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ABSTRACT

During the Deepwater Horizon Oil Spill in 2010 approximately 210 million gallons of
crude oil was released into the Gulf of Mexico. To enable bacterial degradation the oil had to
be dispersed into small oil droplets, which was achieved using 1.84 million gallons of chemi-
cal surfactants. As these surfactants have questionable environmental impacts, the idea of this
research project is to use silica nanoparticles as a model particle to form Pickering emulsions
and to study oil-mineral aggregate (OMA) formation. Pickering emulsions typically consist of
oil droplets stabilized by solid particles instead of surfactants. Silica might be suitable for this
as it already occurs in the ecosystem ocean, e.g. as sand. Furthermore it is known that sea-
water, oil and particulate matter form OMAs, but the interactions between particles, OMAs,
and surfactants are still poorly understood. This is why the commercial available surfactant
Aerosol OT (AOT) as a model surfactant was used to estimate the interactions between surfac-
tant and OMAs.

To determine the suitability of silica nanoparticle as oil dispersants, defined silica ag-
gregates were created and fractionated to yield distinct size fractions. These aggregates were
mixed with ethyl acetate, octanol and octane as model oils to determine the aggregate adhe-
sion to oil/water interfaces and the formation of Pickering emulsions or OMASs. The reason for
choosing these oils is their different polarity. With these results the formation of Pickering
emulsions and OMAs are determined using silica agglomerates of three different sizes. The
theory suggests that that the stability of Pickering emulsion in DI-water increases with increas-
ing particle size. During the experiments an optimum particle size for Pickering emulsions in
DI-water was observed. Furthermore it was observed that the formation of a significant OMA
layer requires seawater. As soon as the surfactant Aerosol OT was added, the thickness of the

sedimentation layer was reduced. AOT is believed to bind to the silica nanoparticles through



divalent cation bridging, but the exact nature of this interaction is still unknown. BP/The Gulf

of Mexico Research Initiative Grant No. SA 12-05/GOMRI-002 supports this project.
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CHAPTER 1. INTRODUCTION

During the Deepwater Horizon Qil spill in the Gulf of Mexico in 2010, 1.84 million
gallons of the chemical dispersants COREXIT® 9500 and 9527 were applied to the oil slick or
injected at the wellhead [Hertsgaard, 2013]. They were used to disperse the crude oil within
the water column. This process supports bacterial degradation in order to reduce the toxicity
and the environmental impacts that result from oil migrating into costal ecosystems. However,
the toxicity of such dispersants and their influence on the marine ecosystem is questionable
and under intense debate [CNN, 2010a; George-Ares & Clark, 2000; Hemmer et al., 2010;
Rico-Martinez et al., 2013]. The potential hazards associated with dispersant use have led to
intense interest in identifying new biocompatible dispersant systems.

One new approach is to use silica nanoparticles solely or in combination with chemi-
cal dispersants as an emulsifier. Nanoparticles are particles of any shape with one dimension
between 1 to 100 nanometer [Vert et al., 2012]. A container with silica nanoparticles is shown

in Figure 1.1.

Figure 1.1: Silica nanoparticles as a dry powder [LHcheM, 2012]
Silica is very suitable for the usage as emulsifier as the formation, stability and struc-

ture of emulsions stabilized by colloidal silica has been investigated since the discovery of



Pickering emulsions in 1906 [Aveyard et al., 2003]. Additionally, silica is available in nature
and accounts for about 75 weight percent of the Earth’s crust for example as quartz sand [ller,
1979]. This means nature is accustomed to dealing with silica as bounded structures. Further-
more this availability makes silica inexpensive [ller, 1979]. The proposed idea driving this
research project is that silica nanoparticles will adhere to oil/water interfaces and can be used
to disperse oil as Pickering emulsions. This dispersion will increase the bacterial degradation
of an oil slick in comparison to one that is undispersed. Apart from the usage as an oil spill
dispersant, silica nanoparticles might be able to replace surfactants in other areas where emul-
sions are sought such as in soaps, foods and cosmetics, or wastewater treatment.

The motivation for this project was two-fold. The first was to examine the use of silica
nanoparticles as oil spill dispersants, and to study the underlying mechanisms that determine
the physical properties and stability of the dispersions. The second was to use silica nanoparti-
cles as a model mineral particle to study the formation and sedimentation behavior of oil-
mineral aggregates (OMASs). Previous research showed that silica nanoparticles flocculate and
form oil mineral aggregates [e.g. Midmore, 1999; Vignati et al., 2003]. These two aspects can
be studied in tandem because the same physical phenomena that allow for the formation of
Pickering emulsion also lead to OMA formation. Based on this knowledge the following hy-
pothesis is identified: The size of silica nanoparticles has a significant influence on the
formation and stability of Pickering emulsions and the formation of oil mineral aggre-
gates with oil in deionized and seawater.

In order to test this hypothesis the following objectives were identified:

1) Create and fractionate silica nanoparticle aggregates to yield distinct size fractions

with narrow size distributions.

! In Pickering emulsions the stabilizing molecule around the dispersed droplets is replaced by an enve-
lope of solid particles [Thieme et al., 1999]



2) Examine aggregate adhesion to oil/water interfaces and demonstrate the formation of

Pickering emulsions for different oils (e.g. organic solvents, gasoline, crude oil).

3) Determine the influence of particle size on the formation of aggregates consisting of
oil, silica and minerals in seawater.

In order to complete these objectives, the theoretical principles are discussed followed
by choosing the three different oils to form Pickering emulsions with three different size frac-
tions of silica particles. Later, the anionic surfactant Aerosol OT (AOT) was added to probe
the emulsion formation and stability while adding a commercial available surfactant and the
results are compared.

Results from this thesis project have been presented as a poster for the University of
Rhode Island Chemical Engineering Research Symposium in April 2014, and as an oral
presentation for the Colloid & Surface Science Symposium hosted by the American Chemical

Society in June 2014 held in Philadelphia, PA. These can be found in appendix 6.9.



CHAPTER 2. BACKGROUND

In the following section the theoretical principles that form the basis for the conducted
research are discussed. First, dispersants and their functionality are presented. The next section
outlines natural oil degeneration with a focus on seawater and weathering of crude oil. This is
followed by an explanation of Pickering emulsions and oil mineral aggregates (OMAS). After
that the effects of reagglomeration and filtration are disclosed followed by a description of
silica and silica nanoparticles. At the end of this chapter the measurement equipment used is

explained.

2.1.Dispersants

A very general definition of dispersants is given by Heusch and Reizlein: Dispersants
are “products that are able to promote or stabilize the formation of a dispersion” [Heusch &
Reizlein, 2008, p. 1]. In a dispersion are two or more insoluble components finely distributed
into each other [Heusch & Reizlein, 2008]. The U.S. codes for Federal Regulations describe
dispersants as “chemical agents that emulsify, disperse, or solubilize oil into the water column
or promote the surface spreading of oil slicks to facilitate dispersal of the oil into the water
column” [CFR, 2001]. This means dispersants are a key for an effective oil spill response in
order to minimize environmental damage. Conventional dispersants are detergent-like prod-
ucts [Lessard & DeMarco, 2000]. Using them is one of the limited practical available respons-
es to offshore oil spills [Fiocco & Lewis, 1999]. Dispersants are used to reduce the oil water
interfacial tension [Gong et al., 2014].

The usage of dispersants is necessary as only a small part of an oil slick can be re-
moved by traditional mechanical response. Lessard and DeMarco estimate that this mechani-
cal response rarely results in a recovery of more than 20% of the spilled oil [Lessard &

DeMarco, 2000]. The reason one would use dispersants is to disperse the oil into the water.



This supports natural oil degeneration due to an increase of the specific surface area of the oil.
The effective use of dispersants during the early phases of oil spill response may prevent or
reduce impacts on coastal habitats, wildlife, and property [George-Ares & Clark, 2000]. Fur-
thermore the usage of dispersants is cheaper than conventional methods like the mechanical
removal of the spilled oil [Etkin, 1998]. The National Research Commission stresses that dis-
persants are one potential first response to oil spills [NRC, 1989].

Before dispersants can be applied to the oil slick their potential benefits and risks have
to be evaluated. The potential benefit is that the dispersed spilled oil is removed from the sea
surface and will not drift into shallow water or ashore. This is important as most damage is
done by spilled, undispersed oil in shallow water or on the shore [EMSA, 2009]. But it has to
be considered that the use of dispersants might expose some marine organisms to a higher
level of dispersed oil than would happen without the usage of dispersants. Unfortunately it is
difficult to predict the degree of harm for marine organisms exposed to dispersed oil [EMSA,
2009]. One reason for that is because it is difficult to predict oil toxicity [French-McCay,
2002]. Furthermore the quality and composition of crude oil varies depending on the type of
crude oil (e.g. Brent or West Texas Intermediate) [EIA, 2012]. Dispersants are not a silver
bullet for treating oil spills as they are not recommended for all spills and for all conditions
[George-Ares & Clark, 2000]. Before their use, the net environmental benefit needs to be
weighed against other spill response options. Fiocco and Lewis suggest for this an oil spill

response decision tree [Fiocco & Lewis, 1999]. This tree is stated in appendix 6.1.

2.1.1. Application of dispersants
The application of dispersants to the surface is possible in many oil spills whereas the
application at the wellhead is only possible at higher depths. Because of this are the fact that

during the Deepwater Horizon oil spill more dispersants were applied on the surface then at



the wellhead [Kujawinski et al., 2011], the following section will focus on the application of

the dispersant at the surface.

There are three different ways to apply dispersants to oil slicks on the surface of the
ocean [Fiocco & Lewis, 1999]. All ways have in common that their main principle is similar
to crop spraying in agriculture, where a plane or a tractor sprays pesticides over a large area.
The three different ways of application are:

1) Using ships and boats: The usage of ships and boats is relatively easy as ships can carry
high loads in comparison to helicopters and planes. Their main disadvantages are their
slow speed and the fact that they cross the oil slick. If a ship’s bow wave is too large, it
might push the oil out of the range of the dispersant spray unit. [Fiocco & Lewis, 1999]

2) Using helicopters: Helicopters are useful for spraying dispersants for smaller oil spills.
One big advantage is that they are quickly equipped with the spraying bucket. The maxi-
mum capacity per helicopter varies between one ton of dispersant for a small helicopter
such as MBB-105 and three tons for a larger helicopter such as Sikorsky S61-N, which is

shown in Figure 2.1. [EMSA, 2009; Fiocco & Lewis, 1999]

Figure 2.1: A Sikorski 61N helicopter reloading dispersant spray bucket from a support vessel [EMSA,
2009]

3) Using fixed wing aircrafts: Many different types of aircrafts can be used for spraying

dispersants. This starts with small, single engine crop spraying aircrafts, which carry less



than one ton of dispersant [Fiocco & Lewis, 1999]. The United States have developed
their own dispersant spray system, called the Aerial Dispersant Delivery System. This sys-
tem is based on the Lockheed Hercules C-130 and enables, depending on the exact con-
figuration of the machine, a capacity of 13.250 to 15.000 liters chemical dispersant, which
is limited in comparison to ships. A C-130 spraying a chemical dispersant over the Gulf of
Mexico in 2010 is shown in Figure 2.2. The major problem with this plane type is that the
C-130 was developed in the early 1950s, which means it is at the end of its product life.
The main advantage of aircrafts compared to surface vessels is their much higher speed
that enables them to reach a spill site faster than a ship and enables them to quickly spray
large areas of an oil slick with dispersants. But planes are limited to low flying which is
required in order to spray dispersant accurately. [EMSA, 2009; Fiocco & Lewis, 1999;

IPIECA & OPG, 2012]

Figure 2.2: An US-Air Force plane drops an oil dispensing chemical into the Gulf of Mexico [Cadiz, 2010]
In case of a leakage at a wellhead, as with the Deepwater Horizon oil spill, it is possi-
ble to inject the dispersant close to the wellhead (subsurface injection). This has the advantage

that oil and dispersant can mix ascending the water column. In case of the Deepwater Horizon



oil spill the injection at the wellhead was not possible at all times because the conditions in

terms of current and visibility varied. [Kujawinski et al., 2011]

2.1.2. Structure and functionality

Before dispersants can be applied, it must be determined whether the dispersant is
suitable for treating an oil spill under the predominant conditions. Therefore the exact compo-
sition of the dispersants is important. Dispersants consist of three different types of chemicals:
Solvents, additives and surfactants [Gong et al., 2014]. Solvents are added to promote the
dissolution of surfactants, to reduce the viscosity of the dispersant and to affect its solubility in
spilled oil [Gong et al., 2014]. Additives are used to improve the dissolution of the surfactants
into an oil slick and to increase the long-term stability of dispersant formulation [NRC, 2005].
Surfactants (surface active agents) are the active components and have a ‘soap-like’ molecular
structure. This structure has both, water-loving hydrophilic and oil-loving hydrophobic or
lipophilic groups [Fiocco & Lewis, 1999]. Using a surfactant lowers the interfacial tension
between oil and water and enables the formation of oil droplets [Gong et al., 2014].

