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ABSTRACT

Widely used recommendation systems are mainly accuracy-oriented since they

are based on item-based ratings and user- or item-based similarity measures. Such

accuracy-based engines do not consider factors such as proliferation of varied user

interests and the desire for changes. This results in a muted user experience that

is generated from a constrained and narrow feature set. Recommender systems

should therefore consider other important metrics outside of accuracy such as cov-

erage, novelty, serendipity, unexpectedness and usefulness.

The main focus of this thesis is to both incorporate serendipity into a rec-

ommendation engine and improve its quality using the widely used collaborative

filtering method. Serendipity is defined as finding something good or useful while

not specifically searching for it. The design of recommendation engines that con-

siders serendipity is a relatively new and an open research problem. This is largely

due to a certain degree of ambiguity in balancing the level of unexpectedness and

usefulness of items. In this thesis, a new hybrid algorithm that combines a standard

user-based collaborative filtering method, and item attributes has been proposed to

improve the quality of serendipity over those that use item ratings alone. The algo-

rithm was implemented using Python in conjunction with the scientific computing

package NumPy. Furthermore, the code has been validated using a well-accepted

and widely used open source software namely, Apache Mahout, that provides sup-

port for recommender system application development. The new method has been

tested on the 100K MovieLens dataset from the GroupLens Research Center that

consists of 100,000 preferences for 1,682 movies rated by 943 customers. The new

algorithm is shown to be capable of identifying a significant fraction of movies that

are less serendipitous but which might not have been identified otherwise, thereby

improving the quality of predictions.
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CHAPTER 1

INTRODUCTION

1.1 RELATED WORK

The immense popularity and the continued growth of the Internet have re-

sulted in an abundance of information and new sources of knowledge that are not

limited to traditional databases. Information filtering is a common technique that

removes unwanted information and presents useful and relevant data to the users.

Recommender systems are those that adopt these information filtering techniques

to provide customized information for the targeted audience. The development

and deployment of recommender systems have gained significant attention in re-

cent years. Recommender systems are popular web-search mechanisms, which are

used to address information overload and provide personalized results to the users.

The aim of a recommender system is to automatically find the most useful product

(for example, movies, books, etc.,) for a user that best suits his/her needs and taste.

Such recommendations are made possible by profiling and analyzing the relation-

ships between users and products. Some of the most popular recommender systems

include content-based methods (ex. Music Genome Project), collaborative filters

(Google, Amazon, Yahoo!), social network analysis (Facebook, LinkedIn, Twitter,

Zynga), and combination of the above (hybrid recommenders). Collaborative Fil-

tering is the most commonly used method in recommender engines and is based

on user-to-user similarity [1]. This method maps the user to a set of users with

similar tastes, and items are recommended based on how like-minded users rated

those items. Content based filtering system recommends items that are similar

to those that a user liked in the past. It has its roots from information retrieval

and information filtering techniques and employs many of the same principles. The

preferences of the users are collected both explicitly and implicitly in these systems.
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Explicit ratings are obtained when a user rates an item in a scale of 1-10 or by

giving 1-5 stars or through questionnaires. Implicit ratings are obtained from the

buying-patterns or click-stream behavior (Read, Click) of the users. Both content-

based and collaborative filters suffer from cold-start issues. A cold-start problem

is one for which the ratings for a particular item is not known (for example, a

new item) and hence, recommendations are impossible or hard to predict [2]. A

knowledge-based system is a case-based recommender system that uses knowledge

about users and products to pursue a knowledge based approach for giving rec-

ommendations. Since the recommendations given by these systems are not based

on user ratings, they do not suffer from cold-start issues. Hybrid techniques that

combine various algorithms are also currently used by various websites to provide

accurate recommendation to users.

However, currently many recommendation systems in use are mainly accuracy-

oriented since they are mainly based on item similarity measures. Such systems

are designed to predict items that are similar (accurate or close enough) to the

existing list of items (for example, if a user has listened to an album of Mozart, a

recommender system recommends only other albums by Mozart or at least, other

classical composers). The most common metrics to evaluate the accuracy measures

are the Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE).

There are significant disadvantages for such accuracy-based recommender engines

[3]. Accuracy-based engines do not consider factors such as proliferation of varied

user interests and desire for changes. This results in a muted user experience that

is generated from a constrained and narrow feature set. There is no room for

user’s personal growth and experience. Thus, recommender systems should also

consider other important metrics outside of accuracy such as coverage, novelty,

serendipity, unexpectedness and usefulness. Briefly, serendipity is defined as the
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accident of finding something good or useful while not specifically searching for

it. Serendipity is thus closely related to unexpectedness and involves a positive

emotional response of the user about a previously unknown item. It measures how

surprising the unexpected recommendations are [4]. In other words, serendipity is

concerned with the novelty of recommendations and in how far recommendations

may positively surprise users [5]. Adamopoulos [6] has proposed a method to im-

prove user satisfaction by generating unexpected recommendations based on the

utility theory of economics. A discovery-oriented collaborative filtering algorithm

for deriving novel recommendations has been proposed in Hijikata et al. [7]. Andre

et al.[8] examine the potential for serendipity in Web search and suggest that infor-

mation about personal interests and behavior may be used to support serendipity.

Their algorithms, in addition to building a User preference, build another profile of

Users Known and Unknown Items. Novel recommendations are then given based

on them. Chhavi Rana [9] has proposed a methodology based on temporal pa-

rameters to include novelty and serendipity in recommender systems. Ziegler et

al.[10] assume that diversifying recommendation lists improves user satisfaction.

They proposed topic diversification, which diversifies recommendation lists, based

on an intra-list similarity metric. In [11], it has been proposed to recommend items

whose description is semantically far from users profiles. Kawamae [12] suggests

a recommendation algorithm based on the assumption that users follow earlier

adopters who have demonstrated similar preferences.

Serendipity is becoming a popular topic of research in the current recom-

mender systems to enhance user experiences. This thesis will specifically deal with

developing a recommender system that incorporates serendipity as a factor for en-

riching the predictions. Furthermore, the quality of the predicted serendipitous

items will be improved using the contents or attributes of the items.
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CHAPTER 2

COLLABORATIVE FILTERING METHODS

Most recommender systems take either of two basic approaches: collaborative

filtering or content-based filtering. Collaborative filtering (CF) is one of the most

successful approaches to building recommender systems [1]. In order to establish

recommendations, CF systems need to relate two fundamentally different entities:

items and users.There are two primary approaches to facilitate such a comparison,

which constitute the two main techniques of CF: the neighborhood approach and

the model-based approach.

2.1 NEIGHBORHOOD APPROACH

Neighborhood methods focus on relationships between users called user-user

CF or between items called item-item CF. Neighborhood-based methods are also

commonly referred to as memory-based approaches.

