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The Effect of Breaking Waves on a Coupled Model of Wind and Ocean Surface
Waves. Part I: Mature Seas

TOBIAS KUKULKA* AND TETSU HARA

Graduate School of Oceanography, University of Rhode Island, Narragansett, Rhode Island

(Manuscript received 4 December 2007, in final form 31 March 2008)

ABSTRACT

This is the first of a two-part investigation of a coupled wind and wave model that includes the enhanced
form drag of breaking waves. In Part I here the model is developed and applied to mature seas. Part II
explores the solutions in a wide range of wind and wave conditions, including growing seas. Breaking and
nonbreaking waves induce air-side fluxes of momentum and energy above the air–sea interface. By bal-
ancing air-side momentum and energy and by conserving wave energy, coupled nonlinear advance–delay
differential equations are derived, which govern simultaneously the wave and wind field. The system of
equations is closed by introducing a relation between the wave height spectrum and wave dissipation due
to breaking. The wave dissipation is proportional to nonlinear wave interactions, if the wave curvature
spectrum is below the “threshold saturation level.” Above this threshold the wave dissipation rapidly
increases so that the wave height spectrum is limited. The coupled model is applied to mature wind-driven
seas for which the wind forcing only occurs in the equilibrium range away from the spectral peak. Modeled
wave height curvature spectra as functions of wavenumber k are consistent with observations and transition
from k1/2 at low wavenumbers to k0 at high wavenumbers. Breaking waves affect only weakly the wave
height spectrum. Furthermore, the wind input to waves is dominated by nonbreaking waves closer to the
spectral peak. Shorter breaking waves, however, can support a significant fraction, which increases with
wind speed, of the total air–sea momentum flux.

1. Introduction

Understanding the role of breaking surface waves in
air–sea exchange processes is integral to improving pa-
rameterization schemes for coupled ocean–atmosphere
models, which are commonly used for weather and cli-
mate predictions (Komen et al. 1996). Although there
exists evidence that wind-generated breaking surface
waves enhance air–sea fluxes of heat, gases, and mo-
mentum, the mechanisms that lead to this enhancement
are poorly understood (Melville 1996). The need to in-
corporate the breaking wave effect more realistically in
operational wave models is also highlighted in a recent
review by Cavaleri (2006).

Previous laboratory experiments indicate that airflow
separation at the lee of a breaking wave leads to an
enhanced wave form drag compared to the form drag of
nonbreaking waves (Banner 1990). Laboratory mea-
surements have been obtained under well-controlled
conditions for a monochromatic breaking wave. In the
open ocean, however, breaking waves are randomly
distributed and occur simultaneously over a wide range
of scales (Banner and Peregrine 1993). To quantify
wave breaking for random seas, Phillips (1985) intro-
duced the breaking wave distribution, which is the av-
erage length of breaking crests per unit sea surface area
as a function of wave scale. Such a distribution was
observed for oceanic field conditions by tracking white
caps of breaking waves via aerial imaging analysis
(Melville and Matusov 2002).

This is Part I of a two-part study to investigate how a
random distribution of breaking waves influences
ocean surface wave spectra and the wind aloft. Here we
construct a coupled wind and wave model and apply the
model to mature seas. Kukulka and Hara 2008, hereaf-
ter Part II) examine the solutions in a wide range of
wind and wave conditions, including growing seas.
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a. Equilibrium range of wind waves

An important concept for modeling wind waves is the
equilibrium range of surface wave spectra, in which the
wave field is nearly stationary, so that wave dissipation,
energy redistribution due to nonlinear interactions, and
the wind input balance each other (Phillips 1985). An
upper limit of the equilibrium range was first found,
assuming that the wave height is limited by wave break-
ing (Phillips 1958). If the breaking process is indepen-
dent of wind properties, this leads to the well-known
��5 power law of the wave height frequency spectrum
(“frequency spectrum”), where � is the angular fre-
quency measured in SI units [or k�4 dependency of the
wave height wavenumber spectrum (“wavenumber
spectrum”), where k is the angular wavenumber mea-
sured in SI units]. Observations, however, show a sys-
tematic deviation from such a power law for frequen-
cies just above the peak frequency with a frequency
dependence of ��4 (Jones and Toba 2001).

Analogous to Kolmogoroff’s hypothesis for isotropic
turbulence, the assumption that the energy flux through
gravity waves in the equilibrium range is constant yields
the ��4 power law (Kitaigorodskii 1983). Later, the ��4

power law was derived by assuming that dissipation,
wind input, and nonlinear interactions are all significant
and proportional to each other (Phillips 1985). In these
two models, the wave field consists of a superposition of
weakly nonlinear surface gravity waves with random
phase.

In contrast, self-similar sharp-crested breaking waves
dominate the equilibrium range in the model by
Belcher and Vassilicos (1997). Based on this assump-
tion, the wave height spectrum must also be self-similar,
in the sense that it follows a power law in some measure
of wave scale (e.g., wavelength or phase speed). Fur-
thermore, imposing a dynamical balance between dis-
sipation and nonlinear interactions results in a k�4 de-
pendency of the wavenumber spectrum (Belcher and
Vassilicos 1997). The wind wave equilibrium range
models that we discussed so far did not explicitly take
into account that longer waves extract energy and mo-
mentum from the wind and thereby reduce the wind
forcing on the shorter waves.

b. Wind and wave coupling

Under idealized conditions, the wind profile changes
over time due to momentum and energy transfer from
wind to waves, until the waves do not grow any more
because the energy transfer is quenched (Janssen 1982).
Applying a quasi-linear approximation to the governing
hydrodynamic equations results in a modification of the
mean wind flow due to the presence of waves (Janssen

1989; Jenkins 1992, 1993). Using the nonlinear Reyn-
olds equations for the air, wave-induced fluxes can be
modeled in the boundary layer above waves, which is
called the “wave boundary layer” (WBL) (Chalikov
and Makin 1991). The WBL is a thin layer within the
constant stress layer where the wind stress partitions
into the wave-induced stress and the turbulent stress
(or the viscous stress inside the viscous sublayer). The
effects of wave motion on the mean wind properties in
the WBL can be investigated by employing a wave-
following curvilinear coordinate system (Jenkins 1992).

Hara and Belcher (2002) showed that the frequency
spectrum transitions asymptotically from ��4 to ��5 at
high frequencies because shorter waves are forced by a
reduced turbulent stress due to the momentum uptake
of longer waves. The transition frequency, however,
was inconsistent with observations.

Within the WBL, the mean wind speed profile can be
determined, based on the energy balances of mean,
wave-induced, and turbulent motions with an appropri-
ate turbulence closure scheme. Makin and Masten-
broek (1996) employ the full balance equations of tur-
bulent kinetic energy and its dissipation to calculate
drag coefficients over fully developed seas. Balancing
local turbulent production and dissipation, Makin and
Kudryavtsev (1999) estimate an eddy viscosity, which is
also used to parameterize the turbulent dissipation rate.
Satisfying energy conservation in the WBL, Hara and
Belcher (2004) relate the turbulent dissipation rate to
the reduced turbulent stress to calculate the wind speed
profile over mature wave spectra.

c. The need to incorporate breaking waves

In most of the previous wind wave models, only the
wind input to nonbreaking waves has been considered
(Komen et al. 1996; Cavaleri 2006). A notable excep-
tion is the investigation by Kudryavtsev and Makin
(2001), who estimated that a considerable fraction (up
to 50%) of the wind stress can be supported by break-
ing waves. Their model is based on momentum conser-
vation at the sea surface where the total stress parti-
tions into the viscous stress and wave-induced stress
due to breaking and nonbreaking waves. While this
study presents significant progress toward understand-
ing the breaking wave effect on air–sea momentum
flux, it has important shortcomings. First, the param-
eterization of the momentum flux from wind to non-
breaking waves depends on the total wind stress. To
accurately model the stress partitioning, however, it is
critical that the parameterization depends on the re-
duced turbulent stress (Makin and Kudryavtsev 1999;
Kukulka and Hara 2005). Second, the mean wind pro-
file in the WBL is prescribed as logarithmic. Such a
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wind profile generally does not satisfy energy and mo-
mentum conservation at each height within the WBL.
Third, the energy input to breaking waves is neglected
in the wave energy balance. While we adopt their pa-
rameterization of the breaking wave form drag, we will
also address these shortcomings in this study.

