes failed to brumate 

in December, while all surviving translocated snakes in woodland found refugia for 

the winter.  

Translocation had multiple negative impacts on Trimeresurus albolabris, 

however, these negative effects manifested differently in males and females. Male 

movements appeared to be unaffected by translocation, but survival was not, as all 

four translocated males died in the middle of the 2013 study period. Survival was less 

impacted in translocated females, but translocated females displayed altered 

movement patterns. We hypothesize that natural movements of resident males put 

them at greater risk of mortality because of predators and other sources, as small-

bodied males make very large mate-searching movements, compared to more 

sedentary, heavy-bodied female counterparts. Movement in snakes is energetically 

costly (Gregory et al. 1987), and this appears to be particularly true in male T. 

albolabris. A translocated male, however, will therefore have to cope with the 

increased energy demands associated with translocation. On the other hand, adult 

females have more substantial fat reserves than males and therefore may have higher 

capacity for coping with translocation-induced changes in movement than males. We 

documented an inverse relationship between sex-related body size and movements in 

T. albolabris: adult males are half to one-eighth the size of adult females yet make 

substantially larger movements than females. This relationship has not been 

documented in other snake species subjected to long-distance translocation, and may 

partly explain why T. albolabris was so strongly impacted by translocation.   
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As no translocated males survived the breeding season, we were unable to 

predict the reproductive and brumation fate of male snakes that survive translocation. 

Some translocated females survived to brumation, however fecundity was negatively 

affected. Female T. albolabris breed once every two or more years, except for very 

large females which may reproduce in consecutive years (A. Devan-Song, 

unpublished data). In 2013, large translocated females, despite not gestating and 

having gained substantial mass over that year, did not undergo vitellogenesis, when 

their resident equivalents were doing so. The earliest ovulation and gestation season 

that these translocated females would participate in is summer 2015, two years after 

the end of the project, as an individual preparing to ovulate in summer 2014 would 

have already commence vitellogenesis in winter 2013. The chances of translocated 

snakes surviving one, let alone two years, is very slim, and overall prospects for 

reproduction by translocated females are bleak.  

 As with reproduction, our comparison of brumation in translocated and 

resident snakes is only possible for female snakes as no males survived. Brumation is 

an important life history event that snakes employ to survive the harsher conditions of 

winter in seasonal climates (Gregory 1982). For example, in a study examining 

repatriated and translocated massasauga snakes (Sistrurus catenatus), 100% of snakes 

that did not hibernate died over winter (Harvey et al. 2013), and dormancy appears to 

be critical for thermoregulation and survival especially in colder climates. In our 

study, brumation in female translocated snakes was unsynchronized, and two 

translocated snakes did not appear to brumate. It is possible that the two active 

translocated survivors in 2012 eventually found brumation sites in January after we 
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removed transmitters from these snakes, however, they still would have missed the 

environmental cues that appeared to be synchronized among resident snakes in both 

years. Unsynchronized brumation patterns documented in translocated snakes in both 

years suggest reduced ability to respond to environmental cues, and provides insight as 

to how translocation may affect cognition in snakes. Translocation has been shown to 

increase the medial cortex volume in rattlesnakes in response to increased navigational 

demands (Holding et al. 2012), and other cognitive processes may be affected by 

neurological changes. Trimeresurus albolabris is also a solitary species with no 

communal hibernation or apparent cues from conspecific as to locations of refugia, 

unlike several Crotalus species in translocation experiments, which trailed 

conspecifics to locate hibernacula in their new sites (Nowak et al. 2002; Reinert and 

Rupert 1999). Reduced brumation initiation as well as unsynchronized brumation in 

translocated snakes may reflect this solitary brumation aspect of T. albolabris, where 

translocated snakes are unable to find hibernacula by trailing resident conspecifics.  It 

should also be noted that translocated snakes that successfully initiate brumation are 

still not immune to overwintering mortality (Reinert and Rupert 1999), however we 

did not track beyond December to determine overwintering survival in our study.  

Two factors need to be considered with regard to our results.  We tracked each 

snake for a relatively short time. Reinert and Rupert (1999) and Nowak (2002) 

highlight the importance of evaluating long-term effects on translocated snakes, as 

atypical behavior may still be present in seasons following the first winter. However, 

except in the case of very large female T. albolabris, this species is small and would 

require two to three transmitter replacements a year because of the relatively short 
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battery life in smaller transmitters. Nevertheless, results from our first year were 

unambiguous and the negative impacts of translocation on T. albolabris were clear. 

