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ABSTRACT 

After over two decades of extensive research on branch prediction, branch 

mispredictions are still an important performance and power bottleneck for today’s 

aggressive processors. All this research has introduced very sophisticated and accurate 

branch predictor designs, TAGE predictor being the current-state-of-art. 

In this work, instead of directly improving on individual predictor’s accuracy, I 

focus on an orthogonal statistical method called bootstrap aggregating, or bagging. 

Bagging is used to improve overall accuracy by using an ensemble of predictors, 

which are trained with slightly different data sets. Each predictor (can be same or 

different predictors) is trained using a resampled (with replacement) training set 

(bootstrapping). Then, the final prediction is simply provided by weighting or majority 

voting (aggregating).  This work shows that applying bagging improves performance 

more than simply increasing the size of the predictor. 
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CHAPTER 1  

 
INTRODUCTION 

 

Accurate branch prediction can be seen as a mechanism for enabling design 

decisions. When short pipelines were the norm, accurate branch prediction was not as 

important. However, having accurate branch prediction enables technologies like 

wide-issue deeply pipelined superscalar processors. If branch predictors can be 

improved further, we can more successfully use more aggressive speculation 

techniques. Accurate branch prediction enables larger scheduling windows, out-of—

order execution, deeper pipelines etc.  

A pipelined machine achieves its maximum throughput when it is in the 

streaming mode. For the fetch stage, streaming stage implies the continuous fetching 

of instructions from sequential locations in the program memory. Whenever the 

control flow of the program deviates from the sequential path, potential disruption to 

the streaming mode can occur. For unconditional branches, subsequent instructions 

cannot be fetched until target address of the target address of the branch is determined. 

For conditional branches, the machine must wait for the resolution of the branch 

condition, and if the branch is to be taken, it must further wait until the target address 

is available. Branch instructions are executed by the branch functional unit. For a 

conditional branch, it is not until it exits the branch unit and when both the branch 

condition and the branch target address are known that the fetch stage can correctly 

fetch the next instruction. 
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This delay in processing conditional branches incurs a cycle penalty in fetching 

the next instruction, corresponding to the traversal of decode, dispatch, and execute 

stages by the conditional branch. The actual lost-opportunity cost of stalled cycles is 

not just empty instruction slots, but the number of empty instruction slots must be 

multiplied by the width of the machine.  

 Maximizing the volume of the instruction flow path is equivalent to 

maximizing the sustained instruction fetch bandwidth. To do this, the number of stall 

cycles in the fetch stage must be minimized. For an n-wide machine each stalled cycle 

is equal to fetching n no-op instructions. The primary aim of instruction flow 

technique is to minimize the number of such fetch stall cycles and/or to make use of 

these cycles to do potentially useful work. The current dominant approach to 

accomplishing this is via branch prediction. 

TAGE [1] predictor has been widely accepted as the current state-of-the-art in 

branch prediction. In this work, instead of directly improving predictor’s accuracy, I 

focus on an orthogonal statistical method called bootstrap aggregating, or bagging. 

Bagging is used to improve overall accuracy by using an ensemble of predictors, 

which are trained with slightly different data sets. Each predictor (can be same or 

different predictors) is trained using a resampled (with replacement) training set 

(bootstrapping). Then, the final prediction is simply provided by weighting or majority 

voting (aggregating). This work shows that applying bagging improves performance 

more than simply increasing the size of the predictor. 
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BRANCH PREDICTOR 

 

Experimental studies have shown that the behavior of branch instructions is 

highly predictable.  A key approach to minimizing branch penalty and maximizing 

instruction flow throughput is to speculate on both branch target address and branch 

condition of branch instruction. As a static branch instruction is repeatedly executed at 

run time, its dynamic behavior can be tracked. Based on its past behavior, its future 

behavior can be effectively predicted. Two fundamental components of branch 

prediction are branch target speculation and branch condition speculation. With any 

speculative technique, there must be mechanisms to validate the prediction and to 

safely recover from any misprediction. 

Branch target speculation involves the use if a branch target buffer (BTB) to 

store previous branch target address. BTB is a small cache memory accessed during 

the instruction fetch stage using the instruction fetch address (PC). Each entry of BTB 

contains two fields: the branch instruction address (BIA) and the branch target address 

(BTA). When a static branch instruction is executed for the first time, an entry in the 

BTB is allocated for it. Its instruction address is stored in the BIA field, and its target 

is stored in the BTA field. Assuming the BTB is fully associative cache, BIA field is 

used for the associative access of the BTB. The BTB is accessed concurrently with the 

accessing of the I-cache. When the current PC matches the BIA of an entry in the 

BTB, a hit in the BTB results. This implies that the current instruction being fetched 

from the I-cache has been executed before and is a branch instruction. As shown in 

Figure 1, when a hit in the BTB occurs, the BTA field of the hit entry is accessed and 
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can be used as the next instruction fetch address if that particular branch instruction is 

predicted to be taken. 

 

Figure 1: Branch Target Speculation Using a Branch Target Buffer 

 

By accessing the BTB using the branch instruction address and retrieving 

branch target address from BTB all during the fetch stage, the speculative branch 

address will be ready to be used in the next machine cycle as the new instruction fetch 

address if the branch instruction is predicted to be taken. If the branch instruction is 

predicted to be taken and this prediction turn out to be correct, then branch instruction 

is effectively executed in the fetch stage, incurring no branch penalty. The 

nonspeculative execution of the branch instruction is still performed for the purpose of 

validating the speculative execution. The branch instruction is still fetched from the I-

cache and executed. The resultant target address and branch condition are compared 

with speculative version. If they agree, then correct prediction was made; otherwise, 
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misprediction has occurred and recovery must be initiated. The result from 

nonspeculative execution is also used to update the content, i.e., the BTA field, of the 

BTB. 

 

STATIC BRANCH PREDICTOR 

 

There are a number ways to do branch condition speculation. The simplest 

form is to design the fetch hardware to be biased for not taken, i.e., to always predict 

not taken. When a branch instruction is encountered, prior to its resolution, the fetch 

stage continuous fetching down the fall-through path without stalling. This form of 

minimal branch prediction is easy to implement but not very effective. For example, 

many branches are used for loop closing instructions, which are mostly taken during 

execution except when exiting loops. Another form of prediction employs software 

support and can require ISA changes. For example, an extra bit can be allocated in 

branch instruction format that is set by the compiler. This bit is used as a hint to 

hardware to perform either predict not taken or predict taken depending on the value 

of this bit. The compiler can use branch instruction type and profiling information to 

determine the most appropriate value for this bit. This allows each static branch 

instruction to have its own specified prediction. However, this prediction is static in 

the sense that the same prediction is used for all dynamic executions of the branch. A 

more aggressive and dynamic form of prediction makes prediction based on the 

branch target address offset. This form of prediction first determines the relative offset 

between the address of the branch of the instruction and the address of the target 

instruction. A positive offset will trigger the hardware to predict not taken, whereas a 
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negative offset, most likely indicating a loop closing branch, will trigger the hardware 

to predict taken. The most common branch condition speculation technique employed 

in contemporary superscalar machines is based on history of previous branch 

executions.  

 

DYNAMIC BRANCH PREDICTOR 

 

History-based branch prediction makes a prediction of branch direction, 

whether taken (T) or not taken (N), based on previously observed branch directions. 

The assumption is that historical information on the direction that a static branch takes 

in previous executions can give helpful hints on the direction that is likely to taken in 

future executions. Design decisions for such type of branch prediction include how 

much history should be tracked and for each observed history pattern what prediction 

should be made. As shown in Figure 2, the specific algorithm for history-based branch 

direction prediction can be characterized by a finite state machine (FSM). The n state 

variable encode the directions taken by the last n executions of that branch. Hence 

each state represents a particular history in terms of a sequence of takens and not 

takens. The output logic generates a predictions made based on the outcome of the 

previous n executions of that branch. When a branch finally executed, the actual 

outcome is used as an input to the FSM to trigger a state transition. The next state 

logic is trivial; it simply involves chaining the state variables into a shift register, 

which records the branch directions of the previous n executions of that branch 

instructions.  
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Figure 2: FSM Model for History-Based Branch Direction Predictors  

 

 

Figure 3: History-Based Branch Predictor: (a) A 2-bit Branch Predictor 

Algorithm; (b) Branch Target Buffer with an Additional Field for Storing Branch 

History Bits. 

