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Abstract
Using game theory, we provide mathematical proof that if a species of asexually reproducing microbes is not characterized
by maximum variability in competitive abilities among its individual organisms, then that species is vulnerable to
replacement by competitors. Furthermore, we prove that such maximally variable species are neutral towards each other
in competition for limited resources; they coexist. Our proof is constructive: given one species which does not possess
maximum variability, we construct a second species with the same (or lower) mean competitive ability which can outcompete
the first, in the sense that its expected value in competition is positive, whereas the expected value of the non-maximally
variable species is negative. Our results point towards the mechanistic underpinnings for the frequent observations that (1)
microbes are characterized by large intra-specific variability and that (2) the number of extant microbe species is very large.

Keywords Microbes · Ecology · Game theory · Competition · Phenotypic variability · Fitness

Introduction

The problem addressed here is the inexplicably high tax-
onomic and phenotypic diversity observed among and
within microbe species (e.g., plankton). Microbes are the
key engines of fundamental biological processes and show
immense phenotypic variability within species in terms of
physiological, demographic, or morphological character-
istics (i.e., traits). Henceforth, we call this characteristic
intra-specific variability. A fundamental conundrum arises
because selection should favor individuals that maximize
fitness (i.e., winner takes it all) and thus minimize intra-
specific variation. This conundrum is well documented in
the literature. Enabled by recent advances in measurement
capacity, key traits subject to selection show surprising
diversity. A non-exhaustive list of examples of highly vari-
able traits includes elemental composition, morphology,
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physiology, and behavior (Boyd et al. 2013; Moal et al.
1987; Rynearson and Virginia Armbrust 2004; Fredrickson
et al. 2011; Kiørboe 2013; Menden-Deuer and Montal-
bano 2015). Such intra-specific variability has even been
documented in marine metazoa (Morozov et al. 2013).
Moreover, demonstrable variation among clonal individuals
has shown intra-specific variability enhances species dis-
persal rates, cell encounters, and population distributions
(Menden-Deuer 2010). Recent empirical data confirm that
variations in motility at the strain level manifest themselves
in different population distributions (Harvey et al. 2015).
Such intra-specific variability may enhance species survival
and coexistence and has been suggested to be adaptive based
on model simulations (Menden-Deuer and Rowlett 2014).
Observations of intra-specific variability in marine microbes
are not restricted to artificial laboratory settings. Satellite
observations show the distribution of a species of photo-
synthetic plankton persisting for months, over hundreds of
kilometers along the North American west coast (Du et al.
2011; White et al. 2014). Laboratory experimentation on
this plankton species documents intra-specific variability in
physiology and movement behaviors (Menden-Deuer and
Montalbano 2015) that provide explanatory power for the
species persistence documented with satellite observations.
Thus, in the laboratory and ocean immense intra-specific, vari-
ability is demonstrable but difficult to explain theoretically.

Beyond the tremendous intra-specific physiological and
behavioral variability discussed above, there is also an
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astonishing observable taxonomic diversity within marine
microbes. This vast diversity of species occupies all
branches on the tree of life (Rynearson and Palenik 2011).
Recent investigations have shown that although thousands
of species have already been described and discovered,
many if not most marine microbes are yet to be identified
(de Vargas et al. 2015; Worden et al. 2015). Although
the number of planktonic species is unknown, the likely
number of species exceeds most if not all other groupings
of organisms. Using data collected globally, researchers
estimated that there may be around 150,000 eukaryotic
plankton species (de Vargas et al. 2015). Moreover, if
prokaryotic species are to be included, there are likely
millions of species of marine microbes and their total
number may not be knowable (Ward 2002).

Here, we introduce game theory for microbes, which
aims to understand the mechanistic underpinnings that
yield the observable diversity in species and behaviors.
The model interpolates between microscopic, individual
level competition and macroscopic, species level survival.
Justified by observations, species are characterized by intra-
specific variability, manifested in different distributions of
their competitive abilities. To avoid trivial outcomes, the
mean competitive ability is restricted to have a maximum
value of 1/2. This can also be interpreted as assuming
species are equally limited by energy and resources,
when the species is assessed cumulatively. Species do
vary in their trait distributions, which imparts different
degrees of intra-specific variability from degenerate (=
invariant) distributions to the uniform distribution with
maximal variability. Species are represented by specific
distributions that do not change over time but individuals’
competitive abilities are chosen at random within each
fixed cumulative distribution. Randomization of individual
competitive abilities over time within a species represents
competition in a dynamic system, where species are
characterized by multiple physiological, behavioral, and
morphological traits, that can impart changing degrees of
fitness as a function of the particular abiotic and biotic
conditions.

We have rigorous mathematical proof (see Appendices A
& B) that according to the rules governed by this game
theory, only those species that possess maximal variability
among individual organisms have a unique quality: there is
no other species with the same (or lower) mean competitive
ability which has positive expected value in competition.
In other words, there is no species that can outcompete
the maximally variable species. On the other hand, for
any species which does not possess maximal variability
among individual organisms, in the proof of Theorem 1,
we explicitly construct a species with the same (or lower)
mean competitive ability which has positive expected value
in competition, whereas the original species has negative
expected value. The maximally variable species is the only
species, which does not have such vulnerability. Moreover,
in Proposition 1, we prove that such maximally variable
species are neutral towards each other in competition for
limited resources; they coexist.

Over time, if species tend toward maximum variability,
then they simultaneously tend towards neutral coexistence.
In this sense, we provide a plausible mathematical expla-
nation for two widely documented but poorly understood
characteristics of microbes: (1) enormous intra-specific
variability and (2) tremendous biodiversity.

This work is organized as follows. In “Game theory for
microbes”, we introduce our game theoretic model for
microbes. This sets the stage for our mathematical results,
which are presented in “Theoretical model and main results”.
We end with “Concluding remarks”. The complete, rigorous
mathematical proofs of the results presented in “Theoretical
model and main results” are contained in Appendices A
and B.

Game theory for microbes

The mathematics behind our approach is non-cooperative
game theory. This is justified by the lack of evidence
that individual microbes communicate in such a way as
to create coalitions or to cooperate. Biofilms are, however,

Fig. 1 When two individuals
compete, there are three possible
outcomes for each individual:
win = self-replicate; lose = die;
draw = maintain status quo for
each competitor. The table
shows the payoff function of
individual level competition. A
payoff + 1 corresponds to win, a
payoff − 1 corresponds to lose,
and a payoff 0 corresponds to a
draw



Theor Ecol

an exception (Flemming et al. 2016). Competition occurs
between individuals. The outcome of competition between
individuals, no matter how biologically complex, can be
reduced to three possibilities: win, lose, or draw (see Fig. 1).
Due to the asexual reproduction of microbes, cumulative
success of individuals in competition can be interpreted as
population increase, cumulative losses lead to population
decrease, and cumulative draws to neither gains nor losses.

