
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2014

EXTENSIBLE CYBER CHALLENGE PLATFORM CONTROL EXTENSIBLE CYBER CHALLENGE PLATFORM CONTROL

APPLICATION APPLICATION

Jacob A. Fonseca
University of Rhode Island, jafonseca@cs.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Fonseca, Jacob A., "EXTENSIBLE CYBER CHALLENGE PLATFORM CONTROL APPLICATION" (2014). Open
Access Master's Theses. Paper 452.
https://digitalcommons.uri.edu/theses/452

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/452?utm_source=digitalcommons.uri.edu%2Ftheses%2F452&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

EXTENSIBLE CYBER CHALLENGE PLATFORM CONTROL

APPLICATION

BY

JACOB A FONSECA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

COMPUTER SCIENCE AND STATISTICS

UNIVERSITY OF RHODE ISLAND

2014

MASTER OF SCIENCE THESIS

OF

JACOB A FONSECA

APPROVED:

Thesis Committee:

Major Professor Victor Fay-wolfe

Lisa DiPippo

Stu Westin

Nasser H. Zawia
DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2014

ABSTRACT

Cyber challenges are an exciting way to teach and assess computer security

skills and methods. The commonalities in cyber challenges revolve around network

traffic simulation, score keeping, and event automation. The Open Cyber Chal-

lenge Platform centralizes these tasks into a single piece of software called a game

server. Existing challenge platforms use proprietary mechanisms to accomplish

these goals motivating a need to find a solution application. This design and im-

plementation of a game server application will operate as the run time software of

the Open Cyber Challenge Platform. The testing of our game server’s components

show that the implementation described here can successfully fill the needs of the

Open Cyber Challenge Platform’s requirements for a game server application.

ACKNOWLEDGMENTS

The work completed in this thesis was only made possible with the support

of a fantastic group of outstanding and inspiring people. The graduate students,

staff and faculty in the Department of Computer Science and Statistics are essen-

tial members of the team whose effort was required to complete this project. I

would like to thank Travis, and Dan for sticking out the long haul with me while

others fled for the hills. The technical skills and computer wizardry of Dr. Kevin

Bryan provided me with inspiration and desire to do things the right way. Dr. DiP-

ippo, Jessie, Brittnee, Jerry, Lorraine, and Beth, thank you for your patience and

assistance while I took my sweet time getting this done.

My entire family has supported me throughout the journey of my academic

career, but none more than my dad. His constant nagging and harassment has

pushed me to advance myself in both depth and breadth. By exposing me to

knowledge and skills outside my field, I am better able to apply myself to complete

projects like this one. If he never has to say, “Just get it done,” we will both be

the happier for it. I can not thank him enough for his encouragement and patience

over these last several years.

Finally, I would like to thank my major professor Dr. Victor Fay-wolfe, without

whose constant support this work would not have been possible. His guidance

through the mechanics of research and the grant writing process found us the

resources needed for this project. I am thankful for his engagement in the success

of his students and his commitment to support them in their endeavors. As a

beneficiary of this support I could not have reached the milestone that this work

represents.

iii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

TABLE OF CONTENTS . iv

LIST OF TABLES . vi

LIST OF FIGURES . vii

CHAPTER

1 Introduction . 1

1.1 Goals . 1

1.2 Results . 2

1.3 Outline . 2

2 Background . 3

2.1 Cyber Challenge Composition 4

2.2 Related Works . 5

2.3 Technologies . 9

3 Methods . 12

3.1 Interfaces . 12

3.1.1 Instance File . 13

3.1.2 Command Line Interface 13

3.1.3 Web Services . 14

3.2 Teams . 16

iv

Page

v

3.3 Events . 18

3.4 Game Control . 20

3.4.1 Game Clock . 21

3.4.2 Event Execution . 23

3.5 Scoring . 26

3.6 Creating Realism . 28

3.6.1 Address Randomization 28

3.6.2 Timing Control . 30

3.7 Testing and Metrics . 30

3.7.1 Game Server Operation Testing 33

3.7.2 Network Testing . 34

4 Results . 35

5 Discussion . 47

5.1 Network traffic . 48

5.2 Event Timing . 50

5.3 Future Work . 52

LIST OF REFERENCES . 55

APPENDIX

A Game Server Instance File . 57

B Game Server Web Service API 65

BIBLIOGRAPHY . 66

LIST OF TABLES

Table Page

1 Comparison of scenario run times 35

2 Non-periodic event times and actual execution times in seconds 35

3 Periodic event times and actual execution times in seconds . . . 36

4 Event scores . 37

5 Final score calculations using intermediate score-labels 38

6 Event executed using the game server 44

vi

LIST OF FIGURES

Figure Page

1 CLI waiting for user input . 14

2 User API interactions for reading and updating values 15

3 Thread relationships and separation of duties 17

4 Game clock states during operation 22

5 Relationship between scoring elements 27

6 Distribution of 10 IP addresses for 240 events 39

7 Distribution of 10 IP addresses for 14400 events 40

8 Periodic Events without Drift 41

9 Periodic Events with Drift . 41

10 Unspecified Periodic Events with Drift 42

11 User and Interface functionalities 46

12 Sample OCCP scenario network 51

B.13 Game server documentation website 65

vii

CHAPTER 1

Introduction

A lack of security training for students and practitioners in networked com-

puter environments has led to breaches of both private data and public trust in the

systems that comprise the worlds digital infrastructure. The Open Cyber Chal-

lenge Platform (OCCP) provides a low-cost solution for training and education

to individuals on forensic and cyber security related topics. Existing challenge

platforms use proprietary game control systems that are not readily adaptable for

re-use in the OCCP. No suitable alternatives exist to provide a reusable, config-

urable, open source application for controlling, monitoring, and supporting cyber

challenges.

In this project we seek to solve this problem by implementing a foundational

game server for the OCCP. A game server provides scheduling, network traffic

generation, and record keeping for a cyber challenge. An implementation of a

game server that can be integrated into new cyber challenges, while remaining

re-usable for different types of challenges is presented.

1.1 Goals

The specific goals of this project are aligned to fulfill some of the needs of the

OCCP. While the OCCP intends to support a wide range of cyber challenges the

goals of this project are a subset of those of the OCCP project. This project will

create a game server that is capable of providing the basic needs to conduct a cyber

challenge as part of the OCCP framework. These needs include the following:

1. The game server will provide a central point of control for a cyber challenge.

2. The game server will implement execution of scheduled events, and the col-

1

lection and computation of score data.

3. The game server will implement tools to assist in the generation of realistic

network traffic.

4. The game server will provide the needed interfaces to allow for configuration

and operation by users of the appropriate skill levels.

5. The game server will be designed to allow for extension of the types of events

that are able to be scheduled and scored.

6. The game server will provide a mechanism that supports the creation of

additional user interfaces such as scoreboards or complex moderator controls.

1.2 Results

The game server described in this project was successful at meeting the goals

that have been set out above. The implementation described herein was able to

perform all the necessary functions that a game server should meet to control and

support cyber challenges in the OCCP.

1.3 Outline

The rest of this work is described in the following sections. The Background

section covers existing technologies that attempt to solve the same problem. Pre-

vious attempts at an implementation of this solution are also described. Chapter

3, Methods, describes the approach taken in this project with a description of the

implementation details. Chapter 4, Results, evaluates the goals of this project

against the implementation described. Finally in chapter 5, Discussion, we review

the process and implementation of the solution as well as describe future work in

this area.

2

CHAPTER 2

Background

Cyber challenges are a new tool in the development and education of a skilled

technology workforce. They provide an engaging learning environment in which

to practice cyber skills and experience realistic situations of cyber attack and de-

fense. The skills exercised in a challenge are needed to defend, secure, and enhance

business and government critical digital information systems. Cyber challenges go

a step beyond traditional classroom exercises by providing a comprehensive view

of how individual skills fit into a larger picture. The Open Cyber Challenge Plat-

form (OCCP) aims to provide a low-cost reusable platform for conducting cyber

challenges.

A platform on which to run cyber challenges requires several components.

Cyber challenges, as described in the OCCP, are usually network based activi-

ties, comprised of some number of machines that may represent a small business

or similar type of entity. Along with the machines that represent the simulated

business services, the platform will require its own supervisory computers and soft-

ware. This may include machines and software that are responsible for the timing

of discrete event executions, network traffic generation, background activity, and

simulation of other network users. These activities combined together form the

central common component of a cyber challenge, the game server. Historically

each challenge platform is custom built for the specific exercise being tested and

results in a customized game server for each challenge of each platform.

Cyber challenges focus on the simulation of real world events such as attacks

and defenses of computer and network systems. Occasionally a challenge may

need to compress the amount of time spent in a simulation as compared to the

3

real world. Events that may take days in real time need to be compressed to just

a few minutes in the simulation. Analogous to other sports, a challenge will have

a game clock that is disparate from real world time. The clock may be paused,

resumed, slowed or sped up to adjust the experience of the challenge.

A game server controls most automated aspects of a challenge. It provides

functionality such as event scheduling, network traffic generation, and score keep-

ing. Scheduled events may include simulated user activity such as checking email

and browsing websites or computer activity including computer and database back-

ups. The events chosen are specific to the challenge being simulated or tested, while

the scheduling and execution of events may be handled generically. Traffic gen-

eration is used to give a realistic feeling to a cyber challenge [1]. The creation of

background network noise adds realism to the challenge participant’s experience

of a real world simulation. In addition to the background noise, some of the sched-

uled events of the challenge are activities which generate score values. Challenges

can be scored from different perspectives or with a varied focus. The game server

is responsible for recording each of these score events and computing tabulations

appropriate for the challenge.

2.1 Cyber Challenge Composition

Cyber challenges may take on many forms. The principle concept is to exercise

and teach those skills that are relevant to the security and operation of computer

information systems. The classic forms of cyber challenges use a game format

to simulate attack-defense, capture the flag and scavenger hunt style games. A

challenge may incorporate a combination of both human and automated players.

The automated players may be implemented by use of artificial intelligence or

simple time scripted actions.

Cyber challenges frequently rely on the notion of grouping players into teams.

4

These teams are usually given a color coordination that reflects the intent of the

team. The teams as described by Vigna in [2] provide a classical example of

having red teams attack and blue teams defend. This may not always be the case

though. In some popular games such as Team Fotress 2, the attack-defense game

modes have the RED team defend and the BLU team attack [3]. The unique color

designations of teams is not relevant to the game play of any particular challenge.

We choose to use the former classic definitions when referring to team roles.

The concept of teams in a cyber challenge are not restricted only to players,

but may be extended to non-player character (NPC) actions. The notion of a

Gray Team is used frequently to identify actions or network traffic that are not

especially relevant to the game play. Network traffic generated by a Gray Team

may be described as background noise or provide a baseline for normal activity.

The Gray Team is usually implemented as a set of automated actions, where those

actions are not known to the players to be good or bad. Similarly, the White Team

may describe moderators or referees that conduct scoring actions that take place

during the challenge. In scenarios where players are grouped together in more than

two teams other colors or names may be used for those teams as described in [2].

2.2 Related Works

Cyber challenges have existed for several years and most of them use some

combination of hardware and software to accomplish the tasks required of a game

server. There are several complete cyber challenge solutions such as US Cyber

Patriot [4], US Cyber Challenge [5], and SANS NetWars [6]. While each of these

solutions provide cyber challenges, they do not make the mechanisms of their

platforms available for re-use. The proprietary nature of these applications does

not make it possible to use their solution for the proposed problem. Also, the

challenges of, [4], [5], and [6] do not allow the user to customize the experience for

5

a particular challenge or to change the scenario for a new topic.