 

Figure 3 illustrates the FSM diagram of a typical 2-bit branch predictor that 

employs two history bits to track the outcome of two previous executions of the 

branch. The two history bits constitute the state variables of the FSM. The predictor 

can be in one of four states: NN, NT, TT, or TN, representing the directions taken in 

previous two executions of the branch. The NN state can be designated as the initial 
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state. An output value either T or N is associated with each of the four states 

representing the prediction that would be made when a predictor is in that state. When 

a branch is executed, the actual direction taken is used as an input to the FSM, and a 

state transition occurs to update the branch history which will be used to do the next 

prediction. The particular algorithm implemented in the predictor of Figure 3 is a 

biased toward predicting branches to be taken; note that three of the four states predict 

the branch to be taken. It anticipates either long runs of N’s (in the NN state) or long 

runs of T’s (in the TT state). As long as at least one of the two previous executions 

was a taken branch, it will predict the next execution to be taken. The prediction will 

only be switched to not taken when it has encountered two consecutive N’s in a row. 

This represents one particular branch prediction algorithm; clearly there are many 

possible designs for such history-based predictors, and many designs there have been 

evaluated by researchers. 

To support history-based branch direction predictors, the BTB can be 

augmented to include a history field for each of its entries. The width, in number of 

bits, of this field determined by number of history bits being tracked. When a PC 

address hits in the BTB, in addition to the speculative target address, the history bits 

are retrieved. These history bits are fed to the logic that implements the next state and 

output functions of the branch predictor FSM. The retrieved history bits, the output 

logic produces the 1-bit output that indicates the predicted direction. If the prediction 

is a taken branch, then this output is used as the new instruction fetch address in the 

next machine cycle. If the prediction turns the prediction turns out to be correct, then 
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effectively the branch instruction has been executed in the fetch stage without 

incurring any penalty or stalled cycle.  

A classic experimental study on branch prediction was done by Lee and Smith 

[2]. In this study, 26 programs from six different types of workloads for three different 

machines were used. Averaged across all the benchmarks, 67.6% of the branches were 

taken while 32.4% were not taken. Branches tend to be taken more than not taken by a 

ratio of 2 to 1. With static branch prediction based on the op-code type, the prediction 

accuracy ranged from 55% to 80% for six workloads. Using only 1 bit of history, 

history-based dynamic branch prediction achieved prediction accuracies ranging from 

79.7% to 96.5%. With 2 history bits, the accuracies for the six workloads ranged from 

83.4% to 97.5%. Continued increase of the number of history bits brought additional 

incremental accuracy. However, beyond four history bits there is a very minimal 

increase in the prediction accuracy with the BTB hit rate, the resultant average 

prediction effectiveness was approximately 80%.  

Another experimental study was done in 1992 at IBM by Ravi Nair using 

Systems Performance Evaluation Cooperative (SPEC) benchmarks [3]. This was a 

very comprehensive study of possible branch prediction algorithms. The goal for 

branch prediction is to overlap the execution of branches or accomplish branch 

folding; i.e., branches are folded out of the critical latency path of instruction 

execution. This study performed an exhaustive search for optimal 2-bit predictors. 

There are 220 possible FSMs of 2-bit predictors. Nair determined that many of these 

machines are uninteresting and pruned the entire design space down to 5248 machines. 

Extensive simulations are performed to determine the optimal (achieves best 
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prediction accuracy) 2-bit predictor for each of the benchmarks. The list of SPEC 

benchmarks, their prediction accuracies, and the associated optimal predictors are 

shown in Figure 4. 

 

Figure 4: FSM Model for History-Based Branch Direction Predictors  

 

In Figure 4, the states denoted with bold circles represent states which the 

branch is predicted taken; to nonbold circles represent states that predict not taken. 

Similarly the bold edges represent state transitions when the branches is actually 

taken; the nonbold edges represent transitions corresponding to the branch actually not 

taken. The state denoted with asterisk indicates the initial state. The prediction 

accuracies for optimal predictors of these six benchmarks range from 87.1% to 97.2%. 

Notice that optimal predictors for doduc, gcc, and espresso are identical (disregarding 

the different initial state of the gcc predictor) and exhibit the behavior of a 2-bit 
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up/down saturating counter. We can label the four states from left to right as 0, 1, 2, 

and 3, representing the four count values of a 2-bit counter. Whenever a branch is 

resolved taken, the count is incremented; and it is decremented otherwise. Two lower-

count states predict a branch to be not taken, while other two higher-count states 

predict a branch taken. Figure 4 also provides the prediction accuracies for the six 

benchmarks. The prediction accuracies for the six benchmarks if the 2-bit saturating 

counter predictor is used for all six benchmarks. The prediction accuracies for 

spice2g6, li, and eqntott only decreased minimally from optimal values, indicating that 

the 2-bit saturating counter, originally invented by Jim Smith, has become a popular 

prediction algorithm in real and experimental designs.  

The same study by Nair also investigated the effectiveness of counter-based 

predictors. With 1-bit counter as predictor, i.e., remembering the direction taken last 

time and predicting the same direction for the next time, the prediction accuracies 

range of 82.5% to 96.2%. As I shown in Figure 5, a 2-bit counter yields an accuracy 

range of 86.8% to 97.0%. If a 3-bit counter is used, the increase in accuracy is 

minimal; accuracies range from 88.3% to 97.0%. Based on this study, the 2-bit 

saturating counter appears to be a very good choice for a history-based predictor. 

Direct-mapped branch history tables are assumed in this study. While some programs, 

such as gcc, have more than 7000 conditional branches, for most programs, the branch 

penalty due to aliasing in finite-sized branch history tables levels out at about 1024 

entries for table size. 
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 BRANCH MISPREDICTION RECOVERY 

 

Branch prediction is a speculative technique. Any speculative technique 

requires mechanisms for validating the speculation. Dynamic branch prediction can be 

viewed as consisting of two interacting engines. The leading engine performs 

validation in the later stages of the pipeline. In the case of misprediction the trailing 

engine also performs recovery. These two aspects of branch prediction are illustrated 

in Figure 5. 

 

Figure 5: Two Aspects of Branch Prediction: (a) Branch Speculation; (b) 

Branch Validation and Recovery. 
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 Branch speculation involves predicting the direction of a branch and then 

proceeding to fetch along the predicted path of control flow. While fetching from the 

predicted path, additional branch introductions may be encountered. Prediction of 

these additional branches can be similarly performed, potentially resulting in 

speculating past multiple conditional branches before the first speculated branch is 

resolved. Figure 5 illustrates speculating past three branches with the first and third 

branches being predicted taken and second one predicted not taken. When this occurs, 

instructions from three speculative basic blocks are now resident in the machine and 

must be appropriately identified. Instructions from each speculative basic block are 

given the same identifying tag. In the example of Figure 5, three distinct tags are used 

to identify the instructions from the three speculative basic blocks. A tagged 

instruction indicates that it is a speculative instruction, and the value of the tag 

identifies which basic block it belongs to. As a speculative instruction advances down 

the pipeline stages, tag is also carried along. When speculating, the instruction 

addresses of all the speculated branch instructions (or the next sequential instructions) 

must be buffered in the event that recovery is required.  

