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ABSTRACT

Augmented Reality of an outdoor scene as a topic has gained a great deal of 

popularity  in  recent  years.   This  work  will  focus  on  markerless  hybrid  Outdoor 

Augmented Reality (OAR) systems.  In general OAR is performed through a classical 

statistical approach.  Strong features are calculated from images of the object, located, 

and tracked in the scene.  Gathering such features requires specialized knowledge of 

Computer Vision techniques; keeping OAR from finding commercial success.  Model-

based approaches rely less on previously gathered data, increasingly the accessibility 

of such techniques, but require extensive scene understanding to correctly parse the 

scene.   The  proposed  model-based  approach  minimizes  the  required  scene 

understanding allowing for augmentation of an environment with minimal input.
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GLOSSARY

Augmented Reality:
Is the world perceived with additional information.  This thesis will focus on 
Augmented Reality for Visual Data, where video/camera data of the world has 
imagery added to the video data.

World-Space:
The world space is the real world.  This thesis will refer to the World Space as being 3-
dimensional, referring to height, width, and depth.  

Image-Space:
The image space is the world space after it has been projected onto an image by a 
camera.  The image space has only 2-dimensions, height and width.

Scene:
The scene is the area world-space to be augmented.

Edge:
An edge is an area in an image that has high degree of contrast.  Where there is a 
discontinuity in the gradient of the image intensity.

Corner:
A corner is a corner in the image formed by the intersection of edges.

Feature:
A feature is a distinct aspect of the image.  Features are commonly groups of pixels, 
edges, corners, etc.   

Feature Extraction:
The act of finding and storing features from an image.

Feature Look-up:
The act of finding a particular feature in the image.

Occluder/Occlusion:
Occlusion is when an object is being partially to completely covered by another object 
in the image space.  An Occluder is an object covering another object in the image 
space.

Object Recognition:
Object Recognition is the act of identifying an object in the image space as being the 
projection of a specific object in the world space.
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Localization:
Localization is the act of identifying one's location and orientation in world space.

Fronto-parallel:
A fronto-parallel plane is one that has a constant depth throughout the entire plane in 
relationship to the viewer

Rectification:
The act of transforming a region so that it is fronto-parallel

x



CHAPTER 1

INTRODUCTION

Augmented  Reality  (AR)  is  the  act  of  overlaying  additional  information  to  a 

video/view of the environment.  Common examples include to overlay a marker with 

information for nearby restaurants on to a map on a mobile phone, projecting images 

and games onto a video of the current view [47], and demoing architectural changes to 

building before beginning construction.   

There are three different approaches towards developing Augmented Reality. 

First is the purely position-based approach.  This approach gathers information about 

the user's location and/or orientation from a collection of non-imaging sensors.  The 

most used sensors being a combination of GPS, accelerometer, inclinometer, compass, 

and/or gyroscope.  The advantage of using such an is that the raw data from the input 

sensors comes in very quickly and can be used with minimal processing.   Mobile 

phone AR applications that use the phone's GPS to find local hotspots, information 

about  the  user's  current  area,  and  position-based  games  being  the  best  examples 

[46,31].  
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Figure 1:  Yelp Monocle's street view.  Angus 2013 [1]

In particular Yelp's Monocle system shown in Figure 1 is of interest.  For this system, 

locations of interest are gathered relative to the user's GPS location and floating text 

boxes representing the objects are displayed on the screen based on the user's relative 

orientation as judged by the compass on their mobile device.  As the sensors used are 

not  precise,  pure  position-based  systems  must  either  be  resistant  to  the  possible 

inaccuracy in the data and/or have a way to better localize themselves in the  world so 

as to order to reduce the degree of error.  Due to this, such systems are not preferable  

when high precision is needed.   

Pure vision-based systems use the data from a camera and/or video; by using 

computer vision techniques, these approaches tend to offer accurate frame to frame 

tracking, making for a more precise system.  The problem with a pure vision-based 

approach is two fold.  They require more information at start up (varying based on the 
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precision of the system) and requires significantly more computation time than a pure 

position-based approach.  To overcome the lack of precision with a position-based 

approach, and reduce the amount of data needed to localize the vision-based approach, 

hybrid systems (positional sensors to assist with positional awareness combined with a 

vision system for precision) are now the most commonly used system for Augmented 

Reality [50].

As the vision component of hybrid systems will be the focus of this work, it is 

important to discuss the major trends in Vision-based Augmented Reality.  The Vision 

component of an AR system either uses markers  or is  markerless.   A marker is  a 

uniquely identifiable pattern that can be physically placed in the scene by the user. 

When the vision algorithm finds the marker it can use it to localize itself in space 

[16,50,9].  Using marker-based AR required only setting the marker in the scene for 

the algorithm's initialization and calibration phase.  Due to this ease of use marker-

based Augmented Reality is  used commercially.   The latest  hand held video game 

consoles  from  Nintendo  and  Sony,  the  Nintendo  3DS  and  the  Playstation  Vita 

respectively, both have an on-board camera and come with a set of cards to be placed 

in the environment to act as markers for Augmented Reality games [28,13] as shown 

below in Figure 2.  
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Figure 2:  Game characters being displayed on top of marker cards on the Nintendo 

3DS.  Metrowebukmetro  [28]

Markerless approaches are precise and do not require the user to manipulate the 

scene  in  any  way  (such  as  by  adding  previously  created  markers).   However, 

markerless algorithms must generate and find an alternate set of recognizable features 

in the scene.   This work will  focus solely on markerless hybrid augmented reality 

systems  when  used  outdoors,  a  category  of  problems  also  known  as  Outdoor 

Augmented Reality (OAR).
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CHAPTER 2

REVIEW OF LITERATURE

Due to  the  scarcity  of  applied  work  focused on Outdoor  Augmented  Reality,  this 

review will also cover architecture-focused object recognition, registration, and model 

building.  

Hybrid Sensor Systems for Augmented Reality have been actively researched 

in an applied setting since the late 90s.  When used in an indoor scene sensors would 

be used to help localize and reorient the user's camera in the world space.  At this 

point, features previously gathered regarding the target object would be searched for in 

the projection of the scene onto the image.  Given a successful feature look-up, new 

values are mapped onto the scene.   In You and Neumann's system [48] a gyroscope 

was  the  chosen  sensor  as  it  provides  increased  invariance  to  rotation.   When 

performing Augmented Reality in an outdoor scene however, this approach is lacking 

for a few key reasons.

The  biggest  difference  between  augmenting  an  outdoors  environment  as 

opposed to  an indoor environment  is  the set  of  assumptions  one has  in  about  the 

environment.  When indoors the size of the environment may be known in advance or 

calculated based on the room geometry [19], when outdoors such information is not 
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guaranteed to exist.  When indoors, the lighting for the scene is consistent.  When 

outdoors, shadows that move over the course of the day based on the position of the 

sun result in strong contrasts in the image generating new corners, blobs, and lines, 

which  negatively  affects  the  reliability  of  object  recognition  algorithms  [50]. 