There are open source projects that may appear to provide some portion of

the functionality required. Some may include simple schedulers such as cron [7],

or more complete schedulers like the Quartz system [8]. These applications, while

having the ability to schedule many events, do not encompass all of the tasks of

a game server’s scheduling needs, nor do they provide the level of control that is

required for a cyber challenge. For instance, a challenge may require a departure

from normal run time, such as, a challenge needing to be paused to allow users to

catch up or be provided breaks or instructions. It may also be necessary to change

the speed at which a challenge operates so as to increase or decrease the difficulty

of a challenge.

One purpose of scheduling events is to generate network traffic. That traffic

may be harmless or malicious. The BreakingPoint devices from IXIA [9] offer a

complete solution for traffic generation of the type normally used in cyber chal-

lenges. These devices though are not specifically designed for use within a cyber

challenge. They are of considerable expense, $50,000 dollars, and are not easily

extended by custom applications and modules, which is a goal of this thesis project.

The Open Cyber Challenge Platform (OCCP) is a new platform being devel-

oped at the University of Rhode Island [10], that will advance the use of cyber

challenges as a tool in teaching and assessing users. The goals of the OCCP are

to address the cost, complexity, and other barriers to entry of using cyber chal-

lenges. The project aims to be a free to low cost. The various components of the

OCCP will be implemented without the use of proprietary hardware or expensive

commercial software. This project will be one component within the OCCP.

The OCCP defines several types of users for the platform: end users, scenario

designers and application developers. Each of these user types categorizes activities

6

that would be conducted when using the platform. The end users of the OCCP are

the moderators and players that use the framework to conduct cyber challenges for

learning or exercise. These users may not be particularly well versed in the inner

workings of the platform, but they are interested in using the platform as a tool.

The scenario designers construct, modify, or rebuild individual cyber challenges

to be conducted using the platform. These individuals may be subject matter

experts or educators that want to build new challenges for themselves and others

to use. The product of a scenario designer’s work is used within the OCCP to

conduct a cyber challenge for the end users. The application developers contribute

directly toward the enhancement of the OCCP as a platform. The work of a

developer may contribute toward some or all of the components within the OCCP.

An application developer may extend the functionality of the game server or build

companion applications that integrate with the platform.

This project is inspired by two previous attempts to construct a game server

for use in the OCCP. The first implementation centered around the use of the

Nagios monitoring software [11]. The project implemented each aspect of the

game server using both independent scripts and Nagios host agents. The Nagios

server acted as a collection point where all data from the various components was

reported. This method provided great flexibility and allowed for re-use of the

Nagios infrastructure. Nagios supports many different types of host monitoring

agents as well as the ability to receive messages from remote processes. Nagios

provided system monitoring for the players, as well as a scoring mechanism for the

moderators.

The initial tests with Nagios were successful. Monitoring of various compo-

nents and score reporting worked well. Difficulties appeared when increasing the

rate and volume of system monitoring and traffic generation. The initial attempt

7

tried to use Nagios to both generate background traffic and monitor the results.

Under normal circumstances for Nagios this activity is expected and functional.

The difficulties arose when trying to simulate large volumes of traffic. Nagios’

ability to perform behaviors like an end user helps administrators simulate and

monitor the use of their systems. For example, Nagios has the ability to load a

web page from a server and test the web page for various factors. This can be

programmed on a schedule to repeat on a regular basis. As the tests succeed or

fail, Nagios will report relevant information to the administrator. This ability is

similar to the desired behavior in a cyber challenge and prompted the early trials

of Nagios as the core to a game server implementation.

The Nagios platform was not designed with load testing or large scale traffic

simulation in mind. Therefore the scheduling abilities of Nagios when attempting

to generate large amounts of network traffic were insufficient to generate believable

network traffic. Even when attempting to load a web-page several times a second

Nagios performance would be unacceptable. Several work arounds were proposed,

but all proved to be insufficient.

The second attempt to provide game server functionality to the OCCP re-

vised the initial attempt by removing Nagios. The attempted solution required

several independent programs to be run concurrently. The programs consisted of

a set of commands that corresponded to some function of the game server. Each

program would operate independently of the others. This approach highlighted a

desirable property of a game server-like solution. This method takes advantage of

parallelism. Each of the component applications operated independently in this

attempt. Some game server operations have long wait times for input/output oper-

ations to complete. This method increased throughput of desired events resulting

in more realistic network traffic generation.

8

Unfortunately, this approach did not allow for discrete control over individual

functions of the game server. For example it was not possible to pause a challenge

once it had begun, without restarting from the beginning. The ability to dynam-

ically add or remove events was also not possible with this implementation. The

user would be required to launch several terminal windows and run several com-

mand line applications to begin running a cyber challenge scenario. An improved

solution would include both the centrality of the first attempt and the parallelism

of the second.

2.3 Technologies

There are proprietary technologies available that may seem to provided a solu-

tion for the proposed problem. A solution could be proposed that is implemented

primarily with hardware or some combination of hardware and software. This pro-

posal is focused on a solution that does not use a costly hardware solution but is

completely implemented in software. This constraint is a requirement of the larger

OCCP project. The technologies selected have been identified as good candidates

because of their low cost, ease of access and usefulness in solving specific technical

challenges of the proposed solution. Certainly more than one solution is possible

for the given problem, but the proposed solution will likely utilize some or all of

the following technologies.

A family of operating systems, known as Linux systems, are based on the

early UNIX platform. There are many variations of a Linux operating system,

commonly called distributions. Each system uses a similar structure and method

of operations. The commonality between various distributions is the Linux kernel.

The kernel is the core application of a computer and is always running [12]. It

provides mechanisms for all other applications to interact with the computer. The

Linux kernel offers certain functionality, that is not present in all operating systems.

9

Modern Linux systems offer a spectrum of light weight virtualization by pro-

viding more granular access to services of the kernel. Containers and Namespaces

are two such services that are provided by the kernel to facilitate virtualizing ap-

plications [13]. The use of these services allows the execution of an application to

be contained from the host system without requiring the need for a complete guest

virtual machine. This greatly reduces the memory and computation overhead of

using virtualization to accomplish certain tasks.

Virtualization is used in many applications to reduce equipment costs and in-

frastructure expenses [12]. Virtualization can be accomplished on many different

levels. The most commonly encountered type of virtualization is whole machine or

whole operating system virtualization. In this type the entire function of a com-

puter is replicated in software. A computer which runs this type of virtual machine

is known as the host. While the computer that is being virtualized is referred to

as the guest or virtual machine. An alternative to complete machine virtualiza-

tion is a type of virtualization that may only encompass a single application or

specific piece of an application. The benefits of light weight virtualization were

heavily utilized within this project to reduce or eliminate the need for dedicated

hardware.

An application programming interface (API) describes the behavior, inputs

and output of a software component or application without describing its partic-

ular implementation [12]. An API can be added to an application to make the

application or software component more extensible. While an API describes a set

of rules to be followed, a specific implementation such as through a web service is

required.

Web services expose an application’s API over a network using one of several

methods, such as the frequently used Hypertext Transfer Protocol (HTTP). Histor-

10

ically, Simple Object Access Protocol (SOAP) has been widely used to implement

many of the first web service APIs on the Internet [14]. More recently the trend

has led to web resources centered around the direct representational state transfer

(REST) method. REST was first described by Fielding and Taylor in [15] although

it does not prescribe an exact implementation. Application programmers that use

this method on the Internet often describe their implementation as REST-ful or

REST-like, indicating that their implementation may not completely conform to

all REST practices.

REST takes advantage of the mechanisms of the underlying transport protocol

HTTP. REST uses the HTTP verbs such as GET, PUT, DELETE, UPDATE, etc

to describe the action being sought. The specification does not prescribe the

encoding of the data to be transferred, but most applications use either extensible

markup language (XML) or Javascript Object Notation (JSON) to encode the data

being transferred. This is not a requirement though and other technologies such

as MessagePack [16] have evolved to increase performance when transferring large

amounts of data or transactions. Use of JSON has gained in popularity because

of both its efficient storage and human readable text.

The technologies described here will be used to build our solution application.

We will build upon the previous attempts at a game server by incorporating the

lessons learned from those projects. Our project will take advantage of existing

resources to enhance the speed at which we develop and test our solution.

11

CHAPTER 3

Methods

The OCCP game server is implemented as an application written in the Ruby

Programming language. The application, while intended to meet the needs of the

OCCP platform, may be used as an independent application. The game server does

not immediately depend upon other components of the OCCP platform. This al-

lows the development of the game server to move at an independent rate. The

functions of the game server support cyber challenges using any platform the op-

erator chooses.

The game server was developed using a hybrid combination of both Agile

[17] and rapid application development methodologies [18]. This process eschews

with the development of extensive documentation used in the waterfall method.

Our implementation strategy is to produce working software over comprehensive

documentation at the outset. As such, the methods we describe in this section are

a combination of postmortem analysis of previous experience and our designs.

We begin by describing component blocks of the game server application. The

application interfaces are described first, followed by the top level concepts of a

Team and an Event. Next we describe the game server control of a scenario and

the components that are used to support it. Finally we describe a procedure for

testing the game server’s ability to satisfy the goals of this project.

3.1 Interfaces

The game server implements several types of interfaces to be used by the

various types of users. The instance file is an interface that allows for the definition

of many functional aspects of the game server and it is the primary interface. The

command line interface, or CLI, is used to provide run-time interaction with the

12

program for all types of users. The two application programming interfaces (API)

are made available to extend the usefulness of the game server by allowing external

applications to interact with the game server and to extend the game server with

new functionality. These interfaces provide a diverse set of mechanism with which

to configure and interact with the game server.

3.1.1 Instance File

The instance file is an XML document that describes the configuration and

run-time directives for the game server. The instance file, as described in the

OCCP, is input to the game server that is meant to describe a single instance of

the cyber challenge that is to be conducted. The game server parses this file and

extracts information such as: the length of the challenge, which events should be

triggered and at what times they should occur, how to score individual events, as

well as other pre-configured parameters that are relevant to the challenge. The

game server ensures that all required parameters are provided in the file before

beginning a challenge. This step ensures that the challenge will not be stopped,

after beginning, due to a configuration error. Any errors detected by the game

server are reported and direct the user to the faulting line of the file to speed

development of new instance files. An example file is provided in Appendix A.

3.1.2 Command Line Interface

The CLI becomes available to the users during run-time operation, after the

program has successfully initiated and completely read the instance file. The CLI

provides a very simplistic user experience. The objective of the CLI is to allow the

user to retrieve basic status information and to perform basic challenge actions

such as Run, Pause and Stop a challenge. The CLI is intended to be used only by

moderators of a cyber challenge. While these users of the OCCP will have access

13

Figure 1. CLI waiting for user input

to the console of the computer running the game server application, a graphical

front-end would be a preferred method of access to the game server.

The CLI is implemented using a read-evaluate-print loop (REPL). The user is

presented with several options to choose from as shown in Figure 1. Each time the

user selects an option from the list, the program will take the appropriate action.

Any output from the selected action will be displayed on the screen and the menu

choices will be re-displayed for the user to select another action.

The command line interface provides a flexible method for interacting with

the game server application. The text-only nature of this interface allows it to be

remotely controlled through secure shell (SSH) or via the console of the computer

running the application. This remote access is desirable within the OCCP where

many of the application servers are virtualized and console access may be difficult

or impossible. While the game server does not directly make the CLI available

remotely, it does provide a web service interface to access the game server from

another application or host.