2.1.1 USER-USER CF METHOD

A user-user neighborhood approach models the preference of a user to an item

based on ratings of similar users for the same item. User-user CF is a straightfor-

ward algorithmic interpretation of the core premise of CF: find other users whose

past rating behavior is similar to that of the current user and use their ratings on

other items to predict what the current user will like [2]. The fundamental ingredi-

ents for CF are: (i) rating matrix R that specifies the item, user, rating/preference

tuple, (ii) a similarity function sim(u, v) between user u and v, and (iii) a method

for using similarities and ratings to generate predictions. The ratings matrix R is

a user input and an example is shown in Table.2.1.1.

Commonly used similarity functions include cosine-based and Pearson-

6



Items →
Users ↓ 1 2 . . . i . . . Nitems Average rating

1 3 1 r̄1
2 2 3 4 r̄2
v 5 2 rv,i 5 1 r̄v
...

...
u 3 ru,i 5 1 r̄u
...

...
Nusers 4 3 1 5 r̄Nusers

Table 1. Ratings matrix that consists of Nusers × Nitems entries of ratings. The
blank entries denote unrated items. ru,i is the rating of item i by user u and rv,i is
the rating of the same item i by another user v. r̄u, r̄v are the average ratings of
users u and v.

correlation [3] based measures. Other similarity measures used in the literature

also include, Spearman rank correlation, Kendalls τ correlation, mean squared dif-

ferences, entropy, and adjusted cosine similarity [4]. The Pearson-correlation based

similarity function is given by:

sim(u, v) =
(~ru − r̄u) · (~rv − r̄v)

(
√
~ru − r̄u) · (~ru − r̄u)

√
(~rv − r̄v) · (~rv − r̄v)

. (1)

The cosine-based similarity function is given by:

sim(u, v) =
~ru · ~rv√

~ru · ~ru
√
~rv · ~rv

. (2)

In Eqns.1 and 2, ~ru is the vector of items rated by user u that are also rated by

user v, and ~rv is similarly defined for user v. Scalars r̄u and r̄v denote the average

ratings of users u and v.

Pearson-correlation and cosine-based similarity functions are both invariant

to scaling. This implies that multiplying the ratings of users by a constant does

not change the similarities between users. Pearson-correlation unlike cosine-based

similarity is also invariant to adding a constant to the users’ ratings. For example,

if ~rmod
u = a ~ru + b, where a and b are constants, then the Pearson-correlation

7



function value remains invariant. This is given by the following equation.

sim(u, v) =
(~ru − r̄u) · (~rv − r̄v)

(
√
~ru − r̄u) · (~ru − r̄u)

√
(~rv − r̄v) · (~rv − r̄v)

=
(~rmod

u − r̄mod
u ) · (~rv − r̄v)

(
√
~rmod
u − r̄mod

u ) · (~rmod
u − r̄mod

u )
√

(~rv − r̄v) · (~rv − r̄v)
. (3)

This is an important property because it implies that the Pearson-correlation based

similarities between users do not depend on the absolute values of their ratings but

only on the way they vary. This is one of the main reasons for the wide popularity

of Pearson-correlation coefficient.

Finally, to generate predictions or recommendations for a user u the user-user

CF first uses sim(u, v) to compute a neighborhood N ⊆ Nusers of neighbors of

u. N is usually taken as the top-N users based on similarity scores (based on

sim(u, v) sorted from highest to lowest scores). Alternately, N can also be based

on a prescribed threshold for the similarity score sim(u, v). For example, if the

threshold is specified as 0.8, N consists of only those users for whom sim(u, v) ≥

0.8. Once N has been computed, the ratings of users are combined in N to

generate predictions p for user u preference for an item i. This is typically done

by computing the weighted average of the neighboring users ratings of i using

similarity as the weights:

pu,i =

∑
k∈N

rk,i sim(u, k)∑
k∈N

sim(u, k)
. (4)

2.1.2 ITEM-ITEM CF METHOD

Although user-user CF filtering techniques are popular, they suffer from scal-

ability issues associated with the frequent computation of similarity between users.

When a user changes the rating of items frequently, the rating vector of such a user

changes which modifies the similarity with others. Hence, the user neighborhood

N for a given user cannot be pre-computed but has to be evaluated whenever rec-

8



ommendations are needed. This can be a big computational bottleneck for large

datasets. This effect is amplified when there are more users than items that are

typical of many e-commerce websites.

To eliminate this scalability issue, an item-item based CF technique was pro-

posed by Linden et al. [5] (see, [6], [7]). These algorithms analyze the similarity

between items instead of predicting the ratings based on the similarity between

users. If two items tend to have the preferences from the same users, then they

are similar and users are expected to have similar preferences for similar items.

In systems with a high user to item ratio, frequent changing of ratings of an item

by a user is unlikely to change the similarities between items since each item has

far more ratings from many users that do not change. Hence, change of ratings

by a very small set of users will only slightly change alter the similarity between

items [2] and the users will still get good recommendations. The item-item CF

method is similar to user-user CF except that the item similarity is deduced from

user preference patterns rather than extracted from item data. The Pearson cor-

relation similarity and the adjusted cosine similarity are examples of the common

similarity metrics that are used to predict the similarity between items in such

systems.

2.2 MODEL-BASED APPROACH

Model-based methods, fit a parametric model to the training data that can

later be used to predict unseen ratings and issue recommendations. Latent factor

and matrix factorization models have emerged as a state of the art methodology in

this class of techniques. In its basic form, matrix factorization characterizes both

items and users by vectors of factors inferred from item rating patterns. High

correspondence between item and user factors leads to a recommendation. These

methods have become popular in recent years by combining good scalability with

9



predictive accuracy. In addition, they offer much flexibility for modeling vari-

ous real-life situations [8]. Other methods include cluster-based CF [9], Bayesian

classifiers [10], and regression-based methods [11]. The slope-one method [12] fits

a linear model to the rating matrix, achieving fast computation and reasonable

accuracy.
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CHAPTER 3

INTRODUCING SERENDIPITY TO RECOMMENDER SYSTEMS

Serendipity is defined as the accident of finding something good or useful while

not specifically searching for it. In other words, serendipity is concerned with

the novelty of recommendations and in how far recommendations may positively

surprise users [1]. In recommender systems, it is defined as a measure that indicates

how the recommender system can find unexpected and useful items for users. In

this chapter, we propose and implement a new algorithm for generating a list

of serendipity items using collaborative filtering techniques. The novelty of the

current work is the proposed improvement of the quality of the serendipity list by

incorporating the items’ contents. It is hypothesized that the degree of ambiguity

in defining serendipity is reduced by incorporating the items’ contents together

with the ratings.

The algorithm and its implementation are explained in detail in the following

sections.

3.1 SERENDIPITY RECOMMENDER SYSTEM

The proposed serendipity algorithm is given in Algorithm 3.1.