Additionally, when indoors a user has control over their environment, as such they 

may be able to place markers to be used for localization.  Users are less likely to be  

able  to  modify  their  environment,  making  marker  placement  a  significantly  less 

reliable option when outdoors.

 

Figure 3: Tracking the silhouette of a mountain range.  Behringer [4]

One  of  the  first  Augmented  Reality  systems  that  focused  on  the  unique 

problems present in an outdoor scene was the system designed by Behringer in 1999 

[4].  This system focused on the issue of distance and relative positioning.  Behringer's 
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system was equipped with a  GPS and an inclinometer.   The unique aspect  of this 

system  was  the  silhouette-based  recognition  algorithm.   The  system  worked  by 

calculating a silhouette map formed from the mountain peaks detected in the scene. 

The silhouette map from the scene was then best fit against the expected silhouette of 

the known mountain peaks for the area.    Matching the silhouette  found with the 

predicted silhouette allowed the algorithm to fine tune its rotation.  Figure 3 shows an 

example silhouette  mapping from this algorithm.  The system however had strong 

constraints regarding its usage.  It required large non-cluttered peaks in the silhouettes 

such as mountain ranges and hills to be visible.  Due to the reliance on having the 

peaks be clearly visible, the system was highly sensitive to occluders. 

In the early 2000s,  the needed sensors became smaller  and increased CPU speeds 

allowed for faster feature matching.  

Figure 4: Wire-frame realignment.  Anabuki & Yamamoto [38]
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The TOWNWEAR system in 2001 side stepped the exact positioning through pre-

calibration and using a set  starting position [38].  The focus of the TOWNWEAR 

system was on calibrating the user's orientation and having a system small enough it 

could be worn by the user.  

Figure 5:  A user wearing the TOWNWEAR system. Anabuki & Yamamoto  [38]

The user experienced the system through a Head Mounted Display equipped with a 

high precision gyroscope and a camera (Figure 5).  The system worked from a single 

location from which the user was required to remain stationary.  Certain parameters 

had to be manually configured by the user at initialization (and occasionally reset to 

account for drift).  As seen in Figure 4, if the wire-frame generated for the scene did 

not map properly in the image space the user would reorient until the frames were a 

match and manually hit a key to signal the calibration.  After the initial conditions 

were known, standard template matching was performed to look for the previously 

calculated defining features of the building to be found.  The biggest advantage of the 
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system is that the entire system could be worn by a user (Figure 5).  Unfortunately, the 

system required manual calibration before each use and the user was required to be 

stationary.  

Figure 6: Augmenting a scene with a handheld device.  Reitmayr & Drummond  [33]

In 2006, work with hybrid Vision-Sensor systems was further refined (as shown in 

Figure 6).  Reitmayr and Drummond's approach used and stored a textured-model of 

the  scene  as  opposed  to  the  more  detailed  edge  model  of  the  scene  as  had  been 

common practice [33]. This system had the advantage of deciding on the edge features 

to be used for recognition dynamically at runtime based on the users current location. 

The features to be looked for were calculated from the textured model based on the 

current location and orientation.  An Extended Kalman Filter was then applied for the 

frame-by-frame tracking.  This system had many advantages over what had previously 

been done, the one of particular interest to this thesis being a reduction of storage 
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space.  When performing object recognition in an outdoor scene the object must be 

analyzed from all potential positions to be reliable.  With Reitmayr and Drummond's 

approach the required features were calculated on the fly.  The original version of the 

algorithm was stationary, however the following year localization was added to allow 

the algorithm to be applicable from changing vantage points [35].  

At this point in time, much of the work related to hybrid sensor augmented 

reality moved towards mobile phones as the platform of choice.  Modern mobile 

phones come equipped with a camera, gyroscope, and GPS.  From an availability 

standpoint, mobile phones are compact and have widespread usage, making them the 

ideal candidate for such work.  Switching to mobile phones as the primary platform 

for OAR research brought new challenges alongside the added convenience.  Weak 

camera, low accuracy sensors, and a dependency on having available network access 

being chief amongst them [2].

Once GPS functionality became standard for OAR in urban environments, it 

became mandatory to use localization to fine-tune the original placement in space.  

The high availability of smart phones to the average user allowed for the usage of 

crowd-powered localization algorithms.  
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Figure 7: Localization from a panoramic image.  Arth & Klopschitz [3]

This method was to have a tagged database of images from the region and find the set 

that best matched an image taken from the current location [42,36,3,8].  As for the 

method in which image collection would be to occur, a popular suggestion is to rely on 

the  users  to  submit  the  geographically  tagged  photos  [42,8].   Figure  7  shows  an 

example of the approach by Klopschitz and Reitmayr, which performs localization 

from the vantage of a panoramic image taken of the scene [3]. In each of the listed 

approaches, image data is gathered by users with their cellular phones and a query is 

sent to a feature database (either local or external).  When a match is found the server 
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will send back the list of feature points that it believes to be the most relevant, and the 

feature matching is performed.  Whether this match is performed on device or at an 

external server is implementation specific.

In  the  late  2000s,  two  separate  approaches  became  popular  towards  the 

mitigation  of  dynamic  lighting  that  causes  problem  in  regards  to  outdoor  scene 

recognition.  One focused on collecting and training over a large amount of data, the 

other on having less data and relying on world space assumptions [33].  

The  first  approach  was  dense  data  collection.   The  premise  behind  this 

approach was to collect features for recognition and tracking concerning the target 

object  in  all  conditions  (including  lighting  conditions),  and  have  faster  (than  the 

contemporary)  algorithms to  look up features  found at  the  scene  from their  large 

feature database.  This particular approach has a few drawbacks.  A large amount of 

initial data was required for the system to achieve the requisite invariance to justify the  

usage of this approach.  The second was that a large amount of data had to be stored 

and available for the user's current environment.  In some cases [42], the feature look 

up and retrieval algorithms were performed by an external server (to compensate for a 

lack of processing power on mobile devices [2]) with the result of the look-up sent 

back to the user's device.  This added the additional constraint of network availability.

The second approach (that on which the work presented here is based) sought 

to minimize the stored information per object.  These algorithms were more reliant on 
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proper detection of preset patterns within the edge information as opposed individual 

feature  look-up.   Complex  shape  detection  has  strong  resilience  to  the  problems 

caused by dynamic lighting at the cost of more computationally intensive algorithms 

for the shape detection [2].  The second major disadvantage of this approach was that 

it  was  applicable  in  fewer  environments  than  the  dense  data  collection  approach. 

Detecting shapes in a scene requires that such shapes exist in the current environment, 

therefore  object  recognition  through  pattern  detection  assumes  that  the  pattern  in 

question exist. 

Buildings and other architectural structures benefit from the high regularity of 

their shape.  When working with buildings this allows for a number of assumptions to 

be made about the scene reducing the amount of data required to be input into the 

system.  In this regard there are multiple types of assumptions that are generally made 

when working with buildings.  