 Branch validation occurs when the branch is executed and the actual direction 

of a branch is resolved. The correctness of the earlier prediction can then be 

determined. If the prediction turns out to be correct, the speculation tag is deallocated 

and all instructions associated with that tag becomes nonspeculative and are allowed 

to complete. If a misprediction is detected, two actions are required; namely, the 

incorrect path must be terminated, and fetching from new correct path must be 

initiated. To initiate a new path, the PC must be updated with a new instruction fetch 
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address. If the incorrect prediction was a not-taken prediction, then PC is updated with 

the computed branch target address. If the incorrect prediction was a taken prediction, 

then the PC is updated with sequential (fall-through) instruction address, which is 

obtained from the previously buffered instruction address when the branch was 

predicted taken. Once the PC has been updated, fetching of the instructions resumes 

along the new path, and branch prediction begins anew. To terminate the incorrect 

path, speculation tags are used. All the tags that are associated with mispredicted 

branch are used to identify the instructions that must be eliminated. All such 

instructions that are still in decode and dispatch buffers as well as those in reservation 

station entries are invalidated. Reorder buffer entries occupied by these instructions 

are deallocated. Figure 5 illustrates this validation/recovery task when the second of 

the three predictions is incorrect. The first branch is correctly predicted, and therefore 

instructions with Tag 1 becomes nonspeculative and are allowed to complete. The 

second prediction is incorrect, and all the instructions with Tag 2 and Tag 3 must be 

invalidated and their buffer entries must be deallocated. After fetching down the 

correct path, branch prediction can begin once again, Tag 1 is used again to denote the 

instruction in the first speculative basic block. During branch validation, the associated 

BTB entry is also updated.  

 

TWO LEVEL BRANCH PREDICTOR 

 

 The dynamic branch prediction schemes discussed thus far have a number of 

limitations. Prediction for a branch is made based on the limited history of only that 

particular static branch instructions. The actual prediction algorithm does not take into 
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account the dynamic context within which the branch is being executed. For example, 

it does not make use of any information on the particular flow path taken in arriving at 

that branch. Furthermore the same fixed algorithm is used to make the prediction 

regardless of dynamic context. It has been observed experimentally that the behavior 

of certain branches is strongly correlated with the behavior of other branches that 

precede them during execution. Consequently more accurate branch prediction can be 

achieved with algorithms that take into account the branch history of other correlated 

branches and that can adapt the prediction algorithm to the dynamic branching 

context.  

 In 1991, Yeh and Patt proposed a two-level adaptive branch prediction 

technique that can potentially achieve better than 95% prediction accuracy by having a 

highly flexible prediction algorithm that can adapt to changing dynamic contexts [4]. 

In previous schemes, a single branch history table is used and indexed by the branch 

address. As shown in Figure 6, in the two-level adaptive scheme, a set of history tables 

is used. These are identified as the pattern history table (PHT). Each branch address 

indexes to a set of relevant entries; one of these entries is then selected based on the 

dynamic branching context. The context is determined by a specific pattern of recently 

executed branches stored in a branch history shift register (BHSR). The content of the 

BHSR is used to index in to the PHT to select one of the relevant entries. The content 

of this entry is then used as the state for the prediction algorithm FSM to produce a 

prediction. When a branch is resolved, the branch result is used to update both the 

BHSR and selected entry in the PHT. 
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Figure 6: Two-level Adaptive Branch Prediction of Yeh and Patt 

 

 The two-level adaptive branch prediction technique actually specifies a 

framework within which many possible designs can be implemented. There are two 

options to implementing the BHSR: global (G) and individual (P). The global 

implementation employs a single BHSR of k bits that tracks the branch directions of 

the last k dynamic branch instructions in program executions. These can involve any 

number (1 to k) of static branch instructions. The individual implementation employs a 

set of k-bit BHSRs as illustrated in Figure 6, one of which is selected based on branch 

address. Essentially the global BHSR is shared by all static branches, whereas with 

individual BHSRs each BHSR is dedicated to each static branch or a subset of static 

branches if there is address aliasing when indexing into the set of BHSRs using the 

branch address. There are three options to implement the PHT global (g), individual 
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(p), or shared (s).  Alternatively, individual PHTs can be used in which each PHT is 

dedicated to each static branch (p) or a small subset of static branches (s) if there is 

address aliasing when indexing into the set of PHTs using the branch address. A third 

dimension to this design space involves the implementation of the actual prediction 

algorithm. When a history-based FSM is used to implement the prediction algorithm, 

Yeh and Patt identified such schemes as adaptive (A). 

 All possible implementations of the two-level adaptive branch prediction can 

be classified based on these three dimensions of design parameters. A given 

implementation can then be denoted using a three-letter notation: e.g., Gas represents a 

design that employs a single global BHSR, an adaptive prediction algorithm, and a set 

of PHTs with each being shared by a number of static branches. Yeh and Patt 

presented three specific implementations that are able to achieve a prediction accuracy 

97% for their given set of benchmarks:  

• GAg: (1) BHSR of size 18 bits; (1) PHT of size 218 x 2 bits. 

• PAg: (512 x 4) BHSRs of size 12 bits; (1) PHT of size 212 x 2 bits. 

• PAs: (512 x 4) BHSRs of size 6 bits; (512) PHT of size 26 x 2 bits. 

All three implementations use an adaptive (A) predictor that is a 2-bit FSM. The first 

implementation employs a global BHSR (G) of 18 bits and a global PHT (g) with 218 

entries indexed by the BHSR bits. The second implementation employs 512 sets (four-

way set-associative) of 12-bit BHSRs (P) and a global PHT (g) with 212 entries. The 

third implementation also employs 512 set of four-way set-associative BHSRs (P), but 

each is only 6 bits wide. It also uses 512 PHTs (s), each having 26 entries indexed by 

the BHSR bits. Both the 512 sets of BHSRs and the 512 PHTs are indexed using 9 bits 
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of the branch address. Additional branch address bits are used for the set-associative 

access of the BHSRs. The 512 PHTs are direct-mapped, and there can be aliasing, i.e., 

multiple branch addresses sharing the same PHT. From experimental data, such 

aliasing had minimal impact on degrading the prediction accuracy. Achieving greater 

than 95% prediction accuracy by the two-level adaptive branch prediction schemes is 

quite impressive; the best traditional prediction techniques can only achieve about 

90% prediction accuracy. 

 

Figure 7: Correlated Branch Predictor with Global BHSR and Shared PHTs 

(GAs). 

 

Following the original Yeh and Patt proposal, other studies by McFarling [5], 

Young and Smith [6], and Gloy et al. [7] have gained further insights into two-level 

adaptive, or more recently called correlated, branch predictors. Figure 7 illustrates a 

correlated branch prediction with a global BHSR (G) and a shared PHT (s). The 2-bit 
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saturating counter is used as the predictor FSM. The global BHSR tracks the 

directions of the last k dynamic branches and captures the dynamic control flow 

context. The PHT can be viewed as a single table containing a two-dimensional array, 

with 2j columns and 2k rows, of 2-bit predictors. If the branch address has n bits, a 

subset of j bits is used to index into the PHT to select one of the 2j columns. Since j is 

less than n, some aliasing can occur where two different branch addresses can index 

into the same column of the PHT. Hence the designation of shared PHT. The k bits 

from the BHSR are used to select one of the 2k entries in the selected column. The 2 

history bits in the selected entry are used to make a history-based prediction. The 

traditional branch history table is equivalent to having only one row of the PHT that is 

indexed only by the j bits of the branch address, as illustrated in Figure by the dashed 

rectangular block of 2-bits predictors in the row of the PHT. 

