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ABSTRACT

Path planning for unmanned ocean vehicles often neglects constraints arising

from the dynamics of the vehicle. Therefore, this thesis is concerned with finding a

method that can incorporate a dynamical vehicle model into the problem of time-

optimal path planning. This requirement makes the path planning task an optimal

control problem. Based on a review of optimal control theory and possible solution

procedures, sampling–based algorithms and especially the Sparse RRT algorithm

are identified as promising means of solving the problem.

At first, several benchmark tests are carried out to demonstrate that Sparse

RRT is able to generate reliable results. Then, the algorithm is applied to a

dynamic boat model with three degrees of freedom and two control inputs. Con-

straints on the states of the system as can arise from obstacles or energy constraints

are accounted for as well as constraints on the control inputs. Also, the effect of

ocean current fields is incorporated.

In all planning scenarios, the application of Sparse RRT yielded plausible

results. In conclusion of this thesis, the Sparse RRT algorithm therefore can be

rated as a very flexible tool due to its ability to solve optimal control problems

like time-optimal path planning for dynamic vehicle models while accounting for

several different types of constraints.

However, it also turned out that especially higher-dimensional models require

long computation times to ensure good results. In order to make a result applicable

to real technical systems, post-processing procedures might be necessary. Also,

several parameters of the algorithm have to be chosen carefully.
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CHAPTER 1

Introduction

As [5] notes, “planning a path in complex environment is a problem as old as

antiquity.” However, it was probably Zermelo in 1931 [6] who provided the first

mathematical approach to the problem of how to steer a vehicle from one state

to another, optimizing a certain criterion. Since then, the problem has experi-

enced steadily growing attention. This is especially true against the background

of autonomous underwater vehicles (AUV) that have been under development for

the last decades and are now an important mean of data sampling in oceanogra-

phy [7]. In order to maximize the benefit of a mission, path planning procedures

that optimize certain criteria are of great importance.

Recently, the Naval Undersea Warfare Center (NUWC) has shown interest

in developing a method to plan paths for an unmanned surface vessel for data

gathering purposes over short distances. As chapter 2 shows, existing approaches

have shortcomings that make them not appropriate for the solution of this very

problem. Therefore, this thesis aims at identifying an adequate solution procedure

based on an optimal control approach. This thesis is structured as follows:

In chapter 2, a survey of existing approaches to the considered problem along

with a review of benefits and drawbacks of the respective methods is given. Chap-

ter 3 provides the theoretic foundation of optimal control and formulates the prob-

lem in terms of an optimal control problem. Chapter 4 addresses the analysis of

an algorithm intended for solving this optimal control problem, the Sparse RRT

algorithm. Results of the application of this algorithm to a dynamical boat model

are shown in chapter 5, while chapter 6 is concerned with a concluding discussion

of the results and possible further research.
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CHAPTER 2

Literature review

In this chapter, an organized overview of existing approaches as well as lit-

erature related to the problem of path planning for unmanned marine vessels is

given. The aim is to review these approaches, pointing out both advantages and

shortcomings. From this evaluation, the motivation of this thesis will be derived.

2.1 General remarks

In the following, “path planning” will be understood as determining a sequence

of states of a system leading from a given start state to a goal state while optimizing

a certain criterion. As [5] states, path planning for ocean vehicles is especially

challenging due to the “highly dynamic and multiscale system” of the ocean with

current fields and complex geometries in vicinity to the coast.

Most research on path planning for unmanned marine vessels has been done

considering underwater vessels of the glider type. Nonetheless, in most cases the

found results in principle also apply for surface vessels because usually, the vertical

degree of freedom is neglected so paths are planned in a plane. Therefore, a

differentiation between approaches based on the application is not necessary in the

following. In some cases, this can even hold for results obtained for unmanned

aerial vehicles (UAV). From a methodological point of view, even procedures from

the broad field of path planning for land-based autonomous vehicles can be of

importance.

In general, the existing approaches can be divided into two classes: planning

without and planning under differential constraints.
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In the latter case, following [8], a state transition equation of the form

ẋ(t) = f (x(t),u(t), t) (2.1)

constrains how a transition between neighboring states can be made, based on

some decisions (or actions/controls) u(t), while planning without these kinds of

constraints basically allows arbitrary transitions.

This leads to different types of results: for planning without differential con-

straints, a result consists of an explicit representation of the found path in terms of

the states to be traversed. Planning under differential constraints in contrast leads

to a sequence of decisions u(t) from which the actual trajectory can be computed

by integration, what actually becomes the solution to an optimal control problem

as will be described later.

2.2 Planning without differential constraints
2.2.1 Graph searching techniques

One important class of solution procedures for path finding problems are graph

searching methods. Being of great importance in computer science in general and

also for path planning for land robots, they are also applied to path planning for

unmanned marine vehicles. The general idea of a graph searching technique based

solution procedure is to discretize an area, transforming it into a graph consisting

of nodes and edges and applying a search strategy like Dijkstra’s algorithm and the

A∗ algorithm [8] or modifications of these [9–13]. The nodes usually represent spa-

tial coordinates, while the weighted edges represent the cost of traversing between

nodes. Depending on the criterion to be optimized, the edge weights could repre-

sent distance, traveling time, energy consumption, exposure to risk and so forth. In

the following, Dijkstra’s algorithm and the A∗ algorithm will be described briefly.

3



Dijkstra’s algorithm

As described in [8], Dijkstra’s algorithm is based on assigning each node a par-

ent node that minimizes the traveling cost to that node. Given these information,

a minimum cost path to a certain node can be constructed by backtracking the

parent nodes to the start node. The parent nodes are determined incrementally

during the search process:

In each iteration, the costs of traveling to all adjacent nodes of the node

with the lowest overall cost are determined, making that node the parent of all

neighbors. This node is taken from a priority queue which is maintained to store

the traveling cost information for all nodes that have been assigned a cost in this

way. As long as a node is in that priority queue, its cost value respectively its parent

node can change when a cheaper path to it is found. As soon as the vicinity of a

node is examined, the traveling cost to that node cannot change anymore and it is

removed from the priority queue. If the surrounding of the goal node is examined,

the algorithm can construct the optimal path by backtracking all parent nodes.

Dijkstra’s algorithm is complete, that is it finds an optimal solution if one exists.

A∗ algorithm

The A∗ algorithm is an extension of Dijkstra’s algorithm that attempts to

reduce the number of nodes which has to be considered during computations.

This is achieved by using an estimate of the remaining cost of traveling from a

given node to the destination node, assigning a higher priority in the queue to

nodes with a lower cost estimate. In doing so, the search is guided towards the

destination node. Provided that the heuristic never overestimates the remaining

cost, this algorithm also finds an optimal solution if one exists.
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Applications

An early approach to path planning for unmanned marine vessels using a

graph searching method can be found in [14]. There, the A∗ algorithm is used

to generate resource-optimal paths for long-range missions, considering obstacles

and current information. This approach is taken on by [15, 16], providing a more

detailed description of the algorithm and especially of how to include current fields

in the planning process. In order to minimize traveling time, the cost of traversing

a graph edge between two nodes xi and xj is calculated according to

tij =
dij
vij

(2.2)

where dij is the euclidean distance between the two nodes and vij the ground speed

of the vehicle, calculated as sum of the local current velocity and the vehicle speed

relative to the current, projected on the straight connection line of the nodes.

This projection is necessary because the velocity vector of the vehicle must not

necessarily be parallel to that line due to the current field . The heuristic function

that is used to estimate the remaining cost from a given node xi to the destination

is chosen as

h(xi) =
di
vmax

(2.3)

with di being the euclidean distance to the destination and vmax the sum of the

maximum vehicle velocity and the maximum current velocity in the considered

area. This ensures that the cost is never underestimated. Also, the impact of

different connectivity schemes between adjacent nodes on the shape of the planned

path is evaluated: in increasing the number of possible connections to neighboring

nodes, a path can adapt better to the features of the current field, but at the same

time, the computation time is increased.

In [9], a Dijkstra-like algorithm called “Symbolic Wavefront Expansion” is

used to determine the time-optimal path as well as the optimal departure time

5



in a time-varying current field. This is achieved by not evaluating cost values for

each cell, but cost functions in dependency from the departure time.

In [10], algorithms based on Dijsktra’s algorithm and the A∗ algorithm are

modified to be able to calculate time-optimal paths in nonstationary current fields.

A speed-up of the computation time is achieved by using results from [6] that help

to reduce the number of nodes to be searched. In order to make a path feasible

for real missions, a smoothing procedure is introduced.

The problem of path smoothing is also considered in [11], where a shortest

path is generated for a UAV. After generation, this path is refined using Bézier

curves with defined minimum curvature to make the path more traversable for a

real vehicle.

A different approach to the same problem is chosen in [12], modifying A∗ in a

way so that the planned path does not directly depend on the grid discretization

anymore. This is achieved by integrating a kinematic vehicle model. Starting

at one node, the model is integrated for several different heading angles over a

specified time interval. The coordinates of the reached end points and the heading

angles used to generate the respective trajectories are then stored in the nearest

node of the graph. Applying the same heuristic as described in (2.3), the points

next to be evaluated are chosen as long as the destination is not reached. This

procedure produces more realistic results than A∗, even though it is only based on

a kinematic and not a dynamic model.

A similar approach to produce continuous paths can be found in [13]. There,

the A∗ algorithm is combined with a fast marching method, resulting in an algo-

rithm that produces continuous paths with constrained curvature to account for

vehicle kinematics, considering current fields.

Graph searching techniques generally provide exact solutions against the back-
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ground of the graph they are based upon, being robust to local minima solutions.

This graph discretization is probably their major drawback, because the produced

paths are not smooth enough to serve as a trajectory. Even though some effort

has been undertaken to work around this, the basic problem cannot be overcome.

Additionally, the time required to calculate a path might grow rapidly, depending

on the resolution of the discretization. Algorithms like A∗ indeed provide means

to reduce this time, but in the presence of a current field, the estimate in (2.3)

might be to conservative, reducing the efficiency of using a heuristic.

2.2.2 Level set methods

In [5], time-optimal paths for ocean vehicles in continuous dynamic current

fields are generated using level set methods. This path planning procedure is

developed in [17] and [18]. The idea is to evolve a scalar field the zero level set of

which represents a position reachable by a vehicle in a certain time interval. The

scalar field is evolved by the current field and the vehicle speed until its zero level

set reaches the target position. Then, the shortest path is generated by integrating

backwards in time, reversing the velocity components that evolved the level set. It

is shown that the generated paths are very exact and in addition, the method can

calculate paths for multiple vehicles starting at the same point with only slightly

more computational effort than for single vehicle planning. Nonetheless, dynamic

effects are neglected and the vehicle’s speed is assumed to be constant.

2.2.3 Mixed integer linear programming

In [19], a method based on mixed integer linear programming is used to find a

vehicle path that maximizes the line integral of the uncertainty of field estimates

along this path. In other words, the objective is to plan a path so that the ocean

vehicle can conduct measurements in the regions of greatest uncertainty, max-
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imizing the benefit of a measurement. The presented framework is able to plan

paths for multiple vehicles, considering collision avoidance with both other vehicles

and natural obstacles. Additionally, several modes of communication either with

an accompanying ship, radio stations at shore or buoys and the thereby imposed

constraints are considered. Since this approach focuses on optimizing the impact

of measurements, the influence of ocean currents or the vehicle’s dynamics is ne-

glected, even though it is pointed out that further research could be conducted on

path smoothing in order to generate more realistic paths.

2.3 Planning under differential constraints

As indicated at the beginning, planning under differential constraints requires

the solution of an optimal control problem if the found path is not only required to

be feasible, but also to optimize a certain criterion. Therefore, the optimal control

problem will be important for the following chapters of the thesis. An introduction

to the theoretic foundations of optimal control can be found in chapter 3, so at

this point only an overview of existing applications will be given.

The optimal control approach is based on finding control inputs for a dynamic

vehicle model which make it follow an optimal trajectory. Unlike the previously

described approaches, this will give rise to a path that is as realistic as the vehicle

model is. However, this problem is complex, since it is known that planning under

differential constraints in general is NP-hard [8].

2.3.1 Analytical solution

For simple kinematic constraints, analytical solutions to the path planning

problem can be derived using optimal control theory. A rather famous example

in the planning community is the so-called “Dubins car,” a kinematic model of

a car that can only move forward at constant speed and has a minimum turning

8



radius [8]. It can be shown that the shortest path between two arbitrary con-

figurations consists of no more than three motion primitives. These primitives

are driving straight at maximum speed and turning left or right with minimum

turning radius. From all possible combinations of these, only six are possibly op-

timal (cf. [8]). An extension to a car that can also back up exists, the so-called

“Reeds-Shepp car.”

