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The Square of Opposition: Innovations in Teaching Logic 

Introduction 

Teaching logic of any type to novices can come with a variety of challenges. Many 

concepts, when approached linguistically, appear to be intuitive. However, the abstraction of 

language into logical symbols may transform what was once intuitively understood into 

something that appears to be foreign or not immediately relatable to a given student’s modes 

of everyday reasoning. Specifically, new students in critical thinking courses may struggle with 

making inferences of categorical statements using the classical square of opposition.  

There is much debate among philosophers and others over the proper approach to 

teaching critical thinking (Robinson, 278-85) (McPeck, 66-95). May instructors teach only informal 

logic in their courses, perhaps believing that the ability to find and identify informal fallacies 

applies more readily to the “real world.” Even in courses where formal logic is taught, however, 

there are those who believe that modern logic has rendered the teaching of classical categorical 

logic –which includes the classical square of opposition – as obsolete. By contrast, this paper 

takes the position that there is still value in teaching classical logic in introductory critical 

thinking courses.  
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First of all, classical categorical logic reflects the intuitions of everyday reasoning. For 

example, in modern logic, the inference from a true universal affirmative statement to the truth 

of the associated particular affirmative cannot be made due to the issue of existential import, 

and rightly so under the commonly accepted interpretation (The accepted interpretation of 

existential import results from answers to these questions: Do universal statements imply their 

associated particular statements? And, to what degree do our particular statements imply the 

existence of their subjects?). With the assumption that universal statements never imply the 

existence of their subjects, paired with the assumption that particular statements always imply 

the existence of their subjects, it logically follows that we cannot infer the truth of an existing 

particular based on a universal statement that does not imply existence. In a common, 

everyday context, however, reasoning from the truth of a universal to the truth of a particular is 

not always considered to be erroneous. In the types of informal discussions that we have 

regularly, the issue of existential import rarely surfaces. When someone infers that “Some 

particular turtle has a shell” from the statement that “All turtles have shells,” there is nothing 

within the typical interpretation of those statements that indicates the possibility that turtles 

may not exist. To put it more simply, basic discussions with pragmatic goals do not focus on the 

assertion (via statements) of the existence of their subjects, because in most cases, their 

existence is assumed.  

Additionally, in more academic or specialized contexts, classical logic has value for 

students. Primarily, a given person cannot be expected to fully understand modern logic 

without understanding issues such as the problem of existential import, and the problem of 

existential import cannot be properly understood without a grasp of classical logic issues that 
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are being addressed by modern logic. In short, understanding where we come from, logically, 

tells us about where we are, and where we may be heading.  

Regarding the shift toward a focus on informal reasoning in entry level critical thinking 

courses, an argument can be made that the type of approach stressing informal reasoning does 

not give students a functional understanding of the procedures used in such reasoning, thus 

denying the student an opportunity to practice and develop the skills necessary to make proper 

inferences. No doubt, the ability to recognize and identify informal fallacies is a useful one. 

Even so, this is only half of the battle. What remains untouched in pedagogical techniques 

focusing exclusively on informal reasoning is the exposure to actual logical procedures at play 

and the reasoning behind them. Students can then end up lacking the skills required to 

translate ordinary statements into their standard symbolic form or to work with such formal 

statements at an abstract level - a skill that contains benefits for any given student. Primarily, it 

is beneficial for students to be able to work with the symbolic representations of statements 

Instead of parsing out inferences linguistically; standardized symbols allow students to focus 

solely on the logical operations required, thus avoiding any misleading ambiguities that may be 

present in the language. 

Detractors of teaching classical logic sometimes object that making inferences from 

basic categorical propositions is intuitively obvious, and therefore should not be afforded the 

class time it takes to teach the technical aspects of such inferences. While it can be generally 

agreed upon that many inferences of categorical propositions are intuitively obvious, such 

dismissiveness oversimplifies the issue. Students may have differing levels of intuition, and, as 
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stated, the abstraction into unfamiliar symbols can undercut even intuitively obvious 

inferences. In any case, a person’s intuitions can potentially be wrong, and it is always 

beneficial to supplement individual or prima facie intuitions through the cultivation and 

practice of technical skills. 

