
University of Rhode Island University of Rhode Island

DigitalCommons@URI DigitalCommons@URI

Open Access Master's Theses

2014

BOOTSTRAP AGGREGATING BRANCH PREDICTORS BOOTSTRAP AGGREGATING BRANCH PREDICTORS

Ibraham Burak Karsli
University of Rhode Island, burak.ibrahim.karsli@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/theses

Terms of Use
All rights reserved under copyright.

Recommended Citation Recommended Citation
Karsli, Ibraham Burak, "BOOTSTRAP AGGREGATING BRANCH PREDICTORS" (2014). Open Access
Master's Theses. Paper 447.
https://digitalcommons.uri.edu/theses/447

This Thesis is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access
Master's Theses by an authorized administrator of DigitalCommons@URI. For more information, please contact
digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

https://digitalcommons.uri.edu/
https://digitalcommons.uri.edu/theses
https://digitalcommons.uri.edu/theses?utm_source=digitalcommons.uri.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.uri.edu/theses/447?utm_source=digitalcommons.uri.edu%2Ftheses%2F447&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons-group@uri.edu

BOOTSTRAP AGGREGATING

BRANCH PREDICTORS

BY

IBRAHIM BURAK KARSLI

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

IN

ELECTRICAL, COMPUTER & BIOMEDICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2014

MASTER OF SCIENCE THESIS

OF

IBRAHIM BURAK KARSLI

APPROVED:

Thesis Committee:

Major Professor Resit Sendag

 Jien-Chung Lo

 Lutz Hamel

 Nasser H. Zawia

 DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND

2014

ABSTRACT

After over two decades of extensive research on branch prediction, branch

mispredictions are still an important performance and power bottleneck for today’s

aggressive processors. All this research has introduced very sophisticated and accurate

branch predictor designs, TAGE predictor being the current-state-of-art.

In this work, instead of directly improving on individual predictor’s accuracy, I

focus on an orthogonal statistical method called bootstrap aggregating, or bagging.

Bagging is used to improve overall accuracy by using an ensemble of predictors,

which are trained with slightly different data sets. Each predictor (can be same or

different predictors) is trained using a resampled (with replacement) training set

(bootstrapping). Then, the final prediction is simply provided by weighting or majority

voting (aggregating). This work shows that applying bagging improves performance

more than simply increasing the size of the predictor.

ACKNOWLEDGEMENT

First, special thanks go to my advisor, Resit Sendag, for convincing me to go

to graduate school, and for guidance and advice he has provided. I would also like to

thank the rest of my committee; Jien-Chung Lo and Lutz Hamel; both for the valuable

feedback they provided on my thesis and for all that I have learned from them in and

out of classes.

 Also I would like to thank to Professor Oguz Ergin, as well as essentially

teaching me everything I know about computer architecture, has been a good friend.

 Finally, I would also like to thank my parents, and my sister. They were always

supporting me and encouraging me with their best wishes.

iv

TABLE OF CONTENTS

ABSTRACT ... ii

ACKNOWLEDGEMENT .. iii

TABLE OF CONTENTS ...iv

LIST OF TABLES .. v

LIST OF FIGURES ...vi

CHAPTER 1.. 1

INTRODUCTION ... 1

BRANCH PREDICTOR .. 3

STATIC BRANCH PREDICTOR .. 5

DYNAMIC BRANCH PREDICTOR ... 6

BRANCH MISPREDICTION RECOVERY .. 12

TWO LEVEL BRANCH PREDICTOR ... 14

GSHARE ... 20

CHAPTER 2.. 22

ADVANCED BRANCH PREDICTORS .. 22

TAGE .. 22

OH-SNAP .. 25

BOOTSTRAP AGGREGATING BRANCH PREDICTOR .. 29

CHAPTER 3.. 33

METHODOLOGY... 33

CHAPTER 4.. 36

RESULTS .. 36

CHAPTER 5.. 45

CONCLUSION .. 45

BIBLIOGRAPHY ... 46

v

LIST OF TABLES

TABLE PAGE

Table 1. Characteristics of the CBP-4 traces. .. 35

Table 2. Base Simulation Results for Used Branch Predictors 37

Table 3. Effect of Increasing Size of TAGE Predictor .. 38

Table 4. Correlation between Number of Tables and Max History Length in TAGE

Predictor .. 40

Table 5. Sub-predictor Configuration ... 43

Table 6. OH-SNAP Bagging Results .. 44

vi

LIST OF FIGURES

FIGURE PAGE

Figure 1. Branch Target Speculation Using a Branch Target Buffer.4

Figure 2. FSM Model for History-Based Branch Direction Predictors.7

Figure 3. History-Based Branch Predictor ..7

Figure 4. FSM Model for History-Based Branch Direction Predictors 10

Figure 5. Two Aspects of Branch Prediction .. 12

Figure 6. Two-level Adaptive Branch Prediction of Yeh and Patt. 16

Figure 7. Correlated Branch Predictor with Global BHSR and Shared PHTs. 18

Figure 8. Correlated Branch Predictor with Individual BHSRs and Shared

PHTs.. 19

Figure 9. The gshare Correlated Branch Predictor .. 21

Figure 10. A 5-component TAGE predictor ... 23

Figure 11. Perceptron Prediction and Training. .. 25

Figure 12. OH-SNAP Data Path. .. 27

Figure 13. Offline Bagging .. 30

Figure 14. Online Bagging ... 31

Figure 15. Comparison of Different Bagging Configurations 41

1

CHAPTER 1

INTRODUCTION

Accurate branch prediction can be seen as a mechanism for enabling design

decisions. When short pipelines were the norm, accurate branch prediction was not as

important. However, having accurate branch prediction enables technologies like

wide-issue deeply pipelined superscalar processors. If branch predictors can be

improved further, we can more successfully use more aggressive speculation

techniques. Accurate branch prediction enables larger scheduling windows, out-of—

order execution, deeper pipelines etc.

A pipelined machine achieves its maximum throughput when it is in the

streaming mode. For the fetch stage, streaming stage implies the continuous fetching

of instructions from sequential locations in the program memory. Whenever the

control flow of the program deviates from the sequential path, potential disruption to

the streaming mode can occur. For unconditional branches, subsequent instructions

cannot be fetched until target address of the target address of the branch is determined.

For conditional branches, the machine must wait for the resolution of the branch

condition, and if the branch is to be taken, it must further wait until the target address

is available. Branch instructions are executed by the branch functional unit. For a

conditional branch, it is not until it exits the branch unit and when both the branch

condition and the branch target address are known that the fetch stage can correctly

fetch the next instruction.

2

This delay in processing conditional branches incurs a cycle penalty in fetching

the next instruction, corresponding to the traversal of decode, dispatch, and execute

stages by the conditional branch. The actual lost-opportunity cost of stalled cycles is

not just empty instruction slots, but the number of empty instruction slots must be

multiplied by the width of the machine.

 Maximizing the volume of the instruction flow path is equivalent to

maximizing the sustained instruction fetch bandwidth. To do this, the number of stall

cycles in the fetch stage must be minimized. For an n-wide machine each stalled cycle

is equal to fetching n no-op instructions. The primary aim of instruction flow

technique is to minimize the number of such fetch stall cycles and/or to make use of

these cycles to do potentially useful work. The current dominant approach to

accomplishing this is via branch prediction.

TAGE [1] predictor has been widely accepted as the current state-of-the-art in

branch prediction. In this work, instead of directly improving predictor’s accuracy, I

focus on an orthogonal statistical method called bootstrap aggregating, or bagging.

Bagging is used to improve overall accuracy by using an ensemble of predictors,

which are trained with slightly different data sets. Each predictor (can be same or

different predictors) is trained using a resampled (with replacement) training set

(bootstrapping). Then, the final prediction is simply provided by weighting or majority

voting (aggregating). This work shows that applying bagging improves performance

more than simply increasing the size of the predictor.

3

BRANCH PREDICTOR

Experimental studies have shown that the behavior of branch instructions is

highly predictable. A key approach to minimizing branch penalty and maximizing

instruction flow throughput is to speculate on both branch target address and branch

condition of branch instruction. As a static branch instruction is repeatedly executed at

run time, its dynamic behavior can be tracked. Based on its past behavior, its future

behavior can be effectively predicted. Two fundamental components of branch

prediction are branch target speculation and branch condition speculation. With any

speculative technique, there must be mechanisms to validate the prediction and to

safely recover from any misprediction.