To understand the maximum possible influence of
breaking waves, we previously devised a model for the
extreme case in which the wind input is dominated by
breaking waves (Kukulka et al. 2007, hereafter KHB).
Such a model is applicable to strongly forced wave
fields as they have been observed in the laboratory. For
older seas (fully developed), however, the model does
not yield physical solutions, suggesting that the input to
nonbreaking waves cannot be neglected for the whole
wave spectrum.

To model the form drag of breaking and nonbreaking
waves, we will combine the model from KHB with the
approach from Hara and Belcher (2002, 2004). In the
next section, we derive coupled nonlinear advance–
delay differential equations governing the wind speed,
turbulent wind stress, the wave height spectrum, and
the breaking wave distribution. The system of equa-
tions is based on the conservation of momentum and
energy in the WBL and wave energy conservation. In
section 3, the model is applied to idealized mature
wind-driven seas, followed by concluding remarks in
section 4.

2. Theory

The wave field is described statistically by the two-
dimensional wavenumber spectrum �(k, �), or alterna-
tively the saturation spectrum, B(k, �) � k4�(k, �), and
the two-dimensional distribution of breaking waves,
�(k, �). The average breaking crest length of waves, at
wavenumber k and propagating in the direction � rela-
tive to the wind, is given by �(k, �) kd�dk (Phillips
1985). The unitless one-dimensional distribution of
breaking waves is defined as

��k� � �
���2

��2

��k, ��k d�, �1�

and the unitless one-dimensional saturation spectrum is
defined as

B�k� � �
���2

��2

B�k, �� d�, �2�

with the directional spreading (or directionality) of
B(k, �) defined as

hB�k, �� �
B�k, ��

B�k�
�3�

and the directional spreading of �(k, �) defined as

h��k, �� �
k��k, ��

��k�
. �4�

Here �(k, �) and B(k, �) are assumed to be zero for |� | 	

/2 for simplicity.

The geometry of breaking waves, characterized by a
steep (nearly discontinuous) slope, differs from the
smooth sea surface geometry resulting from nonbreak-
ing waves. To define a vertical coordinate z above such
a complex surface, consider first the instantaneous air–
water interface due to the superposition of sinusoidal
nonbreaking waves with random phase. For such an
interface, one may introduce a local, time-varying ver-
tical coordinate z so that z � 0 at the sea surface (z
increases with height) (Makin et al. 1995; Makin and
Kudryavtsev 1999). Now we superimpose intermittent
breaking wave crests as disturbances with finite height
above the smooth nonbreaking wave surface, such that
for a breaking wave at k its crest appears at a height
z � a(k), where a is the wave amplitude.

We assume that breaking waves are self-similar and
that the wind is stationary and horizontally homoge-
neous with mean wind speed u in the x direction. The
wind velocity vector (U, V, W ) is decomposed into

�U, V, W � � �u � ũ � u�, �̃ � ��, w̃ � w��, �5�

where the tilde indicates wave-induced motions and the
prime denotes turbulent motions.

Furthermore, KHB introduced the “spatial shelter-
ing effect,” so that shorter waves in airflow separation
areas of longer breaking waves cannot be forced by the
wind. Kukulka (2006) found overall that the spatial
sheltering mainly affects young developing seas. There-
fore, for simplicity, we neglect the spatial sheltering
effect here in Part I and will examine the effect on
young seas in Part II.

a. Air-side momentum conservation

Within the constant stress layer, the total wind stress �0

partitions into turbulent Reynolds stress, �t � �a�u�w��,
and wave-induced parts (here angle brackets denote
phase averaging and a is the density of air). The wave-
induced stress is decomposed further into one part due
to the form drag of nonbreaking waves, �w, and another
part due to the form drag of breaking waves, �b. Here
�w is referred to as “wave stress” and �b as “breaking
stress.” The breaking stress transfers momentum di-
rectly into the wave so that it effectively reduces the
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momentum transport through the air inside the WBL.
The total momentum budget can be written as

�0 � �t�z� � �w�z� � �b�z� � const. �6�

The wave-induced momentum flux at height z into
nonbreaking waves is given by (Makin et al. 1995;
Makin and Kudryavtsev 1999):

�w�z� � �
0

� �
���2

��2

	w
�g�k, ����k, ��F �z, k� cos�k d� dk,

�7�

where w denotes the density of water, �g is the growth
rate of wind-driven gravity waves, and F(z, k) is a decay
function to account for the decrease in wave-induced
stress with height (Makin et al. 1995). The forcing of
nonbreaking waves depends on the turbulent stress in a
thin layer above the water surface—the so-called inner
layer (Belcher and Hunt 1993). The inner layer height
is given by �/k, where � is the constant inner layer
height coefficient. The wave-induced stress also decays
over a comparable height. We therefore approximate
F(z, k) as a step function, which equals one inside the
inner layer and zero outside (Makin et al. 1995; Makin
and Kudryavtsev 1999). Furthermore, �g is set to a form
based on empirical estimates (Plant 1982), except that
the forcing stress is determined by the turbulent stress
evaluated at the inner layer height rather than the total
wind stress (Makin and Mastenbroek 1996; Belcher
1999; Makin and Kudryavtsev 1999); that is,

�g�k, �� � c�w
�t�z � �k�

	wc2 h����s�u
l

*�z � �k� � �c�,

�8�

where c is the phase speed and h� � cos2� denotes the
directionality of �g. The step function s(q),

s�q� � �1 for q � 0

0 for q � 0, �9�

ensures that waves moving faster than a multiple
��1 � 1/0.07 of the local friction velocity ul

*(z � �/k) �
��t(z � �/k)/a are not forced by the wind (Plant 1982).
Note that for simplicity, we do not consider the damp-
ing of waves with ul

*(z � �/k) � �c [see, e.g., Jenkins
(1992) how wave damping could be incorporated]. To
keep the notation simple, we define

s� � s�ul

*�z � �k� � �c�, �10�

so the wave-induced stress becomes

�w�z� � �
0

�z �
���2

��2

s�c�h�����t�z� � �k�

B�k, ��k�1 cos� d� dk. �11�

The form drag of breaking waves is parameterized
following Kudryavtsev and Makin (2001) and KHB.
For a monochromatic wave with amplitude a and
breaking crest length l, the wind force �b (per unit
ocean surface area) that acts on the breaking wave is

�b�k� � ��p�k�2a�k�l�k�, �12�

where �p denotes the pressure drop due to airflow
separation ahead of the wave crest. Scaling arguments,
as well as previous experiments, suggest that the pres-
sure drop can be parameterized by

�p�k� � �	ac��u�k� cos� � c�2s�u�k� cos� � c�,

�13�

where u(k) � u(z � �/k) denotes the wind speed evalu-
ated at the height of the breaking wave, a � �/k, � is the
slope of the breaking wave, and c� is the breaking wave
drag coefficient. In this paper we assume, for simplicity,
the linear phase speed of surface gravity wave, although
in principle a phase speed factor can be introduced to
model the phase speed of nonlinear waves (see also
KHB). Similar to the forcing of nonbreaking waves, the
step function assures that only waves moving with a
phase speed slower than ucos � are forced by the wind
and, for convenience, we introduce the notation:

sp � s�u�k� cos� � c�. �14�

Assuming that the momentum flux to the breaking
wave is concentrated at the wave crest, the breaking
wave form drag at height z for a spectrum of waves is
expressed as