 

Figure 8: Correlated Branch Predictor with Individual BHSRs and Shared 

PHTs (PAs). 
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Figure 8 illustrates a correlated branch predictor with individual BHSRs (P) 

and the same shared PHT (s). Similar to the GAs scheme, the PAs scheme also uses j 

bits of the branch address to select one of the 2j columns of the PHT. However, i bits 

of the branch address, which can overlap with the j bits used to access the PHT, are 

used to index into a set of BHSRs. Depending on the branch address, one of the 2i 

BHSRs is selected.  Hence, each BHSR is associated with one particular branch 

address, or a set of branch addresses if there is aliasing. Essentially, instead of using a 

single BHSR to provide the dynamic control flow context for all static branches, 

multiple BHSRs are used to provide distinct dynamic control flow contexts for 

different subsets of static branches. This adds flexibility in tracking and exploiting 

correlations between different branch instructions. Each BHSR tracks the directions of 

the last k dynamic branches belonging to the same subset of static branches. Both the 

GAs and the PAs schemes require a PHT of size 2k x 2j x 2 bits. The GAs scheme has 

only one k-bit BHSR whereas the PAs scheme requires 2i k-bit BHSRs. 

 

GSHARE 

 

A fairly efficient correlated branch predictor called gshare was proposed by 

Scott McFarling [5]. In this scheme which is shown in Figure 9, j bits from the branch 

address are hashed (via bitwise XOR function) with k bits from global BHSR. The 

resultant max {k, j} bits are used to index into a PHT of size 2max {k, j} x 2 bits to select 

one of the 2max {k, j} 2-bit branch predictors. The gshare scheme requires only one k-
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bit BHSR and a much smaller PHT, yet archives comparable prediction accuracy to 

other correlated branch predictors. 

 

 

Figure 9: The gshare Correlated Branch Predictor 
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CHAPTER 2 

ADVANCED BRANCH PREDICTORS 

 In this chapter I will explain bootstrap aggregating branch predictors. But 

before that I need to explain which predictors are used in bagging.  These predictors 

are TAGE, and OH-SNAP, which are more complex and better performing than ones 

described in Chapter 1. 

 

TAGE 

 

TAGE stands for Tagged Geometric history length. It relies on a default tagless 

predictor backed with plurality of tagged predictor components indexed using 

different history lengths for index computation. These history lengths form a 

geometric series. The prediction is provided either by a tag match on a tagged 

predictor component or by the default predictor. In case of multiple hits, the prediction 

is provided by the tag matching table the longest history.  

Geometric history length prediction was introduced with the O-GEHL 

predictor [8]. The predictor features M distinct predictor tables Ti, 0 ≤ i ≤ M indexed 

with hash functions of the branch address and the global branch history. Distinct 

history lengths are used for computing the index of the distinct tables. Table T0 is 

indexed using the branch address. The history lengths used for computing the indexing 

functions for tables Ti, 1 ≤ i ≤ M are of the form , i.e., the lengths 

L(i) form a geometric series. More precisely, as history lengths are integers, it uses 

. 
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Using a geometric series of history lengths allows to use very long history 

lengths for indexing some predictor tables, while still dedicating most of the storage 

space to predictor tables using short global history lengths. As an example on a 8-

component predictor, using α = 2 and L(1) = 2 leads to the following series {0, 2, 4, 8, 

16, 32, 64, 128}. 

 

 

Figure 10: A 5-component TAGE predictor 

 

Figure 10 illustrates a TAGE predictor. The TAGE predictor features a base 

predictor T0 in charge of providing a basic prediction and a set of tagged predictor 

components Ti. These tagged predictor components Ti, 1 ≤ i ≤ M are indexed using 

different history lengths that form a geometric series.  The base predictor is a simple 

PC indexed 2-bit counter bimodal table. An entry in a tagged component consists in a 
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single counter ctr which sign provides the prediction, a tag and an unsigned useful 

counter u.  

At prediction time, the base predictor and the tagged components are accessed 

simultaneously. The base predictor provides a default prediction. The tagged 

components provide a prediction only on a tag match. The prediction is provided by 

the hitting tagged predictor component that uses the longest history. In case of no 

matching tagged predictor component, the default prediction use.  

 The provider component is defined as the predictor component that ultimately 

provides the prediction. The alternate prediction as the prediction that would have 

occurred if there had been a miss on the provider component.  That is, if there are tag 

hits on T2 and T4 and tag misses on T1 and T3, T4 is the provider component and T2 

provides alternate prediction. If there is no hitting component then alternate prediction 

is the default prediction.  

 The useful counter u of the provider component is updated when alternate 

prediction altpred is different from the final prediction pred. u is incremented when the 

actual prediction pred is correct and decremented otherwise. Moreover, the useful u 

counter is also used as an age counter. Here useful counter is 2-bits. Periodically, the 

whole column of most significant bits of the u counters is reset to zero, then whole 

column of least significant bits are reset. On correct prediction, the prediction counter 

of the provider component is updated. On incorrect prediction, first, the provider 

component prediction counter is updated. As a second step, if provider component Ti 

is not the component using the longest history, it tries to allocate an entry on a 

predictor component Tk using a longer history than Ti(i.e., i < k < M).  
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OH-SNAP 

 

 

Most proposals for neural branch predictors derive from the perceptron branch 

predictor [9]. A perceptron is a vector of h + 1 small integer weights, where h is the 

history length of the predictor. As shown in Figure 11, a table of n perceptrons is kept 

in a fast memory. A global history shift register of the h most recent branch outcomes 

is also kept. The shift register and table of perceptrons are analogous to the shift 

register and table of counters in traditional global two-level predictors, since both the 

indexed counter and the indexed perceptron are used to compute the prediction. 

 

Figure 11: Perceptron Prediction and Training 

 

To predict a branch, a perceptron is selected using a hash function of the 

branch PC. The output of the perceptron is computed as the dot product of the 

perceptron and the history shift register, with the not-taken values in the shift registers 

being interpreted as -1. Added to the dot product is an extra bias weight in the 

perceptron, which takes into account the tendency of a branch to be taken or not taken 

without regard for its correlation to other branches. If the dot product result is at least 
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0, then the branch is predicted taken; otherwise, it is predicted not taken. The 

magnitude of the weight indicates the strength of the positive or negative correlation. 

Branch history shift register is speculatively updated which is called ahead pipelining 

and rolled back on misprediction.  

When the branch outcome becomes known, the perceptron that provided the 

prediction may be updated. The perceptron is trained on a misprediction or a when the 

magnitude of the perceptron output is below a specified threshold value. Upon 

training, both the bias weight and the h correlating weights are updated. The bias 

weight is incremented or decremented if the branch is taken or not taken, respectively. 

Each correlating weight in the perceptron is incremented if the predicted branch has 

the same outcome as the corresponding bit in the history register and decremented 

otherwise with saturating arithmetic. If there is no correlation between the predicted 

branch and a branch in the history register, the latter’s corresponding weight will tend 

toward 0. If there is high positive or negative correlation, weight will have a large 

magnitude. 

Figure 11 illustrates the concept of a perceptron producing a prediction and 

being trained. A hash function, based on the PC, accesses the weights table to obtain a 

perceptron weights vector, which is then multiplied by the branch history, and 

summed with bias weight to form perceptron output. In this example, the perceptron 

incorrectly predicts that the branch is taken. The microarchitecture adjusts the weights 

when it discovers the misprediction. With the adjusted weights, assuming that the 

history is the same the next time this branch is predicted, the perceptron output is 

negative, so the branch will be predicted not taken. 
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OH-SNAP achieves higher accuracies than neural algorithms.  The higher 

accuracy result from accessing the weights using a function of the PC and the path, 

breaking the weights into a number of independently accessible tables, scaling the 

weights by the coefficient based on their location on branch history register, and 

taking the dot product of a modified global branch history vector and the scaled 

weights. Figure 12 shows a high level diagram of the prediction algorithm and data 

path.  

 

Figure 12: OH-SNAP Data Path 
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The two key parameters of the predictor are h, the length of the vector with 

which the dot product is computed, and r, the number of rows in each weight table. In 

this example, h = 128 and r = 512. Other inputs to the predictor are A, a vector of the 

low-order bit of each of the past h branch addresses, and H, the global branch history 

register. The example uses a history register H of 40 bits. The two components of the 

dot-product computation are the history vector and the weights vector. The history 

vector consists of h = 128 bit, which is expanded from the 40 bits of H. The use of 

redundant history can improve prediction accuracy [10], so this predictor replicates the 

40 branch history bits to obtain the required 128.  