3.1.3 Web Services

A RESTful web service API is exported by the game server to enable extension

of the game servers capabilities. The API exported by the game server provides

access to (1) the information parsed by the game server from the instance file,

(2) run-time information and (3) the ability to affect changes in the game servers

14

APIUser MAIN

GET /gameclock/ Read clock state

Update clock

Clock state

Encode reply

Send reply

PUT /gameclock/

Validate input

Update clock

Clock state

Encode reply

Send reply

Update values

Read clock state

Figure 2. User API interactions for reading and updating values

execution. This interface is exposed through RESTful HTTP transactions. This

allows external applications flexibility when interacting with the game server and

allows them to extend the functionality offered through other interfaces.

The web service is designed around the notion of accessing and updating

entities. Each entity is described by some uniform resource identifier (URI). This

model allows authors of external applications to interact with the game server in a

well defined manner. For the example shown in Figure 2, the current value of the

game clock can be accessed through a URI similar to http://server-dns/gameclock/.

A HTTP GET request to this URI will provide immediate access to the length of

the scenario, the current time elapsed in the scenario and the current state of the

game clock (e.g. running, paused, stopped). In this example the game clock may

be updated using a HTTP PUT request, to reflect either a change in the length of

the scenario or the state of the game clock.

Implementation of the API functionality is handled using an external library

15

that facilitates low-level tasks such as handling the HTTP request-response mech-

anism. The Sinatra [19] library uses a domain specific language to describe the

actions of each HTTP verb and URI combination. The use of this library provides

for separation of duties within the implementation of the game server. Changes

can be readily made to the API without affecting future development of the game

server. The implementation details of the API will track the changes made within

the game server for a top-down design paradigm. The library implements a small

HTTP server in a separate thread from the main functionality of the game server

providing an event driven (HTTP request) interface that does not cause blocking

or interruptions in processing other actions.

3.2 Teams

The game server is designed using a multi-threaded implementation that al-

lows individual components of the game server to operate in parallel. Parallel com-

putation provides separation of duties between components and adds resilience to

the program overall. Several of the main functions of the game server are sepa-

rated into their own threads of execution. After the program is initialized the first

thread to be separated is called the MAIN thread. This thread is responsible for

maintaining control over the program’s core data structures. The second thread to

be launched is the RESTful API web service. This thread operates independently

until the program terminates. The primary flow of execution now enters into pre-

senting and responding to the command line interface. Most of the work of the

application now flows from the MAIN thread as shown in Figure 3.

The program is structured relative to the design of the challenge as described in

the instance file. The game server provides scenario designers several mechanisms

to organize events and their related data. The most significant construct is the

notion of a Team. In the context of the game server a Team is a grouping of events

16

TEAM

Single
Events

Periodic
Events

MAIN

REST API

Game Server

CLI

Figure 3. Thread relationships and separation of duties

that should be treated as a collection of similar activities. This concept of a team

is derived from the concepts as described in Section 2.1. Each Team is treated as a

separate grouping of threads using a hierarchical relationship. Each thread (CLI,

MAIN, TEAM) shown in Figure 3 is designated as the responsible master for the

data contained within it. When another component of the system needs to update

a piece of information it must talk to the owner of that information.

This model provides some desirable traits for the game server to provide fine-

grain control over groups of events. For example, consider a red team composed

of attacking events and a gray team composed of events that simulate background

traffic. A moderator may wish to stop the attacking events while permitting the

background traffic to continue. By grouping the events together they can be con-

trolled collectively providing the desired effect. After spawning the appropriate

threads both the MAIN thread and any TEAM threads enter a processing loop

17

that provides for inter-thread communication.

When using a multi-threaded approach communication between competing

threads of execution must be handled very carefully. During the program’s main

execution the MAIN thread and any TEAM threads need to pass messages between

the different components of the system. These messages include information re-

lated to scoring, logging, and system state. A thread-safe queue implementation

was chosen to allow communication between different threads of execution without

causing loss of data due to mishandled shared memory structures.

Each responsible thread listens to the top of its own queue like an inbox.

Any other component can push a message onto a thread’s inbox queue for it to

process. The receiving thread will pick up each message off the queue in sequence,

perform any necessary actions, and then return to the queue for the next message.

In between messages the thread sleeps without polling. This reduces the overall

overhead for the application by creating an event driven communication system

between threads.

The messages passed between the threads use a message object format. Rather

than just pass arbitrary strings or binary data each message is uniformly format-

ted into an object representing the message. The message object contains headers

like sender and type of message as well as the body of the message. Using a uni-

form message format allows new message types to be introduced without breaking

components that do not understand that type of message.

3.3 Events

Events as referred to here identify discrete actions that should be completed

by the game server on behalf of the scenario designer. The events are defined

within the instance file of a challenge description. These events may execute a cus-

tom program or perform some network activity like sending an email or pinging

18

a machine. The Events API as described here allows the developer to extend the

game server to natively support new Event types. This section describes the op-

tions that we have implemented in the game server to give the developer flexibility

in defining events that may be used by the scenario designer.

The events implemented in the game server follow an implementation that

combines both the Factory and Builder [20] patterns. Events are implemented as

an abstract class that defines an interface to be sub-classed. This allows develop-

ers to extend the application with additional native event types. Each concrete

event class must be implemented separately before it is able to be used within a

cyber challenge. The abstract event class defines the required minimum attributes

that an event object must possess for the game server to interact with the event.

The required attributes are related primarily to scheduling the event within the

challenge. Each concrete subclass may implement any additional attributes or

methods that are relevant to that type of event.

A challenge designer encodes the events for a scenario in the instance file

as XML descriptions. Here we use the Builder pattern to separate the encoding

of the event from its instantiation and operation. After a concrete subclass has

been established it is necessary to construct a handler for that event type. Each

event as described within an XML block must specify the handler that is used

to parse the event. The handler provides two functions: parse-event() and run().

The parse-event() function is passed the XML block description of the event. It

is the responsibility of the parsing function to decode the XML of the block and

instantiate the concrete event class that it describes. This allows the developer to

decide both the attributes of the event as well as the specific XML that describes

the event.

The handler also provides the run() function that is used to execute the event.

19

The function is passed the instantiated event object containing all the information

decoded from the XML block as well as a handle to the application. The pro-

grammer of the handler decides how the event should be run, additional function

calls to be made, or external applications to interact with. When the game server

calls the run function the execution is passed into a new thread as described in

Section 3.4.2. The return value of the run function is not monitored by the game

server and it is the responsibility of the programmer to handle any errors. The

application handle that is passed to the function is used to communicate with the

rest of the application. Using this handle the programmer can send score results

and log messages. This provides encapsulation of the events so that they do not

interfere with one another.

3.4 Game Control

Cyber challenges, as envisioned within the OCCP framework, are designed to

have discrete time frames. These time scales are described as a length of time to

accumulate on the game clock, without specifying a particular start or stop time.

This facet of a cyber challenge requires that the game server perform at minimum

two specific functions. The first is that the game server must control the starting

and stopping of the challenge. While this may seem like an obvious point, the

application could alternatively be programmed to begin execution of the challenge

as soon as it is launched as it is in [4] and [6]. The second function requires the

game server to track the amount of time that has elapsed in the challenge. This

information is used to stop the challenge once the given game length has been

reached.

The desired situation envisioned by the OCCP framework has an expectation

for deliberate control of the challenge. For example, a moderator may wish to

control exactly when the challenge begins and ends. Each definition of a cyber

20

challenge will provide some guidance on the length of that challenge. Usually this

will be provided by the designer of the challenge using a relative time scale, such

as 30 minutes or 3 hours for the length of the challenge. In a practical situation

the cyber challenge will need to be setup and configured before the users or players

are ready to begin. In a classroom environment this may mean that an instructor

has configured and prepared the challenge before the beginning of the class period.

For a higher skill level challenge it is likely that there will be a moderator who is

preparing the challenge before the players arrive at the scenario. In both of these

situations it is desirable to have a discrete START and STOP function so that

execution will not begin before game play is ready to commence.

The game server is implemented to first read the provided instance file that

describes the challenge. As the game server reads all of the configuration direc-

tives and commands that are relevant from the instance file it will begin parsing

and executing those instructions to set up the challenge environment. Once the

setup phase is completed the game server will stop and wait for user input before

continuing its execution. State changes in the game clock may be generated either

through the CLI or through the web service API.

3.4.1 Game Clock

The game clock acts as the authoritative source for time information through-

out the entire application. This is an important feature to maintain an accurate

auditing of the events and their order of execution. The game clock is a construct

designed to allow the challenge to be played at arbitrary intervals and speeds. Like

other games such as football, the game clock is separate from normal time or wall

time. The wall time of a game may be several hours long while actual game play

may be only half of that time. This discrepancy is caused by various motivations.

Instructors or moderators may wish to describe or breakdown various components

21

Paused

Run

Update
Gametime

Obtain
Lock

Record Time
Release

Lock

Obtain
Lock

Release
Lock

Read
Gametime

Read
Gametime

Start
Watchdog

Stop
Watchdog

Yes NoState
Change?

State Transition to Paused

State Transition to Run

Figure 4. Game clock states during operation

of a cyber challenge during game play. This means that the moderator would

stop game play by pausing the game clock, while the wall clock or normal time

continues unabated.

The game clock is implemented using a stateful object representation. The

clock object maintains an accessible state such as RUNNING or PAUSED and

a time value counter. When the game clock undergoes a state change, such as

RUNNING to PAUSED the gametime value is updated to represent the amount

of time that has elapsed on the game clock. As shown in Figure 4, the gametime

updates when the clock is transitioned between states or while being read in the

RUNNING state. A watchdog process monitors the amount of time elapsed in the

game. When the gametime reaches the value described in the instance file for the

length of the scenario the clock is stopped. Because the game server is designed

as a multi-threaded application the game clock’s time value is protected from

alteration by a mutex. Many components of the system may try to read the game

clock simultaneously. This design, while simple, provides consistent simultaneous

22

access to the game clock for each independent component.

3.4.2 Event Execution

The timely execution of events defined by the challenge is a core function of

the game server. The specification of events includes the information necessary

to compute when and how the events should be triggered. This information also

describes whether the event occurs a single time or whether it occurs many times

as a periodic event.

Events can be placed into two general categories, those events that occur only

one time during a challenge and those events that are recurring or periodic. The

designer of the scenario decides into which of these two categories an event may

fall when specifying the event. In some cases a designer may want an event to

occur a small number of times such as two or three. They may choose to specify

the event the same number of times or the event may be specified as a periodic

event. In these cases there is no distinction between a singular or periodic event.

Singular events are specified individually in the instance file and may have unique

options, whereas periodic event description are executed repeatedly. Each event is

described by an XML block that, for a singular event, will be executed at most one

time. Similarly, a single XML block may be used to describe a periodic event that

may occur several times per scenario or several times per second. This distinction

allows the designer to generate many repeating events. An example of the details

of an event definition are shown in Appendix A lines 131-134.

Singular and periodic events are treated differently when being executed by

the game server. The events are first separated into two lists for each Team. The

initial list separation is performed during the setup phase of the game server before

any user interaction has occurred. Singular events are stored in a priority-sorted

list with the next time-to-execute event at the front of the list. Periodic events

23

are all processed directly at the start of the challenge. The list of singular events

and each periodic event is monitored in its own thread as shown in Figure 3.

These monitoring threads are one component of the game server that requires the

constant high precision of the game clock to function properly.

The singular events can easily be sorted and maintained by the next time-to-

execute of each event. The top of this list is monitored by a single thread that,

when running, spends most cycles sleeping for an amount of time that is equal to

the difference between the gametime and the next events time-to-execute. At the

correct time the event at the top of list is removed by the monitoring thread and

launched into its own new thread. The monitoring thread then evaluates the next

event and either launches it or goes to sleep for the appropriate amount of time.

This method allows events to be quickly pulled off of the list and launched without

long delays even when an event’s specified launch times are very close together.