In [20], the planar motion of a kinematic model of an airplane subject to con-

stant wind is considered, whereby the model of the airplane is identical to a Dubins

car. Even though analytical solutions are advantageous in many senses, in this case

they are only available for models too simple for the considered application.

2.3.2 Dynamic Programming

The computational technique of Dynamic Programming was developed by

R.E. Bellman and according to [21] has been closely connected to the increas-

ing importance of optimal control. Even though to the knowledge of the author

there exists no application of this method to the problem of path planning for

autonomous ocean vehicles, a short overview of the method has to be given for

completeness.

Following the explanation in [2], it is based on what is called the “Principle of

Optimality,” stating that “an optimal policy has the property that whatever the

initial state and initial decisions are, the remaining decisions must constitute an

optimal policy with regard to the state resulting from the first decision.” This im-

plies a recursive approach ( [2] refers to this as “Dynamic Programming,” while [8]

differentiates further, calling the following algorithm “Backward Value Iteration”):

Consider a sequence k1...kn, n ∈ N, where each element indicates a stage of

a decision making process at which a decision respectively control input has to be

determined. Now, according to the Principle of Optimality, in order to minimize

9



the cost of getting from an initial state at stage k1 to a certain state at stage

k + n, the decision made at k2 has to result in an optimal trajectory. Given this

trajectory for every state admissible at k2, the problem has been reduced to finding

the decision at stage k1 that minimizes the sum of the cost of the trajectory from

the initial state at stage k1 to some state at k2 and the cost from there to the

final state at stage kn. This computation of course requires the knowledge of the

optimal trajectories from all states at stage k2 that recursively can be determined

in the same way. Figure 2.1 illustrates this: the state at stage kn can be reached

from three states at stage kn−1 by several different trajectories. However, as shown,

only one trajectory from each state yields optimal cost. The three states at stage

kn−1 again can be reached by different trajectories from the single state at stage

kn−2, but only one trajectory presents the optimal way of reaching a certain state.

The optimal sequence from the state at stage kn−2 to the final state at stage kn

then can be determined by calculating which combination of optimal paths yields

the lowest overall cost.

Now, without differential constraints, Dynamic Programming could also be

applicable to the problems described in section 2.2 and actually, according to [8],

Dijkstra’s algorithm and therefore also the A∗ algorithm are special forms of Dy-

namic Programming.

As [8] states, Dynamic Programming is theoretically able to provide optimal

controls for any system. Nonetheless, it is agreed upon the fact that computational

cost is usually not reasonable if the dimension of the state space is high (where [8]

sees a limit for practical use at a state space dimension of six, as it is the case for

a rigid body in the plane).

10



knkn-1kn-2

Optimal connection Suboptimal connection

Figure 2.1. General idea of dynamic programming (cf. [2, p.55])

2.3.3 Classical optimization techniques

An early application of optimal control techniques to the field of unmanned

underwater vehicles can be found in [22]. There, the problem is solved using Se-

quential Quadratic Programming to determine piece-wise constant control inputs

to a six degree-of-freedom dynamic system. The switching times of the control

values are fixed due to convergence problems. The presented approach is able to

avoid obstacles, even though those have to be included into the problem formula-

tion as path constraints which limits the flexibility in modeling more complicated

obstacles.

In [23] and especially [24], the optimal control problem is solved using the Non-

linear Trajectory Generation (NTG) framework, creating energy- or time-optimal

paths. The method is able to account for ocean currents, but obstacles are not ac-

counted for. Calculations are done for kinematic, but also simple dynamic models

of an underwater vehicle.
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Also a nonlinear optimization approach is chosen in [25], where an extended

version of Zermelo’s problem (see [6]) is treated. The considered problem is to

find a minimum-time path for a kinematic boat model across a river with strong

currents and moving obstacles in it by adjusting the heading angle as a control

variable. This is achieved by discretizing the control input function, making it

piecewise constant. Mapping the switching times on a fixed interval enables the

control values and switching times to become decision variables of the nonlinear

optimization process, whereby obstacles are included using penalty functions.

2.3.4 Metaheuristic algorithm approaches

As remarked in [26], a unique definition of metaheuristic optimization al-

gorithms does not exist. Nonetheless, several general properties are commonly

associated with this class of often nature-inspired algorithms, such as being ap-

proximate procedures for solving complicated optimization problems, making use

of diversification and intensification schemes to explore the solution space. At this

point, only applications to the problem of path planning for ocean vehicles will be

listed.

Artificial potential fields

Even though usually not listed among the metaheuristics, artificial potential

fields will be classified as such because they also are a problem-unspecific, generally

applicable solution procedure.

An early approach to path planning for autonomous underwater vehicles using

artificial potential fields is presented in [27]. As stated there, at that time, artificial

potential fields together with graph searching techniques were the two main areas

of motion planning in robotics. However, to the knowledge of the author, [27] is

the only reference in path planning for ocean vehicles that makes essential use of
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that technique, while [28] uses it to some extent.

The described algorithm works as follows: a path is represented by straight line

segments between nodes the coordinates of which have to be chosen adequately

in order to optimize the path in terms of length and obstacle avoidance. An

initial guess for a path is provided and subsequently transformed by changing

the node coordinates, using a gradient-based searching algorithm like the Simplex

method. This method tries to minimize the potential of the path, consisting of

two elements: obstacles are modeled using artificial potential fields, so crossing an

obstacle drastically increases the potential of a path and therefore will be avoided.

Also, the length of path segments is assigned a potential, similar to an elastic

chord. Therefore, the algorithm also tries to minimize the path length.

This procedure is described as being relatively fast and easily extensible to

higher dimensions. Yet, drawbacks are the fact that the number of nodes the path

contains of has to be chosen heuristically in advance. Also, it is possible to obtain

only locally optimal solutions, while some scenarios cannot be solved reliably at

all, e.g. those containing concave obstacles. In addition, current fields and the

vehicle’s dynamic are completely neglected.

An extension to this work is provided by [28], making use of artificial potential

fields for obstacle avoidance in planning energy-optimal paths for autonomous

underwater vehicles. Energy cost and other optimization criteria like traveling

time and water depth are included using weighted penalty-function-like terms.

The optimization task is carried out using a self-developed Local Random Search

algorithm in combination with parallelization and Simulated Annealing. Simulated

Annealing is another metaheuristic that accepts worse solutions than the current

one with a certain probability in order to escape local minima. This probability

decreases gradually, just like the temperature in an annealing process [26].
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Genetic algorithms

In [29], a genetic algorithm is employed to plan energy-optimal paths through a

current field of high magnitudes and spacial variability. In this genetic algorithm, a

randomly generated population of feasible paths, represented by nodal coordinates

connected by straight line segments, is transformed by several genetic operators

such as crossover and mutation to form new solutions. These genetic operators aim

at combining good solutions while also introducing random elements to ensure an

ample exploration of the solution space. A multiple start approach to forming

the population of initial guesses provides additional improvements. The choice of

parameters indicating the influence of random elements appears to be essential for

good performance of the algorithm, being probably the major drawback together

with the fact that unlike Dijkstra’s algorithms or the A∗-algorithm, the found

solution must not necessarily be the global optimum.

Ant colony optimization

In contrast to the approaches presented so far, [30] applies a metaheuristic to

solve an optimal control problem for a relatively detailed model of a surface vessel.

This approach is based on an algorithm called “Ant colony optimization” and can

account for obstacles, but does not consider a current field.

It is based on a discretization of the surrounding into a grid, but nonetheless

generates continuous vehicle trajectories. This is achieved in a way that resembles

the procedure presented in [12]: starting at one node, control inputs (heading and

velocity) are set to some discrete value and the system’s equations are integrated

until the trajectory crosses the boundary of a grid cell. Then, the control inputs

are changed according to some rules and the integration is continued. Obviously,

the choice of the control inputs at the grid cell boundaries determines whether the

destination is reached or not and whether the path fulfills the optimality criterion.
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Therefore, the core part of the algorithm are the rules to determine these inputs.

The general idea is to continuously attempt to create different paths while the

algorithm runs. Each path is evaluated and assigned a fitness value to in a way

that allows to determine which control input chosen in which cell has lead to a

promising path. These values will be preferred subsequently, so the surrounding

of promising paths is more likely to be explored. This scheme does not guarantee

an optimal solution and can get caught in local minima, but as the authors show,

performs well in several scenarios.

Comparison of metaheuristics

In [31] and [32], a variety of metaheuristic algorithms is applied to the optimal

control problem of weighted time-energy path planning for an underwater vehicle,

including Genetic algorithms, Memetic algorithms, Particle Swarm Optimization,

Ant colony optimization and Shuffled Frog Leap optimization. The obtained results

are compared to those computed using a conjugate gradient penalty method that

incorporates boundary conditions using penalty functions and then tries to obtain

a solution using a gradient descent algorithm. However, the quality of a solution

is not quantified. Also, ocean currents are neglected.

2.3.5 Sampling-based algorithms

As [8] states, due to the extreme difficulty of planning under differential con-

straints “the overwhelming majority of solution techniques [in robotic motion plan-

ning] are sampling-based.” In the following, algorithms based on Rapidly-exploring

Random Trees will be considered.

Rapidly-exploring Random Tree (RRT)

Having been introduced in [33] and further analyzed in [34, 35], Rapidly-

exploring Random Tree is a rather young algorithm. However, as [36] remarks,
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it has shown to work well in practice and several modifications exist that aim at

improving some drawbacks. Even though being applicable to planning without dif-

ferential constraints, the algorithm was intended for considering these constraints,

even in higher-dimensional state spaces, from the beginning on.

As described in [33], the general idea is to construct a search tree that equally

covers the state space, whereby the nodes of the tree correspond to states in state

space and the edges to trajectories between the adjacent nodes. A sequence of

connected edges that reaches from the initial state to the destination state is a

solution to the motion planning problem.

Initially, the tree only contains the initial state and is extended incrementally

by continuously selecting random points from the state space, based on uniform

sampling. Then, the tree is grown towards these points, resulting in new edges

and nodes. The way the tree is extended towards the sampled point is crucial: an

attempt to exactly connect two states is equivalent to solving a two-point boundary

value problem, what might not be possible nor computationally efficient as will be

discussed further in chapter 3. Therefore, the original RRT-algorithm selects the

point from the existing tree that is closest to the sampled point (measured in

an appropriate metric in the state space) and then integrates a state transition

equation of the form (2.1) from there over a fixed time interval, using a control

input that minimizes the distance between the end point of the found trajectory

and the sampled point, but does not necessarily end up at the sampled point. If

the edge does not intersect with any obstacles, its end point is added to the graph.

In doing so, over time a uniform covering of the state space is achieved, yielding

possible trajectories to the destination state.

Due to the random nature of the sampling, the algorithm is not complete as

e.g. Dijkstra’s algorithm, which always returns a solution in finite time if one exists
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or terminates otherwise. However, under very general assumptions, this algorithm

is probabilistically complete, i.e. with enough run-time, the probability of finding

a solution converges to one [8]. To the knowledge of the author, only one attempt

using the RRT-algorithm for path planning for unmanned ocean vehicles was made

in [37]. However, this approach does not exploit the ability of the algorithm to

account for differential constraints since it is only concerned with large-scale path

planning. Therefore, it is more related to the approaches shown in section 2.2.1.

RRT∗

Despite of its advantages, the RRT-algorithm suffers from the drawback that it

is not optimal, i.e. it achieves to generate some path and also tries to improve this

path subsequently, but most likely will never find an even close to optimal path.

To address this issue, an improved version, called RRT∗, was developed in [38],

further analyized in [39] and extended to be able to handle differential constraints

in [36]. The contribution of the RRT∗ algorithm is to not simply generate a new

state and assign the closest existing state of the tree to it as a parent, but to find

it a parent node within a certain radius that minimizes its cost.

In detail, this works as follows: having sampled a random state, at first a

trajectory from the closest existing node of the tree is extended towards the sample,

where the end state of the resulting trajectory becomes a new node. Then, all

nodes lying within a radius around this node are determined. From these nodes,

it is attempted to generate trajectories to the newly found node, whereby the

start node of the trajectory yielding minimum cost becomes the parent of the

newly found node. Following that step, it is also examined if making the newly

generated node a parent of one of the nearby nodes would reduce the cost of

those. If so, the respective node is connected to the new node, while its old

connection to the tree is discarded. This procedure is referred to as “rewiring.”
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It can be proven that this extension makes the algorithm asymptotically optimal

when general conditions apply, so it “converges to an optimal solution almost

surely as the number of samples approaches infinity [36].” It is also claimed that

the computational efficiency of the original RRT-algorithm is preserved.

