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Unsplit complex frequency-shifted PML implementation using
auxiliary differential equations for seismic wave modeling

Wei Zhang' and Yang Shen'

ABSTRACT

The complex-frequency-shifted perfectly matched layer
(CFS-PML) technique can efficiently absorb near-grazing inci-
dent waves. In seismic wave modeling, CFS-PML has been im-
plemented by the first-order-accuracy convolutional PML tech-
nique or second-order-accuracy recursive convolution PML
technique. Both use different algorithms than the numerical
scheme for the interior domain to update auxiliary memory vari-
ables in the PML and thus cannot be used directly with higher-or-
der time-marching schemes. We work with an unsplit-field CFS-
PML implementation using auxiliary differential equations
(ADES) to update the auxiliary memory variables. This ADE
CFS-PML results in complete first-order differential equations.
Thus, the numerical scheme for the interior domain can be used
to solve ADE CFS-PML equations. We have implemented ADE
CFS-PML in the finite-difference time-domain method and in a

nonstaggered-grid finite-difference method with the fourth-order
Runge-Kutta scheme, demonstrating its straightforward imple-
mentation in different numerical time-marching schemes. We
have also theoretically analyzed the role of the scalingfactor of
CFS-PML,; it transforms the PML to a transversely isotropic ma-
terial, reducing the effective wave speed normal to the PML layer
and bending the wavefront toward the normal direction of the
PML layer. Our numerical tests indicate that the optimal value re-
duces the points per dominant wavelength at the outermost
boundary to three, about half the value required by the numerical
scheme. We also have found that the PML equations should be
derived taking the free-surface boundary condition into account
in finite-difference methods. Otherwise, the free surface in the
PML layer causes instability or ineffective absorption of surface
waves. Tests show that we can use a narrow-slice mesh with ADE
CFS-PML to simulate full wave propagation efficiently in mod-
els with complex structure.

INTRODUCTION

Special treatments are needed at the computational boundaries to
absorb waves propagating outward when we simulate seismic wave
propagation in an unbounded space. Techniques based on two con-
cepts are commonly used: absorbing boundary conditions (ABCs),
which impose a proper boundary condition at the outermost bound-
aries to satisfy the condition that waves only propagate outward
(Clayton and Engquist, 1977; Liao et al., 1984; Bayliss et al., 1986;
Higdon, 1986, 1990; Randall, 1988), and absorbing boundary layers
(ABLs, or sponge layers), which use finite layers to gradually damp
wave amplitude, so using the Dirichlet boundary condition at the
outermost boundary does not generate a strong reflection (Cerjan et
al., 1985; Sochacki et al., 1987). Strengths and weaknesses of each
group can be found in Festa and Vilotte (2005) and Komatitsch and
Martin (2007). Perfectly matched layers (PMLs) (Bérenger, 1994),

an ABL technique, effectively absorb waves at a wide range of inci-
dent angles with only several to tens of layers and has become wide-
ly used in elastic wave modeling (Chew and Liu, 1996; Hastings et
al., 1996; Collino and Tsogka, 2001; Marcinkovich and Olsen, 2003;
Wang and Tang, 2003).

The original (or standard) PML in Bérenger (1994) adopts a non-
physical splitting of the wavefield components and equations, lead-
ing to two different sets of equations for the interior domain and the
PML layer; these are not trivial to incorporate into an existing nu-
merical modeling code. Furthermore, the split-field PML is mathe-
matically weakly well-posed (Abarbanel and Gottlieb, 1997). Alter-
native intepretations of the PML as an artificial anisotropic medium
(Sacks et al., 1995; Gedney, 1996) or complex coordinate stretching
(Chew and Weedon, 1994; Teixeira and Chew, 2000) have led to un-
split-field PML implementations involving convolution terms
(Wang and Tang, 2003; Komatitsch and Martin, 2007), integral
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terms (Zeng and Liu, 2004; Drossaert and Giannopoulos, 2007a), or
auxiliary differential equations (Ramadan, 2003). Hagstrom (2003)
introduces a modified modal solution to derive PML equations; it is
used by Appel and Kreiss (2006) in 2D elastic wave modeling. This
technique can provide a stable PML implementation by choosing the
parameters satisfying the geometric relations in anisotropic media
(Bécache et al., 2003). Recently, Meza-Fajardo and Papageorgiou
(2008) show that stable results can be obtained in anisotropic media
using a 3D damping profile in the PML based on the concept of com-
plex coordinate stretching.

Though the standard PML has been widely used in seismic wave
modeling, it can generate large, spurious reflections for near-grazing
incident waves, low-frequency waves, or evanescent waves (Festa
and Vilotte, 2005; Komatitsch and Martin, 2007; Drossaert and Gi-
annopoulos, 2007b). The complex-frequency-shifted PML (CFS-
PML) (Kuzuoglu and Mittra, 1996) is more efficient in such circum-
stances using a frequency-dependent damping (Festa et al., 2005;
Festa and Vilotte, 2005; Drossaert and Giannopoulos, 2007a, 2007b;
Komatitsch and Martin, 2007).

The CFS-PML originally was implemented in a split-field form;
three auxiliary memory variables are needed for each derivative
(Gedney, 1998). Roden and Gedney (2000) derive an unsplit-field
CFS convolutional-PML (C-PML) equation involving a convolu-
tion term that can be calculated efficiently using a recursive convolu-
tion algorithm (Luebbers and Hunsberger, 1992). This technique has
been used in seismic wave modeling in elastic media (Komatitsch
and Martin, 2007; Drossaert and Giannopoulos, 2007b) and po-
roelastic media (Martin et al., 2008a). Drossaert and Giannopoulos
(2007a) derive an alternative CFS-PML implementation that in-
volves integral terms, which can be calculated by a recursive inte-
gration PML (RIPML) algorithm. The recursive integration in
C-PML is of first-order accuracy (Giannopoulos, 2008), and the
trapezoidal rule in RIPML is of second-order accuracy (Drossaert
and Giannopoulos, 2007a).