Algorithm 1 Proposed algorithm for generating serendipity items

1: Build a recommendation list of items using a primitive method
2: Build a set of recommendation lists using collaborative filtering techniques
3: Predict a list of “unexpected” items using the results of first two steps
4: Generate a list of serendipity items from the unexpected items
5: Improve the quality of the serendipity list by incorporating items’ contents

3.1.1 PRIMITIVE RECOMMENDER METHOD

The first step in the generation of serendipity items is predicting a list of

items using a primitive recommendation method which is based on the highest
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average ratings and highest number of users (popularity). Consequently, the level

of expectedness for the user is generally high for all the predicted items using this

method. Let the predicted list be denoted by PPM . The PPM model used in this

study will be based on the top-N items with the highest average rating and the

top-N items with the largest number of ratings. These two top-N rating will be

combined as a union to produce a list of top-K items (where K is a user-specified

number) of the PPM recommendation list [2].

3.1.2 EXPECTED LIST OF RECOMMENDATIONS

In this study, an expected set of recommendation items is generated using col-

laborative filtering methods, particularly using the user-user method as described

in Section.2.1.1. The basic algorithm for user-based collaborative method is given

below:

Algorithm 2 User-based recommendation method

1: procedure UserBasedRecommender(User u)
2: for each item i not rated by user u do
3: for each user v that has rated i do
4: Compute sim = Similarity(u,v)
5: Compute weighted moving average using v’s rating of i and sim
6: end for
7: end for
8: Return recommended list of items RS and their scores for u
9: end procedure

In Algorithm 2, “Similarity” refers to a user-based similarity measure. Specif-

ically, the measures employed in the present study include distance-based, cosine-

based, and Pearson-correlation based metrics.

3.1.3 UNEXPECTED LIST OF RECOMMENDATIONS

One of the key ingredients of serendipitous items is a high degree of unexpect-

edness. As pointed earlier, the PPM list consists of items with a high degree of
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expectedness. The RS list, on the other hand, contains items with a varied spec-

trum of expectedness. The unexpected list of items is generated using the method

specified in [3, 1, 2].

UNEXP = {x | x ∈ RS and x /∈ PPM}. (5)

UNEXP is the list of items that are in RS list but not in PPM .

3.1.4 PREDICTED SERENDIPITY LIST

Given the UNEXP list of items, a predicted list of serendipity items

SERENDIPP is generated by filtering the items in terms of an “usefulness” met-

ric. All items whose ratings are greater than or equal to a chosen value are con-

sidered “useful” items to be recommended as serendipitous. The items are sorted

from highest to lowest ratings in SERENDIPP .

3.1.5 IMPROVED SERENDIPITY LIST

The quality of the list is further improved by rating the items in

SERENDIPP based on the items’ contents or attributes. For example, in the

MovieLens database, an important content is the movie genre. The items in

SERENDIPP are once again rated based on their genre. Let this list be de-

noted by SERENDIP t
P , where t represents the attribute of interest.

Central Hypothesis:

Those movies that are in the predicted serendipity list and which are ranked lower

in the genre-based ratings are considered to better satisfy serendipity. For example,

let us assume that an item in the predicted serendipity list is rated 4.5 (on a 5

scale) using a user-based recommender system without taking into account the

genre. If the same item is rated lower but above the usefulness threshold using a

genre based recommender, it is considered more serendipitous because it is both

useful and more unexpected.
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The genre-based recommendation list is generated using a modified procedure

as outlined in [4]. The key steps in the genre-based evaluation are the following:

Algorithm 3 Algorithm for evaluating recommendation based on genre

1: Compute average rating of each genre for a given user (Eqn.6)
2: Compute average rating of each item based on average rating for each genre

obtained from Step 1 (Eqn.7)
3: Compute genre-based recommendation based on user-similarity and ratings

computed from Step 2. (Eqn.8)

Following [4], let the attribute vector of a given item item be denoted by

Attrib(item) ⊂ (1, 2, 3, . . . , Nattrib). Let Au
item,gnr be the value of attribute gnr

for item item and for user u. For the MovieLens database, 19 genres for each movie

item are represented by a 19× 1 vector with value 1 in position gnr if it belongs

to genre gnr and 0 if it does not. Then, Au
item,gnr ∈ (0, 1).

r̄gnru =

Nitems∑
item=0

ru,item Au
item,gnr

Mu,gnr

(6)

ru,item =

Nattrib∑
gnr=0

r̄gnru Au
item,gnr

Nu,item

(7)

pu,item =

Nusers∑
k=0

sim(u, k)rk,item

Nusers∑
k=0

sim(u, k)

(8)

Here, r̄gnru is the average rating of a genre gnr for a given user u. If no movies

belong to gnr, such a genre is not taken into account. Also, pu,item is the genre-

based predicted rating of user u for item item, rk,item is the genre-based rating of

user k (6= u) for item item, Nu,item is the number of non-zero attributes for item i,

and Mu,gnr is the number of valid items for user u that belongs to attribute gnr.

Graphically, Algorithm 3.1.5 is represented as in Fig.1.
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Figure 1. Graphical representation of a genre-based recommendation evaluation.
The various terms appearing in the figure are evaluated using Eqns.6 - 8. The
figure is mostly reproduced from the schematic provided in Fig. 1 of reference [4].

3.2 PYTHON AND NUMPY
3.2.1 REASONS FOR CHOOSING PYTHON

Python is an interpreted, high-level language that has easy-to-read syntax.

The native ability to interact with data structures and objects with a wide range

of built-in functionality makes it easier to write scientific programs. Moreover,

it abstracts most of the memory management layers from the end users. This

facilitates researchers and scientists to spend more time exploring various ideas

than how to code them. The fast development time of Python scripts makes it

much easier to test new ideas with prototypes.

An example provided in [5] for a “Hello World” program illustrates the differ-

ence in readability between Python and C++.

/*

A C++ program to print "Hello World"

*/

#include <iostream.h>

void main()

{

cout << "Hello World" << endl;

}

In Python, the above code reads as
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print "Hello World"

Because of the above reasons, Python was chosen as the language to implement

the serendipity recommender system for the present work. Also, Python is free

and open source.

NumPy is a Python extension module that provides efficient operation on

arrays of homogeneous data. It allows python to serve as a high-level language for

manipulating numerical data.

3.2.2 EXAMPLE SCRIPT TO ILLUSTRATE READABILITY

An example for computing a sample-based Pearson correlation coefficient is

given in the following code snippet implemented in the present study. Lines be-

ginning with # are comments in a Python script. Here, “np” denotes the NumPy

utility. Recall, sample-based Pearson similarity between two users is given by

Eqn.1 which is repeated here for convenience.

sim(u, v) =
(~ru − r̄u) · (~rv − r̄v)

(
√
~ru − r̄u) · (~ru − r̄u)

√
(~rv − r̄v) · (~rv − r̄v)

. (9)

where, ~ru is the vector of items rated by user u that are also rated by user v, and

~rv is similarly defined for user v. Scalars r̄u and r̄v denote the average ratings of

users u and v (see, Table 2.1.1).