Even though no application to the problem of path planning for autonomous

ocean vehicles could be found, there exist some applications to other dynamic

systems:

In [36], three systems are considered, namely a system similar to Dubins car

as discussed earlier in section 2.3.1, a double integrator and a combination of these

two. All these systems share the property that there exist steering-procedures,

i.e. it is not necessary to actually solve a two-point boundary value problem since

the solution for connecting two states can be derived analytically in advance, so

this result only has to be applied for each trajectory generation. Therefore, these

results cannot be generalized to more complex systems for which such a steering

procedure is not known.

However, in [40] the algorithm is applied to the problem of calculating time-

optimal maneuvers for an off-road vehicle represented by a dynamic system with

8 degrees of freedom. For that purpose, the algorithm is extended such that it

can handle more complex dynamical systems and higher-dimensional state spaces.

This is achieved by relaxing the requirement to exactly connect two states by a

trajectory. Now, trajectories that end in a predefined vicinity of a specific node are

accepted as approximate solution to the boundary value problem. If a newly added

node becomes the parent of an already existing node as a result of the rewiring

procedure described above, the imprecision connected with this approximate solu-

tion requires to recalculate the trajectories to the children of that node using the

stored control inputs.
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In order to handle higher-dimensional state spaces computationally more effi-

ciently, planning is conducted in the so-called “task space.” This is a space of lower

dimensionality than the original state space, where sampling and distance-checking

takes place, while the tree is still grown in the original state space.

Sparse RRT

Even though the results presented in [40] appear promising, [3] attempts to

improve several aspects, leading to the Sparse RRT algorithm. More precisely, it

avoids the problematic dependency on solving two-point boundary value problems

and also maintains a sparse data structure, allowing for faster queries, which will

be explained later in chapter 4.

In [3], several dynamic systems are examined and if possible compared to

the other, above mentioned versions of RRT-based algorithms. It seems that the

presented extensions actually improve the algorithm.

2.4 Conclusion and implications for the presented thesis

In the preceding sections, a variety of different approaches to the problem

of path planning for unmanned ocean vehicles and similar applications was pre-

sented. As described, each of these methods revealed different advantages as well

as drawbacks. Despite of the diversity of the applied methods, a general tendency

can be identified:

Often, it is assumed that dynamic effects like inertia or interaction between

vehicle and water can be neglected. This is justified by the fact that the length

of the calculated path is much longer then the dimensions of the vehicle, so the

dynamics would not lead to a drastic large-scale difference between the planned

path and the path taken by the vehicle. Only the optimal control based meth-

ods [22, 23, 25, 30–32] and the modified A∗ approach in [12] do not make this
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assumption and try to implement at least a kinematic or even a dynamic vehicle

model. Other approaches apply path-smoothing techniques to account at least for

a turning radius of a vehicle.

In order to plan a path for an unmanned ocean surface vessel which is to

operate only within a range of several kilometers or even fewer, it has to be assumed

that the vehicle’s dynamics will lead to a significant difference in the path taken

by the vehicle and the prescribed path, so paths have to be planned considering

these aspects.

The use of kinematic models may produce a smoother path than applying

e.g. unmodified graph searching techniques, but still might not be a good nominal

trajectory that can be followed by a vehicle in a real application without large

deviations. Also, the presented kinematic models all rely only on the heading

angle as control input, not providing room for energy considerations in planning

because those might require to change the vehicle’s speed.

The application of path-smoothing might also generate more realistic trajecto-

ries, but still is more an approximate approach based on the maximum and not the

actual turning radius of a vehicle, completely neglecting changes in the vehicle’s

velocity.

Thus, only the optimal control approaches considering a dynamic vehicle

model in [22,23,30–32] can provide a really appropriate solution to the path plan-

ning problem. RRT-based algorithms as described in section 2.3.5 might be able

to solve the problem, but have not been applied to ocean vehicle path-planning

under differential constraints.

In [22], a very detailed dynamical model is used, however, convergence seems

to be problematic and the procedure to include obstacles appears cumbersome.

In constrast, [23] uses a quite simple dynamic model, but is also based on the
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application of sophisticated nonlinear optimization techniques and software. This

might not be available to all users. In addition, an obstacle avoidance scheme is

not described. In [30], planning is based on a really detailed vehicle model and can

avoid obstacles, but neglects currents. The approaches presented in [31, 32] also

do not account for currents and in addition seem to make use of solution vectors

of fixed length during the optimization process. This introduces the problem that

long paths might have a poorer quality than shorter path, since for both, the same

number of control inputs is used, complicating it for longer paths to adapt to the

environment.

This general impression has been strengthened by tests performed for own

implementations of both an A∗ algorithm similar to the one presented in [10] and

also an Ant Colony Optimization algorithm as presented in [30]. It turned out

that in addition to neglecting any dynamic effect, the shape of paths generated by

the A∗ algorithm is highly limited by the grid resolution.

The Ant Colony Optimization algorithm, even though capable of accounting

for realistic dynamic effects, appeared to be highly depending on the heuristic for

the heading angle. On the one hand, this limits the generality of the algorithm

because for every scenario, these heuristic values have to be provided by the user.

On the other hand, if the algorithm would be extended by current fields, the

heuristic would become inappropriate. This is due to the fact that it basically

aims at pointing out the direction of the shortest path to the destination, avoiding

obstacles. Now, if current fields are present, the shortest path is not necessarily

the fastest path.

Based on all these insights, it is desirable to employ a procedure based on an

optimal control approach that provides enough flexibility to take into account all

necessary restrictions, amongst others dynamic effects, obstacles, currents and en-

21



ergy limitations. Concluding from the good performance described in section 2.3.5,

RRT-based algorithms and especially Sparse RRT as developed in [3] appear to

be promising. Therefore, the remaining sections will focus on this algorithm and

optimal control theory, to which some theoretic foundations will be described in

the following chapter.
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CHAPTER 3

Optimal control

In the following chapter, an overview of basic optimal control theory will be

given to facilitate the formulation of the considered problem and some bench-

marks. Most derivations follow the work of [2, 21]. In addition, common solution

procedures will be listed and the implications of several types of constraints will

be discussed.

3.1 The general optimal control problem

According to [2, p. 3], the objective of optimal control theory is “to determine

the control signals that will cause a process to satisfy the physical constraints

and at the same time minimize (or maximize) some performance criterion.” In

mathematical terms, an optimal control problem can be stated as follows:

Find an optimal control function u∗(t) that causes the dynamic system

ẋ(t) = f (x(t),u(t), t) (3.1)

to follow the optimal trajectory x∗(t), minimizing the functional

J(u) = h (x(tf ), tf ) +

∫ tf

t0

g (x(t),u(t), t) dt (3.2)

while accounting for all constraints. In dependency of the appearance of the func-

tional J(u), three different problem types can be distinguished:

Bolza problem: h 6= 0 and g 6= 0

Mayer problem: h 6= 0 and g = 0

Lagrange problem: h = 0 and g 6= 0 .
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3.2 Necessary conditions for optimality
3.2.1 Minimization of a functional

Subsequently, necessary conditions for the minimization of the functional J(u)

under different conditions will be derived. Following [2, p. 109], a functional is

“a rule of correspondence that assigns to each function x in a certain class Ω a

unique real number. Ω is called the domain of the functional, and the set of real

numbers associated with the functions in Ω is called the range of the functional.”

In order to determine extreme values of a functional, the concept of an incre-

ment has to be introduced [2]:

If x and x+δx are functions for which the functional J(x,x+δx) is defined, then

the increment of J is denoted by

∆J(x,x + δx) = J(x + δx)− J(x) , (3.3)

where δx denotes the variation of the function x, being a curve in the vicinity of

x as measured by a suitable norm. Thus, the increment of J can be seen as the

change in J , caused by the variation δx.

If the variation δx is small, the increment can be written as

∆J(x,x + δx) = J(x + δx)− J(x) (3.4)

≈ J(x) +
∂

∂x
J(x)δx + t.h.o− J(x) (3.5)

≈ δJ(x, δx) , (3.6)

approximating the increment by the variation δJ of J . The variation δJ is the

change in J that is linear in the variation δx, while terms of higher order (t.h.o.)

are being discarded.

Now, according to [2], a functional J with domain Ω has a relative extremum

at x∗ if there is an ε > 0 such that for all functions x in Ω which satisfy ||x−x∗|| < ε

the increment of J has the same sign. This leads to the Fundamental Theorem of
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the Calculus of Variations for functions that are not constrained on Ω:

If x∗ is an extremal, the variation of J must vanish on x∗ so that

δJ(x∗, δx) = 0 (3.7)

for all admissible δx. A variation is said to be admissible if x+ δx is a member of

the class Ω. For a functional

J(x) =

∫ tf

t0

g (x(t), ẋ(t), t)) dt (3.8)

of several independent functions x(t) with fixed start and end points t0 and tf as

well as states x0 and xf , this implies that

δJ (x, δx, ẋ, δẋ) =

∫ tf

t0

[
∂g (x(t), ẋ(t), t)

∂x

]T
δx

+

[
∂g (x(t), ẋ(t), t)

∂ẋ

]T
δẋ dt = 0 . (3.9)

The second term in the integral can be integrated by parts∫ tf

t0

[
∂g (x(t), ẋ(t), t)

∂ẋ

]T
δẋ dt =

[
∂g (x(t), ẋ(t), t)

∂ẋ
δx

]tf
t0

−
∫ tf

t0

d

dt

∂g (x(t), ẋ(t), t)

∂ẋ
δx dt (3.10)

= −
∫ tf

t0

d

dt

∂g (x(t), ẋ(t), t)

∂ẋ
δx dt ,

which leads to∫ tf

t0

(
∂g (x(t), ẋ(t), t)

∂x
− d

dt

∂g (x(t), ẋ(t), t)

∂ẋ

)T
δx dt = 0 . (3.11)

The Fundamental Lemma of the Calculus of Variations now states that if a function

h(t) is continuous on an interval and∫ tf

t0

h(t)δx(t) dt = 0 (3.12)
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for every variation δx(t) that is continuous on the interval, then h(t) must be zero.

This means that

∂g (x(t), ẋ(t), t)

∂x
− d

dt

∂g (x(t), ẋ(t), t)

∂ẋ
= 0 . (3.13)

Equation 3.13 is usually referred to as Euler equation, being a necessary condition

for extremality of a function.

3.2.2 Final state and final time

So far, the final time tf and the final states xf were assumed to be fixed. In

the following, the effect of free final time and final states will be considered. At

first, the increment of the functional J has to be formed, taking into account that

now the final time and the states at that time are not fixed, but also subject to

variations:

∆J =

∫ tf+δtf

t0

g (x(t), ẋ(t), t) dt−
∫ tf

t0

g (x∗(t), ẋ∗(t), t) dt (3.14)

=

∫ tf

t0

g (x(t), ẋ(t), t)− g (x∗(t), ẋ∗(t), t) dt+

∫ tf+δtf

tf

g (x(t), ẋ(t), t) dt .