Branch target speculation involves the use if a branch target buffer (BTB) to

store previous branch target address. BTB is a small cache memory accessed during

the instruction fetch stage using the instruction fetch address (PC). Each entry of BTB

contains two fields: the branch instruction address (BIA) and the branch target address

(BTA). When a static branch instruction is executed for the first time, an entry in the

BTB is allocated for it. Its instruction address is stored in the BIA field, and its target

is stored in the BTA field. Assuming the BTB is fully associative cache, BIA field is

used for the associative access of the BTB. The BTB is accessed concurrently with the

accessing of the I-cache. When the current PC matches the BIA of an entry in the

BTB, a hit in the BTB results. This implies that the current instruction being fetched

from the I-cache has been executed before and is a branch instruction. As shown in

Figure 1, when a hit in the BTB occurs, the BTA field of the hit entry is accessed and

4

can be used as the next instruction fetch address if that particular branch instruction is

predicted to be taken.

Figure 1: Branch Target Speculation Using a Branch Target Buffer

By accessing the BTB using the branch instruction address and retrieving

branch target address from BTB all during the fetch stage, the speculative branch

address will be ready to be used in the next machine cycle as the new instruction fetch

address if the branch instruction is predicted to be taken. If the branch instruction is

predicted to be taken and this prediction turn out to be correct, then branch instruction

is effectively executed in the fetch stage, incurring no branch penalty. The

nonspeculative execution of the branch instruction is still performed for the purpose of

validating the speculative execution. The branch instruction is still fetched from the I-

cache and executed. The resultant target address and branch condition are compared

with speculative version. If they agree, then correct prediction was made; otherwise,

5

misprediction has occurred and recovery must be initiated. The result from

nonspeculative execution is also used to update the content, i.e., the BTA field, of the

BTB.

STATIC BRANCH PREDICTOR

There are a number ways to do branch condition speculation. The simplest

form is to design the fetch hardware to be biased for not taken, i.e., to always predict

not taken. When a branch instruction is encountered, prior to its resolution, the fetch

stage continuous fetching down the fall-through path without stalling. This form of

minimal branch prediction is easy to implement but not very effective. For example,

many branches are used for loop closing instructions, which are mostly taken during

execution except when exiting loops. Another form of prediction employs software

support and can require ISA changes. For example, an extra bit can be allocated in

branch instruction format that is set by the compiler. This bit is used as a hint to

hardware to perform either predict not taken or predict taken depending on the value

of this bit. The compiler can use branch instruction type and profiling information to

determine the most appropriate value for this bit. This allows each static branch

instruction to have its own specified prediction. However, this prediction is static in

the sense that the same prediction is used for all dynamic executions of the branch. A

more aggressive and dynamic form of prediction makes prediction based on the

branch target address offset. This form of prediction first determines the relative offset

between the address of the branch of the instruction and the address of the target

instruction. A positive offset will trigger the hardware to predict not taken, whereas a

6

negative offset, most likely indicating a loop closing branch, will trigger the hardware

to predict taken. The most common branch condition speculation technique employed

in contemporary superscalar machines is based on history of previous branch

executions.

DYNAMIC BRANCH PREDICTOR

History-based branch prediction makes a prediction of branch direction,

whether taken (T) or not taken (N), based on previously observed branch directions.

The assumption is that historical information on the direction that a static branch takes

in previous executions can give helpful hints on the direction that is likely to taken in

future executions. Design decisions for such type of branch prediction include how

much history should be tracked and for each observed history pattern what prediction

should be made. As shown in Figure 2, the specific algorithm for history-based branch

direction prediction can be characterized by a finite state machine (FSM). The n state

variable encode the directions taken by the last n executions of that branch. Hence

each state represents a particular history in terms of a sequence of takens and not

takens. The output logic generates a predictions made based on the outcome of the

previous n executions of that branch. When a branch finally executed, the actual

outcome is used as an input to the FSM to trigger a state transition. The next state

logic is trivial; it simply involves chaining the state variables into a shift register,

which records the branch directions of the previous n executions of that branch

instructions.

7

Figure 2: FSM Model for History-Based Branch Direction Predictors

Figure 3: History-Based Branch Predictor: (a) A 2-bit Branch Predictor

Algorithm; (b) Branch Target Buffer with an Additional Field for Storing Branch

History Bits.

Figure 3 illustrates the FSM diagram of a typical 2-bit branch predictor that

employs two history bits to track the outcome of two previous executions of the

branch. The two history bits constitute the state variables of the FSM. The predictor

can be in one of four states: NN, NT, TT, or TN, representing the directions taken in

previous two executions of the branch. The NN state can be designated as the initial

8

state. An output value either T or N is associated with each of the four states

representing the prediction that would be made when a predictor is in that state. When

a branch is executed, the actual direction taken is used as an input to the FSM, and a

state transition occurs to update the branch history which will be used to do the next

prediction. The particular algorithm implemented in the predictor of Figure 3 is a

biased toward predicting branches to be taken; note that three of the four states predict

the branch to be taken. It anticipates either long runs of N’s (in the NN state) or long

runs of T’s (in the TT state). As long as at least one of the two previous executions

was a taken branch, it will predict the next execution to be taken. The prediction will

only be switched to not taken when it has encountered two consecutive N’s in a row.

This represents one particular branch prediction algorithm; clearly there are many

possible designs for such history-based predictors, and many designs there have been

evaluated by researchers.

To support history-based branch direction predictors, the BTB can be

augmented to include a history field for each of its entries. The width, in number of

bits, of this field determined by number of history bits being tracked. When a PC

address hits in the BTB, in addition to the speculative target address, the history bits

are retrieved. These history bits are fed to the logic that implements the next state and

output functions of the branch predictor FSM. The retrieved history bits, the output

logic produces the 1-bit output that indicates the predicted direction. If the prediction

is a taken branch, then this output is used as the new instruction fetch address in the

next machine cycle. If the prediction turns the prediction turns out to be correct, then

9

effectively the branch instruction has been executed in the fetch stage without

incurring any penalty or stalled cycle.

A classic experimental study on branch prediction was done by Lee and Smith

[2]. In this study, 26 programs from six different types of workloads for three different

machines were used. Averaged across all the benchmarks, 67.6% of the branches were

taken while 32.4% were not taken. Branches tend to be taken more than not taken by a

ratio of 2 to 1. With static branch prediction based on the op-code type, the prediction

accuracy ranged from 55% to 80% for six workloads. Using only 1 bit of history,

history-based dynamic branch prediction achieved prediction accuracies ranging from

79.7% to 96.5%. With 2 history bits, the accuracies for the six workloads ranged from

83.4% to 97.5%. Continued increase of the number of history bits brought additional

incremental accuracy. However, beyond four history bits there is a very minimal

increase in the prediction accuracy with the BTB hit rate, the resultant average

prediction effectiveness was approximately 80%.

Another experimental study was done in 1992 at IBM by Ravi Nair using

Systems Performance Evaluation Cooperative (SPEC) benchmarks [3]. This was a

very comprehensive study of possible branch prediction algorithms. The goal for

branch prediction is to overlap the execution of branches or accomplish branch

folding; i.e., branches are folded out of the critical latency path of instruction

execution. This study performed an exhaustive search for optimal 2-bit predictors.

There are 220 possible FSMs of 2-bit predictors. Nair determined that many of these

machines are uninteresting and pruned the entire design space down to 5248 machines.

Extensive simulations are performed to determine the optimal (achieves best

10

prediction accuracy) 2-bit predictor for each of the benchmarks. The list of SPEC

benchmarks, their prediction accuracies, and the associated optimal predictors are

shown in Figure 4.

Figure 4: FSM Model for History-Based Branch Direction Predictors

In Figure 4, the states denoted with bold circles represent states which the

branch is predicted taken; to nonbold circles represent states that predict not taken.

Similarly the bold edges represent state transitions when the branches is actually

taken; the nonbold edges represent transitions corresponding to the branch actually not

taken. The state denoted with asterisk indicates the initial state. The prediction

accuracies for optimal predictors of these six benchmarks range from 87.1% to 97.2%.

Notice that optimal predictors for doduc, gcc, and espresso are identical (disregarding

the different initial state of the gcc predictor) and exhibit the behavior of a 2-bit

11

up/down saturating counter. We can label the four states from left to right as 0, 1, 2,

and 3, representing the four count values of a 2-bit counter. Whenever a branch is

resolved taken, the count is incremented; and it is decremented otherwise. Two lower-

count states predict a branch to be not taken, while other two higher-count states

predict a branch taken. Figure 4 also provides the prediction accuracies for the six

benchmarks. The prediction accuracies for the six benchmarks if the 2-bit saturating

counter predictor is used for all six benchmarks. The prediction accuracies for

spice2g6, li, and eqntott only decreased minimally from optimal values, indicating that

the 2-bit saturating counter, originally invented by Jim Smith, has become a popular

prediction algorithm in real and experimental designs.