#=======================================================

# Given a (num_users x num_items) matrix of ratings

# and average ratings of each user:

# Compute a sample-based Pearson correlation coefficient

# between users "i" and "j"

#=======================================================

def pearson_similarity_sample(ratings_matrix,

avg_ratings,
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i, j):

#====================================================

# Mask all those items for each user that have not

# been rated by either of them.

# This mask is a logical vector of booleans.

# true -- if both users have rated an item

# false -- otherwise

# It’s size is the same as rating vector of i (or j).

# Note:

# Unrated items are marked by 0.

#====================================================

mask = np.logical_and((ratings_matrix[i, :] > 0),

(ratings_matrix[j, :] > 0))

# If user has not rated any item return a 0 value

if np.sum(mask) == 0:

return 0

r_i = ratings_matrix[i,:] - avg_ratings_of_users[i]

r_j = ratings_matrix[j,:] - avg_ratings_of_users[j]

#====================================================

# Compute dot products of only unmasked elements of

# the vectors r_i and r_j

#====================================================

numerator = np.dot(r_i[mask], r_j[mask])

norm_ri = np.sqrt(np.dot(r_i[mask], r_i[mask]))

norm_rj = np.sqrt(np.dot(r_j[mask], r_j[mask]))

denom = norm_ri * norm_rj
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if denom == 0 :

return 1

return numerator/denom
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CHAPTER 4

RESULTS AND DISCUSSION

The serendipity recommender algorithm developed in the previous chapter is

tested on the widely used MovieLens dataset from the GroupLens Research Center

[1]. Representative results are presented and discussed in this chapter.

4.1 DESCRIPTION OF INPUT DATA FILES

The MovieLens dataset consists of 100,000 preferences for 1,682 movies rated

by 943 customers. The customer preferences are represented as integer values from

1 to 5. A higher value means higher preference. The database from GroupLens

consist of various files and the description of the files used in the present study are

provided in Table.4.1.

Filename Description
u.data Tab separated list of 100000 ratings by 943 users on 1682 items

that are randomly ordered. Users and items are numbered
starting from 1. The columns are user id, item id, rating, and
timestamp.

u.info The number of unique users, unique items, and total ratings
in u.data

u.item Information about the items (movies); this is a tab separated
list of:
movie id, movie title, release date, video release date, IMDB
URL, unknown (genre), Action, Adventure, Animation, Chil-
dren’s, Comedy, Crime, Documentary, Drama, Fantasy, Film-
Noir, Horror, Musical, Mystery, Romance, Sci-Fi, Thriller,
War, Western.
The last 19 fields are the genres. A value of 1 indicates the
movie is of that genre, a 0 indicates it is not; movies can be
in several genres at once. The movie ids are the ones used in
the u.data.

Table 2. Description of the input data for the 100K ratings database from Grou-
pLens Research Center[1]
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4.1.1 PREPARATION OF RATINGS MATRIX

Given the set of input files listed in Table.4.1, a ratings matrix of size Nusers×

Nitems is prepared first. Here, Nusers is the number of unique users and Nitems

is the number of unique items. The python function to generate the ratings matrix

is shown below.

def parse_and_prep_movielens_data():

#====================================================

# It was easier to read some of the data files into

# MS-Excel and export them as CSV files.

# The CSV files were parsed using "numpy.genfromtxt"

# utility.

#====================================================

# Parse u.data

data_ratings = np.genfromtxt(’ml-100k/u.data’,

delimiter=’\t’,

dtype=[(’userID’,int),

(’itemID’,int),

(’rating’,float),

(’timestamp’,int)])

# Parse u.info

data_user = np.genfromtxt(’ml-100k/u_user.csv’, delimiter=’,’,

dtype=[(’userID’,int), (’age’,int),

(’gender’, ’S1’),

(’occupation’, ’S20’),

(’zipcode’, int)])

# Parse u.item
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data_items_genre = np.genfromtxt(’ml-100k/u_item_rev2.csv’,

delimiter=’,’,

dtype=[(’itemID’,int),

(’genre’,’19float’)])

nitems = data_items_genre.shape[0]

nusers = data_user.shape[0]

# Prepare the ratings matrix of size Nusers x Nitems.

ratings_matrix = np.zeros((nusers, nitems))

for i in xrange(data_ratings.shape[0]):

userid = data_ratings[i][’userID’]

itemid = data_ratings[i][’itemID’]

rating = data_ratings[i][’rating’]

ratings_matrix[userid-1, itemid-1] = rating

4.2 VALIDATION

The in-house code is first validated against Apache Mahout [2]. We selected

Mahout because it is a workbench platform that provides many of the desired

characteristics required for a recommender engine development. Mahout is also a

production-level, open-source software and consists of a wide range of commonly

used collaborative filtering algorithms that are easy to use for validation purposes.

Some of the recent studies have used Mahout as their preferred platform include

[3, 4, 5, 6, 7] which indicates its popularity.

4.2.1 DESCRIPTION OF TESTCASES

As a first test case, we consider the recommendation of top 20 movies for a

random set of users using a user-based recommendation method and Pearson cor-
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relation coefficient. The recommended set of movies (IDs and scores) are then com-

pared with the in-house developed code. The user IDs chosen are (5, 121, 269, 842).

While a random number generator can be used to pick the set of users, we have

not done so for the present study. These users were, however, selected without any

bias. The following methods and conditions have been used to validate the code.

1. A user-based recommendation is used because of its popularity.

2. Similarity metric based on Pearson correlation is used.

3. A similarity threshold value of 0.8 is used to select a small set of neighbors

for a given user. Such a threshold is used reduce the computation time and

is a necessary input in Mahout.

In Fig.2, the recommended item IDs for the chosen set of users are plotted.

Excellent agreement is seen between the present and Mahout’s results. There is

however a small discrepancy in one of the items recommended for user 842 as can

be seen from Table.4.2.1. It is observed that one of the movies is different between

the two implementations. However, the movie ratings are identical for both, and

hence different movies with same ratings are considered acceptable.

Comparison plots of the ratings of the recommended movies for different users

are shown in Fig.3. Very good agreement is once again seen between the present

results and Apache Mahout. The difference pointed out in Table.4.2.1 is apparent

here as well. As can be seen, the ratings for these different movies are identical.

4.2.2 IMPORTANT OBSERVATIONS

During the validation phase, two important observations were made in Apache

Mahout that was not apparent from the Java documentation of their methods.

First, the Pearson correlation metric used is applied to a population and not

to a sample. Mathematically, the sample based Pearson correlation for two vectors
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User ID Recommended Movies
842 (Present) [ 653 898 875 169 359 516 474 483 513 654 657 1084 285 493

524 57 318 498 774 1159]
842 (Mahout) [ 653 898 875 169 359 516 474 483 513 654 657 1084 285 493

524 57 318 498 774 862]

Table 3. Recommended movies for user 842 using a user-based recommendation
and Pearson correlation coefficient. The differing movie is highlighted in bold.
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Figure 2. Comparison of recommendation results for a random set of users obtained
from the current code with Apache Mahout. Here, � denotes the predicted items
from Mahout and • are the results from the present code. Color codes for the filled
circles represent results for different users from the present code.
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Figure 3. Comparison of recommendation movies vs. ratings for a random set of
users obtained from the current code with Apache Mahout. Here, � denotes the
predicted items from Mahout and • are the results from the present code.