The second limiting factor is the absence of data on change in body condition, which 

results from Trimeresurus albolabris being a highly arboreal species with apparent 

preference for very dense vegetation (A. Devan-Song, unpublished data).  It would 

have been impossible to capture and measure snakes at comparable intervals without 

significant destruction of surrounding vegetation and/or severe disturbance to snakes, 

which may have caused artificial movements. However, translocation is not strongly 

correlated with change in body condition (Nowak et al. 2002; Reinert 1991), and 

growth rates for translocated snakes may not have revealed underlying stress or 

pathology in my study.  

Despite some limitations, this study indicates that long-distance translocation 

has a negative impact on the survival, movements, reproduction and brumation of T. 

albolabris. Long-distance translocation lowers the probability of survival and 

increases the duration of predation period. Movement patterns of translocated snakes 

suggest impaired spatial cognition and increased energy expended on movements. 

Translocation reduces fecundity and renders T. albolabris less effective at finding 

brumation refugia and responding to environmental cues that trigger brumation.  

Finally, translocation to shrubland over woodland exacerbates the already negative 

effects on movements and brumation of T. albolabris.  
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5. Implications for Management 
 

All results indicate that translocation is an ineffective tool for resolving human-

wildlife conflict involving T. albolabris, especially if individuals are translocated to 

shrubland instead of woodland. Not only is there substantial evidence that long-

distance translocation is not an effective measure for the welfare of these snakes, such 

approaches must also consider the potential for negative effects on recipient resident 

populations in translocation sites. Genetic outbreeding is one possible negative effect 

of sustained long-distance translocation (Weeks et al. 2011; Whiting 1997), as is the 

risk of introducing pathogens from translocated individuals to resident populations 

(Cunningham 1996; Dodd and Seigel 1991; Kock et al. 2010; Viggers et al. 1993).  

Overall, there is little indication of any benefits of long-distance translocation for T. 

albolabris, and alternative methods to deal with ‘nuisance’ snakes should be explored. 

Alternatives to long-distance translocation include ‘soft’ releases where 

individuals are kept in an enclosure in situ to encourage side fidelity, and increase the 

probability of a successful translocation (Bradley et al. 2005; Tuberville et al. 2005). 

However, this is labor- and time-intensive. There is also mounting evidence for the 

effectiveness of short-distance translocation of snakes as an alternative, in which an 

individual is moved within or close to its original home range. Short-distance 

translocation has been studied in some species of rattlesnakes, with higher success 

than long-distance translocation on the survival of displaced snakes (Brown et al. 

2009; Hare and McNally 1997; Sealy 1997). Short-distance translocation and frequent 

handling also do not appear to adversely affect stress response and behavior (Holding 

et al. 2014a) or thermoregulation (Holding et al. 2014b) in northern pacific 
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rattlesnakes (Crotalus oreganus oreganus). Although the issue of translocated 

individuals returning to their site of capture may be a complication of short-distance 

translocation (Brown et al. 2009), it can be argued that long-distance translocation 

does not alleviate human-snake conflict, and systematic removal of snakes from 

private property over the years has not substantially lowered the numbers of nuisance 

snake encounters (KFBG, unpublished data). A logical approach would therefore be to 

design conflict-mitigating programs that are informed by knowledge on the life history 

traits and demographic characteristics of the targeted species. 

Although this experiment focused on T. albolabris, the negative effects we 

observed may also extend to species with similar life history traits such as other small, 

sexually dimorphic pit vipers, including other members of the genus Trimeresurus, 

many of which are also widespread and common (Malhotra and Thorpe 1997; Orlov et 

al. 2002) and are likely to be conflict snakes within their ranges. Our results are also 

applicable to non-conflict situations such as reintroduction/repopulation and possibly 

repatriation, if the differences between sources of snakes are taken into account. 

Although non-conflict translocation is motivated by different reasons and results are 

often assessed at the population and not individual level, our results along with those 

of previous studies suggest lower survival and reduced fecundity for adult snakes, 

which can render conservation-motivated reintroduction a wasted effort if too few 

individuals survive.  Translocation for both conflict mitigation and non-conflict 

purposes should also take into account the possibility of impaired spatial cognition and 

response to environmental cues in snakes (depending on distance displaced), over and 

above elevated mortality and pathological movements. 
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Tables 
 

Table 1: Sex and sample sizes of translocated and resident Trimeresurus albolabris in 
Hong Kong. All snakes, except for females translocated in 2012, were released in 
mixed cultivated/woodland habitat.  