Figure 8: Creating a block drawing from an image. Gupta and Efros [12]
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The first type of assumption is the block world assumption used by Gupta and Efros 

[12].  In this approach it is assumed that all buildings are made up of a combination of 

rectangular cuboids.  The world is segmented and split as best it can be into regions 

that can be forced into rectangular cuboid regions.  The regions are then matched with 

where  they  should  be  located  in  the  scene  according  to  world  space  physics 

assumptions.  This method requires the ability to accurately segment the regions in the 

image space corresponding to the ground and sky in the world space.  If the ground 

and sky have been properly segmented then the groups of edges in the image space 

with  points  of  contact  with  the  ground  and/or  sky go through a  multiple  method 

segmentation process before being initially categorized into their respective cuboids. 

The most interesting feature of this approach is how little input is required into the 

system.  A strong assumption is forced onto the scene in an iterative fashion.  Every 

object being searched for is a geometric “block” (rectangular cuboid).  As such, groups 

of edges that do not  confirm to block regions  can be discarded.   It  is  a powerful 

assumption with equally strong detriments.
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Figure 9: Detection of blocks placed on a table.  Richtsfeld & Zillich [29]

Blockworld implementations suffer from issues with occlusion [29] or that the 

processing  required  for  the  block formation  is  too  high  to  be  used  in  a  real-time 

application [12].   The second issue is  not  uncommon with model-based computer 

vision, particularly in the field of Augmented Reality.  Model-based approaches most 

often perform the scene analysis (in particular the feature extraction) on the fly based 

on the user's position in the scene [33,2,50].  This aspect in particular makes them 

difficult  to implement on mobile devices.  Both the model  and scene analysis can 

require a high amount of memory for storage, and mobile devices cannot be relied 

upon to have the processing power to perform the analysis quickly [2].

The second type of assumption is planarity.  The assumption in this case is that 

buildings in the world space are made of a set of connected planes (the walls).  In 
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some cases it is worthwhile to make the stronger assumption that each plane has a 

series  of  line  segments  that  go  either  vertically  towards  infinity  in  the  y-axis  or 

horizontally towards a vanishing point in the world space [41].  Figure 10 provides an 

example of a building in the image space where the line segments of the building of 

interest are color coded based on their believed vanishing point.  

Figure 10: Vanishing Point grouped line segments.  Stamos, I., & Allen 2000 [41] 

Ventura  & Höllerer [8] provide information on both the advantages and limitations of 

this  approach.   Storage  space is  minimized,  as  generally  only planar  and location 

information need to be stored for the object in question.  A way to consistently detect 

the  planarity  of  pixels  is  required  for  this  method to  be  successful,  and to  do  so 

reliably requires extra sensors (some form of accurate range finder) in additional to the 
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standard gyroscope and GPS.  When performing this plane-based approach without a 

range finder, a non-insignificant amount of user interaction is required for localization 

[10].   New  Structure  From Motion  (SFM)  work  being  done  on  the  detection  of 

symmetric structures in outdoor scenes could potentially alleviate the reliance of user 

interaction for plane detection [7].

In theirimplementation,  Stamos and Allen used a range finder for the detection 

and confirmation of planes.  Lines and pixels are clustered based on the plane to which  

they belong and this information is stored as the model for the building.  In this work 

Stamos and Allen also mention the difficulty in accurately moving from 2D images to 

3D planes without either 3D depth information or strong assumptions about the scene 

[41].

Figure 11:  Projection of a plane and its vanishing points
from world-space onto the image space.  Schaffalitzky and Zisserman [39]

    Assumptions made about the location of suspected vanishing points in a scene 

could  provide  much  of  the  necessary  information.   In  1999  Schaffalitzky  and 
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Zisserman  explored  using  vanishing  points  to  link  planes  from the  3-dimensional 

world  space  to  a  2-dimensional  image  space  [39].   Schaffalitzky  and  Zisserman's 

approach grouped lines found in the image space based on a set of conditions (such as 

regularity  of  spacing,  estimated  regions  of  intersection,  etc)  in  relation  to  a  point 

believed to be the vanishing point.  The grouped lines could then be considered to be 

the projection of a plane in the 3-dimensional world space onto the image space.
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CHAPTER 3

SIGNIFICANCE OF STUDY

Augmented  Reality  (AR)  is  currently  in  a  state  of  crowd-sourced  development. 

Developers and Users participate in the creation of mobile AR apps and simulations. 

For an indoor scene AR users are able to create AR scenes with little knowledge of 

vision  or,  more  specifically,  image  recognition.  Users  and  developers  can  take 

advantage  of  popularly  available  toolkits  and  frameworks  such  as  PTAM [17]  to 

handle the complexities of tracking and mapping. Outdoor AR on the other hand does 

not allow for simple usage.

In  2012  Takeuchi  and  Perlin  presented  work  on  the  Elastic  City  [43], 

demonstrating the ability to augment and modify an outdoor environment with basic 

computer  vision  techniques.   The  focus  on  the  work  was  the  idea  that  Outdoor 

Augmented Reality had entered a state where non-vision specialized developers have 

the ability to develop OAR applications.   Unfortunately,  collecting the prerequisite 

information was still a bottleneck, limiting to OAR small environments and only to 

those  with  the  capabilities  to  gather  detailed  information  about  the  scene.   The 

statement of this thesis is that with proper model selection for the environment, it is  

possible to perform outdoor object recognition with little initial configuration.  The 

prototype algorithm constructed to demonstrate this is the focus of this work.
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The world model for this approach is similar to that of a block world.  The 

assumption is made that all buildings in the world are made of rectangular cuboids. 

The limiting factors of this world assumption is that environments with buildings that 

can not be represented as rectangular cuboids cannot take advantage of the proposed 

system.  The benefit gained from this assumption however, is that all buildings are 

uniquely identifiable based on their location and the relation between their four walls 

(the four sides/planes of the cuboid). In this work the walls of buildings are considered 

planes identifiable by the grid formed from their windows and doors.  This makes each 

building a set of four grids.

Viewing buildings as planes of grids formed by the windows is not new.  In 

fact it is currently a popular way to store models of buildings to reduce the size and 

complexity of storage [34,49], increase scene understanding [5,49], for the generation 

and modeling of buildings in virtual environments [18,34], and building recognition 

[44].  An example segmentation of the face of a building into a grid from [34] is  

shown below in Figure 12. 
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Figure 12: Building Grid Layout.  Riemenschneider, Krispel, and Thaller [34]
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METHODOLOGY

The presented prototype of the proposed approach is organized into two components. 

The first component, the recognition component, is that which is detailed below.  The 

second component.  the tracking component, is something that will be constructed and 

assessed in future upcoming work.  

The recognition component identifies buildings in a four-step process.  The 

image is first processed into a set of line segments.  Vanishing points are then located 

in the image from the line segments.  Planes potentially corresponding to the faces for 

buildings are then located in the image based on the vanishing points.  Finally, the 

planes extracted from the image are matched against the known faces for buildings.

Basis of  Work

The  recognition  component  identifies  and matches  buildings  based  on their  faces. 