The same study by Nair also investigated the effectiveness of counter-based

predictors. With 1-bit counter as predictor, i.e., remembering the direction taken last

time and predicting the same direction for the next time, the prediction accuracies

range of 82.5% to 96.2%. As I shown in Figure 5, a 2-bit counter yields an accuracy

range of 86.8% to 97.0%. If a 3-bit counter is used, the increase in accuracy is

minimal; accuracies range from 88.3% to 97.0%. Based on this study, the 2-bit

saturating counter appears to be a very good choice for a history-based predictor.

Direct-mapped branch history tables are assumed in this study. While some programs,

such as gcc, have more than 7000 conditional branches, for most programs, the branch

penalty due to aliasing in finite-sized branch history tables levels out at about 1024

entries for table size.

12

 BRANCH MISPREDICTION RECOVERY

Branch prediction is a speculative technique. Any speculative technique

requires mechanisms for validating the speculation. Dynamic branch prediction can be

viewed as consisting of two interacting engines. The leading engine performs

validation in the later stages of the pipeline. In the case of misprediction the trailing

engine also performs recovery. These two aspects of branch prediction are illustrated

in Figure 5.

Figure 5: Two Aspects of Branch Prediction: (a) Branch Speculation; (b)

Branch Validation and Recovery.

13

 Branch speculation involves predicting the direction of a branch and then

proceeding to fetch along the predicted path of control flow. While fetching from the

predicted path, additional branch introductions may be encountered. Prediction of

these additional branches can be similarly performed, potentially resulting in

speculating past multiple conditional branches before the first speculated branch is

resolved. Figure 5 illustrates speculating past three branches with the first and third

branches being predicted taken and second one predicted not taken. When this occurs,

instructions from three speculative basic blocks are now resident in the machine and

must be appropriately identified. Instructions from each speculative basic block are

given the same identifying tag. In the example of Figure 5, three distinct tags are used

to identify the instructions from the three speculative basic blocks. A tagged

instruction indicates that it is a speculative instruction, and the value of the tag

identifies which basic block it belongs to. As a speculative instruction advances down

the pipeline stages, tag is also carried along. When speculating, the instruction

addresses of all the speculated branch instructions (or the next sequential instructions)

must be buffered in the event that recovery is required.

 Branch validation occurs when the branch is executed and the actual direction

of a branch is resolved. The correctness of the earlier prediction can then be

determined. If the prediction turns out to be correct, the speculation tag is deallocated

and all instructions associated with that tag becomes nonspeculative and are allowed

to complete. If a misprediction is detected, two actions are required; namely, the

incorrect path must be terminated, and fetching from new correct path must be

initiated. To initiate a new path, the PC must be updated with a new instruction fetch

14

address. If the incorrect prediction was a not-taken prediction, then PC is updated with

the computed branch target address. If the incorrect prediction was a taken prediction,

then the PC is updated with sequential (fall-through) instruction address, which is

obtained from the previously buffered instruction address when the branch was

predicted taken. Once the PC has been updated, fetching of the instructions resumes

along the new path, and branch prediction begins anew. To terminate the incorrect

path, speculation tags are used. All the tags that are associated with mispredicted

branch are used to identify the instructions that must be eliminated. All such

instructions that are still in decode and dispatch buffers as well as those in reservation

station entries are invalidated. Reorder buffer entries occupied by these instructions

are deallocated. Figure 5 illustrates this validation/recovery task when the second of

the three predictions is incorrect. The first branch is correctly predicted, and therefore

instructions with Tag 1 becomes nonspeculative and are allowed to complete. The

second prediction is incorrect, and all the instructions with Tag 2 and Tag 3 must be

invalidated and their buffer entries must be deallocated. After fetching down the

correct path, branch prediction can begin once again, Tag 1 is used again to denote the

instruction in the first speculative basic block. During branch validation, the associated

BTB entry is also updated.

TWO LEVEL BRANCH PREDICTOR

 The dynamic branch prediction schemes discussed thus far have a number of

limitations. Prediction for a branch is made based on the limited history of only that

particular static branch instructions. The actual prediction algorithm does not take into

15

account the dynamic context within which the branch is being executed. For example,

it does not make use of any information on the particular flow path taken in arriving at

that branch. Furthermore the same fixed algorithm is used to make the prediction

regardless of dynamic context. It has been observed experimentally that the behavior

of certain branches is strongly correlated with the behavior of other branches that

precede them during execution. Consequently more accurate branch prediction can be

achieved with algorithms that take into account the branch history of other correlated

branches and that can adapt the prediction algorithm to the dynamic branching

context.

 In 1991, Yeh and Patt proposed a two-level adaptive branch prediction

technique that can potentially achieve better than 95% prediction accuracy by having a

highly flexible prediction algorithm that can adapt to changing dynamic contexts [4].

In previous schemes, a single branch history table is used and indexed by the branch

address. As shown in Figure 6, in the two-level adaptive scheme, a set of history tables

is used. These are identified as the pattern history table (PHT). Each branch address

indexes to a set of relevant entries; one of these entries is then selected based on the

dynamic branching context. The context is determined by a specific pattern of recently

executed branches stored in a branch history shift register (BHSR). The content of the

BHSR is used to index in to the PHT to select one of the relevant entries. The content

of this entry is then used as the state for the prediction algorithm FSM to produce a

prediction. When a branch is resolved, the branch result is used to update both the

BHSR and selected entry in the PHT.

16

Figure 6: Two-level Adaptive Branch Prediction of Yeh and Patt

 The two-level adaptive branch prediction technique actually specifies a

framework within which many possible designs can be implemented. There are two

options to implementing the BHSR: global (G) and individual (P). The global

implementation employs a single BHSR of k bits that tracks the branch directions of

the last k dynamic branch instructions in program executions. These can involve any

number (1 to k) of static branch instructions. The individual implementation employs a

set of k-bit BHSRs as illustrated in Figure 6, one of which is selected based on branch

address. Essentially the global BHSR is shared by all static branches, whereas with

individual BHSRs each BHSR is dedicated to each static branch or a subset of static

branches if there is address aliasing when indexing into the set of BHSRs using the

branch address. There are three options to implement the PHT global (g), individual

17

(p), or shared (s). Alternatively, individual PHTs can be used in which each PHT is

dedicated to each static branch (p) or a small subset of static branches (s) if there is

address aliasing when indexing into the set of PHTs using the branch address. A third

dimension to this design space involves the implementation of the actual prediction

algorithm. When a history-based FSM is used to implement the prediction algorithm,

Yeh and Patt identified such schemes as adaptive (A).

 All possible implementations of the two-level adaptive branch prediction can

be classified based on these three dimensions of design parameters. A given

implementation can then be denoted using a three-letter notation: e.g., Gas represents a

design that employs a single global BHSR, an adaptive prediction algorithm, and a set

of PHTs with each being shared by a number of static branches. Yeh and Patt

presented three specific implementations that are able to achieve a prediction accuracy

97% for their given set of benchmarks:

• GAg: (1) BHSR of size 18 bits; (1) PHT of size 218 x 2 bits.

• PAg: (512 x 4) BHSRs of size 12 bits; (1) PHT of size 212 x 2 bits.

• PAs: (512 x 4) BHSRs of size 6 bits; (512) PHT of size 26 x 2 bits.

All three implementations use an adaptive (A) predictor that is a 2-bit FSM. The first

implementation employs a global BHSR (G) of 18 bits and a global PHT (g) with 218

entries indexed by the BHSR bits. The second implementation employs 512 sets (four-

way set-associative) of 12-bit BHSRs (P) and a global PHT (g) with 212 entries. The

third implementation also employs 512 set of four-way set-associative BHSRs (P), but

each is only 6 bits wide. It also uses 512 PHTs (s), each having 26 entries indexed by

the BHSR bits. Both the 512 sets of BHSRs and the 512 PHTs are indexed using 9 bits

18

of the branch address. Additional branch address bits are used for the set-associative

access of the BHSRs. The 512 PHTs are direct-mapped, and there can be aliasing, i.e.,

multiple branch addresses sharing the same PHT. From experimental data, such

aliasing had minimal impact on degrading the prediction accuracy. Achieving greater

than 95% prediction accuracy by the two-level adaptive branch prediction schemes is

quite impressive; the best traditional prediction techniques can only achieve about

90% prediction accuracy.