By placing each event launch into a new thread the monitoring thread does not

have to wait for the event to return. When the event does eventually complete

any remaining tasks can be processed by that events thread without disrupting

the monitoring thread.

The periodic events are handled slightly differently than singular events. Peri-

odic events may specify both a rate of repetition and an amount of drift. The drift

of a periodic events adds or subtracts a random amount of time from the expected

next launch time. For example, an event may specify a repeat rate of every 5 sec-

onds with a drift of ±2 seconds. Periodic events with both a repeat rate and drift

would create a burdensome amount of computation to maintain an ordered list of

events sorted by their next time to execute. Instead, immediately after the events

are split into the periodic and singular groups a separate thread prepares each pe-

riodic event for execution. One new monitoring thread is created to schedule the

24

individual execution of each periodic event. These monitoring threads are nearly

identical to the one described for singular events. It is responsible for launching

the event at the correct interval as specified by the designer.

Creating a scheduling thread for each event allows us to take advantage of

parallelism. This allows events with high frequencies to be executed simultaneously

without a large amount of computation to keep the events in a sorted list. This

use of multi-threading allows individual schedulers to operate unimpeded by other

functions of the game server including executing other events or responding to

score queries. Using the lessons learned from the Nagios implementation described

earlier, this multi-threaded approach was chosen to allow events to be executed

simultaneously rather than sequentially.

The monitoring threads of both the periodic and singular events are dynam-

ically controlled when the game clock undergoes a state change. This is accom-

plished through a combination of native thread controls and inter-thread message

passing. The TEAM thread is denoted as the parent thread for each monitor-

ing thread as shown in Figure 3. When a state change occurs the TEAM thread

uses native thread commands to wake up all sleeping threads. As each monitoring

thread awakes, it performs three checks: (1) it compares the amount of time just

slept to how long it should have slept for, (2) if awoken early check the Team

state, and (3) if in a PAUSED state record how long it has already slept before

finally performing a thread yield. After completing a thread yield the monitoring

thread will not execute again until specifically launched by its parent thread. This

overrides the normal behavior of the system thread scheduler which may wake up

the thread at the next execution cycle. Similarly, a transition to the RUNNING

state signals the Team to wake up each of the monitoring threads for that Team.

As each thread wakes up it checks to see if there is any remaining time balance

25

that it should sleep for before the next execution of the event. This preserves any

complex timing scenarios that existed before the last state transition.

The monitoring threads do not check the state of the game clock directly

and instead watch the state of the Team. The state of each Team is globally

synchronized to the game clock when a game clock state transition takes place.

Individually though, a Team may have its state locally changed so as not to be in

sync with the game clock. This feature allows individual teams to be paused or

run without affecting other parts of the game server. In some scenarios it may be

useful to pause one type of event that are collected together in a single Team. For

example, a moderator may wish to continue background traffic while disabling any

attacks by the red team. This fine grained control is achieved by passing a message

directly to the desired Team indicating that it should perform a state change. No

other part of the system is affected when a Team state change occurs locally.

3.5 Scoring

Scoring of cyber challenges presents unique difficulties, and no ideal solution

has yet been presented in the field. In this implementation for the game server we

provide a mechanism to provide extremely granular control of the recording of score

events. How these events are combined and used to evaluate player understanding

is beyond the scope of this project. The scores for individual score-able events are

collected and calculated using the descriptions provided in the instance file by the

scenario designer. This model will provide a mechanism to permit the evaluation

of new scoring methods without requiring gross adaptation of the core of the game

server.

Each event launched by the game server is able to be scored individually.

The most basic categorization is whether the event was successful or a failure. A

score-event is an atomic unit that describes a point value and a category label. An

26

1 redteam 15

2 blueteam 10

3 webserver 5

4 webserver 5

5 blueteam -5

1 redteam 20

2 blueteam 5

3 webserver 10

1 Overall Stat 15

2 Cust. Satis. 10

Score-Events

Score-Labels
Score-Names

SQL

MATH

Figure 5. Relationship between scoring elements

event may define one or more score-events to be recorded if the event is successful

or fails. This allows one event to add points to one or more categories each time

it is completed. For example, if an event is successful it may add points to one

category and subtract points from another category in the same operation. The

naming of the categories is arbitrary and only serves the designer when creating a

new computational model.

Each of the score-events is recorded in a SQL style table for accessing using

arbitrary SQL queries. The game server accesses this table using a score-label. The

default definition of a score-label is a SQL query that sums the values of all the

scores with the same label. This provides an initial starting point for the designer.

The instance file is capable of overriding this default SQL with any valid expression

that returns a singular value. This allows the designer to perform complex SQL

operations on scores that are recorded by the system. For example, the designer

may choose to create a score-label that represents the values recorded in the last 5

minutes of the challenge or the scores of a 10 minute period that was 15 minutes

previous.

The game server provides one more layer of computation to aid designers in

creating meaningful scoring results of the challenges they design. A game server

score-name is a mathematical expression that combines one or more score-labels

as described previously. A score-name can use basic mathematical operations to

27

create a final score from the aforementioned labels. Figure 5 shows the progression

from score-events to final scores. An example of how these constructs are defined

can be seen in Appendix A on lines 20-40.

This method of calculating scores should provide sufficient complexity to allow

a designer to score a challenge in any manner that fits his or her needs. The final

score-names are the values that are reported by the game server during competi-

tion, but the intermediate values can be recomputed from the original score data

which is retained after the challenge is completed.

3.6 Creating Realism

Cyber challenges attempt to provide the players with a simulation of a situa-

tion that may be encountered in the real world. As such, one goal of this project is

to provide scenario designers with tools to assist them in making scenarios which

feel realistic. Below we describe two tools provided by the game server that may

be used by designers to create realistic patterns in their scenarios. The first is

Internet Protocol (IP) address randomization, which allows events to be specified

with a selection of different IP addresses. The second is fine grained time control

which allows the creation of non-repeating patterns.

3.6.1 Address Randomization

Every event that is triggered by the game server relies upon network communi-

cation to accomplish a described task. This network communication will originate

from the host machine upon which the game server application is running. Many, if

not most, applications expectantly use the default IP address of the host on which

they are executed. In fact most applications that adhere to the Open Systems

Interconnection (OSI) model [21] are not aware of the underlying communication

protocols being used. The game server seeks to enhance these applications by

28

providing a contained environment for them to execute within. Various aspects of

the environment can be controlled by the game server to alter the behavior of the

contained application.

This technique relies on the use of the Linux kernel namespaces. Namespaces

were designed to provide isolation for processes running on the same kernel [22].

The use of namespaces in the game server application provides a type of light weight

virtualization for the processes launched by the game server. The game server

is able to programmitcally control environment settings that affect the launched

applications. The namespaces container used in this implementation allows for

control of the network stack within the kernel. Each event that is triggered by the

game server is launched inside a namespace container. All containers are identical

except for the IP address that is associated with the container.

The instance file provides an XML syntax for specifying a named pool of IP

addresses. The address specification may be any combination of single addresses,

list of addresses, or entire classless inter-domain routing (CIDR) notated blocks

of addresses as shown in Appendix A on lines 70-89. An instance may have an

unlimited number of IP address pools that contain an unlimited pool size. Any

event described in the instance file may either specify a specific IP address or

choose to have an address randomly selected from a named address pool.

Once an address has been assigned for an event execution a kernel namespace

is created for that address. The kernel supports a fewer number of namespaces

than IP addresses that exist. For this reason a namespace is not created until it

is time to execute an event with a specific IP address. The game server creates

the namespace and applies the IP address into the environment. The event is then

executed inside that namespace. The game server tracks all namespaces that have

been created and how many events are using the namespace as their execution

29

environment.

A namespace that has been created and used by one or more events, but is

no longer being used becomes a stale namespace. Each namespace that is tracked

by the game server has an adjustable finite lifetime. If a new event wants to

use the IP address associated with a namespace before its lifetime has expired,

the namespace is moved from the stale list. The lifetime on the namespace is

reset when the event is finished using it. At the end of a namespace lifetime the

namespace is deconstructed to free resources within the system.

3.6.2 Timing Control

The timing of a sequence of events that occur in a cyber challenge presents

another avenue to create a realistic feeling for the scenario. Events that are speci-

fied as repeating events must have an associated period at which they repeat. An

amount of drift can be added to the event period to cause the event period to

lengthen or shorten. This allows the event to be executed without a defined time

signature that would be indicative of a simplistic automatic scheduling system.

Here we implement a drift that is added to the event period at each invocation.

The drift, specified in seconds, represents the outer bounds of an interval in which

to choose the drift value. The interval is randomly chosen at each event execution,

and added to the statically defined period. This new value is then used to sleep

the event between executions. This allows a scenario designer to choose repetition

rates and drift intervals to create slightly abnormal timings or completely randomly

timed event executions.

3.7 Testing and Metrics

In the previous sections we have described a solution to the problem outlined

in Chapter 1. We described, in the context of the game server application, the

30

functionality that is required to meet the goals of this project. This section iden-

tifies and explains the tests we conducted to evaluate the solution and the metrics

we used to evaluate the effectiveness of the solution in meeting the goals. We begin

by asking questions about the game server and determining the metrics we need

to collect to answer those questions.

Question 1: Does the game server provide the ability to control the running

states of a cyber challenge?

Start time, End time, Total wall time, Total time paused

These timings can be used to compare the expected and actual values as-

sociated with a scenario. The total wall time for a scenario, that has its

state changed to PAUSED, should be extended by the amount of time the

challenge is paused. The start time and end time indicate if the scenario

runs for the correct amount of time.

Question 2: Do scheduled events execute at the correct time?

Actual execution time of each event

The actual time that an event is executed should match the values specified

in the instance file for that event. Periodic events should execute at the rate

specified in the instance file.

Question 3: Are scores for executed events correctly recorded?

Score-event records

The individual score-events that are recorded for each event should match

those specified in the instance file. Periodic events should have a matching

number of executions and score-event records.

Question 4: Do the final score results match the expected results?

31

Final score-names

The final calculated scores are defined as score-name calculations within the

instance file. The recorded results of the score-names should match the final

score results that are calculated separately by evaluating the instance file for

the scenario.

Question 5: Do events that specify an IP address correctly use that address?

Question 6: Are events that specify a randomized IP address executed with

different addresses?

Game server network traffic

The network traffic exiting the game server records the IP addresses assigned

to events specified in the instance file. The events that specify an IP address

should be detected within the network traffic analysis with that address. The

events that specify a random address should be detected as having an address

from within the specified address pool.

Question 7: Does event timing randomization adequately mask the signature

of a periodic event?

Event execution time line

One of the goals of this project is to provide scenario designers with tools to

create realistic network traffic. This test measures the game server’s ability to

achieve that goal. The event time line is compared with expected values for

periodic events with and without an associated drift. The time between event

executions for events with no drift should appear regular, with a frequency

that is the same as that specified in the instance file. For events with a

drift value, the timing distribution should show timings not occurring at a

particular period, in contrast to non-drifted events.

32

Question 8: Can the game server execute the types of events that represent

typical network traffic of a cyber challenge?

Game server network traffic

The events defined in a scenario’s instance file should be executed and de-

tectable within the network traffic generated by the game server. The types

of events defined in the instance file are representative of those encountered

in other cyber challenges. This test measures the game server’s ability to

generate realistic network traffic.

Question 9: Do the interfaces of the game server provide the required func-

tionality for each type of user?

Game server interface definitions

The expected activities of each type of user was compared to the functionality

specified by the interface definitions. Each type of user, as defined by the

OCCP, should be able to perform all functions for their required skill level

in the appropriate interface.