Assuming that all curves x, ẋ contained in the first term of the first integral lie in

the vicinity of the extremal, this can be written as

∆J =

∫ tf

t0

g (x∗(t) + δx(t), ẋ∗(t) + δẋ(t), t) dt+

∫ tf+δtf

tf

g (x(t), ẋ(t), t) dt

−
∫ tf

t0

g (x∗(t), ẋ∗(t), t) dt . (3.15)

Taylor series expansion leads to cancelation of the last integral term, resulting in

∆J =

∫ tf

t0

{[
∂g (x∗(t), ẋ∗(t), t)

∂x

]T
δx(t) +

[
∂g (x∗(t), ẋ∗(t), t)

∂ẋ

]T
δẋ(t)

}
dt

+ t.h.o. +

∫ tf+δtf

tf

g (x(t), ẋ(t), t) dt . (3.16)
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Integration by parts of the expression containing δẋ(t) yields∫ tf

t0

∂g (x∗(t), ẋ∗(t), t)

∂ẋ
δẋ(t) dt =

[
∂g (x∗(t), ẋ∗(t), t)

∂ẋ
δx(t)

]tf
t0

−
∫ tf

t0

d

dt

∂g (x∗(t), ẋ∗(t), t)

∂ẋ
δx(t) dt . (3.17)

Now, δx(t0) = 0 since the initial state is fixed. Therefore,

∆J =

∫ tf

t0

{
∂g (x∗(t), ẋ∗(t), t)

∂x
−
[

d

dt

∂g (x∗(t), ẋ∗(t), t)

∂ẋ

]}T
δx(t) dt

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δx(tf ) +

∫ tf+δtf

tf

g (x(t), ẋ(t), t) dt

+ t.h.o. . (3.18)

At this point, the last integral can be expressed as∫ tf+δtf

tf

g (x(t), ẋ(t), t) dt ≈ g (x(tf ), ẋ(tf ), tf ) δtf + t.h.o. , (3.19)

leading to

∆J =

∫ tf

t0

{
∂g (x∗(t), ẋ∗(t), t)

∂x
−
[

d

dt

∂g (x∗(t), ẋ∗(t), t)

∂ẋ

]}T
δx(t) dt

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δx(tf ) + g (x(tf ), ẋ(tf ), tf ) δtf + t.h.o. . (3.20)

The second to last term again can be expanded to give

g (x(tf ), ẋ(tf ), tf ) = g (x∗(tf ), ẋ
∗(tf ), tf )

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂x

]T
δx(tf ) (3.21)

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δẋ(tf )

+ t.h.o. .

Since δtfδx(tf ) and δtfδx(tf ) are of higher order, the increment finally becomes

∆J =

∫ tf

t0

{
∂g (x∗(t), ẋ∗(t), t)

∂x
−
[

d

dt

∂g (x∗(t), ẋ∗(t), t)

∂ẋ

]}T
δx(t) dt

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δx(tf ) + g (x∗(tf ), ẋ

∗(tf ), tf ) δtf + t.h.o. . (3.22)
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Now, δxf is not independent but depends on both δtf and δxf according to

δxf = δx(tf ) + ẋ∗(tf )δtf (3.23)

δx(tf ) = δxf − ẋ∗(tf )δtf . (3.24)

Introducing this into (3.22) and discarding all terms of higher order, retaining only

those linear in the variations, the variation of J becomes

δJ =

∫ tf

t0

{
∂g (x∗(t), ẋ∗(t), t)

∂x
−
[

d

dt

∂g (x∗(t), ẋ∗(t), t)

∂ẋ

]}T
δx(t) dt

+

{
g (x∗(tf ), ẋ

∗(tf ), tf )−
[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
ẋ∗(tf )

}
δtf (3.25)

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δxf .

As derived before, the variation must equal zero in order to be a candidate for an

extremum. Also, the Euler equation (3.13) must be satisfied. This can be seen

from the following reasoning: supposed one is given a curve x∗, being an extremal

to the problem with free final time tf and free final states xf . Then, this curve

obviously also is an extremal to a problem where that final time and those final

states were given in advance as boundary conditions. Therefore, since the Euler

equation has to hold for the problem with fixed final conditions, this is also true

for the problem with free final conditions. For (3.25) this implies that

δJ =

{
g (x∗(tf ), ẋ

∗(tf ), tf )−
[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
ẋ∗(tf )

}
δtf

+

[
∂g (x∗(tf ), ẋ

∗(tf ), tf )

∂ẋ

]T
δxf = 0 . (3.26)

This is a general necessary condition that has to be fulfilled by an extremal curve.

Making appropriate substitutions to this equation, necessary conditions for more

specific problems with e.g. fixed final time or fixed final states can be generated.

If e.g. the final states xf are fixed, then there will not be a variation of them, so
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δxf = 0. It could also occur that only some final states are fixed and some are

not. Then, the variation of the vector xf has to be split up, yielding zero for fixed

states and unspecified values for the remaining free states.

3.3 Constraints

The previous section was concerned with general necessary conditions for the

optimization of a functional. In the following, necessary conditions will be derived

for cases where different constraints apply. Namely, these are differential equation

constraints, state and control constraints.

3.3.1 Differential constraints

So far, only necessary conditions for finding an extremum of a functional

under different boundary conditions have been derived. In optimal control prob-

lems, additional constraints arise, first of all due to the set of differential equations

describing the dynamic system to be controlled. In the following, necessary condi-

tions will be derived taking these differential equations into account. In doing so,

it will be assumed that one is given a Lagrange problem, that is an extremum of

the functional

J(u) =

∫ tf

t0

g(x(t),u(t), t) dt (3.27)

subject to

ẋ(t) = f (x(t),u(t), t) (3.28)

is to be found. A common approach to take constraints into account is to simply

add them to the functional to be minimized using Lagrange multipliers. Because

the constraints have to hold at every time t ∈ [t0, tf ], the Lagrange multipliers are

functions of time. Applying this yields the so-called “augmented functional”

Ja(u) =

∫ tf

t0

{
g(x(t),u(t), t) + pT (t) [f (x(t),u(t), t)− ẋ(t)]

}
dt . (3.29)
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Defining

ga (x(t), ẋ(t),u(t),p(t), t) = g(x(t),u(t), t) + pT (t) [f (x(t),u(t), t)− ẋ(t)]

(3.30)

leads to

Ja(u) =

∫ tf

t0

ga (x(t), ẋ(t),u(t),p(t), t) dt . (3.31)

In order to find an extremum of this functional, its variation must vanish. This

leads to (3.25), with two additional variations δu and δp, so

δJa(u
∗) =

{
ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

−
[
∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂ẋ

]T
ẋ∗(tf )

}
δtf

+

[
∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂ẋ

]T
δxf

+

∫ tf

t0

{[
∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂x
(3.32)

−
[

d

dt

∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂ẋ

] ]T
δx(t)

+

[
∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂u

]T
δu(t)

+

[
∂ga (x∗(t), ẋ∗(t),u∗(t),p∗(t), t)

∂p

]
δp(t)

}
dt = 0 .

Following the same reasoning as before in section 3.2.2, this must be true regardless

of the boundary conditions, that is free or fixed final conditions. Therefore, the

integral term must be zero:∫ tf

t0

{[[
∂g (x∗(t),u∗(t), t)

∂x

]T
+ p∗T (t)

[
∂f (x∗(t),u∗(t), t)

∂x

]
− d

dt

[
−p∗T (t)

] ]
δx(t)

+

[[
∂g (x∗(t),u∗(t), t)

∂u

]T
+ p∗T (t)

[
∂f (x∗(t),u∗(t), t)

∂u

]]
δu(t) (3.33)

+
[
[f (x∗(t),u∗(t), t)− ẋ∗(t)]T

]
δp(t)

}
dt = 0 .
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Now, as before from (3.12), this holds if the term in front of the variation is zero.

This also holds for several independent variations. However, because δu(t) deter-

mines the future evolution of the system, the variation δx(t) is not independent so

this must not necessarily be true for the term in front of δx(t). But, because the

Lagrangian multipliers p(t) are arbitrary, they can be selected so that the term

becomes zero, so

ṗ∗(t) = −
[
∂f (x∗(t),u∗(t), t)

∂x

]T
p∗(t)− ∂g (x∗(t),u∗(t), t)

∂x
. (3.34)

This expression is referred to as the “costate equations,” with p(t) being the

costates. It implies that the costates also depend on the control u(t). Nonetheless,

the term in front of δp(t) must be zero to fulfill the original differential equation

constraint (3.28).

The terms outside of the integral must also add to zero if this holds for the

integral term. Evaluating those terms it follows that

0 =
[
g (x∗(tf ),u

∗(tf ), tf ) + pT∗(tf ) [f (x∗(tf ),u
∗(tf ), tf )]

T
]
δtf − pT∗(tf )δxf .

(3.35)

Introducing the so-called Hamiltonian in the style of the one known from

mechanics,

H (x(t),u(t),p(t), t) = g (x(t),u(t), t) + p(t) [f (x(t),u(t), t)] , (3.36)

these conditions can be written as

x∗(t) =
∂H
∂p

(x∗(t),u∗(t),p∗(t), t) (3.37)

p∗(t) = −∂H
∂x

(x∗(t),u∗(t),p∗(t), t) (3.38)

0 =
∂H
∂u

(x∗(t),u∗(t),p∗(t), t) (3.39)

with the boundary conditions

0 = H (x∗(tf ),u
∗(tf ),p

∗(tf ), tf ) δtf − pT∗(tf )δxf (3.40)
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which have to be adapted to the specific case. So, generally, provided that the

initial states x0 and time t0 are given, the solution of the optimal control problem

requires to solve a two-point boundary value problem.

3.3.2 Control constraints

Regardless of any constraints,

∆J = J(u)− J(u∗) ≥ 0 (3.41)

will always be a necessary condition for a relative minimum. Based on that, for

constrained control inputs it can be shown that from (3.37)-(3.39) only the third

condition (3.39) changes to

H (x∗(t),u∗(t),p∗(t), t) ≤ H (x∗(t),u(t),p∗(t), t) . (3.42)

This is known as Pontryagin’s Minimum Principle, stating that the control must

minimize the Hamiltonian (also referred to as the maximum principle, depending

on the application).

3.3.3 State inequality constraints

State inequality constraints of the form

a(x(t), t) ≥ 0 (3.43)

can be treated in a similar way as differential constraints. One general idea pre-

sented in [2] is to transform an inequality constraint into an equality constraint

and then adding this to the objective functional using Lagrange multipliers. The

transformation is achieved introducing a new state variable xn+1 with

ẋn+1(t) =
l∑

i=1

ai(x(t), t)2 ·Θ (−fi (x(t), t)) , (3.44)

where Θ is the Heaviside function with

Θ (−ai (x(t), t)) =

{
0, for ai (x(t), t) ≥ 0
1, for ai (x(t), t) < 0

. (3.45)
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Therefore, ẋn+1(t) is always greater than zero or exactly equal to zero if all con-

straints are satisfied. In order to enforce the latter, the boundary conditions

xn+1(t0) = 0 and xn+1(tf ) = 0 are imposed on

xn+1 =

∫ tf

t0

ẋn+1(t) dt+ xn+1(t0) . (3.46)

Since the integrand is always greater than or equal to zero, the boundary conditions

only can be met if the integrand is zero, that is if all constraints are fulfilled. With

a Lagrange multiplier, this state can be added to the differential constraints. The

necessary conditions (3.37)-(3.39) must also hold for this new state variable.

3.4 Solution procedures

Since most problems cannot be solved analytically, solution procedures based

on numerical methods have to be applied. In general, these can be divided into

direct and indirect methods [41].

Indirect methods are based on the evaluation of necessary conditions for an

optimal solution as derived in section 3.2. As it was shown, the necessary condi-

tions result in a two-point boundary value problem that has to be solved numer-

ically using procedures like (multiple) shooting or collocation methods. Another

possibility is the application of gradient methods that attempt to optimize the

Hamiltonian (3.42) by iteratively improving an approximation of the optimal con-

trol u∗(t) [42].

The indirect approach leads to accurate results if convergence can be achieved,

but suffers from a major drawback [41]: in order to achieve global convergence, a

good initial guess has to be supplied that might be difficult to determine. This

also includes knowledge of the structure of switching times, i.e. about the time

intervals where constraints are active or not.

Direct methods use a discretized version of the problem, enabling the applica-

tion of well-developed nonlinear optimization techniques like Sequential Quadratic
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Programming (SQP). This approach is usually sufficiently robust and easier to

formulate, however not as accurate as indirect methods. State constraints can be

incorporated more easily. If further refinement is needed, solutions obtained by

direct methods can be used as initial guesses for indirect methods.

A variety of mostly commercial software exists that provides means of solving

optimal control problems. An overview of common software packages can be found

in [43], while [1] provides several examples for solving real-world problems using

such software.

3.5 Formulation of the considered problem

Taking all this into account, the problem to be considered in this thesis can be

formulated in terms of an optimal control problem. The objective is to plan a time-

optimal path for an unmanned ocean surface vessel. In time-optimal planning, the

performance criterion simply becomes

J =

∫ tf

t0

dt (3.47)

with the Hamiltonian

H (x(t),u(t), t) = 1 + pT (t) [f (x(t),u(t), t)] , (3.48)

where the function f (x(t),u(t), t) also contains information about the local cur-

rent field. It is assumed that the initial time t0 and initial states x0 are given. The

final time tf is unknown, while the final states x0 will be partly or completely fixed

(the final position of the vessel must be specified, while final velocity or orientation

might not be of interest).