For surface applications the dispersant is sprayed onto the oil slick (see step 1 in Fig-
ure 2.3). In the next step, the dispersant diffuses through the oil and patrons at the oil-water
interface (see step 2 in Figure 2.3). As it is more difficult to diffuse through high viscosity
oils, it is more difficult to disperse oils with a high viscosity than light oils [Sun & Zheng,
2009]. At the oil-water interface the dispersant adjusts itself so that the lipophilic end of the
dispersant is attached to the oil phase and the hydrophilic end reaches in the water phase. With
this the interfacial tension between water and oil is reduced. External energy input, e.g. by
waves, wind or current, disperses the oil into the top 5-10 meters of a water column as tiny, 1-

70 micrometer large droplets (see step 3 in Figure 2.3). [Lessard & DeMarco, 2000]
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Figure 2.3: Working mechanism of dispersants to create oil droplets [Lessard & DeMarco, 2000]
2.1.3. Common Dispersants

First generation dispersants, which were developed in the early 1970s, were in some
cases so toxic to the marine environment that the adverse effects of the dispersed oil were
much greater than the effects of the untreated oil [Brochu et al., 1987]. Since then the disper-
sants have been improved. During the Deepwater horizon oil spill the surfactants COREXIT®
9500A (for surface applications and wellhead injections) as well as COREXIT® 9527 (for
surface applications) were applied [Kujawinski et al., 2011].

One difficulty using dispersants during oil spills is to evaluate if dispersant treatment
was successful and to estimate the toxicity if the dispersant on the marine environment. One
example is the first usage of COREXIT® 9500 after the Sea Empress oil spill in the United
Kingdom in February 1996 [Lessard & DeMarco, 2000]. The single hull tanker Sea Empress
ran aground at the entrance to Milford Haven and exposed an estimated 72,000 tons of Forties
Blend crude oil and 360 tons of fuel oil to the North Sea [Harris, 1997]. For the treatment of
this oil spill 445 tons of dispersant were used [Harris, 1997]. Lessard and DeMarco as well as

Lunel et al. describe the dispersant use as overall successful [Lessard & DeMarco, 2000;



Lunel et al., 1997]. There is some proof in the literature that there has been no significant ef-
fect on the plankton of the Southern Irish Sea [e.g. Batten et al., 1998]. Furthermore there are
no reports of the mortalities of commercially-exploited crustaceans or fish as a result of the oil
spill [Law & Kelly, 2004]. But other studies show that the oil spill had negative effects. For
example Lyons et al. showed that the Sea Empress oil spill resulted in significantly higher
self-reported illness in terms of anxiety, depressions, headache, sore eyes and sore throat of
people living in towns exposed to the Sea Empires oil spill [Lyons et al., 1999]. But it is diffi-
cult to conclude if the oil spill or the dispersant are the cause of this.

Furthermore it was determined that the use of COREXIT® during the Deepwater
Horizon oil spill supported the penetration of polyaromatic hydrocarbons into the sandy beach
sediments of the Northeastern Gulf of Mexico [Zuijdgeest & Huettel, 2012].

Rico-Martinez et al. determined the toxicity of a mixture of Macondo crude oil, sea-
water and the dispersant COREXIT® 9500. They report that the toxicity of this mixture is up
to 52 times higher to B. manjavacas than Macondo crude oil and seawater [Rico-Martinez et
al., 2013]. Macondo crude oil was spilled during the Deepwater Horizon oil spill. Studies
which were conducted by the COREXIT® manufacturer, oil companies like British Petroleum
and the United States Environmental Protection Agency, do not view these dispersants as be-
ing extremely toxic [CNN, 2010a; Hemmer et al., 2010].

Such different toxicity results may occur as for testing dispersants it has to be consid-
ered that the laboratory aquatic toxicity varies with the test species and the experimental con-
ditions [George-Ares & Clark, 2000]. This means factors like temperature, salinity, oil type
and concentration, as well as concentration of the dispersant, might have an influence on the
toxicity.

As of April 2014 the U.S. Environmental Protection Agency (EPA) lists 19 different
dispersants in the National Contingency Plan’s Product Schedule. The EPA has effectiveness

and heavy metal/chlorinated hydrocarbon content data available for the listed dispersants. This
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data can be found in the National Contingency Plan’s Product Schedule Technical Notebook

[US EPA, 2014a]. These dispersants are listed in Table 2.1.

Table 2.1: Dispersants on the National Contingency Plan Product Schedule as of April 2014 [US EPA,

2014b]

Product Name Manufacturer Listed since
COREXIT® EC9527A (formerly COREXIT 9527) Nalco Environmental Solutions 1978
NEOS AB3000 Neos Company 1985
MARE CLEAN 200 (;g;;nerly MARE CLEAN Taiho Industries Co. 1988
COREXIT® EC9500A (formerly COREXIT 9500) Nalco Environmental Solutions 1994
DISPERSOT SPC 1000™ U.S. Polychemical Corp. 1999
JD-109 GlobeMark Resources 2000
JD-2000™ GlobeMark Resources 2001
NOKOMIIS 3-F4™ Mar-Len Supply 2002
BIODISPERS (formerly PETROBIODISPERS) Petrotech America Coperation 2002
SEA BRAT #4 Alabaster Corp. 2002
FINASOL® OSR 52 TOTAL FLUIDES 2003
SAF-RON GOLD Sustainable Environmental Technologies 2005
ZI-400 Z.l. Chemicals 2005
NOKOMIS 3-AA Mar-Len Supply 2008
SUPERDISPERSE™ WAO2500 Baker Petrolite Corporation 2011
ACCELL CLEAN® DWD Advanced BioCatalytics Corporation 2011
FFT-SOLUTION® Fog Free Technologies 2011
MARINE D-BLUE CLEAN™ AGS Solutions 2012
COREXIT® (EC9500B) Nalco Environmental solutions 2013

These dispersants have different toxicities and efficacies. The LCso-value for My-
sidopsis bahia (a kind of shrimp) after 48 hours depends on the concentration of the dispersant
and oil. The LCs, value is the median lethal dose where half of the members of the tested pop-
ulation were killed. As an example the LCs, value for Mysidopsis bahia with COREXIT®

9527A is stated in Table 2.2.

Table 2.2: LCsp-value for Mysidopsis bahia after 48h [US EPA, 2014a]

Material tested LC 50 [ppm]
COREXIT® EC9527A 24.14
Benchmark Qil 16.12
COREXIT® EC9527A & Benchmark oil (1:10-ratio) 6.60
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From this table it can be seen that the dispersant COREXIT® EC9527A alone has a
much higher LCs, value than a benchmark crude oil. The combination of COREXIT®
EC9527A and benchmark crude oil has a lower toxicity then the oil alone. This means that
COREXIT® EC9527A has to be used carefully so that dispersant is only dispensed over the oil
slick.

The efficacy of dispersants is varying depending on the crude oil. The effectiveness of

COREXIT® EC9527A when applied to Prudhoe Bay and South Louisiana Crude oil is stated

in Table 2.3.
Table 2.3: Effectiveness COREXIT® EC9527A [US EPA, 2014a]
oil Effectiveness [%]
Prudhoe Bay 453
South Louisiana Crude 54.7
Average of Prudhoe Bay and South Louisiana Crude 50.0

The varying effectiveness shows that the dispersant has to be chosen in consideration
of the spilled oil.

One component of COREXIT® EC9527A is Aerosol OT (AOT), Dioctyl sodium sul-
fosuccinate or Butanedioic accid, 2-sulfo-, 1,4-bis(2-ethylhexyl) ester [US EPA, 2014c]. This
organic, negatively charged surfactant AOT is used as a wetting agent in cosmetic products,
gelatin, and beverages [Schor, 2010; Sigma-Aldrich, 2014; US EPA, 2013]. Furthermore AOT
is registered as an insecticide in pet shampoos [US EPA, 2013] and a registration as a pesti-
cide has been filed [US EPA & Keigwin, 2010]. AOT is ranked in the Hazardous Material
Identifier System as inflammable and stable, but temporary minor injury may occur for hu-
mans after contact [Sigma-Aldrich, 2014]. Additionally AOT is listed on the WHO Model List
of Essential Medicines as a drug in palliative care [WHO, 2013]. The structure formula for

AQOT is shown in Figure 2.4.
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Figure 2.4: Chemical structure Aerosol OT [Sigma-Aldrich, 2014]

In the Agreement for cooperation in dealing with pollution of the North Sea by oil and
other harmful substances from 1983 (“Bonn Agreement”) many European states limit the
usage of dispersants [Bonn Agr. Secr. et al., 2009]. For example Sweden is not using disper-
sants at all. In Germany the usage of dispersants in shallow water with less than 10 meter
depth is not allowed. Between 10 and 20 meter depth the usage of dispersants has to be per-
mitted by official administration (Havariekomando in Cuxhaven). [Bonn Agreement, 2005]

While choosing the right dispersant, it has to be considered that under certain condi-
tions like special emulsions or heavier oils the dispersion rate might be slow as the chemical

agents need time to penetrate the oil [Lessard & DeMarco, 2000].

2.2.Natural oil degeneration

The effect of oil degradation in the ocean is a natural process and is necessary because
natural oil spills take part without human action. The total worldwide input of hydrocarbons
into the ocean is estimated at 1,300,000 tons per year between 1990 and 1999. The input from
natural seeps is about 600,000 tons per year, which is 46% of the total input [NRC, 2003]. The

other sources are stated in Table 2.4,

Table 2.4: Average, annual releases of petroleum by source (1990-1999) [NRC, 2003]

Source Tons per year Percentage
Natural seeps 600,000 46
Activitiesrelated with consumption of 480,000 37
petroleum

Accidental spills and operational discharges of

. . . 5 160,000 12
cargo oil occurring during transportation
Extraction processes 38,000 3
Total 1,276,000 100
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At the Sea Empress Qil spill in 1996 were 72,000 tons crude oil exposed to the sea.
During the Gulf War 1,500,000 tons of oil were exposed to the sea during the largest oil spill
in history [CNN, 2010b; The Telegraph, 2014]. During the Deepwater Horizon oil spill 210

million gallon of crude oil was spilled in the Gulf of Mexico [The Telegraph, 2014]. Assum-
ing a density of p,; peepwater Horizon = 0.84}%9 [Liu et al., 2012] this equals about 670,000

tons crude oil. This is about the average annual release from natural seeps (compare Ta-
ble 2.4).

Crude oil consists of four types of hydrocarbon molecules, called the hydrocarbon se-
ries. The percentage of each hydrocarbon series varies depending on the type of crude oil con-
trolling the chemical and physical properties of that oil. These hydrocarbon series are paraf-
fines, naphthens, aromatics and asphaltics. If a hydrocarbon has only single bonds between
carbon atoms, they are called saturated. If they have at least one double bond, they are unsatu-
rated. Paraffin or alkane molecules are saturated linear chains of carbon atoms. If paraffin has
more than 17 carbon atoms, it is a wax and forms a waxy crude oil. A naphthalene or cyclo-
paraffin molecule is a closed circle with saturated bonds between the carbon atoms. As soon
as one of these bonds is unsaturated, it is an aromatic or a benzene molecule. An asphaltic
molecule has more than 40 carbon atoms. These asphaltic molecules are brown to black and
determine the color of crude oil. The average and range of hydrocarbon series molecules is

shown in Table 2.5 [Hyne, 2012, pp. 2-4].
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Table 2.5: Average and range of hydrocarbon series molecules in crude oil [Hyne, 2012, p. 4]

Average weight Percent range

percent
Paraffins 30 15-60
Naphthenes 49 30-60
Aromatics 15 3-30
Asphaltics 6 remainder

It has to be considered that the chemical composition of crude oils from different pro-
ducing regions and even from within one formation can vary tremendously [NRC, 1985, p.
17]. The process of degradation takes place in an ocean surrounding, which consists of sea-

water.

2.2.1. Seawater

According to the Encyclopedia Britannica seawater is a mixture consisting of water,
salts and some small amount of dissolved inorganic and organic materials, particulates and
dissolved atmospheric gases [Mackenzie et al., 2014]. The salt concentration is defined as
salinity, which is the total amount of salt dissolved in seawater. Salinity is expressed as grams
of salt left behind after 1,000 grams of seawater are evaporated [Castro & Huber, 2003]. It is
interesting that the percentage of different salt ions present in the solution remains constant
and the absolute amount of salt, the salt concentration, varies. This salt concentration is in a
range between 33 %o and 37 %o with an average about 35 %o in the open ocean [Castro &
Huber, 2003]. That means that vaporizing 1,000 g seawater will leave in average 35 g salt,
which is a salt concentration of about 1148 mM [Pilson, 1998, p. 59]. The composition of

seawater under the assumption of 35 %o salinity is shown in Table 2.6.
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Table 2.6: The composition of seawater of 35 %o salinity [Castro & Huber, 2003, p. 48]

lon Concentration %e Percentage of Total Salinity
Chloride (CI) 19.35 55.03
Sodium (Na*) 10.752 30.59
Sulfate (SO,2) 2.701 7.68
Magnesium (Mg*?) 1.295 3.68
Calcium (Ca*?) 0.416 1.18
Potassium (K*) 0.390 1.11
Bicarbonate (HCO3) 0.145 0.41
Bromide (Br) 0.066 0.19
Borate (H,BO;’) 0.027 0.08
Strontium (Sr*?) 0.013 0.04
Fluoride (F") 0.001 0.003
Everything else <0.001 <0.001

The temperature of seawater varies between -2°C and +30°C. Temperatures below
0°C are possible as seawater is saltwater which freezes colder than ordinary water [Castro &
Huber, 2003, p. 48]. Temperature and salt concentration are a key parameter for the density as
seawater gets denser as it gets saltier or colder [Castro & Huber, 2003]. The range of pH 7.4 to
pH 9.6 covers most pH water on earth [Marion et al., 2011]. In this surrounding of seawater

takes the natural oil degeneration part.