Apologetics aside, many instructors still incorporate classical logic into their curriculum, 

and as long as they do, there will be the need for innovation in those teaching methods and 

presentation styles related to it. To that end, the remainder of this paper presents a new 

technique for teaching one specific model often featured in classical logic: the Square of 

Opposition. 

The Traditional Square of Opposition 

One important aspect of critical thinking is the ability to reason and draw inferences 

from simple categorical statements. The square of opposition, a logical diagram, was designed 

to visually indicate the relationships between four different types of categorical statements:  

 the universal affirmative (the A statement, meaning “all [subject] are 

[predicate],” symbolized as SaP) 

 the universal negation (the E statement, meaning “no [subject] are [predicate],” 

symbolized as SeP) 

  the particular affirmative (the I statement, meaning “one or more [subject] are 

[predicate],” symbolized as SiP) 

 the particular negation (the O statement, meaning “one or more [subject] are 

not [predicate],” symbolized as SoP)  
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These statements relate to each other in a variety of types of opposition. An A 

statement and its corresponding E statement have what is known as a contrary relationship, 

meaning that they cannot both be simultaneously true, but they can be simultaneously false. 

Similarly, an I statement and its corresponding O statement have what is known as a 

subcontrary relationship, meaning that they cannot be simultaneously false, but they can be 

simultaneously true.  

Furthermore, an A statement and its corresponding O statement, and an E statement 

and its corresponding I statement, relate as contradictories. Statements that relate as 

contradictories cannot have identical truth values (if one contradictory is true, the other must 

be false. If one contradictory is false, the other must be true).  Lastly, an A statement and its 

corresponding I statement, and an E statement and its corresponding O statement relate as 

alterns. The universal statements are referred to as superalterns and the particular statements 

are referred to as subalterns. The relationship between superalterns and their corresponding 

subalterns can be described with two sub-rules: (a) The truth of a superaltern (an A statement 

or an E statement) implies the truth of its corresponding subaltern (an I statement or an O 

statement, respectively), and (b) The falsehood of a subaltern implies the falsehood of its 

associated superaltern.  

The idea behind making categorical inferences is this: 

Given one of the four basic categorical propositions and a truth 

value, and using the described relations as rules of inference, a 

given person can infer the truth value of the remaining three Figure 1 
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propositions. This process is visualized in the square of opposition (fig.1). While there are 

historical and contemporary variations in how the square of opposition is depicted (Bernhard), 

figure 1 represents a common presentation.  

Pedagogical Stumbling Blocks to Mastering the Logic of the Square 

While many of the rules of inference are linguistically intuitive, the first step in making 

immediate inferences is the proper translation from language into logical symbols. Once a 

student is dealing with symbolic representations of statements, these intuitively easy 

inferences can become obscured by viewing them in a simplified, symbolic state. Additionally, 

there is not a standardized visualization of the square of opposition, and many depictions 

include potentially confusing elements. For example, some depictions of the square of 

opposition utilize arrows to indicate the relationships between a superaltern and its related 

subaltern. This can become problematic. For example: when making an inference from a true 

superaltern, we can carry that truth value downward in the direction of the arrow. If the given 

superaltern is false, however, we cannot simply carry the false value downward in the same 

way due to the altern sub-rule (b). Yet, the inclusion of an arrow as described above - arrows 

imply directionality and motion, not necessarily relationships such as those focused on in 

immediate inferences - may mislead students into thinking that this inference is correct, 

because they are following the direction of the arrow.  

Some diagrams attempt to account for this type of error by including additional arrows 

pointing upwards from a subaltern to its associated superaltern. Despite this attempt to 

mitigate confusion, there is not usually any visual indicator as to when one should follow the 
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downward arrow instead of the upwards arrow, because the nature of the diagram is to 

represent these concepts without the use of words. Therefore confusion can be paradoxically 

compounded by an adaptation meant to lessen that confusion.  

Aside from these problems, there are certain inferences that cannot be made, which 

results in a truth value of unknown. For example, when given a superaltern as false, we cannot 

make the inference that its associated subaltern is either true or false, and at best can only infer 

that the truth value is unknown. While the existence of unknown inferences is included 

implicitly in the rules of inference of categorical propositions, this fact is never visually indicated 

in the tools and diagrams that are typically available to students.  