Both approaches need an algorithm different from the numerical
scheme in the interior domain to update the auxiliary memory vari-
ables. Thus, they cannot be used directly with higher-order time-
marching schemes, such as a fourth-order Runge-Kutta scheme in
the nonstaggered finite-difference velocity-stress method (Zhang
and Chen, 2006) on a boundary-conforming grid to simulate seismic
wave propagation in the presence of surface topography, in which
the higher-order multistage Runge-Kutta scheme is important to al-
low alarger time step (Hixon, 1997).

In the field of electromagnetic simulation, Ramadan (2003) pro-
poses an unsplit-field implementation of the standard PML using
auxiliary differential equations (ADEs). Wang and Liang (2006) ex-
tend this approach to CFS-PML with a 2D alternating-direction-im-
plicit (ADI) finite-difference time-domain (FDTD) method. This
ADE CFS-PML implementation results in complete first-order dif-
ferential equations for the wavefield components and the auxiliary
memory variables. The same numerical scheme is also used in the in-
terior domain to solve the ADE CFS-PML equations, regardless of
the time-stepping scheme.

In this paper, we implement the ADE CFS-PML in seismic wave
simulation in the FDTD method and in the nonstaggered-grid finite-
difference method (Zhang and Chen, 2006) using a fourth-order
Runge-Kutta time-marching scheme. We derive the ADE CFS-PML
equations for the velocity-stress equations. Then we analyze the
free-surface boundary condition inside the PML layer and modify
the PML equations based on the free-surface condition to avoid the

instability caused by incompatibility between the PML equations
and the free-surface boundary condition. We analyze the role of the
scaling factor 8 in the CFS stretching function, which is still unclear
in the literature of seismic wave modeling. Next, we perform a series
of numerical tests in a thin-slab model to validate the ADE CFS-
PML implementation and to investigate the optimal values of the pa-
rameters in the CFS stretching function. We add the free surface to
the thin-slab model to demonstrate the efficiency of the modified
PML equations, taking into account the free-surface condition in ab-
sorbing surface waves. Finally, we simulate seismic wave propaga-
tion in a two-layer medium with surface topography in a narrow ver-
tical slice to demonstrate the implementation of the ADE CFS-PML
in the fourth-order Runge-Kutta scheme and its potential effective-
ness in seismic exploration.

VELOCITY-STRESS EQUATION AND
FINITE-DIFFERENCE NUMERICAL SCHEME

We consider the following velocity-stress formulation of the elas-
tic wave equations for an isotropic medium in the Cartesian coordi-
nate (x,y,z):

V.o, (1)

o, =c[Vv+(Vv)], (2)

where v = (v,,v,,0,)7 is the particle velocity vector; T is the trans-
pose operator; o is the stress tensor; the components are ¢ ,i,j
€ (x,y,2); p is the mass density; and c is the stiffness tensor. In this
paper, a comma followed by a subscript ¢, x, y, or z means a deriva-
tive with respect to ¢, x, y, or z. Sometimes it is more convenient to
discuss the PML implementation in the component form. The ex-
pression of the v, component of equation 1 is

PUxt = O xxx + ny,y + Oxzze (3)

We use two numerical schemes to solve the velocity-stress equa-
tions 1 and 2. One is the FDTD method, with a second-order-accura-
cy leapfrog time-marching scheme on a staggered grid (Levander,
1988; Graves, 1996). The other is the nonstaggered-grid finite-dif-
ference method with a fourth-order Runge-Kutta time-marching
scheme on a boundary-conforming grid (Zhang and Chen, 2006).
Because PML implementations do not rely on how spatial deriva-
tives are calculated, we only list the time-marching schemes here.
The second-order leapfrog scheme can be written as

0_n+l/2 — 0_11—1/2 + AtL(V"), (4)

Vn+l = v+ AIL(O'"+1/2), (5)

where At is the time step; superscripts n — 1/2, n, n+ 1/2 and n
+ 1 mean time level; L(o™*!7?) is the right-hand side of equation 2
evaluated at time level n + 1/2 using an arbitrary-order-accuracy
spatial staggered finite-difference operator; and L(v") is the right-
hand side of equation 1 at time level n.
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To describe the implementation of the fourth-order Runge-Kutta
scheme, we write equations 1 and 2 in vector form:

w,=Aw,+Bw + Cw_, (6)

where w = (vx,vy,v:,o-xx,oyy,azz,ayz,(rxz,oxy) is the velocity-stress
vector and where A, B, and C are the coefficient matrices that can be
easily derived. The fourth-order Runge-Kutta scheme can be ex-
pressed as

RV = ArL(w"),
h? = AiL(W" + aphV),
hS) = AlL(w" + ash?),
A = AIL(W" + a3h®),
W = w4 B0 + Boh® + Bk + gAY, (7)

where «; and B,(1=i=4) are the coefficients of the fourth-order
Runge-Kutta scheme and L(w") means the right-hand side of equa-
tion 6 calculated for variable w” using the spatial operator. Here, we
use the DRP/opt MacCormack operator (Hixon, 1997), which utiliz-
es dispersion-relation-preserving methodology (Tam and Webb,
1993) to optimize the dispersion and dissipation errors.

CFS-PML USING ADES

For simplicity of notation, we only discuss the PML at the positive
x-axis face and also presume the PML starts from x = 0.