2.2.2. Weathering and natural oil degeneration

Within 24 to 48 hours after an oil spill the properties of the oil change significantly.
This effect is called “weathering”. Even after 48 hours this process of weathering continues,
but the early changes are the most significant. The word “weathering” includes the processes
of evaporation, dissolution, photo oxidation and emulsion formation [US EPA, 1993]. The
type of oil and environmental factors like temperature, sea state and wind speed have an influ-
ence on the weathering process. The weathering process may reduce the dispersant effective-
ness under extreme situations within two to four hours. This results in the loss of volatiles in

the oil slick through evaporation, which causes an increase in oil density, viscosity and surface
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tension. Within 48 to 72 hours after the oil spill, the oil slick loses nearly all aromatic hydro-
carbons that are lighter than naphthalene. [US EPA, 1993, p. 41]

The oil itself is generally degenerated by bacteria [Das & Chandran, 2011]. The first
study of the utilization of hydrocarbons by organisms was conducted in the early 1900
[Bushnell & Haas, 1941]. In these studies the oxidation of methane was observed [Fuhs,
1961]. The general mechanism follows this reaction formula:

CH,+20, = CO, + 2 H,0 2.1

But there are no general bacteria that consume all types of crude oil as the biodegrada-
tion is a selective utilization of certain types of hydrocarbons by microorganisms [Speight,
2006, p. 100]. The temperature has an influence on the degeneration rate of oil [Atlas, 1975;
Garrett et al., 2003]. Another factor on the degeneration rate is the oil type. Garrett et al. de-
termined that n-alkanes degenerate before iso-alkanes and smaller aromatic molecules are
degraded before larger ones [Garrett et al., 2003].

As this chemical decomposition takes part as soon as the oil is spilled on the sea, the
U.S. National Research Council notes that experiments designed to access the impact of crude
oil should consider weathering effects [NRC, 1989]. These chemical and biological weather-
ing processes reduce the toxicity and amount of oil residue and its potential effect to wildlife
[Jahns & Bragg, 1991]. Weathering effects are supported by waves and tides as well as other

cleanup activities [Jahns & Bragg, 1991]. Another supporting factor is the dispersion effect.

2.2.3. Dispersion effect

Lessard and DeMarco define the dispersion effect as an ongoing mixing of crude oil
and seawater in the water column which results in very low concentrations of crude oil, less
than 1 part per million in most cases. According to Lessard and DeMarco this dilution is the

key to a successful dispersant application. Furthermore this process makes the oil droplets
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highly accessible to hydrocarbon-degrading bacteria, promoting removal from the environ-
ment by natural processes [Lessard & DeMarco, 2000]. The result of the dispersion effect is

shown in Figure 2.5:

1st HOUR 2-5 HOURS
%0% °°:o o °: o °
-] oooo o ©
° 05 2002 80°
040° ©9°% 0 L]
TOP o o °°0 o
10 METERS D0 o2 0%,
o ©
] o © L) ]
o ¢ oo °°
° o ° o o
- ° o
~o 27 ~N_ _
40-60 ppm Less than 1 ppm

Figure 2.5: Dispersion effect [Lessard & DeMarco, 2000]
The idea of this research project is to disperse the oil using Pickering emulsions with

silica instead of traditional surfactants.

2.3.Pickering Emulsions

A Pickering emulsion is an emulsion of two liquids with solid particles as the emulsi-
fier. The general concept of Pickering emulsions is to replace the surfactant and form a classi-
cal emulsion with a solid particle. This creates a solid particle envelope around the dispersed
droplets [Thieme et al., 1999]. The particles do not lower the oil/water interfacial tension like
a conventional surfactant, but they are strongly absorbed at the interface and cannot easily be

removed. This is shown in Figure 2.6.
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Figure 2.6: Sketch of a Pickering emulsion and a classical (surfactant-based) oil in water emulsion [c.f.
Chevalier & Bolzinger, 2013]

This means Pickering emulsions are “emulsifier free”, which makes them attractive
for applications where surfactants might have a negative influence, especially for applications
with living matter for health and body care applications [Frelichowska, Bolzinger, &
Chevalier, 2009].

Pickering Emulsions were discovered at the beginning of the 19" century [Pickering,
1907; Ramsden, 1903]. Even though Walter Ramsden discovered the effect first in 1903, this

kind of emulsions is called after Spencer U. Pickering, who reported this emulsion in 1907.

2.3.1. Formation

Classical emulsifiers have similarities with Pickering emulsions [Midmore, 1998].
One important point is that the production is exactly the same. Particles are dispersed in the
water or oil phase the same as emulsifiers [Chevalier & Bolzinger, 2013].

But Pickering emulsions show specific properties: The particle acts as barrier against
formation and material transfer through the interface. This offers the possibility of forming
stable millimeter sized emulsions as well as very stable double emulsions [Chevalier &

Bolzinger, 2013] and is usable for drug release [Frelichowska, Bolzinger, Valour, et al., 2009].

19



The number of droplets formed in a Pickering emulsion strongly correlates with the
viscosity, temperature, and asphaltene content of the two liquids [Khelifa et al., 2002]. Viscos-
ity and asphaltene content are depending on the type of crude oil. Consequently is the number
of droplets in a Pickering emulsion depends on the oil type. In this study Pickering emulsions
are prepared with a vortex mixer. The basic principles of vortex mixing are explained in ap-

pendix 6.3.

2.3.2. Stability
For the stability the following equation is given for solid spherical particles, which are

dispersed in an aqueous phase [Levine et al., 1989]:

AG = 1Yoy (1 — |cosO])? 2.2

In this equation 7, stands for the radius of the particle, y,,, is the interfacial oil/water

tension and @ is the contact angle. The interfacial tension is the work that is required to in-
crease the surface area divided by that area [IUPAC, 2014, p. 1499]. If one of the media is
water, it is called surface tension. The contact angle is defined as the angle between the two
interfaces at the three-phase line of contact [IUPAC, 2014, p. 327]. The contact angle is de-

fined as stated in Figure 2.7:
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Equilibrium immersion depth
Figure 2.7: Isolated solid spherical particle at a planar oil/water interface [Levine et al., 1989 edited]
Furthermore it is assumed that the particles are so small so that the effect of gravity is
negligible [Aveyard et al., 2003]. The equation 2.2 expresses the Gibbs free energy while a
solid spherical particle is detaching the oil-water layer. The larger the AG-value the more sta-

ble the emulsion.
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Additionally the effectiveness of the solids in forming a stable emulsion depends on
the size, shape and concentration of the particles as well as on the interactions between parti-

cles [Binks, 2002; Giermanska-Kahn et al., 2002].

2.3.3. Pickering Emulsions with silica
There has been a significant amount of research on silica particles and Pickering
emulsions. The main observations and results are stated below:

e The less polar the oil, the larger amount of silica is required to form a stabile Pickering
emulsions. [Frelichowska, Bolzinger, & Chevalier, 2009]

e An increasing silica concentration causes a significant decrease in emulsion droplet size.
[Frelichowska, Bolzinger, & Chevalier, 2009]

o Silica Pickering emulsions are pH dependent as the stability of the emulsion layer changes
with changing pH. [Binks & Whitby, 2004; Dyab, 2012]

e Very hydrophobic or hydrophilic silica particles form emulsions with large droplets
(>100um). These droplets are unstable to coalescence [Binks & Lumsdon, 2000] except if
a very polar oil is used [Frelichowska, Bolzinger, & Chevalier, 2009].

o Droplets formed by silica particles with a medium hydrophobicity are smaller than a mi-
crometer and stable to coalescence indefinitely. [Binks & Lumsdon, 2000]

o If sodium chloride is present, emulsions with silica particles are unstable to creaming at all
salt concentrations (0 to 5 M) and at pH values between 2 and 10. [Binks & Lumsdon,
1999]

e The average drop diameter of O/W-emulsions increases with increasing silica particle
size. [Binks & Whitby, 2005]

e Pickering Emulsions with silica become less stable as sedimentation occurs. [Binks &

Lumsdon, 1999]
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Furthermore research has been conducted on the interactions between emulsions stabi-
lized by silica nanoparticles and surfactants, but those interactions are still poorly understood
[Whitby et al., 2009].

As the Pickering emulsions in this research project were formed using a vortex mixer,

the function of a vortex mixer is explained in appendix 6.2.

2.4.0il mineral aggregates

Oil can be present in the water column in two physical forms: As dispersed droplets
and as dissolved components. These dispersed droplets or dissolved components can interact
with sediments through [Gong et al., 2014]:

1) Direct aggregation to form oil mineral aggregates (OMAS)
2) Adsorption or incorporation in the sediment phase

The first reported interactions between oil droplets and minerals suggested that the
factors which have an influence on the amount of oil connected to the solid phase include the
type of oil (viscosity, composition), type of solid (mineralogy, grain size distribution, organic
matter content), amount of turbulent energy and water salinity [Owens & Lee, 2003]. It has
been suggested that the formation of OMAs play a major role in the natural cleaning of oiled
shorelines and may be the basis for the development of oil spill countermeasure technologies
[Khelifa et al., 2005].

There are three different structural types of OMA known [Gong et al., 2014; Stoffyn-
Egli & Lee, 2002]. Examples for this are shown in Figure 2.8:

Droplets: Droplet OMAs appear as dispersed oil (spherical droplets) with mineral
particles attached to their surface only (see Figure 2.8 A and B). Droplet OMAs are the most
common type. Sometimes more than one droplet can be found within one OMA.

Flakes: Flake aggregates are thin sheets in which solid and oil particles are arranged

in an ordered configuration in a scale up to millimeter (see Figure 2.8 C).
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Solid: Solid mineral aggregates are typically a non-spherical mixture of oil and solid

bodies of various shapes with irregular fluorescent contours (see Figure 2.8 D).

Figure 2.8: Three different types of OMAs [Gong et al., 2014 edited; Stoffyn-Egli & Lee, 2002 edited]. (A)
Single droplet or multiple droplets (B) Droplet OMA from which particle free oil has leaked out leaving at right its
mineral casing, (C) flake aggregates (D) solid OMA. All images seen by combined bright-field and UV Epi-
fluorescence. Qil appears as bright areas and the mineral particles are dark

These structures can form rapidly in presence of oil-droplets, mineral fines and sea-
water with an adequate amount of energy [Weise et al., 1999]. This flocculation stimulates the
natural rates of oil biodegradation due to an increase in the oil-water interface area. This
makes the oil more accessible to bacteria [Bragg et al., 1994; Weise et al., 1999]. An aggrega-
tion of solid material was observed in Pickering emulsions. This should be similar to the
above-discussed droplet OMA [Thieme et al., 1999].

The typical formation of OMAs takes place in two steps. At first the oil slick is dis-
persed into oil droplets. The energy for that can be introduced in two different ways — external
disturbing forces, which are mainly produced by the flow field, and internal restoring forces

such as interfacial tension to maintain the shape of the droplet. In this step the mixing energy,
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the oil viscosity and the interfacial tension between oil and seawater are important. In the sec-
ond step the oil droplets interact with suspended particulate matter. This interaction is mainly
between the polar compounds within the oil and the suspended particulate matter. This is one
of the main causes for destabilization of Pickering emulsions as this aggregation causes a
transformation of particles into compact clusters. The particle in these solid clusters cannot
create new Pickering emulsion droplets [Juarez & Whithy, 2012].

Salinity, oil type and concentration as well as sediment type and particle concentration
have an effect on this second step. Afterwards, denser heavy OMAs settle while less-dense
lighter OMAs are suspended in the water and rinse up to the surface. This effect is shown in

Figure 2.9:
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Figure 2.9: Formation and movement of various types of OMAs in the ocean [Gong et al., 2014 edited]

According to a review article written by Gong et al. the following factors have an in-
fluence on the formation of OMAs: [Gong et al., 2014]

1) Oil characteristics (viscosity, droplet size, composition, density, concentration)
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2) Physical properties of the solids (mineralogy, grain size distribution, organic matter
content, density, concentration)

3) Environmental conditions (temperature, pH, water salinity, pressure, hydrodynamic
conditions)

Stoffyn-Egli and Lee state that fumed silica do not form OMAs in real seawater to any
significant degree with IF30 fuel oil and different types of crude oil. ““Both mineral particles
and oil droplets have a negative surface charge. In an electrolyte such as seawater, an electri-
cal double layer forms, where cations are attracted to the surface of the particle, and this
higher local concentration of cation in turn attracts more anions. [...] It can be concluded
that very fine particles cannot stabilize oil droplets because they cannot keep them at a dis-
tance large enough to overcome the hydrophobic bonding that cause oil droplets to re-

coalesce.” [Stoffyn-Egli & Lee, 2002, p. 42]

2.5.Reagglomeration

One problem with silica nanoparticles is that they tend to agglomerate during drying
in the production process [Maskara & Smith, 1997]. This aggregation involves adhesion be-
tween the colloidal particles via interparticle attraction [ller, 1979; Visser, 1976]. It occurs
when the particle becomes smaller than 10 um in at least one direction [Visser, 1989] — sand
on a beach has no real adhesion to a dry towel or the swimming suit as it can be shaken off
easily, but chalk stays on the blackboard after writing on it. This effect is possible because the
chalk particles are much smaller and have more specific surface area than the sand particles
[Visser, 1995]. “Aggregation” is involved in the following phenomena for colloidal silica
[ller, 1979, p. 364f]:

1) Gelling: In gels are the particles linked together in branched chains that fill the whole

volume of sol. This is why there is no increase in concentration of silica in any region
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macroscopic region of the medium possible. The overall medium becomes viscous and is
solidified by a coherent network of particles that can retain liquid by capillary action.

2) Coagulation: Coagulation is where the particles come together into relatively close-
packed clumps in which silica is more concentrated than in the original sol. This is why
the coagulum settles as a relatively dense sedimentation.

3) Flocculation: Flocculation means that the particles are linked together by bridges of the
flocculating agent, which are sufficiently long that the aggregated structure remains open
and voluminous. This flocculation occurs during the formation of OMAs [Omotoso et al.,
2003].