The  plane  detection  and  recognition  used  in  the  below presented  algorithm is  an 

implementation  of  the  plane  identification  algorithm  used  by  Trinh  and  Jo. 

Additionally, the template-based plane recognition method for building recognition is 

most similar to the algorithm by Johansson and Cipolla [14], differing only in terms of 

the rectification method used and the assumptions regarding objects in the world. Of 

special note is that the work of Johansson and Cipolla was not extensively explored 

due to the high performance costs required of their template matching algorithm [33]. 

The algorithm presented in this work places assumptions on the geometric shape of the 
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target object in order to reduce the search space, while the approach by Johansson and 

Cipolla allows for their  system to be used on a much broader variety set of target 

objects.

Overview

The core of the recognition phase is the identification of buildings in a scene based on 

their vanishing points.  As can be seen from the system overview diagram below, the 

system begins with the input of the source image to the image pre-processing (IPP) 

component.  The lines extracted during the IPP component are sent to the vanishing 

point detection component.  The list of detected vanishing points are sent to the plane 

detection component.  The objects in the image believed to correspond to planes are 

sent to the plane matching component, which compares them to planes stored in the 

model.  The plane matching component then outputs a score representative of how 

strong of a match the two planes have with each other.
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Figure 13: System overview diagram
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Image Pre-Processing:

The first component of the recognition system is the pre-processing.  The goal of this 

component (shown in Figure 14) is to perform low-level image processing and group 

the line segments by their suspected vanishing points.  

Figure 14: Image pre-processing 

When given an image as the input to the system, the Canny edge detector [6] was 

chosen for the initial segmentation of edge pixels.  While the processing required for 

the Canny detector  is  greater  than for  other  comparable edge detectors,  it  has the 

lowest misclassification rate as long as the initial parameters are correctly set [21]. 

The output from the canny detector is then input into the Progressive Probabilistic 

Hough Transform (PPHT) [27]  which  returns  a  list  of  line segments.   The  PPHT 
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algorithm  has  a  low  processing  time  making  it  optimal  for  real-time  systems. 

Additionally it reliably finds line segments with minimal pre-configuration [27].  The 

list of line segments returned from the PPHT algorithm is then sent to the vanishing 

point detection component.
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Vanishing Point Detection:

During the vanishing point detection process, the line segments are inspected in terms 

of their relationship to their believed vanishing point.  When the world is projected 

into an image, the lines that were parallel in the world may no longer be parallel in the 

image.  The line segments in the image corresponding to these formerly parallel lines 

in the world will converge at a singular point known as the vanishing point.  All lines 

parallel to each other in the world will converge at the same vanishing point in the 

image.  Most importantly to the presented algorithm, all parallel lines belonging to the 

same plane will converge at the same vanishing point. 
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Figure 15: Vanishing Point Detection.

The Vanishing Point Detection component (shown in Figure 15) begins with the list of 

line segments given from the PPHT.  This list of line segments is then provided to the 

MSAC algorithm [30].  The MSAC algorithm will estimate the location of vanishing 

points in the scene and cluster the provided line segments based on which vanishing 

point to which they belong.  The list of line segments as well as the locations of their 

respective vanishing points is sent into the corner detection algorithm.

In an outdoor scene, the image data received will suffer from issues of both 

occlusion  and  lighting.  For  this  reason,  Zillich  and  Vincze's  algorithm  [51]  for 

detecting closed polygonal regions from edge lists was used as the corner detection 

algorithm.  The  basis  of  Zillich  and  Vincze's  algorithm  is  a  greedy  method  for 

extending and connecting nearby edges (line segments) that provides strong resilience 

against missing edge information in an image.  The drawback of this method is that 

artificially extending line segments risks adding connections where none previously 

existed. However, for this implementation,  that is not a worry.   The output of this 

algorithm is the list of lines organized by their vanishing points.  At this stage each 

line is now stored as a Line Identifier (LineID) object that stores the location of the 

original  line segment,  its  six extension  points  as returned via  the  corner detection 

algorithm, a list of the line's intersections with other lines, and well as a reference to 

the location of the vanishing point to which the line belongs.  
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For each vanishing point that was detected a Vanishing Point object is now 

created.  The Vanishing Point object stores the location of the vanishing point, as well 

as the list of Lines that belong to the Vanishing Point.  Lines are then consolidated 

based  on  their  polar  coordinate  using  their  vanishing  point  as  the  origin.   Lines 

belonging to the same vanishing point are consolidated if their rho and theta values are 

in too close proximity.  This was done to ensure line segments belonging to the same 

line (duplicates) and lines that are indistinguishably close are not counted multiple 

times.  After removing any close and repeated lines the vanishing points are sent to the 

planar detection component.
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Planar Detection:

The Planar  Detection  component  (shown in  Figure  16)  checks if  any of  the  lines 

belonging to the vanishing points from the vanishing point detection component could 

correspond to the projection of a plane from the world space.  The plane detection and 

matching components are based on Zisserman's work on planar rectification [20] and 

vanishing point detection [39]. 

Figure 16: Plane Detection

The assumptions from this section are based on the planar work of  Schaffalitzky & 

Zisserman  [39],  in  particular  that  a  plane  in  3-dimensional  world  space,  when 

represented  in  2-dimensional  image  space,  will  correspond  to  a  transformed  grid 
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where the lines of the grid belong to one of two vanishing points. For architectural 

structures, where the faces of the structure consist of vertical planes, one of the two 

vanishing points is located at infinity of the z-axis in 3-dimensional world space as 

seen in Figure 11.

For this initial version an assumption has been made that the pitch is level. 

The advantage of this assumption is that the vanishing point located at infinity in the 

z-axis of world space, now to be referred to as the vertical vanishing point (VVP), is 

mapped at  infinity  of the y-axis in the 2-dimensional  image space.   All  suspected 

vanishing points found in the scene that are not the vertical vanishing point, will be 

referred to as horizontal vanishing points (HVP).

 

At the beginning of the planar detection component,  an attempt is  made to 

bound a quadrilateral region onto the list of segments associated with each horizontal 

vanishing point, based on the intersections between line segments belonging to the 

horizontal vanishing point and the line segments belonging to the vertical vanishing 

point.  Figure 17 shows on the left a plane with the horizontal and vertical vanishing 

lines overlaid on top.  The two corner intersections that provide the largest bounding 

size are selected by iterating through the intersection list of all lines belonging to the 

horizontal  vanishing  point  and  testing  if  using  the  corner  corresponding  to  that 

intersection would increase the area of the quadrilateral.  
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Figure  17 Left::  Vertical and Horizontal vanishing lines crossing over a plane in the 
image; Right: The vanishing lines providing the largest area quadrilateral

Once  the  two  corners  are  selected  a  quadrilateral  is  formed  from the  four 

intersection points between the upper and lowermost line belonging to the horizontal 

vanishing point  that  pass  through the two selected  corner  points,  and the left  and 

rightmost lines belonging to the vertical  vanishing point that pass through the two 

selected corner points.   Figure 17 shows on the right  the vanishing lines with the 

largest bounding quadrilateral.  Each vanishing point that is able to be bound with a 

quadrilateral  is  considered to  contain a  plane (Figure 18 displays a labeled planar 

region in  an image).   Once the four  bounding lines  are  selected,  the  quadrilateral 

bound by the four vanishing lines is rectified into a rectangular grid. 