To add to the number of potential roadblocks that a new student of logic might face, 

oftentimes the required textbooks used in critical thinking courses do little in terms of offering 

a variety of useful tools to help students of differing backgrounds and capabilities to come to a 

higher level of understanding. Introductory logic textbooks tend to focus on a text-based 

description of the processes involved, which is often less clear than a verbal lecture or real-time 

demonstration. They are also, quite typically, jargon heavy, which can lead to frustration if a 

student is already struggling. Additionally, most textbooks repeat or reuse the same or similar 

visual representations of the square of opposition (Kelly, 152-57) (Baronett, 173-77) (Parker, 

Moore, 253-54) (Salmon, 326-30) (Cohen, McMahon, Copi, 80-83). Others discard the arrows, but do 

little else to alter how the information is conveyed (Hurley, 211). 

While such depictions can vary slightly from text to text, all lack innovative and new 

ways of visualizing the necessary processes of making immediate inferences from categorical 
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propositions. When the producers of a text book do decide to innovate, the resulting product 

may become even further abstracted from a student’s grasp of essential relationships, resulting 

in a model that is no more intuitive than the traditional depiction.  

Aside from difficulties that arise from issues related to the specific subject matter, 

teaching classical logic can also be hampered by more general issues of teaching that manifest 

themselves in any given classroom. Large classrooms in particular are comprised of a diverse 

collection of students, each with their own talents, strengths, weaknesses, and approaches to 

the material. Some students may respond positively to text based explanations, whereas others 

may have difficulties memorizing long or complex lists of rules and axioms. All of this can make 

planning a curriculum and setting standards a challenge. Instructors in any field can benefit 

from adding more tools to their heuristic tool belt for those students that might not respond 

well to standardized approaches. 

Creating New Tools for Teaching Classical Logic: Dimo’s Square 

Creating new educational tools can be easy and effective once specific difficulty areas 

are discovered and identified. Further, the development of visual models and other heuristic 

devices, even for less common areas of difficulty, can be beneficial on a larger scale; the 

resulting method or model may have other intrinsic attributes that can enhance the learning 

outcomes of students whose difficulties stem from completely unrelated areas. An example of 

one alternative approach to teaching immediate inferences of categorical propositions is 

“Dimo’s Square (fig.2),” a newly innovated model of the traditional square of opposition.  
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Dimo’s Square, like the traditional square of opposition, 

visually indicates the process of making immediate inferences 

of categorical propositions. Furthermore, Dimo’s Square and 

the traditional models are logically identical, meaning that all 

inferences made will yield identical results1. The difference 

emerges from the manner of inference delivery. 

Dimo’s Square separates the traditional square into two 

different squares, one for true statements, and one for false statements. Once given a case as 

true or false, only the square that corresponds to that truth value is used (in other words, if 

given a true statement, use the top square only. If given a false statement, use the bottom 

square only). Overlapping the two squares is a circled area that indicates a zone containing the 

statements which produce unknown inferences.  

DImo’s Square can be operated by implementing two rules and one exception. The rule 

of contradiction states that any two statements connected by a diagonal line cannot have the 

same truth value. The rule of alterns states that, if a statement on an upper corner of either 

square is true, then any statement connected to it by a vertical line is also true. There is one 

exception to the rule of alterns: when given a case that is within the circled area, use the rule of 

contradiction only; all other inferences are unknown. 

As an example: When given “SaP is true” as your starting case, begin at the A corner of 

the true square. Then, employ the rule of contradiction to determine that SoP is false. Using the 

                                                           
1 Formal proofs are included on pages 14 to 23 
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rule of alterns, it can be determined that SiP is also true. Then, employing the rule of 

contradiction on the valid inference “SiP is true,” it can be concluded that SeP is false.  

Another example that includes the use of one exception: When given “SeP is false” as 

your starting case, begin at the E corner of the false square. Note that the given case is within 

the circle, and the rule of alterns cannot be used. Then, employ the rule of contradiction to 

determine that SiP is true. Without another rule, no further inferences can be made, so the 

remaining statements, SaP and SoP, are unknown. 