Based on the concept of complex coordinate stretching (Chew
and Weedon, 1994), the equations inside the PML layer have exactly
the same form as in the physical domain (equations 1 and 2) except
that the coordinate x is replaced with a complex stretched coordinate

X:

X

xX= fsx(n)dn, (8)

0

where s, is the complex stretching function that determines the char-
acteristics of the PML model and # is the variable of integration.
From the relationship

o 10 o)
9% s 0x

one can transform equations in the complex coordinate (X,y,z) into
the Cartesian coordinate (x,y,z) where the numerical scheme will be
used. Using equation 3 as an example, we have

196 o a6
iwpd, = ——= + —= + —, (10)
S, Ox Jdy 0z

where a caret over a quantity denotes the value in the frequency do-
main. Once s, is determined, we can transform this equation into the
time domain to get the PML equation suitable for time-domain nu-

merical methods. The special formulation of s, is the key to distin-
guishing the standard PML, in which

d,

sy(x) =1 +—.(x), (11)
10

and the CFS-PML, in which
d,(x)

5:(x) = B(x) + (12)

a,(x) +io’

In equations 11 and 12, d, =0 is the attenuation factor that causes
the amplitude of the wavefield to be reduced exponentially inside the
PML layer, a, =0 is the frequency-shifted factor that makes the at-
tenuation frequency dependent, and 3, =1 is the scaling factor. The
latter has been found in numerical tests to be important for absorp-
tion of evanescent waves (Liu, 1999; Drossaert and Giannopoulos,
2007b) and near-grazing incident waves (Drossaert and Giannopo-
ulos, 2007a), but the reason has not been theoretically explained in
the literature of seismic wave modeling. We discuss the role of 3, in
later sections. The parameters d,(x), a,(x), B,(x), and therefore
s,(x) are all functions of x. In the following, we omit the dependence
on x for brevity.

The basic idea of ADE implementation of CFS-PML is to separate
the derivative with respect to the complex coordinate into two parts
and only keep iw in the denominator in one of them:

1 1 1 1 d,
——_—— % (]3)
S’C dX B}C BX(aXJ’_lw)BXJ’_dX
B+ :
a, +1w
Thus,
196 1 | A
= XX, X - _TX);’ (14)
S.)C a'x BX BX
where the auxiliary memory variable 77, is
. X dx X dx ~
il +\|a,+— T = —0 (15)
B B

Taking equation 14 into equation 10, we obtain the unsplit-field
CFS-PML equation for the v, component in the frequency domain:

PR A L .
iwpl,=—0,— — T + G+, (16)
B B
Transforming equations 15 and 16 to the time domain, we get the fi-
nal ADE CFS-PML equationof v, as

1 1
POyt = O xxx + o-xy,y + Oz + |:_ - 1:|0'xx,x - T,ér
B Bx

(17)

and

d d;
T;C,f—'— (ax+ B_X)Tix: ﬁ_xo-xx,X' (18)

It is worth noting that we write the time-domain PML equation as
a correction to the original wave equation because it is easy to
achieve parallel balance and to implement in an existing code (Dros-
saert and Giannopoulos, 2007b). The ADE CFS-PML equations for
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the y- and z-axes and other components can be obtained in the same
manner. The complete ADE CFS-PML equations for the velocity-
stress equations are in Appendix A.

The velocity-stress equations 1 and 2 and the ADE CFS-PML
equations 17 and 18 are all first-order partial-differential equations
with respect to time ¢, so they can be updated by the same time-step-
ping scheme. In the staggered second-order leapfrog scheme, equa-
tion 18 can be discretized as

n+1 +1
T rix"+<a+g>7§; T _de s
' .
X

A 2 T p

Then we can update T and v, through

d, 2Atd,
2-Atla,+ — 3
i = S e e
2+Ar<ax+—"> 2+At(ax+—x>
By B
(20)
and

At At 1
Un+1 :Un+_ n+1/2+0_n+1/2+0_n+1/2)+_<_

x X XX, X xy,y XZ,Z p ﬁx
Ar 1 2
- 1>ffﬁ§xm ~ B T
\ 2+ At( a, + —X)
Atd,
BX n
+ 7 ot (21)
2+ At(ax + —")
Bx

The implementation in the fourth-order Runge-Kutta scheme is also
straightforward. One can just include the memory variables in the
solution vector w in equation 6, then use the Runge-Kutta scheme
(equation 7) to update the PML equations, including the memory-
variable equations.

The computer memory requirement of ADE CFS-PML is the
same as for C-PML (Komatitsch and Martin, 2007) or RIPML
(Drossaert and Giannopoulos, 2007a) — one memory variable per
normal derivative to the PML layer.

ADE CFS-PML BOUNDARY AND FREE-SURFACE
BOUNDARY CONDITIONS

To our knowledge, there is no publication on how to implement
the free-surface boundary condition in the PML region, which is cru-
cial to absorb surface waves efficiently in the FDTD method or to

avoid the stability problem in the nonstaggered finite-difference
method.

At the flat surface in the physical region, the free-surface bound-
ary condition requires

0..=0, 0,=0, o,=0. (22)

vz

In the PML layer, the zero-valued stress components should remain
zero at the free surface because the effect of the PML is to exponen-
tially damp the wavefield to zero.

Because the velocity derivatives are related to the stress compo-
nents through the stress-strain relation (equation 2), the zero-stress
condition leads to velocity derivative constraints at the free surface:

A A
- Upx — Uy
A2 ™ A+2u

(23)

Uz =

Taking this equation into the stress-strain relation, the true equations
toupdate o, and o, at the free surface are

Oy =A+2wv,  + Av, , + )t[ —

A+ 2,u,vx’x
A
— e 24
A+ 2t @4
Ty =AU+ (A+ 20y, + A[ i ZMUX’X
A
S (25)
A+2u 7

To absorb the surface wave effectively, the ADE CFS-PML equa-
tions of o, and o,, at the intersection of the free surface and the
PML should be derived from equations 24 and 25 as equation A-13
in Appendix A.