Figure 18:  The quadrilateral projection of a face of a building.
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The biggest benefit of storing the planes as rectangular grids is storage.  A grid 

consists of only two lists, one for the lines along the x-axis and one for the lines along 

the y-axis.  To rectify the quadrilateral region into a grid three things must be done. 

The first  is  that the bounding quadrilateral  must  be transformed into a rectangular 

region (shown in Figure 19).  To do this, the horizontal (upper and lower) bounding 

lines  for  the  quadrilateral  must  be  rotated  to  x-infinity.   For  this  rotation  the 

intersection between each line and the vertical bounding line (leftmost or rightmost) 

furthest from the vanishing point is used as the origin of the rotation.  One important 

thing to note for this rotation is that without depth information the rotation will lack 

the  information  needed  to  rotate  along the  z-axis,  warping  the  dimensions  of  the 

output region.

Figure 19: Rectified bounding quadrilateral

 The  second  step  required  for  rectifying  the  region  is  to  rotate  the  lines 

belonging to the horizontal vanishing point to x-infinity.  A line in the direction of the 

x-infinity vanishing point has constant y-value.  As such, the horizontal vanishing line 

can be described by this y-value.  As this y-value is constant, rotating the line is not 
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necessary.  Given the intersection of this line with the vertical bounding line that is  

furthest  from  the  horizontal  vanishing  point,  the  y-value  of  this  point  is  the 

characteristic y-value.  For each line belonging to the horizontal vanishing point store 

this value in a list of horizontal points.  

In order to find the characteristic x-value of the lines belonging to the vertical 

vanishing point (location at y-infinity) that exist within the bound region, the lines 

must be rotated.  For each line belonging to the vertical vanishing point in the bound 

region, the intersection of the line with the upper or lower horizontal bounding line 

must be found.  This point is then rotated towards x-infinity using the intersection of 

the horizontal bounding line and the furthest vertical bounding line as the origin of 

rotation.  The x-value of this rotated point is the characteristic x-value for the line. 

The rotation process for the vertical lines is shown below in Figure 20, where point M 

is the origin of rotation.

Figure 20: Rotation of vertical lines towards x-infinity
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The final step of the rectification process is to take the region of the image 

corresponding  to  the  bound  quad  and  transform  it  to  fit  in  the  rotated  bounding 

rectangle.   The pixels  should be rotated with respect  to the vertical  bounding line 

furthest from the horizontal vanishing point.  Interpolation will need to be performed 

over the pixels for the gaps in the bounding rectangle (the bounding rectangle is larger 

than the bounding quad, as such there will be gaps in the rectangle after all pixels have 

been rotated and placed).  This implementation used a nearest neighbor approach for 

the pixel interpolation.   Nearest neighbor interpolation is equivalent to setting the 

gaps to a weighted average of their neighbors.  This specific interpolation algorithm 

was chosen because of its ease of implementation.  Once these three things are done, a 

tagged  plane  object  is  created  to  store  the  vertical  and  horizontal  line  lists  that 

represent the grid of the plane, and the rectified image region (the pixel map).  The 

tagged planes are then sent to the plane matching component.
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Storage Model:

At this point it is necessary to describe how objects to be found in the scene are saved 

in the model.  An assumption that has been made for this initial release is that all 

buildings are cuboid in shape (as shown in Figure 21). 

Figure 21: A cuboid model. Rother 2002 [37]

 A building is stored as a list of its connected planes.  Each plane has a list of  

the locations for each vertical and horizontal vanishing line if in the 2-dimensional 

image space the vertical vanishing point is at y-infinity and the horizontal vanishing 

point at x-infinity (fronto-parallel to the camera).  

Each plane is also stored with a set of features computed from the grid formed 

by its x and y lists.  A sample of the texture for the plane is stored as a hue histogram.  

Hue is stored as it is invariant to changes in white light levels.  The cells of the grid 

containing windows (or other sections with non-static textures) on the plane must also 

be  marked  and  stored.   The  location  of  these  cells  must  be  known,  as  they  are 

detrimental in a similarity scoring of the texture for the plane.  The texture of windows 

varies depending on time of day, distance, content behind the window, as well as any 
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other number of unknown criteria, as such recording the location allows for the ability 

to avoid incorporating these unknown regions when a texture comparison between the 

model  and  the  scene  is  performed.   The  feature  point  used  are  the  ratios  of  the 

diagonals between corners of the grid.   Using these diagonal features has two major 

advantages.  The first  is  that this feature is  scale invariant.  The second is  that the 

feature is not unique.  When working with architectural constructs, symmetry along 

either the x or y axis is often an assumption that can be made [11].  As such repeated 

feature values are tossed, reducing the storage space.

  Equally,  there are  also two major  disadvantages  to  using diagonal  features. 

These  disadvantages  affect  the  feature  extracting  and  matching  component  of  the 

algorithm.   The  first  disadvantage  is  that  unless  the  algorithm possesses  accurate 

localization to properly estimate how much of the plane found in the scene has been 

lost in the z-axis, unless the plane's horizontal vanishing point is located at x-infinity 

in the image space, the loss of depth information will reset in incorrect features being 

extracted from the scene.  The second disadvantage is the lack of uniqueness in the 

features.  This increases the number of potential poses for the model that must be 

tested  in  the  feature  matching  component,  as  each  feature  can  exist  at  multiple 

locations.
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Plane Matching:

Figure 22: The Plane Matching Component

A potential plane brought as input from the Planar Analysis component (Figure 22) has 

its diagonal features extracted from its grid.  These features are then matched against 

the features of each plane in the model.  Matching the features will provide a guess to 

the scaling and position of the plane from the scene against the plane in the model. 

For all  scaling and positions that score above a certain threshold the planes go to the 

histogram comparison step.  For the histogram comparison step the potential plane 

from the scene has a hue histogram calculated based on what are the non-windowed 

cells of its rectified grid for the given scaling and position.  This newly calculated 
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histogram is compared with the hue histogram stored with the plane from the model 

using a correlation matrix.  The biggest advantage of using a correlation matrix for the 

histogram  comparison  is  that  a  correlation  matrix  normalizes  the  size  of  the 

histograms.  As the sizing of the plane from the scene and the plane from the model 

are  independent  from  each  other,  it  is  necessary  for  the  histogram  comparison 

algorithm to be scale invariant.
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CHAPTER 4

RESULTS

System Specifications

The development environment for the system was as follows:

Operating System:  Mac OSX 10.6
CPU:  2.4 GHZ Intel Core 2 Duo
Memory: 4 GB DDR3 RAM

The target environment of the developed system would be a mobile device or tablet. 