The metrics data to answer the questions presented above were collected using

several tests. Each test requires the use of an instance file to specify the actions the

game server should perform. Some of the tests require the comparison of expected

data to actual recorded data. The instance file for a specific test is the source for the

expected data. The data in the instance file may require additional computation

performed outside of the game server to compare with recorded results. Some tests

may produce more than one data metric to be collected simultaneously.

3.7.1 Game Server Operation Testing

The procedure for each test involves using the game server to run a specifi-

cally crafted instance file. The game server log file and score record database was

33

collected at the end of each operation. At the end of each test we analyzed the

collected information to generate the results of that test.

3.7.2 Network Testing

We utilized a virtualized target machine when conducting network tests. The

target is configured to send and receive traffic from the game server. These two

machines are the only computer hosts on the network to reduce network noise and

aid in the correct identification of events. We used tcpdump [23] to collect the

network traffic emitted by the game server and the target machine.

The testing for address assignment was conducted by using a single ping [24]

sent from the game server to the target machine. The target machine should receive

the ping and reply with the appropriate response. The game server should receive

the reply message indicating that it has not only sent the ping with the source

address but it is also listening on that address. The test was conducted for both

single events and periodic events. The single events were executed by specifying

a single address to use. Each of these events should only use that address when

conducting the test. In the case of periodic events, each event was specified as

using an IP address pool. The game server should randomly select an address

from the pool and assign it to the event. If the game server fails to receive a

reply then the game server has not correctly established a method for specifying

IP addresses for events.

The traffic generated from the game server and from the target machine was

compared to determine if the test was successful. Because additional network traffic

may be present on a connection, the events were separated by an appropriate time

interval. This eases comparison between the two sets of traffic and allows for the

unique identification of events.

34

CHAPTER 4

Results

In this section we discuss the results obtained from development and testing

of the game server. We revisit the questions asked in Section 3.7 and describe the

implications of the metrics collected.

Question 1: Does the game server provide the ability to control the running

states of a cyber challenge?

Run Time Time Paused Total Time Actual Run Time
300 60 360 300

Table 1. Comparison of scenario run times

The game server was successfully able to control the running states of a sce-

nario. As shown in Table 1 the actual run time of the scenario is equivalent to

the desired run time. The game server provided the ability to pause a running

scenario and to continue that scenario at a later time. The actual amount of time

that the scenario was executed for matched the amount defined in the scenario file

processed by the game server.

Question 2: Do scheduled events execute at the correct time?

Scheduled Start Time End Time Event Name Status
20 20.0936 20.1122 Event 1 SUCCESS
45 45.0016 45.0126 Event 2 SUCCESS
90 90.0793 90.0850 Event 3 SUCCESS

Table 2. Non-periodic event times and actual execution times in seconds

All events scheduled by the game server were executed at the times specified

in the instance file. The data provided in Table 2 show a sample of multiple runs

conducted with non-periodic events at various starting times. In each case the

game server correctly launched the event at the specified time. Periodic events

35

require an additional dimension to analyze. For the case of periodic events we

also review the number of times that the event is executed with respect to the

frequency specified for each event. In Table 3 we show the Start and End time for

an event along with its associated frequency. The frequency describes the number

of seconds between executions of the event. The table shows the number of events

that should be executed for the given values of duration and frequency.

Name Start End Freq. First Run Last Run No. Events Actual
Event 1 0 30 1 0.1545 30.0310 31 31
Event 2 30 60 1 30.0012 60.0124 31 31
Event 3 0 120 4 0.0785 116.0220 30 30
Event 4 0 120 0.5 0.2384 119.6288 240 240

Table 3. Periodic event times and actual execution times in seconds

We can see from the values presented in Table 3 that the game server has

executed the periodic events in agreement with their specifications. The length of

the test scenario was scaled to 120 seconds overall. In the data for Event 2 we can

see the game server both correctly delays starting the event and correctly stops

the event at the specified times. Events 3 and 4 have end times that coincide with

the completion time of the scenario. The game server will execute one less event

for Events whose end time is at or greater than the length of the scenario. The

game server stops all executions at the beginning of the last second of a challenge,

hence any event whose last execution occurs within or after the last second will

not be run.

The data from single and periodic event executions show that the game server

is able to execute events at the requested times. We also see that edge cases exist

when an event is scheduled to run until the end of the scenario. These edge cases

when documented do not impact the functionality of the game server.

Question 3: Are scores for executed events correctly recorded?

The game server stores each record for a scoring event in a table that identifies

36

Name Runs Pt Value No. Records Expected Pts Total Pts
Event Count 1 1 1 1 1.0 1.0
Event Count 2 1 15 1 15.0 15.0
Event Count 3 1 0.5 1 0.5 0.5
Event Periodic 1 31 1 31 31.0 31.0
Event Periodic 2 31 3 31 93.0 93.0
Event Periodic 3 30 7 30 210.0 210.0

-4 30 -120.0 -120.0
Event Periodic 4 240 0.8 240 192.0 192.0

Table 4. Event scores

the event and the score value. The data in Table 4 shows the results of analyzing

the score table at the completion of the test. Each of the events listed is shown

with the number of points associated with each execution. The event named Event

Periodic 3 has two score values associated with each execution. The point values

are associated with different score-labels defined in the instance file. The table

shows that for each execution of an event in the Runs column, a score record was

created in the Number of Records column. The Total Points column matches the

expected points for each of the events. This result shows that the game server

correctly records scores for each scheduled event execution.

Question 4: Do the final score results match the expected results?

The score results are calculated by the game server based on the definitions

provided in the instance file. Five score results were defined in the instance file

where each score used a different combination of math operators. In Table 5 the

computations are calculated using the intermediate label calculations. The two

labels used are shown with their summary value in the first two rows of Table

5. The labels are then shown being used in additional computations to provide a

variety of scoring schemes. The multiplication score demonstrates how to use a

weighted label computation in a score.

The game server correctly calculated all the values for the scores as shown

37

Score Name Label Calculation Expected Val Actual Val
Red Team redteam -120.0 -120.0
Blue Team blueteam 542.5 542.5
Addition redteam + blueteam 422.5 422.5
Multiplication redteam * 0.8 + blueteam * 0.5 175.25 175.25
Division blueteam / redteam -4.52 -4.52

Table 5. Final score calculations using intermediate score-labels

when comparing the Expected Values with the Actual Values columns. The score

results depend on the computation provided for by the scenario designer. Invalid

formulas generate an error message in the game server’s log file produced for each

instance run. The game server can use many types of mathematical operations

in the computation of scores. The values show are a representative sample of all

possible math operations.

Question 5: Do events that specify an IP address correctly use that address?

The game server’s and target machine’s network traffic was captured while

executing the test instance file. An analysis of the traffic showed that each of

the events that specified a particular IP address correctly used that address when

executing network events. Each event in the instance file provided a unique IP

address to be used when executing the event. The events were spaced apart by 30

seconds to aid in identification of the events within the traffic capture. The events

were recorded on both sides of the connection, the game server side and the target

machine side, as using the correct addresses.

The game server was successful in bi-directional communication with both the

origin, the game server, and the target machine. This indicates that the events

were both transmitted with the specified source IP address and that the game

server correctly listened for network traffic with that address. The network traffic

captured from the target machine showed the address resolution protocol (ARP)

handshake that occurred before the test ping is sent. The traffic showed that for

38

each execution of an event an ARP handshake occurred with a new media access

control (MAC) address from the origin. The creation of unique MAC addresses

was an unexpected result of using namespaces to encapsulate IP addresses.

Question 6: Are events that specify a randomized IP address executed with

different addresses?

The results of testing to answer question 6 were the same for question 5.

Each event was successfully assigned a random IP address from the pool that it

specified. A comparison of the traffic from both the game server and the target

machine showed the same results. Each message transmitted by the game server

was replied to by the target machine and received by the game server.

Figure 6. Distribution of 10 IP addresses for 240 events

The volume of traffic generated when testing periodic events was significantly

higher than that created when testing single events. An analysis for the traffic

generated was analyzed to confirm the results. Figure 6 shows the allocation of 10

IP addresses as randomly assigned to 240 event executions. The expected result

would show a uniform distribution of addresses, but in this case the graph does

not show that distribution. This is the result of a limited sample size. When the

number of event executions increase the graph shows that the resultant allocations

39

forms a uniform distribution. Figure 7 shows 10 addresses distributed over 14,400

events. This represents running an event every 0.5 seconds for 2 hours. The

increased number of event executions shows that the game server does distribute

the IP address to the events using a near uniform distribution. Any variation in the

distribution can be attributed to the underlying pseudo-random number generator

provided by the host system.

Figure 7. Distribution of 10 IP addresses for 14400 events

Question 7: Does event timing randomization adequately mask the signature

of a periodic event?

This test measures the game server’s ability to achieve the goal of this project

to provide scenario designers with tools to create realistic network traffic. Events

that occur at regular intervals can easily be detected through a heuristic analysis

of network traffic. To determine if we can mask an event scheduled periodically

we first look at the traffic generated when no masking is applied. Figure 8 shows

the network activity of two events that are scheduled periodically by the game

server. The difference between event arrivals is shown in the Y-axis and the length

of the sample is shown in the X-axis. The event periods can be easily seen with

visual inspection to occur at 3 second and 0.5 second intervals. The event with

40

Figure 8. Periodic Events without Drift

Figure 9. Periodic Events with Drift

a 0.5 second interval is not as clearly defined due to small latencies incurred by

network communication. The amount of variation of results for the first 20 seconds

can be attributed to the warmup period of the game server. The initial creation

of namespaces takes approximately one-tenth of a second, but may be as long as

three-tenths of a second.

We can now apply an amount of drift to each event execution to create a mask

for the period. As shown in Figure 9 the period of the events is not immediately

distinguishable. In this test we applied a drift of 3 seconds and 1 second to the 3

41

Figure 10. Unspecified Periodic Events with Drift

second event and the 0.5 second event respectively. The timings for the 0.5 second

event are tightly clustered within the bounds of the period plus the drift in the

range of 0 to 1.5 seconds, while the 3 second event appears to have a non-periodic

schedule. The time between event executions for the 3 second event can also be

short enough to make it indistiguishable from 0.5 second event executions. When

we graph the same data without distinguishing between the events the impact of

the timing randomization can be seen more easily. Figure 10 shows the events

using the same mark and without a connecting line. This figure shows a more

accurate picture of the apparent execution of events once a drift is applied.

After comparing the timings of events both with and without a suitable drift

we can see that the game server can mask the periodic signature of an event. This

requires the use of a drift value that is appropriate for the frequency of the event

that is to be masked. The timings of the events shows that lower frequency events

are more easily disguised than high frequency ones.

Question 8: Can the game server execute the types of events that represent

typical network traffic of a cyber challenge?

The traffic that is generated by the game server is dependent on the events

42

specified by the instance file. The current implementation of the game server

supports one type of event natively, the Exec Event. An event of this type can

specify a shell command to be run by the game server. When the event is run by the

game server the command is passed to the system shell and executed. The return

code of the event is used to determine whether the event is treated as succeeding

or failing. Any application installed alongside the game server application can be

run in this manner. Using this mechanism the game server is able to generate any

network traffic required in a cyber challenge.

While testing the game server’s ability to assign IP addresses we used the ping

command to send ping messages to a target machine. This was accomplished by

specifying the events in the instance file using the Exec Event type. The command

was passed to the shell when executed and the return code provided to the game

server upon completion. The game server then recorded a success or failure of the

event and the appropriate score result.

The type of network traffic that can be generated by the game server is only

constrained to the availability of external applications that can generate the desired

type of traffic. Not all applications terminate with a return code that is suitable

for the game server. To test these programs several bash-compatible script files

were created. The script files were used to test the execution of other applications

in addition to the ping command described above. These wrapper scripts handle

any special input or output generated by the application and end with a return

code that is appropriate for that execution.