Figure 7: Correlated Branch Predictor with Global BHSR and Shared PHTs

(GAs).

Following the original Yeh and Patt proposal, other studies by McFarling [5],

Young and Smith [6], and Gloy et al. [7] have gained further insights into two-level

adaptive, or more recently called correlated, branch predictors. Figure 7 illustrates a

correlated branch prediction with a global BHSR (G) and a shared PHT (s). The 2-bit

19

saturating counter is used as the predictor FSM. The global BHSR tracks the

directions of the last k dynamic branches and captures the dynamic control flow

context. The PHT can be viewed as a single table containing a two-dimensional array,

with 2j columns and 2k rows, of 2-bit predictors. If the branch address has n bits, a

subset of j bits is used to index into the PHT to select one of the 2j columns. Since j is

less than n, some aliasing can occur where two different branch addresses can index

into the same column of the PHT. Hence the designation of shared PHT. The k bits

from the BHSR are used to select one of the 2k entries in the selected column. The 2

history bits in the selected entry are used to make a history-based prediction. The

traditional branch history table is equivalent to having only one row of the PHT that is

indexed only by the j bits of the branch address, as illustrated in Figure by the dashed

rectangular block of 2-bits predictors in the row of the PHT.

Figure 8: Correlated Branch Predictor with Individual BHSRs and Shared

PHTs (PAs).

20

Figure 8 illustrates a correlated branch predictor with individual BHSRs (P)

and the same shared PHT (s). Similar to the GAs scheme, the PAs scheme also uses j

bits of the branch address to select one of the 2j columns of the PHT. However, i bits

of the branch address, which can overlap with the j bits used to access the PHT, are

used to index into a set of BHSRs. Depending on the branch address, one of the 2i

BHSRs is selected. Hence, each BHSR is associated with one particular branch

address, or a set of branch addresses if there is aliasing. Essentially, instead of using a

single BHSR to provide the dynamic control flow context for all static branches,

multiple BHSRs are used to provide distinct dynamic control flow contexts for

different subsets of static branches. This adds flexibility in tracking and exploiting

correlations between different branch instructions. Each BHSR tracks the directions of

the last k dynamic branches belonging to the same subset of static branches. Both the

GAs and the PAs schemes require a PHT of size 2k x 2j x 2 bits. The GAs scheme has

only one k-bit BHSR whereas the PAs scheme requires 2i k-bit BHSRs.

GSHARE

A fairly efficient correlated branch predictor called gshare was proposed by

Scott McFarling [5]. In this scheme which is shown in Figure 9, j bits from the branch

address are hashed (via bitwise XOR function) with k bits from global BHSR. The

resultant max {k, j} bits are used to index into a PHT of size 2max {k, j} x 2 bits to select

one of the 2max {k, j} 2-bit branch predictors. The gshare scheme requires only one k-

21

bit BHSR and a much smaller PHT, yet archives comparable prediction accuracy to

other correlated branch predictors.

Figure 9: The gshare Correlated Branch Predictor

22

CHAPTER 2

ADVANCED BRANCH PREDICTORS

 In this chapter I will explain bootstrap aggregating branch predictors. But

before that I need to explain which predictors are used in bagging. These predictors

are TAGE, and OH-SNAP, which are more complex and better performing than ones

described in Chapter 1.

TAGE

TAGE stands for Tagged Geometric history length. It relies on a default tagless

predictor backed with plurality of tagged predictor components indexed using

different history lengths for index computation. These history lengths form a

geometric series. The prediction is provided either by a tag match on a tagged

predictor component or by the default predictor. In case of multiple hits, the prediction

is provided by the tag matching table the longest history.

Geometric history length prediction was introduced with the O-GEHL

predictor [8]. The predictor features M distinct predictor tables Ti, 0 ≤ i ≤ M indexed

with hash functions of the branch address and the global branch history. Distinct

history lengths are used for computing the index of the distinct tables. Table T0 is

indexed using the branch address. The history lengths used for computing the indexing

functions for tables Ti, 1 ≤ i ≤ M are of the form , i.e., the lengths

L(i) form a geometric series. More precisely, as history lengths are integers, it uses

.

23

Using a geometric series of history lengths allows to use very long history

lengths for indexing some predictor tables, while still dedicating most of the storage

space to predictor tables using short global history lengths. As an example on a 8-

component predictor, using α = 2 and L(1) = 2 leads to the following series {0, 2, 4, 8,

16, 32, 64, 128}.

Figure 10: A 5-component TAGE predictor

Figure 10 illustrates a TAGE predictor. The TAGE predictor features a base

predictor T0 in charge of providing a basic prediction and a set of tagged predictor

components Ti. These tagged predictor components Ti, 1 ≤ i ≤ M are indexed using

different history lengths that form a geometric series. The base predictor is a simple

PC indexed 2-bit counter bimodal table. An entry in a tagged component consists in a

24

single counter ctr which sign provides the prediction, a tag and an unsigned useful

counter u.

At prediction time, the base predictor and the tagged components are accessed

simultaneously. The base predictor provides a default prediction. The tagged

components provide a prediction only on a tag match. The prediction is provided by

the hitting tagged predictor component that uses the longest history. In case of no

matching tagged predictor component, the default prediction use.

 The provider component is defined as the predictor component that ultimately

provides the prediction. The alternate prediction as the prediction that would have

occurred if there had been a miss on the provider component. That is, if there are tag

hits on T2 and T4 and tag misses on T1 and T3, T4 is the provider component and T2

provides alternate prediction. If there is no hitting component then alternate prediction

is the default prediction.

 The useful counter u of the provider component is updated when alternate

prediction altpred is different from the final prediction pred. u is incremented when the

actual prediction pred is correct and decremented otherwise. Moreover, the useful u

counter is also used as an age counter. Here useful counter is 2-bits. Periodically, the

whole column of most significant bits of the u counters is reset to zero, then whole

column of least significant bits are reset. On correct prediction, the prediction counter

of the provider component is updated. On incorrect prediction, first, the provider

component prediction counter is updated. As a second step, if provider component Ti

is not the component using the longest history, it tries to allocate an entry on a

predictor component Tk using a longer history than Ti(i.e., i < k < M).

25

OH-SNAP

Most proposals for neural branch predictors derive from the perceptron branch

predictor [9]. A perceptron is a vector of h + 1 small integer weights, where h is the

history length of the predictor. As shown in Figure 11, a table of n perceptrons is kept

in a fast memory. A global history shift register of the h most recent branch outcomes

is also kept. The shift register and table of perceptrons are analogous to the shift

register and table of counters in traditional global two-level predictors, since both the

indexed counter and the indexed perceptron are used to compute the prediction.

Figure 11: Perceptron Prediction and Training

To predict a branch, a perceptron is selected using a hash function of the

branch PC. The output of the perceptron is computed as the dot product of the

perceptron and the history shift register, with the not-taken values in the shift registers

being interpreted as -1. Added to the dot product is an extra bias weight in the

perceptron, which takes into account the tendency of a branch to be taken or not taken

without regard for its correlation to other branches. If the dot product result is at least

26

0, then the branch is predicted taken; otherwise, it is predicted not taken. The

magnitude of the weight indicates the strength of the positive or negative correlation.

Branch history shift register is speculatively updated which is called ahead pipelining

and rolled back on misprediction.

When the branch outcome becomes known, the perceptron that provided the

prediction may be updated. The perceptron is trained on a misprediction or a when the

magnitude of the perceptron output is below a specified threshold value. Upon

training, both the bias weight and the h correlating weights are updated. The bias

weight is incremented or decremented if the branch is taken or not taken, respectively.

Each correlating weight in the perceptron is incremented if the predicted branch has

the same outcome as the corresponding bit in the history register and decremented

otherwise with saturating arithmetic. If there is no correlation between the predicted

branch and a branch in the history register, the latter’s corresponding weight will tend

toward 0. If there is high positive or negative correlation, weight will have a large

magnitude.

Figure 11 illustrates the concept of a perceptron producing a prediction and

being trained. A hash function, based on the PC, accesses the weights table to obtain a

perceptron weights vector, which is then multiplied by the branch history, and

summed with bias weight to form perceptron output. In this example, the perceptron

incorrectly predicts that the branch is taken. The microarchitecture adjusts the weights

when it discovers the misprediction. With the adjusted weights, assuming that the

history is the same the next time this branch is predicted, the perceptron output is

negative, so the branch will be predicted not taken.