The second component of the dot-product computation, the weights vector, is 

obtained by reading eight weights from each of 16 tables, as well as a single weight 

from a table of bias weights. First table, containing the weights for the most recent 

history bits, has the most entries because the most recent weights are most important. 

The bias weights table has 2048 entries. In this example, other tables each have 256 

entries. The tables are portioned, rather than one large indexed row, because the 

separation reduces aliasing and achieves higher accuracy. 

When the outcome of a branch becomes known, it is shifted into H. The lowest 

order bit of the branch’s address is shifted into A. A high accuracy implementation 

must keep speculative versions of H and A that are restored on misprediction. If the 

prediction was incorrect, or if the magnitude of the predictor output was under a set 

threshold, then the predictor output was under a set threshold, then the predictor 

invokes it training algorithm. As in neural predictors, the weights responsible for the 



 

29 

 

output are incremented if the corresponding history outcome matches the current 

branch outcome, decremented otherwise. 

 

BOOTSTRAP AGGREGATING BRANCH PREDICTOR 

 

Bootstrap aggregating (a.k.a, bagging), introduced by Breiman [11] in 1996, is 

a meta-algorithm to improve the stability and accuracy of learning algorithms. It has 

been shown to be very effective in improving generalization performance compared to 

individual base models [12]. Basic idea behind is by combining many weak learners to 

produce a strong learner. Bagging is special case of having a hybrid predictor, where 

predictions from multiple predictors are aggregated using meta-predictors, adder-trees, 

voting, etc. Bagging works by resampling (with replacement, i.e., some samples may 

be used more than once) the original training set of size N to produce M bootstrap 

training sets of size N, each of which is used to train a base model. The predictions by 

each base model are then aggregated to reach the final prediction. The bagging method 

is shown in Figure 13. Each predictor’s training set contains each of the original 

training samples K times, where 
.
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x1, x2, x3, x4, x5, x6, x7, x8

x2, x7, x8,  x3, x7, x6, x3, x1 x7, x8, x5,  x6, x4, x2, x7, x1 x3, x6, x2,  x7, x5, x6, x2, x2 x4, x5, x1,  x4, x6, x4, x3, x8

Predictor 1 Predictor 2 Predictor 3 Predictor 4

Training set 1

Original training set

Training set 2 Training set 3 Training set 4

Test set (same for all predictors)

Weighting or Majority Voting

Final Prediction

 Figure 13: Offline Bagging 

 

In this work, I applied bagging to branch prediction. Because original bagging 

method is offline – that is, all the training data set must already be available –, I need 

to develop an online version of bagging. Previous work by Oza and Russel [13] 

modeled sequential arrival of the data by a Poisson(1) distribution and proved the 

convergence of this method to offline bagging as N→∞. I first used their method in 

my implementation, which improved performance most of the time. However, I 

observed that multinomial distribution worked better and hence this method was used 

in later simulations. The situation is more complicated for branch prediction data 

because bootstrapping must be carried out in a way that suitably captures the 

dependence structures for the data. Oza and Russel’s [13] method assumed that 

samples were independent of each other, and thus it does not produce good 

bootstrapping for branch prediction data. There are studies that developed methods for 

bootstrapping time series [14], which are better fit for branch prediction. Further 

research is needed to develop better online bootstrapping methods for branch 
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prediction or adopt methods from previous work on bootstrapping for time series data, 

which is left as future work. 

In my bagging implementation, each predictor is updated on each sample k 

times in a row where k is a random number generated by multinomial distribution. I 

illustrate online bagging in Figure 14. 

Do not update with x1
Update with x2 1 time
Update with x3 1 time

.

.

Update with x1 1 times
Update with x2 2 time
Update with x3 1 time

.

.

Update with x1 1 times
Do not update with x2
Update with x3 2 time

.

.

Predictor 1 Predictor 2 Predictor 3 Predictor 4

Test set (can be same as original sequence)

Weighting or Majority Voting

Final Prediction

Original sequence
x1
x2
x3
.
.

Update with x1 3 times
Do not update with x2
Update with x3 1 time

.

.

  Figure 14: Online Bagging 

 

In general, bagging can be applied to any predictor. Group of same predictors 

(e.g., a number of TAGE predictors) as well as different predictors may be used.   

 

TAGE bagging (T-BAG) uses a number of TAGE predictors of approximately 

the same size as sub-predictors. Each sub-predictor provides prediction for the current 

branch independent of each other. Online bagging is performed by determining 

whether or not a sub-predictor is updated with the current branch’s outcome. Note that 

this update may occur multiple times for the current branch based on a random 

number generated. The branch history, however, is always updated as usual. 
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For final prediction computation, each sub-predictor remembers the success of 

its last 16 predictions using a sliding window. The number of correct predictions is 

used as the weight of the sub-predictor. For a not-taken prediction, the weight is taken 

as negative and for taken predictions it is positive. The overall TAGE bagging 

prediction is the sign of the sum of the weights, negative being not-taken and it is 

taken otherwise. This method was slightly better than using majority vote for the final 

prediction. 

In all random updates, RandUpd, simulations, updates are performed randomly 

for 0, 1, or 2 times in a row for 20%, 60% and 20% of the time, respectively, using 

trinomial distribution. That is, 60% of the time update is done as usual, 20% of the 

time no update is performed and 20% of the time update is done twice in a row. 

The original TAGE also uses the PC when forming the hashed index for its 

tagged components.  However, because of its operation and its ability to exploit very 

long history lengths, the PC does not significantly affect performance. In my 

experiments, the best TAGE configuration using PC in table indexing and the one that 

does not use PC achieve the similar performance. Therefore, to further increase 

variability among sub-predictors, some sub-predictors do not use the PC when 

indexing tagged tables. To the best of my knowledge, no previous work has studied 

the effects of not using PC in table indexing. 
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CHAPTER 3 

METHODOLOGY 

 

Simulations are done by using publicly available software provided by 4th 

Championship Branch Prediction (CBP-4) [15]. The goal of CBP-4 is to compare 

different branch prediction algorithms in a common framework. Contestants are 

responsible for implementing and evaluating their algorithm in the distributed 

framework. This is done by modifying a single file to implement predictor class for 

simulation. All code is written in C++. Framework provides a class template for 

predictor. Competitors needs to code some set functions. These are; 

 PREDICTOR(void); 

 bool    GetPrediction(UINT32 PC);   

 void    UpdatePredictor(UINT32 PC, bool resolveDir, bool predDir, UINT32 

branchTarget); 

 void    TrackOtherInst(UINT32 PC, OpType opType, UINT32 branchTarget); 

First one is a class constructer. It is used for initializing variables for startup.  

Second is the prediction function. As an input contestants only allowed to use program 

counter (pc). Third is for updating the predictor after branch outcome is known. It 

takes pc as an argument alongside branch outcome (resolveDir), branch prediction 

made by predictor (predDir), and pc value of next instruction form correct path 

(branchTarget).  Fourth and last mandatory function is for tracking instructions other 

than branches. It is considered optional as many of branch predictors doesn’t keep 

track of non-branch instructions. 
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Traces used for evaluation is also provided with CBP-4 framework. There are total 

of 40 program traces. They are in two categories, long and short. Shorts are further 

divided into four categories. These are integer, floating point, multimedia, and server. 