~ri and ~rj is expressed using Eqn.9. The population based Pearson correlation for

the same vectors is expressed as:

sim(i, j) =
Cov(~ri, ~rj)

σ~ri σ~rj

(10)

Here, Cov(~ri, ~rj) is the covariance and σ is the standard deviation. It should be

noted that the standard deviation is the square root of the variance. The python

function to evaluate Eqn.10 is provided below.

def pearson_similarity_population(ratings_matrix,

avg_ratings_of_users,

i, j):

# Mask items where one of the users hasn’t rated the item
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mask = np.logical_and((ratings_matrix[i, :] > 0),

(ratings_matrix[j, :] > 0))

# if user has not rated any item or only 1 item

# return with a 0 value.

if np.logical_or((np.sum(mask) == 0),

(np.sum(mask) == 1)):

return 0

r_i = ratings_matrix[i,:] - avg_ratings_of_users[i]

r_j = ratings_matrix[j,:] - avg_ratings_of_users[j]

#====================================================

# Numpy utility "cov" provides the variance

# and covariance values in a 2x2 matrix

# [0,1] entry is the covariance

# [0,0] is the variance of the first vector

# [1,1] is the variance of the second vector

# Sqrt of variance gives the standard deviation

#====================================================

var_covar_2x2_array = np.cov(r_i[mask], r_j[mask])

numerator = var_covar_2x2_array[0,1]

var0 = np.sqrt(var_covar_2x2_array[0,0])

var1 = np.sqrt(var_covar_2x2_array[1,1])

denom = var0 * var1

if denom < 1e-6 : # a small value

return 0

return numerator/denom
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Figure 4. Comparison of recommendation results for a random set of users ob-
tained from the current code using sample-based Pearson correlation with Apache
Mahout. Here, � denotes the predicted items from Mahout and • are the re-
sults from the present code. Color codes for the filled circles represent results for
different users from the present code.

The results obtained from the sample based Pearson correlation are shown

in Figs.4 and 5 that correspond to Figs.2 and 3. As can be seen, the results are

dramatically different. This is because, the sample based technique given in Eqn.9

uses estimates of the covariance and variances of the vectors and therefore is not

accurate.

The second important observation is that, in computing the ratings using a

similarity weighted moving average, the total sum of the similarities must exceed

a threshold that was found to be 1.0 by trial and error (this was not documented

in Apache Mahout). This condition may be to avoid rating a movie that is rated
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Figure 5. Comparison of recommendation movies vs. ratings for a random set of
users obtained from the current code using sample-based Pearson correlation with
Apache Mahout. Here, � denotes the predicted items from Mahout and • are the
results from the present code.

by only very few users.

4.3 RESULTS FOR SERENDIPITY

Based on the results and observation from the previous section, the serendip-

itous recommendation engine developed for the present study uses the following

methods.

1. User-based recommendation.

2. Pearson correlation based on population.

3. A similarity-based threshold of 0.8 is used to identify nearest neighbors.
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4. The PPM list is generated for top-100 movies.

5. The recommendation list RS is 100 movies.

Although many of the above assumptions can all be relaxed (such as using k-

nearest neighbor selection, choosing larger values for RS and PPM), the above set

has been chosen for demonstration purposes. It is straightforward to implement

an item-based similarity metric as well but this has not been attempted in the

present study. Incorporating various other methods for building recommendation

engines will form a part of the future work.

A recommender system built using a standard collaborative filtering method

predicts preferences based only on the ratings of the items. While this is useful

and has proven to be largely successful, it may not consistently give high quality

recommendations to the customers. This is because such recommendation systems

do not consider other attributes of the items being recommended [8]. Another

interpretation of this phenomenon is that such recommendation systems built on

ratings alone have a higher probability of predicting items that are unexpected.

Thus, there is an implicit unexpectedness built in recommendation systems that

do not consider item attributes. Hence, in the present study, a list of unexpected

items are first generated using the standard collaborative filtering method as has

been done in the works of [9, 10]. Then a serendipity list is generated based on a

“usefulness” metric as described in detail under Section 3.1.4. Let us denote this

ratings of the predicted serendipity list by SRDP . In order to improve the level

of serendipity, the predicted serendipity list is further rated using a genre-based

collaborative technique as explained in Section 3.1.5. Let us denote the newly

obtained ratings using the genres as SRDPgenre. The difference in these ratings

are then normalized and then converted to percentage as given by Eqn. 11 and

denoted by ∆n. For the movies, the normalizing factor is taken as 5.0 because of
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the 1-5 rating scale.

∆n =
SRDP − SRDPgenre

5.0
× 100.0 (11)

If ∆n is negative (SRDPgenre > SRDP ), it implies that the movie is more expected

than unexpected because SRDPgenre is generally considered more accurate than

SRDP [8]. Movies whose ∆n are below a certain threshold can be removed from

the serendipity list. For example, with ∆n = −5%, a plot of the top 100 serendipity

movies are shown for random users against the ∆n values in Figs. 6 and 7. We

see that a significant number of movies are less serendipitous based on the above

threshold.

User ID Number of less serendipitous movies
5 3
15 16
47 0
121 11
269 23
300 0
912 2

Table 4. The number of movies that are considered less serendipitous for different
users in the predicted list of serendipity movies using a standard collaborative
filtering method.

Table.4.3 lists the number of movies that are considered less serendipitous

for different users using Eqn.11 and a threshold of −5%. We see that for some

users, the numbers are 0. For such users, the standard method of predicting the

serendipity list is sufficient. However, for other users such as 15, 121, and 269, a

significant fraction is less serendipitous. Filtering out this fraction of movies will

lead to better list of serendipitous movie prediction.

Thus, the newly suggested metric is shown to very useful in increasing the qual-

ity of serendipity by filtering out those movies that are rated higher by the genre

based recommender compared to the standard ones. Therefore, our methodology
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Figure 6. Plot of ∆n from Eqn.11 for the serendipity list of movies generated by a
standard collaborative filtering method for user 15. ∆n below −5% are considered
as less serendipitous. A significant fraction of movies has been identified as less
serendipitous items using the present algorithm.
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Figure 7. Plot of ∆n from Eqn.11 for the serendipity list of movies generated by a
standard collaborative filtering method for user 121. ∆n below −5% are considered
as less serendipitous. A significant fraction of movies has been identified as less
serendipitous items using the present algorithm.

can aid in much better prediction of serendipitous movies and thereby improve user

experience. A main advantage of our proposed algorithm is that for those items

where attributes or contents cannot be explicitly defined, the predicted serendipity

list (see, Section 3.1.4) can be used as the final list.