�b�z� � �
0

��z �
���2

��2

	asp����k, ���u�k� cos� � c�2

cos� d� dk, �15�

where � is the distribution function of breaking waves
and �� � 2c�� is a constant coefficient.

b. Air-side energy conservation

The total energy equation can be obtained by con-
sidering the mean energy budgets of mean, wave-
induced, and turbulent motions (Makin and Masten-
broek 1996; Hara and Belcher 2004). We closely follow
the approach by Hara and Belcher (2004) and KHB
and emphasize here only how the total energy equation
deviates from the traditional model of turbulent shear

2148 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 38



flow close to a solid wall. Let us start with the total
mean energy equation for a turbulent shear flow that is
not influenced by waves (Cohen and Kundu 2002):

d�u�t�

dz
�

d�

dz
� ��z� � 0. �16�

The product u�t in the first term describes the energy
flux due to the turbulent stress acting on the mean flow,

� � �p�w� � 	a

1
2

w��u�2 � w�2 � ��2��,

is the mean vertical energy flux associated with turbu-
lent fluctuations, and the last term, �, denotes the dis-
sipation rate of turbulent kinetic energy. Similar to tra-
ditional turbulence models close to a solid wall, we ne-
glect the divergence of the flux � in further analysis.
The simulation of airflow over nonbreaking waves also
suggests that the divergence of � is not the dominant
term in the balance equation of turbulent kinetic en-
ergy (Makin and Mastenbroek 1996). Then, the total
mean energy equation for traditional wall layer turbu-
lence can be written as

d�u�t�

dz
� ��z� � 0. �17�

Based on the observation that eddies lose their kinetic
energy roughly during a turning period, the dissipation
rate can be estimated by

� �
�t

3�2

	a
3�2�z

, �18�

where � � 0.4 is the von Kármán constant,

�t � 	a�u
l

*�
2 �

1
2

	a�|u�| � |��|2 � |w�|2�

is a scale for the kinetic energy of the eddy, and
�1/2

t (1/2
a �z)�1 � ul

*(�z)�1 is a scale for the turning fre-
quency (Cohen and Kundu 2002). We will follow Hara
and Belcher (2004), who use this parameterization to
model the losses of turbulent kinetic energy in the wave
boundary layer. Without wave-induced stresses, �t �
�0 � const, so integration of (17) yields the logarithmic
wind speed profile.

The effects of waves on the balance (17) are as fol-
lows: First, wave-induced energy fluxes, resulting in the
transfer of energy from the air to waves, need to be
considered. Second, as discussed in the previous sub-
section, the turbulent stress decreases toward the sur-
face due to wave-induced stresses; therefore, the dissi-
pation rate also decreases toward the surface. Third,
the wave stress also acts on the mean flow so that the
energy flux u�t in (17) needs to be replaced by u(�t �

�w). The mean air-side energy equation, including the
wave effect, can be written as

d�u��t � �w��

dz
� ��z� �

d�w

dz
� eb�z� � 0, �19�

where �w denotes the energy flux induced by non-
breaking waves and eb is the rate of air energy trans-
ferred to breaking waves. The energy flux due to wave-
induced motions, �w, is parameterized after Hara and
Belcher (2004):

�w�z� � ��
0

�z �
���2

��2

Iw�k, ��k d� dk, �20�

where

Iw�k, �� � c�s�h����k
�2c�t�z � �k�B�k, �� �21�

is the spectral energy flux to nonbreaking waves.
Following KHB, the spectral energy flux to breaking

waves is

Ib�k, �� � 	asp����k, ��k�1c�u�k� cos� � c�2, �22�

and the angle-integrated spectral energy flux is

Ib�k� � c�
���2

��2

	asp����k, ���u�k� cos� � c�2 d�. �23�

Since the energy is mostly transferred at the breaking
wave height a � �/k, one finds

eb�z�dz � �Ib�k�dk. �24�

c. Wave energy conservation

In the equilibrium range for waves with wavenum-
bers between k0 and k1 (here we define k0 and k1 as the
lower- and upper-bound wavenumber, respectively),
the wave field is stationary and homogeneous so that
the energy input rate due to wind forcing is balanced by
the wave dissipation rate, D, and nonlinear interac-
tions, NL,

Iw�k, �� � Ib�k, �� � NL�k, �� � D�k, �� � 0, �25�

where Iw and Ib were specified in the previous subsec-
tion. Following Phillips (1985), we set

NL � 	w��� � �3�c
3k�2�B�k, ���3, �26�

D � g�1	wbc5��k, ��. �27�

The parameterization of the nonlinear interaction term
is based on resonant interaction of four gravity waves,
where the constant coefficients �3 and �� are similar to
the Phillips � and �, respectively. The parameterization
of the dissipation term is based on the loss of energy of
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a breaking wave front to turbulence and b is a constant
coefficient.

d. �(B)

To solve the above equations for B, �, �t, and u, one
must prescribe a functional relationship between � and
B. We set

��k, �� � ��b�1k�1�B�k, ���3�1 � �B�k, ��

Bsat
�n�, �28�

where n k 1. In the limit n →  , � ! B3 for all B � Bsat

and � →  for all B 	 Bsat. The first term of the sum is
based on the argument that there is a wavenumber
range in which nonlinear interactions and dissipation
are proportional to each other (Phillips 1985). The sec-
ond term of the sum is based on the observation that �
increases rapidly for B 	 Bsat (Banner et al. 2002),
where Bsat is the “threshold saturation level” (Alves
and Banner 2003). Notice that the first term on the
right-hand side is dominant for B � Bsat, while the
second term dominates for B � Bsat. Hence, from (26)
and (27), one obtains for B(k, �) � Bsat

NL � D � ��3	wk�2c3 �B�k, ���3 �29�

and for B(k, �) → Bsat

NL � D � 	w��� � �3�c
3k�2Bsat

3 � g�1	wbc5��k, ��.

�30�

From the wave energy equations (25) with (22) and
(21), one may express B and � in terms of wind prop-
erties for B(k, �) � Bsat and s� �1:

B�k, ��� �c�bh����
�t�z� �k�

	wb�3c
2� sp����	a�u cos�� c�2�

1�2

�31�

��k, �� � ��b�1k�1�B�k, ���3, �32�

and for B(k, �) → Bsat,

B�k, �� � Bsat �33�

��k, �� �
s�c��t�z � �k�h���� � 	w��� � �3�c

2Bsat
2

	wbc2 � sp���u�k� cos� � c�2	a

" Bsatk
�1. �34�

Note that the equilibrium range spectrum for short
waves (33) is consistent with the equilibrium range
model used by Jenkins (1993) to calculate momentum
air–sea fluxes.

e. Governing advance–delay equations

1) RELATION BETWEEN HEIGHT AND

WAVENUMBER

Unlike the models of Hara and Belcher (2002, 2004)
or KHB, which consider the wind input to either break-
ing or nonbreaking waves, at height z momentum and
energy can be transferred to waves at two different
wave scales. To determine changes in the air momen-
tum and energy balances, (6) and (19), respectively,
from height z to height z � dz, momentum and energy
are transferred to nonbreaking waves at a wavenumber
k � �/z and to breaking waves at a wavenumber k �
�/z. Furthermore, consider the wind input terms in the
wave energy equation (25) at a single wavenumber k.
The input term to nonbreaking waves (21) requires the
turbulent stress evaluated at the inner layer height z �
�/k. In contrast, the input term to breaking waves (22)
depends on the wind speed evaluated at the wave
height of the breaker z � �/k. In the following discus-
sion, we will derive the governing advance–delay equa-
tions, reflecting that derivatives in z (or in k) of the
turbulent stress and wind speed at a given height (or
wave scale) depend on terms evaluated at lower and
higher heights as well (or smaller and greater wave
scales).