27

OH-SNAP achieves higher accuracies than neural algorithms. The higher

accuracy result from accessing the weights using a function of the PC and the path,

breaking the weights into a number of independently accessible tables, scaling the

weights by the coefficient based on their location on branch history register, and

taking the dot product of a modified global branch history vector and the scaled

weights. Figure 12 shows a high level diagram of the prediction algorithm and data

path.

Figure 12: OH-SNAP Data Path

28

The two key parameters of the predictor are h, the length of the vector with

which the dot product is computed, and r, the number of rows in each weight table. In

this example, h = 128 and r = 512. Other inputs to the predictor are A, a vector of the

low-order bit of each of the past h branch addresses, and H, the global branch history

register. The example uses a history register H of 40 bits. The two components of the

dot-product computation are the history vector and the weights vector. The history

vector consists of h = 128 bit, which is expanded from the 40 bits of H. The use of

redundant history can improve prediction accuracy [10], so this predictor replicates the

40 branch history bits to obtain the required 128.

The second component of the dot-product computation, the weights vector, is

obtained by reading eight weights from each of 16 tables, as well as a single weight

from a table of bias weights. First table, containing the weights for the most recent

history bits, has the most entries because the most recent weights are most important.

The bias weights table has 2048 entries. In this example, other tables each have 256

entries. The tables are portioned, rather than one large indexed row, because the

separation reduces aliasing and achieves higher accuracy.

When the outcome of a branch becomes known, it is shifted into H. The lowest

order bit of the branch’s address is shifted into A. A high accuracy implementation

must keep speculative versions of H and A that are restored on misprediction. If the

prediction was incorrect, or if the magnitude of the predictor output was under a set

threshold, then the predictor output was under a set threshold, then the predictor

invokes it training algorithm. As in neural predictors, the weights responsible for the

29

output are incremented if the corresponding history outcome matches the current

branch outcome, decremented otherwise.

BOOTSTRAP AGGREGATING BRANCH PREDICTOR

Bootstrap aggregating (a.k.a, bagging), introduced by Breiman [11] in 1996, is

a meta-algorithm to improve the stability and accuracy of learning algorithms. It has

been shown to be very effective in improving generalization performance compared to

individual base models [12]. Basic idea behind is by combining many weak learners to

produce a strong learner. Bagging is special case of having a hybrid predictor, where

predictions from multiple predictors are aggregated using meta-predictors, adder-trees,

voting, etc. Bagging works by resampling (with replacement, i.e., some samples may

be used more than once) the original training set of size N to produce M bootstrap

training sets of size N, each of which is used to train a base model. The predictions by

each base model are then aggregated to reach the final prediction. The bagging method

is shown in Figure 13. Each predictor’s training set contains each of the original

training samples K times, where
.

30

x1, x2, x3, x4, x5, x6, x7, x8

x2, x7, x8, x3, x7, x6, x3, x1 x7, x8, x5, x6, x4, x2, x7, x1 x3, x6, x2, x7, x5, x6, x2, x2 x4, x5, x1, x4, x6, x4, x3, x8

Predictor 1 Predictor 2 Predictor 3 Predictor 4

Training set 1

Original training set

Training set 2 Training set 3 Training set 4

Test set (same for all predictors)

Weighting or Majority Voting

Final Prediction

 Figure 13: Offline Bagging

In this work, I applied bagging to branch prediction. Because original bagging

method is offline – that is, all the training data set must already be available –, I need

to develop an online version of bagging. Previous work by Oza and Russel [13]

modeled sequential arrival of the data by a Poisson(1) distribution and proved the

convergence of this method to offline bagging as N→∞. I first used their method in

my implementation, which improved performance most of the time. However, I

observed that multinomial distribution worked better and hence this method was used

in later simulations. The situation is more complicated for branch prediction data

because bootstrapping must be carried out in a way that suitably captures the

dependence structures for the data. Oza and Russel’s [13] method assumed that

samples were independent of each other, and thus it does not produce good

bootstrapping for branch prediction data. There are studies that developed methods for

bootstrapping time series [14], which are better fit for branch prediction. Further

research is needed to develop better online bootstrapping methods for branch

31

prediction or adopt methods from previous work on bootstrapping for time series data,

which is left as future work.

In my bagging implementation, each predictor is updated on each sample k

times in a row where k is a random number generated by multinomial distribution. I

illustrate online bagging in Figure 14.

Do not update with x1
Update with x2 1 time
Update with x3 1 time

.

.

Update with x1 1 times
Update with x2 2 time
Update with x3 1 time

.

.

Update with x1 1 times
Do not update with x2
Update with x3 2 time

.

.

Predictor 1 Predictor 2 Predictor 3 Predictor 4

Test set (can be same as original sequence)

Weighting or Majority Voting

Final Prediction

Original sequence
x1
x2
x3
.
.

Update with x1 3 times
Do not update with x2
Update with x3 1 time

.

.

 Figure 14: Online Bagging

In general, bagging can be applied to any predictor. Group of same predictors

(e.g., a number of TAGE predictors) as well as different predictors may be used.

TAGE bagging (T-BAG) uses a number of TAGE predictors of approximately

the same size as sub-predictors. Each sub-predictor provides prediction for the current

branch independent of each other. Online bagging is performed by determining

whether or not a sub-predictor is updated with the current branch’s outcome. Note that

this update may occur multiple times for the current branch based on a random

number generated. The branch history, however, is always updated as usual.

32

For final prediction computation, each sub-predictor remembers the success of

its last 16 predictions using a sliding window. The number of correct predictions is

used as the weight of the sub-predictor. For a not-taken prediction, the weight is taken

as negative and for taken predictions it is positive. The overall TAGE bagging

prediction is the sign of the sum of the weights, negative being not-taken and it is

taken otherwise. This method was slightly better than using majority vote for the final

prediction.

In all random updates, RandUpd, simulations, updates are performed randomly

for 0, 1, or 2 times in a row for 20%, 60% and 20% of the time, respectively, using

trinomial distribution. That is, 60% of the time update is done as usual, 20% of the

time no update is performed and 20% of the time update is done twice in a row.

The original TAGE also uses the PC when forming the hashed index for its

tagged components. However, because of its operation and its ability to exploit very

long history lengths, the PC does not significantly affect performance. In my

experiments, the best TAGE configuration using PC in table indexing and the one that

does not use PC achieve the similar performance. Therefore, to further increase

variability among sub-predictors, some sub-predictors do not use the PC when

indexing tagged tables. To the best of my knowledge, no previous work has studied

the effects of not using PC in table indexing.

33

CHAPTER 3

METHODOLOGY

Simulations are done by using publicly available software provided by 4th

Championship Branch Prediction (CBP-4) [15]. The goal of CBP-4 is to compare

different branch prediction algorithms in a common framework. Contestants are

responsible for implementing and evaluating their algorithm in the distributed

framework. This is done by modifying a single file to implement predictor class for

simulation. All code is written in C++. Framework provides a class template for

predictor. Competitors needs to code some set functions. These are;

 PREDICTOR(void);

 bool GetPrediction(UINT32 PC);

 void UpdatePredictor(UINT32 PC, bool resolveDir, bool predDir, UINT32

branchTarget);

 void TrackOtherInst(UINT32 PC, OpType opType, UINT32 branchTarget);

First one is a class constructer. It is used for initializing variables for startup.

Second is the prediction function. As an input contestants only allowed to use program

counter (pc). Third is for updating the predictor after branch outcome is known. It

takes pc as an argument alongside branch outcome (resolveDir), branch prediction

made by predictor (predDir), and pc value of next instruction form correct path

(branchTarget). Fourth and last mandatory function is for tracking instructions other

than branches. It is considered optional as many of branch predictors doesn’t keep

track of non-branch instructions.

34

Traces used for evaluation is also provided with CBP-4 framework. There are total

of 40 program traces. They are in two categories, long and short. Shorts are further

divided into four categories. These are integer, floating point, multimedia, and server.

Each of these have five different traces, making in total 20 traces. Long traces are

taken from SPEC2006 [16] benchmarks and they are total of 20 traces. SPEC2006

have 31 benchmarks and CBP-4 didn’t provide information about which of them are

used for making these traces. Shorts traces are 30 million instruction long, and long

traces are 150 million instruction long. 30 million instruction traces are of the

considered as short traces for branch prediction studies. However 30 million

instructions represent approximately the workload that is executed by a PC in 10

millisecond, i.e., the OS time slice. The evaluation metric used by CBP is

misprediction per kilo instructions (misp/KI). The characteristics of the traces are

summarized in Table 1.