Once satisfactory performance is achieved with the current development environment 

an effort will be made to port the system to the expected user environment.

Component Testing

In  order  to  measure  the  functionality  of  the  presented  system,  three  of  the  base 

components (the vanishing point detection, planar rectification, planar matching) were 

tested.  Quantitative testing was performed over purely simulated data to measure the 

performance of  the vanishing point  detection component.   Afterwards,  testing  was 

performed on the vanishing point detection, planar rectification, and planar matching 

components over a generated model of a virtual environment to illustrate the findings 

and effects of the quantitative testing.
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Test Resources

The  images  used  for  the  tests  were  constructed  using  the  computer  modeling 

application Blender.  Blender was chosen both because it is open-source and due to the 

author of this study's previous experience using the application.  The model used to 

generate the image was used under a Creative Commons Zero license [1].

Model Testing

The components were was tested on three images taken of the same sample computer 

model from differing vantage points.  The first (Figure A) is the base case, where the  

target plane is  near fronto-planar by default and close to the camera.   The second 

image (figure B) is a rotation test, where the object of interest has undergone a strong 

rotation in regards to camera.  The third image (figure C) is a distance test, where the 

object of interest is far from the camera.

Vanishing Point Detection

The vanishing point  detection component is  concerned with quickly estimating the 

location of each vanishing point and organizing the line segments based on which 

vanishing  point  to  which  they  belong.   The  algorithm  will  greedily  assign  line 

segments to vanishing points as they are found, in a way that minimizes the number of 

vanishing points detected.  As a consequence, the line segments are under fit and often 

misclassified to vanishing points to which they do not belong.  In the following three 

test images, the green segments belong to the vertical vanishing point, and the blue 

segments to the primary horizontal vanishing point.  The black quadrilateral  is the 

bounding quadrilateral detected in the image.
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Quantitative Test: Vanishing Point Detection

Test Conditions

The vanishing point detection component was tested over a simulated object with two 

planar faces,  each face containing 100 equally spaced line segments, 50 vertical and 

50 horizontal. The simulated object was rotated away from the camera by a constant 

60 degrees during the testing.  The ordering for the list of line segments belonging to 

both faces was randomized and classified by the MSAC algorithm 200 times.  

Test Overview

This is a robustness test of the Vanishing Point Detection component for a generated 

object.  The generated line segments were classified by their relationship to their true 

vanishing point and a measurement was take of the success rate for their classification. 

Three vanishing points existed in the generated data.

Measured Values

• Average success rate of line classification: 70%
• Maximum success rate over a single test session: 75%
• Minimum success rate over a single test session:  50%

Results

The line segments from this step would be used to compute a bounding quadrilateral 

for rectifying  planar faces found in the scene.  The quadrilateral bounding (and thusly 

the rectification) relies on the line segments being accurately grouped by the correct 

vanishing  points.   Currently,  the  quadrilateral  bounding  calculations  possess  the 

possibility to fail due to the misclassification of a single line segment (as will be seen 

in a later test case).  As such, the vanishing point detection component does not meet 

the required rate of stability.
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Model Test:  Vanishing Point - Baseline Test 

Test Conditions:

The line segments in the image belong only to the vertical vanishing point or a single 

horizontal vanishing point.  The horizontal vanishing point is located at x-infinity.

Test Overview: 

This is  the optimal  condition test.   Only two vanishing points exist  in  the image. 

Additionally, the two vanishing points the maximum difference in angle between them 

(90 degrees).  If the algorithm were to fail this case it could mean an irreconcilable 

problem in the vanishing point estimation.

Results:

As can be seen from the generated image below (Figure 23), the quadrilateral with the 

highest area from the corners found was detected.  Additionally, all detected edges 

were correctly classified as belonging to the appropriate vanishing point

Figure 23:  Baseline line segmentation and bounding
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Model Test:  Vanishing Point – Rotation Test 

Test Conditions

The  target  object  has  been  rotated  away  from  the  camera.   There  are  only  two 

vanishing points in the image. The horizontal vanishing point is not at x-infinity.

Test Overview

This  is  the  rotation  test.   Only  two  vanishing  points  should  exist  in  the  image. 

However, due to the low threshold set on the Hough Probabilistic transform for line 

detection, a few phantom diagonal lines were detected in the image.  Only a few of 

these  lines  existed,  as  such  they  should  be  marked  as  extraneous  by  the  MSAC 

algorithm (or subsequent line confirmation) and ignored.

Results:

None of the line segments that exist in the image below are mislabeled (Figure 24). 

However the phantom line segments (lines added in because of low thresholding on 

the  Hough  Transform),  were  not  discarded  and  instead  assigned  to  the  vertical 

vanishing point.  This means that more stringent confirmation of the vanishing point to  

which line segments belong is necessary.
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Figure 24:  Rotated line segmentation and bounding
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Model Test:  Vanishing Point - Distance Test 

Test Conditions:

The camera is further from the target object than in the optimal case.  An object not 

belonging to the target object (the road) is in the scene.  For this case there are line 

segments in the image that do not belong to the two primary vanishing points.  These 

are the two corner lines of the target building corresponding to the face of the building 

adjacent to the target face.  

Test Overview:

This  test  has  two  suboptimal  conditions.   The  first  being  the  existence  of  lines 

belonging to a third vanishing point.  As there are only two line segments that belong 

to this vanishing point, it  would be acceptable behavior for the algorithm to either 

ignore the two lines or group them as belonging to a third vanishing point.  The second 

condition is that there is a second object in the image that shares a vanishing point 

with the plane of interest.

Results:

  As seen in Figure 25 below, the line segments that do not belong to the two primary 

vanishing points have been misclassified as belonging the vertical  vanishing point. 

This causes an error in the creation of the quadrilateral bounding, demonstrating the 

worst error case, where the misclassification of a single line segment has led to an 

unusable quadrilateral bounding.  Additionally, one of the line segments belonging to 

the sidewalk was selected for the lower bound of the building's face due to its sharing 

a  horizontal  vanishing point  with  the  plane  of  the  building.   If  the  line  segments 

belonging  to  the  third  vanishing  point  were  not  detected  as  belonging  to  a  third 
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vanishing  point,  they  should  have  been  discarded  during  the  line  segment 

confirmation.  The merging of multiple surfaces sharing a vanishing point is a problem 

that occurs with the approach used.  However it is something that should be accounted 

for with future work on the building recognition component and is out of the scope of 

this current work.

Figure 25: Distance  line segmentation and bounding
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Planar rectification

The planar rectification requires having an accurate quadrilateral bounding box from 

the vanishing point detection step.  For this reason, only images A and B have been 

used for testing the planar rectification (explanation provided in test,”Vanishing Point 

– Distance Test”).  For the accuracy metric, the measurements between the corners of 

the rectified planes will be compared to the measurements of the manually entered 

template image (Figure 26) guiding the recognition of the planar surface.  For the 

provided template the vertical lines are indexed by letters and the horizontal lines by 

numbers.  The blue squares correspond the windowed regions in the plane.  