The game server was successful in running the wrapper scripts to generate

network traffic specified in the instance file. Table 6 shows a listing of the types of

events that are generally used during a cyber challenge. Each event was successfully

tested with the game server to record a result.

43

Program Activity Result
wget Retrieve a web page Successful
scp Send a file to a server Successful
nmap Scan a network for hosts Successful
sendmail Send an e-mail message Successful
curl Login to web portal Successful

Table 6. Event executed using the game server

Question 9: Do the interfaces of the game server provide the required

functionality for each type of user?

The interfaces provided by the game server have unique target audiences as

described in Section 3.1. Here we describe the relationship between users, their

activities and the interfaces that support those activities. We examine each inter-

face to describe the functionality provided and discuss the intended users of that

interface as shown in Figure 11. Finally, we examine whether the functionality of

that interface is appropriate for those users.

The instance file provides the primary interface with which to configure the

game server. All users of the system will require at least the instance file to be

able to use the game server to run a cyber challenge. The end users of the system

will not be required to implement the instance file, but only need to provide a

prepared instance file when running a challenge. The prepared instance file will

contain all the necessary information to configure the game server. Therefore, for

the end user, the instance file interface to the game server has met their needs

of configuring the game server for a cyber challenge. Scenario designers will be

the primary group of users building instance files to define cyber challenges. The

scenario designer is responsible for choosing the configuration directives to include

within the file that are apropriate for the cyber challenge they are defining. The

instance file interface provides the complete set of configuration directives and

options to configure the game server for the challenge they are trying to specify.

44

For the scenario designer the instance file interface provides all the functionality

required by the scenario designer to configure every aspect of the game server. The

developer will extend the instance file interface to meet new functionality added

to the game server. The instance file uses a standard XML syntax to describe a

cyber challenge. It is the responsibility of the developer to continue to implement

new features and configuration directives in the instance file using this well defined

interface. The instance file interface meets the needs of the developer by providing

a standardized way to add new configuration directives that will be available for

scenario designers.

The CLI interface is the simplest interface provided by the game server. The

end user is presented with 5 options that control the game server and retrieve

information about the state of a running cyber challenge. The controls provided

with this interface meet the needs of all users by providing simple access to the basic

functions needed while running a cyber challenge. Users may control the running

state of the challenge by starting, pausing, resuming, or stopping the challenge.

Users are also able to access the state of the game clock and the final scores

computed by the game server. These activities encompass all the functionality

required by users to operate a cyber challenge.

The web service API extends the game server to allow for additional devel-

opment of user and application interfaces. The web service allows developers to

create additional end user interfaces by providing access to information within the

game server. With this interface it is possible to connect external applications to

both the raw and computed data within the game server. The end users of the

game server would not interact with the web service directly, but would use its

functionality through secondary applications built on top of the web service’s data

feed. The web service allows developers to control and update a running cyber

45

Configure the game server

Control the running states of a challenge

Retrieve score information

Retrieve the game clock

Update a running cyber challange

Create additional interfaces

Extract information to external applications

Extend native events

Developers

Instance file

CLI

Webservice

Events API

Figure 11. User and Interface functionalities

challenge by providing a well defined mechanism to allow configuration of some

aspects of the game server.

The game server’s final interface provides an API for developers to extend the

functionality of the game server. The Events API allows developers to program new

native events to be handled by the game server. This API allows the developer to

specify the type of event and the method in which the event is run. The developer

specifies the XML definition to be included in the instance file and provides a parser

to instantiate the event object. The developer then specifies the run function for

the event. When the game server executes the event it will call this run function.

Within the function the developer has complete control over the running event.

They may specify when and how to send scoring or logging events to the game

server and they may specify any conditions that must be met in order to complete

the event. This API allows the game server events to be extended without any

restrictions on the developer. The functionality provided by this interface then

meets the needs of a developer wishing to extend the game server with additional

event functionality.

46

CHAPTER 5

Discussion

In the previous chapter we discussed the results obtained from testing the

game server application. The testing we conducted sought to answer questions

derived from the goals of this project about the game server and its capabilities.

We will now evaluate the results of that testing to show that we have met our

goals.

Our first goal is to have a game server that is capable of providing a central

point of control for a cyber challenge. The results gathered from answering question

1 indicate that our implementation of the game server can perform that function.

It is capable of setting up a challenge environment and controlling the run-time

state of a scenario. The game server successfully enables moderators to control a

cyber challenge to match their preferences. This capability may be used to enhance

the educational value associated with participating in a cyber challenge.

The moderator of a cyber challenge is able to retrieve event and scoring in-

formation from the game server. In answering questions 2, 3, and 4 we established

that the game server is capable of executing events, at their scheduled times,

recording the scores for those events and computing final scores for the end users.

These activities establish our goal number 2 of implementing a game server that

provides usable functionality in scheduling and scoring events for a challenge.

The creation and use of cyber challenges is meant to enhance the end user’s

skills and abilities for use in real world situations. We have shown in answering

questions 5, 6, and 7 that the game server provides the scenario designer useful tools

in creating scenarios that have realistic qualities, achieving goal 3. Actual activities

that may be performed by the game server are dependent on the creativity of the

47

scenario designer. The game server provides a mechanism to support the types of

traffic commonly found in cyber challenges. This makes it possible through the use

of randomized addresses and timings to generate realistic network activity. The

game server’s ability to perform this function eases the burden placed on scenario

designers when creating new scenarios.

Our goals for this project include making the game server able to be used

successfully by the appropriate users while still remaining flexible enough to be

extended with additional development. We have shown that the requirements

for each type of user have been addressed by the game server when we answered

question 9. This implementation provides all of the basic needs for all user skill

levels to be able to interact with the game server in an appropriate manner, which

satisfies goal 4. The interfaces of the game server provide a means for future

developers to extend the functionality of the game server for scenario designers

and create additional user interfaces for end users of the system, completing goals

5 and 6.

The results obtained from testing the game server show that we have success-

fully met the goals of this project. The game server is capable of performing all

the required tasks needed to run a cyber challenge. We have shown that the game

server is configurable and can control the running state of a challenge, as well as

execute events specified by scenario designers. The outcome of this project was

successful. In the following sections we discuss interesting results discovered while

testing the game server application and future work for the continued development

of the game server.

5.1 Network traffic

Namespaces are used for each event execution to create network traffic with

a specified IP address. Each time an event with a random address assignment is

48

executed it selects a new IP address to use for the execution. The game server

then creates a namespace and configures it with the appropriate address. The

creation and breakdown of a namespace takes a specific non-trivial amount of time

to create depending on the resources available in the game server. A high-frequency

event that uses some set of IP addresses will require the setup and breakdown of

many namespaces for its event executions. This can lead to considerable load

on the game server. In addition to the previously discussed constraint on the

number of namespaces able to be created, the introduction of a namespace lifetime

counter reduces the amount of work done to create and breakdown namespaces.

Each namespace will stay alive with a specific IP address for the length of that

lifetime. Any time an event re-uses that IP address and therefore namespace,

the lifetime counter is reset. A repeating event whose frequency is less than the

namespace lifetime will keep that namespace alive for the duration of the event.

This significantly reduces the amount of resources consumed by the game server

when using namespaces. The lifetime of the namespace is able to be configured

globally for all namespaces. The actual lifetime depends on the number of high-

frequency events that a challenge uses. During testing, a lifetime of thirty seconds

produced a desirable balance for the types of traffic loads used in testing the game

server.

When testing the IP address assignment to events by the game server we en-

countered a unique behavior that was not expected. We used namespace containers

to create an execution environment for each event. The creation of a namespace

also causes that namespace to have a unique MAC address assigned to the names-

pace as it is configured with an IP address. Normally, a host is connected to a

network using a unique address in the OSI layer-2 model. This MAC address does

not normally change and may be used to identify a host regardless of its IP address.

49

This is a desirable behavior for the game server. The creation of additional MAC

addresses has the benefit that the traffic generated by the game server not only

uses various IP addresses but also appears to be coming from different hosts. In a

cyber challenge a player may decide to use MAC address filtering to block certain

traffic from a host regardless of the IP address of that host. With this behavior

the game server is able to act like many hosts there by increasing the realism of

the traffic generated.

The ability of the game server to dynamically assign events new network

addresses from the instance file provides critical functionality in using a single

machine to generate network traffic in a cyber challenge. When the game server is

deployed into a cyber challenge the scenario designer may specify which network

segments the game server will be attached to. The designer can connect the game

server to both the external interface of a network and the internal network. In

this configuration the game server has the ability to generate traffic that imitates

users of the network as well as attackers. Figure 12 shows how the game server

can be connected to several different network segments. The designer can then

create network traffic that is not affected by actions of the players. For example, a

misconfiguration of the firewall may block access to particular parts of the network.

Because the game server is directly connected to each network segment it can

continue to function without interruption.

5.2 Event Timing

Event timing randomization is implemented using a drift when executing

events. Randomization can be used to either disguise the fact that an event is

occurring on a regular schedule or in the case of singular events to make the chal-

lenge re-usable by players without them being able to anticipate specific events.

The amount of drift assigned to an event can be any value that the scenario de-

50

Virtual Red Team

Virtual Blue Players

Game Server

DMZ

Internal

Web Server Mail Server

DNS File Server

Blue Players

Firewall

Simulated
Internet

Gray Team

Figure 12. Sample OCCP scenario network

signer chooses. In the case of periodic events some interesting timing results can

occur by setting the amount of drift to be significantly higher than the period of

the event. In the current implementation of the game server the next time the

event will be executed is computed at the last time that event is launched. When

a drift value is computed that results in a negative amount of time until next exe-

cution the event is executed immediately. If the drift value is large it can cause the

event to delay execution for an amount of time that is longer than its period. In

this case the specified event will skip those periodic executions. This means that a

periodic event does not guarantee a particular number of executions for a specified

time period. The drift may cause more or fewer events to be executed for a given

time period. The effect of an event using a drift larger than the period will result

in a distribution that is mostly uniform with an exception at the 0 period. This

is the result of events that are calculated with a negative time to launch being

executed immediately.

51

5.3 Future Work

We have thoroughly tested each component of the software that comprises the

game server solution that we have set out to build. The game server is meant to be

used for a cyber challenge run on the OCCP. A complete test of the game server

would ideally involve a full-scale cyber challenge complete with human players and

moderators. This full scale testing would expand upon the time limited trials we

have conducted. The game server, and the OCCP project as a whole, is in the early

stages of recruiting scenario designers to build cyber challenges for the platform.

We will seek to test the game server’s capabilities at a future date when a mature

cyber challenge becomes available. Given the current results of all tests performed

we are confident that a full scale test will be successful.

The use of namespaces for light weight virtualization can be extended into

other areas of the kernel. Projects like Docker [25] provide complete application

containers. These containers share the system’s running kernel while virtualizing

all other aspects of the system. These Docker containers have the ability to have

their own file systems, network namespaces, and process stacks. Support for the

control and use of Docker containers would be a complementary add-on for the

OCCP game server. Integration of Docker within the current framework of the

game server would allow rapid extension of additional programs to schedule as

events. This would require several modifications to the Docker mechanisms. The

most important of these modifications would require more enhanced networking

control of the Docker containers. The game server makes extensive use of ker-

nel namespaces to provide address randomization. The Docker containers would

need to be modified so that individual containers could be configured to use the

appropriate addresses. This change would provide the added benefits of Docker

containers while allowing the game server to provide the same level of address

52

customization it now supports.