In the FDTD method, there are two possible locations for the free
surface: coincident with the normal stress components or with the
shear stress component .. (Gottschammer and Olsen, 2001;
Kristek et al., 2002). As the numerical tests presented in the follow-
ing section show, the modified ADE CFS-PML equation A-13 is cru-
cial to absorb surface waves effectively if the free surface coincides
with the normal stress components. If the free surface coincides with
o ., the free-surface boundary condition is implemented as in the
physical domain by setting o, and o, to zero at the free surface, and
no special treatment is needed in the PML layer. In the nonstaggered
finite-difference method, our numerical tests show that the modified
PML equation A-13 is essential for the stability of the solution if the
velocity-component free-surface boundary condition (equation 23)
is applied.

ROLE OF THE SCALING FACTOR B

Among the three parameters in the CFS stretching function, the
role of B in seismic wave modeling remains unclear. For example, a
constant 8 = 1 is used in Festa and Vilotte (2005) and Festa et al.
(2005). The value of B does not significantly affect the results in Ko-
matitsch and Martin’s (2007) numerical tests but plays an important
role in the numerical tests of Drossaert and Giannopoulos (2007a,
2007b). In electromagnetic wave modeling, Petropoulos (2000)
states that 3, “allows for bending the waves toward the normal di-
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rection into the layer by increasing the corresponding component of
the wave vector while leaving the tangential component unchanged;
at the same time, it increases the damping in the normal direction
into the layer” with a stretching function s, = B.(1 + (d./(a,
+ iw))). In this section, we present a theoretical explanation of how
BB affects the absorption of near-grazing incident waves.

We rewrite the CFS stretching function (equation 12) as

d

B

Sy = 1+
+= B a,+iw

(26)

The CFS-PML based on the velocity-stress equations 1 and 2 and the
stretching-function equation 26 is equivalent to using a stretching
function

5=1+ —=— 27)

to stretch the following equations:

ov 1(1
_:_<_VX+V>0',
at p\By

A (AR AR
-— =C _Vx + V” Vv + _Vx + VH v . (28)
B B

The solution of equations 28 in a homogeneous isotropic medium is
the same as the solution of the velocity-stress equations 1 and 2 in a
transversely isotropic medium (x is the symmetry axis) that has the
stiffness tensor

A+2u A A
. L2 9 0 0
By By By
A i A 0 0 0
-~ "
By
A
_ L A A+24 0 0 0
C= ﬁx
0 0 0 w 0 0
0 0 00%0
0 0 o o0 o &
B

(29)

We can see that B, introduces anisotropy and reduces the phase
velocity normal to the PML layer to C/ .. The plane-wave solution
of equation 28 can be written as
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u = uge @l SN, (30)

where u, is the polarization vector, s = % is the slowness vector nor-

mal to the wavefront surface, and C is the phase velocity depending
on the propagation direction. For simplicity, we only consider waves
propagating in the (x,z)-plane. Equation 30 becomes

31)

_ iw(,_ cos b sin_ﬂz)
u = upe C C ’
where 6 is the angle between the normal direction of the wavefront
and x-axis. Taking equation 27 into equation 8, we can obtain the

stretched X:

P axdx X wdx
- B . f B
=x+ | 5 dnp—i| 5 —dn. (32
e fai%—wzn ' a§+w217 (32)
0 0

By substituting equation 32 into equation 31, we get the plane-wave
solution of the CFS-PML.:

. cos 6 sin 6 €05 0 px 0y Byay cos 0 o
u=uge ( c c )e ¢Vt € E [0 T

D

(33)

If the wave propagates normal to the PML layer (phase velocity c
= C/B,and cos § = 1, assuming a constant 3,), the damping term

D becomes
1 fx ? Jd
exp| — — ——d, s
P C oai-i—wz g

in which S, is canceled out. This indicates that for normal incident
waves, 3, only decreases the wave-propagation speed without in-
creasing damping. We verify this by calculating the waveform in the
PML with different 3, values for a normal incident plane wave using
the FDTD method («, = 0 and polynomial scaled 8, and d,).

Figure 1a shows the maximum amplitude for different 8 values
(Bo=1and 9) at each grid point inside a 25-cell-thick PML layer.
The maximum amplitude distributions do not change with 3, veri-
fying that 8 does not directly increase damping. Figure 1b compares
the time series of the particle velocity for 8, =1 and 8, =9 at the
point 15 cell into the PML. We can see that the wave using 8, = 9 ar-
rives later than the wave using 3, = 1 because of the reduced wave
speed by B.. The stretching function in Petropoulos (2000) is of a
form s, = B.(1 + (d./(a, + iw))), whose damping term contains
the product of B, and d, in the exponent. Therefore, 3, in Petropou-
los (2000) affects damping.

For grazing incident waves, cos 6 is very small if 3, is not used.
Consequently, D in equation 33 may not be small enough to effi-
ciently damp the wave propagating subparallel to the PML layer, and
strong spurious reflections can occur. If 3, is used, the normal direc-
tion of the wavefront is bent toward the normal direction of the PML
layer as aresult of the anisotropy caused by 3; therefore, cos 6 in the
damping term is increased and the absorption is improved. We will
demonstrate the effect of 3, using particle-velocity snapshots in the
first numerical test in the next section. Note that 3, cannot be can-
celed outin the damping term for oblique incident waves because the
phase velocity is a function depending on several components of the
stiffness tensor.