In the game theoretic approach to examine competition
on the level of species, we assume that each species is
comprised of several individual organisms. Each individual
has a competitive ability, which is not necessarily constant,
but may change from one round of competition to the next.
The competitive ability (CA) is represented by a number
between 0 and 1. We assume that the species as a whole
has a mean competitive ability (MCA), which does not
exceed 1/2. The range of both the competitive abilities as
well as the mean competitive abilities was chosen arbitrarily
and our results are independent of the choice of specific
values. At each round of competition, individual organisms
are randomly put in pairs. The organism with the higher CA
doubles, while the organism with the lower CA perishes;
in case of equal CAs, both organisms simply persist. The
magnitude of difference in CA between competitors is
irrelevant.

A key, and we think novel, feature of our model is
that the individual CAs are variable, depending on the
distribution of CAs for a given species. Thus, the assembly
of the individuals in a species represent the distribution
of CAs, and their collective mean CA is equal to the
species’ MCA. This situation is representative of genetically
identical individuals that temporarily differ in competitive
ability, due to for example their recent exposure to resources
or metabolic demands, the particular state in their life
cycle and such. Finally, competition in a dynamic system
requires the nature of the competition to vary, for example,
competition may be with respect to resource acquisition
in one round, and predator defence in another. Thus,
individuals that were superior relative to the mean in one
round may be inferior within the next round.

This model applies to any arbitrary number of simulta-
neously competing species, with arbitrary (not necessarily
equal) population sizes. Each species does not compete in a
series of tournaments against all its competitors, but rather,
it is competing against all other species simultaneously. So,
our model shows how each species will fare in competition
with any arbitrary number of other species.

Same-same but different

For each MCA value, there are numerous ways to assign
the individual CAs, which have this same MCA value. We
term this “same-same but different.” We recall the definition

of strategic behavior distribution (SBD) from Menden-
Deuer and Rowlett (2014) specified to this setting. Here,
an SBD is defined to be a particular way to assign CAs to indi-
viduals such that the MCA is equal to a fixed value. Inter-
estingly, SBDs having the same MCA, nonetheless have
dramatically different ecological repercussions depending
on the particular characteristics of the SBD.

Largely, in order to reduce complexity, it is common to
assume that variation among individuals and even species
can adequately be represented by a mean or maximal
response (e.g., Eppley (1972)). In this case, that would
correspond to all individuals being equal and having CA
always equal to the MCA. We refer to this degenerate SBD
as the invariant SBD. We shall see in the proof of our main
result that it is easily susceptible to invasion by a competing
SBD, which also has MCA less than or equal to 1/2.

In general, we use here SBDs, which are neither purely
deterministic nor purely probabilistic. The SBDs are not
purely deterministic, because the CA of each individual is in
general non-constant. For example, we define the bimodal
SBD to select half of the organisms of the species to have
CA = 1, and the remaining half to have CA = 0. Any
odd-man-out gets 0 or 1 with probability 1/2. However,
this selection occurs at each round of competition, so
an organism which had CA = 0 in the first round of
competition could have CA = 1 in the second round of
competition. Moreover, for an organism, which had CA = 1
and succeeded in a round of competition and thereby
replicates, both it and its clone could have either CA = 1 or
CA = 0 in the next round of competition. Thus, the model
is not deterministic. On the other hand, the model is also
not purely probabilistic in the sense that each individual is
not assigned its CA = 1 or 0 each with probability 1/2 ,
with the probabilities of each individual being independent.
If that were the case, then it would be possible, but unlikely,
that at a specific round of competition, all individuals
had CA = 0. In our model, as long as the number of
individuals is at least two, this is impossible. Thus, the
SBDs we use are neither purely deterministic nor purely
probabilistic. This fluidity of differences among individuals
requires the species under consideration to be an asexually
reproducing microbial species. This restricts our results
to microbes, because asexual reproduction will quickly
regenerate individuals with identical genetic capacity within
the SBD of the species, and thus offset losses due to an
inferior CA.

Below, to determine the success or lack thereof of defined
SBDs, we use this game theoretic model to compute the
expected value of SBDs in competition. A positive expected
value implies population growth. A negative expected
value implies population decrease. An expected value of
0 implies stable population abundance, neither increase or
decrease.
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Theoretical model andmain results

The competitive abilities are selected from the values:

0,
1

M
,
2

M
, . . . , 1,

where the number M above is an integer greater than or
equal to 6. Here, it is convenient to introduce the notation

xj = j

M
, for j = 0, 1, . . . , M .

For a species, A, comprised of NA total individual
organisms, for 0 ≤ xj ≤ 1, we define nA(xj ) so that

nA(xj )

NA

is the probability that an individual organism has compet-
itive ability (CA) equal to xj . We are interested in the
expected value of A in competition with species B. In fact,
our model works equally well if we consider B to be all
other species, which compete with A for limited resources,
because we do not require the total number of organisms,
NA and NB , respectively, to be equal. We do assume that
NA and NB are both positive.

Expected value in competition

We assume that organisms are randomly paired to compete.
Then, we compute the probability that the organisms in
species A, which have competitive ability equal to xi

compete with an inferior organism by first counting all of
the organisms of species B, which have lower CA:
∑

j<i

nB(xj ).

The probability of competing with such an organism is
given by dividing by the total number of organisms of
species B,

1

NB

∑

j<i

nB(xj ).

In a similar way, we compute the probability of competing
with a superior organism is as follows:

1

NB

∑

j>i

nB(xj ).

Since we do not assume NA and NB are equal, some
organisms might not compete at all. If NA < NB then only
NA organisms out of the total NB organisms in species B

actually compete, so the probability that an organism from
species B competes is NA

NB
. In this case, all organisms from

species A compete. If NB < NA, then only NB organisms
out of the total NA organisms in species A compete, so the
probability that an organism from speciesA competes is NB

NA
.

In this case, all organisms from species B compete. So, in
general, we define as follows:

Nc := min{NA, NB} = number of competing organisms.

Then, the probability that an organism from species A

actually competes is as follows:

Nc

NA

,

and the probability that an organism from species B actually
competes is as follows:

Nc

NB

.

Hence, the expected value for the competition of the
organisms in species A with competitive ability xi is as
follows:

Nc

NA

nA(xi)

NB

⎛

⎝
∑

j<i

nB(xj ) −
∑

j>i

nB(xj )

⎞

⎠ .

The expected value for species A in competition with
species B is then calculated by summing the expected value
for all competitive abilities:

E[A, B]= Nc

NANB

M∑

i=0

nA(xi)

⎛

⎝
∑

j<i

nB(xj )−
∑

j>i

nB(xj )

⎞

⎠ .