 May-December 2012 June-December 2013 
Resident  9 Female 7 Female  
  4 Male  
Translocated 9 Female 8 Female 
  4 Male  
Total 18 23 

 
Table 2: Kaplan-Meier estimates of T. albolabris survival in 2012.  

2012 Resident n=9 Translocated n=8 
Survival over study period (31 Weeks) 0.342 (19 Weeks) 0.333 
Extrapolated survival over equal study period 
(30 weeks)  0.342 0.181 
Extrapolated annual survival  0.137 0.042 

 
Table 3: Kaplan-Meier estimates of T. albolabris survival in 2013.  

2013 Resident n=11 Translocated n=12 

Survival over study period 
(26 Weeks) 

0.707 (26 Weeks) 0.25 
Extrapolated annual survival 0.499 0.063 

 
Table 4: Mass gain and reproductive activity in surviving T. albolabris in 2013. 
Resident female 4 and 5 have follicle sizes corresponding to Stage II-II vitellogenesis, 
while all other snakes only have primary follicles (Stage V). Loss in mass of Female 2 
does not take into account mass lost from parturition.  

  

 Survivor Description 

% change 
in body 
condition over 
2013 

Follicles 
in December 

Largest 
size (mm) 

  
RES 

 
  
 
 

Male 1  Adult -1 NA NA 
Male 2 Adult  -9 NA NA 
Female 1 Juvenile 20 Small 1.3  
Female 2 Gravid in 2013 -22 Small 1.5 
Female 3 Small adult   -2 Small 3.0 
Female 4 Very large female 66 Enlarged  7.8 

  Female 5 Very large female 36 Enlarged  15.0 
  

    
  

TRANS Female 1 Small adult 23 Small 2.4 
  Female 2 Very large female 63 Small 1.4 
  Female 3 Very large female 52 Small 2.5 
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Figure Captions  
 

Figure 1: Study period and sample size for radio-tracked T. albolabris in Hong Kong, 

May –December 2012. Eight translocated snakes were tracked for 18 weeks, and one 

individual was tracked for eight weeks. Residents were tracked for 30 weeks. 

 

Figure 2: Study period and sample size for radio-tracked T. albolabris in Hong Kong, 

June –December 2013.  

 

Figure 3: Causes of deaths for T. albolabris in 2012 and 2013 combined.  

 

Figure 4: Dates on which predation of T. albolabris was discovered in 2012 and 2013. 

Predation of resident snakes was discovered within the first two weeks of October; 

predation of translocated snakes was discovered from 15 August - 19 November in 

both years. 

 

Figure 5: Trajectories for female resident (n = 12) and female translocated (n = 13) T. 

albolabris in Hong Kong. Each line represents one individual, and all trajectories are 

displayed in the same geographical scale. Asterisks (*) indicate the start of trajectories 

that were autocorrelated for sequential linear parameters. 

 

Figure 6: Trajectories for male resident (n = 4) and male translocated (n = 4) T. 

albolabris in Hong Kong. Each line represents one individual, and all trajectories are 
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displayed in the same geographical scale. Asterisks (*) indicate the start of trajectories 

that were autocorrelated for sequential linear parameters. 

 

Figure 7:  Boxplot of log-transformed frequency of relocations for female resident and 

translocated T. albolabris in 2012 and 2013. 

 

Figure 8: Boxplot of frequency of relocations for male resident and translocated T. 

albolabris in 2013. 

 

Figure 9: Boxplot of log-transformed average daily movements for female resident 

and translocated T. albolabris in 2012 and 2013. 

 

Figure 10: Boxplot of average daily movements for male resident and translocated T. 

albolabris in 2013. 

 

Figure 11: Dates of first brumation event for T. albolabris surviving in 2012. All three 

resident survivors found brumation refugia (black lines), but only one of the three 

translocated survivors found refugia (gray line).  

 

Figure 12: Dates of first brumation event for surviving female T. albolabris in 2013. 

All resident and translocated female survivors displayed brumation behavior. The five 

female survivors found brumating refugia within a few days of each other, but 

translocated snakes brumated either much earlier or much later than resident snakes. 
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