35

 Table 1: Characteristics of the CBP-4 traces

 NUMBER OF

INSTRUCTIONS

CONDITIONAL

BRANCHES

UNCONDITIONAL

BRANCHES

SHORT-FP-1 29499988 2213673 259086

SHORT-FP-2 29499869 1792835 12168

SHORT-FP-3 29499978 1546797 20701

SHORT-FP-4 29499976 895842 17707

SHORT-FP-5 29499969 2422049 175239

SHORT-INT-1 29499987 4184792 576698

SHORT-INT-2 29499985 2866495 577615

SHORT-INT-3 29499978 3771697 336363

SHORT-INT-4 29499960 2069894 221596

SHORT-INT-5 29499990 3755315 46121

SHORT-MM-1 29499979 2229289 410598

SHORT-MM-2 29499970 3809780 294136

SHORT-MM-3 29499970 3014850 1112543

SHORT-MM-4 29499993 4874888 131433

SHORT-MM-5 29499791 2563897 537772

SHORT-SERV-1 29499316 3660616 1253826

SHORT-SERV-2 29499198 3537562 1236437

SHORT-SERV-3 29499817 3811906 1100627

SHORT-SERV-4 29498081 4266796 1381876

SHORT-SERV-5 29497759 4291964 1452124

LONG-SPEC2K6-00 149970336 25181955 6029289

LONG-SPEC2K6-01 150000004 25323638 2192945

LONG-SPEC2K6-02 149999988 22628704 7937909

LONG-SPEC2K6-03 150000001 16754009 324425

LONG-SPEC2K6-04 150000004 31520616 4688658

LONG-SPEC2K6-05 150000001 9409564 1495445

LONG-SPEC2K6-06 150000001 27139020 5521536

LONG-SPEC2K6-07 150000106 23532921 3393843

LONG-SPEC2K6-08 149999996 14565465 4445841

LONG-SPEC2K6-09 149999993 20449090 1343335

LONG-SPEC2K6-10 150000002 14312999 6528434

LONG-SPEC2K6-11 150000001 16145141 373115

LONG-SPEC2K6-12 150000008 19679814 173822

LONG-SPEC2K6-13 149999996 27946011 4967261

LONG-SPEC2K6-14 150000001 29462517 46

LONG-SPEC2K6-15 150000001 16836233 2520156

LONG-SPEC2K6-16 149999870 22064822 9019488

LONG-SPEC2K6-17 149999964 14796021 4428201

LONG-SPEC2K6-18 150000001 19691402 381488

LONG-SPEC2K6-19 150000026 14435009 432619

36

CHAPTER 4

RESULTS

My goal is finding a branch predictor that outperforms TAGE predictor. For

this, first I tuned the TAGE predictor for CBP-4 traces. This is done to find peak

performance TAGE can achieve. This way any further improvement on performance

would be because of bagging. Secondly I applied bagging only on TAGE predictor.

Thirdly, I used a different types of branch predictor, OH-SNAP.

For reference purposes Table 2 shows the result of simple gshare, TAGE and

OH-SNAP results. All shown predictors in Table 2 is 64 KB in size. CBP-4 evaluates

success based on arithmetic mean of all traces (AMEAN).

While tuning TAGE predictor my focus was on multiple parameters. Such as

size of predictor, number of tables, counter width on tables, and history length. Table

3 show the effect of increasing size of TAGE predictor. As seen from results

increasing the size have a significant effect on performance, but increasing the size

more than 1 MB has minimal effect, therefore as a base configuration size of 1 MB is

used.

37

 Table 2: Base Simulation Results for Used Branch Predictors

 GSHARE TAGE OH-SNAP

SHORT-FP-1 3,307 1,088 0,987

SHORT-FP-2 1,056 0,429 0,853

SHORT-FP-3 0,444 0,014 0,042

SHORT-FP-4 0,259 0,015 0,093

SHORT-FP-5 0,788 0,007 0,015

SHORT-INT-1 6,27 0,128 0,244

SHORT-INT-2 7,683 3,686 4,654

SHORT-INT-3 10,81 6,035 5,674

SHORT-INT-4 1,931 0,459 0,645

SHORT-INT-5 0,417 0,062 0,285

SHORT-MM-1 9,48 6,649 6,473

SHORT-MM-2 10,614 8,399 8,454

SHORT-MM-3 3,53 0,06 0,069

SHORT-MM-4 1,794 0,897 1,38

SHORT-MM-5 4,993 2,395 3,311

SHORT-SERV-1 2,929 0,65 0,822

SHORT-SERV-2 2,859 0,631 0,803

SHORT-SERV-3 5,38 1,953 2,712

SHORT-SERV-4 4,949 1,445 1,941

SHORT-SERV-5 4,706 1,323 1,627

LONG-SPEC2K6-00 3,664 1,102 1,895

LONG-SPEC2K6-01 8,612 6,596 6,718

LONG-SPEC2K6-02 4,661 0,275 1,093

LONG-SPEC2K6-03 5,429 0,141 0,948

LONG-SPEC2K6-04 10,772 7,66 8,907

LONG-SPEC2K6-05 5,717 4,543 4,424

LONG-SPEC2K6-06 3,281 0,614 0,68

LONG-SPEC2K6-07 10,546 3,969 8,349

LONG-SPEC2K6-08 1,76 0,59 0,765

LONG-SPEC2K6-09 5,456 2,929 4,839

LONG-SPEC2K6-10 3,029 0,487 0,727

LONG-SPEC2K6-11 3,748 0,411 0,565

LONG-SPEC2K6-12 12,727 10,848 10,593

LONG-SPEC2K6-13 8,137 4,286 5,392

LONG-SPEC2K6-14 3,925 0,001 0,002

LONG-SPEC2K6-15 2,16 0,206 0,436

LONG-SPEC2K6-16 4,177 2,915 2,863

LONG-SPEC2K6-17 4,609 1,836 2,972

LONG-SPEC2K6-18 1,525 0,003 0,056

LONG-SPEC2K6-19 2,601 0,865 1,225

AMEAN 4,768 2,16505 2,613

38

Table 3: Effect of Increasing Size of TAGE Predictor

SIZE 64KB 256KB 1MB 4MB 32MB

SHORT-FP-1 1,088 1,087 1,083 1,08 1,084

SHORT-FP-2 0,429 0,43 0,429 0,43 0,43

SHORT-FP-3 0,014 0,014 0,014 0,014 0,014

SHORT-FP-4 0,015 0,015 0,015 0,015 0,015

SHORT-FP-5 0,007 0,007 0,007 0,007 0,007

SHORT-INT-1 0,128 0,129 0,129 0,128 0,128

SHORT-INT-2 3,686 3,66 3,653 3,662 3,655

SHORT-INT-3 6,035 5,904 5,869 5,846 5,835

SHORT-INT-4 0,459 0,456 0,455 0,456 0,456

SHORT-INT-5 0,062 0,059 0,059 0,061 0,059

SHORT-MM-1 6,649 6,64 6,636 6,631 6,63

SHORT-MM-2 8,399 8,356 8,349 8,368 8,331

SHORT-MM-3 0,06 0,06 0,06 0,06 0,06

SHORT-MM-4 0,897 0,875 0,871 0,863 0,865

SHORT-MM-5 2,395 2,346 2,34 2,335 2,334

SHORT-SERV-1 0,65 0,646 0,645 0,645 0,645

SHORT-SERV-2 0,631 0,626 0,628 0,628 0,628

SHORT-SERV-3 1,953 1,916 1,907 1,904 1,899

SHORT-SERV-4 1,445 1,433 1,43 1,434 1,436

SHORT-SERV-5 1,323 1,311 1,308 1,308 1,309

LONG-SPEC2K6-00 1,102 1,074 1,068 1,069 1,065

LONG-SPEC2K6-01 6,596 6,548 6,516 6,519 6,513

LONG-SPEC2K6-02 0,275 0,274 0,274 0,274 0,274

LONG-SPEC2K6-03 0,141 0,135 0,136 0,134 0,133

LONG-SPEC2K6-04 7,66 6,438 6,415 6,389 6,387

LONG-SPEC2K6-05 4,543 4,484 4,472 4,458 4,458

LONG-SPEC2K6-06 0,614 0,612 0,617 0,613 0,612

LONG-SPEC2K6-07 3,969 3,763 3,717 3,708 3,709

LONG-SPEC2K6-08 0,59 0,604 0,587 0,589 0,59

LONG-SPEC2K6-09 2,929 2,729 2,696 2,687 2,685

LONG-SPEC2K6-10 0,487 0,48 0,48 0,479 0,48

LONG-SPEC2K6-11 0,411 0,41 0,415 0,452 0,393

LONG-SPEC2K6-12 10,848 10,741 10,734 10,773 10,724

LONG-SPEC2K6-13 4,286 4,157 4,12 4,11 4,112

LONG-SPEC2K6-14 0,001 0,001 0,001 0,001 0,001

LONG-SPEC2K6-15 0,206 0,204 0,204 0,204 0,204

LONG-SPEC2K6-16 2,915 2,889 2,866 2,872 2,873

LONG-SPEC2K6-17 1,836 1,73 1,701 1,692 1,692

LONG-SPEC2K6-18 0,003 0,003 0,003 0,003 0,003

LONG-SPEC2K6-19 0,865 0,846 0,843 0,841 0,842

AMEAN 2,16505 2,1023 2,0938 2,09355 2,08925

39

Second parameter that I have tuned is optimal number of tables to use. But

number of tables is closely correlated with history length. Therefore I made a

parameter sweep for number of tables and history length parameters. In this simulation