Each of these have five different traces, making in total 20 traces. Long traces are 

taken from SPEC2006 [16] benchmarks and they are total of 20 traces. SPEC2006 

have 31 benchmarks and CBP-4 didn’t provide information about which of them are 

used for making these traces. Shorts traces are 30 million instruction long, and long 

traces are 150 million instruction long. 30 million instruction traces are of the 

considered as short traces for branch prediction studies. However 30 million 

instructions represent approximately the workload that is executed by a PC in 10 

millisecond, i.e., the OS time slice. The evaluation metric used by CBP is 

misprediction per kilo instructions (misp/KI). The characteristics of the traces are 

summarized in Table 1.  
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 Table 1: Characteristics of the CBP-4 traces  

 NUMBER OF 

INSTRUCTIONS 

CONDITIONAL 

BRANCHES 

UNCONDITIONAL 

BRANCHES 

SHORT-FP-1 29499988 2213673 259086 

SHORT-FP-2 29499869 1792835 12168 

SHORT-FP-3 29499978 1546797 20701 

SHORT-FP-4 29499976 895842 17707 

SHORT-FP-5 29499969 2422049 175239 

SHORT-INT-1 29499987 4184792 576698 

SHORT-INT-2 29499985 2866495 577615 

SHORT-INT-3 29499978 3771697 336363 

SHORT-INT-4 29499960 2069894 221596 

SHORT-INT-5 29499990 3755315 46121 

SHORT-MM-1 29499979 2229289 410598 

SHORT-MM-2 29499970 3809780 294136 

SHORT-MM-3 29499970 3014850 1112543 

SHORT-MM-4 29499993 4874888 131433 

SHORT-MM-5 29499791 2563897 537772 

SHORT-SERV-1 29499316 3660616 1253826 

SHORT-SERV-2 29499198 3537562 1236437 

SHORT-SERV-3 29499817 3811906 1100627 

SHORT-SERV-4 29498081 4266796 1381876 

SHORT-SERV-5 29497759 4291964 1452124 

LONG-SPEC2K6-00 149970336 25181955 6029289 

LONG-SPEC2K6-01 150000004 25323638 2192945 

LONG-SPEC2K6-02 149999988 22628704 7937909 

LONG-SPEC2K6-03 150000001 16754009 324425 

LONG-SPEC2K6-04 150000004 31520616 4688658 

LONG-SPEC2K6-05 150000001 9409564 1495445 

LONG-SPEC2K6-06 150000001 27139020 5521536 

LONG-SPEC2K6-07 150000106 23532921 3393843 

LONG-SPEC2K6-08 149999996 14565465 4445841 

LONG-SPEC2K6-09 149999993 20449090 1343335 

LONG-SPEC2K6-10 150000002 14312999 6528434 

LONG-SPEC2K6-11 150000001 16145141 373115 

LONG-SPEC2K6-12 150000008 19679814 173822 

LONG-SPEC2K6-13 149999996 27946011 4967261 

LONG-SPEC2K6-14 150000001 29462517 46 

LONG-SPEC2K6-15 150000001 16836233 2520156 

LONG-SPEC2K6-16 149999870 22064822 9019488 

LONG-SPEC2K6-17 149999964 14796021 4428201 

LONG-SPEC2K6-18 150000001 19691402 381488 

LONG-SPEC2K6-19 150000026 14435009 432619 
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CHAPTER 4 

RESULTS 

 

My goal is finding a branch predictor that outperforms TAGE predictor. For 

this, first I tuned the TAGE predictor for CBP-4 traces. This is done to find peak 

performance TAGE can achieve. This way any further improvement on performance 

would be because of bagging. Secondly I applied bagging only on TAGE predictor. 

Thirdly, I used a different types of branch predictor, OH-SNAP.  

For reference purposes Table 2 shows the result of simple gshare, TAGE and 

OH-SNAP results. All shown predictors in Table 2 is 64 KB in size. CBP-4 evaluates 

success based on arithmetic mean of all traces (AMEAN). 

While tuning TAGE predictor my focus was on multiple parameters. Such as 

size of predictor, number of tables, counter width on tables, and history length. Table 

3 show the effect of increasing size of TAGE predictor. As seen from results 

increasing the size have a significant effect on performance, but increasing the size 

more than 1 MB has minimal effect, therefore as a base configuration size of 1 MB is 

used.  
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 Table 2: Base Simulation Results for Used Branch Predictors 

 GSHARE TAGE OH-SNAP 

SHORT-FP-1 3,307 1,088 0,987 

SHORT-FP-2 1,056 0,429 0,853 

SHORT-FP-3 0,444 0,014 0,042 

SHORT-FP-4 0,259 0,015 0,093 

SHORT-FP-5 0,788 0,007 0,015 

SHORT-INT-1 6,27 0,128 0,244 

SHORT-INT-2 7,683 3,686 4,654 

SHORT-INT-3 10,81 6,035 5,674 

SHORT-INT-4 1,931 0,459 0,645 

SHORT-INT-5 0,417 0,062 0,285 

SHORT-MM-1 9,48 6,649 6,473 

SHORT-MM-2 10,614 8,399 8,454 

SHORT-MM-3 3,53 0,06 0,069 

SHORT-MM-4 1,794 0,897 1,38 

SHORT-MM-5 4,993 2,395 3,311 

SHORT-SERV-1 2,929 0,65 0,822 

SHORT-SERV-2 2,859 0,631 0,803 

SHORT-SERV-3 5,38 1,953 2,712 

SHORT-SERV-4 4,949 1,445 1,941 

SHORT-SERV-5 4,706 1,323 1,627 

LONG-SPEC2K6-00 3,664 1,102 1,895 

LONG-SPEC2K6-01 8,612 6,596 6,718 

LONG-SPEC2K6-02 4,661 0,275 1,093 

LONG-SPEC2K6-03 5,429 0,141 0,948 

LONG-SPEC2K6-04 10,772 7,66 8,907 

LONG-SPEC2K6-05 5,717 4,543 4,424 

LONG-SPEC2K6-06 3,281 0,614 0,68 

LONG-SPEC2K6-07 10,546 3,969 8,349 

LONG-SPEC2K6-08 1,76 0,59 0,765 

LONG-SPEC2K6-09 5,456 2,929 4,839 

LONG-SPEC2K6-10 3,029 0,487 0,727 

LONG-SPEC2K6-11 3,748 0,411 0,565 

LONG-SPEC2K6-12 12,727 10,848 10,593 

LONG-SPEC2K6-13 8,137 4,286 5,392 

LONG-SPEC2K6-14 3,925 0,001 0,002 

LONG-SPEC2K6-15 2,16 0,206 0,436 

LONG-SPEC2K6-16 4,177 2,915 2,863 

LONG-SPEC2K6-17 4,609 1,836 2,972 

LONG-SPEC2K6-18 1,525 0,003 0,056 

LONG-SPEC2K6-19 2,601 0,865 1,225 

AMEAN 4,768 2,16505 2,613 
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Table 3: Effect of Increasing Size of TAGE Predictor 