(1)

The competition has a zero-sum dynamic,

E[A, B] + E[B, A] = 0 =⇒ E[B, A] = −E[A, B]. (2)

To see why this is true, we use the above considerations to
compute:

E[B, A]= Nc

NANB

M∑

i=0

nB(xi)

⎛

⎝
∑

j<i

nA(xj )−
∑

j>i

nA(xj )

⎞

⎠ .

It is then straightforward to compute that

M∑

i=0

nB(xi)
∑

j<i

nA(xj ) =
M∑

k=0

nA(xk)
∑

i>k

nB(xi),

and similarly

M∑

i=0

nB(xi)
∑

j>i

nA(xj ) =
M∑

k=0

nA(xk)
∑

i<k

nB(xi).

Hence,

E[B,A] = Nc

NANB

(
M∑

k=0

nA(xk)
∑

i>k

nB(xi) −
M∑

k=0

nA(xk)
∑

i<k

nB(xi)

)

= − Nc

NANB

M∑

k=0

nA(xk)

(
∑

i<k

nB(xi) −
∑

i>k

nB(xi)

)

= −E[A,B].
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This zero-sum dynamic may be interpreted for competition
for limited resources. Furthermore, we impose the energy
and resource constraint corresponding to the assumption
that the MCA does not exceed 1/2. The MCA is computed
by taking the average of all competitive abilities, so we
define as follows:

MCA(A) = 1

NA

M∑

i=0

xinA(xi).

Then, the constraint is that for both species

MCA(A) = 1

NA

M∑

i=0

xinA(xi) ≤ 1

2
,

MCA(B) = 1

NB

M∑

i=0

xinB(xi) ≤ 1

2
.

The uniform SBD

Our first result shows that a certain SBD, known as the
uniform SBD, is neutral in competition to all other SBDs,
which have the same MCA as that of the uniform SBD.
At the same time, we also show that the uniform SBD
has positive expected value in competition with any SBD,
whose MCA is less than the MCA of the uniform SBD.

Proposition 1 Let A be a species with MCA at most 1
2 . Let

U be the uniform SBD, which is the unique SBD having
nA(xi) equal and positive for all i = 0, . . . , M . Then,
MCA(U) = 1

2 , and

E[A, U ] ≤ 0,

with equality if and only if the MCA of species A is equal
to 1

2 . We note that this is independent of the number of
organisms in species A and species U .

Logical argumentation

To see why this is true, we use the definition of E[A, U ]
to write out this expected value; see Eq. 3 in Appendix A.
At first, the expression may look complicated, but using
the definition of the uniform SBD, as done in Eq. 4
of Appendix A, the expression simplifies. With these
mathematical manipulations and resulting simplifications,
the expression for the expected value of species A in
competition with the uniform species U becomes

E[A, U ] = NcM

M + 1
(2MCA(A) − 1) .

Above, Nc is the number of competing organisms, which
we recall is the smaller of NA and NU . The number M is
how we have defined the competitive values, as the numbers
0, 1

M
, 2

M
, and up to 1 = M

M
. In the parentheses, we see

2MCA(A). By the constraint on the MCA, we know that
MCA(A) ≤ 1

2 , so 2MCA(A) ≤ 1. Consequently,

(2MCA(A) − 1) ≤ 0, so we also see that E[A, U ]
= NcM

M + 1
(2MCA(A) − 1) ≤ 0.

This shows that E[A, U ] ≤ 0. Next, if MCA(A) < 1
2 , then

(2MCA(A) − 1) < 0, and consequently E[A, U ]
= NcM

M + 1
(2MCA(A) − 1) < 0.

If instead, MCA(A) = 1
2 , then 2MCA(A) − 1 = 0, and

consequently the expression for E[A, U ] is zero.

Non-exploitable strategies

Here, we introduce a new definition which is a general-
ization of an evolutionary stable strategy. Recall that an
evolutionary stable strategy (ESS), A, must satisfy for all
other strategies, B,
E[A, A] > E[B, A] or E[A, A] = E[B, A] and E[A, B] > E[B, B].

Definition 1 A strategy, A, is a non-exploitable strategy,
abbreviated NES, if and only if

E[A, B] ≥ E[B, A] for all strategies, B.

Lemma 1 Every ESS is also an NES in our setting.

Logical argumentation

We start by assuming that A is an ESS. By the definition of
an ESS, E[A, A] ≥ E[B, A] for all strategies, B. Due to the
zero-sum dynamic, E[A, A] = 0. So, this means that

0 ≥ E[B, A] for all strategies, B.

By the zero-sum dynamic,

E[A, B] + E[B, A] = 0,

so

E[A, B] = −E[B, A].
Since E[B, A] ≤ 0, it follows that −E[B, A] ≥ 0.
Therefore,

E[A, B] = −E[B, A] ≥ 0.

This holds for all strategies, B. We use the zero-sum
dynamic once more to see that

E[A, B] = −E[B,A] ≥ 0 ≥ E[B, A] for all strategies, B.

We therefore see that the definition forA to be an NES holds
true. Hence, we see that every ESS is also an NES, but we
shall see below that not every NES is an ESS.
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The unique NES

Our main theorem proves that (1) there is no ESS in our
setting, but (2) the uniform SBD is the unique NES.

Theorem 1 Let A be a species comprised of N ≥ 4
individual organisms and which has MCA less than or equal
to 1/2. Assume that M ≥ 6. Then, there are two mutually
exclusive possibilities:

1. A is the uniform SBD.
2. There is an SBD for a species B comprised of at most

N individuals which has MCA less than or equal to 1/2
and which has positive expected value in competition
with species A.

Therefore, we conclude:

1. There is no SBD for species with at least N ≥ 4
individual organisms and which has MCA less than or
equal to 1/2 which is an ESS.

2. The unique NES is the uniform SBD.

Strategy of the proof

We have already demonstrated for the uniform SBD, U , that
E[B, U ] ≤ 0 for any SBD, B, which has MCA less than or
equal to 1

2 . So, the task at hand is to understand species, A,
which are not uniform. We therefore begin by assuming that
A is not the uniform SBD. We then proceed with several
straightforward steps.

First simplification

We begin by making a simplifying observation. If
MCA(A) < 1

2 , then we have shown that the uniform species
has positive expected value in competition with species A.
So, in that case, the theorem is proven. To complete the
proof, we can henceforth assume that MCA(A) = 1

2 .

Pairs of CAs

The next idea is to look at the number of organisms at pairs
of competitive abilities, starting with the lowest CA = 0
together with the highest CA = 1. We look at nA(x0)

and nA(xM). There are three possibilities: either nA(x0) >

nA(xM) , nA(x0) < nA(xM), or nA(x0) = nA(x1).

1. In the first case, if nA(x0) > nA(xM), we define speciesB

to have nB(x0) = N/2 and nB(xM) = N/2, where N is
the total number of organisms as in the theorem. Then,
we compute the expected value of B in competition
versus A in Eq. 8 of “B.2 Pairs of CAs”,

E[B, A] = nA(0) − nA(1)

2
> 0.