Several constraints apply to this problem: the control inputs (for example

thrust and thrust direction) only are allowed to lie within a certain interval

umin ≤ u(t) ≤ umax . (3.49)

34



This also holds for some of the state variables, since the path is required to lie

within a certain area of a given map. Also, obstacles must be avoided, leading to

xmin ≤ x(t) ≤ xmax . (3.50)

If energy limitations are to be considered in planning, a constraint of the type∫ tf

t0

e(u(t), t)dt ≤ c (3.51)

must be accounted for where c represents the total amount of energy available and

the function e(u(t), t) models the instantaneous energy consumption.

3.6 Summary

In the preceding sections, a general survey of basic optimal control theory has

been given. Many sophisticated software packages exist that provide tools to solve

optimal control problems, however, there exist some drawbacks especially against

the background of the considered problem. In general, convergence is a critical

point, particularly for indirect methods. As outlined, these have to be provided

with a good initial guess of controls, costates and switching times that might

not be available. Also, as [8, p.788] states, solution procedures for boundary-

value problems are not designed to handle state constraints that arise from the

presence of obstacles. Direct procedures in general seem to be more likely to

provide a solution, but require additional knowledge in nonlinear optimization and

sophisticated software packages which may not be available at reasonable cost.

35



CHAPTER 4

Analysis of the Sparse RRT algorithm

As outlined in chapter 2, the Sparse RRT algorithm will be used throughout

this thesis. In the subsequent chapter, the algorithm, its implementation and its

properties will be described in more detail. Also, several test cases are run to

evaluate its general behavior and to identify capabilities and limitations.

4.1 General functionality

Just like the other two algorithms described in section 2.3.5, Sparse RRT is a

sampling-based algorithm that tries to solve path planning problems for dynamic

systems by building a search tree in state space. The nodes of the tree thereby cor-

respond to states, while the edges connecting the nodes correspond to trajectories

in state space. The general idea of sampling-based algorithms is to sample a state

and try to connect it to the existing tree. The Sparse RRT algorithm, however,

works slightly differently because it aims at overcoming the drawback of having to

solve a two-point boundary value problem from which RRT∗ suffers when dealing

with complex dynamic systems. It is also able to maintain a sparse data structure,

allowing for reduced run-time.

The general functionality of Sparse RRT is visualized in figure 4.1: after having

randomly sampled a state, the algorithm checks which node within a certain radius

has the lowest cost. This node (or, if none is found, the nearest neighbor of the

sampled node) is then propagated, but unlike in the case of RRT∗ or RRT, it is not

attempted to make a connection to the sampled node. Instead, the propagation is

based on randomly selected control inputs and propagation durations. If obstacles

or other constraints are present, it has to be checked if a newly generated state

violates any of them. This mechanism of checking for the node with lowest cost
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Figure 4.1. General functionality of Sparse RRT

in a defined vicinity, the so-called “Best Nearest” feature, focuses the propagation

on low-cost paths.

In order to keep the number of nodes in the tree as low as possible without

loosing important information, the algorithm employs what is called “Drain” fea-

ture: the cost of adjacent nodes that lie within a certain radius of a newly added

node and that are on the so-called “active set” is checked. If no node has lower cost

than the newly added one, all other nodes are moved to what is called the “inactive

set” or, if they do not have any child nodes, are removed completely. Otherwise,

the newly added node will be removed. Being on the inactive set prevents nodes

from being selected for future propagation.

4.2 Properties

In general, desirable properties of motion planning algorithms are complete-

ness and optimality, i.e. the guarantee that the algorithm returns the optimal
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solution in finite time if one exists. For randomly sampling algorithms, these

properties can only hold in an asymptotic sense, that is for an infinite number of

samples. RRT was shown to be only probabilistically complete, but almost sure to

converge to nonoptimal solutions, while RRT∗ under general assumptions exhibits

both properties. As described in [3], the extensions to RRT that lead to Sparse

RRT have two major implications:

Firstly, due to the “Best Nearest” feature, the algorithm becomes asymptot-

ically near-optimal. Not to be mistaken for asymptotical optimality, this means

that the probability of finding a solution (if one exists) of which the difference

in cost to the optimal solution’s cost is bounded approaches one for an infinite

number of samples. This bound relies on the number of edges between start and

end node, as is proven in [3].

Secondly, the “Drain” feature potentially prevents the algorithm from being

probabilistically complete, that is a solution is not always found, even though one

exists. The cause for this will be discussed more in detail in section 4.6.

4.3 Implementation

A first version of the algorithm was implemented using MATLAB. However,

the unreasonably long run-time turned out to make this approach inapplicable.

Therefore, a C# implementation was used which was kindly provided by the au-

thors of [3]. This version is able to solve problems in a more appropriate run-time,

most likely due to the speed advantage a compiler language has over an interpreted

language as MATLAB. Three aspects which deserve closer attention are the data

structure employed by the algorithm for storing the built trajectories, the way

the algorithm calculates distances in state space and how the algorithm generates

trajectories.
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4.3.1 Storing states

For both the “Best Nearest” and the “Drain” feature, Sparse RRT either

needs to determine which states lie within a certain vicinity of a selected state

or which state is closest to a selected state. Because these types of search have

to be performed twice in every iteration, the performance of the algorithm highly

hinges on a data structure that allows for fast queries in state space. In the

implementation used for this thesis, states are stored in a kd-tree.

A kd-tree, introduced in [44], is a special form of a binary tree, i.e. a tree-

like data structure where starting at a root node, each subsequent node has at

most one connection to a parent node and two connections to child nodes. As

the name indicates, a kd-tree is intended to store k-dimensional data points. The

general procedure is to recursively split the available data in two sections along a

hyperplane in a different dimension each recursions , whereby each hyperplane is

located in a point selected according to a certain strategy. The split is repeated

until the bottom of the tree consists of leaves containing only a predefined number

of states which are stored in a simple list.

The selection of the split point has a high impact on the balance of the tree,

that is the equal distribution of the nodes to the sub trees. This again affects the

efficiency of queries. In the implementation of the algorithm at hand, the split

point is chosen to lie exactly in the middle between the upper and lower bounds

imposed on each dimension. This can be justified against the background of a

sampling-based algorithm that eventually will cover the search space evenly and

therefore also result in a balanced tree.

The depth of the tree is fixed, i.e. the data is split only a predefined number

of times which leads to the fact that the amount of nodes stored in each list at the

bottom of the tree must be unlimited if the capacity of the tree is not to be finite.
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This, however, will lead to a decrease in efficiency of the algorithm if many nodes

are stored due to the exhausting searching of the lists. Therefore, the depth of the

tree has to be adapted to the number of nodes which is to be stored.

A kd-tree most importantly enables two different query types, the nearest-

neighbor search and the range search. While the nearest-neighbor search deter-

mines a defined number of nodes respectively states that are closest to the initial

point of the query, a range search determines all nodes within a certain range to

the reference point.

The general idea for performing a query for the nearest neighbor is presented

in [45]: at first, the leave of the tree is accessed that contains the query node.

Then, among all other nodes in that leave, the one closest to the query node is

determined. Subsequently, adjacent leaves within a radius defined by the closest

neighbor found so far have to be searched for closer neighbors.

As described in [46], a range search can be conducted in the following way:

at first, it is assumed that for each dimension a range is specified. Then, starting

at the root of the tree, for each node the respective range is compared to the split

value of the node. Depending on this comparison it can be determined if a node

and all its children are within the range or not. By recursively executing this

procedure, the set of states within the range can eventually be determined.

4.3.2 Measuring distances in state space

Both the range search and the nearest neighbor search require a way to mea-

sure distances in state space, i.e. a metric. As [3] remarks, the best metric would

be the cost function to be optimized, however, this value cannot be determined

without building a trajectory between two states, leading to a two-point bound-

ary value problem that Sparse RRT was designed to avoid. Therefore, a different

metric has to be defined. Being somewhat arbitrary, a choice is justified by the
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success it enables. The available implementation of Sparse RRT makes use of the

following metric between two k-dimensional states a and b:

m(a, b) =
k∑
i=1

wi · (ai − bi)2 , (4.1)

where w is a tuple containing the weight for each dimension. This implies that

every choice for algorithm parameters which indicate a distance threshold in state

space (i.e. rnear, rgoal, rdrain) have to be chosen in dependency on the dimensionality

k of the state space, since more dimensions lead to (4.1) exceeding a threshold

faster.

4.3.3 Trajectory propagation

Propagating a trajectory based on a dynamic model of a system generally is

achieved by numerical integration of the system’s equations of motion (2.1). For

this, the implementation of the algorithm makes use of two integration routines:

for simple models, a simple explicit Euler integration is used, that is

yn+1 = yn + ẏn∆t , (4.2)

in which ∆t corresponds to the randomly chosen propagation time. Because this

might not yield sufficiently exact results for more complex systems, a Runge-Kutta

scheme is implemented in addition to the Euler procedure. This generates new

states according to

yn+1 = yn + ∆t

(
1

6
ẏn +

1

3
ẏa +

1

3
ẏb +

1

6
ẏc

)
, (4.3)

where

ẏa = f

(
tn +

∆t

2
,ya

)
, ya = yn +

∆t

2
ẏn (4.4)

ẏb = f

(
tn +

∆t

2
,yb

)
, yb = yn +

∆t

2
ẏa (4.5)

ẏc = f (tn + ∆t,yc) , yc = yn + ∆tẏb , (4.6)

allowing for smaller errors.
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4.4 Verification

The subsequent section serves to examine what kind of results can be obtained

applying the algorithm. Therefore, several problems to which a solution is known

will be considered and solved using the algorithm, making a comparison between

the algorithm result and the analytical solution possible.

4.4.1 Zermelo’s Problem

A rather popular example for an optimal control problem that can actually be

solved analytically is the so-called “Zermelo’s Problem.” It considers finding the

time-optimal path for a simple boat model through a given current field that can

be represented analytically. Because the exact solution to this problem is known,

it can serve as a benchmark for computer-based solution procedures. Based on

the derivations of chapter 3, the solution to this problem will be derived in the

following, based on [21, p.77].

The equations of motion of the boat are

ẋ = V cos θ + u(x, y) (4.7)

ẏ = V sin θ + v(x, y) , (4.8)

where ẋ and ẏ are the ground speed of the boat and V is its velocity relative to

the current in the direction indicated by the heading angle θ. The current field is

represented by u(x, y) and v(x, y) in x- and y-direction, respectively. The velocity

field is assumed to be known and the speed V is constant.

For time-optimal control, the objective functional is reduced to

J =

∫ tf

t0

1 dt . (4.9)

Following chapter 3, at first the Hamiltonian

H = 1 + λx(V cos θ + u(x, y)) + λy(V sin θ + v(x, y)) (4.10)
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is formed. The necessary conditions (3.37) become

λ̇x = −∂H
∂x

= −λx
∂u

∂x
− λy

∂v

∂x
(4.11)

λ̇y = −∂H
∂y

= −λx
∂u

∂y
− λy

∂v

∂y
(4.12)

0 =
∂H
∂θ

= V (−λx sin θ + λy cos θ) . (4.13)

Equation (4.13) establishes a connection between the control input θ and the

costates λx and λy. The costates can be calculated from (4.10) and (4.13) if

one considers that the Hamiltonian is not explicitly depending on the time t, what

makes it an integral of the system. This again implies that the Hamiltonian has

to be constant, and since (3.40) prescribes that it has to be zero at the final state,

this holds for all time points. Therefore,

0 = 1 + λx(V cos θ + u(x, y)) + λy(V sin θ + v(x, y)) . (4.14)

From (4.13) it follows that

λx = λy ·
cos θ

sin θ
(4.15)

which again can be applied to (4.14) leading to

λy =
− sin θ

V + u(x, y) cos θ + v(x, y) sin θ
. (4.16)

Using this, (4.15) becomes

λx =
− cos θ

V + u(x, y) cos θ + v(x, y) sin θ
. (4.17)

In a next step, the derivatives of the costates with respect to time have to be

calculated, that is

λ̇x =
dλx
dθ

dθ

dt
=

V sin θ + v(x, y)

(V + u(x, y) cos θ + v(x, y) sin θ)2 · θ̇ (4.18)

λ̇y =
dλy
dθ

dθ

dt
= − V cos θ − u(x, y)

(V + u(x, y) cos θ + v(x, y) sin θ)2 · θ̇ . (4.19)
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Applying (4.16), (4.17), (4.18) and (4.19) to (4.11) and (4.12) leads to

V sin θ + v(x, y)

(V + u(x, y) cos θ + v(x, y) sin θ)2 · θ̇ = (4.20)

cos θ

V + u(x, y) cos θ + v(x, y) sin θ

∂u

∂x
+

sin θ

V + u(x, y) cos θ + v(x, y) sin θ

∂v

∂x

and

− V cos θ − u(x, y)

(V + u(x, y) cos θ + v(x, y) sin θ)2 · θ̇ = (4.21)

cos θ

V + u(x, y) cos θ + v(x, y) sin θ

∂u

∂y
+

sin θ

V + u(x, y) cos θ + v(x, y) sin θ

∂v

∂y
.