total size of predictor is kept the same. Total size is divided between tables. Therefore

as I increase number of tables, I decreased size of a table to keep total size the same.

As seen in Table 4 increasing number of tables increases the performance only if we

increase history length with it. This is understandable since if I use small history

length with a large number of tables, indexing for tables will be closer to each other

and will not differ much. As a result, short history length won’t be able capture long

history patterns. On the other hand with long history length and small number of tables

pattern length will grow too fast and there won’t be enough space for short patterns.

Therefore sweet spots for each configuration is show in bold. Last parameter is

counter width used in tables. I simulated different counter width with different history

lengths and 3-bit counter outperformed every time.

Based on gathered knowledge best TAGE parameters are 100000 max history

length, 7 min history length, 38 tables, and 3-bit counters. I used 32 TAGE predictor

with these configurations together with random update as described in section 3.

Random value for updating can be 0, 1, or 2. And their probability is 20, 60, and 20

percent respectively. To compare this with TAGE, I also increased size of TAGE by

32 times. Simulations resulted at 1.95 misp/KI, and 2.003 misp/KI respectively.

TAGE bagging is better than just increasing the size of TAGE as they both have the

same size.

Table 4: Correlation Between Number of Tables and Max History Length in TAGE Predictor

MAX

HISTORY

LENGTH

200 400 600 800 1000 1200 1400 1600 1800 2000 2500 3000 4000 5000 10000 30000 100000

N
u
m

b
er

 o
f

T
ab

le
s

8 2,153 2,11 2,106 2,102 2,104 2,107 2,113 2,12 2,125 2,122 2,129 2,122 2,124 2,124 2,151 2,173 2,208

9 2,144 2,102 2,096 2,088 2,091 2,095 2,096 2,099 2,097 2,097 2,1 2,107 2,12 2,121 2,12 2,153 2,172

13 2,127 2,075 2,062 2,054 2,056 2,057 2,054 2,055 2,053 2,057 2,061 2,062 2,063 2,069 2,074 2,093 2,11

14 2,124 2,074 2,058 2,052 2,049 2,049 2,051 2,051 2,055 2,055 2,053 2,052 2,058 2,061 2,073 2,074 2,095

15 2,125 2,072 2,058 2,049 2,046 2,045 2,045 2,046 2,046 2,047 2,053 2,054 2,05 2,051 2,062 2,074 2,089

16 2,125 2,07 2,054 2,046 2,046 2,045 2,042 2,043 2,042 2,046 2,045 2,045 2,052 2,054 2,056 2,068 2,078

17 2,124 2,069 2,054 2,046 2,043 2,042 2,044 2,044 2,043 2,04 2,042 2,045 2,045 2,046 2,051 2,063 2,077

18 2,125 2,07 2,054 2,043 2,041 2,039 2,04 2,038 2,04 2,041 2,041 2,04 2,041 2,045 2,049 2,056 2,068

19 2,125 2,069 2,051 2,044 2,038 2,037 2,038 2,038 2,037 2,037 2,038 2,04 2,041 2,04 2,044 2,051 2,064

20 2,125 2,068 2,05 2,041 2,039 2,038 2,035 2,035 2,035 2,036 2,036 2,036 2,037 2,04 2,042 2,052 2,059

21 2,126 2,068 2,051 2,04 2,038 2,037 2,036 2,036 2,035 2,034 2,035 2,036 2,036 2,035 2,038 2,044 2,051

22 2,127 2,069 2,05 2,04 2,037 2,035 2,035 2,034 2,033 2,034 2,034 2,033 2,035 2,034 2,039 2,042 2,054

23 2,128 2,07 2,052 2,041 2,037 2,036 2,034 2,033 2,034 2,032 2,033 2,034 2,034 2,033 2,034 2,04 2,049

24 2,129 2,069 2,053 2,041 2,037 2,036 2,035 2,035 2,033 2,032 2,033 2,032 2,033 2,032 2,034 2,041 2,044

25 2,131 2,071 2,053 2,042 2,038 2,036 2,034 2,034 2,032 2,033 2,032 2,033 2,032 2,032 2,033 2,039 2,045

26 2,133 2,073 2,053 2,042 2,038 2,037 2,035 2,034 2,032 2,033 2,033 2,032 2,032 2,03 2,032 2,034 2,041

27 2,134 2,073 2,055 2,043 2,039 2,037 2,036 2,034 2,033 2,033 2,032 2,031 2,032 2,031 2,033 2,034 2,041

28 2,136 2,075 2,057 2,045 2,039 2,039 2,036 2,035 2,035 2,034 2,033 2,032 2,031 2,031 2,031 2,034 2,039

29 2,138 2,076 2,057 2,045 2,041 2,038 2,037 2,035 2,035 2,034 2,034 2,033 2,031 2,03 2,031 2,032 2,036

30 2,14 2,078 2,058 2,047 2,042 2,04 2,037 2,036 2,036 2,034 2,034 2,034 2,033 2,031 2,031 2,032 2,035

32

2,033 2,031 2,03 2,032

34

2,032 2,031 2,03 2,032

36

2,034 2,032 2,03 2,03

38

2,037 2,034 2,032 2,029

40

2,039 2,036 2,033 2,03

42

2,043 2,038 2,034 2,032

44

2,046 2,041 2,036 2,032

4
0

41

I also experimented with increased variety in TAGE predictors. I changed

configuration of each predictor a little to make them different from other. I have used

a fixed total size for each sub-predictor. That is, the number of table entries for a 38

component predictor is half the number of entries for a 20-component predictor for

most of the tables. Counter width is fixed as 3 bits. The minimum history size varies

between 5 and 13. The maximum history varies between 1000 and 100,000. Finally,

the number of tagged table components in each sub-predictor varies between 20 and

38. Table 5 show detailed information about these configurations. Performance

increased further to 19.1 misp/KI.

1.90

1.92

1.94

1.96

1.98

2.00

2.02

4x 8x 16x 32x

M
is

p
/K

I

Number of Sub-predictors

AllSame_RandUpd

AllDifferent

AllDifferent_RandUpd

Figure 15: Comparison of Different Bagging Configurations

42

Figure 15 shows the overall effect of bagging. As I mentioned above, one

could use the same configuration for all the sub-predictors. This configuration called

AllSame. In this case, the only variability in sub-predictor predictions comes from the

random updates. In this configuration, the sub-predictor parameters that we have used

are: counter width = 3, number of tagged tables = 38, the minimum and maximum

history lengths = 7 and 100,000, respectively. AllDifferent refers to variety between

predictors. For this configuration both random update and regular update is simulated.

From this figure two outcomes can be made. First AllDifferent is always better than

AllSame. Secondly, to use random update there need to be some sufficient number of

predictors to justify usage. For this case using more than 8 predictors is breaking

point. Using random update for 8 or more predictor gives better result.

Lastly I used OH-SNAP to see effect of bagging on different type of predictor.

I didn’t tuned OH-SNAP and every predictor used is 64 KB. Their individual results

can be seen in Table 6. Base configuration achieved 2.613 misp/KI. Increasing size by

2 and 4 times made minimal result and achieved 2.611misp/KI, and 2.608 misp/KI

respectively. Using 2 OH-SNAP with bagging resulted in 2,616 misp/KI which is

worse than increasing size by two times. Reason for this is we didn’t use sufficient

amount of predictor. At 4 predictor, bagging out performs the just size increase with

2,602 misp/KI.