The breaking height z � a(k) � �/k can be uniquely
related to k so that

z�k� �
�

k
. �35�

Furthermore, we define the turbulent stress evaluated
at the breaking height

�t�k� � �t�z � ��k� �36�

and the ratio of the inner layer height and the breaking
height

� �


�
� 1. �37�

Substitution of (11) and (15) into (6) yields, after dif-
ferentiation with respect to k,

d��t�

dk
� �

���2

��2

	asp����k, ���u�k� cos�� c�2 cos� d�

� �
���2

��2

s�c�h�����t�k�B��k, ��k�1 cos� d�� 0.

�38�
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Substitution of (20) and (23) into (19) yields

d�u��t � �w��

dk
� �

���2

��2

	asp����k, ��c�u�k� cos�� c�2 d�

� �
���2

��2

c��k�s�c�h�����t�k�B��k, ��k�1 d�

�
�t

3�2

�k	a
1�2 � 0. �39�

Note that ��k refers to a longer wave with an inner layer
height z � �/k. The wave energy equation (25) becomes

	asp����k, ��c�u�k� cos� � c�2 � s�c�h����c�t�k���

" B�k, ��k�1 � 	w��� � �3�c
3k�1�B�k, ���3

� 	wbc3��k, ��. �40�

Note that the turbulent stress evaluated at the inner
layer height �/k is �t(k/��).

To solve these last three equations for wavenumbers
between k0 and k1 (corresponding to breaking wave
amplitudes of �/k1 to �/k0), one needs to specify B be-
tween ��k0 and k0 in Eqs. (38) and (39). Furthermore,
to solve the wave energy equation (40) for waves be-
tween k0 and k1, one needs to specify �t(k) between k1

and k1/��.

2) NONDIMENSIONAL VARIABLES

We introduce the following nondimensional vari-
ables,

dK �
dk

k
, �41�

S �
�t

	ac2 , �42�

Sw �
�w

	ac2 , �43�

U �
u

c
, �44�

b� �
	w

	a
b. �45�

Here K is the nondimensional wavenumber linear in
log k, S is the normalized turbulent stress, Sw is the
normalized wave stress, and U is the normalized mean
wind speed. Furthermore, the following model param-
eters are defined:

�2 �
��

b�
, �46�

�2 �
	ac�

3

	w�3
, �47�

��
2 �

	ac�
3

	w��

, �48�

nNL �
�3 � ��

�3
�fraction of NL input�, �49�

�� �
�

�1 � nNL

, �50�

� � �log��� � 0. �51�

The first terms in (38) and (39) become

d��t�

dk
� c2k�1	a� dS

dK
� S�, �52�

d�u��t � �w��

dk
� ��t � �w�

du

dk
� u

d�b

dk

� c3k�1	a��S � Sw��dU

dK
�

1
2

U�
� Uc�2	a

� 1
d�b

dK�. �53�

After multiplying Eq. (38) by �1
a kc�2 and (39) by

�1
a kc�3, the nondimensional air momentum and air en-

ergy equations are expressed as

dS

dK
� S � Mb � Mw, �54�

dU

dK
�

1
2

U��S� Sw�
�1�Eb� �

� 1�2Ew�UMb� ��1S3�2�,

�55�

which need to be solved for S and U. Note that the
equation for U contains Sw which is calculated as

dSw

dK
� Sw � Mw. �56�

The normalized flux terms in the governing nondimen-
sional equations are

Mb � �
���2

��2

sp�k����K, ����U cos� � 1�2 cos� d�,

�57�

Mw � S�
���2

��2

s�c�B�K � �, ��h���� cos� d�, �58�
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Eb � �
���2

��2

sp�k����K, ����U cos� � 1�2 d�, �59�

Ew � S�
���2

��2

s�c�B�K � �, ��h���� d�. �60�

From the wave energy equation (40) and the relation
�(B) from (28), one further obtains expressions for B
and � in nondimensional variables.

For B(K, �) � Bsat and s� �1,

c�B�K, �� � ��S�K � ��
h����

��2 � �2��
�2sp�U cos� � 1�2�

1�2

, �61�

k����K, �� � �2��
�2�c�B�K, ���3. �62�

For B(K, �) → Bsat,

c�B�K, �� � c�Bsat, �63�

k����k, �� �
�2�h����s�S�K � �� � �2���

�2 � ��2��c�Bsat�
2

1 � �2sp�U cos� � 1�2
c�Bsat. �64�

In summary, our coupled wind–wave model is de-
scribed by the three coupled first-order differential
equations for the three variables S, U, and Sw.

The model equations (54) to (64) have the following
important properties: first, with � � 0 and Bsat →  , the
governing equations converge to the system without
breaking waves (Hara and Belcher 2002, 2004). With
� � 0, but limiting Bsat, the solutions are modified (Part
II). Second, for c� � 0, the system (54) to (64) equals
the model with input to breaking waves only (KHB).
Third, although the system (54) to (64) is fully coupled,
the air-side equations (54) to (60) can be solved for any
known wave field, � and B without (61) to (64). In this
case, only the input coefficients ��, � for breaking
waves and c�, � for nonbreaking waves need to be
specified. Furthermore, for given � and B, solutions
will be self-similar in c�B, ���.

In solving the full system (54) to (64), the term S(K �
�) in (61) and (64) introduces an “advance” term. In
addition, evaluation of (58) and (60) using (61) intro-
duces a “delay” term U (K – �). To understand the
physical origin of the advance–delay terms, see also the
discussion in the previous subsection. The solution to
such advance–delay equations differs from solutions of
ordinary differential equations, since the solution de-
pends not only on the boundary conditions at some k
with k0 � k � k1 but, generally, also on some specified
S for k 	 k1 and specified U for k � k0. As there are no
standard solvers for advance–delay equations available,
we propose a simple method of solution in appendix A.

f. Estimates of parameters

In this section we will show that model results de-
pend on six key parameters: two height coefficients,

two wave input coefficients, and two coefficients that
are related to the waveheight spectrum. Originally, the
model depends on eight physical coefficients c�, �, �3,
��, Bsat, ��, �, and b. For the normalized system of
equations, the number of coefficients is reduced to five
model parameters �, c�Bsat, #, #�, and �. We will next
consider how this multidimensional parameter space
can be constrained in a physically meaningful way.

First, the effect of the nonlinear wave–wave interac-
tions (�3 $ �� and # $ #�) will be analyzed in detail
only in section 3d, so �3 � ��, and # � #� unless noted
otherwise.

Second, although there are two physical coefficients,
�� and b, related to the breaking wave dynamics, they
affect just one model parameter, � � ���a/bw, that
depends on the ratio of the two. In fact, � can be inter-
preted as a measure of net energy and momentum input
to breaking waves. The following discussion is there-
fore focused on this parameter � instead of �� and b.
The value of b will be necessary only for determining
the absolute value of the breaking statistics � for com-
parison with observations. We set b � 0.01 for that
purpose, which is consistent with the range (from 0.003
to 0.07) estimated by Melville (1996).

Third, the physical coefficient �3 and the model co-
efficient # are both related to the Phillips (1985) wave
height spectrum coefficient %p, which determines the
wave spectrum level closer to the spectral peak (see
appendix C).