As silica particles form agglomerates while drying, they have to be dispersed or “de-
agglomerated” in order to make them smaller. These agglomerates are similar to the above
described coagulates.

There are three possible methods to deagglomerate suspended nanoparticles [Sato et
al., 2008]: (1) Ball milling, (2) Bead milling and (3) Sonication. Unfortunately the energy
density is not high enough to break most of the colloid agglomerates [Muller et al., 2004].
This is why sonication was chosen for this study:

Sonication, ultrasonication or ultra-sonication is defined by the Royal Society of
Chemistry as the irradiation of a liquid sample with ultrasonic (>20 kHz) waves resulting in
agitation. Other references define a range of around 15 kHz to tens of MHz. These sound
waves dispersed into the liquid media result in alternating high-pressure (compression) and
low-pressure (rarefaction) cycles. During the high pressure phases the sonication waves gen-
erate small vacuum bubbles in the liquid, which collapse violently during compression and
break the agglomerates into smaller fragments. This collapse is called cavitation and is shown
in Figure 2.10. Furthermore sonication can be used for heating solutions. [Bensebaa, 2013;

RSC, 2014; Suslick, 1995]
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Figure 2.10: Mechanism of cavitation during sonication [Kusters & Pratsinis, 1993 edited]

For processing nanoparticles it is known that the extent of particle breakage by ultra-
sound is a function of the ultrasound energy delivered to the unit volume of the sample
[Gibson et al., 2009; Yong et al., 2008]. Generally there are three different techniques availa-
ble to deliver the energy to the sample [Santos & Capelo, 2007]: (1) Bath sonication, (2) probe
sonication and (3) cup sonication.

1) Bath sonication: The ultrasonic bath is a common piece of equipment in chemical labora-
tories [Santos & Capelo, 2007] and shown in Figure 2.11. One major disadvantage is that
the intensity distribution inside an ultrasonic bath is not homogeneous [Santos & Lodeiro,
2009]. That means that the efficiency varies depending on the position of the sample in the
bath. One way of determining the efficiency in a bath sonicator is the aluminum foil test.
This is defined in the ASTM-Standard B548. In order to enable a better intensity distribu-
tion some manufactures developed ultrasonic baths with sonication units at the bottom and

at the walls [Bandelin, 2014; Santos & Lodeiro, 2009].
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Figure 2.11: Picture of bath sonicator Branson 1510

Nevertheless bath sonication is not a powerful tool as a common bath only has a specific
w

power between 1 and 5 —.
cm

2) Probe sonication: For probe sonication the probe is immersed directly into the solution,
where the sonication takes place. This is why the ultrasonic power with a probe is about
100 times higher than bath sonication [Santos & Capelo, 2007]. A normal probe sonicator
consists of four major parts: A generator, an ultrasonic converter, a standard or booster
horn and a probe. The generator converts the voltage from the electricity grid to a high
frequency (most likely 20 kHz). This electrical energy is transformed by the ultrasonic
converter to mechanical energy, which is increased by the horn. Finally the mechanical

energy is leaded into the sample by the probe. [Santos & Capelo, 2007]

v ‘ +<— Probe
Figure 2.12: Comprehensive scheme of an ultrasonic probe [Santos & Capelo, 2007 eddited]
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A challenge while using probe sonication are the dead zones as the ultrasonic intensity
rapidly decreases radially and axially from the tip. This is why the distance between the
tip and container should be minimized. But a contact between the wall and the probe
should be avoided as this might break the probe. [Santos & Lodeiro, 2009]

3) Cup sonication: In a cup horn the probe is held within an acrylic cup filled with the soni-
cation medium. Such a sonication cup is shown in Figure 2.13. The average cup soni-
cation is about 50 times more intense than an ultrasonic bath. Furthermore cup sonication
enables the processing of sealed tubes or vials. This is why they are ideal for sterile or

dangerous pathogenic samples. [Santos & Capelo, 2007]

Figure 2.13: Cup horn probe [Nano Lab, 2012]
Due to the high costs of cup sonication only bath and probe sonication were possible
treatments for nanoparticles in this study. As the processing of nanoparticles requires high

sonication power [Qsonica, 2014], probe sonication was chosen for this study.

2.6.Filtration

Filtration is a unit operation designed to separate suspended particles from a fluid me-
dia by passing the solution through a porous membrane or medium [Cheremisinoff, 1998].
Other operations to separate suspended particles from fluid media include centrifugation

[Akbulut et al., 2012] and, if possible, magnetic separation [Kelland, 1998].
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In order to conduct a filtration, liquid feed with solid particles is delivered to the filter
medium (e.g. a filter paper). This filter medium prevents larger particles from passing. These
large particles are collected on the filter and form the filtration cake. If the cake is thick
enough, it supports the effect of the filter medium. The filtrate passes the filter. A schematic of

this is shown in Figure 2.14:
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Figure 2.14: Schematic of cake filtration [Sutherland, 2008, p. 20 edited]

For the pressure drop Ap through a filter is the following known [Rushton et al.,

1996]:
Ap=v-u-(R.+ Ry) 2.3
From this equation it can be seen that the pressure drop is proportional to the velocity
through the filter medium v, the viscosity of the following fluid u as well as the sum of the
resistance of the cake R, and the resistance of the filter medium R,,,. That means the pressure
drop can be reduced by reducing the velocity of the feed or by reducing the resistance respec-

tively to the thickness of the cake.

2.7.Silica and Silica Nanoparticles

Silica, silicon dioxide or Si0,, is a major constituent of rock-forming minerals [Florke
et al., 2008]. Furthermore it is an important component of sediments and soils [Castro &
Huber, 2003]. Free silica makes about 12-14 wt% of the upper earth surface [Florke et al.,

2008]. The US and the European countries declared silica as a hazardous chemical [Florke et
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al., 2008]. The National Institute for Occupational Safety and Health suggests a exposure limit
of 0.05 m—f respirable crystalline silica as a time-weighted average for up to 10 hour workdays
m

during a 40-hr workweek [NIOSH, 2002]. While dealing with respirable crystalline silica (e.g.
quartz dust) it has to be considered that it is labeled as a carcinogenic substance by the US
Department of Health and Human Service, World Health Organization and the International
Agency for Research on Cancer [HHS, 2011; WHO, 1997].

Silica nanoparticles are used as an additive for rubber and plastics, a strengthening fil-
ter for concrete and other construction composites as well as a drug delivery system
[AZoNano, 2013; Tang & Cheng, 2013]. Silica nanoparticles received the first step of the
Food and Drug Administration (FDA) approval for a first-in human clinical trial testing
[Benezra et al., 2011]. The worldwide annual production of silica is 138,000,000 metric tons,
grown crystal silica was about $170 per kilogram in 2011 [Dolley, 2013].

Adams et al. found out that in water suspended silica nanoparticles have antibacterial
properties towards the bacteria B. subtilis and to a lower extend to E. coli [Adams et al.,
2006]. However other studies found out that silica has no effect on B. subtilis [Liang et al.,
2005]. These results show that silica nanoparticles might be toxic against some cell types.

According to ller silica is not “soluble to any appreciable degree in any other liquid
than water” [ller, 1979]. If this silica is amorphous silica, it can form combined structural
bounds while being in water [Zhuravlev, 2000]. There are some silica particles already in the
ocean. Anderson et al. assumed for the Bering Strait a silica concentration of 23 +9 uM and
for the Fram Strait a concentration of 5 +1 uM [Anderson et al., 1983].

The surface properties of pure silica are determined mainly by two factors:
[Zhuravlev, 2000]

1)  The chemical activity on the surface, which depends on the concentration and distribu-

tion of different types of OH groups and the presence of siloxane bridges. OH groups on
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the silica surface become deprotonated above the isoelectric point (pH 2-3), leading to a
negative surface charge. The OH surface concentration and pH ultimately determine the
charge and colloidal stability of silica dispersed in water.

2)  The porosity of the silica nanoparticles as this has an influence on the specific surface

properties of the silica nanoparticles.

2.8.Measurement equipment

In this chapter the theory behind the used measurement equipment is described. At
first Dynamic Light Scattering is discussed followed by a brief description of optical micros-

copy and an introduction in scanning electron microscopy.

2.8.1. Dynamic Light Scattering

Dynamic light scattering (DLS, sometimes referred to as Photon Correlation Spectros-
copy or Quasi-Elastic Light Scattering) measures the size of dispersed particles in the sub-
micron region. Therefore it measures with a laser the Brownian motion and relates it to the
size of particles. This is possible because the larger the particle, the slower the Brownian mo-
tion is if temperature is kept constant. Malvern Instruments Ltd., a manufacturer of DLS sys-
tems gives in a technical note a more detailed explanation of DLS systems [Malvern

Instruments, 2014a], Berne & Pecora derive the relevant equations [Berne & Pecora, 2003].

For the usage of a DLS system the following terms have to be defined:

1) Polydispersity Index (PDI): The PDI is calculated from a regression of correction data
for the intensity distribution. The PDI is dimensionless and scaled. Values smaller than
0.05 are highly monodisperse and rarely seen. Values greater than 0.7 show a very broad
distribution, which is not suitable for DLS [Malvern Instruments, 2011]. The exact calcu-

lations are defined in ISO standard 13321:1996 E and 1SO 22412:2008.

32



2) Z-average: The Z-average, sometimes called cumulates mean, can be expressed as the
intensity based harmonic mean and is computed with this expression: [Horiba Scientific,
2014; Malvern Instruments, 2014a]

2Si 2.4
(=)

Here is S; the scattered intensity and D; the diameter of particle i. For sufficient small parti-

DZ=

cles occurs the Rayleigh scatters, which means S;~D#. With this follows:

_¥D? 2.5
’7 = f)

3) Distribution: The DLS system measures the intensity. Based on this results can the inten-

sity distribution computed. Using the intensity distribution and the Raylingh approxima-
tion the number and the volume distribution can be computed. There is a 1:1,000,000 ratio
between the number and intensity distribution because the intensity is proportional to d°
due to the Rayleigh approximation. Between the number and volume distribution is the ra-
tio 1:1,000 because the volume is proportional to the diameter to the power of three due to
the volume of a square. This effect is shown in Figure 2.15 with a bimodal mixture of 5

and 50 nm particles present in equal numbers:
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Figure 2.15: Number, volume and intensity distribution of a bimodal mixture of 5 an 50 nm particles in
equal numbers [Malvern Instruments, 2014a, p. 11 edited]
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2.8.2. Optical Microscopy
Optical microscopy is a relatively old technique, but in recent years much of progress
made was in terms of digital imaging [Davidson & Abramowitz, 1999]. As optical microscopy
is standard, well known equipment, it is not discussed here. A detailed introduction is given by

Tkaczyk [Tkaczyk, 2010].

2.8.3. (Cryogenic) Scanning Electron Microscope

A cryogenic scanning electron microscope (cSEM) is a normal scanning electron mi-
croscope (SEM) equipped with a cold stage. This cold stage is cooled with liquid nitrogen or
helium to freeze the sample in order to determine bubbles or other liquid samples. An ex-
tremely low temperature is necessary to avoid degassing of the sample as the SEM is operated
under a high vacuum that reduces the freezing point of liquids. [Greiser, 2009]

A SEM consists of two major components: The electron column and the control con-
sole. The column consists of an electron gun and two or more lenses, which influence the elec-
trons moving down the evacuated tube. The gun generates electrons and accelerates them with
energy between 0.1 and 30 keV and sends them down the column which has a vacuum about
10™ to 107 Pascals. In the column the electrons pass through lenses that focus them on the
sample. The electrons enter the sample to a depth of approximately 1um. During this contact
is the signal generated which is used by the detector to generate the image, which is shown on
the control console. This control console consists of a viewing screen and a computer to con-
trol the electron beam and lenses. A detailed introduction into scanning electron microscopy is
given by Goldstein et al. [Goldstein et al., 2003]. A schematic of this process is shown in Fig-

ure 2.16:
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Figure 2.16: Schematic drawing of the electron column in an SEM [Goldstein et al., 2003, p. 23]

The highest commercially available magnification of a field emission SEM is done
with a Hitachi SEM. This instrument allows a 0.4 nm resolution with an accelerating voltage
of 30 kV. [Hitachi, 2011]

Some SEM systems are connected to an Energy-dispersive X-ray spectroscopy (EDS
or EDX). This is an analytical technique used for the elemental analysis of a sample. The
sample is shot with electrons inside the SEM. The sample emits electrons with certain energy.
Based on the energy is it possible to estimate the atoms which are in this sample. A more de-
tailed description of EDS systems is given by Garratt-Reed and Bell [Garratt-Reed & Bell,

2003].
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CHAPTER 3. MATERIALS AND METHODS

In the following section the setup of the conducted experiment and its procedures are
described. All silica nanoparticles used are 99.5% purity, 20nm primary particle size nonpo-

rous nanoparticle provided by SkySpring Nanomaterials Inc, Huston USA, Lot #6808-072110.

3.1.Probe Sonication

For the probe sonication a Fisher Scientific FB 120-Sonicator with a e horn is used.
This sonicator has a power rating of 120 watts and an operating frequency of 20 kHz. This
machine enables a change of the amplitude. With this it is possible to vary the vibration of the
horn and change the cavitation [Santos & Lodeiro, 2009].

As the probe sonication heats a 16 mL sample up, which results in vaporization, a
Lauda Ecoline RE 106 cryostat is used to keep the sample at a constant temperature of
15° Celsius. Furthermore the probe sonication is done in the pulsation modus. That means
each interval of 15 seconds probe sonication is followed by a 15 seconds break. This supports
the heat exchange between the sample and the cooling medium. The total sonication time is 90
minutes plus a 90 minute break per 16 mL sample. The whole setting is shown in Figure 3.1, a

picture of the probe sonicator is stated in appendix 6.6.3.