T146 Zhang and Shen

NUMERICAL TESTS

To demonstrate the ADE CFS-PML, we present results of three
numerical tests. One is performed in a thin, homogeneous 3D slab
surrounded by PMLs on all surfaces to investigate the optimal values
of the CFS parameters. In the second test, we add a free surface to the
thin-slab model to validate the modified PML equations that take
into account the free-surface boundary condition in the absorption of
surface waves. We use the FDTD method in the first two tests. In the
third test, we use the nonstaggered finite-difference method with the
fourth-order Runge-Kutta scheme in a two-layer model with a 3D to-
pography to validate the ADE CFS-PML implementation in a high-
er-order time-marching scheme.

Before showing the numerical test results, let us briefly review the
choice of the parameter values in the CFS function. According to
Roden and Gedney (2000), d, B, and « should be spatially scaled in
the PML layer to reduce reflection errors in the discrete space. The
value of d usually is zero at the PML-interior interface and maxi-
mum at the exterior boundary. The value of 8 = 1 at the PML-interi-
or interface and maximum at the exterior boundary. The parameter «
is scaled in areverse manner so the value is maximum at the PML-in-
terior interface and gradually reduces to zero at the exterior bound-
ary to absorb low-frequency waves.

In this paper, we choose the commonly used p-order polynomial
scaling function in the PML layer (x =0) (Gedney, 1998; Roden and
Gedney, 2000):

a) T
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Figure 1. (a) Maximum amplitude distribution for different 8 values
(Bo = 1,solid line; By = 9, dashed line) for a 25-cell-thick PML of a
normal incident plane wave (a = 0 and an optimal d are used). (b)
Velocity seismogram at the grid point 15 cells into the PML for 3,
=1 (solid line) and B, = 9 (dotted line). The wave using B, = 9 ar-
rives later than using 8, =1 because of the reduced wave speed
caused by ..

dx = dO(%>[]d’ (34)

x\Pp

a, = ao[l — (%)PQ], (36)

where d, and B, are the maximum values of d and 3 at the exterior
boundary (the optimal B, is discussed in the next section), «, is the
maximum value of « at the PML-interior interface, L is the width of
the PML layer, and x is the distance to the PML-interior interface.
The parameters p,, pg, and p,, typically range from one to four, and
two is commonly used. We use p, = 2 and pg = 2, and we choose p,,
= | because Martin et al. (2008b) show the linear variation of « gets
amore pronounced decay of energy.

The maximum value of d is obtained through a theoretical reflec-
tion coefficient relation (Collino and Tsogka, 2001):

1
dy= — patDepy o (37)
2L

where cp is the compressional wave speed and R is the theoretical re-
flection coefficient for a normal-incident plane P-wave with a Di-
richlet condition (v = 0 and o = 0) at the exterior boundary of the
PML layer. The trade-off between a small and a large d, is that a too-
small dy cannot damp the wavefield enough in the PML layer and
strong spurious reflections from the Dirichlet boundary will propa-
gate back to the physical domain. A too-large d leads to spurious re-
flections caused by the dispersion (Collino and Tsogka, 2001). Thus,
the optimal d, depends on L and R.

Collino and Tsogka (2001) propose R for different widths of the
PML layer as R> = 0.01, R'* = 0.001, and R* = 0.0001, where the
superscript denotes the width of the PML region in the grid spacing.
Marcinkovich and Olsen (2003) approximate Collino and Tsogka’s
(2001) relationship between R and PML width by a third-order poly-
nomial function to obtain the R value for an arbitrary PML width be-
tween 1 and 20 layers. We note that the relationship between R and
PML width follows a logarithmic equation:

R20
1 I
R °g1°<R10> N
10g10 W =wlogw E . (38)
010 10

Thus, R for an arbitrary PML layer width of N cell size (could be
>20) can be expressed as

_logjo(N) — 1
log((2)

Equation 37 is optimized for normal incident waves. For oblique in-
cident waves, a larger d,, than the value from equation 37 is needed to
obtain optimal damping. From numerical tests, we find that increas-
ing dy to two to three times the value from equation 37 yields better
solutions for grazing incidence.

log,o(R) = - 3. (39)
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Festa and Vilotte (2005) recommend «, to be 7 f,, where f, is the
dominant frequency of the source-time function. In our numerical
tests, different values of a, (1.07f., 1.57f., and 2.07f.) did not
make a significant difference. Thus, «, = 7f, seems a good choice
in practice.

Thin, homogeneous 3D slab surrounded by PMLs

This test compares the performance difference between the ADE
CFS-PML and the standard PML (by setting 8, = 1 and &, = 0) for
near-grazing incident body waves and demonstrates the effects of
the parameters d, B, and «,.

Figure 2a shows the computational configurations. The medium
has a compressional-wave speed cp = 3200 m/s, shear-wave speed
¢s = 1600 m/s, and density p = 2200 kg/m?. The grid spacing is
10 m, the total grid number is 600 X 600 X 81, and the size of the
model is 5990 X 5990 X 800 m. The vertical-force source is applied
at (200, 300, 600) m, 10 cells away from the PML-interior interface
at the left (negative x-axis) face and the top (positive z-axis) face.
The receiver is located at (5790, 3000, 600) m, 10 cells away from
the PML-interior interface at the left and top faces. (Additional
terms used are right [positive x-axis] face, front [negative y-axis]
face, back [positive y-axis] face, and bottom [negative z-axis] face.)

The source-time function is a Ricker wavelet with a center fre-
quency of 5 Hz and a time delay of 0.6 s. The time step is 1.5 ms,
and the total time step is 5000. The result is a time window of 7.5 s,
in which the reflected S-wave can travel through the computational
domain. The value of d, is obtained through equation 37. Different
values of B and a, (0,0.57f,, 1.07f,, 1.57f., and 2.07f,) are test-
ed.