4.4 LIMITATIONS

Since our recommender engine is primarily based on collaborative filtering

techniques, it suffers from the following problems:

1. New User Problem: When a new user is introduced, recommendations

cannot be produced for them since the person may not have rated any movies.
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This limitation could however be addressed using content-based filtering us-

ing parameters such as age, occupation, gender etc.,

2. New Item Problem: If an new item has not been rated, it will not partic-

ipate in the recommendation list generation.

3. Very large datasets: The ratings matrix is a dense Nuser × Nitems ma-

trix. This does not scale for massively large (big) datasets. This can be

overcome by using sparse matrix representations of the ratings. The SciPy

module for Python supports a variety of sparse data representations. Such

representations will be incorporated in future work.

4. Homogeneity of contents: The in-house code is based on a single-content

analysis which for the MovieLens dataset is its genre. Because of the homo-

geneous nature of the contents, the present code is not amenable to using

multiple contents.

5. Lack of experimental validation: A rigorous validation of the proposed

algorithm is possible only through real-user experiments and the quality of

the ratings obtained from these experiments. Such a validation will further

improve the quality of the serendipitous items by identifying the bounds on

the difference in the ratings to be used in our computational algorithm (see,

Eqn. 11).
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this work, a new method to improve the quality of the serendipitous list

of items has been proposed. Previous works include the use of standard collabo-

rative filtering methods and ratings to incorporate serendipity into recommender

systems. In the present work, these methods have been extended to include the

items’ contents for enriching the quality of serendipitous items. Specifically, a stan-

dard user-based collaborative filtering method has been combined with attributes-

based filtering in order to identify items with the potential of being less serendip-

itous. The new algorithm has been implemented using Python and NumPy. The

code has been validated using a widely used open-source platform, namely, Apache

Mahout. Excellent agreement has been shown. The new algorithm has been tested

on the 100K MovieLens Dataset from GroupLens. It has been demonstrated that

the new algorithm identifies a significant fraction of movies that are less serendip-

itous and which might not have been otherwise identified. Such identification may

significantly improve the quality of recommending serendipitous items and thereby,

improve user experience.

The future work on this project will address the following issues. The newly

developed code can easily handle small data sets such the 100K MovieLens Dataset.

With the advent of Big Data analytics, the current code is inefficient in handling

very large data both due to the restrictions of the language and the type of data

structures employed. Both these restrictions have to be addressed. In terms of

the algorithms used, the present work has been built on collaborative filtering

methods because of the popularity they have enjoyed thus far. Incorporating new

and scalable methods such as clustering-based techniques for handling Big Data
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need to be addressed as well.

37



CHAPTER 6

APPENDIX

6.1 APPENDIX A: PYTHON CODE

"""CF_Serendipity.py

Project Goal: 1. Create a simple user-user CF recommendation engine

using thr 100K dataset from movielens.org.

2. Incorporate serendipity

3. Improve serendipity using item contents

Creator: Puja Sridharan, URI

Advisor: Prof. Joan Peckham

"""

import numpy as np

from collections import defaultdict

def parse_and_prep_movielens_data():

#====================================================

# It was easier to read some of the data files into

# MS-Excel and export them as CSV files.

# The CSV files were parsed using "numpy.genfromtxt"

#====================================================

# Parse u.data

data_ratings = np.genfromtxt(’u.data’,

delimiter=’\t’,

dtype=[(’userID’,int),

(’itemID’,int),

(’rating’,float),
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(’timestamp’,int)])

# Parse u.info

data_user = np.genfromtxt(’u_user.csv’, delimiter=’,’,

dtype=[(’userID’,int), (’age’,int),

(’gender’, ’S1’),

(’occupation’, ’S20’),

(’zipcode’, int)])

# Parse u.item

data_items_genre = np.genfromtxt(’u_item_rev2.csv’,

delimiter=’,’,

dtype=[(’itemID’,int),

(’genre’,’19float’)])

np.sort(data_items_genre, order=’itemID’)

nitems = data_items_genre.shape[0]

nusers = data_user.shape[0]

# Prepare the ratings matrix of size Nusers x Nitems.

ratings_matrix = np.zeros((nusers, nitems))

for i in xrange(data_ratings.shape[0]):

userid = data_ratings[i][’userID’]

itemid = data_ratings[i][’itemID’]

rating = data_ratings[i][’rating’]

ratings_matrix[userid-1, itemid-1] = rating

return ratings_matrix, data_items_genre

#====================================================

def cosine_similarity(ratings_matrix, avg_ratings_of_users, i, j):

# The following condition sets the location of items to "TRUE"

# if both users have rated.

# If not, it’s set to FALSE. The boolean matrix is named "mask".
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# Note: rating = 0 => an unrated item

mask = np.logical_and((ratings_matrix[i, :] > 0),

(ratings_matrix[j, :] > 0))

if np.sum(mask) == 0 : # if user has not rated any item

return 0

r_i = ratings_matrix[i]

r_j = ratings_matrix[j]

numerator = np.dot(r_i[mask], r_j[mask])

denom = np.linalg.norm(r_i[mask]) * np.linalg.norm(r_j[mask])

if denom < 1e-6 : # a small value

return 0

return numerator/denom

#====================================================

def pearson_similarity_population(ratings_matrix,

avg_ratings_of_users,

i, j):

# Mask items where one of the users hasn’t rated the item

mask = np.logical_and((ratings_matrix[i, :] > 0),

(ratings_matrix[j, :] > 0))

# if user has not rated any item or only 1 item

if np.logical_or((np.sum(mask) == 0),

(np.sum(mask) == 1)):

return 0

r_i = ratings_matrix[i,:] - avg_ratings_of_users[i]

r_j = ratings_matrix[j,:] - avg_ratings_of_users[j]

# Numpy utility "cov" provides the variance

# and covariance values in a 2x2 matrix

var_covar_2x2_array = np.cov(r_i[mask], r_j[mask])
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# [0,1] entry is the covariance

numerator = var_covar_2x2_array[0,1]

# [0,0] is the variance of the first vector

# [1,1] is the variance of the second vector

# Sqrt of variance gives the standard deviation

var0 = np.sqrt(var_covar_2x2_array[0,0])

var1 = np.sqrt(var_covar_2x2_array[1,1])

denom = var0 * var1

if denom < 1e-6 : # a small value

return 0

return numerator/denom

#=======================================================

# Given a (num_users x num_items) matrix of ratings

# and average ratings of each user:

# Compute a sample-based Pearson correlation coefficient

# between users "i" and "j"

#=======================================================

def pearson_similarity_sample(ratings_matrix,

avg_ratings,

i, j):