Figure 3.1: Setting probe sonication with probe, cryostat and sample

The used standard operating procedure is stated in appendix 6.5.1.
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3.1.1. Calibration

For the calibration of the probe sonicator is a 1 L Pyrex beaker insulated and filled
with 521 g water. A magnetic stir bar rotates with 60 rpm, a thermometer and the tip are
placed in the beaker. The important thing is that the tip is at a depth of exactly 20 mm in the
water, because the transferred energy is dependent on how much the horn is covered with

water. The setting is shown in Figure 3.2:
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Figure 3.2: Setting Calibration probe sonicator

For the calibration of the probe sonicator a procedure is suggested by the National In-
stitute of Standards and Technology (NIST) adapted to the special needs of this type of exper-
iment [Taurozzi et al., 2012].

At the beginning the water temperature is equilibrated to the room temperature. This
reduces heat losses to the environment. Before the measurement run is started, the probe soni-
cator is set at the given amplitude for 5 minutes on the needed level of amplitude. This enables
a better heat mixture in the water. Then is the temperature T, at the temperature at the begin-
ning of the experiment is noted. The measurement itself lasts for 15 minutes. After this time

period the end temperature T; was noted.
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Under the assumption that water has a constant heat capacity of c,(water,T =

30°C) = 4.180}(2—{1{ [\VDI, 2010] and the absolute heat capacity of the magnetic stir bar is able
to neglect in comparison to the water follows:

3.1
P = T m (water) - c,(water)

T
= m (water) - ¢, (water)

In this equation P is the resulting power of the probe sonicator in kW, AT the temper-

ature difference in K, At the time difference in s, m the mass of the water in kg and ¢, the
heat capacity of the water in kZ—{K. As this experiment was repeated with different amplitude

settings, the following graph is computed:

9
y = 8.3439x2? + 3.2849x
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Figure 3.3: Power as a function of amplitude for a 16 mL sample
For the data points plotted in Figure 3.3 the following regression equation is computed
with Microsoft Excel® 2010, whereas x the variable for the amplitude is:

P = (8.3439 x? + 3.2849 x)W 3.2

In this equation the regression coefficient or coefficient of determination R? = 0.9909.
This quantity is a measure of the proportion of variability explained by the fitted model

[Walpole et al., 2007]. As this value is almost 1, the regression function can be considered as
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valid. As stated in the standard operating procedure for probe sonication probe sonication is
done with 75% amplitude to disperse the nanoparticle. This means the following sonication

energy is introduced in the system:

Peonication = (8.3439 - 0.752 + 3.2849 - 0.75)W = 7.98 W 3.3

As 16 mL samples are used and the sonication time tsonication €9uals to 90 minutes,

the following represents the energy density E:

~  Psonication 798 W W-s 3.4
F=——"—": igion = —— 5400 s = 2693.25——
Vsample sonicaion 16 mL S mL
J J
=27-10°==27-103=
L m3

This is a relatively high energy density [Bohm et al., 2000], which is necessary to dis-

perse nanoparticles [Qsonica, 2014].

3.1.2. Reproducibility
To show the reproducibility for the probe sonication a 90 minutes sonication is repeat-
ed three times with a 75% amplitude according to the standard operating protocol stated in

Appendix 6.5.1. In Figure 3.4 the intensity distribution of this experiment is shown:
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Figure 3.4: Intensity for probe sonication reproducibility with 90 min sonication according to SOP
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The different values of the Z-average are stated in Table 3.1:

Table 3.1: Z-average after probe sonication

Name Z-Ave after probesonication [nm] Deviation from average [nm]
Sample 1 363.4 5.5
Sample 2 353.1 4.8
Sample 3 357.2 0.7
Average 357.9

Based on these results it can be stated that the probe sonication is reproducible. Unfor-

tunately is the distribution very wide, which means a filtration is necessary.

3.2.Filtration

As stated above the size distribution of the silica nanoparticle after the probe soni-
cation is broad. This is why a filtration becomes necessary. For the filtration a Teledine Isco
500D syringe pump and Fisher Scientific, Fisherbrand™, nitrocellulose filtration paper with a
220 nm, 450 nm and 800 nm pore size are used. The diameter of the filter is 47 mm and the
thickness 150 pum. Nitrocellulose is an ester of cellulose and used for a wide range of analyti-
cal procedures [Cheremisinoff, 1998, p. 22; Purchas & Sutherland, 2002, p. 356]. The pump is

shown in Figure 3.1. The standard operating procedure used is described in appendix 6.5.2.
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Figure 3.5: Teledine Isco 500D syringe pump
According to the standard operating procedure for probe sonication three batches were
sonicated for 90 minutes and filtered with the 800nm, 450 nm and 220 nm filter. After each
filtration step the particle size was measured with the DLS system. The resulting Z-averages
are stated in Table 3.2.

Table 3.2: Z-average for filtration reproducibility

Standard-
[nm] Samplel Sample2 Sample3 Average deviation
Before .0, 3531 349 355.2 7.4
Filtration
800nm 5,09 253 260 252.4 8.0
filtrate
“SU) 200 206.7 206.5 204.4 3.8
filtrate
220nm o0 o 168.5 180.3 171.4 78
filtrate

Since the standard deviation is low and non-spherical aggregates were measured with

the DLS, this result is considered as reproducible.
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3.3.Forming Emulsions

For this experiment a sole with a 0.25 wt% silica solution was chosen. This equals a
concentration of approximately 1 mM. This is about 43 times the silica concentration of the
Bering Strait, which is about 23 £9 uM [Anderson et al., 1983]. In this experiment, some of
the samples were prepared in artificial seawater, which was created after adding salt provided
by Lake Products Inc., Missouri, USA. This was prepared according to the ASTM standard
practice for the Preparation of Substitute Ocean water [ASTM, 2003].

To create the emulsion, the silica solution is set to pH 7 with hydrochloric acid. Then
the sample for the DI-water experiments is poured and 1 mL of each is placed in 15x45 mm
glass vials with Teflon caps provided by FisherBrand™. Afterwards the sea salt is added to
the rest of the pH 7 sample, stirred with a magnetic stir bar and 1 mL of each is placed in glass
vials. Following this 0.25 mL of oil is added to the sample and the mixture is vortexed for
30 seconds on a Fisher Scientific™ Mini Vortex Mixer at 2800 rpm to create an emulsion.

A reciprocating shaker with a speed higher than 70 cycles per minute causes enough
agitation to form oil droplets [Weise et al., 1999]. This is why the sample vials were placed
after the visual and microscope evaluation for 5h on a New Brunswick R-2 reciprocating

shaker at 100 rpm. This table shaker is shown in Figure 3.6:

Figure 3.6: New Brunswick R-2 table shaker with samples
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3.4.Stability Control

As the idea was to use one single batch of solution consisting of DI-water and silica, it
had to be shown that the particles are stable over a long time period. For the long term stability
one sample was sonicated according to the sonication SOP. The particle size is measured with
DLS at different times after the probe sonication. To allow an equal distribution of particles in
the solution the sample was placed on an orbital moving shaking table for five minutes before
each measurement. Furthermore every DLS measurement is repeated three times and the aver-
age of these three measurements is reported. In Figure 3.7 the mean of the Z-averages are

shown.
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Figure 3.7: Z-average for long-term stability measurement

The different number-distributions are stated in Figure 3.8:
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Figure 3.8: Number distribution for long-term stability measurement
As the manufacture of the DLS-system gives a range of +2% based on NIST traceable
standards [Malvern Instruments, 2014b] for the Z-average and the computation is based on
spherical or near-spherical particles [Malvern Instruments, 2011], these results can be consid-

ered as stable.

3.5.Concentration

One difficulty is to determine the particle concentration after the filtration. Three dif-
ferent approaches were used to try to measure the concentration:

1) Ultraviolet-visible spectroscopy: This approach is good if the particle size is constant
and uniform. Furthermore there has to be a set of samples with known concentration
available in order to calibrate the system. Unfortunately both variables are unknown.

2) Weighing the filter paper: The silica in the sample before filtration is known. After the
filtration, a part of the silica is in the filtrate and the rest of the silica is in the filter cake.
This filter cake should consist only of silica as the original sample consists of DI-water

and silica. This is why the following balance should be valid:
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Msilica in sample before filtration 3.5
= Mygijlica in filtrate T Mfilter cake

Unfortunately this balance was not true, because the used scales were not precise enough
or the filter paper interacts with water.

3) Vaporization: The idea is to vaporize a small amount of sample and measure the weight
difference and the silica residuals. This was the only suitable approach which is explained

in the following section:

3.5.1. Measuring

A small amount of sample (4 mL) is poured into vials. Previously these vials were
flushed twice with ethanol and only handled with gloves to avoid fatty residuals that influence
the results. After the sample are poured into the vials, the vials are placed for 24 hours in a
75°C warm Isotemp Icubator manufactured by Fisher Scientific to vaporize the water. With
the weight differences the silica concentration is computed. The detailed standard operating
procedure is stated in Appendix 6.5.3. To show the reproducibility of this approach, the exper-
iment is repeated three times with a 1 wt% DI-water/silica solution. The results from this are

shown in Table 3.3.

Table 3.3: Reproducibility Silica measurement

Sample/ Empty Vial with - Vial with Amount Amount Wt % Silicain

[mg] Vial s:?:::e sa‘:r::;le of liquid of Silica sample
1 14001.37 17974.86 14043.52 3973.49 42.15 1.061%
2 13913.36 17904.99 13953.62 3991.63 40.26 1.009%
3 13825.89 17833.25 13869.55 4007.36 43.66 1.089%

This shows that the measured weight concentration is similar to the original weight

concentration. The samples after the measurement are shown in Figure 3.9:
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Figure 3.9: Samples after weight concentration measurements
Based on these results it is assumed that the conducted way of concentration meas-

urement is reproducible.

3.5.2. Changing Concentration

For the increase of the concentration in the solution some of the water from the solu-
tion is vaporized. Procedures like this have been generally used for stable sols like colloidal
silica. Another idea for increasing the concentration is centrifugation. Unfortunately requires a
particle size smaller than 30 nm very high speeds. [ller, 1979]

The solution is placed in an Isotemp Icubator manufactured by Fisher Scientific. The
temperature is set to 75°C. The weight of the beaker is frequently measured. As the silica re-
mains in the solution while the water is vaporizing and the silica concentration at the begin-
ning of the experiment is measured according to Chapter 3.5.1, the desired weight of the solu-

tion can be computed.

Figure 3.10: Fisher Scientific Isotemp Incubator
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To show that the increase of the concentration has no effect on the agglomeration size,
one sample was vaporized. During the vaporization the particle size was measured with DLS.

The results are stated in Figure 3.11:
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Figure 3.11: Z-average during vaporization
Based on this result and the results in chapter 3.6.1 which discussed measurement er-

rors, the Z-average can be assumed to be constant.

3.6.Measurement Techniques

This chapter describes the used measurement procedures. At first Dynamic Light
Scattering is discussed. Then optical and (cryogenic) scanning electron microscopy is intro-

duced. Finally the methods of video recording and visual evaluation are described.

3.6.1. Dynamic Light Scattering
For the DLS measurements a Zetasizer ZS manufactured by Malvern Instruments
PLC, Malvern, UK is used. This system has a 173° Backscatter measurement angle with a He-
Ne laser with a 633 nm frequency. For this frequency the refractive index of silica is 1.450
[Waxler & Cleek, 1971], the absorption is assumed to be zero. The dispersant is set to water at
a temperature of 25°C with a viscosity of 0.8872 and a refractive index of 1.330. The equilib-
rium time is set to 120 seconds. The measurement is conducted in DTS0012-style Polyeth-

ylene disposable cuvettes. The measurement duration is set to automatic and the number of
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measurements per sample is three. From these three measurements an average is computed,
which is the reported value. The accuracy of this equipment is better than +/- 2% on NIST

traceable latex standards. A picture of the equipment is shown in Figure 3.12.

detas

Figure 3.12: Dynamic Light Scattering system and PC- setting
3.6.2. Optical Microscopy
Optical microscopy is conducted with a Fisher Scientific Micromaster Il optical mi-
croscope connected to an office computer. The software package Micron Il by Westover Sci-
entific is used as the imaging software. The setting, shown in Figure 3.13, features 10x-, 20x-,
40x- and 100x objective images at a size of 1024x768 pixels. For the imaging concave micro-

scope slides without a cover slide and the 20x- objective are used.

Figure 3.13: Optical microscope with attached PC
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Unfortunately the imaging of emulsions is very sensitive to vibrations and a keyboard
entry or a mouse click might result in a blurry image. This is why a mouse is taped on the

floor and used as foot pedal.

3.6.3. (Cryogenic) Scanning Electron Microscope

For the cSEM an Alto 2500 cryo stage manufactured by Gatan, Oxon, U.K., is used.
This device is connected to a Sigma VP SEM manufactured by Carl Zeiss AG, Jena, Germa-
ny. For all imaging an electron voltage between 1 and 5 eV is used. The higher the electron
voltage, the better the quality of the pictures is. Unfortunately such a high electron voltage
results often in surface charging.

Before the sample is prepared, the microscope is cooled to -170°C and the preparation
chamber to -130°C with liquid nitrogen. To prepare samples for cSEM imaging about 10pL of
a sample is placed in the holder shown in Figure 3.14 — the blue arrow points to the holder on

which the sample is placed.