Figure 26:  Plane template (windows in blue)
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Model Test:  Planar Rectification - Baseline 

Test Conditions:

This is the baseline case.  The lines belonging to the vertical vanishing line are vertical 

towards y-infinity in the image plane and the lines belonging to the horizontal 

vanishing line are horizontal towards x-infinity in the image plane. 

Test Overview:

In this case,  line rotation is not required of the rectification algorithm.  The region 

provided from the quadrilateral detected in the scene was already front-planar.  The 

algorithm must detect that the line segments are within admissible bounds and not 

rotate them or rotate them to such a small degree that the grid is preserved.  The region  

encapsulated by the given quadrilateral contained all three of the upper windows and 

half of the lower windows.  Therefore it had width from regions (B-G) and height 

from (1 – 4.5).  The width and height ratios between many of the key corners in the 

template were compared to their equivalent measurements found by the algorithm to 

judge the accuracy of the line rectification.  The first set of measurements to compare 

are the ratios computed for the individual cells between the two grid.  Afterward, the 

largest length width corner ratio is compared. 

49



Figure 27 Left:  Labeled template; Right: Grid segmented baseline image

Results

For this test there was a perfect matching between the cells in the template and the cell 

in  the  baseline  image  (Shown in  Figures  27a  and 28b respectively).   This  is  not 

surprising as the baseline image requires minimal (if at all) rectification and rotation. 

This demonstrates that when rectification is not required, the algorithm is capable of 

finding and correctly parsing the plane found in the scene into a grid.  The comparison 

of the cell-wise measurements between the template and detected plane are below in 

Figures 28 and 29.  The width comparison between the template and detected plane 

are shown in Figures 30 and 31.  
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Cell Comparison

Figure 28: Template with cell-wise measurements

Figure 29:  Grid segmented baseline image with cell-wise measurements

51



Width Comparison

Figure 30: Template with width measurements

Figure 31:  Grid segmented baseline image with width measurements

52



Model Test:  Planar Rectification - Rotation 

Test Conditions

This is the rotated case.  The quadrilateral retrieved by the previous step (which can be 

seen in “Test: Vanishing Point – Rotation”) is not fronto-parallel.  

Test Overview

Rectification of the image is required.  Given the measurement information for the 

target object and the vanishing point, the line segments detected in the scene must by 

rectified so that they are vertical (toward y-infinity in the image) and horizontal (x-

infinity in the image) respectively.  The quadrilateral  returned by the previous step 

fully contains both sets of windows with width covering regions (A – H) and height 

spanning (2 – 5.5).

Results

While  the  rectification  of  the  pixel  region  visually  appears  to  be  accurate,  the 

rectification of the vertical (in blue) and horizontal (in black) lines shown in Figure 

32b was less successful.  A template, Figure 32a, has been included alongside Figure 

32b  to  highlight  to  differences  between  the  grids.   For  this  test,  the  rectification 

algorithm  fails  completely.   The  rectification  algorithm  is  not  reliable.   If  the 

quadrilateral found does not require rectification (1.2.A), the resulting grid generated 

from  the  planar  region  is  accurate  to  the  source  planar  region.   However,  when 

rectification is required, the resultant grid is not representative of the source planar 

region.  As such, the current rectification algorithm is in need of replacement.  Until 

this has been done, the algorithm cannot be considered to be in a functional state.
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Figure 32 Left:  Labeled template; Right: Grid segmented rotated image
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Planar Matching

The planar matching compares a potential plane found in the scene to the planes found 

in the model by their hue histograms.  The highest likelihood position of the plane 

found in the scene when compared to the plane being compared from the model is 

calculated based on their corner ratios.  Based on the pose fitting, a histogram for the 

potential plane found in the scene is calculated that attempts to identify and avoid the 

regions  of  the  grid  corresponding  to  windows  based  on  information  input  in  the 

template saved in the model.  This histogram calculated from the scene is compared to 

a sample histogram saved in the model, via correlation.  The tests below demonstrate 

the  histogram comparison  on  the  best  case,  on  the  wost  case,  and  the  impact  of 

removing or including the windowed regions on the comparison score.
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Model Test:  Planar Matching - Baseline

Test Conditions

This is the base case.  The target object has the same lighting conditions under which 

the sample texture for the stored model was taken.  The target object in this  example 

matches the stored template in terms of the sizing and location of windows. 

Test Overview

The sample histogram provided is an exact match to the non-windowed regions.  If the 

windowed  regions  are  correctly  ignored,  then  the  theoretical  match  percentage  is 

100%.  The further from a 100% match the algorithm is, the higher the percentage of 

windowed regions considered to be non-windowed in the final comparison. 
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Results

The resultant histogram comparison returned a score of .94, where 1.0 is a perfect 

match.   As  expected,  when  the  presented  case  is  easily  parsed  with  identical 

conditions, then a high match score (> 0.8) is achieved.  In Figure 33 below, the hue 

corresponding matching is shown.  

 

Figure 33: Histogram comparison between the scene (in blue) and the model (in red)
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Model Test:  Planar Matching – Yellow Lighting Shift

Test Conditions

This is the lighting level color shift test.  The target object in the scene was subject to 

higher levels of yellow light than the lighting conditions of the sample texture from 

the stored model.  The target object in this  example matches the stored template in 

terms of the sizing and location of windows. 

Test Overview

This a test for invariance to changing lighting conditions.  When performing outdoor 

recognition  accounting  for  changes  in  shifting  lighting  conditions  is  in  important 

consideration.  Unfortunately, as the planar matching currently relies entirely on the 

hue histogram for the match, the presented algorithm is currently expected to exhibit 

poor performance on the color light shift test case.
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Results

The resultant histogram comparison returned a 0.6 match, a complete mismatch.  An 

interesting result  can be seen the the below histogram comparison diagram (Figure 

34).  The population density for the two histograms are very similar, apart from a shift 

in  the  x-axis.   As  such  it  seems  worthwhile  to  invest  time  into  testing  alternate 

histogram comparison algorithms that allow for a constant shift.

Figure 34: Histogram comparison between the scene (in blue) and the model (in red)
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Model Test:  Planar Matching – Histogram Degradation

Test Conditions

This test  was performed on the base case image.   The target object  has  the same 

lighting conditions under which the sample texture for the stored model was taken. 

The target object in this  example matches the stored template in terms of the sizing 

and location of windows.     

Test Overview

This is a degradation test. Windowed regions in the image were increasingly marked 

as  non-windowed  regions  so  as  to  show  the  degradation  in  performance  when 

windowed regions are not properly identified.  The example used has six windowed 

regions that account for a total of 65% of the pixel space.  The results of the test are 

displayed below in Table 1.

Measured Values

Windows Removed (Out 
of Six)

Correlation Score 

Six 0.94

Five 0.94

Four 0.94

Three 0.94

Two 0.94

One 0.94

None 0.94
Table 1: Degradation due to window inclusion
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Results

No  matter  the  amount  of  windowed  regions  removed  from  the  template,  the 

correlation  score  stays  at  a  constant  0.94.   This  suggests  that  the  current 

implementation of the algorithm is unable to remove the windowed regions and the 

correlation score of 0.94 is the score of the detected plane with its windows included. 