Multiplying (4.20) by sin θ and (4.21) by cos θ and adding the resulting equations

eventually yields

θ̇ = sin2 θ
∂v

∂x
+ sin θ cos θ

(
∂u

∂x
− ∂v

∂y

)
− cos2 θ

∂u

∂y
(4.22)

as a relation between the current field and the change in the heading angle. An

interesting conclusion can be drawn from this equation: if the current field does

not vary in any of the spatial coordinates, i.e.

∇u(x, y) = 0

∇v(x, y) = 0 , (4.23)

equation (4.22) becomes

θ̇ = 0 (4.24)

so the heading angle is constant, making the fastest path a straight line. In [21],

the special case of a current field of the form

u(x, y) = 0, v(x, y) = −V · y (4.25)

is considered. From this, it follows that

∂v

∂x
= 0 ,

∂v

∂y
= 0 ,

∂u

∂x
= 0 ,

∂u

∂y
= −V . (4.26)
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Applying this to (4.22) results in

θ̇ = V cos2 θ . (4.27)

Next, a relation between the heading angle and the position has to be established.

From (4.26) and (4.11) it follows that λ̇x = 0 and therefore, λx = const. This

again means that

cos θ

V − V · y cos θ
=

cos θf
V − V · yf cos θf

, (4.28)

eventually leading to

y(θ) = sec θ − sec θf + yf . (4.29)

A relation for x can be found by introducing the inverse of (4.27)

dt

dθ
=

sec2 θ

V
=

1

V cos2 θ
(4.30)

and (4.29) into (4.7), giving

dx

dt

dt

dθ
=
V cos θ + V (sec θf − sec θ − yf )

V cos2 θ
(4.31)

= sec θ − sec3 θ + (sec θf − yf ) · sec2 θ . (4.32)

The integral of this expression∫ xf

x

dχ =

∫ θf

θ

sec Θ− sec3 Θ + (sec θf − yf ) · sec2 Θ dΘ (4.33)

becomes

xf − x =

[
1

2
log

(
cos Θ

2
+ sin Θ

2

cos Θ
2
− sin Θ

2

)
+ tan Θ

(
(sec θf − yf )−

1

2
sec Θ

)]θf
θ

(4.34)

and making use of

cos Θ
2

+ sin Θ
2

cos Θ
2
− sin Θ

2

= tan Θ + sec Θ
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eventually gives

x(θ) = xf −
1

2
[sec θf (tan θf − tan θ)− tan θ(sec θf − sec θ)] (4.35)

− 1

2
log

(
tan θf + sec θf
tan θ + sec θ

)
+ yf (tan(θf )− tan(θ)) .

Based on the system of nonlinear equations (4.29) and (4.35), a time-optimal

path from an initial position (x0, y0) to an end position (xf , yf ) can be calculated.

If (cf. [21])

x0 = 3.66, y0 = −1.86 , (4.36)

and

xf = 0, yf = 0 , (4.37)

(4.29) and (4.35) become

−1.86 = sec θ0 − sec θf (4.38)

and

3.66 =

−1

2

[
sec θf (tan θf − tan θ0)− tan θ0(sec θf − sec θ0) + log

(
tan θf + sec θf
tan θ0 + sec θ0

)]
,

(4.39)

finally leading to

θ0 = 105◦ θf = 240◦ . (4.40)

Using (4.22), the sequence of heading angles can be calculated from these val-

ues. Figure 4.2 shows the path based on this analytical solution as well as the

path generated by the algorithm. As one can see, the path generated by Sparse

RRT definitely captures the correct shape of the optimal path, however, has some

deviations from it due to its random nature.
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Figure 4.2. Zermelo’s problem: analytical and numerical solution

Using (4.30), the traveling time can be calculated by integration, i.e.∫ tf

t0

dt =

∫ θf

θ0

sec2(θ)

V
(4.41)

tf = t0 + tan(θf )− tan(θ0) . (4.42)

For the values calculated above, this leads to a dimensionless traveling time of

5.46, while Sparse RRT yields a time of 5.45 for the path shown in figure 4.2. The

traveling time is shorter because the goal tolerance accepts a solution within a

certain vicinity of the goal as will be discussed later.

4.4.2 Jet current

Another example related to the field of motion planning under the influence

of a current field is given in [5]. There, the problem of time-optimal crossing of

a jet current is considered for an ocean vehicle modeled by (4.7). The optimal

solution, represented by the three different heading angles, can be obtained using
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Nonlinear Optimization tools (e.g. fmincon in MATLAB). Figure 4.3 shows both

the result obtained using fmincon and Sparse RRT. As one can see, the Sparse

RRT solution gets close to the optimal solution that extensively makes use of the

current to reduce traveling time.
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Figure 4.3. Optimal solution and solution generated by Sparse RRT

4.4.3 Energy-optimal control problem

The third example problem to be examined is an energy-optimal control prob-

lem given in [2, p.198]. It considers the system

ẋ1(t) = x2(t) (4.43)

ẋ2(t) = −x2(t) + u(t) (4.44)

and the objective functional

J(u) =

∫ tf

t0

1

2
u2(t) dt , (4.45)
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that is the control effort, i.e. the energy spent, has to be minimized. There exist

no constraints on the states or the control. Again, in order to solve the problem

analytically, the Hamiltonian is formed as

H (x(t), u(t),p(t)) =
1

2
u2(t) + p1(t)x2(t) + p2(t) (−x2(t) + u(t)) . (4.46)

The necessary conditions (3.37) become

ṗ1(t) = −∂H
∂x1

= 0 (4.47)

ṗ2(t) = −∂H
∂x2

= −p1(t) + p2(t) (4.48)

0 =
∂H
∂u

= u(t) + p2(t) . (4.49)

Now, (4.49) can be solved for u(t) and substituted into (4.44), making (4.43),

(4.44), (4.47) and (4.48) a system of four differential equations. Given the following

boundary conditions

x(0) = 0 x(2) =

(
5
2

)
, (4.50)

this system can be solved as

x∗1(t) = 7.289t− 6.103 + 6.696e−t − 0.593et (4.51)

x∗2(t) = 7.289− 6.696e−t − 0.593et (4.52)

p∗1(t) = −7.289 (4.53)

p∗2(t) = −7.289
(
1− et

)
− 6.103et . (4.54)

The optimal control from (4.49) then becomes

u∗(t) = −p∗2(t) = 7.289
(
1− et

)
+ 6.103et . (4.55)

Solving this problem using Sparse RRT offers an additional challenge compared

to the two examples analyzed before, to be specific the final time is not subject
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Figure 4.4. Energy-optimal control problem with fixed final time

to optimization but is fixed. This problem can be solved by introducing another

state variable τ , and prescribing its value at the final time to the final time, i.e.

τf =

∫ tf

t0

τ̇ dt = tf , (4.56)

where τ̇ = 1. This means that in checking whether a node is within the specified

tolerance around the goal, the sum of the propagation times has also to be con-

sidered. Figure 4.4 shows both the analytical solution and a solution that can be

obtained using Sparse RRT. As in the other examples before, the results obtained

by Sparse RRT follow the same trend as the analytical solution, but also show a

small deviation.

4.5 Conceptual testing

After having analyzed the general ability of the algorithm to produce results

close to optimal solutions, this section will serve the purpose of evaluating if the
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algorithm can account for typical constraints arising from the considered problem

of path planning for an ocean vehicle. In section 2.4, obstacles, ocean currents and

energy constraints were identified as such constraints, together with those resulting

from the dynamic model of the vehicle.

In the previous section it has already been shown that the algorithm accounts

for a current field without any additional effort required. Also, a kinematic vehicle

model has been used successfully. Even though the dimensionality of the employed

model is lower than of a detailed dynamic model, the general problem is the same,

so it can be assumed that the algorithm in principle is capable of accounting for

constraints from a dynamical model. This will be evaluated in more detail in

chapter 5.

In this section, the focus will be on analyzing the algorithm’s behavior in the

presence of the two remaining types of constraints, resulting from obstacles and

energy constraints.

4.5.1 Obstacles

One advantage of sampling-based algorithms is that they are able to handle

obstacles easily. The general idea to make this possible is to check whether a

state lies within an obstacle or not. When sampling, the sample is checked in this

way. If it lies within an obstacle, it is simply discarded. If it is not within an

obstacle, a trajectory is generated. To make sure that this trajectory also does

not intersect with obstacles, two possible strategies can be thought of: the first

checks for obstacles in each step of the integration, the second only checks the final

state. The latter strategy requires that the propagation time is chosen adequately

small because otherwise, an obstacle that only lies between the start and end state

cannot be detected. In this section, it will be tested if the paths generated by

Sparse RRT still tend to yield near-optimal solutions in the presence of obstacles.
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In order to do so, a modified version of Zermelo’s problem from section 4.4.1

is considered. The derivation in section 4.4.1 allows to calculate the optimal path

to an arbitrary point on the map. If obstacles are included, this does not hold

anymore, though. However, under some assumptions, an idea of an optimal path

can be obtained. If an obstacle is placed in the course of the optimal path shown

in figure 4.2, this can be achieved by calculating piecewise optimal paths from the

start point to the obstacle and from there to the goal. The fact that this introduces

a discontinuity into the heading angle sequence can not be avoided, because forcing

continuity would lead to an over-determined system of equation. This, however,

does not present a problem, because the kinematic model of the boat is allowed to

have discontinuities in the control history.

A piecewise construction of an optimal path in general is admissible under

the assumption that the optimal path in the presence of such an obstacle will

only deviate slightly from the obstacle-free optimal path. Two deviations are

possible: circumnavigating above the obstacle or below it. The cost of the two

paths resulting from these possibilities can be calculated by simply adding the

costs of the single paths, determining which paths has lower overall cost. If the

algorithm would generate a trajectory that follows this path, it can be assumed

that it can sufficiently account for obstacles. Figure 4.5 shows both analytical

solutions and a trajectory obtained by running the algorithm. As can be seen, it

passes below the obstacle which also is the optimal path according to the analytical

solution. Therefore, the algorithm seems to be capable of accounting for obstacles

in a correct way.

4.5.2 Energy constraints

Another important constraint is imposed by limited energy supplies of a vehi-

cle. Therefore, it is desirable to evaluate how Sparse RRT in principle can account
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Figure 4.5. Solutions to Zermelo’s problem in the presence of an obstacle

for this problem. As introduced in section 3.5, an energy constraint in general can

be formulated as ∫ tf

t0

e (u(t), t) dt) ≤ c . (4.57)

This kind of constraint can be handled similarly to the fixed time in 4.4.3 by

introducing a new state variable E(u(t), t) that indicates the energy which has

been spent up to a certain time, that is

E (u(t), t) =

∫ tf

t0

e (u(t), t) dt) ≤ c . (4.58)

However, unlike in the case of the fixed final time in 4.4.3, this state is not to be

considered in checking whether the goal has been reached or not. This is because

the inequality nature of the constraint that does not specify a final value, but

only a limit. Therefore, it does not have to be included into the range search of

the “Drain” and “Best Nearest” feature. It is only required that the procedure
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that checks whether a newly generated state is admissible makes sure that the

inequality constraint is not violated.

In order to check the functionality of this method, a simple test setup based

on the kinematic boat model (4.7) will be used. However, to incorporate energy

considerations, it is necessary to make the thrust and therefore the speed V of

the boat variable instead of assuming it to be constant, so the number of control

inputs is increased to two. Even though arbitrary in principle for the purpose of

demonstration, a simple way to model the (dimensionless) instantaneous energy

consumption of such a boat can be

e (V (t), t) = V (t)2 (4.59)

so the consumed energy up to a certain time tf becomes

E (V (t), t) =

∫ tf

t0

V (t)2 dt . (4.60)

The expected behavior is the following: if no or only a very generous energy

limitation is active, the boat will move at full speed. If the energy constraint

becomes more restrictive, the boat will be forced to reduce its speed to comply

with the constraint.

