Experts as teachers: Can we Abate the Disconnect between Expert and Student?

Bailey Mallon
bmall4407@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/srhonorsprog

Part of the Biology Commons, Curriculum and Instruction Commons, Educational Assessment, Evaluation, and Research Commons, Educational Methods Commons, Science and Mathematics Education Commons, and the Teacher Education and Professional Development Commons

Recommended Citation

This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Experts as teachers: Can we Abate the Disconnect between Expert and Student?

Bailey Mallon
Academic Enhancement Center, The University of Rhode Island

ABSTRACT

Studies have found that experts often fail as good teachers, mainly because there is a lack of communication within their specific area (Feldon, 2007). Experts may routinely underestimate how different a task can be for a beginner (Hinds, 1999) and even when attempting to make a task easier, they omit information a novice would find valuable (Hinds, Patterson, & Pfeffer, 2003) because they underestimate the experts’ awareness of and pedagogical knowledge that only those already familiar in the field might have, and would thus know what they are talking about. Furthermore, there are factors controlled by the professor, and not the students, that can determine a degree of student success (not to imply that students don’t need to take their share in responsibility for their learning). The lecture style and format of a classroom can change the outcome of how much students learn. For example, the use of academic coach training is one such example of academic training that allows for the implementation of academic coaching sessions among students. The purpose of this paper is to explore the academic background of students and the academic coach training that was implemented in the course. The study examines the influence of academic coaching on student success. Methods: Academic Coach Training: For this position, I have been trained as an academic coach. I have also been trained as an academic coach for the College of Environmental and Life Sciences. My project involves being trained as an academic coach through the Academic Enhancement Center, where I work with students individually to determine their roots of academic struggles, so that we can later develop plans on how to negate the causes. This allows me to observe a wide variety of students’ experiences from many different backgrounds, because realistically, a student’s struggle is much more complicated than them “not studying enough.” Furthermore, I am exposed to the science of learning, which explains how students can learn information efficiently, and, equally as important, how they can apply that information to real-world problems. I use this to my advantage to design lesson plans that will strategically and efficiently prime students for their exams. Finally, through the conduction of a study and a test-taking strategy workshop both catered towards freshman enrolled in the College of Environmental and Life Sciences, I gain real experience leading a classroom, thus exposing myself to the everyday troubles that experts must overcome in the classroom setting (such as getting disinterested students to pay attention to lesson material), while also applying all that I have learned through this project. This project is a product of the University of Rhode Island’s Academic Enhancement Center.

RESULTS

• Workshop 1: Quiz: while studying the group whoquiz themselves while studying performed much better on the final quiz than those who reread information from the article.

• Active studying: BIO 101 students explained material to the other students. Students from the last group showed a phylogenetic tree to visually display evolutionary relationships between plant types.

• 83.3% of students found the workshop to be beneficial towards academic success and thought that their grades would improve after implementation of the study skills. 66.7% incorporated new study techniques into their studying habits.

• Workshop 2: 100% of the students found this workshop to be extremely helpful, specifically they found the test-taking strategies might give them an advantage on a future exam. They also enjoyed the review exam and claimed they felt more prepared for the exam after participation in this workshop.

DISCUSSION

• Gained information on the science of teaching and learning: This serves as professional growth, as it has increased my understanding on the implications of classroom format and student success. I am now conscious of the responsibility of a professor to prime their classroom for efficient teaching.

• Developed an understanding of the college student experience: This is important in developing an understanding of the diverse issues that factor into an individual’s academic success past the notion that the student’s “need to study more.” Such knowledge contributes to an increased empathy towards students and their unique needs, which will ultimately influence the regulation of individual lesson plans in future classroom settings.

• Gained experience in teaching a classroom setting: Lesson plan development requires asking myself, “Why are my students performing poorly, and what can they learn from me?” Carrying out the workshops strengthened my publicspeaking and leadership skills, and increased my ability to present myself as a knowledgeable mentor for creating a positive, relaxed environment in which timid students can feel more comfortable. I also gained experience on keeping students engaged in the classroom setting.

• Professional development as a future professor: My classroom will be constructed with the student experience in mind, facilitating the process of transforming students into experts themselves. Furthermore, in a future classroom setting, empathy and a personable nature will translate into an increased perception of authority that students will have of me, minimizing the communication or human relationship disconnect between professor and student.