SIZE 64KB 256KB 1MB 4MB 32MB 

SHORT-FP-1 1,088 1,087 1,083 1,08 1,084 

SHORT-FP-2 0,429 0,43 0,429 0,43 0,43 

SHORT-FP-3 0,014 0,014 0,014 0,014 0,014 

SHORT-FP-4 0,015 0,015 0,015 0,015 0,015 

SHORT-FP-5 0,007 0,007 0,007 0,007 0,007 

SHORT-INT-1 0,128 0,129 0,129 0,128 0,128 

SHORT-INT-2 3,686 3,66 3,653 3,662 3,655 

SHORT-INT-3 6,035 5,904 5,869 5,846 5,835 

SHORT-INT-4 0,459 0,456 0,455 0,456 0,456 

SHORT-INT-5 0,062 0,059 0,059 0,061 0,059 

SHORT-MM-1 6,649 6,64 6,636 6,631 6,63 

SHORT-MM-2 8,399 8,356 8,349 8,368 8,331 

SHORT-MM-3 0,06 0,06 0,06 0,06 0,06 

SHORT-MM-4 0,897 0,875 0,871 0,863 0,865 

SHORT-MM-5 2,395 2,346 2,34 2,335 2,334 

SHORT-SERV-1 0,65 0,646 0,645 0,645 0,645 

SHORT-SERV-2 0,631 0,626 0,628 0,628 0,628 

SHORT-SERV-3 1,953 1,916 1,907 1,904 1,899 

SHORT-SERV-4 1,445 1,433 1,43 1,434 1,436 

SHORT-SERV-5 1,323 1,311 1,308 1,308 1,309 

LONG-SPEC2K6-00 1,102 1,074 1,068 1,069 1,065 

LONG-SPEC2K6-01 6,596 6,548 6,516 6,519 6,513 

LONG-SPEC2K6-02 0,275 0,274 0,274 0,274 0,274 

LONG-SPEC2K6-03 0,141 0,135 0,136 0,134 0,133 

LONG-SPEC2K6-04 7,66 6,438 6,415 6,389 6,387 

LONG-SPEC2K6-05 4,543 4,484 4,472 4,458 4,458 

LONG-SPEC2K6-06 0,614 0,612 0,617 0,613 0,612 

LONG-SPEC2K6-07 3,969 3,763 3,717 3,708 3,709 

LONG-SPEC2K6-08 0,59 0,604 0,587 0,589 0,59 

LONG-SPEC2K6-09 2,929 2,729 2,696 2,687 2,685 

LONG-SPEC2K6-10 0,487 0,48 0,48 0,479 0,48 

LONG-SPEC2K6-11 0,411 0,41 0,415 0,452 0,393 

LONG-SPEC2K6-12 10,848 10,741 10,734 10,773 10,724 

LONG-SPEC2K6-13 4,286 4,157 4,12 4,11 4,112 

LONG-SPEC2K6-14 0,001 0,001 0,001 0,001 0,001 

LONG-SPEC2K6-15 0,206 0,204 0,204 0,204 0,204 

LONG-SPEC2K6-16 2,915 2,889 2,866 2,872 2,873 

LONG-SPEC2K6-17 1,836 1,73 1,701 1,692 1,692 

LONG-SPEC2K6-18 0,003 0,003 0,003 0,003 0,003 

LONG-SPEC2K6-19 0,865 0,846 0,843 0,841 0,842 

AMEAN 2,16505 2,1023 2,0938 2,09355 2,08925 
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Second parameter that I have tuned is optimal number of tables to use. But 

number of tables is closely correlated with history length. Therefore I made a 

parameter sweep for number of tables and history length parameters. In this simulation 

total size of predictor is kept the same. Total size is divided between tables. Therefore 

as I increase number of tables, I decreased size of a table to keep total size the same. 

As seen in Table 4 increasing number of tables increases the performance only if we 

increase history length with it. This is understandable since if I use small history 

length with a large number of tables, indexing for tables will be closer to each other 

and will not differ much. As a result, short history length won’t be able capture long 

history patterns. On the other hand with long history length and small number of tables 

pattern length will grow too fast and there won’t be enough space for short patterns. 

Therefore sweet spots for each configuration is show in bold. Last parameter is 

counter width used in tables. I simulated different counter width with different history 

lengths and 3-bit counter outperformed every time.  

Based on gathered knowledge best TAGE parameters are 100000 max history 

length, 7 min history length, 38 tables, and 3-bit counters. I used 32 TAGE predictor 

with these configurations together with random update as described in section 3. 

Random value for updating can be 0, 1, or 2. And their probability is 20, 60, and 20 

percent respectively. To compare this with TAGE, I also increased size of TAGE by 

32 times. Simulations resulted at 1.95 misp/KI, and 2.003 misp/KI respectively. 

TAGE bagging is better than just increasing the size of TAGE as they both have the 

same size. 



 

 

 

Table 4: Correlation Between  Number of Tables and Max History Length in TAGE  Predictor 

MAX 

HISTORY 

LENGTH 

200 400 600 800 1000 1200 1400 1600 1800 2000 2500 3000 4000 5000 10000 30000 100000 

N
u
m

b
er

 o
f 

T
ab

le
s 

8 2,153 2,11 2,106 2,102 2,104 2,107 2,113 2,12 2,125 2,122 2,129 2,122 2,124 2,124 2,151 2,173 2,208 

9 2,144 2,102 2,096 2,088 2,091 2,095 2,096 2,099 2,097 2,097 2,1 2,107 2,12 2,121 2,12 2,153 2,172 

13 2,127 2,075 2,062 2,054 2,056 2,057 2,054 2,055 2,053 2,057 2,061 2,062 2,063 2,069 2,074 2,093 2,11 

14 2,124 2,074 2,058 2,052 2,049 2,049 2,051 2,051 2,055 2,055 2,053 2,052 2,058 2,061 2,073 2,074 2,095 

15 2,125 2,072 2,058 2,049 2,046 2,045 2,045 2,046 2,046 2,047 2,053 2,054 2,05 2,051 2,062 2,074 2,089 

16 2,125 2,07 2,054 2,046 2,046 2,045 2,042 2,043 2,042 2,046 2,045 2,045 2,052 2,054 2,056 2,068 2,078 

17 2,124 2,069 2,054 2,046 2,043 2,042 2,044 2,044 2,043 2,04 2,042 2,045 2,045 2,046 2,051 2,063 2,077 

18 2,125 2,07 2,054 2,043 2,041 2,039 2,04 2,038 2,04 2,041 2,041 2,04 2,041 2,045 2,049 2,056 2,068 

19 2,125 2,069 2,051 2,044 2,038 2,037 2,038 2,038 2,037 2,037 2,038 2,04 2,041 2,04 2,044 2,051 2,064 

20 2,125 2,068 2,05 2,041 2,039 2,038 2,035 2,035 2,035 2,036 2,036 2,036 2,037 2,04 2,042 2,052 2,059 

21 2,126 2,068 2,051 2,04 2,038 2,037 2,036 2,036 2,035 2,034 2,035 2,036 2,036 2,035 2,038 2,044 2,051 

22 2,127 2,069 2,05 2,04 2,037 2,035 2,035 2,034 2,033 2,034 2,034 2,033 2,035 2,034 2,039 2,042 2,054 

23 2,128 2,07 2,052 2,041 2,037 2,036 2,034 2,033 2,034 2,032 2,033 2,034 2,034 2,033 2,034 2,04 2,049 

24 2,129 2,069 2,053 2,041 2,037 2,036 2,035 2,035 2,033 2,032 2,033 2,032 2,033 2,032 2,034 2,041 2,044 

25 2,131 2,071 2,053 2,042 2,038 2,036 2,034 2,034 2,032 2,033 2,032 2,033 2,032 2,032 2,033 2,039 2,045 

26 2,133 2,073 2,053 2,042 2,038 2,037 2,035 2,034 2,032 2,033 2,033 2,032 2,032 2,03 2,032 2,034 2,041 

27 2,134 2,073 2,055 2,043 2,039 2,037 2,036 2,034 2,033 2,033 2,032 2,031 2,032 2,031 2,033 2,034 2,041 

28 2,136 2,075 2,057 2,045 2,039 2,039 2,036 2,035 2,035 2,034 2,033 2,032 2,031 2,031 2,031 2,034 2,039 

29 2,138 2,076 2,057 2,045 2,041 2,038 2,037 2,035 2,035 2,034 2,034 2,033 2,031 2,03 2,031 2,032 2,036 

30 2,14 2,078 2,058 2,047 2,042 2,04 2,037 2,036 2,036 2,034 2,034 2,034 2,033 2,031 2,031 2,032 2,035 

32 
             

2,033 2,031 2,03 2,032 

34 
             

2,032 2,031 2,03 2,032 

36 
             

2,034 2,032 2,03 2,03 

38 
             

2,037 2,034 2,032 2,029 

40 
             

2,039 2,036 2,033 2,03 

42 
             

2,043 2,038 2,034 2,032 

44 
             

2,046 2,041 2,036 2,032 

4
0
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I also experimented with increased variety in TAGE predictors. I changed 

configuration of each predictor a little to make them different from other. I have used 

a fixed total size for each sub-predictor. That is, the number of table entries for a 38 

component predictor is half the number of entries for a 20-component predictor for 

most of the tables. Counter width is fixed as 3 bits. The minimum history size varies 

between 5 and 13. The maximum history varies between 1000 and 100,000. Finally, 

the number of tagged table components in each sub-predictor varies between 20 and 

38. Table 5 show detailed information about these configurations. Performance 

increased further to 19.1 misp/KI. 
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Figure 15: Comparison of Different Bagging Configurations 
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Figure 15 shows the overall effect of bagging. As I mentioned above, one 

could use the same configuration for all the sub-predictors. This configuration called  

AllSame. In this case, the only variability in sub-predictor predictions comes from the 

random updates. In this configuration, the sub-predictor parameters that we have used 

are: counter width = 3, number of tagged tables = 38, the minimum and maximum 

history lengths = 7 and 100,000, respectively. AllDifferent refers to variety between 

predictors. For this configuration both random update and regular update is simulated. 