The following test will be performed: the boat is commanded to move hor-

izontally for 4 units in a calm sea, that is without any external forcing. The

dimensionless energy supply is set to 2, the maximum possible speed to 1. With-

out external forcing, it is reasonable to assume that the speed will be constant the

whole time. In total, equation (4.60) becomes

2 =

∫ tf

t0

V 2 dt = V 2 · tf , (4.61)

while the time tf to reach the goal is

tf =

∫ 4

0

dx

V
=

4

V
. (4.62)
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Figure 4.6. Test result for variable speed with limited energy

From these two equations, the speed V and the traveling time tf can be calculated

as V = 0.5 and tf = 8.

Figure 4.6 shows the path taken by the boat in a calm sea, i.e. without

currents. Also, the heading angles and the speed are shown, as well as the energy

consumption. Several observations can be made: firstly, the boat follows a straight

line, which was proven in 4.4.1 to be the shortest path if no current field exists.

Also, the energy constraint is not violated, but all energy is consumed, what makes

sense against the background of a time-optimal control problem. The average boat

speed responsible for the energy consumption is definitely below the maximum

possible speed of V = 1, being close to the analytically obtained value of 0.5. The

rugged shape of the control sequences will be discussed later.
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4.6 Influence of the free algorithm parameters

Based on the general tendencies depicted in [3] as well as observations during

simulations, in this section it will be discussed how a solution can be influenced by

those parameters of the algorithm that have to be defined by the user. Primarily,

these parameters are the “Drain” radius rdrain, the “Best Nearest” radius rnearest

and the goal tolerance rgoal. Other parameters are the bounds for the propagation

time as well as the number of iterations executed.

4.6.1 “Drain” radius

The Sparse RRT algorithm is reported to be computationally efficient [3]

since it only grows one trajectory in each iteration, not several as RRT∗. Also, the

“Drain” feature reduces the cost of queries because the amount of data stored is

kept low. As mentioned before, the “Drain” feature aims at limiting the maximum

number of nodes that can be stored. In a bounded search space, this number

depends on the value chosen for the drain radius.

Apart from this obvious relation, the drain radius has further impact: in

section 4.2, it has been mentioned that the drain radius also has influence on

whether a solution can be found at all, that is on the completeness of the algorithm.

This is due to the fact that a drain radius chosen too large may block the goal

or parts of the optimal path. Two examples are shown in figures 4.7 and 4.8.

Figure 4.7 shows a scenario where the drain radius leads to a blockade of the goal

region, so the algorithm never will return a trajectory because no state can ever

enter the goal radius. Figure 4.8 shows an example where the drain radius is chosen

too large so that a narrow passage cannot be entered.

Another possibility of preventing finding a solution is to choose an inappropri-

ate ratio of propagation time and drain radius. Since new states are generated by

integration of a system of differential equations, a propagation time too small or a
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Figure 4.7. Drain radius blocking the goal region in a bounded space
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Figure 4.8. Drain radius blocking narrow passage (cf. [3])
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drain radius too large might lead to a situation where the newly generated states

still fall inside the drain radius of their parent state and therefore are removed.

This becomes even more critical if the derivatives of the state variables highly

vary in magnitude at different states, i.e. at one state, only a short propagation

time would be sufficient to leave the drain radius, while at other states, a longer

propagation time is needed. In such a situation it is required to choose the drain

radius small enough in order to not exclude some areas of the state space from the

search. This again has the drawback that a small drain radius does not improve

the computation time as much as a larger radius would do.

An extreme case that can be thought of is a vehicle that is at standstill initially.

Given a certain propagation time, in order to move away far enough from its initial

state and thereby avoid being discarded, a certain acceleration is required. This

demand on the acceleration does not, as it should be, stem from the optimization

process, but from the drain radius, i.e. an inappropriate drain radius potentially

could drastically influence the result.

4.6.2 “Best Nearest” radius

As described, the “Best Nearest” radius rnear is the built-in mechanism to

enforce an improvement of feasible solutions during the run-time of the algorithm.

This is enabled by determining which node from the vicinity of a sample node as

defined by rnear has lowest cost. That node then is made the starting point of

a trajectory, so the general mechanism strives to propagate nodes with low cost.

However, the efficiency of the algorithm depends on the value chosen for rnear.

Two scenarios are possible:

On the one hand, rnear could be chosen too large. In extreme cases, this can

lead to a situation similar to the one shown in figure 4.9, where one and the same

node is repeatedly selected for propagation, preventing the tree from growing.
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Figure 4.9. Large rnear leading to repeated propagation of the same node

On the other hand, if rnear is chosen too small, it will only have little effect

on improving a solution. Therefore, convergence could be slowed down. This is

especially true if rnear is chosen smaller than the drain radius rdrain: In that case,

no vicinity around an arbitrary sample node could contain more than one node of

the tree, so no selection process can happen to focus the tree growth on low-cost

nodes.

4.6.3 Goal tolerance

The goal tolerance rgoal defines a vicinity in state space which to reach will

be counted as reaching the goal itself. This is necessary because the likelihood of

exactly reaching the desired goal within a limited number of iterations is small. Due

to accepting a solution not only upon reaching the goal state, but also a vicinity

around it, the goal tolerance at the same time can become an upper bound to how

close the goal state will be reached. This can be seen from the following reasoning:
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Figure 4.10. Goal tolerance as an upper limit to the solution precision

The algorithm aims at minimizing a cost functional. Therefore, it will eventually

generate a path that only reaches the outmost boundary of the vicinity defined

by the goal tolerance, because this shortens the path and therefore also the cost

functional. Figure 4.10 visualizes this relation for a 2-dimensional state space.

4.6.4 Propagation duration

The propagation duration defines the amount of time for which the system’s

equations are integrated forward, based on a constant control input having been

randomly selected before. The propagation duration is also randomly chosen from

a user-defined interval. Apart from the before mentioned relation to the drain

radius, the propagation duration has further impact on the results generated by

the algorithm.

One important aspect the propagation duration has influence on is the detec-

tion of obstacles. The original implementation of the algorithm checks for every
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newly generated node whether it lies within an obstacle or not. This is a fast

procedure, but can become problematic if the propagation time is chosen too large

in relation to the size of the obstacle. In that case, an obstacle could simply be

jumped over by the newly generated state, so it would not be detected, but still

intersect with the generated trajectory. This issue is solved by checking for ob-

stacles not only at the newly generated node, but during integration, even though

this might result in higher run-time requirements.

Another important point influenced by the propagation duration is the

smoothness of the generated control signal. While a relatively long propagation

duration is likely to generate a control as shown for example in figure 4.4, shorter

propagation durations generate sequences as shown in figure 4.11. Clearly, the

control sequence u(t) is not smooth, but the resulting state trajectories still match

the optimal solution quite well or even better than the results in 4.4.

A simple explanation for this phenomenon is that a longer propagation dura-

tion reduces the possible combinations of states, i.e. leads to less single decisions

for the optimization process and therefore converges faster to a close-to optimal

solution. A shorter duration in contrast increases this number and therefore, given

the same run-time, generates more rugged sequences. The drawback of a long prop-

agation duration is as noticed above that the resulting state trajectories might be

less precise compared to a short propagation duration. Different means to improve

the shape of the control sequence will be discussed subsequently.

4.6.5 Number of iterations

With one iteration being the process of sampling a state, determining which

existing node to expand and generating a new state, the number of iterations has

high impact on the obtainable results. Obviously, if the number of iterations is

too small, the algorithm might not be able to find a solution at all. On the other
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Figure 4.11. Problem of section 4.4 based on a shorter propagation duration

hand, it can be observed and also seen from [3] that once a solution has been

found, initially it is often improved quickly. After this initial phase, convergence

speed decreases in many cases, but due to the random nature of the algorithm,

significant changes can occur, i.e. if only a local minimum had been found before.

4.7 (Post-)Processing of results

As indicated before, the interval chosen for the sampling of the propagation

duration has a large impact on the shape of the generated control sequence, po-

tentially making it non-smooth. In this section, three ways to influence this shape

towards a smoother appearance will be discussed based on the example of the

energy-optimal control problem presented in section 4.4.3. Two of the considered

methods are post-processing procedures, while one acts during the run-time of the

algorithm. As can be seen, no method leads to drastically different trajectories, but
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Figure 4.12. Filtered control sequence and resulting trajectories

smoothes the control sequence and therefore makes it more applicable to real-life

applications.

4.7.1 Filtering

One possible way to post-process a rugged control sequence is to filter it

using a low-pass filter. Applying a sliding-window filter with a range of 9 neighbor

points to the data on which figure 4.11 is based can lead to the trajectories shown in

figure 4.12. As one can see, the control sequence u(t) is clearly smoothed out, while

the trajectories still are very similar to the analytic solutions. However, the control

sequence locally deviates from the analytic solution and the cost function even

outperforms the analytic solution, which is only possible because the trajectories

are allowed to differ from the prescribed goal state by the goal radius as described

above, making cost savings possible.
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Figure 4.13. Results for derivative-bounded control sequence

4.7.2 Selective sampling

Another way to obtain smoother control sequences is to limit the difference

between two consecutive control values, i.e. to forbid large jumps. This procedure

is only admissible if no discontinuities in the control history are expected. Applying

this technique leads to the curves shown in figure 4.13. Several observations can

be made:

Firstly, the generated control sequence definitely is smooth. Also, all boundary

conditions for x1 and x2 are met, but the resulting trajectories clearly deviate from

the analytic solutions. However, the final cost value is only slightly higher than

the one calculated by the analytic solution, which implies that the algorithm has

converged to a suboptimal solution. This complies with the fact that the algorithm

is only asymptotically near-optimal, i.e. likely to yield a solution only close to the

optimal one. Nonetheless, the deviation in this example is only acceptably small .
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Figure 4.14. Results based on an averaged control sequence

4.7.3 Averaging

Apart from filtering and limiting the changes allowed between to consecutive

control values, it is also possible to average the results obtained from several runs

of the algorithm. If, as of default, the control values are not applied in constant

time intervals, interpolation might be necessary before averaging. Figure 4.14

demonstrates that this method, applied to ten control sequences, also can lead to

acceptable results, even though due to averaging and interpolating one boundary

condition is not met closely. This method could also be combined with a low-pass

filter. However, if the time span of different solutions differs a lot, averaging might

not be applicable.
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4.8 Summary

In the preceding chapter, the functionality of the Sparse RRT algorithm and

its major properties as well as implementational aspects have been outlined. Most

importantly, the performance of the algorithm when applied to three example

problems has been analyzed. Also, two conceptual tests were executed to evaluate

the algorithm’s ability to account for obstacles and energy constraints.

The major findings of the preceding chapter are the following: even though

being only asymptotically near-optimal, Sparse RRT is capable of finding good

solutions. A potential drawback that did not primarily affect the quality of the so-

lution, but the applicability to real technical systems, turned out to be the rugged

shape of the generated control sequence. However, several methods were analyzed

to alleviate this problem. Eventually, the influence of some of the algorithm’s pa-

rameters on the solution finding process and the solution itself has been discussed.
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CHAPTER 5

Modeling of and planning for an unmanned boat

In chapter 4, the Sparse RRT algorithm and its capabilities and limitations

have been analyzed. Based on those findings, in this chapter, the problem of short-

distance path planning for an ocean surface vessel, considering simple dynamical

effects, obstacles, ocean currents and energy limitations, will be examined.

5.1 Dynamic boat model

In the subsequent section, the simple boat model which will be used for fur-

ther simulations and its inherent assumptions will be described, based on the one

presented in [4] and the derivations in [47].

5.1.1 Degrees of freedom and coordinate systems

In general, a rigid body in space has three translational and three rotational

degrees of freedom. However, as [47] remarks, for a ship steering model, it is

justified to neglect roll, pitch and heave motions, leading to a three-dimensional

model including the position coordinates x, y and the orientation θ in a plane as

shown in figure 5.1.

For convenience, the velocity components and later on the external forces

will be expressed in a local, body-fixed cartesian coordinate system located in the

center of gravity of the boat such that the first axis is oriented from aft to fore and

the third axis stands on the plane, with the basis vector tuple

e123 = {e1, e2, e3}T . (5.1)

The motions of the boat are referred to as surge u (longitudinal direction), sway v

(lateral direction) and yaw rate r (rotation around the third axis), together forming
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Figure 5.1. Schematic of the considered boat model (courtesy of [4])

the velocity vector

vT e123 =

 u
v
r

T

e123 . (5.2)

The cartesian, earth-fixed coordinate system with the basis vector tuple

exyz = {ex, ey, ez} (5.3)

is assumed to be an inertial system and can be related to the body-fixed system

by the relation

qT e123 = q′
T
exyz = Rqexyz =

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 qexyz , (5.4)

where q is a tuple of coordinates.