Comparative Analysis: Dimo’s Square and the Tradtional Model 

 The primary purpose behind creating Dimo’s Square was to assist students who had 

difficulties identifying the statements that produced unknown inferences. Instead of using just 

four basic statements that are then assigned a truth value, and consequently processed 

through the diagram, Dimo’s Square “bundles” the truth value along with the basic categorical 

statements, which gives a total of eight possible base cases (a true and a false version of each of 

the four basic statements). This allows for the square to be separated into a true square and a 

false square, giving the user a dedicated corner for all eight possible cases. Stacking the two on 

top of each other neatly groups the corners representing the statements that result in unknown 

inferences. The circle around them strongly indicates the group as such.  

This particular presentation of the square of oppositions has many benefits. Most 

notably, on a surface level, it visually indicates the statements that will produce unknown 

inferences. Unknown inferences, while clearly indicated in the rules of the traditional square, 
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are never visually indicated within the traditional diagram. Dimo’s Square addresses this 

problem directly in both, through its rules and in its visualization.  

Dimo’s Square also gives the user a dedicated corner for each possible combination of 

true or false basic statements. The traditional representation has four corners that can accept 

either true or false variables. This may seem to be simpler, as the number of basic statements 

in this approach is limited to four. However, a true value in a given corner on the traditional 

square may call for a different directional procedure than a false value. Having dedicated 

starting points for each possible combination insures that no corner is doing two jobs. Each 

corner deals exclusively with one type of true or false statement.  

Another minor but beneficial consequence of Dimo’s Square is, due to its arrangement, 

there is no need for arrows in any way. As mentioned in the earlier discussion of problems with 

traditional models of the square, arrows imply a directionality of motion that can be misleading 

for novice logicians. By contrast, with Dimo’s Square, all rules are described and defined in 

terms of their horizontal and diagonal connector lines, which indicates a type of relationship, 

not a direction. This greatly reduces the chances of a student making an error when dealing 

with the superaltern or subaltern of a given case.  

Finally, and perhaps the most notable property of Dimo’s Square, is that it requires 

fewer rules to operate. The traditional square requires the memorization of four rules (but only 

if you count the rule of alterns as one rule, which may be a little disingenuous due to the fact 

that it is comprised of two sub-rules. This may be perceived by students as an attempt to 

“sneak in” an additional rule without admitting that one had done so). Dimo’s Square, as 
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described above, requires only two rules and one exception. Due to the arrangement of Dimo’s 

square, it is not necessary to have specific rules for contraries and subcontraries. Additionally, 

the rule of alterns remains as a single rule, not a pair of sub-rules. And while Dimo’s Square 

could also be criticized for “sneaking in” a rule by having an exception (which could be treated 

as a third rule), it is always easier to remember not to do something than it is to remember a 

thing that you need to do. Regardless, even including the exception of the rule of alterns as the 

third in its list of rules, Dimo’s Square still operates with two fewer rules than its traditional 

counterpart. This attribute of Dimo’s Square may be enough to distinguish itself from its 

predecessor in terms of its elegance. To produce the same results with fewer axioms and, even 

in some cases, fewer steps, is almost always more desirable than any other alternative, and 

surely in line with the spirit of Occam’s Razor.  

A possible criticism of Dimo’s Square is that it trades visual simplicity for verbal or 

rhetorical simplicity. While it may be true that Dimo’s Square can be operated with fewer rules, 

the visualization required for this method is more complex. There are two squares instead of 

one, and it requires a circle to indicate when to enact the exception. That said, the degree to 

which two squares and a circle are harder to memorize than a single square is possibly 

negligible, and Dimo’s Square has the advantage of being visually distinctive as well as verbally 

legible.  

In light of this comparative discussion, it is important to note that many students may 

become overwhelmed when confronted with a barrage of diagrams and visualizations. It is 

almost always better to begin with a generalized approach until it becomes clear that there are 
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specific difficulties being experienced by a student. In other words, only when there are 

specialized problems should there be specialized solutions. The development of Dimo’s Square 

arose in response to one such specialized problem, hence its presentation of one such 

specialized solution. 