So, in this case, we have found a species B which
has MCA at most 1

2 (in fact equal to 1
2 ), and the

same number of organisms as species A, but which has
positive expected value in competition versus speciesA.

2. In the second case, nA(x0) < nA(xM). Here, we define
B with

nB(xj ) :=
⎧
⎨

⎩

0 xj = 0
0 xj = 1

N
M−1 otherwise.

We compute in “B.2 Pairs of CAs” that

E[B, A] = 1

M − 1
(nA(xM) − nA(x0)) > 0,

since nA(xM) > nA(x0).
3. In the third case, nA(x0) = nA(xM). In this case, we do

not do anything, but instead proceed to look at nA(x1)

and nA(xM−1).

Pair-by-pair

We look next at nA(x1) and nA(xM−1). There are the same
three cases as above. In the first and second cases, we can
define a species B, which has MCA(B) ≤ 1

2 , and the
total number of organisms of species B does not exceed

N . If nA

(
1
M

)
> nA

(
1 − 1

M

)
, we define the species B

to have nB(x1) = N
2 and nB(xM−1) = N

2 . Then, we
compute in “B.3 Pair-by-pair” that the expected value of B

in competition versus A is as follows:

E[B, A] =
nA

(
1
M

)
− nA

(
1 − 1

M

)

2
> 0.

On the other hand, if nA(x1) < nA(xM−1), then we define

nB(xj ) =
{

N
M−3

1
M

< j < 1 − 1
M

0 otherwise
.

In “B.3 Pair-by-pair,” we show that the number of organisms
in species B is N , and the MCA of species B is 1

2 . We
compute there that

E[B, A] =
(

M − 2

M − 3

)
(nA(xM−1) − nA(x1))

− (nA(xM−1) − nA(x1)) > 0,

In the last case, nA(x1) = nA(xM−1), we do not do
anything, just look at the next pair, looking at nA(x2) and
nA(xM−2). In this way, we continue pair-by-pair.

Second simplification

There are now two mutually exclusive possibilities: either
at some step we found a pair which is lopsided, that is
nA(xk) �= nA(xM−k) for some k = 0, 1, . . .. Once we reach
such a pair, we show in “B.4 Second simplification” how to
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construct the species B, which has E[B, A] > 0. So, in all
such cases, the theorem has been proven. It therefore only
remains to consider the case when

nA(xk) = nA(xM−k)

for all k.

Exploiting non-uniformity

We are now reduced to the case where nA(xk) = nA(xM−k)

holds for all k. That means that the SBD is symmetric
around the competitive ability 1

2 . However, we assumed
that A is not-uniform. This means that the numbers nA(xk)

cannot all be identical. So, some of the nA(xk) are larger,
and some are smaller. It is precisely this lack of uniformity
which allows us to find a weakness and exploit it with
species B. The details of this process are contained in “B.5
Exploiting non-uniformity”.

Concluding remarks

Evolution, or survival of the fittest, in the case of microbes must
be approached from a different perspective in comparison to
macro-organisms. Rather than assessing the fitness of indi-
vidual microbes and applying evolution to individuals inter-
preted as representing a species, we propose that it is more fit-
ting to consider cohorts of individuals that collectively but
not individually represent the entire species. Individual
microbes do not always behave in a way that maximizes fit-
ness, nor does loss of an individual necessarily result in the
loss of the genotype, because asexual reproduction yields
multiple clones and can rapidly increase the abundance of spe-
cific clones or replace lost individuals representing a particular
clone. Thus, loss of individuals can have no consequence for
the species as a whole, suggesting a very different risk
distribution compared to sexually reproducing organisms,
where the species as a whole may nonetheless survive
and remain variable with respect to their trait distribution.
Thus, we analyze evolutionary fitness of species by inter-
polating between the individual-level competitions and the
species-level growth or attrition.

As we are investigating competition among species,
if one species has a positive expected value, implying
population growth, the other species has a negative expected
value, implying population decrease. Presuming that species
evolve so as to minimize vulnerability to invasion and
attrition by other species, rather than to maximize fitness,
then all species of microbes which survive would evolve
to the uniform SBD. Obviously, the rate of change in the
SBD will be influenced by the environmental conditions,
the presence of co-occurring species and to what degree
SBDs are similar or overlap with co-occurring species (e.g.,
character displacement). Irrespective of any external factors,

the uniform SBD is the unique SBD, which contains the
maximal variability among its individuals. Moreover, it is
the unique SBD, which is not vulnerable to replacement by
species with other SBDs with the same (or lower) MCA.
There are two mutually exclusive options: evolve towards
the uniform SBD or risk vulnerability to invasion.

Interestingly, the uniform SBD is also neutral in com-
petition with all other SBDs, which have the same mean
competitive ability. Thus, our second result shows that the
uniform SBD coexists with all other SBDs, which have the
same MCA. Hence, it predicts that microbes, which evolve
to the uniform SBD, simultaneously evolve to coexist. We
therefore have discovered a plausible mathematical expla-
nation for two prevalent characteristics of microbes, which
until now have been inexplicable in the context of compe-
tition theory: (1) maximal variability of traits among indi-
viduals of a single species and (2) coexistence of virtually
limitless different species of microbes. For multi-cellular
organisms, intra-specific variability has been suggested to
be an important characteristic in the management of biodi-
versity (Des Roches et al. 2018). Our results imply that a
quantification of the trait distributions of microbial organ-
isms is essential to understand processes that drive ecosys-
tem functioning, including ocean ecosystems and the global
carbon cycle.
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Appendix A: Proof of Proposition 1

We compute the expected value,

E[A,U ]= Nc

NANu

M∑

i=0

nA(xi)

⎛

⎝
∑

j<i

nu(xj )−
∑

j>i

nu(xj )

⎞

⎠ , (3)

where above Nu denotes the total number of uniform
organisms, and nu(xj ) denotes those with competitive
ability equal to xj . Similarly, we use NA to denote the total
number of organisms of species A, and

Nc = min{Nu, NA}

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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is the number of competing organisms. By definition of the
uniform SBD,

nU (xj ) = Nu

M + 1
∀j =⇒

∑

j<i

nu(xj ) =
i−1∑

j=0

Nu

M + 1
= iNu

M + 1
. (4)

Similarly,

∑

j>i

nu(xj ) =
M∑

j=i+1

Nu

M + 1
= (M − i)Nu

M + 1
.

Hence,

E[A, U ] = Nc

NANu

M∑

i=0

nA(xi)

(
iNu

M + 1
− (M − i)Nu

M + 1

)

= Nc

NA(M + 1)

M∑

i=0

nA(xi) (2i − M) = NcM

M + 1
(2MCA(A) − 1) ≤ 0.

The last inequality follows because MCA(A) ≤ 1
2 . So, we

see that equality holds if and only if MCA(A) = 1
2 .