#====================================================

# Mask all those items for each user that have not

# been rated by either of them.

# This mask is a logical vector of "true" or "false".

# true -- if both users have rated an item

# false -- otherwise

# It’s size is the same size as rating vector of i (or j).

# Note:
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# Unrated items are marked by 0.

#====================================================

mask = np.logical_and((ratings_matrix[i, :] > 0),

(ratings_matrix[j, :] > 0))

# if user has not rated any item or only 1 item

if np.sum(mask) == 0:

return 0

r_i = ratings_matrix[i,:] - avg_ratings[i]

r_j = ratings_matrix[j,:] - avg_ratings[j]

numerator = np.dot(r_i[mask], r_j[mask])

norm_ri = np.sqrt(np.dot(r_i[mask], r_i[mask]))

norm_rj = np.sqrt(np.dot(r_j[mask], r_j[mask]))

denom = norm_ri * norm_rj

if denom == 0 :

return 1

return numerator/denom

#====================================================

def topN_similarity(ratings, avg_ratings_of_users,

given_id, similarity_metric, N):

scores = np.zeros((ratings.shape[0] - 1),

dtype=[(’sim’,float),(’uid’,int)])

ctr = 0

for uid in range(ratings.shape[0]):

# do not compare a given id with itself.

if uid != given_id :

sim = similarity_metric(ratings,

avg_ratings_of_users,

given_id, uid)

42



scores[ctr] = (sim, uid)

ctr += 1

# sort the array using the similarity score

scores.sort()

# reverse the order to get top scores first

scores[:] = scores[::-1]

return scores[0:N]

#====================================================

def ratings_based_on_genre(ratings,

items_and_their_genre,

uid, itemid):

num_genre = 19

genre_matrix = items_and_their_genre[’genre’]

ratings_genre_based = 0.0

denom = 0.0

ratings_genre_user = 0.0

for genre in range(num_genre):

vec1 = ratings[uid, :]

vec2 = genre_matrix[:,genre]

mask = np.logical_and((vec2 != 0.0), (vec1 != 0.0))

sum_mask = np.sum(mask)

if sum_mask > 0 :

ratings_genre_user = np.dot(vec1[mask],vec2[mask]) \

/sum_mask

if genre_matrix[itemid, genre] > 0.0 and \

ratings_genre_user > 0.0 :

ratings_genre_based += genre_matrix[itemid, genre] * \

ratings_genre_user
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denom += 1.0

if denom > 0.0:

return ratings_genre_based/denom

else:

return 0

#====================================================

def recommendations_genre_based(ratings, items_and_genre,

avg_ratings_of_users,

similarity_metric,

similarity_threshold,

given_id):

totals = defaultdict(float)

totals_genre = defaultdict(float)

sim_sums = defaultdict(float)

EPS = 1e-6

alluserIDs = ratings.shape[0]

allitemIDs = ratings.shape[1]

for itemid in range(allitemIDs):

# if item is not rated by the given user

if ratings[given_id, itemid] < (1.0-EPS) :

for uid in range(alluserIDs):

if uid != given_id:

# if the other user has rated the item

if ratings[uid, itemid] > (1-EPS) :

sim = similarity_metric(ratings,

avg_ratings_of_users,

given_id, uid)

if sim >= similarity_threshold :

44



ratings_genre_based = \

ratings_based_on_genre(ratings,

items_and_genre,

uid, itemid)

totals[itemid] += \

sim * ratings[uid, itemid]

totals_genre[itemid] += sim * \

ratings_genre_based

sim_sums[itemid] += sim

rankings = np.zeros(len(totals),

dtype=[(’itemid’,int), (’rating’,float)])

ctr = 0

for itemid, total in totals.items():

tot_sim = sim_sums[itemid];

recommended_rating = 0.0;

# The following condition that sum total of similarities > 1.0

# is necessary to make our results perfectly agree with MAHOUT

if tot_sim > 1.0 + EPS :

recommended_rating = total/sim_sums[itemid]

# store item id as fortran index

item_id_recommended = itemid + 1

rankings[ctr] = (item_id_recommended, recommended_rating)

ctr += 1

# sort the array using similarity score

rankings.sort(order=’rating’)

rankings[:] = rankings[::-1] # reverse the order

rankings_genre = np.zeros(len(totals_genre),
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dtype=[(’itemid’,int),

(’rating’,float)])

ctr = 0

for itemid, total in totals_genre.items():

tot_sim = sim_sums[itemid];

recommended_rating = 0.0;

# The following condition that sum total of similarities > 1.0

# that made our results perfectly agree with MAHOUT

if tot_sim > 1.0 + EPS :

recommended_rating = total/sim_sums[itemid]

# store item id as fortran index

item_id_recommended = itemid + 1

rankings_genre[ctr] = (item_id_recommended, \

recommended_rating)

ctr += 1

# sort the array using similarity score

rankings_genre.sort(order=’rating’)

rankings_genre[:] = rankings_genre[::-1] # reverse the order

return rankings, rankings_genre

#====================================================

def average_ratings_based_on_genre(ratings, items_and_their_genre):

num_genre = 19

num_users = ratings.shape[0]

num_items = ratings.shape[1]

genre_matrix = items_and_their_genre[’genre’]

ratings_genre_user = np.zeros((num_users,num_genre))
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ratings_genre_based = np.zeros((num_users,num_items))

for uid in range(num_users):

for genre in range(num_genre):

vec1 = ratings[uid, :]

vec2 = genre_matrix[:,genre]

mask = (vec2 != 0.0)

sum_mask = np.sum(mask)

if sum_mask > 0 :

ratings_genre_user[uid, genre] = \

np.dot(vec1[mask],vec2[mask])/sum_mask

for itemid in range(num_items):

for genre in range(num_genre):

vec1 = ratings_genre_user[uid, :]

vec2 = genre_matrix[itemid, :]

mask = (vec2 != 0.0)

sum_mask = np.sum(mask)

if sum_mask > 0 :

ratings_genre_based[uid, itemid] = \

np.dot(vec1[mask],vec2[mask])/sum_mask

#====================================================

def topN_PPM(ratings_matrix, N):

#

# This primitive recommendation is based on

# picking top movies that has got the ratings

# from largest number of users and movies that got

# the highest average ratings.

#
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mask = (ratings_matrix > 0)

# Sum the rows for each column which gives

# number of users for each item

number_of_users_for_items = mask.sum(axis = 0)

# 1. Compute the movie IDs with the largest number of users.

# 2. Use numpy "argsort" to get the original indices (itemIDs)

# of the sorted array.

# 3. Zip the sorted array and item IDs into tuples

# 4. Reverse the sorted tuple from highest to lowest.

topN_users_for_items = \

np.array(zip(np.argsort(number_of_users_for_items),

np.sort(number_of_users_for_items)),

dtype=[(’itemid’,int), (’total_users’,int)])

# Reverse sort

topN_users_for_items[:] = topN_users_for_items[::-1]