REFERENCES

ACKNOWLEDGMENTS

• A big thank you to Kathryn Crenstomo, David Hayes, and all of the AEC staff for providing support and mentorship for this project.

• This project was supported in part by the College of Environmental and Life Sciences.

• This project was supported in part by the URI Honors program.

BACKGROUND

• The science of learning:
 • Distributing study time with large gap intervals, active-studying techniques, and intermixing material retention quantitatively and for a longer duration (Roheyer & Pashler, 2007).

• Active studying techniques include quizzing yourself, drawing diagrams from memory, creating charts to compare and contrast different concepts, teaching material to other classmates, creating potential exam questions, and making flowcharts to connect different topics to each other and the big picture.

• Active studying is more effective than passive studying (Lawson, 1995, VanderSloot et al.), which includes rereading or rewriting notes, revealing the text, having another individual teacher explain to you, or going over problems you did previously without rethinking them.

• Interleaving is a technique that involves mixing up subject material as opposed to blocking subject material. In other words, as opposed to “saladicke,” students arrange topic material to look more like “abecedarian.”

• Test-taking strategies: Strategies differ for exam type.
 • Example of a multiple-choice type strategy, when presented with a question in which two of the answers are opposite of each other, one of the answers is correct, while the other is wrong, regardless of any other options. This narrows your choice to 2, and results in a 50/50 probability.

• Example of a true/false type strategy: words like “sometimes, often, ordinarily, or generally” open up the possibility of creating accurate statements. On the contrary, absolute keywords such as “no, never, none, always, ever, entirely, or only” imply that the statement must be true 100% of the time and usually indicate “false” answers.

• Example of a short answer strategy: never leave anything blank. Think of keywords or formulas that can result in partial credit.

METHODS

• Academic Coach Training: For this position, I have been trained during the fall semester and continued through the end of Spring semester. Trainings were hour-long intervals conducted once a week. Preparation for each meeting included reading both primary and secondary articles. Ted Talks on the science of learning and teaching. Discussions revolved around individual interpretations of each article or video, and also on problematic student situations and how to personize an academic coaching session towards each student’s needs.

• Academic Coach Sessions: Sessions were one-on-one with students who were struggling academically. In these sessions, students provided a background of their college experience, explained why they sought academic help (e.g., study skills, time management, motivation, anxiety/stress management). Strategies that would promote academic success were constructed.

• Workshop 1: Study Smarter, Not Harder
 • Students were shown a PowerPoint presentation with material presented in the background section of this poster.
 • Students read a short article and then divided into two groups. One group reread the article after a 20 minute interval, while the other group was quizzed on the material (without the ability to reread). After another 40 minute interval, both groups took a quiz, and results were scored.

• Students formed two groups based on enrollment in either BIO 101 or 102. Each group read an article on information relevant to their class material and performed a short active studying activity to dissect and digest the material.

• Students filled out a weekly agenda as a time-management activity. Class hours, work hours, clubs, eating times, etc. and a minimum of 6 hours each week to account for studying were entered. 3 of these study hours were for studying current information, while the other 3 were for reviewing past material.

• Workshop 2: Students were asked to discuss their current methods of taking specific types of tests. A follow up discussion with the entire group went into why these methods are effective, and additional methods were provided.

• Students were given a small quiz designed to test their understanding of the material presented to them, designed to articulate each different type of exam question and how to tackle it, even if the students do not know the relevant content necessary to answer the question.

• A BIO 101 practice exam was reviewed and dissected for upper-level thinking on material.

FIGURE 1: During testing, the groups who studied together and gained an opportunity to discuss the material, while also receiving short breaks after each section, performed best. This group was followed by those who had shorter test periods, but were able to discuss material as well. The last group included those who studied alone, with longer test periods, and received no opportunity to discuss material. Performance were given a fixed set of access on a test that is similar to the material that was reviewed, and groups were scored based on the number of correct answers.

ACKNOWLEDGMENTS

• A big thank you to Kathryn Crenstomo, David Hayes, and all of the AEC staff for providing support and mentorship for this project.

• This project was supported in part by the College of Environmental and Life Sciences.

• This project was supported in part by the URI Honors program.

FOR MORE INFORMATION: please contact the University of Rhode Island at Academic Enhancement Center. www.ri.edu/aec