Appendix B: Proof of Theorem 1

Let A be a species comprised of N individual organisms.
Let xk = k

M
for 0 ≤ k ≤ M , and nA(xk) be the number of

organisms of species A with competitive ability xk .

B.1 First simplification

If the MCA of A is less than 1
2 , then the uniform SBD has

MCA equal to 1/2, and by Proposition 1,

E[U, A] > 0.

So, we may henceforth assume that the MCA of species
A is in fact equal to 1/2. We shall prove the result
by an induction argument. In this argument, we will be
considering pairs of competitive abilities, (xk, xM−k). To
begin, we consider the SBD in which species A has half of
its organisms with competitive ability equal to 0, and the
other half with competitive ability equal to 1. In case N is
odd, any “odd man out” has competitive ability 0 or 1 each
with probability 1/2. We call this the bimodal SBD.

In this case, we define species B to have

nB(xk) =
⎧
⎨

⎩

1 k = M

N − 1 k = 1
0 k �= M and k �= 1.

Then, we compute that the MCA of this species is

1 + (N − 1) 1
M

N
= 1

N
+ 1

M
− 1

NM
≤ 1

N
+ 1

M
≤ 1

4
+1

4
≤ 1

2
.

We have used above the assumption that M and N are both
greater than or equal to 4. We compute the expected value

E[B, A] = 1

N

N

2
− N − 1

N

(
N

2
− N

2

)
= 1

2
> 0.

Henceforth, we may assume that the SBD of species A is
not the bimodal SBD. By this assumption, nA(0) and nA(1)
cannot both be equal to N/2. It will now be convenient to
introduce the notation

nk := nA

(
1

2
+ k

M

)
, k ∈ Z. (5)

Moreover, we will henceforth assume that M is even. Were
M not even, we would simply make the partition twice as
fine. Then, we use the constraint that the MCA is equal to 1

2
to compute:

. . . +
(
1
2 − k

M

)
n−k + . . . +

(
1
2 − 1

M

)
n−1 + 1

2n0 +
(
1
2 + 1

M

)
n1 + . . . +

(
1
2 + k

M

)
nk + . . .

. . . + n−k + . . . + n−1 + n0 + n1 + . . . + nk + . . .
= 1

2
.

Re-arranging,

M/2∑

k=1

(
1

2
− k

M

)
n−k + 1

2
n0 +

M/2∑

k=1

(
1

2
+ k

M

)
nk =

∑M/2
k=1 n−k + n0 + ∑M/2

k=1 nk

2
.

Grouping the terms on the left gives

1

2

⎛

⎝
M/2∑

k=1

n−k + n0 +
M/2∑

k=1

nk

⎞

⎠ +
M/2∑

k=1

k

M
(nk − n−k) =

∑M/2
k=1 n−k + n0 + ∑M/2

k=1 nk

2
.

Hence, we obtain the rather useful identity that

M/2∑

k=1

k

M
(nk − n−k) = 0 =⇒

M/2∑

k=1

k (nk − n−k) = 0. (6)

B.2 Pairs of CAs

We proceed to look at nA(0) and nA(1). If

nA(0) > nA(1), let B be the bimodal SBD. (7)
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If this is the case, we compute the expected value of B in
competition against A is

E[B, A] = N

2N
(N − nA(1)) − N

2N
(N − nA(0))

= nA(0) − nA(1)

2
> 0. (8)

Hence, the bimodal species satisfies the statement of the
theorem in competition against species A.

If on the other hand we have

nA(0) < nA(1), define B with nB(xj ) :=
⎧
⎨

⎩

0 xj = 0
0 xj = 1

N
M−1 otherwise.

(9)

We then compute the expected value of A in competition
versus B. Since both species have N organisms total,
E[A, B] = −E[B, A], so this computation actually yields
both values. The nA(1) individuals with CA equal to 1
always win, whereas the nA(0) individuals with CA equal
to 0 always lose. Hence, they contribute

nA(1) − nA(0) to the expected value of A versus B.

We now compute the expected value from the other
individuals. For this, we recall the notation (5). For an
individual of species A with CA equal to 1

2 + k
M
, we count

that there are
(

M

2
− 1 − k

)
N

M − 1

individuals of species B, which have strictly higher
competitive abilities. We similarly count that there are
(

M

2
− 1 + k

)
N

M − 1

individuals of species B, which have strictly lower
competitive abilities. Hence, the expected value from the
individuals of species A with CA equal to 1

2 + k
M

is

nk

1

N

((
M

2
− 1 + k

)
N

M − 1
−

(
M

2
− 1 − k

)
N

M − 1

)
= nk

2k

M − 1
.

By the symmetry in the definition of species B, for an
individual of species A with CA equal to 1

2 − k
M
, these

numbers are switched, so we compute the expected value is

n−k

1

N

((
M

2
− 1 − k

)
N

M − 1
−

(
M

2
− 1+k

)
N

M − 1

)
= n−k

−2k

M − 1
.

We therefore compute the total expected value,

E[A, B] = nA(1) − nA(0) +
M
2 −1∑

k=1

2k

M − 1
(nk − n−k)

= nA(1) − nA(0) + 2

M − 1

M
2 −1∑

k=1

k (nk − n−k) .

Now, we see that (6) is quite useful:

M/2∑

k=1

k (nk−n−k) = 0 =⇒ −M

2

(
nM/2−n−M/2

) =
M
2 −1∑

k=1

k(nk − n−k).

Recall that by definition (5)

nA(1) = nM/2, nA(0) = n−M/2.

Hence,

E[A, B] = nA(1) − nA(0) − 2M

2(M − 1)
(nA(1) − nA(0))

= (M − 1 − M) (nA(1) − nA(0))

M − 1

= − 1

M − 1
(nA(1) − nA(0)) < 0, since nA(1) > nA(0).

So, in case nA(0) and nA(1) are unequal, or in case A is
the bimodal SBD, we have proven the theorem.

B.3 Pair-by-pair

We now proceed inductively. Assume that nA(0) and nA(1)
are identical. We now consider

nA

(
1

M

)
and nA

(
1 − 1

M

)
.

If these are unequal, in the same way as above, we can
construct a species, B, which has higher expected value in

competition. In case nA

(
1
M

)
> nA

(
1 − 1

M

)
, we define the

species B to have its organisms equally distributed at 1
M

and
1 − 1

M
. By the same calculation as above, we compute the

expected value

E[B, A] =
nA

(
1
M

)
− nA

(
1 − 1

M

)

2
> 0.

On the other hand, if

nA

(
1

M

)
< nA

(
1 − 1

M

)
, (10)

we define

nB(xj ) =
{

N
M−3

1
M

< j < 1 − 1
M

0 otherwise
.

Then, we compute that the number of organisms in species
B is

M∑

j=0

nB(xj ) =
M−2∑

j=2

nB(xj ) = N(M − 3)

M − 3
= N .