Figure 3.14: ¢cSEM sample holder. Blue arrow points to holder which is used for placing the sample
In the next step the sample is cooled with slushed liquid nitrogen to freeze the droplet.
It is important that this step is done under a nitrogen atmosphere because the air moisture
freezes on the sample as soon as the sample comes in contact with air. After this the sample
was placed in the sample preparation chamber. In this chamber three steps were performed:
1) The sample was fractured. This means a part of the frozen droplet was removed

with a blade to create an internal surface that shows the inside of the droplet.
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2) Sublimation was conducted. The sample was warmed to -100°C to sublime the
water at a controlled rate. This should expose OMAs or droplets to make them
visible. The sample is left for about 2 minutes at -100°C. Afterwards the prepara-
tion chamber was cooled down back to -130°C.

3) Before the sample was placed in the microscope chamber, it was sputtered for 60
seconds with platinum in an argon atmosphere. This sputtering is a coating that
reduces charging and improves the quality of imaging.

A cSEM sample can be treated as an ordinary SEM sample as soon as it is in the mi-

croscope chamber.

For some samples was an EDS with an X MAX-System manufactured by Oxford In-

struments PLC, Abington, England, used.

3.6.4. Video Recording
To determine the emulsion stability over time the emulsions are filmed directly after
vortexing. This is done with a Nokia® Lumia 520 cell phone using WVGA quality with 30
frames per second. This setting is shown in Figure 3.15. For a good light distribution two in-
dependent light sources are used. Afterwards the videos are edited with Microsoft® Movie
Maker Version 2012 to generate a fast motion film and Free Video to JPG Converter v. 5.0.40

to extrapolate the frames for the time stability analysis.

Figure 3.15: Setting for video recording
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3.6.5. Visual Evaluation

For the visual evaluation pictures of the sample are taken with a Sony® DSC-W80
digital camera. Apart from the activated macro modus all settings kept are in the automatic
modus. Based on these images the thickness of the sedimentation and the emulsion layer is
measured with the imaging processing software ImageJ 1.48v provided by the National Insti-
tutes of Health. For the thickness of the sedimentation layer, the emulsion layer and the total
thickness 10 measurements are conducted, for the time stability 5. For the scale the 14.88 mL
diameter of the vials is measured with a Mitutoyo® ABSOLUTE caliper. This procedure gives

a good estimation and a trend between the different samples.
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CHAPTER 4. RESULTS AND DISCUSSION

One batch of silica solution is used for the conducted studies. This chapter describes
the properties during the preparation of the batch. In the following the results of the emulsion
formation are stated and discussed. This description consists of a qualitative and quantitative
evaluation of the emulsion and the sedimentation phase. Additionally, this chapter consists of

a measurement of the time stability and wave experiments.
4.1.Preparation Silica batch

4.1.1. Filtration
The silica solution is prepared according to the prior discussed standard operating
procedure with 1 wt% silica powder and probe sonicated for 90 minutes. Afterwards the solu-
tion is filtered twice. Similar to Viganti et al. DLS and SEM are used for the determination of
the particle size [Vignati et al., 2003]. The results for the peak of the intensity distribution in
DI- and seawater as well as the zeta potential in DI- and seawater are stated in Table 4.1, the

intensity distribution in DI-water is shown in Figure 4.1.

Table 4.1: Distribution of silica solution after second filtration at pH=7

Peak Intensity  Peak Intensity Zeta-potential

Zeta-potential DI

Filtrate DI seawater [mV] seawater
[Am] [nm] [mV]
800 nm 255.0 1281 -42 -7
450 nm 220.2 2669 -45 -7
220 nm 190.1 4477 -41 -9
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Figure 4.1: Intensity distribution after second filtration without pH adjustment

From the above stated Table 4.1 and Figure 4.1 it can be seen that the size of the silica
aggregates in terms of the z-average and the intensity peak is varying. The intensity peaks in
DI-water, which have differences about 30 nm in size, will be used as size in the evaluation.
The smallest silica agglomerates in DI-water form the largest silica-sea salt agglomerates and
the largest silica agglomerates in DI-water form the smallest silica-sea salt agglomerates. Ad-
ditionally it can be observed that the small agglomerates in DI-water form the largest agglom-
erates in seawater and the other way around. Furthermore it can be seen from the intensity
distribution that the distributions of the silica filtrate are narrow — the PDI for all distributions
in Dl-water is approximately 0.25.

The zeta-potential, which is a value for the surface charging of the particles, is at
pH=7 for the particles in DI-water solution between -41 and -45 mV, in seawater it decreases
to -7 to -9 mV. This decrease occurs because the cations in seawater absorb onto the surface of

the silica particles.

4.1.2. Measuring and increasing concentration
As the filtration removed an unknown amount of silica from the solution, the concen-

tration of silica has to be measured and adjusted. A concentration measurement according to
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standard operating procedure stated in appendix 6.5.3 is conducted before the concentration of

silica is increased. The results of this measurement are stated in Table 4.2:
Table 4.2: Results concentration measurement

[mg] Vial w. liquid Vialw.dry Amount Amount
Filtrate Empty Vial sample sample liquid Silica Weight %

800 nm 13852.01 17314.52 13853.33 3462.51 1.32 0.038%
450 nm 13854.09 17830.97 13855.95 3976.88 1.86 0.047%

220 nm 13963.7 17926.88 13964.63 3963.18 0.93 0.023%

The low and varying amount of silica in solution makes an adjustment necessary in
order to achieve the desired 0.25 wt% silica in solution. This is done with the described stand-
ard operating procedure for adjusting the silica concentration. After the concentration adjust-
ment SEM images are taken (see Figure 4.2). In these images it can be seen that the particle

still form aggregates. This is reasonable as the primary particle size is 20 nm, which is one

order of magnitude smaller as the measured Z-averages, which are stated in Table 4.1.

Figure 4.2: Scanning electron microscope images of the silica filtrate
The EDS shows that the silica solution consists of silica and oxygen atoms. In
ure 4.3 the red dots represent detected silica and the green ones detected oxygen atoms. This is
reasonable as the solution consists of silicon dioxide (Si0,), which consists of silica and oxy-

gen atoms.
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Figure 4.3: EDS map of 450nm filtrate

The silica solution described above is the one used during the emulsion experiments.

4.2 . Emulsion

4.2.1. Type of Oil

The oil types for the final batch are chosen after a screening experiment. 1.2 mL of 10
different oils are mixed with a 6 wt% silica solution with DI-water and real seawater. The pH
value of the DI-water-silica solution is brought to pH 2, 4 and 6. The real seawater was taken
from the Narragansett Bay on February 7" 2014.

The silica solution is not probe sonicated. That means the solution consists as received
silica nanoparticles in DI- or seawater. The samples are vortexed and their stability is visually
observed. Afterwards the samples are bath sonicated and evaluated again. The results of this
screening experiment are stated in Appendix 6.6.

For samples forming an emulsion optical microscopy is conducted. In Figure 4.4 an
optical microscopy image of octanol in seawater at a 20x magnification 15 hours after vortex-

ing is shown. This sample is bath sonicated for 10 hours.
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Figure 4.4: Microscope image of octanol in seawater (15h vortex; 10 h bath sonication)
In this image silica particles are at the side interface between oil and water. As the
droplets are stable for at least 10 hours, these droplets are Pickering emulsion droplets. Based

on this result the following three oils for the final experiment are chosen: n-octane, octanol

and ethyl acetate.

The following nomenclature is used:

Table 4.3: Used nomenclature

Coding

Meaning

EA
ON
oL
220
450
800
SW
DI

Ethyl acetate

Octane

Octanol

Silica filtered with 220 nm filter
Silica filtered with 450 nm filter
Silica filtered with 800 nm filter
Emulsion in seawater

Emulsionin DI-water

4.2.2. Experiment

In the main experiment the filtrate is brought to pH 7 with hydrochloric acid (HCI). If
necessary, sea salt is added. For the final formation of the emulsion 1 mL of this solution is
mixed with 0.25 mL oil to achieve an oil to water ratio of 1:4 or 20 volume percent. These

samples are evaluated with visual observation, optical microscopy and cSEM. Furthermore
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their time stabilities are measured. After this evaluation 0.05 mL of an oil/AOT solution are
added in order to achieve an AOT concentration of 0.5 mM.

In this subchapter the results for emulsion formation with the above chosen oils and
the silica filtrate are discussed. The pictures of the visual and microscopically evaluation
without AOT are shown in appendix 6.7, those with AOT are shown in appendix 6.8.

4221, Without AOT

The following trends can be observed with the samples before AOT are added:

Emulsion
One way to compare the emulsion stability between the different oils as well as DI-
and seawater is to express the relative emulsion layer thickness as a function of particle size.
The relative thickness of the emulsion layer is defined as the ratio between the height of the

emulsion layer and the total sample:

hEmulsion 4.1
relative thickness emulsion layer = [%]
hTotal sample
50% 95h after vortex
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Figure 4.5: Relative emulsion thickness over intensity peak 95h after vortex without AOT
From the visual evaluation of the emulsion and the measurements of the relative

emulsion thickness (Figure 4.5) the following are observations drawn:
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1)

Octanol and octane in seawater with silica form a thick emulsion layer especially for
the 450 nm filtrate. Octanol forms water in oil emulsions (W/O), while octane forms
oil in water emulsion (O/W). A W/O emulsion means that water droplets are present
within the oil phase, oil in water emulsions are oil droplets in the aqueous phase. As
an example is octanol in seawater with 450 nm silica filtrate shown in Figure 4.6 A.
With the optical microscope is visible that the emulsion layer consists of droplets
(Figure 4.6 B). Some of these droplets show nanoparticle aggregate and/or OMA dep-
osition (see blue mark in Figure 4.6 B). It seems to be reasonable that the seawater
samples with the small particle size have no or a small emulsion layer as the silica
particles sedimented. The largest particle form in all cases no emulsion, which is not

following the accepted theory. This is discussed in chapter 4.3.

Figure 4.6: Water in oil emulsion phase of SW OL 450 without AOT. (A) picture of the sample, blue mark is

2)

3)

pointing on emulsion phase. (B) 10x optical microscopy image, blue mark points on OMA.
Only octanol forms an emulsion in DI-water (O/W). Neither octane nor ethyl acetate
forms an emulsion to a significant degree in DI-water.
Ethyl acetate with silica filtrate does not form visible emulsions in DI- or seawater to
a significant degree. As an example is the SW EA 450 sample shown in Figure 4.7 A.
At the optical microscope some droplets and a kind of inverted droplets are visible at
the interface. These droplets are shown in Figure 4.7 B. This is according to the litera-

ture as Binks and Lumsdon observed that Toluene in a DI-water silica solution with
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the presence of Sodium Chloride unstable towards creaming [Binks & Lumsdon,
1999]. Frelichowska et al. observed that Ethyl Acetate with fully hydrophilic fumed
silica nanoparticles forms a stabile emulsion using 6 wt% silica nanoparticle
[Frelichowska, Bolzinger, & Chevalier, 2009]. It seems to be reasonable that ethyl ac-
etate do not form a stable emulsion in this study as the stability of Pickering emulsion
is depending on the concentration of nanoparticles [Binks, 2002] and this study uses

0.25 wt%.

Figure 4.7: SW EA 450 without AOT

Sedimentation
Samples in Dl-water show little sedimentation. What sedimentation that is present is
deposited on the bottom of the vial and not measurable with ImageJ. As an example is the
sedimentation of octane in DI-water with decreasing particle size shown in Figure 4.8. From
this figure can be seen that the sedimentation phase accumulates at the bottom of the vial and

decreases with decreasing particle size.

Decreasing particle size

Figure 4.8: Sedimentation of octane in DI-water without AOT
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With the optical microscope is some sedimentation visible. An exemplary microscopy
image of octanol in DI-water with 800 nm filtrate is shown in Figure 4.9. The blue marks

show solid deposition in the bottom phase, which are very likely to be OMAs.

Figure 4.9: Solid depositions in bottom phase of DI OL 800 without AOT
Another example for the OMASs is octanol in DI-water with 450 nm filtrate (see Fig-
ure 4.10 A). Even if the sedimentation phase is relatively small in comparison with other sam-
ples, there is a small sedimentation visible. This is with the cSEM visible (see Figure 4.10 B),
where a cut through the frozen sedimentation phase droplet is shown. Furthermore it is possi-
ble to see the OMA with optical microscopy (see Figure 4.10 C). This OMA look like flake
aggregates, which are reported by Stoffyn-Egli and Lee and stated in Figure 2.8 C [Stoffyn-

Egli & Lee, 2002].

Figure 4.10: OMA in DI OL 450 sedimentation without AOT. (A) picture of the sample, blue mark points on
the sedimentation phase (B) cSEM image of the sedimentation phase (C) optical microscopy image of the sedimen-
tation phase at a 20x magnification.
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Both, the OMAs shown Figure 4.9 in and Figure 4.10, are relatively small. Based on
these images it can be concluded that the OMAs in DI-water have only a small amount of oil
trapped. Furthermore almost all oils in DI-water show few oil droplets using an optical micro-
scope. These oil droplets might be created during pouring the sample with the pipet from the
vial onto the microscope slide. This is why they are not further discussed.

This sedimentation is following the literature as Binks and Lumsdon have discovered
sedimentation (they call it flocculation) in samples with Toluene in DI-water with 0.5 wt%
silica nanoparticles for all concentrations of sodium chloride [Binks & Lumsdon, 1999]. As
they used a twice as high silica concentration, they might have recognized a thicker floccula-
tion layer than it is visible in Figure 4.10 A. Toluene has a similar relative polarity as ethyl
acetate [Freed et al., 1990].