In summary, our solutions involve six critical param-
eters with clear physical interpretation: two height co-
efficients � and �, determining the input heights to
breaking and nonbreaking waves; two input coefficients
� and c� for breaking and nonbreaking waves; and two
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coefficients # and Bsat, controlling the spectral level.
These six physical parameters then determine the four
model parameters: �, c�Bsat, #, and �.

1) TWO HEIGHT COEFFICIENTS

The input height coefficient to breaking waves is the
breaking wave slope, which ranges from 0.1 to 0.5
(Melville 1996) and is held constant at the intermediate
value � � 0.3 in this study. The coefficient � is less
constrained: previous studies have assumed values ap-
proximately between � � 0.01 and 0.1. Here, the value
of � � 0.05 is adopted (Hara and Belcher 2004).

2) TWO INPUT COEFFICIENTS

Based on observations, the proportionality coeffi-
cient of the wave growth rate was estimated to be c� �
32 & 16 (Plant 1982). Because many theoretical studies
indicate that c� is close to 16 for gravity waves (Belcher
and Hunt 1998), c� is set to c� � 25, which is between
the average value from observations and theoretical es-
timates. The value of the input coefficient to breaking
waves � is difficult to constrain since our knowledge of
the breaking wave dynamics is limited. In this study
we set � � 0.07 so that our model results of the Char-
nock coefficient agree with previous observations (see
section 3c). This value is also consistent with the pre-
viously estimated range � � 0.04 � 0.5 (KHB). The
model dependence on different values of � is discussed
in Part II.

3) TWO WAVE SPECTRUM COEFFICIENTS

The coefficient Bsat is the threshold of B(k, �), where
dissipation limits the saturation spectrum. Recent field
observations suggest that Bsat is in the range 0.001 �
Bsat � 0.005 with most values likely 0.001 � Bsat �
0.003 (appendix C). Most observations of the Phillips
(1985) wave height spectrum coefficient range from
%p � 0.06 to %p � 0.13 (Hwang et al., 2000a), but %p can
be as low as %p � 0.02 (Hara and Belcher 2004). Based
on the analysis in appendix C, this results in a range of
# between 0.125 and 0.813. Since the wave field, and
therefore %p and Bsat, likely depend on wind speed and
sea state, %p and Bsat generally cannot be assumed con-
stant (Komen et al. 1996). We will therefore examine
our model results over the ranges 0.001 � Bsat � 0.005
and 0.125 � # � 0.813 (with the default values of
Bsat � 0.002 and # � 0.6) in the following discussion.

In summary, we will fix the two model coefficients
� � 1.8 and � � 0.07 and let the other two model
coefficients, c� Bsat and #, vary corresponding to the
uncertainty of the wave spectrum coefficients %p and

Bsat. Note that, if B and � were known, only the four
coefficients ��, c�, �, and � are required to solve the
air-side equations (54) to (60).

3. Mature seas

Applying our model to mature, pure windseas allows
an important simplification. Mature seas can be classi-
fied by a wave age criterion (Drennan et al. 2003),

� �
cp

u*
� 20, �65�

where ' is the wave age and cp is the phase speed at the
spectral peak and u* � ��0 /a is the air friction veloc-
ity. Since the peak wavenumber kp � gu�2

* 20�2 is
smaller than gu�2

* �2 [� is described in (8)], nonbreaking
waves close to the spectral peak are not forced by the
wind. If we set k0 � gu�2

* �2, the delay terms in (58) and
(60) vanish in the range ��k0 � k � k0, allowing us to
integrate the system of equations from k � k0. Further-
more, as our results below indicate, for the longest
waves the dissipation of wave energy and the input to
breaking waves for k � k0 is negligible. Therefore, one
may practically set the wind input and dissipation for all
waves with k � k0 to zero. If k0 is far enough from the
peak so that complex dynamics close to the peak do not
significantly influence the simple wave energy balance
(25), then our model can be applied for the entire wind-
forced range of mature sea spectra.

The wind speed at the surface is, for mathematical
convenience, set to zero; that is, u � 0 at k1 →  .
Physical solutions need to be truncated at a finite k1

where the effects of viscosity or surface tension are
significant. Previous studies have shown that the solu-
tion is not very different if k1 is set above 400 m�1 for
medium to high wind speeds (Hara and Belcher 2004).
Details on the method of finding solutions to the ad-
vance–delay differential equations are presented in ap-
pendix A. We will first thoroughly discuss the solutions
for the wave field, which is critical to the accurate de-
termination of wave-induced fluxes.

a. Surface wave height spectrum

Before considering the full two-dimensional wave
height spectrum, we focus the discussion on the angle-
integrated, one-dimensional, wave height spectrum.

1) ONE-DIMENSIONAL

A sensitivity analysis indicates that the shape of the
spectrum depends mainly on the parameter # (or %p for
fixed c�) and Bsat. The parameter # determines the
spectral level at low k, while Bsat determines the spec-
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tral level at high k. The spectral level increases with
increasing Bsat and #. Figure 1 shows the possible range
of one-dimensional wave curvature saturation spectra
corresponding to the lowest and highest values of Bsat

and #. Solutions of the marginal saturation spectrum
are also compared to previous observations (Melville
and Matusov 2002; Banner et al. 1989) in Fig. 2.

Our results show a distinct high and low wavenumber
part, which is due to the two regimes of the � function
(28). At low wavenumbers, where the wind input is
proportional to nonlinear interactions, the saturation
spectrum roughly increases as k1/2, similar to the Phil-
lips (1985) spectrum. As B increases to Bsat at higher
wavenumbers, dissipation by wave breaking limits B to
Bsat so that B approaches a constant value at Bsat. This
is equivalent to the hard limit of B first proposed by
Phillips (1958). Therefore, this asymptote differs physi-
cally from the asymptote found by Hara and Belcher
(2002), which is due to spectral sheltering. Theoretical-
ly, if Bsat exceeds the asymptotic limit of Hara and
Belcher (2002), B cannot reach Bsat and the model is
independent of Bsat. However, our upper bound of
Bsat � 0.005 is still lower than the limit of Hara and
Belcher. The transition wavenumber between the two
regimes depends on both # and Bsat. Interestingly, the
wave spectrum is quite robust and insensitive to other
model parameters.

2) TWO-DIMENSIONAL

Even though breaking waves generally play an im-
portant role in the balance (25), the wave height spec-
trum is hardly affected by breaking waves for mature
seas. This is because at low wavenumbers breaking
waves do not dominate the wind input, as simple scaling
arguments suggest (see appendix B). For high k, on the
other hand, B has already reached its constant limit;
that is, it is not affected by the details of the dynamics
described by the system (38) to (40). In appendix C, we
show that the saturation spectrum increases with k and
is approximated by

B�k, �� �
1
4

�p

u*
c

cos� �66�

until it reaches Bsat and then remains constant after-
ward:

B�k, �� � Bsat. �67�

Figure 1 indicates that these approximations are indeed
very close to the solution of the full model.

The approximate solution for B(k, �) yields a cosine
distribution of the directional spreading for lower k.
For high k, the directional spreading is nearly omnidi-
rectional (Fig. 3). Qualitatively, this behavior of the
spreading function is consistent with previous observa-

FIG. 1. One-dimensional saturation spectrum B(k) as a function of k/k0. Black lines are
solutions for different # and Bsat. Gray lines are asymptotic solutions.
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tions of wind-driven gravity waves close to the spectral
peak (Hwang et al. 2000b) and short wave spectra
(Banner et al. 1989).

b. Breaking wave distribution

The other critical statistics concerning the wave field
in the coupled wind and wave problem is the distribu-
tion of breaking waves. Again, we will first focus on the
angle integrated distribution and then discuss the two-
dimensional breaking wave distribution.