Properly fitting the grid found in the scene to the template is the result of the vanishing  

point  detection  and  planar  detection  components.   Until  both  the  vanishing  point 

detection and planar detection components work at the level required of the presented 

algorithm, the planar matching component will be unable to accurately place the pose 

of the plane found in the scene to the template in the model for window detection.
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DISCUSSION

In constructing the prototype, the goal was to create a system with minimal input to 

perform object recognition.  In line with that goal, a block model was chosen for the 

world  space  due  to  the  assumptions  that  can  be  made  about  the  scene  [12]. 

Particularly that, given a block world assumption, all objects in the world are cuboid 

or formed entirely from basic geometric constructs [3].  This can reduce scope of the 

problem to segmenting the scene into a set  of blocks and finding the block in the 

world.

At the time it seemed that the easiest way to do this would be to locate the 

planes found in the scene and connect them together to form the blocks.  Detecting 

planarity in an outdoor environment was more difficult than initially expected.  Many 

approaches used indoors are not applicable, specifically those that rely on using the 

structure of a room itself as a reference point.  Structure from motion techniques were 

then considered but rejected due to the difficulty of implementation and start up time. 

I wanted the system to be used for recognition, as such I wanted to choose an approach 

that would decide on the scene geometry first and foremost.  At which point this work 

from  Trinh  and  Jo  [44]  was  found  and  provided  the  chosen  method  for  plane 

discovery. 

The  goal  of  this  thesis  was  to  demonstrate  an  approach  towards  Outdoor 

Object Recognition that required minimal configuration and input.  I cannot reliably 
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say that this goal has been met.  So far the prototype has only been tested on simulated 

data with mixed results at best.  Even with mixed results the assumptions made by the 

prototype allow the system to be run in most urban environments and the required 

input  information  to  the  system can be  gathered  with  a  single  image.   While  the 

prototype algorithm was constructed, it is not in a state where it can be reliably tested. 

It is a solid foundation however, and I believe it would be beneficial to continue work 

on the system.
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CHAPTER 5

FUTURE WORK

The future work on this project is split into four independent categories:

• Optimization

• Mobile Port

• Localization and Depth

• Tracking

  The presented implementation is too slow for usage in a real time system.  Many of 

the components can be further optimized using more specialized approaches.  For this 

initial prototype, it was not necessary to optimize the individual components, but this 

must be done before the approach can be considered commercially viable.  The feature 

point  extraction  and  look  up  would  benefit  from using  dynamic  programming  to 

reduce  the  search  space  as  well  as  taking  advantage  of  any  inherent  symmetry 

prevalent in the scene for faster pose estimation.  The system currently has problems 

with  fault  tolerance  that  can  be  corrected  by  increasing  the  maximum number  of 

iterations  during  the  initial  line  segment  extension  phase  if  a  minimal  number  of 

corner points have yet to be located.  Once localization has been performed then it 

should be used to reduce the search space.  During the plane rectification the lines of a 

plane are rotated geometrically while  the pixels  are  moved via  a  nearest  neighbor 
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algorithm.  This causes matching problems dependent on the degree of rotation.  These  

aspects must all be optimized and fine-tuned before further work can be done.

The system prototype is meant to be used as a framework for mobile OAR 

applications.  As such the system will need to be ported to a mobile device.  Due to the 

amount of freedom concerning interactions with the equipped hardware, Android has 

been selected as the mobile OS of choice.  Android is Java based while the proposed 

prototype has been written in C++.  Aspects of the prototype's software architecture 

that make liberal use of pointers or the C++ standard library will take time to port to  

Java.

The prototype is currently hard coded to work from a single location in space 

in relationship to the target object.  The focus of this work has been to present an 

approach to handling recognition, localization is not in the scope of the current work. 

This is not  unusual for the first  version of such systems, as seen in Reitmayr and 

Drummond's 2006 work [33], which had localization added into the second version of 

the application the following year.  For commercial viability however, localization is a 

necessity.  The most interesting part concerning the localization requirements of the 

proposed approach is that either a previously developed localization algorithm or a 

range finder will suffice.

Proper localization will  allow for estimation of depth information based on 

location.   One  of  the  biggest  problems  with  the  proposed  approach  is  that  depth 
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information is  required  to  accurately rectify  the  planes  from image space  into the 

world space.  Given a user's location in space as well  as the location to the target 

object,  the  respective  angle  of  rotation  can  be  computed  and  the  plane  properly 

rectified.   The  problem  with  this  approach  is  that  the  localization  algorithms 

mentioned in the previous works section all requires a large amount of preliminary 

data, which the proposed approach wished to minimize. 

If a rangefinder is used as opposed to Vision-based localization preliminary 

data  will  not  be  required.   Using  the  depth  information  a  plane  can  properly  be 

rectified, reducing the potential for mismatches during the feature lookup.  The user's 

location is space can then be calculated based on their possible relation to the object in 

question.  The biggest drawback to this approach, is that mobile phones do not come 

equipped with rangefinders, requiring an additional sensor.  This is contrary to the goal 

of the work that the presented approach be widely available.  If both approaches prove 

unsatisfactory, alternate algorithms will be investigated.

A third option is available for rectifying the plane that does not rely on either 

additional hardware to gather depth information or costly localization algorithms.  The 

requirement for this option is that the angle between edges in the world space and the 

size ratio for line segments in the world space that are not parallel in the image space 

are known.  If these requirements are true, the plane can be rectified with only a loss 

of scaling information [20].  As this work makes the assumption that planar regions of 

interest contain grids, the previous conditions are met.  All angles between edges in 
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the grid are 90 degrees in the world space.  Additionally, as the grid is constructed 

from the vanishing lines of two vanishing points, many of the size ratios are known. 

The drawback to this approach is the loss of scaling information.  However,  scale 

invariant ratios are used as the identifying features of the proposed approach, as such 

this should not be a detriment to the system.

The most important component left to be done is the Tracking Phase of the 

prototype.  This phase will consist of new work with the goal of object tracking based 

on tracking of the object's vanishing points.  The algorithm will track the expected 

location of the vanishing point in 3-dimensional world space based on its location and 

framet to frame movement in the image space.  One of the decisions to be made is 

whether the sensors inherent in a modern mobile phone are accurate enough to assist 

in tracking from 2-dimensional space or if a depth information is needed to track the 

vanishing point  in  3-dimensional  space.   The  other  large  decision  will  be  on  the 

algorithm to use to locate the vanishing point in the image space.  Most vanishing 

point detection algorithms are specialized for work with roadways.  Research will to 

be done on whether  there currently exists  an approach for precise vanishing point 

detection that will suit the needs of this algorithm, or whether one will have to be 

developed.   When completed,  the tracking phase  will  perform the frame to frame 

tracking that will serve as the backbone of the prototype.
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