The amount of sedimentation is much higher in seawater than in DI-water. In seawater
the sedimentation phase is visible and measurable for all three different oils. In Figure 4.11 is
the relative thickness of the sedimentation phase in seawater over the particle size shown. The
relative thickness of the sedimentation is defined as the ration of the sedimentation height and

total sample height:

hseai i 4.2
relative thickness sedimentatoion = —c2mentation rq,

Total sample
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Figure 4.11: Relative thickness sedimentation phase over particle size without AOT 95h after vortex
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This means smaller silica agglomerates in seawater form a significantly thicker sedi-
mentation layer than larger silica agglomerates. This is reasonable as the small silica agglom-
erates form the largest silica-sea salt agglomerates.

With the cSEM it can be seen that the sedimentation for octane in seawater and the
220 nm filtrate consists of OMAs consisting of silica, oil, oxygen and the minerals in sea salt
(see Figure 4.12 A). Using an optical microscope it can be seen that the sedimentation layer
floats as a blurry phase within the sample (see mark in Figure 4.12 B). Furthermore this sedi-
mentation layer is visible at the bottom of the vial (see mark in Figure 4.12 C). This OMA
looks similar to the droplet OMAs which are reported by Stoffyn-Egli and Lee and stated in

Figure 2.8 A [Stoffyn-Egli & Lee, 2002].

Figure 4.12: OMA in SW ON 220 sedimentation without AOT. (A) EDS/cSEM image of sedimentation phase,

light cyan represents carbon, green oxygen and blue silica, other colors are minerals from the seawater. (B) optical

microscopy image of the sedimentation phase at a 20x magnification, blue mark is a floating sedimentation phase.
(C) picture of the sample, the blue mark points on the sedimentation phase.

The presence of OMAs follows Le Floch et al’s results [Le Floch et al., 2002]. They
observed the formation of OMAs with different crude oils in seawater at changing salinities.
Their results indicate that some salt presence is needed for the formation of OMAs. Further-
more it is observed by Guyomarch et al. that the amount of salt concentration has an influence
on the size of OMAs [Guyomarch et al., 2002]. Both, Le Floch et al. and Guyomarch et al.,
support with this the hypothesis that OMAs are stabilized among others with charges on min-

eral surfaces [Bragg & Yang, 1995]. These charges are present as charged salt ions.
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4222, With AOT

Emulsion
After the samples without AOT are evaluated, AOT is added to these samples. As the
necessary amount of AOT dissolved in 0.05 mL oil, the total amount of oil is assumed as con-
stant. The samples with DI-water with AOT form a thick O/W emulsion layer. This is shown

in Figure 4.13, where the relative thickness of the emulsion layer is shown:
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Figure 4.13: Relative emulsion thickness DI-water samples with AOT 48h after vortex
From this figure and from the visual observations it can be seen that the thickness of
the emulsion layer is decreasing with increasing particle size. Only ethyl acetate in DI-water
samples with silica particles do not follow this trend. In Figure 4.14 a picture, a microscopy

image and a cSEM image of the DI ON 450 with AOT sample are shown.

Figure 4.14: Octanol in 450 nm silica filtrate and DI-water with AOT. (A) Picture of DI OL 450 (B) optical
microscopy image of emulsion phase at 20x magnification (C) cSEM image of the emulsion phase

Apart from some relatively large droplets at the interface of the SW OL 220 sample

no emulsion is visible in seawater. Unfortunately these droplets were too large to be imaged
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with optical microscopy or cSEM as pipets destroy those large droplets. Furthermore these
droplets are really unstable towards vibration, which might be the reason why they were not
reproducible. All in all it can be summarized that silica, oil and DI-water form a larger emul-

sion than without AOT. This effect becomes visible in the time stability.

Sedimentation

Samples with DI-water do not form visible sedimentation to any significant degree.
The mixtures with seawater form a visible sedimentation layer except for the samples with
800 nm filtrate particles. The general trend of this is similar to the experiment without AOT.
Unfortunately these sedimentation layers were too small to measure with ImageJ in order to
achieve a valid result. Only the emulsions with ethyl acetate in seawater form visible sedimen-
tation to a significant degree, but this is less than in the samples without AOT. Pictures of this
series are shown in Figure 4.15 A-C. The corresponding images of the bottom phase show
emulsion and OMAs to a different degree. In the SW EA 220 sample are clearly OMAs with
some inverted droplets visible. The larger the particles the less distinct are the OMAS in this

series.

Figure 4.15: Sedimentation of ethyl acetate in seawater with AOT. (A) Picture of SW EA 220 and a 20x mi-
croscopy image of the bottom phase. (B) Same as (A), but for SW EA 450 . (C) Same as (A), but for SW EA 800.
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4.2.2.3. Time stability
For this experiment the samples are vortexed for 30 seconds. Directly after vortexing
videos are recorded as described in chapter 3.6.4. Based on these videos the thickness of the
emulsion layer is measured every 10 minutes according to chapter 3.6.5. The results are stated
in Figure 4.16. The thickness of the emulsion layer is expressed as relative thickness of the

emulsion layer, which is defined in equation 4.2.
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Figure 4.16: Thickness of the emulsion phase over time after vortexing
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It was not possible to observe the formation of OMAs within 40 min after vortexing.

During this experiment the following was observed for the emulsion phase:

1)

2)

3)

4)

5)

Samples with AOT form larger and longer stable emulsion layer then samples without
AOT. Adding AOT results in a better emulsion performance in all cases. This is reasona-
ble as AOT is used as a surfactant. This effect was previously observed by Binks and
Whitby with the cationic surfactant Dodecyltrimethylammonium bromide (DTAB) [Binks
& Whitby, 2005].

Ethyl acetate forms no emulsion in DI-water regardless of the particle size. In seawater it
forms only the 220 nm filtrate emulsion, but these emulsions are not stable for a long time.
After adding AOT the emulsion layer is much more stable.

There is a general trend that samples with smaller particles form larger and more sustaina-
ble emulsions. Only samples with ethyl acetate in DI-water and AOT do not follow this
trend. But this difference is not significant and could have been resulted because of meas-
urement inaccuracies.

Octanol in DI-water without AOT results in the largest and most sustainable emulsion
layer regardless of the particle size. Ethyl acetate forms no emulsions for all combinations
with seawater and DI-water/with AOT.

After comparing the relative emulsion layer thicknesses of the samples without AOT with
the one with AOT and with the controls it becomes obvious that AOT and silica nanopar-
ticle have an influence on the emulsion layer. This means interactions between the cation-
ic surfactant AOT and silica nanoparticles are possible. Unfortunately a proof of statistical
significance is not possible using the available. Worthen et al. suggest for an opposite
charge of nanoparticle and surfactant a strong surfactant adsorption on the nanoparticles

[Worthen et al., 2014].
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4.2.2.4. Waves
As it is stated in the literature that a reciprocating shaker with more than 70 revolu-
tions per minute can break the oil/water interfacial tension [Weise et al., 1999], the vials with-
out AOT were placed on a reciprocating table shaker. The scale was set to 100 rpm and the
samples were shaken for five hours. The change of the samples was compared with visual

evaluation. As an example the visual comparison of the DI OL 220 is shown in Figure 4.17:

After shaking

Figure 4.17: DI OL 220 comparison before and after 5h shaking without AOT

From the comparison of these pictures it can be seen that the shaking destroyed some
droplets and reduced the cloudiness at the interface. This effect occurred in all samples. None
of the tested samples showed a larger emulsion phase, which is goes against what was ex-
pected and the reported by Weise et al [Weise et al., 1999].

The reason for that could be that in this study only 1 mL DI or seawater is used. Weise
et al. use Erlenmeyer flasks filled with 300 mL of solution to test dispersant efficiency [Weise
et al., 1999]. This leads to the assumption that the used vial is too small to develop waves
which would mix the sample in order to lead to emulsion formation. Unfortunately there was
not enough silica solution available to repeat the experiment with a larger sample size. This is
why detailed determination with optical microscopy and replication with AOT was not con-

ducted.
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4.3.Theoretical computations

In order to use equation 2.2 for the used oils, the values for oil/water interfacial ten-
sion and the contact angle have to be taken form the literature. These values are shown in Ta-

ble 4.4,

Table 4.4: Surface tension, O/W interfacial tension, contact angle and density of the used oils [Carré &
Lacarriere, 2006; CRC, 2010; Frelichowska, Bolzinger, & Chevalier, 2009; Grifalco & Good, 1957; Kwok &
Neumann, 1999; VDI, 2010]. Dipole moment for 1-octanol is measured in the gas phase.

Oil Surface Oil waterinterfacial contact angle Dipole

tension tension silicon waver Densutsy Moment
Y (2 ] e/mT o)
m m
Ethyl acetate 22.6 5.84 142 900.1 1.78
N-octane 21.8 50.8 51 702.3 0
1-octanol 27.5 8.5 75.1 826.8 1.76

As expression 2.2 depends on the contact angle between oil, water and silica, the con-
tact angle measured on a silicon waver cannot be used. Unfortunately for this contact angle are
no literature values available. This is why the Gibbs free energy divided by (1 — cos(8))? is

shown in Figure 4.18.

- Ethyl acetate

1-octanol

2 N-octane

AG / (1-cos®)? [J*10713]

500 1000 1500 2000

Particle radius [nm]

Figure 4.18: Theoretical computations for Gibbs free energy of particle adsorption at different oil/water
interfaces.

All of the computed values are positive and the expression (1 — cos(8))? is positive

for all contact angles, all oils should be able to form stable Pickering emulsions in theory.
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From this figure it can be shown that the Gibbs free energy grows quadratically with increas-
ing particle size. This effect could not be observed with the above evaluated experiments. It
looks like there is an optimum particle size where the droplets are most stable. This might be
because in the derivation of the equation 2.2 it was assumed that gravity has no influence on
the particle. Also it neglects the rate of diffusion of the particles from the bulk phase (water) to
the oil/water interfaces once droplets are formed.

From Figure 4.18 it can be seen that octane forms the most stable emulsions in theory
as the Gibbs free energy is highest. This seems reasonable as n-octane has the lowest dipole
moment out of the three chosen oils. The dipole moment is a measurement for the charge dis-
tribution of polyatomic molecules [\VDI, 2010, p. 130]. The higher the dipole moment, which
is usually expressed in the dimension Debye, the more asymmetric is the charge distribution
within the molecule. As octane is a non-polar molecule, the dipole moment is zero. Conse-
guently octane forms no hydrogen bonds with water, which supports the formation of sustain-
able emulsions. This is why it seems to be reasonable that octane forms the most stable emul-
sions in DI-water without AOT (compare Figure 4.11). Ethyl acetate and octanol, having di-
pole moments around 1.8 and, do not form stable emulsions in DI-water because the required

energy to break the emulsion is low and can be brought up by the hydrogen bonds.
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CHAPTER 5. SUMMARY AND OUTLOOK

This study hypothesized that the size of silica hanoparticles has a significant influence
on the formation and stability of Pickering emulsions and the formation of oil mineral aggre-
gates with oil in deionized- or seawater. In order to proof this hypothesis silica nanoparticle
aggregates were created and fractionized in distinct size fractions. Then the aggregate adhe-
sion to oil/water interfaces was examined and the formation of Pickering emulsions and oil
mineral aggregates of ethyl acetate, octane and octanol with the fractionized silica nanoparti-
cles in deionized- and seawater with and without the surfactant Aerosol OT determined. The
following results were gained:

- Without Aerosol OT the sedimentation in seawater is higher than in deionized water. Fur-
thermore the sedimentation thickness decreases with increasing particle size.

- It could be shown that the sedimentation layer in seawater consists of silica, oil and salt
minerals. With Aerosol OT only small primary silica aggregates form significant sedimen-
tation layer. The reason for that is that the smallest silica agglomerates form the largest sil-
ica-sea salt agglomerates.

- Emulsions with Aerosol OT are more stable then without. Surprising is that octanol and
octane in seawater and octanol in DI-water form the largest emulsion layer with the medi-
um sized particles. This is not according to the conventional theory, which assumes in-
creasing stability with increasing particle size. Based on this can be assumed that there is
an optimum particle size.

Based on this result can be concluded that the aggregate has a significant influence on
the formation of emulsions and sedimentation layers. In order to use this effect and to develop

a silica nanoparticle based dispersant, the following questions have to be answered:
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1) What is the interaction of silica nanoparticles and a surfactant on a molecular level?
The understanding of this interaction on a molecular level is important in order to under-
stand the formation of OMASs in an ocean surrounding. Based on the conducted study the
following can be hypothesized in seawater without the surfactant Aerosol OT:

The silica agglomerates are negatively charged. This negatively charge attracts the sea
salt-cations, which stick to the silica agglomerates due to cation bridging. Evidence for
this is provided by the drop of the surface charge from around 43 mV to around 8 mV
while adding sea salt (see Table 4.1). These silica-sea salt agglomerates have positive
charge. This is why they are attracted by the negative charged oil and form oil mineral ag-
gregates. Depending on the specific weight of the mineral aggregate, the oil mineral ag-
gregate floats up to the emulsion phase or saddles down and forms the sedimentation

phase. The amount of silica bounded to the oil has a large influence on the specific weight

as the density of amorphous silica is about 2.2 g [Florke et al., 2008] and much higher

cm3

than the density of the used oils (compare Table 4.4). A schematic of the whole process is

shown in Figure 5.1.

Figure 5.1: Hypothesized interactions between silica, sea salt and oil
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2)

3)

After adding Aerosol OT, it surrounds the silica-sea salt agglomerates with a micelle like
structure. This is because the negative charge in the head group of Aerosol OT is attracted
to the positive charge of the salt cations. The tale groups of such micelle like structures

and the ones of free Aerosol OT molecules act like ordinary surfactant. This is shown in

Figure 5.2.