The web service API provided by the game server is intended to support the

creation of additional front-end (FE) applications. A front end application would

provide a more user-friendly web based user interface to the game server. A chal-

lenge moderator could use this application to preview upcoming event executions

for each of the teams in a scenario. The application would also support more fine

grained control over individual Team states. This would allow the moderator to

pause a single team or group of teams. This is in contrast to the CLI that currently

pauses all Team activity. The web service provided allows the front end application

to have fine grained control over the events executed by each Team. It would be

possible to create additional events to be added into a scenario Team on the fly or

to cancel specific events. The web service API encapsulates the implementation of

the game server so that development of the front end application could proceed in

parallel with the continued development of the game server.

In addition to the moderator interface, the FE application could be used to

display a graphical scoreboard. This spectator interface could show interesting in-

formation about the state of the cyber challenge. The information presented could

include scores, upcoming events, and the status of past event successes or fail-

ures. This enhancement may encourage participation in cyber challenge exercises

by increasing their visual appeal.

The creation of a front end application would also permit the creation of

additional mechanisms with which to score a cyber challenge. A FE application

would be capable of supporting a player interface. The interface for the players

could allow for the submission of flags. A flag in the context of a cyber challenge

is a piece of information that the player has discovered within the scenario. The

game server’s web service has the ability to receive additional score-events to be

53

recorded in the score database. A FE application could present the players with a

mechanism by which they submit those flags and earn points during the challenge.

The development of the game server is expected to continue in the OCCP

project. The OCCP is a community driven project that provides open access to

the source code and implementation of all its components. The strategies, tests,

results, and lessons learned presented here will contribute to the overall success of

the game server application as a foundation piece of the Open Cyber Challenge

Platform.

54

LIST OF REFERENCES

[1] P. A. Buxbaum. The International Relations And Security Network.
“Building a better ’cyber range’.” March 2012. [Online]. Available:
http://www.isn.ethz.ch/Digital-Library/Articles/Detail/?id=127714

[2] G. Vigna, “Teaching network security through live exercises,” in Security ed-
ucation and critical infrastructures. Springer, 2003, pp. 3–18.

[3] “Team - Official TF2 Wiki — Official Team Fortress Wiki.” April 2013.
[Online]. Available: https://wiki.teamfortress.com/wiki/Teams

[4] Air Force Association. “AFA CyberPatriot website.” [Online]. Available:
https://www.uscyberpatriot.org/

[5] “US Cyber Challenge - competitions.” April 2014. [Online]. Available:
http://www.uscyberchallenge.org/competitions/

[6] “SANS institute - netwars.” April 2014. [Online]. Available: https:
//www.sans.org/netwars

[7] P. Vixie, “Cron manual page, 4th berkeley distribution,” The information
from the crontab section (below and including the table) was taken (unedited,
but with small additions) from the crontab manual pages. Type man, vol. 1.

[8] Quartz Scheduler 2.1.x Documentation, Quartz, April 2014. [On-
line]. Available: http://quartz-scheduler.org/files/documentation/Quartz-2.
1.x-Documentation.pdf

[9] Ixia. “Ixia BreakingPoint Storm.” April 2014. [Online]. Available: http:
//www.ixiacom.com/products/storm

[10] University of Rhode Island, Department of Computer Science and Statistics.
“Open Cyber Challenge Platform.” November 2014. [Online]. Available:
http://www.opencyberchallenge.net

[11] “About Nagios.” [Online]. Available: http://www.nagios.org/about

[12] A. Silberschatz, P. B. Galvin, and G. Gagne, Operating System Concepts.
Hoboken, NJ: J. Wiley & Sons, 2005.

[13] Administrator’s Solutions Guide for Release 6, Oracle, May 2014. [Online].
Available: http://docs.oracle.com/cd/E37670 01/E37355/E37355.pdf

[14] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana,
“Unraveling the web services web: an introduction to soap, wsdl, and uddi,”
IEEE Internet computing, vol. 6, no. 2, pp. 86–93, 2002.

55

http://www.isn.ethz.ch/Digital-Library/Articles/Detail/?id=127714
https://wiki.teamfortress.com/wiki/Teams
https://www.uscyberpatriot.org/
http://www.uscyberchallenge.org/competitions/
https://www.sans.org/netwars
https://www.sans.org/netwars
http://quartz-scheduler.org/files/documentation/Quartz-2.1.x-Documentation.pdf
http://quartz-scheduler.org/files/documentation/Quartz-2.1.x-Documentation.pdf
http://www.ixiacom.com/products/storm
http://www.ixiacom.com/products/storm
http://www.opencyberchallenge.net
http://www.nagios.org/about
http://docs.oracle.com/cd/E37670_01/E37355/E37355.pdf

[15] R. T. Fielding and R. N. Taylor, “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2, pp.
115–150, May 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=
514185

[16] S. Furuhashi. “Messagepack: Its like json. but fast and small.” February
2014. [Online]. Available: http://msgpack.org/

[17] J. Highsmith, Agile Software Development Ecosystems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

[18] J. Martin, Rapid Application Development. Indianapolis, IN, USA: Macmillan
Publishing Co., Inc., 1991.

[19] A. Harris and K. Haase, Sinatra: Up and Running. O’Reilly Media, Inc.,
2011.

[20] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns: elements
of reusable object-oriented software. Addison-Wesley Publishing Company,
1994.

[21] I. Recommendation, “200 (1994)— iso/iec 7498-1: 1994,” Information
technology–Open Systems Interconnection–Basic Reference Model: The basic
model.

[22] W. Mauerer, Professional Linux Kernel Architecture. John Wiley & Sons,
2010.

[23] V. Jacobson, C. Leres, and S. McCanne, “The tcpdump manual page,”
Lawrence Berkeley Laboratory, Berkeley, CA, 1989.

[24] ping(8), Linux Manual.

[25] Docker, Inc. “Docker - Build, Ship, and Run Any App, Anywhere.”
November 2014. [Online]. Available: https://www.docker.com/

56

http://dl.acm.org/citation.cfm?id=514185
http://dl.acm.org/citation.cfm?id=514185
http://msgpack.org/
https://www.docker.com/

APPENDIX A

Game Server Instance File

Listing A.1. Example Instance File

1 <?xml version=” 1 .0 ” encoding=”UTF−8”?>

2 <occpcha l l enge>

3 < !−− Descr ibe the cur rent s c ena r i o −−>

4 <s c ena r i o gameid=”1”

5 name=”Red Team vs . Blue Team”

6 type=”Network Defense ”

7 d e s c r i p t i o n=”Blue team defends the network aga in s t automated

Red team at tacks . This s c ena r i o f o cu s e s on p ro t e c t i ng

aga in s t weak passwords and unused s e r v i c e s . ”>

8

9 < !−− Length o f time to run t h i s s c ena r i o

10 format { seconds , minutes , hours } −−>

11 <l ength time=”15” format=” seconds ” />

12

13 < !−− Users f o r the web s e r v i c e s conso l e −−>

14 <use r s>

15 <user name=”moderator ” pass=” token”/>

16 <user name=” b luep laye r ” pass=” token”/>

17 <user name=” spec t a t o r ” pass=” token”/>

18 </ us e r s>

19

20 < !−− Score groups l a b e l s a l low c e r t a i n events to be grouped

toge the r f o r s co r e c a l c u l a t i o n . Labe ls do not r e qu i r e any

s p e c i a l s t r i n g . SQL exp r e s s i on s must re turn a s i n g l e row and

value . I f more than one row i s returned only the f i r s t row i s

used −−>

21 <score−l a b e l s>

57

22 < !−− Example Defau l t query i f none provided −−>

23 <score−l a b e l name=”group1” s q l=”SELECT SUM(value) FROM SCORE

WHERE groupname=’group1 ’ ”/>

24 < !−− Example Addi t iona l WHERE c l au s e parameters c r e a t e a 5

minute s l i d i n g window −−>

25 <score−l a b e l name=”webse rve r s ta tus ” s q l=”SELECT SUM(value)

FROM SCORE WHERE groupname=’webservers tatus ’ AND time > (

time (’now ’) − 300) ”/>

26 < !−− Example Defau l t sum query i s used −−>

27 <score−l a b e l name=”redteam” />

28 <score−l a b e l name=”blueteam” />

29 < !−− Example Query may use any columns in the s co r e t ab l e−−>

30 <score−l a b e l name=” teamtota l ” s q l=’SELECT SUM(value) FROM

SCORE WHERE groupname!=”webse rve r s ta tus ” ’ />

31 </ score−l a b e l s>

32

33 < !−− Scores are c a l c u l a t ed by making c a l c u l a t i o n s from the groups

o f the l a b e l s above . Each score−name i s t r ea t ed as ERb template

; use score−l a b e l as v a r i a b l e s in c a l c u l a t i o n−−>

34 <score−names>

35 <score−name name=”red−team” desc r=”Red Team” formula=”redteam” />

36 <score−name name=”blue−team” desc r=”Blue Team” formula=”blueteam”

/>

37 <score−name name=” add i t i on ” desc r=” Se rv i c e Level ” formula=”

redteam + blueteam” />

38 <score−name name=”mu l t i p l i c a t i o n ” desc r=” Se rv i c e Level ” formula=”

redteam ∗ 0 .8 + blueteam ∗ 0 .5 ” />

39 <score−name name=” d i v i s i o n ” desc r=” Se rv i c e Leve l ” formula=”

blueteam / redteam” />

40 </ score−names>

41

58

42 < !−− Scoreboards show a pa r t i c u l a r grouping o f s c o r e s to user

a c c t s with permis s ion . This s e c t i o n i s used by the web

i n t e r f a c e s −−>

43 <s coreboards>

44 <scoreboard name=”moderator−board” update−r a t e=” l i v e ”>

45 <score−name name=”red−team” />

46 <score−name name=”blue−team” />

47 <score−name name=” s e rv i c e−l e v e l ” />

48 </ scoreboard>

49 <scoreboard name=” spectator−board” update−r a t e=” l i v e ”>

50 <score−name name=”red−team” />

51 <score−name name=”blue−team” />

52 <score−name name=” s e rv i c e−l e v e l ” />

53 </ scoreboard>

54 <scoreboard name=”player−board” update−r a t e=”1min”>

55 <score−name name=”red−team” />

56 <score−name name=”blue−team” />

57 <score−name name=” s e rv i c e−l e v e l ” />

58 </ scoreboard>

59 </ scoreboards>

60

61 </ s c ena r i o>

62

63 < !−− Host d e s c r i b e s the machine that i s running the gameserver

so f tware . Each network port to be used must be named and

l i s t e d to be used in events . −−>

64 <host l a b e l=”gameserver ” hostname=”gameserver ”>

65 < i n t e r f a c e name=”eth0 ” network=”pub” />

66 < i n t e r f a c e name=”eth1 ” network=”prvt ” />

67 < i n t e r f a c e name=”eth2 ” network=” in t ” />

68 </ host>

69

59

70 < !−− IP poo l s d e s c r i b e poo l s o f ip addre s s e s that an event can

use as source addre s s e s . These are u s e f u l f o r a l l o c a t i n g to

zombie t r a f f i c where the p a r t i c u l a r source address does not

matter . Each pool w i l l only conta in unique addre s s e s . I f pool

d e f i n i t i o n s p e c i f i e s over lapp ing addre s s e s only one address

i s used in the pool . −−>

71 <ip−poo l s>

72 < !−− Simplest d e f i n i t i o n i s a l i s t o f one address . L i s t s are

comma separated IPv4 addre s s e s o f the format X.X.X.X with no

CIDR. −−>

73 <pool name=” i n t 2 ” network=”prvt ” c i d r=”24” gateway=””>

74 <address type=” l i s t ”>1 0 . 3 . 3 . 2</ address>

75 </ pool>

76 < !−− A range i s de f ined by a CIDR denoted address b lock count

i s the number o f addre s s e s to add to the pool −−>

77 <pool name=” i n t 1 ” network=”prvt ” c i d r=”24” gateway=””>

78 <address type=” range ” count=”12” addr=” 10 . 24 . 15 . 0 /24 ” s e l e c t=”

asc ” />

79 <address type=” l i s t ”>1 0 . 3 . 3 . 2 , 1 2 8 . 1 5 . 2 3 . 4 , 1 4 3 . 3 4 . 2 1 . 9</

address>

80 </ pool>

81 <pool name=”pub 1” network=”prvt ” c i d r=”24” gateway=”” >

82 <address type=” range ” count=”9” addr=” 16 . 0 . 0 . 0 / 8 ” s e l e c t=” asc ”

/>

83 <address type=” range ” count=”23” addr=” 78 . 3 . 0 . 0 / 24 ” s e l e c t=”

asc ” />

84 <address type=” range ” count=”15” addr=” 200 . 15 . 14 . 0/24 ” s e l e c t=

” asc ” />

85 </ pool>

86 <pool name=” prvt 1 ” network=”prvt ” c i d r=”24” gateway=””>

87 <address type=” range ” count=”11” addr=” 87 . 1 5 . 0 . 0 /20 ” s e l e c t=”

asc ” />

60

88 </ pool>

89 </ ip−poo l s>

90

91 < !−− NOT USED, RESERVED FOR FEDERATION.