1) ONE-DIMENSIONAL

Since the normalized governing equations yield the
solution of b��(k) instead of �(k), we first present
b��(k) for different Bsat and # in Fig. 4. For any fixed
wavenumber, b�� does not change by more than an
order of magnitude due to the uncertainties in the pa-
rameters # and Bsat in the examples shown in Fig. 4.
Close to the spectral peak, the input to breaking waves
is negligible (appendix B). If B can be approximated by
(66), � is proportional to k3/2, which is, indeed, ob-
served for most cases. Although there is no simple sys-
tematic behavior of � at higher wavenumbers, the so-
lutions roughly transition from k3/2 to k1 as k increases.

Next, we compare our modeled breaking distribution
with the observations from Melville and Matusov
(2002) (Fig. 5), which were obtained for developed seas
with wave ages exceeding 20. Since the motion of white-
caps was observed, the measurements of � are pre-

sented as a function of phase speed, so we apply the
conversion �(k)dk � ��(c)dc using the linear disper-
sion relation. For high phase speeds (low wavenum-
bers) model results are lower but within an order of
magnitude of the observations. Note that our results
can be easily increased by adjusting the parameter b.
Also, the agreement for greater c is closer if one as-
sumes an enhanced phase speed of nonlinear waves.
For these longer waves we also approximately recover
the � � c�6 trend found in the observations if B � Bsat.
Note that longer, faster waves that are not directly
forced by the wind should not be compared to theoret-
ical estimates based on a balance between wind input
and dissipation. For small phase speeds (high wave-
numbers) the power increases for both observations

FIG. 2. Comparison of model result for marginal saturation
spectrum at U10 � 10 m s�1 with observations. Black lines are
model results for different # and Bsat (cf. Fig. 1), previous obser-
vations from Melville and Matusov (2002) for U10 � 13.6 m s�1

(dark gray thin line) and 9.8 m s�1 (light gray thin line), from
Hwang et al. (2000a) for U10 � 5.5–9.5 m s�1 (asterisk), and from
Banner et al. (1989) for U10 � 5.5–13.3 m s�1 (thick gray line,
end-point circles).

FIG. 3. Directionality of the modeled saturation spectrum for
Bsat � 0.002 and # � 0.6.

FIG. 4. One-dimensional breaking wave distribution b�� (k) for
different # and Bsat: k3/2 (gray solid line); k (gray dashed–dotted
line).
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and model results. However, the observations converge
asymptotically to a c�1 trend (Melville and Matusov
2002), while the modeled � roughly transitions to c�5.

What are possible reasons for this discrepancy at high
wavenumbers? First, one must keep in mind the differ-
ent definitions of �. Our � is defined based on theo-
retical ideas, namely that breaking waves can be di-
rectly related to dissipation and wind input. This is fun-
damentally different from the definition based on
experiments (Melville and Matusov 2002), which is
founded on the idea that the advance of a whitecap
represents a breaking wave crest. Especially for short
waves these definitions might be inconsistent, consid-
ering, for example, microscale breakers, which do not
entrain air. Only more observations will tell if the dis-
crepancy is due to different definitions of � or if there
are shortcomings in our theory or the previous experi-
ment (Melville and Matusov 2002).

It is also interesting to compare our model results to
previous theoretical studies. For the default param-
eters, the high c asymptote c�6 [or �(k) ! k3/2] is con-
sistent with previous models (Phillips 1985; Hara and
Belcher 2002) where the energy loss due to breaking is
balanced by nonlinear interactions of four gravity
waves. The calculated low c asymptote for default pa-
rameters is close to c�5, which is different from the
asymptote c�3 found by Hara and Belcher (2002). Gen-
erally, the asymptotic behavior depends on the model
parameters, as we show in Part II.

2) DIRECTIONALITY

Figure 6 indicates that the functional form of the
directionality depends on the model parameters. For
larger values of Bsat the directionality of the breaking
wave distribution changes relatively little with wave-
number. Close to the peak, the directionality ap-
proaches a cos3� distribution for B(k, �) � Bsat and a
cos2 � distribution for B(k, �) → Bsat. Therefore, if B
approaches Bsat with increasing k, the directional
spreading broadens slightly. For lower Bsat, the direc-
tional spreading changes little up to k/k0 � 103 and then
narrows as k further increases until � becomes unidi-
rectional for the asymptotic limit k →  . Note that
waves with k/k0 	 103 are likely outside the surface
gravity wave range for fully developed seas. This as-
ymptotic limit plays an important physical role, how-
ever, for younger growing seas (see Part II).

Our result that the dominant propagation direction
of breaking waves is close to the wind direction (� � 0)
is qualitatively consistent with the observations from
Melville and Matusov (2002). However, more observa-
tions are needed to determine if our theoretical frame-
work is sufficient to model the distribution of breaking
waves realistically.

c. Air–sea momentum flux

The wave field described by the breaking wave dis-
tribution and wave height spectrum is critical in deter-
mining the wave-induced momentum fluxes. The mo-
mentum flux is often parameterized in terms of the drag
coefficient cD that relates the total stress to the wind
speed at 10-m height:

u2

* � cDU10
2 . �68�

For a neutrally stable atmosphere, the wind speed pro-
file outside the wave boundary layer is logarithmic:

U10 �
u*
�

ln
href

z0
, �69�

where z0 is the roughness length and the reference
height is href � 10 m. The Charnock coefficient is a
normalized roughness length:

FIG. 5. Comparison of modeled normalized breaking wave dis-
tribution c3U�3

10 �(c) at U10 � 10 m s�1 with observations. Model
results for different # and Bsat (black lines; line style as in Fig. 4);
best exponential fits from Melville and Matusov (2002) based on
observations (gray dashed line), power law fits � (c) ! c�1 and �
(c) ! c�6 for low and high phase speeds (gray dotted lines); arbi-
trary c�2 line corresponding to � (c) ! c�5 (gray dashed–dotted
line).

FIG. 6. Modeled directionality of breaking wave distribution for
(left) Bsat � 0.001, # � 0.6 and for (right) Bsat � 0.005, # � 0.6.
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r �
z0g

u2

*
. �70�

Connecting the wind profile of the wave boundary layer
to the logarithmic profile at z � �/k0 yields

r � ���2 exp�����1U0�, �71�

where U0 � U(k0) and � has been defined in (8). To
calculate the Charnock coefficient, we will assume that
the wind stress is mainly supported by the form drag of
gravity waves. This assumption is approximately valid
for moderate to high wind conditions (U10 	 10 m s�1)
since the relative contribution of the viscous stress de-
creases with increasing wind speed (Komen et al. 1996).
Furthermore, for mathematical convenience, we con-
sider asymptotic solutions with k1 →  . Previous model
results justify this assumption because model results
closely approached this asymptotic limit for k1 � 400
m�1 or larger (Hara and Belcher 2004).

The sensitivity of momentum flux calculations on the
input height coefficients � and � as well as the input
coefficients c� and � is thoroughly discussed in Kukulka
(2006). Here, we will adjust � to be consistent with
previous observations of the Charnock coefficient.
Generally, observed Charnock coefficients for fully de-
veloped seas (with ' � 20 � 30) have large uncertain-
ties; observations to date span the range r � 0.008 to 0.5
(Jones and Toba 2001). Aside from the fact that r might
not be uniquely related to ' even for pure windseas,
part of this wide range is due to significant measure-
ment errors as well as measurements taken for con-
fused seas or unsteady wind conditions. Keeping in
mind the large uncertainty, we will next discuss “mean”
values, based on best fits to the scattered observations.
A best fit to compiled datasets taken prior to 2000
yields a Charnock coefficient between r� 0.014 and r�
0.037 for fully developed seas (Jones and Toba 2001).
Focusing on single-peaked wave spectra from a particu-
lar field program results in a Charnock coefficient be-
tween 0.016 and 0.024 (Smith et al. 1992). This range
agrees with r � 0.018, which accurately models the mo-
mentum transfer from wind to ocean for a different
field experiment (Johnson et al. 1998). More recently,
for carefully selected datasets of pure windseas, Char-
nock coefficients have been determined to be r ( 0.01
for ' � 20 (with most observations in the range r �
0.004 to 0.05) (Drennan et al. 2003). The most recent
empirical formula based on the compilation of major
datasets from field campaigns yields r � 0.016 (0.021)
for U10 � 10 (20) m s�1 (J. Edson 2006, personal com-
munication).