5.1.2 External forces

In [47], a detailed description of possible external forces on an ocean vessel

is given, including those due to added mass, buoyancy, hydrodynamic damping,
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ocean currents, waves and wind. For the model to be used, however, only some of

these will be considered for simplicity and availability of data.

Current field

For the purpose of this thesis, it is assumed that the velocity vector of a given

current field vcurrent and the velocity of the boat can be superposed. Also, it is

assumed that a given current field is stationary, i.e. not variable with respect to

time. If the current field is defined in the earth-fixed reference frame, the relative

velocity between the boat and the current, measured in the local coordinate system,

will be defined as

vTrele123 =

 urel
vrel
r

 e123 = vT e123 − vTcurrentexyz

= vT e123 −R−1vcurrente123 (5.5)

where the current field can be transformed into the body-fixed system using (5.4).

Note that a relative yaw rate does not exist due to the fact that the current field

is assumed to be rotation free.

Added mass

Forces due to the so-called “added mass” effect occur in an accelerated relative

motion between a boat and the surrounding water. As [47] outlines, these forces

arise from the acceleration of the fluid particles. Even though in theory the vehicle’s

acceleration will force the whole fluid to oscillate, the amplitudes of the oscillation

will be smaller the greater the distance to the boat gets. Therefore, the influence of

this phenomenon is commonly modeled by adding a certain shape- and direction-

dependent amount of mass to the mass of the boat. In [4], the forces resulting
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from the added mass effect are modeled as

fT
addedMass

e123 =

 0 0 −Yv̇vrel − Yṙr
0 0 Xu̇urel

Yv̇vrel + Yṙr −Xu̇urel 0

 vTrele123 (5.6)

+

 Xu̇ 0 0
0 Yv̇ Yṙ
0 Yṙ Nṙ

 v̇T e123 ,

whereby the parameters, which are specified in appendix A, indicate the amount

of added mass for each dimension.

Hydrodynamic damping

Several damping effects result from the interaction between an ocean vehicle

and the ambient water. Here, only linear damping and the drag force will be

considered, both depending on the relative velocity vTrele123 between vehicle and

water. For linear damping of low-speed ships, it is assumed that the surge speed

can be decoupled from the sway and yaw motions [47]. The linear damping force

then can be expressed as

fT
linearDamping

e123 =

 Xu 0 0
0 Yv Yr
0 Nv Nr

 vTrele123 . (5.7)

According to [4], the drag force acting on the boat depends quadratically on the

relative velocity between boat and water and can be expressed as

fT
drag

e123 =

 Xu|u||urel| 0 0
0 Yv|v||vrel| 0
0 0 Nr|r||r|

 vTrele123 . (5.8)

Engine thrust

The boat model is equipped with a thruster of variable direction and thrust

magnitude. Therefore, the thrust that propels the boat is modeled according to

fT
thrust

e123 =

 P cosφ
−P sinφ
aP sinφ

T

e123 . (5.9)
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5.1.3 Equations of motion

Following the general Newtonian procedure, the equations of motion can be

derived component-wise for the simple boat model. The configuration of the center

of gravity of the boat is indicated at any time by the vector

z(t) = zT (t)exyz , (5.10)

expressed in the earth-fixed coordinate system. As mentioned, the velocity of

this point is the sum of two components: the surge and sway velocity vector

vT e123, given in the body-fixed coordinate system or transformed to the earth-

fixed reference frame making use of (5.4), and the current velocity vTcurrentexyz,

assumed to be given in the earth-fixed coordinate system. That is

d

dt
z(t) = vT e123 + uTcurrentexyz

=

 cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 u
v
r

+ vcurrent

T exyz . (5.11)

Assuming that the current field is stationary, the acceleration, expressed in the

body-fixed reference frame, then can be calculated using the angular velocity

pseudo-vector ω as

d

dt

(
vT e123

)
= v̇T e123 + ω × ve123 =

 u̇− rv
v̇ + ru
ṙ

 e123 . (5.12)

Using Newton’s first principle, from (5.12) it then follows that

fT e123 =

 m 0 0
0 m 0
0 0 Iz

 u̇− rv
v̇ + ru
ṙ

 e123 , (5.13)

with m being the mass of the boat and Iz the moment of inertia with respect to

the z-axis. The vector of external forces fT e123 is the sum of all external forces as

described in the previous sections, i.e.

fT e123 =
(
f
thrust

− f
addedMass

− f
linearDamping

− f
drag

)T
e123 . (5.14)
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Introducing (5.6)-(5.9) to (5.13) eventually yields m+Xu̇ 0 0
0 m+ Yv̇ Yṙ
0 Yṙ Iz +Nṙ

 u̇
v̇
ṙ

 e123 =

 P cosφ
−P sinφ
a · P sinφ


−

 Xu +Xu|u||urel| 0 −Yv̇vrel − Yṙr
0 Yv + Yv|v||vrel| Xu̇urel + Yr

Yv̇vrel + Yṙr −Xu̇urel +Nv Nr +Nr|r||r|

 vrel (5.15)

−

 0 −mr 0
mr 0 0
0 0 0

 u
v
r

 e123

which together with (5.11) describe the motion of the system. The model param-

eters are specified in appendix A. The maximum thrust P is limited to 200 N,

allowing for a maximum speed in calm sea of not even 1 m/s as is realistic for a

slow unmanned vehicle. The thruster angle φ is limited to
[
−π

4
, π

4

]
.

Figures 5.2 and 5.3 contain two examples which illustrate the model behavior.

Figure 5.2 shows two turning radii of the boat at maximum thruster angle and

different thrust magnitudes. As can be seen, the minimum turning radius increases

as the thrust decreases. It has to be noted that the boat is not drawn to scale nor

shape, but only serves the purpose to indicate the orientation.

Figure 5.3 in contrast shows the behavior of the boat if no thrust is applied,

but initial surge, sway and yaw speeds are given. Figure 5.4 shows the development

of the speeds over time and gives an impression of the damping in the different

directions. The damping in the longitudinal direction of the boat is the lowest,

while the lateral and especially the rotational damping are higher. Because the

boat lacks the ability to break, the damping is of importance because it represents

the only possibility to decelerate.

5.2 Path planning for the dynamic model

Based on the equations of motion presented in (5.15), the Sparse RRT algo-

rithm can be used to plan paths for the boat model. Since the general ability of
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Figure 5.2. Turning radii for different thrust magnitudes

the algorithm to account for obstacles, current fields and energy constraints has

been shown before, the focus of this section will be on showing that this still is

possible for a sophisticated dynamical model. Therefore, a modified version of

the jet current benchmark presented in section 4.4.2 will be used that has been

extended by an obstacle blocking the direct path to the goal region. The objective

is to plan a path between

[x0, y0, θ0, u0, v0, r0] = [0, 0, 0, 0, 0, 0] (5.16)

[xf , yf , θf , uf , vf , rf ] = [21, 21, − π

2
, 0, 0, 0] . (5.17)

The path resulting from these boundary conditions is shown in figure 5.5.

Several observations can be made: firstly, the boat does not completely reach

the specified goal position which is due to the specified goal tolerance rgoal. Within

this tolerance, however, the result is quite precise, especially for the heading angle
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for which deviations were penalized harder than deviations with respect to the

position.

Secondly, the boat’s motion is clearly affected by the current field and takes

advantage of this. It also avoids the obstacle blocking the direct way to the goal.

However, it also has to be noticed that some parts of the found path, especially

close to the corner of the obstacle, are not optimal, which is due to the rugged

shape of the control sequence. This could be improved by the methods described

in 4.7.

Finally, it has to be observed that the dynamics of the boat have a great

impact on the shape of the path which can be seen from the large turning radius

upon approaching the goal.

The influence of the boat’s dynamics is also emphasized by the path shown

in figure 5.6, where the final heading angle was set to θf = π. This change in the

final heading angle as opposed to the one specified in (5.17) leads to a completely

different path which takes less time than the one shown in figure 5.5 because it

can make more use of the current field. However, due to the large turning radius

of the boat, following the course around the right corner of the obstacle would

have taken longer for a final heading angle of θf = −π
2

than following the path of

figure 5.5.

5.3 Discussion

In the preceding chapter, a dynamical model for a small boat was derived and

implemented into the Sparse RRT algorithm in order to plan paths. As it was

shown, reasonable results could be obtained. However, some difficulties can arise

while planning: in general, the time it takes to obtain good results increases with

the dimensionality of the state space, so fast computers are necessary. This is due

to the fact that the search has to cover a larger search area and in addition, each
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added dimension increases the size of the kd-tree, slowing the algorithm down.

Most importantly, if a path is to be planned for a highly underactuated model

like the one considered, the question of reachability becomes of importance, mean-

ing that many states might not be accessible at all. This can be due to a constrained

turning radius, limited thrust or the boat lacking the ability to break. This has

to be considered when setting up a planning task. A possible way to alleviate

planning is to specify boundary conditions only for some dimensions, for example

only for position, heading angle and surge speed, while others are left unspecified.
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CHAPTER 6

Summary and future prospects

6.1 Summary

In this thesis, the problem of time-opimal path planning for an unmanned

ocean surface vehicle has been considered. Initially, existing approaches to solve

this problem have been reviewed, considering both advantages and shortcomings.

In general, these methods could be classified into two groups: planning without

differential constraints and planning which takes these into account. While the

former are prevalent, the fact that they do not regard dynamical effects makes them

suitable only for long-range path planning where these effects can be neglected.

For short-range path planning aiming at determining driving maneuvers instead of

a set of way points, however, differential constraints have to be taken into account.

Existing attempts to this specific problem were shown to have covered only

parts of the required capabilities which are accounting for dynamical effects, ob-

stacles, current fields and energy constraints. While Dynamic Programming as the

probably most general tool was discarded due to its limitation to low dimensions

and nonlinear optimization-based optimal control software due to potential con-

vergence problems, sampling-based planning algorithms, namely the Sparse RRT

algorithm, have been identified as promising solution methods.

This algorithm then was tested in several benchmarks based on optimal con-

trol theory and was shown to perform well. Its ability to incorporate all of the

above mentioned constraints was demonstrated. Even though a non-negligible de-

pendency of the quality of the results on the parameters of the algorithm was

noticed and discussed, in total it turned out to be a flexible tool applicable to the

considered problem. Due to its flexibility, the application to other problems as for

example energy-optimal planning with time constraints may not be a problem.
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The application of the Sparse RRT algorithm to a dynamic boat model with

a higher-dimensional state space also led to good results. However, obtaining

a solution turned out to be more complicated than for lower-dimensional models,

mainly due to increased run-time requirements and the underactuation of the boat.

6.2 Future prospects

Several directions for future inquiries can be pointed out: primarily, gaining

a more rigorous understanding of the algorithm parameter’s influence would be

valuable. A paper by the authors of [3] about this topic, having been under review

upon completion of this thesis, may shed more light on this.

Also, techniques for improving the existing algorithm are thinkable of. For

example, it could benefit the obtainable results if sampling would be focused to-

wards the best solution known so far as time proceeds, introducing a simulated

annealing-like behavior as known from metaheuristic optimization. Even though

this has potential to further loosen the probabilistic completeness of the algorithm,

in cases without strong local minima it might turn out to be advantageous.

In addition, actual performance comparisons with existing approaches like

Dynamic Programming or other sampling-based algorithms could be of interest to

determine which is more adequate for a certain problem set.

Besides this, the implications of a newly developed algorithm that samples

the control space directly and propagates a randomly-chosen node in configuration

space have to be determined. A (however not journal published upon completion

of this work) description of this algorithm can be found in [48].

The long-term goal of all research in this field is the application of obtained

simulation results to real unmanned boats. This, however, requires more insight

into closed-loop control for path-following that accounts for uncertainties, only to

mention one challenge.
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APPENDIX

Model parameters

P ∈ [0, 200 N]

φ ∈
[
−π

4
,
π

4

]
m = 153.94 kg

Iz = 73.04 kg m2

a = 1.5 m

Xu̇ = 18.17 kg Yv̇ = 124.54 kg

Yṙ = 0 kg m Nṙ = 36.15 kg m

Xu = 107.33 kg/s Yv = 536.67 kg/s

Yr = 322 kg m/s Nv = 0 kg m/s Nr = 1073.33 kg m2/s

Xu|u| = 107.33 kg/m Yv|v| = 536.67 kg/m Nr|r| = 322 kg m2

(Courtesy of [4])
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