Moreover, so defined the MCA of species B is 1
2 . In species,

A, the nA(1) organisms with CA equal to one always win,
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whereas the nA(0) organisms with CA equal to 0 always
lose. Hence, their cumulative contribution to E[A, B] is
zero. We therefore compute

E[A, B] = nA(xM−1) − nA(x1) +
M
2 −2∑

k=1

2k

M − 3
(nk − n−k).

Since nA(x1) − nA(x0) = 0,

M
2 −2∑

k=1

2k

M − 3
(nk − n−k) = 2

M − 3

M
2∑

k=1

k(nk − n−k)

− 2

M − 3

(
M

2
− 1

)
(nA(xM−1) − nA(x1)) .

By (6), this is

− 2

M − 3

(
M

2
− 1

)
(nA(xM−1) − nA(x1))

= −
(

M − 2

M − 3

)
(nA(xM−1) − nA(x1)) .

Hence, we have computed that

E[A, B] = (nA(xM−1) − nA(x1))

−
(

M − 2

M − 3

)
(nA(xM−1) − nA(x1)) < 0,

where the final inequality follows from (10) together with
the observation that M−2

M−3 > 1.
We continue by induction. We assume that nA(xj ) =

nA(xM−j ) for all j = 0, . . . , k − 1. Then, if nA(xk) >

nA(xM−k), we define

nB(xj ) =
⎧
⎨

⎩

N
2 j = k
N
2 j = M − k

0 otherwise
.

Similar to our previous calculations,

E[B, A] = nA(xk) − nA(xM−k)

2
> 0.

If on the other hand we have nA(xk) < nA(xM−k), we
define

nB(xj ) =
{

N
M−1−2k k < j < M − k

0 otherwise
.

We compute that species B has N organisms and its MCA
is 1

2 . Similar to our previous calculations, we compute

E[A, B] = nA(xM−k) − nA(xk)

+
M
2∑

j=1

2j

M − 1 − 2k
(nj − n−j )

−2(M/2 − k)

M − 1 − 2k
(nA(xM−k) − nA(xk)) .

Above, we have used the assumption that nA(xj ) =
nA(xM−j ) for all j = 0, . . . , k − 1. By (6),

E[A, B] = (nA(xM−k) − nA(xk))

− M − 2k

M − 2k − 1
(nA(xM−k) − nA(xk)) < 0,

where the last inequality follows since nA(xM−k) > nA(xk)

and M−2k
M−2k−1 > 1.

B.4 Second simplification

We therefore see that at the kth step, if nA(xk) �= nA(xM−k),
we can construct a species B such that E[B, A] > 0. So, we
can now reduce to the case in which

nA(xk) = nA(xM−k), k = 0, 1, . . . ,
M

2
− 1.

In other words, the SBD of species A is symmetric about
the competitive value 1

2 . In the notation (5),

nk = n−k, k = 1, . . . ,
M

2
.

B.5 Exploiting non-uniformity

At this point, we assume that the species A does not have the
uniform distribution. This means that the values {nk}M/2

k=0 are
not all equal. So, there is at least one k, or perhaps several,
for which nk (and by symmetry, also n−k) has the maximum
value. These will be used, together with the assumption that
the distribution is not uniform to construct the species, B.
First, assume

0 ∈ {j : nA(xj ) ≥ nA(xk)∀k}. (11)

This means that nA(0) and nA(1) are maximal. For the
uniform distribution, denote by nU = nU(xk) the number
of organisms of competitive ability xk , noting that it is the
same for all k, hence,

M−1∑

k=2

nU(xk) = (M − 2)nU .

However, since species A is not uniform, and nA(0) =
nA(1) is maximal,

M−1∑

k=2

nA(xk) ≤ (M − 2)nA(0) = (M − 2)nA(1). (12)

This will be important in our calculation of the expected
value for species, B, defined below. We set

nB(xj ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
1
2 + ε0

)
N xj = 1

M(
1
2 − ε1

)
N xj = 1

0 xj �∈
{

1
M

, 1
}
.
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We first verify that the species, B, has at most N organisms:
(
1

2
+ ε0

)
N +

(
1

2
− ε1

)
N ≤ N ⇐⇒ ε0−ε1 ≤ 0 ⇐⇒ ε0 ≤ ε1.

Next, we verify that the MCA of species, B, is at most 1
2 ,

(
1

2
+ ε0

)
1

M
+

(
1

2
− ε1

)
≤ 1

2

⇐⇒ 1 + 2ε0
2M

− ε1 ≤ 0 ⇐⇒ 1 + 2ε0
2M

≤ ε1.

So, we define

ε1 := 1 + 2ε0
2M

. (13)

Then, species B has MCA precisely equal to 1
2 . We must

show that this is consistent with the necessary condition that
ε0 ≤ ε1:

ε0 ≤ ε1 = 1 + 2ε0
2M

⇐⇒ ε0

(
1 − 1

M

)
≤ 1

2M
⇐⇒ ε0 ≤ 1

2(M − 1)
.

So, we will choose ε0 > 0 sufficiently small so that
ε0 ≤ 1

2(M−1) . Since M is fixed, this is certainly possible.
Since the total number of organisms of species A is

N = NA, whereas the total number of organisms of species
B is

NB =
(
1

2
+ ε0

)
N +

(
1

2
− ε1

)
N ≤ N,

we see that

Nc = NB =⇒ Nc

NNB

= 1

N
.

We therefore calculate the expected value

E[B, A] =
(
1

2
+ ε0

) (
nA(0) −

M∑

k=2

nA(xk)

)
+

(
1

2
− ε1

) M−1∑

k=0

nA(xk).

By symmetry, nA(0) = nA(1) = nA(xM), so we have

E[B, A] =
(
1

2
+ ε0

)(
−

M−1∑

k=2

nA(xk)

)
+

(
1

2
− ε1

)

(
nA(0) + nA

(
1

M

)
+

M−1∑

k=2

nA(xk)

)

=
(
1

2
− ε1 − 1

2
− ε0

) M−1∑

k=2

nA(xk)

+
(
1

2
− ε1

) (
nA(0) + nA

(
1

M

))

= (−ε0 − ε1)

M−1∑

k=2

nA(xk) +
(
1

2
− ε1

)

(
nA(0) + nA

(
1

M

))
.

We recall the definition of ε1 in (13) to write

−ε0 − ε1 = −ε0 −
(
1 + 2ε0
2M

)
= −2ε0 − 2Mε0 − 1

2M
,

1

2
− ε1 = M − 2ε0 − 1

2M
.

Hence,

E[B, A] =
(−2ε0 − 2Mε0 − 1

2M

) M−1∑

k=2

nA(xk)

+M − 2ε0 − 1

2M

(
nA(0) + nA

(
1

M

))
.