43

Table 5: Sub-predictor Configuration

SUB-PREDICTOR NUMBER OF

TABLES

MIN HISTORY MAX HISTORY USE

PC?

1 24 9 2000 Yes

2 32 7 30000 Yes

3 30 9 10000 Yes

4 29 6 5000 Yes

5 28 8 4000 Yes

6 27 10 3000 Yes

7 25 6 2500 Yes

8 38 5 100000 Yes

9 23 4 2000 Yes

10 23 5 1800 Yes

11 22 3 1600 Yes

12 22 8 1500 Yes

13 21 9 1400 Yes

14 21 10 1300 Yes

15 20 6 1200 Yes

16 20 7 1000 Yes

17 38 12 100000 No

18 32 10 30000 No

19 30 9 10000 No

20 29 11 5000 No

21 28 10 4000 No

22 27 13 3000 No

23 25 11 2500 No

24 24 12 2000 No

25 20 9 100000 No

26 20 10 85000 No

27 20 11 70000 No

28 20 13 55000 No

29 20 12 40000 No

30 20 8 25000 No

31 20 10 10000 No

32 20 7 8000 No

44

Table 6: OH-SNAP Bagging Results

 BASE 2X BASE 4X BASE BAGGING X2 BAGGING X4

SHORT-FP-1 0,987 0,986 0,983 0,986 0,983

SHORT-FP-2 0,853 0,849 0,848 0,852 0,848

SHORT-FP-3 0,042 0,041 0,041 0,04 0,04

SHORT-FP-4 0,093 0,093 0,093 0,093 0,093

SHORT-FP-5 0,015 0,015 0,015 0,015 0,015

SHORT-INT-1 0,244 0,246 0,246 0,247 0,245

SHORT-INT-2 4,654 4,631 4,622 4,664 4,618

SHORT-INT-3 5,674 5,67 5,659 5,667 5,629

SHORT-INT-4 0,645 0,648 0,646 0,648 0,633

SHORT-INT-5 0,285 0,283 0,282 0,286 0,285

SHORT-MM-1 6,473 6,465 6,473 6,479 6,467

SHORT-MM-2 8,454 8,45 8,44 8,449 8,44

SHORT-MM-3 0,069 0,068 0,068 0,069 0,069

SHORT-MM-4 1,38 1,381 1,384 1,384 1,381

SHORT-MM-5 3,311 3,315 3,306 3,318 3,294

SHORT-SERV-1 0,822 0,822 0,82 0,829 0,824

SHORT-SERV-2 0,803 0,803 0,799 0,81 0,801

SHORT-SERV-3 2,712 2,71 2,704 2,729 2,708

SHORT-SERV-4 1,941 1,935 1,933 1,946 1,934

SHORT-SERV-5 1,627 1,628 1,623 1,636 1,625

LONG-SPEC2K6-00 1,895 1,895 1,891 1,898 1,888

LONG-SPEC2K6-01 6,718 6,717 6,716 6,723 6,716

LONG-SPEC2K6-02 1,093 1,094 1,093 1,099 1,063

LONG-SPEC2K6-03 0,948 0,948 0,946 0,945 0,94

LONG-SPEC2K6-04 8,907 8,9 8,892 8,905 8,891

LONG-SPEC2K6-05 4,424 4,42 4,423 4,424 4,416

LONG-SPEC2K6-06 0,68 0,678 0,679 0,68 0,678

LONG-SPEC2K6-07 8,349 8,329 8,313 8,365 8,245

LONG-SPEC2K6-08 0,765 0,763 0,76 0,766 0,765

LONG-SPEC2K6-09 4,839 4,837 4,835 4,844 4,832

LONG-SPEC2K6-10 0,727 0,728 0,723 0,732 0,718

LONG-SPEC2K6-11 0,565 0,566 0,565 0,567 0,565

LONG-SPEC2K6-12 10,593 10,593 10,591 10,603 10,586

LONG-SPEC2K6-13 5,392 5,374 5,368 5,399 5,32

LONG-SPEC2K6-14 0,002 0,002 0,002 0,002 0,002

LONG-SPEC2K6-15 0,436 0,435 0,435 0,436 0,429

LONG-SPEC2K6-16 2,863 2,86 2,855 2,869 2,859

LONG-SPEC2K6-17 2,972 2,967 2,965 2,972 2,954

LONG-SPEC2K6-18 0,056 0,055 0,055 0,052 0,055

LONG-SPEC2K6-19 1,225 1,223 1,223 1,225 1,224

AMEAN 2,613 2,611 2,608 2,616 2,602

45

CHAPTER 5

CONCLUSION

High-performance microarchitectures use, among other structures, deep

pipelines to help speed up execution. It is very important to have a good branch

predictor to keep all stages of pipeline executing instructions from correct path.

Bootstrap aggregating (bagging) is a statistical method to improve the accuracy

of predictors by reducing variance and over fitting. It is applicable to any unstable

learning algorithm. In this work, I applied bagging to branch prediction. Branch

predictor forms an ensemble of slightly different predictors each of which is updated

with slightly different data.

My results show that using bagging can increase performance further than

what branch predictor capable of. TAGE predictor scales well with the predictor size

and OH-SNAP has a minimal dependency to its size. But in both cases bagging was

able to outperform both.

Bagging shows promise as a future research direction. Although online

bagging method used in this work provides a way to apply bagging to branch

prediction, it assumes independent samples, which is not the case for branch history.

Different online bagging methods may prove better and are subject to future research.

Finally, my analysis was done by mostly using TAGE as the base predictor. I looked

into OH-SNAP briefly. It is possible to use more variety of predictors that use

different methods for prediction.

Another thing I want to mention is, with this idea I entered CBP-4 competition

and took fourth place in unlimited size category [15].

46

BIBLIOGRAPHY

[1] Seznec, André, and Pierre Michaud. "A case for (partially) TAgged GEometric

history length branch prediction." Journal of Instruction Level Parallelism 8

(2006): 1-23.

[2] J.K.L. Lee and A.J. Smith. "Branch prediction strategies and branch target buffer

design." Computer, 17(1), January 1984.

[3] Nair, Ravi. "Dynamic path-based branch correlation." Proceedings of the 28th

annual international symposium on Microarchitecture. IEEE Computer Society

Press, 1995.

[4] Yeh, Tse-Yu, and Yale N. Patt. "Two-level adaptive training branch prediction."

Proceedings of the 24th annual international symposium on Microarchitecture.

ACM, 1991.

[5] McFarling, Scott. Combining branch predictors. Vol. 49. Technical Report TN-36,

Digital Western Research Laboratory, 1993

[6] Young, Cliff, and Michael D. Smith. "Improving the accuracy of static branch

prediction using branch correlation." ACM Sigplan Notices. Vol. 29. No. 11.

ACM, 1994.

[7] Young, Cliff, Nicolas Gloy, and Michael D. Smith. A comparative analysis of

schemes for correlated branch prediction. Vol. 23. No. 2. ACM, 1995.

[8] Seznec, Andr. "The o-gehl branch predictor." The 1st JILP Championship Branch

Prediction Competition (CBP-1) (2004).

47

[9] Jiménez, Daniel A., and Calvin Lin. "Dynamic branch prediction with

perceptrons." High-Performance Computer Architecture, 2001. HPCA. The

Seventh International Symposium on. IEEE, 2001.

[10] Seznec, André. "Redundant history skewed perceptron predictors: Pushing limits

on global history branch predictors." Publication interne- IRISA (2003).

[11] Breiman, Leo. "Bias, variance, and arcing classifiers." Technical Report 460,

Department of Statistics, University of California, Berkeley (1996).

[12] Bauer, Eric, and Ron Kohavi. "An empirical comparison of voting classification

algorithms: Bagging, boosting, and variants." Machine learning 36.1-2 (1999):

105-139.

[13] Oza, Nikunj C., and Stuart Russell. "Online bagging and boosting." Systems, man

and cybernetics, 2005 IEEE international conference on. Vol. 3. IEEE, 2005.

[14] Härdle, Wolfgang, Joel Horowitz, and Jens‐Peter Kreiss. "Bootstrap methods for

time series." International Statistical Review 71.2 (2003): 435-459.

[15] http://www.jilp.org/cbp2014/

[16] http://www.spec.org/cpu2006/

	BOOTSTRAP AGGREGATING BRANCH PREDICTORS
	Terms of Use
	Recommended Citation

	FULL TITLE HERE IN ALL CAPS IN A FORMAT