Based on these previous investigations, we may as-

sume that the Charnock coefficient for fully developed
seas takes a value close to r � 0.015 for mean observed
conditions. Imposing a normalized roughness length of
r � 0.015 for mature ocean conditions results in a
breaking-wave input coefficient of � � 0.07 with the
default values of the wave spectrum coefficients # � 0.6
and Bsat � 0.002. Therefore, we have set by default � �
0.07 throughout this study. This value of � is within the
estimated range of KHB but lower than their default
value.

In the following subsection we will show that the
momentum flux to breaking waves depends critically on
the wave height spectra.

1) EFFECT OF THE WAVE HEIGHT SPECTRUM

As discussed above, measured wave height spectra
show some variability in the parameters # (or %p) and
Bsat, which determine the spectral levels at low and high
k, respectively. Systematic changes of # and Bsat with
environmental conditions result in variations of r. We
therefore investigate the sensitivity of momentum flux
calculations toward the combination of minimum and
maximum values for the parameters # and Bsat (first
nine rows and first five columns in Table 1). Generally,
an elevated saturation spectrum (elevated # and Bsat)
increases the momentum fluxes into nonbreaking
waves and enhances the total momentum flux, while
the relative input to breaking waves decreases. For
Bsat � 0.002, the limiting value Bsat is quickly reached
so that the value of # has only a small effect on the
overall momentum flux. The specific values of Bsat and
# determine whether the wave form drag is dominated

TABLE 1. Charnock coefficient r for smallest, default, and great-
est values of Bsat and #. Other parameters are c� � 25, � � 0.07,
� � 0.05, and � � 0.3. The stress partitioning between breaking
and nonbreaking waves is calculated under the assumption that
the total stress is supported by the wave form drag (high wind
conditions). The last column shows the results without wind input
to breaking waves (� � 0).

Bsat # �w/�0 (%) �b/� (%) r r (� � 0)

0.001 0.125 25 75 0.009 �0.001
0.001 0.6 29 71 0.009 �0.001
0.001 0.813 29 71 0.009 �0.001
0.002 0.125 42 58 0.011 0.002
0.002 0.6 55 45 0.015 0.004
0.002 0.813 56 44 0.015 0.004
0.005 0.125 69 31 0.015 0.006
0.005 0.6 92 8 0.037 0.030
0.005 0.813 94 6 0.041 0.036
 0.125 83 17 0.019 0.011
 0.6 99 1 0.076 0.074
 0.813 100 0 0.093 0.093
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by breaking or nonbreaking waves. For example, with
# � 0.6 (default) and Bsat � 0.005 the momentum flux
to nonbreaking waves dominates. With the same # but
Bsat � 0.001, on the other hand, the input is dominated
by breaking waves.

2) COMPARISON TO MODELS WITHOUT BREAKING

WAVES

Starting from the theory without input to breaking
waves and Bsat →  (Hara and Belcher 2002, 2004),
modeled Charnock coefficients are 0.011–0.093 (last
three rows of the last column in Table 1), somewhat
larger than mean observations. If we introduce the lim-
iting Bsat � 0.002, but still neglect the input to breaking
waves, modeled Charnock coefficients are now too low
(0.002–0.004). Only if the input to breaking waves is
included does the modeled Charnock coefficient in-
crease to 0.011–0.015 and agree with observations. In-
terestingly, an elevated Bsat could compensate for ne-
glecting the breaking wave effect to yield a Charnock
coefficient consistent with observations, although the
wind input to the wave field would be physically very
different (e.g., compare r with and without breaking
waves for Bsat � 0.002 and Bsat →  with # � 0.125,
fourth and tenth rows in Table 1). Without the effect of
breaking waves, the total momentum flux is more sen-
sitive to the spectral level at high k. Overall, our results

indicate that the spectral shape as well as modeling the
input to breaking waves is critical to determine the total
air–sea momentum flux.

3) WIND SPEED AND STRESS PROFILES

Figures 7 to 9 show the modeled wind speed and
stress partitioning as a function of z normalized by the
wave boundary layer height zT � �/k0. These results
clearly indicate that the input to both breaking and
nonbreaking waves is significant. Note that near the
wave boundary-layer height (z/zT ( 1) the solution for
the turbulent stress follows closely the previous theo-
retical estimate (Hara and Belcher 2002), indicating the
dominance of nonbreaking waves for longer waves. At
very low levels, on the other hand, the wind speed fol-
lows approximately the analytic solution from KHB,
suggesting that breaking waves dominate the wave en-
ergy input for very short waves. Figure 7 indicates that
a significant fraction is fluxed to short breaking waves
very close to the surface.

Although our solution has been obtained without a
fixed wavenumber upper limit (k1 →  ), the theory
should not be applied in the capillary wave range or
in the viscous sublayer. The height of the viscous sub-
layer can be estimated by z) ( 5)au�1

*) , where )a denotes
the kinematic viscosity of air and u*) is the viscous
friction velocity (Cohen and Kundu 2002). For u* � 1

FIG. 7. Modeled (left) wind stress partitioning and (right) wind speed profile for # � 0.6,
Bsat � 0.002. Analytic solutions HB (Hara and Belcher 2002, 2004; KHB). The top of the wave
boundary layer is at zT � �/k0.
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m s�1 (U10 ( 20 m s�1) and a viscous stress close to
25% of the total stress (see Fig. 7), we find z)/zT �
5��1)ag�2u�2

* u�1

*) ( 2 " 10�5, close to the lowest
heights shown in Fig. 7. Therefore, only the input
heights of the smallest forced waves shown in Fig. 7 are

close to the viscous sublayer height. Note that z)/zT

further decreases with increasing wind speed.
Next we consider the amplitude zc of the smallest

breaking gravity wave. Assume that the shortest break-
ing wave is at k1 � 360 m�1 so that the normalized input

FIG. 9. As in Fig. 7, but Bsat � 0.001 (breaking dominated).

FIG. 8. As in Fig. 7, but Bsat � 0.005 (nonbreaking dominated).
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height to breaking waves is given by zc/zT � k0/k1 (
10�4 for u* � 1 m s�1. Therefore, the lowest part of Fig.
7 may be modified due to the capillary effect. Note that
at this height the wave form drag contributes about
50% to the total stress. Furthermore, zc/zT decreases
with increasing u* so that the total wave form drag must
increase with u* (Fig. 7). In particular, Fig. 7 indicates
that the relative contribution of breaking waves to the
total wave form drag increases with wind speed.