Figure 5.2: Hypothesized interactions between silica, sea salt, oil and Aerosol OT
However, future research has to identify the interactions of silica, sea salt and Aerosol OT.
What is the toxicity of silica nanoparticles in an ocean surrounding?
Conventional dispersants might be toxic towards marine species. In order to use silica na-
noparticles solely or additional to conventional dispersants, it has to be proven that they
have no or less toxicity then conventional treatments. Furthermore has the influence of oil
mineral aggregates to be determined.
What is the behavior of silica based dispersants at different temperature ranges?
Offshore oil spills can occur everywhere in the ocean. This means the effectiveness of sil-
ica based dispersants has to be evaluated in a temperature range between -2°C to 30°C as

this the range of ocean temperature [Castro & Huber, 2003].
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4) Can the silica nanoparticles be coated with nutrients in order to have optimal condi-
tions for oil-degrading bacteria?
If it is possible to enrich emulsion with nutrition to support oil-degrading bacteria, the
process of oil degradation can be speed up. With this effect is the presence time of crude
oil in the ocean reduced. This would reduce the environmental impact of crude oil spills.

If these questions are answered and the interaction between silica nanoparticles, dispersants,

seawater and oil are understood, silica nanoparticle based dispersants might be a useful tool

for treating future oil spills.
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CHAPTER 6. APPENDIX

6.1.0il spill response decision tree

Galher information on the ol spID

Y

IS THERE A NEED
FOR RESPONSE?

C Continue survelllance)

YES
(or possibly)

Evaluate the expected effectiveness of all options in
contingency plan (Use one or more options)

Y Y

MECHANICAL DISPERSANT IN-SITU l;\ES.,THgl; EC I?I:Id:
RECOVERY USE Bibng CLEAN SHORELINES
( Complete net environmental benefit analysis; decide on response action(s) )

Obtain approvals if necessary

Y

Start response
action(s)

Y

IS RESPONSE MEETING NO

EXPECTATIONS?

YES

Y

Continue until response
is completed

Figure 6.1: Oil spill response decission tree [Fiocco & Lewis, 1999]
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6.2.Vortex

Little research about vortex mixing and its reproducibility can be found within the sci-
entific community. The invention of an apparatus for mixing fluent material, which is similar
to today’s vortex mixer, goes back to the 1950s. The Kraft brothers invented a small scale
mixer especially for laboratory use and filed it as a patent in 1959 [Kraft & Kraft, 1959]. Their
mixer consists of a vertically oriented, electrically powered drive shaft which is attached to a
cupped rubber piece. As the rubber cup is mounted slightly off-center, it oscillates in a circular
motion when the motor is switched on. Pressing a vial on this rubber cup creates a vortex in
the solution. This enables an effective mixing of the liquid. [Buie, 2011]

A drawing of this mixer is shown in Figure 6.2:

IH‘“""’ I}M\m A

|
18 v
FIG.\. 18 JACK A KRAFT.
v HAROLD D.KRAFT.

Tireqaccaran
ATTORNEY:

Figure 6.2: Technical drawing of the first vortex mixer [Kraft & Kraft, 1959, p. 1 edited]
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Today companies like Scientific Industries offer vortex mixers which do not need a
manual pressing against the rubber cup as the vials can be mechanically fixed to the vortex
mixer [Scientific Industries, 2014a, 2014b]. This setting should be more reproducible than the

conventional vortex mixing [Buie, 2011].

6.3.Picture Probesonicator

Figure 6.3: Probesonicator
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6.4.Calibration Shaking Table

The calibration of the rotating New Brunswick® Excella E-1 Classic Platform shaker
is conducted with an video camera recording 29 frames per seconds. That means the camera
creates a video with 29 pictures per second. Such videos are recorded at a 50% and at a 75%
intensity. With these video files frame by frame analyses are conducted and the revolutions for
30 seconds counted. Based on this number the following revolutions per minute (rpm) number

are computed:

Table 6.1: Calibration New Brunswick® Excella E-1 Classic Platform shaker

Revolutions per

Amplitude 30 seconds rpm
50% 195 390
75% 210 420

Surprising in these results is that the technical specifications in the manual give a

maximum speed of 400 rpm.
6.5.Standard Operating Protocols

6.5.1. Probe Sonication

1) Water bath 15°C

2) Mix 17 ml DI-water and 0.17 g non porous nanoparticle

3) Shaking table for 5 minutes on 75% (while this prepare DLS so that only the
start measurement button has to be pushed, check 20 mm mark on horn)

4) DLS (120 s temperature time, 3 runs, 25°C) with 1 mL -> This is necessary
because all reported values will be the average from the three measure-
ments!!!

5) Probe sonification at 75% (15 seconds pulsation and 15 seconds break) in the

water bath. Time is the variable
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6) Remove from the water bath

7) Wait for 30 Minutes (prepare the DLS during this time)
8) Shaking table for 5 Minutes on 75%

9) DLS (120 s temperature time, 3 runs) with 1 mL

10) Cleaning the probesonicator with Ethanol and a kimwipe

6.5.2. Filtration
1) Fill pump with DI-water
2) Set refill speed to 20 ml/min
3) Empty pump
4) Set pump speed to 0.5 ml/min
5) Put filter in case (the small diameter sieve has to be the one next to the filter
paper) and mount case together
6) Vortex sample
7) Fill sample in the pump (20 mL/min)
8) Mount case to pump
9) Pump (0.5 mL/min)
10) Refill 4 mL DI-water in pump to empty pipes
11) Pump (0.5 mL/min)
12) Demount case
13) Vortex Sample
14) DLS sample (120 s temperature time, 3 runs, 25°C) with 1 mL
—> This is necessary because all reported values will be the average from the
three measurements!!! - Put DLS sample back in sample container
15) Clean case (flush all parts with DI-water, put it in DI-water and Bath soni-

cation, flush all parts again)
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16) Flush pump two times with DI-water
Filtration of sample >20 mL: Filter batches 20 mL each. Cleaning between the

batches not necessary, repeat steps 5-9 as long as all sample is filtered.

6.5.3. Concentration measurement
1) Set oven to 70 degree Celsius
2) Clean 20 mL vial (Flush it with DI-water twice, than with Ethanol once)
3) Dry vial with a Kimwipe
4) Place it in the oven for at least 2h
5) Let it cool down
6) Weight it (wait until the scale is balanced and the value remains con-
stant!!!) > Empty vial weight
7) Fill 4 mL sample in it, weight it again - Weight liquid sample + vial
8) Put it for at least 24 h in the oven
9) Turn the oven of and let the sample cool down for 2h
10) Weight sample > Weight dry sample + vial

The sample should look like this:

Figure 6.4: Sample after concentration measurement
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6.6.Results pre experiment

6.6.1. Without sonication, 80h after Vortex
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6.6.3. With 6h Bathsonication, 11 h after vortex
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6.6.4. With 10 h bathsonication, 15h after vortex
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6.7.Results microscopy and visual evaluat
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6.9.1.Presentation ACS Colloid & Surface Science Symposium
The following slides were shown during a presentation on the American Chemistry

Society Colloid & Surface Science Symposium, Philadelphia PA, June 25" 2014,

@ESIEIEASNAN@PARTICLEYE ;
N PIGKERING EMULSION FORMA
L SIFABLEERY

THENK BIG- > WE DO"

Figure: © Adrian Cadiz

MOTIVATION

An US-Air Forée plane drops anoil dispensing
chemical into the Gulf of Mexico

106



MOTIVATION

What happened with the oil?

i i Unified command *Oil in these three
Interactions betvyeen par.tlcles Unifed command | o e e
and surfactants in emulsions are . being degraded naturally

poorly understood an—
Whitby et al (2009). J Colloid Interface Sci. 329(1) 173-81 remaining || Direct recovery Burned at
surface sheen, || from wellhead the surface
l floating tarballs, 17% _ 5%
and oil washed ashore -
or buried in sediment Skimmed
26°/o lrm;n the
. . . surface
Formation and interaction of Evaporated to 3%
+ Pickering Emulsions i epersed o
+ Oil Mineral Aggregates v e elheat” orathe
or at the
16% wellhead"
with silica nanoparticles and 8%
surfactants in seawater -
THINK BIC g E DO

UNIVERSITY

OF RHODE ISLAND

WHAT ARE PICKERING EMULSIONS?
AG = @ o (1 — cos@)?

Surfactant VAV : Solid particle

/

o/w classical emulsion o/w Pickering emulsion

Sketch of a Pickeringemulsionand a classical (surfactant-based) emulsion.

UNIVERSITY

OF RHODE ISLAND
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SILICA AND ITS PICKERING EMULSIONS

* Emulsion

— The higher the silica
concentration, the smaller the
droplet size

Frelichowska et al. (2009). Colloids Surfaces A Physicochem. Eng.
Asp. 343(1-3): 70-74.

— Emulsions with silica and NaCl
are unstable to creaming
Binks, B.P et al. {1999). Phys. Chem. Chem. Phys.. 3007-3016

» Sedimentation

* Silica, silicon dioxide or

SiO — The more sedimentation, the
2 more unstable
* As bounds: 75wt% of Binks, B.P et al. (1999). Phys. Chem. Chem. Phys. 3007-3016

Earth’s crust

UNIVERSITY

OF RHODE ISLAND

OBJECTIVES

OF RHODE ISLAND
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EXPERIMENTAL DESIGN

FILTRATE

) |Peak Intensity| Peak Intensity Zeta-potential DI Zeta-potential
Filtrate DI seawater [mv] seawater
[nm] [nm] [mV]
800 nm 255.0 1281 -42 -7
450 nm 220.2 2669 -45 -7
220 nm 190.1 4477 -41 -9
16
14 =220 nm filtrate
—— 450 nm filtrate
12
e 800 N filtrate
g 10
Z,
Es
4
2
ol = A
1 10 100 1000 10000
Diameter [nm]
THINK

OF RHODE ISLAND
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RES};JLTS - EMULSION PHASE

(A)Image SW OL 450 wio AOT
(B) Microscopy Interface SW OL 450 w/o AOT
(C)Image SW OL 800 wio AOT

» Greatest emulsification

= i with octanol (w/o) and
§5°% ~ : 95h after vortex octane (OIW) |n
g 40% :—0— DI Ethyl Acetate Seawater
- s & 8 = Drodtanal — Cation adsorption on NPs
g ’;’,’ \\‘ | —&— DI Octane
2o a N1 =0 swethyi acetate * Only octanol forms an
> o ‘.\‘ == SW Octanol . .
£ 10 e St - awodme emulsion in DI (o/w)
: ” £ — Polar oil and hydrophilic
150 200 250 300 NPs
Particle size [nm] THINK BIG WE DO

PESULTS - SEDIMENTATION PHASE

+ Minimal sedimentation in DI

+ SW causes aggregation & OMA

formation Sedimentation of Dl-water in Octane
< Behavior in SW consistent with
size and charge

Le Floch (2002) Spill Sci. Technol. Bull 8(1): 65-71.

&

0%

5% - sW Ethyl Acetate

= -5W Octanol

relative thickness sedimentation
phase

0% 7 -SWOdane

150 200 250 300
95 h after vortex Particle size [nm]

(A) EDS/cSEM image of the sedimentation phase. (B) 20x optical _
microscopy (C) is a picture of the sample in the vial. THINK BIG WE DO
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RESULTS W/AOT - EMULSION PHASE
(W # “‘:;. e (A) Microscopy Interface DI OL

; Ry 450 wiAQT
"%, . (B) cSEM Interface DI OL 450

, WAOT

‘\ (C) Microscopy Interface DI EA
; 450 wAQT
(D) Image DI EA 450 w/AOT

Adding AOT increases (o/w)
emulsion layer
Literature: Observed with DTAB

Binks Colloids Surfaces A Physicochem. Eng. Asp.253(1-3). 105-115.

No significant emulsion with
seawater

THINK BIG &8 WE DO

PESULTS W/AOT - SEDIMENTATION PHASE

* Minimal sedimentation in Decreasing particle size

y ke Led 22
» More droplets in “cloudy”

Sedimentation of Dl-water in Octane

di tati ,
se mentaron * Only Ethyl Acetate in sea-

water forms large
$ sedimentation
(A)SW EA 220

i e - Stabilization o_f OMAs_ is
: supported by interactions

between polar oil

components, cations and

charges on mineral surfaces
Bragg (1995). ASTM Special Technical Pub. P 178-211

THINK BIG WE DO
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PESULTS - TIME STABILITY

Ethyl Acetate in Dl-water without AOT Ethyl Acetate in DI-water with AOT

—-—-3220

=i 200
o B L B L] L 0% T =500
40 a

relative thickness
emulsion layer
w
S
k4
&
&
g
relat iue thickness
emulsian laye
§
E /
2
&
8

0 20 30 20 30
Time after vortex [min] Time after vartex [min]

Ethyl Acetate in seawater without AOT Ethyl Acetate in seawater with AOT
a8 a

relative thickness
emuksian layer
8
7 7
L3
B K
H
&5
I
relative thickness
- @
7 S
2 &
g 8

10 20 30
Time after vortex [min]

+ AQOT stabilizes and increases
emulsions formed with NPs

+ Similar behavior with DTAB

Binks Colloids Surfaces A Physicochem. Eng. Asp.253(1-3). 105115,

'ERSITY

OF RHODE ISLAND

CONCLUSION & OUTLOOK

The particle size has a significant influence on the Pickering
emulsion and the oil mineral aggregates in DI and seawater

- OMAs: smaller agglomerates => larger OMAs in seawater
- Emulsion: “optimum” agglomerate size for emulsion thickness
- Aerosol OT changes emulsion behavior

Outlook:
1) Interaction between AQT and silica?
2) Emulsion and OMA-formation at different temperature ranges?

3) Coating with nutrients to achieve optimal conditions for oil
degenerating bacteria?

UNIVERSITY

OF RHODE ISLAND
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