Figure 2b-f shows snapshots of the v, component at 3.75 s. The P-
wave has passed, and the dominant phase is the S-phase. The result
of a large model (two times larger along the x- and y-axes and 12
times larger along the z-axis with a 20-cell-thick PML) is used as the
reference (Figure 2b). The standard PML shows spurious evanescent

a)
E Receiver
P 800 ]
.g 0
N 450 5990
&
U 15 e ()
s% 5 1500 PN

z-axis (m) &

z-axis (m) S

waves at the top face (Figure 2c). The parameter « can eliminate
such spurious evanescent waves, but there is a spurious reflected
body wave immediately after the S-phase (Figure 2d). Increasing a,
to 2arf, does not significantly affect the result (not shown). Using
both B and « reduces the spurious reflected body wave and achieves
better results (Figure 2¢). We also increase d, to three times larger,
which can dramatically improve the absorption of grazing incident
waves (Figure 2f), but the spurious reflection for normal incidence
strengthens (at the back face, Figure 2f).

These results indicate that it is important to choose appropriate
values for a, Bo, and d, for the absorption of grazing incident
waves. We need a quantitative measurement of the results to deter-
mine which values of the parameters are optimal. For this purpose,
we use the following integral as a local error at position x:

2 [vpmL(X,1) = Ver(X,1)]

E(x) = — : (40)
- E |Uref(th)|

t

where vpyi(X,1) is the simulated wavefield in the PML model and
Urei(X,1) is the counterpart in the reference model.

Figure 3 shows the 3D distribution of the local error and particle-
velocity time series at the receiver in Figure 2a for different parame-
ter values. These plots further confirm the different effects of «, 3,
and d on absorption of the grazing incident wave, as shown in Figure
2b-f. There are clear, spurious reflected S-waves (larger amplitude of
the S-wave in Figure 3a) and spurious evanescent waves (Figure 3b)
in the standard PML, caused by near-grazing incident waves. The
spurious reflected S-wave propagates in nearly the same direction as
the near-grazing incident S-wave. This it is nearly invisible in the
snapshot in Figure 2d but can be observed in the time series in Figure
3d for the CFS-PML using ay = 7f,.

Figure 3d suggests that although a can eliminate the spurious eva-
nescent waves, it does little in the absorption of near-grazing inci-

Figure 2. The thin, homogeneous 3D slab model
and the snapshots of v, at 3:75 s. The shading is
scaled to 0.1% of the maximum absolute ampli-
tude. White lines are the PML-interior interfaces.
(a) The slab model surrounded by 10-cell-thick
PMLs on all six faces (three cross sections shown).
The PML-interior interfaces are indicated by
dashed lines. (b) Reference solution; (c) standard
PML; (d) ay = 7f. and B, = 1; (e) ay = 7f. and
Bo=10; (f) g = 7f., Bo =7, and a three-times-
larger d,.
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Figure 3. The top row shows v, at the receiver in Figure 2a for different PML parameters. The amplitude axis of the middle row is scaled to 1% of
that of the left column to highlight the difference. The bottom row shows the local-error distribution. The first arrival in the middle row is the
P-wave, which is nearly invisible in the left row. (a-c) Standard PML; (d-f) By = 1 and ay = 7f.; (g-1) Bo = 10 and «p = 7f.; (-1) Bo =7, e

= mrf.and a three-times-larger dj.

dent body waves. So we observe similar local-error distributions in
Figure 3c and f. From the damping-term expression (without 3,),

cosﬂf ? S
exp| —
P C a+w K

we see that a does not significantly affect the incident angle 8, and
cos 6 is very small for near-grazing incident waves. We already
know that 8, bends the wavefront toward the normal direction of the
PML, decreasing the slowness angle 6 and increasing the damping
of waves at near-grazing incidence. The results in Figure 3g-i for B,
= 10 are as expected: The S-wave amplitude is close to the reference
solution (Figure 3g), and the local error in Figure 3i is much smaller
than the local error in Figure 3c and f.

We can clearly observe the effect of 8, for grazing incident waves
in this numerical test from comparing the snapshots in Figure 4a and
b. As shown in Figure 3j-1, a three-times-larger d, (with 8, =7, a,
= 7rf.) has nearly perfect fits for P- and S-waves (Figure 3j-1).

To investigate the optimal value of 3, we use an averaged local er-
ror in a subgrid located 10 cells away from the PML-interior inter-
faces and in the xz-plane through y =3000 m (20=i=580,
J =301,20=k=61) as the global error. Figure 5a shows the con-
tour plot of the global error as a function of B, and «. It can be seen

that o/ (7f.) between one and two does not affect the overall accu-
racy. The optimal value of B, is about 10-12 in this case. The global
error with respect to 3 in Figure 5b shows that the optimal 3, is in-
sensitive to the PML thickness N but increases when shear-wave
speed cs increases (equivalent to grid-spacing decreases or source-
frequency decreases). Theoretically, a larger 8 can bend waves more
efficiently, but a very large 8 can make the wavelength too short to
be resolved by the numerical scheme, which can cause strong nu-
merical spurious reflections.