Thus,

2M (E[B, A]) = (−2ε0 − 2Mε0 − 1)
M−1∑

k=2

nA(xk)

+ (M − 1 − 2ε0)

(
nA(0) + nA

(
1

M

))
.

Clearly,

E[B, A] > 0 ⇐⇒ 2M (E[B, A]) > 0,

since M > 0. So, we must show that

(2ε0 + 2Mε0 + 1)
M−1∑

k=2

nA(xk) < (M−1−2ε0)

(
nA(0) + nA

(
1

M

))
,

which is equivalent to

ε0

(
(2 + 2M)

M−1∑

k=2

nA(xk) + 2

(
nA(0) + nA

(
1

M

)))

+
M−1∑

k=2

nA(xk) < (M − 1)

(
nA(0) + nA

(
1

M

))
.

At this point, we recall the inequality (12), which implies

(M − 1)nA(0) = (M − 2)nA(0) + nA(0) ≥
M−1∑

k=2

nA(xk) + nA(0).

Hence,

(M − 1)

(
nA(0) + nA

(
1

M

))
≥

M−1∑

k=2

nA(xk) + nA(0).

So, it is sufficient to demonstrate the inequality

ε0

(
(2 + 2M)

M−1∑

k=2

nA(xk) + 2

(
nA(0) + nA

(
1

M

)))

+
M−1∑

k=2

nA(xk) <

M−1∑

k=2

nA(xk) + nA(0)

⇐⇒ ε0

(
(2 + 2M)

M−1∑

k=2

nA(xk)+2

(
nA(0)+nA

(
1

M

)))
<nA(0).
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Since nA(0) is fixed and positive, we can achieve this
inequality by simply taking ε0 > 0 sufficiently small.
Specifically, we demand that

0 < ε0 <
nA(0)(

(2 + 2M)
∑M−1

k=2 nA(xk) + 2
(
nA(0) + nA

(
1
M

))) .

This argument is for the case that the SBD of A is
symmetric about 1

2 , is not the uniform SBD, and we have
Eq. 11. For the general case in which the SBD of A is
symmetric about 1

2 and is not the uniform SBD, let

j = min{k : nA(xk) ≥ nA(xl)∀l}. (14)

First, we assume that j < M
2 − 1. Then, we define the SBD

of B quite similarly as in the case of Eq. 11. Specifically, we
let

nB(xk) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1
2 + ε0

)
N xk = j+1

M(
1
2 − ε1

)
N xk = 1 − j

M

0 otherwise.

We similarly require

ε0 ≤ ε1

to ensure that the species B has at most N organisms. To
guarantee that the MCA is 1

2 we compute

j + 1

M

(
1

2
+ ε0

)
+

(
1

2
− ε1

) (
1 − j

M

)

= 1

2
⇐⇒ j + 1

M

(
1

2
+ ε0

)
− j

2M
− ε1

(
M − j

M

)

= 0 ⇐⇒ j + 1 + 2ε0 + 2jε0 − j − 2Mε1 + 2jε1

2M
= 0

⇐⇒ 1+(2 + 2j)ε0=2Mε1−2jε1 ⇐⇒ 1 + (2 + 2j)ε0

2M − 2j
= ε1. (15)

We check that this is consistent with the requirement that
ε0 ≤ ε1:

ε0 ≤ 1 + (2 + 2j)ε0

2M − 2j
⇐⇒ ε0(2M −2j) ≤ 1+ (2+2j)ε0

⇐⇒ ε0(2M − 4j − 2) ≤ 1 ⇐⇒ ε0 ≤ 1

2(M − 2j − 1)
.

We note that this is the same as Eq. 13 in case j = 0. Above,
we see that it is important that we have made the assumption
that j < M

2 − 1. This guarantees that

M − 2j − 1 > M − (M − 2) − 1 ≥ 1 > 0.

Since j ≥ 0 andM ≥ 4, it is always possible to choose ε0 to
satisfy these conditions, and to define ε1 as in Eq. 15. So, the

species B has at most N organisms and has MCA equal to
1
2 . We proceed to compute its expected value in competition
with species A.

E[B, A] =
(
1

2
+ ε0

)⎛

⎝
∑

k≤j

nA(xk) −
∑

k>j+1

nA(xk)

⎞

⎠

+
(
1

2
−ε1

)⎛

⎝
∑

k<M−j

nA(xk)−
∑

k>M−j

nA(xk)

⎞

⎠ .

Here, it is convenient to recall the notation (5), as we will
also use the symmetry nk = n−k to assess the expected
value. So, in the notation of Eq. 5,

E[B, A]=
(
1

2
+ε0

)
⎛

⎜⎝

M
2∑

k= M
2 −j

nk−
M
2 −j−2∑

k=1

nk−n0−
M
2∑

k=1

nk

⎞

⎟⎠

+
(
1

2
−ε1

)
⎛

⎜⎝

M
2∑

k=1

nk+n0+
M
2 −j−1∑

k=1

nk−
M
2∑

k= M
2 −j+1

nk

⎞

⎟⎠ .

We can simplify

M
2∑

k= M
2 −j

nk −
M
2 −j−2∑

k=1

nk −n0 −
M
2∑

k=1

nk =−n0 −
M
2 −j−2∑

k=1

nk −
M
2 −j−1∑

k=1

nk,

as well as

M
2∑

k=1

nk + n0 +
M
2 −j−1∑

k=1

nk −
M
2∑

k= M
2 −j+1

nk =n0 +
M
2 −j−1∑

k=1

nk +
M
2 −j∑

k=1

nk

= n M
2 −j

+ n M
2 −j−1 + n0 +

M
2 −j−1∑

k=1

nk +
M
2 −j−2∑

k=1

nk .

Hence,

E[B, A] =
(
1

2
−ε1− 1

2
−ε0

)
⎛

⎜⎝n0+
M
2 −j−1∑

k=1

nk+
M
2 −j−2∑

k=1

nk

⎞

⎟⎠

+
(
1

2
− ε1

) (
nM

2 −j
+ nM

2 −j−1

)
.

We note that by the definition of Eq. 5 and by the symmetry
of the SBD of A,

nM
2 −j

= nA

(
1

2
+ 1

M

(
M

2
− j

))
= nA

(
1 − j

M

)

= nA

(
j

M

)
= nA(xj ).

Similarly,

nM
2 −j−1 = nA

(
1

2
+ j + 1

M

)
= nA

(
j + 1

M

)
= nA(xj+1).
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By the definition of nk in Eq. 5, we also see that

n0 +
M
2 −j−1∑

k=1

nk +
M
2 −j−2∑

k=1

nk =
M−j−2∑

k=j+1

nA(xk).

So, we have computed

E[B, A] = −(ε0 + ε1)

⎛

⎝
M−j−2∑

k=j+1

nA(xk)

⎞

⎠

+
(
1

2
− ε1

) (
nA(xj ) + nA(xj+1)

)
.