Conclusion 

 When it comes to teaching logic, the common approaches tend not to stray far from 

traditional methods of representation. While having a general strategy is essential to teaching 

within any field, it can result in a failure to provide the necessary skills and information to those 

students who may not respond well to such generalized methods. While some believe that it 

may be pragmatically useless to focus time and effort on developing methods for outliers - that 

it is always more efficient to use a “best fit curve” approach in designing curricula and teaching 

tools - Dimo’s Square shows otherwise. It is rooted in the teleology of mastery and driven by (i) 

a desire to convey the information in a way that can be understood, (ii) a functional 

understanding of what aspects of the material are confusing to students and (iii) a 

determination to reimagine a heuristic that conventional teaching assumes is long exhausted of 

its possibilities. Hopefully, this paper has demonstrated the persistence of possibilities. 
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PROOFS 

General Rules   

All given cases must: Contain one Subject and one Predicate, in that order. Be of one and only 

one type (either A, E, I, or O). Be given as either True or False, but not both.  

Rules of Inference (Traditional square) 

Contradictories: Contradictory statements are connected by diagonal lines. Contradictory 

statements cannot have the same truth value; if one is true, the other must be false. If one is false, 

the other must be true.  

Alterns: Alterns are connected by vertical lines. Universal statements (A and E) are 

“superalterns.” Particular statements (I and O) are “subalterns.” 

a) If a superaltern is true, its related subaltern is also true. If a superaltern is false, then its related 

subaltern is unknown. 

b) If a subaltern is true, its related superaltern is unknown. If a subaltern is false, then its related 

superaltern is also false. 

Contraries: Universal statements (A and E) that are connected by a horizontal line are 

“contraries.” If a given contrary statement is true, the other must be false. If a given contrary 

statement is false, the other is unknown. 

Sub-Contraries: Particular statements (I and O) that are connected by a horizontal line are “sub-

contraries.” If a given sub-contrary statement is true, the other is unknown. If a given sub-

contrary is false, the other is unknown. 

 

Rules of Inference (Dimo’s Square)   Note: when given true statements, use the top square 

only. When given false statements, use the bottom square only. 

Contradictories: Contradictory statements are connected by diagonal lines. Contradictory 

statements cannot have the same truth value; if one is true, the other must be false. If one is false, 

the other must be true. 

Alterns: Alterns are connected by vertical lines. Universal statements (A and E) are 

“superalterns.” Particular statements (I and O) are “subalterns.” If a superaltern is true, its related 

subaltern is also true. 

Exception: If the given case falls within the circled area, use the rule of contradiction only. Any 

other inferences that would require the use of an additional rule are unknown.  

 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimo’s Square Traditional Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dimo’s Square Traditional Square 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Traditional Square Dimo’s Square 



  

WORKS CITED 

McPeck, John E. "4." Critical Thinking and Education. New York: St. Martin's, 1981. 66-95. Print. 

 

Robinson, Susan Rebecca. "Teaching Logic and Teaching Critical Thinking: Revisiting McPeck." Higher 

Education Research & Development 30.3 (2011): 278-85. Web. 

 

Bernhard, Peter. "Visualizations of the Square of Opposition." Logica Universalis 2.1 (2008): 31-41. Web. 

 

Cohen, Carl, and Kenneth McMahon. "3.5." Philosophy. By Irving M. Copi. Boston: Pearson Custom, 

2012. 80-83. Print. 

 

Kelly, David. "6.2." The Art of Reasoning: An Introduction to Logic and Critical Thinking. 4th ed. New 

York: W.w. Norton, 2014. 152-57. Print. 

 

Baronett, Stan. "5.C." Logic. 2nd ed. New York: Oxford UP, 2013. 173-77. Print. 

 

Hurley, Patrick J. "4." A Concise Introduction to Logic. 11th ed. Boston: Wadsworth, 2012. 211. Print. 

 

Parker, Richard, Brooke N. Moore.  "9." Critical Thinking. 11th ed. New York: McGraw-Hill Education, 

2015. 253-54. Print. 

 

Salmon, Merrilee H. "10." Introduction to Logic and Critical Thinking. 3rd ed. Orlando: Harcourt Brace, 

1995. 326-30. Print. 

 


	The Square of Opposition: Innovations in Teaching Logic
	Recommended Citation

	tmp.1431382666.pdf.r27qG