Figure 5c and d shows the normalized points-per-dominant-
wavelength distribution inside the PML layer at the center frequency
for the optimal B, in Figure 5b (B8, = 11 for ¢s = 1600 m/s and B,
=15 for ¢g = 2300 m/s). The value of the normalized points per
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Figure 4. Snapshots of absolute v, on the cross section in the middle
of the y-axis at 3:75 s. The color is scaled to the same maximum ab-
solute amplitude. White lines are the PML-interior interfaces. (a)
For ey = mf, and 3, = 1. The amplitude of the S-wave in the upper
PML layer is even larger than that in the physical region, which indi-
cates a does not efficiently absorb this near-grazing propagating
body wave. The distribution of the peak amplitude is wider than Fig-
ure 4b, which indicates the reflected wave propagates into the physi-
cal domain. (b) For oy = 7f.and B, = 10. The wavefront is bent to-
ward the normal direction inside the upper and bottom PML layers.
The S-wave amplitude exhibits damping in the PML layers.
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Figure 5. (a) Contours of the global error as a function of &, and B,. (b) Global-error vari-
ation with respect to B, PML thickness N, and S-wave velocities cs (a is fixed to 7 f,.).
The mimimal global error is around 11 for different PML thicknesses of 10, 12, and 20
(cs = 1600 m/s), indicating the optimal B is insensitive to the thickness of the PML.
For N =20 and ¢g = 2200 m/s, the optimal 3, is near 15. (c) Normalized points per
dominant wavelength variation inside the PML layer for S-waves for different PML
thickness N and S-wave speed c¢s. The normalized points per dominant wavelength is de-
fined as PPW/PPW,, where PPW is points per dominant wavelength and PPW, is the
minimal PPW requirement of the numerical scheme. For the fourth-order staggered fi-
nite-difference method, PPW,, = 6. (d) Zoomed-in view of Figure 5¢ to highlight details.
The normalized points per dominant wavelength is approximately 0.5 at the exterior
boundary in difference cases.
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dominant wavelength at the exterior boundary is
approximately 0.5 in difference cases. Thus, we
can estimate the optimal 3, through

C

- 41
0.5PPW AR, “1)

Bo

Note that we use the same parameter values in all
PMLs on the six faces in this numerical test. In
practice, one can use larger 3, and d, only for a
particular PML layer for which grazing incidence
is important.

Thin 3D slab with the free surface

We change one face of the thin slab in the pre-
vious test to the free surface to demonstrate the
absorption of surface waves of the ADE CFS-
PML and the effect of the modified PML equa-
tions that take into account the free-surface
boundary condition.

Figure 6a shows the computational configura-
tions. The star symbol shows the location of the
vertical force (200, 3000, 795) m, 10 cells away
from the PML-interior interface in the negative
x-direction and one-half cell below the free sur-
face. All other parameters are the same as the
model in Figure 2a. The free-surface boundary
condition is implemented using the adjusted fi-
nite-difference approximations (AFDA) tech-
nique (Kristek et al., 2002), in which a compact
finite-difference operator and biased finite-differ-

Figure 6. Snapshots of v, of the free-surface slab
model at 3:75 s. The color is scaled to 0.1% of the
maximum absolute amplitude. White lines show
the PML-interior interfaces. (a) Thin slab model
with the free surface. A 10-cell-thick PML (dashed
lines) is applied on all the faces except the free sur-
face. (b) Reference solution; (c) standard PML; (d)
Bo=1 and a, = 7f,; (¢) standard PML without
using the modified PML equation A-13. Strong
spurious reflected surface waves can be clearly
seen. (f) Standard PML with the free surface coin-
cident with the location of the o, component.
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ence operators are used to calculate derivatives with respect to the
z-axis at grid points near the free surface.

Figure 6 is the snapshot of the v, component at 3.75 s. The free
surface coincides with the location of the normal stress components.

z-axis (km)

0

xor® e

Figure 7. The two-layer model with the free-surface topography, de-
fined by z = 1000 exp( —r2/1000?), where r = vyx*> + y2. When r
> 2000 m, z, is damped to zero by a Gaussian function. The model
is 19.95 km long, 6.15 km wide, and 10.7 km deep (including PML
layers). The interface is at z = —8 km, and the medium parameters
are cp = 3000 m/s, cs = 2000 m/s, and p = 1200 kg/m? for the up-
per layer and ¢p = 5000 m/s, ¢ = 2500 m/s, and p = 1800 kg/m?
for the lower layer. A 12-cell-thick PMLis applied on all faces except
the free surface (white lines). The star on the left side shows the loca-
tion of the vertical force (—8000, 0, — 500) m, and the triangle
(right side) indicates the receiver’s location (9000, 0, 0) m, seven
cells’ distance to the PML-interior interface at the right face.

x-axis (km)

Figure 8. Snapshots of v, at 7 s on the xz cross section through the
middle point of the y-axis. The shading is scaled to less than 1% of
the maximum absolute amplitude. White lines are the PML-interior
interfaces. (a) Reference solution; (b) 8¢ = 1,ay = 7f..

Because waves do not impinge the PML at near-grazing incidence,
the standard PML (Figure 6¢) and the ADE CFS-PML (Figure 6d,
Bo =1 and o, = 7f,) both efficiently absorb surface waves. For the
same reason, increasing 3, (not shown here) does not make a signif-
icant difference. If the modified ADE CFS-PML equation A-13,
which incorporates the free-surface boundary, is not used, a relative-
ly strong reflected-surface phase can be clearly seen (Figure 6e). If
we set the location of o, as the free surface in the FDTD method, the
amplitude of the reflected wave (Figure 6f) is smaller than Figure 6e
but stronger than Figure 6¢. Thus, the location of the free surface at
normal stress position has better absorption of surface waves than at
the o . position.

Two-layer medium with free-surface topography in a
narrow vertical slice

In this test, we validate the ADE CFS-PML implementation in the
fourth-order Runge-Kutta scheme and demonstrate the optimal per-
formance of the ADE CFS-PML in a narrow vertical slice to simulate
wave propagation in a common situation involving seismic profiles.