We see that setting j = 0, we obtain the same result as in
that particular case. It is essentially the same argument for
j = 0, 1, . . . , M

2 − 2; however, it is useful for applications
involving studying particular SBDs to complete the proof
for all cases j = 0, 1, . . . , M

2 − 2. By the assumption (14)
on j , and since A is not the uniform SBD,

(M − 2j − 2)nA(xj ) ≥
M−j−2∑

k=j+1

nA(xk)

=⇒ (M − 2j − 1)nA(xj ) ≥ nA(xj ) +
M−j−2∑

k=j+1

nA(xk). (16)

At this point, we recall the definition of ε1, Eq. 15,
computing

ε0 + ε1 = ε0 + 1 + (2 + 2j)ε0

2(M − j)

= 1 + 2(M − j)ε0 + (2 + 2j)ε0

2(M − j)

= 1 + 2(M + 1)ε0
2(M − j)

.

We also compute

1

2
−ε1 = 1

2
− 1 + (2 + 2j)ε0

2(M − j)
= M − j − 1 − (2 + 2j)ε0

2(M − j)
.

Hence, we see that

E[B, A] = −1 + 2(M + 1)ε0
2(M − j)

⎛

⎝
M−j−2∑

k=j+1

nA(xk)

⎞

⎠

+M−j−1−(2 + 2j)ε0

2(M − j)

(
nA(xj )+nA(xj+1)

)
.

Since M > j , so M − j > 0, we see that

E[B, A] > 0 ⇐⇒ (1 + 2(M + 1)ε0)

⎛

⎝
M−j−2∑

k=j+1

nA(xk)

⎞

⎠

< (M−j−1−(2+ 2j)ε0)
(
nA(xj ) + nA(xj+1)

)

⇐⇒ (1 + 2(M + 1)ε0)

⎛

⎝
M−j−2∑

k=j+1

nA(xk)

⎞

⎠

+(2 + 2j)ε0
(
nA(xj ) + nA(xj+1)

)

< (M − j − 1)
(
nA(xj ) + nA(xj+1)

)
.

It is convenient to group the terms with ε0 all together, so
we must show that

M−j−2∑

k=j+1

nA(xk) + ε0

⎡

⎣2(M + 1)

⎛

⎝
M−j−2∑

k=j+1

nA(xk)

⎞

⎠

+(2 + 2j)
(
nA(xj ) + nA(xj+1)

)
⎤

⎦

< (M − j − 1)
(
nA(xj ) + nA(xj+1)

)
.

By Eq. 16, and since j > 0,

(M − j − 1)
(
nA(xj ) + nA(xj+1)

)

> (M − 2j − 1)nA(xj ) ≥ nA(xj ) +
M−j−2∑

k=j+1

nA(xk).

We therefore see that

(M−j−1)
(
nA(xj )+ nA(xj+1)

)
> nA(xj )+

M−j−2∑

k=j+1

nA(xk).

Hence, it is enough to prove that we can choose ε0 > 0
sufficiently small so that

ε0

⎡

⎣2(M+1)
M−j−2∑

k=j+1

nA(xk)+(2+2j)
(
nA(xj )+nA(xj+1)

)
⎤

⎦<nA(xj ).

Well, this can be achieved by simply demanding that

0 < ε0 <
nA(xj )(

2(M+1)
∑M−j−2

k=j+1 nA(xk)+(2+2j)
(
nA(xj )+nA(xj+1)

)) .

Finally, we consider the last remaining cases. We still
have the assumptions that A is not the uniform SBD, and
that its SBD is symmetric about 1

2 . In these cases, we have
j defined as in Eq. 14 satisfying

j = M

2
− 1 or j = M

2
.
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We first handle the case j = M
2 . When this is the case, by

the definition of Eq. 14, using (5), we note that we have the
inequality

nA

(
1

2

)
= n0 > n2 = n−2 = nA

(
1

2
± 2

M

)
. (17)

Then, we define the species B to have

nB(xj ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 j ≤ M
2 − 3

0 j ∈ {
M
2 − 1, M

2 , M
2 + 2

}
N
3 j = M

2 − 2
2N
3 j = M

2 + 1
0 j ≥ M

2 + 3.

(18)

We calculate the MCA of species B:

1

3

(
M

2M
− 2

M

)
+ 2

3

(
M

2M
+ 1

M

)
= 1

2
.

Since the distribution of A is symmetric about the point 1
2 ,

we compute the expected value (using the notation (5))

E[B, A] = 1

3
(−n−1 − n0 − n1 − n2)

+2

3
(n0 + n−1 + n−2 − n2) = n0 − n2

3
> 0.

Above, we have used (17).
In the very last case, we have j defined in Eq. 14 with

j = M

2
− 1.

Then, by the definition of j , the symmetry of the distribution
of A, and using the notation (5),

n1 = n−1 = nA

(
1

2
± 1

M

)
> n±2, n1 > n±3. (19)

In this case, we shall exploit this by defining

nB(xj ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0 j ≤ M
2 − 4

N
4 j = M

2 − 3
0 j ∈ {

M
2 − 2, M

2
M
2 + 1, M

2 + 3
}

N
4 j = M

2 − 1
N
2 j = M

2 + 2
0 j ≥ M

2 + 4.

(20)

We compute the MCA:

1

4

(
M

2M
− 3

M

)
+ 1

4

(
M

2M
− 1

M

)
+ 2

4

(
M

2M
+ 2

M

)
= 1

2
.

We compute the expected value

E[B, A] = 1

4
(−n−2 − n−1 − n0 − n1 − n2 − n3)

+1

4
(n−2 + n−3 − n0 − n1 − n2 − n3)

+2

4
(n−3 + n−2 + n−1 + n0 + n1 − n3)

= 1

4
(−2n2 − 2n1 − n0 − n3) + 1

4
(−n0 − n1)

+2

4
(n2 + 2n1 + n0) = 1

4
(n1 − n3) > 0.

We have the above inequality from Eq. 19.
Consequently, if A does not have the uniform SBD, we

have shown how to construct a species B with MCA(B) ≤
1
2 , and with NB ≤ NA, such that

E[B, A] > 0.

As we have computed in Eq. 2, this implies that

E[A, B] = −E[B, A] < 0.

Consequently,

E[B, A] > 0 > E[A, B] = −E[B, A].
Hence, no such SBD, A, is an NES. Since all ESS are NES,
no such SBD is an ESS. Moreover, the uniform SBD is also
not an ESS, because

E[U, U ] = 0 = E[A, U ] = E[A, A] for all SBDs, A,

withMCA(A) = 1

2
.

However, we have proven in the proposition that for all
SBDs with MCA less than or equal to 1

2 ,

E[U, A] ≥ 0 ≥ E[A, U ] = −E[U, A].
Hence, U is the unique NES.
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