From this figure two outcomes can be made. First AllDifferent is always better than 

AllSame. Secondly, to use random update there need to be some sufficient number of 

predictors to justify usage. For this case using more than 8 predictors is breaking 

point. Using random update for 8 or more predictor gives better result. 

Lastly I used OH-SNAP to see effect of bagging on different type of predictor. 

I didn’t tuned OH-SNAP and every predictor used is 64 KB. Their individual results 

can be seen in Table 6.  Base configuration achieved 2.613 misp/KI. Increasing size by 

2 and 4 times made minimal result and achieved 2.611misp/KI, and 2.608 misp/KI 

respectively. Using 2 OH-SNAP with bagging resulted in 2,616 misp/KI which is 

worse than increasing size by two times. Reason for this is we didn’t use sufficient 

amount of predictor. At 4 predictor, bagging out performs the just size increase with 

2,602 misp/KI. 
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Table 5: Sub-predictor Configuration 

SUB-PREDICTOR NUMBER OF  

TABLES 

MIN HISTORY MAX HISTORY USE 

PC? 

1 24 9 2000 Yes 

2 32 7 30000 Yes 

3 30 9 10000 Yes 

4 29 6 5000 Yes 

5 28 8 4000 Yes 

6 27 10 3000 Yes 

7 25 6 2500 Yes 

8 38 5 100000 Yes 

9 23 4 2000 Yes 

10 23 5 1800 Yes 

11 22 3 1600 Yes 

12 22 8 1500 Yes 

13 21 9 1400 Yes 

14 21 10 1300 Yes 

15 20 6 1200 Yes 

16 20 7 1000 Yes 

17 38 12 100000 No 

18 32 10 30000 No 

19 30 9 10000 No 

20 29 11 5000 No 

21 28 10 4000 No 

22 27 13 3000 No 

23 25 11 2500 No 

24 24 12 2000 No 

25 20 9 100000 No 

26 20 10 85000 No 

27 20 11 70000 No 

28 20 13 55000 No 

29 20 12 40000 No 

30 20 8 25000 No 

31 20 10 10000 No 

32 20 7 8000 No 
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Table 6: OH-SNAP Bagging Results 

 BASE 2X BASE 4X BASE BAGGING X2 BAGGING X4 

SHORT-FP-1 0,987 0,986 0,983 0,986 0,983 

SHORT-FP-2 0,853 0,849 0,848 0,852 0,848 

SHORT-FP-3 0,042 0,041 0,041 0,04 0,04 

SHORT-FP-4 0,093 0,093 0,093 0,093 0,093 

SHORT-FP-5 0,015 0,015 0,015 0,015 0,015 

SHORT-INT-1 0,244 0,246 0,246 0,247 0,245 

SHORT-INT-2 4,654 4,631 4,622 4,664 4,618 

SHORT-INT-3 5,674 5,67 5,659 5,667 5,629 

SHORT-INT-4 0,645 0,648 0,646 0,648 0,633 

SHORT-INT-5 0,285 0,283 0,282 0,286 0,285 

SHORT-MM-1 6,473 6,465 6,473 6,479 6,467 

SHORT-MM-2 8,454 8,45 8,44 8,449 8,44 

SHORT-MM-3 0,069 0,068 0,068 0,069 0,069 

SHORT-MM-4 1,38 1,381 1,384 1,384 1,381 

SHORT-MM-5 3,311 3,315 3,306 3,318 3,294 

SHORT-SERV-1 0,822 0,822 0,82 0,829 0,824 

SHORT-SERV-2 0,803 0,803 0,799 0,81 0,801 

SHORT-SERV-3 2,712 2,71 2,704 2,729 2,708 

SHORT-SERV-4 1,941 1,935 1,933 1,946 1,934 

SHORT-SERV-5 1,627 1,628 1,623 1,636 1,625 

LONG-SPEC2K6-00 1,895 1,895 1,891 1,898 1,888 

LONG-SPEC2K6-01 6,718 6,717 6,716 6,723 6,716 

LONG-SPEC2K6-02 1,093 1,094 1,093 1,099 1,063 

LONG-SPEC2K6-03 0,948 0,948 0,946 0,945 0,94 

LONG-SPEC2K6-04 8,907 8,9 8,892 8,905 8,891 

LONG-SPEC2K6-05 4,424 4,42 4,423 4,424 4,416 

LONG-SPEC2K6-06 0,68 0,678 0,679 0,68 0,678 

LONG-SPEC2K6-07 8,349 8,329 8,313 8,365 8,245 

LONG-SPEC2K6-08 0,765 0,763 0,76 0,766 0,765 

LONG-SPEC2K6-09 4,839 4,837 4,835 4,844 4,832 

LONG-SPEC2K6-10 0,727 0,728 0,723 0,732 0,718 

LONG-SPEC2K6-11 0,565 0,566 0,565 0,567 0,565 

LONG-SPEC2K6-12 10,593 10,593 10,591 10,603 10,586 

LONG-SPEC2K6-13 5,392 5,374 5,368 5,399 5,32 

LONG-SPEC2K6-14 0,002 0,002 0,002 0,002 0,002 

LONG-SPEC2K6-15 0,436 0,435 0,435 0,436 0,429 

LONG-SPEC2K6-16 2,863 2,86 2,855 2,869 2,859 

LONG-SPEC2K6-17 2,972 2,967 2,965 2,972 2,954 

LONG-SPEC2K6-18 0,056 0,055 0,055 0,052 0,055 

LONG-SPEC2K6-19 1,225 1,223 1,223 1,225 1,224 

AMEAN 2,613 2,611 2,608 2,616 2,602 
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CHAPTER 5 

CONCLUSION 

 

High-performance microarchitectures use, among other structures, deep 

pipelines to help speed up execution. It is very important to have a good branch 

predictor to keep all stages of pipeline executing instructions from correct path.   

Bootstrap aggregating (bagging) is a statistical method to improve the accuracy 

of predictors by reducing variance and over fitting. It is applicable to any unstable 

learning algorithm. In this work, I applied bagging to branch prediction. Branch 

predictor forms an ensemble of slightly different predictors each of which is updated 

with slightly different data.  

My results show that using bagging can increase performance further than 

what branch predictor capable of. TAGE predictor scales well with the predictor size 

and OH-SNAP has a minimal dependency to its size. But in both cases bagging was 

able to outperform both. 

Bagging shows promise as a future research direction. Although online 

bagging method used in this work provides a way to apply bagging to branch 

prediction, it assumes independent samples, which is not the case for branch history. 

Different online bagging methods may prove better and are subject to future research. 

Finally, my analysis was done by mostly using TAGE as the base predictor. I looked 

into OH-SNAP briefly. It is possible to use more variety of predictors that use 

different methods for prediction. 

Another thing I want to mention is, with this idea I entered CBP-4 competition 

and took fourth place in unlimited size category [15].  
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