The medium has two layers (Figure 7) separated atz = —8 km. A
boundary-conforming grid is used to conform the grid with the sur-
face topography. The horizontal grid spacing is 50 m; a varying grid
spacing (~33-60 m) is used vertically. The source-time function is
a Ricker wavelet with a center frequency of 1.5 Hz and a time delay
of 1 s. The value of dj is calculated from equation 37, where the cp of
the first layer (3000 m/s) is used for the PML layers at the x- and
y-axes faces and where c¢p of the lower layer (5000 m/s) is used for
the bottom PML layer. The value of «is 7f,.. The optimal B, is esti-
mated to be eight from equation 41, using the surface-wave speed of
the first layer. We also simulate with 8, = 1 for comparison with the
optimal B, value. Numerical solution of a larger model (double the
length and depth, five times the width, a 25-cell-thick PML) is used
as reference.

The difference between the ADE CFS-PML (Figure 8b, ay = 7f.
and B, = 1) solution and the reference (Figure 8a) is so small that it
is hard to observe from the snapshots when the color is scaled to 1%
of the maximum amplitude. We cannot tell the difference between
the v. time series of the reference (solid line), PML with 8, =1
(dashed-dotted line), and PML with B, = 8 (dotted line) in Figure 9a
for the receiver in Figure 7. In Figure 9b, we expand Figure 9a by
limiting the time axis to approximately 13—21 s and reducing the
amplitude axis to 0.2%. Even at this scale, the solution of 8, =8
(dotted line) still overlaps with the reference. Figure 9c plots the v.
difference between the PML with 8,=1 and reference (vf 0o=1
—v™) and between the PML with 8, =28 and reference (v ="
— v™). It is clear that the optimal 3, yields a better result than 3,
= 1. The amplitude of the spurious waves is below 0.1% of the max-
imum amplitude. It can be seen that the ADE CFS-PML can effi-
ciently absorb waves in this narrow, two-layer topographic model.
The spurious waves do not significantly affect the reflections from
the inner interface. This numerical test indicates that we can use a
narrow-slice mesh with the ADE CFS-PML to simulate full-wave
propagation in complex structured models in a common situation in-
volving seismic profiles.
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Figure 9. (a) Comparison of seismograms v, for the reference (solid
line), By = 1 (dashed line), and B, = 8 (dotted line) at the receiver
shown in Figure 7. (b) Detailed comparison within the time window
of approximately 13—21 s. The amplitude is zoomed in to 0.2% of
that in Figure 9a. The difference can be seen between the reference
and B, = 1. The solution with 8, = 8 overlaps with the reference.
(c) Difference between solutions from the CFS ADE-PML and the
reference. The solid line shows the difference for 8y = 1, and the
dotted line shows the difference for the optimal B, = 8. The maxi-
mum y-axis is about 0.5% of Figure 9a.

CONCLUSION

We have introduced an efficient unsplit-field CFS-PML imple-
mentation using ADEs in seismic wave modeling. We derive the
complete ADE CFS-PML equations for the velocity-stress equa-
tions. Because the ADE CFS-PML equations are first-order partial-
differential equations, they can be solved by the same numerical
scheme used in the inner domain no matter what time-marching
scheme is used. We have demonstrated this by implementing the
ADE CFS-PML in the second-order leapfrog scheme and the fourth-
order Runge-Kutta scheme.

Also, we have analyzed the role of the scaling factor 8 in CFS-
PML, demonstrating that it introduces an intermediate transforma-
tion of the velocity-stress equations into an anisotropic medium that
has a lower wave speed normal to the PML layer. For normal inci-
dent waves, it only delays the waves propagating into the PML layer
without increased damping. For oblique incident waves, it can bend

the waves toward the normal direction, increasing cos 6 in the
damping term and improving absorption. Numerical tests indicate
that the frequency-shifted factor o only eliminates the evanescent
waves caused by near-grazing incident waves but does not signifi-
cantly improve the absorption of the reflected body waves. The scal-
ing factor B is more efficient and important in absorbing grazing in-
cident waves.

Our numerical tests indicate that the incompatibility between
PML equations and the free-surface boundary-condition implemen-
tation can cause an unstable wave originating from the free surface
in the PML layer in the nonstaggered-grid finite-difference method.
Thus, we derive the PML equations, taking the free-surface bound-
ary condition into account. Numerical tests validate that these modi-
fied PML equations solve the instability problem in the nonstag-
gered finite-difference method and improve the efficiency of absorb-
ing surface waves in the staggered finite-difference method when the
free surface coincides with the normal stress components.

Three numerical tests validate the ADE CFS-PML implementa-
tion in the FDTD method and the nonstaggered-grid finite-differ-
ence method using the fourth-order Runge-Kutta scheme. We have
investigated the different values of the CFS parameters on the effi-
ciency of absorption based on quantitative error criteria. Our numer-
ical tests indicate that the optimal 8 reduces the points per dominant
wavelength at the exterior boundary to three for the fourth-order fi-
nite-difference operator, about half the value required by the numeri-
cal scheme. Different values of a (1.077f,, 1.57f., and 2.07f,) do
not make a significant difference. Thus, ay = 7f, seems a good
choice in practice. For grazing incidence, adjusting only « and 8 is
not enough; one also needs to increase the maximum value d, of the
damping profile d for optimal absorption.

A numerical test of a two-layer model with a surface topography
in a narrow vertical slice indicates that ADE CFS-PML yields accu-
rate results compared with the reference solution in a much larger
and thicker model, making it possible to carry out efficient 3D for-
ward simulation in a common situation involving seismic profiles in
seismic exploration.
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APPENDIX A

ADE CFS-PML EQUATIONS FOR
ELASTIC WAVE EQUATIONS

ADE CFS-PML equations for the velocity-stress formulation of
the elastic wave equations are
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The auxiliary differential equations for the memory variables damp-
ing along x are
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The auxiliary differential equations for the memory variables damp-
ing along y are
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The auxiliary differential equations for the memory variables damp-
ing along z are

x.t
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At the free surface in the PML layer, the PML equations of o, ,
and o, ,, taking the free-surface boundary condition into account,
are

1
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