# 1. Compute the movie IDs with the highest average rating.

# 2. Use numpy "argsort" to get the original indices (itemIDs)

# of the sorted array.

# 3. Zip the sorted array and item IDs into tuples

# 4. Reverse the sorted tuple from highest to lowest.

avg_ratings_of_items = np.divide(ratings_matrix.sum(axis=0),

number_of_users_for_items)

topN_ratings_for_items = \

np.array(zip(np.argsort(avg_ratings_of_items),

np.sort(avg_ratings_of_items)),

dtype=[(’itemid’,int), (’avg_rating’,float)])
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# Reverse sort

topN_ratings_for_items[:] = topN_ratings_for_items[::-1]

total_movies = np.vstack((topN_users_for_items[’itemid’],

topN_ratings_for_items[’itemid’])).ravel()

# Use numpy unique function to get the unique movies.

# This automatically sorts the IDs as well

return np.unique(total_movies)[0:N]

#====================================================

def main():

# users, items, ratings_matrix = parse_data_old()

ratings_matrix, items_and_their_genre = \

parse_and_prep_movielens_data()

avg_ratings_of_users = ratings_matrix.sum(axis=1)

# set the position of elements to TRUE in the matrix if > 0

mask = (ratings_matrix > 0)

# number of items rated by each user

mask = mask.sum(axis = 1)

avg_ratings_of_users = np.divide(avg_ratings_of_users, mask)

# Step 1: Get the PPM list based on a primitive

# recommendation method. Here, top 100 movies are

# selected based on the highest average rating and

# largest number of users for each movie.

PPM = topN_PPM(ratings_matrix, 100)

# Select a random set of users

users = [5,15,47,121,269,300,408,511,607,729,842,912]
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similarity_threshold = 0.8

number_of_rankings_requested = 100

oupt_file = open("plot_new_serendipity.dat", "w")

for user in users:

RS, RS_using_genre = recommendations_genre_based(

ratings_matrix,

items_and_their_genre,

avg_ratings_of_users,

pearson_similarity_population,

similarity_threshold,

user-1) # 0-indexing

# Step 2.

# Compute the list of unexpected movies from a

# a given number of recommendation requested.

# First, get the mask for all items that are in RS

# but not in PPM. This is done using "in1d" function

# and setting the "invert" flag to true.

mask = np.in1d(RS[’itemid’][0:nrankings],

PPM, invert=True)

UNEXPEC = RS[mask]

#print "UNEXPEC.shape = " , UNEXPEC.shape

# Step 3.

# Compute the list of useful items from the unexpected

# set of movies.

# Usefulness is when the ratings of movies > 2.5

mask = (UNEXPEC[’rating’] > 2.5)

USEFUL = UNEXPEC[mask]
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#print "USEFUL.shape = " , USEFUL.shape

# Step 4

# Get the genre based ratings of all the USEFUL movies

indices = [i for i, itemid in \

enumerate(RS_using_genre[’itemid’])

if itemid in USEFUL[’itemid’]]

USEFUL_GENRE = np.sort(RS_using_genre[indices],

order = ’rating’)

#print "USEFUL_GENRE.shape = " , USEFUL_GENRE.shape

USEFUL_sorted = np.sort(USEFUL, order=’itemid’)

USEFUL_GENRE_sorted = np.sort(USEFUL_GENRE, order=’itemid’)

ratings_difference = np.sort(USEFUL,

order=’itemid’)[’rating’] - \

np.sort(USEFUL_GENRE,

order=’itemid’)[’rating’]

normalized_ratings = np.divide(ratings_difference,5.0)

mask = (normalized_ratings < -0.05)

lesser_sdpr_movies = mask.sum()

oupt_file.write("# user = %s \n" % user)

oupt_file.write("# less srdpty = %s \n"

% lesser_sdpr_movies)

np.savetxt(oupt_file, USEFUL_sorted,

fmt=’%d %1.5e’, \

delimiter=’ ’, newline=’\n’, header=’’, \

footer=’’, comments=’# ’)

oupt_file.write("\n")
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oupt_file.write("# USEFUL_GENRE" )

np.savetxt(oupt_file, USEFUL_GENRE_sorted,

fmt=’%d %1.5e’, \

delimiter=’ ’, newline=’\n’, header=’’, \

footer=’’, comments=’# ’)

# Print the specified number of rankings

print "##########################################"

print " user = ", user

buffer_rankings = RS[0:nrankings]

print np.sort(buffer_rankings[’itemid’])

oupt_file.write("# user = %s \n" % user)

np.savetxt(oupt_file, buffer_rankings, fmt=’%d %1.5e’, \

delimiter=’ ’, newline=’\n’, header=’’, \

footer=’’, comments=’# ’)

oupt_file.write("\n")

print np.sort(RS_using_genre[0:nrankings][’itemid’])

print "##########################################"

oupt_file.close()

#====================================================

if __name__ == "__main__":

main()

52



6.2 APPENDIX B: APACHE MAHOUT CODE

package com.predictionmarketing.userrecommend;

import java.io.File;

import java.io.BufferedReader;

import java.io.BufferedWriter;

import java.io.FileReader;

import java.io.FileWriter;

import java.util.List;

import java.io.IOException;

import java.util.Arrays;

import org.apache.mahout.cf.taste.impl.common.LongPrimitiveIterator;

import org.apache.mahout.cf.taste.impl.model.file.FileDataModel;

import org.apache.mahout.cf.taste.impl.neighborhood.

NearestNUserNeighborhood;

import org.apache.mahout.cf.taste.impl.neighborhood.

ThresholdUserNeighborhood;

import org.apache.mahout.cf.taste.impl.recommender.

GenericUserBasedRecommender;

import org.apache.mahout.cf.taste.impl.similarity.

PearsonCorrelationSimilarity;

import org.apache.mahout.cf.taste.model.DataModel;

import org.apache.mahout.cf.taste.neighborhood.UserNeighborhood;

import org.apache.mahout.cf.taste.recommender.RecommendedItem;

import org.apache.mahout.cf.taste.recommender.UserBasedRecommender;

import org.apache.mahout.cf.taste.similarity.UserSimilarity;

// ------------------------------------

public class UserRecommend {

public static void main(String[] args) throws Exception {
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DataModel dm = new FileDataModel(new File("data/movies.csv

"));

UserSimilarity similarity = new

PearsonCorrelationSimilarity(dm);

UserNeighborhood neighborhood = new

ThresholdUserNeighborhood(0.8, similarity, dm);

UserBasedRecommender recommender = new

GenericUserBasedRecommender(dm, neighborhood,

similarity);

int userId = 842;

List<RecommendedItem> recommendations = recommender.

recommend(userId,20000);

BufferedWriter bw = new BufferedWriter(new FileWriter("

data/RS842.csv"));

for (RecommendedItem recommendation : recommendations) {

bw.write(recommendation.getItemID() + "," +

recommendation.getValue() + "\n");

System.out.println(recommendation);

}

bw.close();

}

}
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