92 I d e n t i f y each l o c a t i o n that team pro c e s s e s w i l l execute .

Each o f the se l o c a t i o n s needs to be contacted to

d i spatch the appropr ia te team code to . These hos t s need

to s p e c i f i e d in the host s e c t i o n . −−>

93 < !−− <team−host s>

94 <team−host name=”Local ”

95 hostname=” l o c a l h o s t ”

96 ip−addr=” 1 2 7 . 0 . 0 . 1 ”

97 port=”24365” />

98 <team−host name=”RemoteHost1”

99 hostname=”RemoteHostName”

100 ip−addr=” 0 . 0 . 0 . 0 ”

101 port=”24365” />

102 </team−hos t s>

103 −−>

104

105 < !−− I d e n t i f y the hand le r s needed to run events

106 name − i s l o c a l l y r e f e r en c ed in the in s t ance f i l e only

107 c l a s s−handler − must s p e c i f i y the Class name o f the handler

108 −−>

109 <event−hand le r s>

110 <handler name=”exec−handler−1”

111 c l a s s−handler=”ExecHandler” />

112 <handler name=”metasp lo i t−handler−1”

113 c l a s s−handler=”Metasplo i tHandler ”

114 s e rver−hostname=”host1 ”

115 s e rver−ip=””

116 s e rver−port=”” />

61

117 </event−hand le r s>

118

119 < !−− Team de s c r i b e s a c o l l e c t i o n o f events f o r o r gan i z a t i on

120 name − the f r i e n d l y name o f the team −−>

121 <team name=”Blue Team”>

122

123 < !−− I d e n t i f i e s the name o f the execut ion host −−>

124 <team−host hostname=” l o c a l h o s t ” />

125

126 < !−− Rate at which events are executed from the event l i s t −−>

127 <speed f a c t o r=” 1 .0 ” />

128

129 < !−− Block f o r events in t h i s teams event l i s t −−>

130 <team−event− l i s t>

131 <team−event name=”Ping Test ” id=”” guid=”” handler=”exec−

handler−1” ipaddre s s=”pub 1” s t a r t t ime=”1” endtime=”10”

f requency=” . 3 ” d r i f t=”0” command=”ping −c 2 10 . 2 4 . 3 2 . 1 0 ”>

132 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”5”

/>

133 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−3” /

>

134 </team−event>

135 <team−event name=”ping ” id=”” guid=”” handler=”exec−handler−1”

ipaddre s s=” prvt 1 ” s t a r t t ime=”5” endtime=”9999999”

f requency=”2” d r i f t=”0” command=”ping −c 1 10 . 2 4 . 3 2 . 1 0 ”>

136 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”5”

/>

137 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−3” /

>

138 </team−event>

139 <team−event name=”Which” id=”” guid=”” handler=”exec−handler−1

” ipaddre s s=” i n t 1 ” s t a r t t ime=”8” endtime=”9999999”

62

f r equency=”0” d r i f t=”0” command=”ping −c 2 10 . 2 4 . 3 2 . 1 0 ”>

140 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”25

” />

141 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−1” /

>

142 </team−event>

143 </team−event− l i s t>

144

145 </team>

146

147 <team name=”Red Team”>

148

149 < !−− I d e n t i f i e s the name o f the execut ion host −−>

150 <team−host hostname=” l o c a l h o s t ” />

151

152 < !−− Rate at which events are executed from the event l i s t −−>

153 <speed f a c t o r=” 1 .0 ” />

154

155 < !−− Block f o r events in t h i s teams event l i s t −−>

156 <team−event− l i s t>

157 <team−event name=”Ping Test ” id=”” guid=”” handler=”exec−

handler−1” ipaddre s s=”pub 1” s t a r t t ime=”10” endtime=”

9999999” f requency=”0” d r i f t=”0” command=”ping −c 4

1 2 7 . 0 . 0 . 1 ”>

158 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”5”

/>

159 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−3” /

>

160 </team−event>

161 <team−event name=”Arping” id=”” guid=”” handler=”exec−handler

−1” ipaddre s s=” i n t 1 ” s t a r t t ime=”5” endtime=”9999999”

f requency=”0” d r i f t=”0” command=” arping −c 1 10 . 2 4 . 3 2 . 1 0 ”>

63

162 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”5”

/>

163 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−3” /

>

164 </team−event>

165 <team−event name=”Which” id=”” guid=”” handler=”exec−handler−1

” ipaddre s s=” i n t 1 ” s t a r t t ime=”0” endtime=”9999999”

f requency=”0” d r i f t=”0” command=”which ping ”>

166 <score−atomic when=” suc c e s s ” score−group=”group1” po in t s=”25

” />

167 <score−atomic when=” f a i l ” score−group=”group2” po in t s=”−1” /

>

168 </team−event>

169 </team−event− l i s t>

170

171 </team>

172

173 </ occpcha l l enge>

64

APPENDIX B

Game Server Web Service API

Figure B.13. Game server documentation website

The complete game server web service API is available at the following URL.

• http://students.cs.uri.edu/~jafonseca/gameserver/api/

65

http://students.cs.uri.edu/~jafonseca/gameserver/api/

BIBLIOGRAPHY

“About Nagios.” [Online]. Available: http://www.nagios.org/about

ping(8), Linux Manual.

“Team - Official TF2 Wiki — Official Team Fortress Wiki.” April 2013. [Online].
Available: https://wiki.teamfortress.com/wiki/Teams

“SANS institute - netwars.” April 2014. [Online]. Available: https://www.sans.
org/netwars

“US Cyber Challenge - competitions.” April 2014. [Online]. Available:
http://www.uscyberchallenge.org/competitions/

Air Force Association. “AFA CyberPatriot website.” [Online]. Available:
https://www.uscyberpatriot.org/

Buxbaum, P. A. The International Relations And Security Network. “Building a
better ’cyber range’.” March 2012. [Online]. Available: http://www.isn.ethz.
ch/Digital-Library/Articles/Detail/?id=127714

Curbera, F., Duftler, M., Khalaf, R., Nagy, W., Mukhi, N., and Weerawarana, S.,
“Unraveling the web services web: an introduction to soap, wsdl, and uddi,”
IEEE Internet computing, vol. 6, no. 2, pp. 86–93, 2002.

Docker, Inc. “Docker - Build, Ship, and Run Any App, Anywhere.” November
2014. [Online]. Available: https://www.docker.com/

Fielding, R. T. and Taylor, R. N., “Principled design of the modern web
architecture,” ACM Transactions on Internet Technology, vol. 2, no. 2, pp.
115–150, May 2002. [Online]. Available: http://dl.acm.org/citation.cfm?id=
514185

Furuhashi, S. “Messagepack: Its like json. but fast and small.” February 2014.
[Online]. Available: http://msgpack.org/

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design patterns: elements
of reusable object-oriented software. Addison-Wesley Publishing Company,
1994.

Harris, A. and Haase, K., Sinatra: Up and Running. O’Reilly Media, Inc., 2011.

Highsmith, J., Agile Software Development Ecosystems. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002.

66

http://www.nagios.org/about
https://wiki.teamfortress.com/wiki/Teams
https://www.sans.org/netwars
https://www.sans.org/netwars
http://www.uscyberchallenge.org/competitions/
https://www.uscyberpatriot.org/
http://www.isn.ethz.ch/Digital-Library/Articles/Detail/?id=127714
http://www.isn.ethz.ch/Digital-Library/Articles/Detail/?id=127714
https://www.docker.com/
http://dl.acm.org/citation.cfm?id=514185
http://dl.acm.org/citation.cfm?id=514185
http://msgpack.org/

Ixia. “Ixia BreakingPoint Storm.” April 2014. [Online]. Available: http:
//www.ixiacom.com/products/storm

Jacobson, V., Leres, C., and McCanne, S., “The tcpdump manual page,” Lawrence
Berkeley Laboratory, Berkeley, CA, 1989.

Martin, J., Rapid Application Development. Indianapolis, IN, USA: Macmillan
Publishing Co., Inc., 1991.

Mauerer, W., Professional Linux Kernel Architecture. John Wiley & Sons, 2010.

Administrator’s Solutions Guide for Release 6, Oracle, May 2014. [Online].
Available: http://docs.oracle.com/cd/E37670 01/E37355/E37355.pdf

Quartz Scheduler 2.1.x Documentation, Quartz, April 2014. [On-
line]. Available: http://quartz-scheduler.org/files/documentation/Quartz-2.
1.x-Documentation.pdf

Recommendation, I., “200 (1994)— iso/iec 7498-1: 1994,” Information technology–
Open Systems Interconnection–Basic Reference Model: The basic model.

Silberschatz, A., Galvin, P. B., and Gagne, G., Operating System Concepts. Hobo-
ken, NJ: J. Wiley & Sons, 2005.

University of Rhode Island, Department of Computer Science and Statistics.
“Open Cyber Challenge Platform.” November 2014. [Online]. Available:
http://www.opencyberchallenge.net

Vigna, G., “Teaching network security through live exercises,” in Security educa-
tion and critical infrastructures. Springer, 2003, pp. 3–18.

Vixie, P., “Cron manual page, 4th berkeley distribution,” The information from
the crontab section (below and including the table) was taken (unedited, but
with small additions) from the crontab manual pages. Type man, vol. 1.

67

http://www.ixiacom.com/products/storm
http://www.ixiacom.com/products/storm
http://docs.oracle.com/cd/E37670_01/E37355/E37355.pdf
http://quartz-scheduler.org/files/documentation/Quartz-2.1.x-Documentation.pdf
http://quartz-scheduler.org/files/documentation/Quartz-2.1.x-Documentation.pdf
http://www.opencyberchallenge.net

	EXTENSIBLE CYBER CHALLENGE PLATFORM CONTROL APPLICATION
	Terms of Use
	Recommended Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Goals
	Results
	Outline

	Background
	Cyber Challenge Composition
	Related Works
	Technologies

	Methods
	Interfaces
	Instance File
	Command Line Interface
	Web Services

	Teams
	Events
	Game Control
	Game Clock
	Event Execution

	Scoring
	Creating Realism
	Address Randomization
	Timing Control

	Testing and Metrics
	Game Server Operation Testing
	Network Testing

	Results
	Discussion
	Network traffic
	Event Timing
	Future Work

	LIST OF REFERENCES
	Game Server Instance File
	Game Server Web Service API
	BIBLIOGRAPHY