KHB and Kukulka (2006) have shown that the spa-
tial sheltering effect can modify the dynamics close to
the surface, and therefore the details of the wind speed
and stress partitioning. However, the sheltering hardly
affects the drag coefficient of mature seas.

d. Nonlinear wave–wave interactions

Nonlinear wave–wave interactions are parameterized
by (26) with �� $ �3. Nonlinear interaction alters � for
longer waves because nonlinear interactions and dissi-
pation are proportional to one another, and their sum is
proportional to the coefficient #. For fixed #, an el-
evated coefficient nNL increases #� in (50). This causes
a weakening of the breaking wave effect in (61) and a
decrease of � in (62) for B � Bsat, where the breaking
wave influence is already relatively small. Lowering the
value of nNL, on the other hand, leads to a relative
increase in � and the breaking wave effect for B � Bsat.
For B → Bsat the balance (64) can be dominated by
dissipation and input to breaking waves, so nonlinear
interactions are negligible. For nNL → 1 (nonlinear in-
teractions completely balance the wind input), results
are nearly unaltered compared to the results obtained
for nNL � 0, except that the breaking distribution ap-
proaches zero where B � Bsat. Similarly, nNL � � 1
(nonlinear interactions provide as much energy input as
the wind input) alters � only at low k, where � in-
creases approximately by a factor of 2. Results for the
Charnock coefficient are nearly independent of nNL

(changes less than 1%).

4. Summary and conclusions

We have developed a coupled wave and wind model
that incorporates the enhanced form drag of breaking
waves. Combining the approaches by Hara and Belcher
(2002, 2004) and KHB, the model is based on wave
energy conservation and energy and momentum con-
servation in the wave boundary layer. These conserva-
tion principles lead to a system of coupled nonlinear
advance–delay differential equations governing the
wind speed, turbulent wind stress, wave height spec-
trum, and breaking wave distribution. To close the sys-

tem of equations, we introduce a relationship between
the wave height spectrum and the breaking wave dis-
tribution. For low values of B, this relationship is based
on four-wave nonlinear interactions being proportional
to dissipation (Phillips 1985). As B increases beyond a
threshold, the wave height spectrum is dissipation lim-
ited (Phillips 1958).

The system of equations has been solved numerically
for mature seas with wave ages greater than 20 (Dren-
nan et al. 2003), where the wind forcing is only signif-
icant for shorter waves away from the spectral peak (in
the equilibrium range). Our model predicts a transition
of the saturation spectrum from k1/2 to k0 at higher
wavenumbers, and thus reconciles the two asymptotic
limits of Phillips (1985, 1958). The directional spreading
changes from a cosine distribution relatively close to
the spectral peak to an omnidirectional distribution at
higher wavenumbers. The effect of breaking waves on
the wave height spectrum is weak. The relationship be-
tween the one-dimensional breaking distribution and
wave scale (expressed in k or c) depends on the par-
ticular set of parameters. Generally, � as function of c
is approximately proportional to c�6 for longer waves
and proportional to c�5 for intermediate-scale waves.

Finally, we have estimated the sensitivity of the
Charnock coefficients (normalized roughness length)
on wave parameters for mature seas. Based on model
results, it is likely that breaking waves support roughly
6%–75% of the total wave form drag depending on the
wave field. Therefore, to accurately model air–sea mo-
mentum fluxes, one must account for the enhanced
from drag of breaking waves. Both the total momentum
flux (drag coefficient) and the stress partitioning de-
pend sensitively on the representation of the wave
height spectrum. Hence, understanding systematically
the dependence of wave spectra on wind speed and sea
state is critical to improve predictions of the total wind
stress over the ocean surface. In Part II, we will apply
our model to a wide range of wind and wave conditions.
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APPENDIX A

Numeric Solutions

To solve the system (54) to (60) on the interval [K0,
K1] (corresponding to waves with wavenumbers be-
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tween k0 and k1 and heights between �/k1 and �/k0), we
first choose a grid of N points xj on [K0, K1], where j �
1, . . . , N, x1 � K0, and xN � K1. Next we approximate
the solution S, U, and Sw by (N � 1) cubic polynomials
Sj, Uj, and Swj, which interpolate the solution and its
first derivative at both ends of the interval [xj, xj�1].
Since the solution is estimated globally, the advance–
delay terms can be calculated explicitly. The polynomi-
als are expressed as their Hermite presentation so that
for each xj there are six coefficients that approxi-
mate the solution S, U, Sw, and its derivative [see, e.g.,
Shampine et al. (2000)].

To determine the 6 " N coefficients, we specify the
three boundary conditions for S, U, Sw and impose that
the approximate solution satisfies (54) to (64) at each xj

and midpoint of [xj, xj�1] (“collocation equations”).
The system of 6 " N � 3 nonlinear algebraic equations
is solved numerically using a damped, modified New-
ton’s method (Ascher et al. 1988). The grid spacing is
determined empirically so that solutions are sufficiently
accurate and converging; typically (xj�1�xj) is set to
0.2. Gradually K1 is increased until the solution be-
comes independent of the upper boundary condition.

For mature seas, the longest forced wave is at k0 �
g/u2

*(0.07)2 (Plant 1982), so S0 � (0.07)2. Furthermore,
Sw(K0) � 0 as no waves with k � k0 are forced. The
delay terms in (58) and (60) vanish for K � K0, so for
K between K0 � � and K0 there is no input to non-
breaking waves. The wind speed close to the surface is
set to zero at K1 � �. Therefore, there is no input to
breaking waves at heights corresponding to K between
K1 � � and K1, so the advance terms in (61) to (64)
vanish.

APPENDIX B

Effect of Breaking Waves Close to the
Spectral Peak

Based on a scaling argument, one can show that for
fully developed seas the energy input to breaking waves
close to the lower wavenumber limit k0 is small relative
to wave dissipation. The maximum input (at � � 0) to
breaking waves normalized by the wave energy loss is

Ib

D
� �2�u�c � 1�2. �B1�

Evaluation of this expression close to k � k0, where
�t(k0) ( �0, results in

�Ib

D�
k0

� �2� u

u*
�S0 � 1�2

. �B2�

An upper bound for the input to breaking waves is
given by an upper bound of the wind speed, umax;
that is,

�Ib

D�
k0

� �2�umax

u*
�0
� 1 � 1�2

. �B3�

The maximum wind speed can be estimated by a lower
limit of the Charnock coefficient, say r0 ( 0.008 so that

umax �
u*
�

ln
�g

k0u2

*r0

.

Substitution of this results in

�Ib�D�k0
� �2S0�1

�
ln
�

r0
�

1
�

lnS0 � S0
�1�2�2

. �B4�

With S0 � (0.07)2 and � � 0.3 the right-hand side of the
inequality is about 0.1% and 6% for � � 0.07 (default
value) and � � 0.5 (upper bound), respectively. There-
fore, the wind input to breaking waves close to the
spectral peak is not a dominant term in the wave energy
balance. Notice also that the upper limit increases with
decreasing wave age until it approaches one, suggesting
that the input to breaking waves close to the dominant
wave may increase for younger seas.

APPENDIX C

Approximation of the Saturation Spectrum and
Estimates of � and Bsat

In appendix B we have shown that the input to
breaking waves is negligible near the lower wavenum-
ber bound k0. As the turbulent stress is not significantly
reduced for waves near k0 (see Figs. 7–9), the wave
spectrum can be approximated from (31) [with h� �
cos2 � and # defined in (47)]. For #c�1

� (u*/c) cos� � Bsat

B�k, �� � �c�
�1

u*
c

cos�. �C1�

On the other hand, once the saturation spectrum ap-
proaches Bsat,

B�k, �� � Bsat. �C2�

Figure 1 shows that the combination of these two ap-
proximations is close to the solution of the full model.

The coefficients # and Bsat are adjusted to be consis-
tent with previous observations of the wave spectrum.

a. Coefficient #

Phillips (1985) introduces a parameterization of the
saturation spectrum
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B�k, �� �
�p

4
g�1�2u*k1�2 cos�. �C3�

Comparing this equation to (C1), his coefficient %p is
related to our model coefficient # such that

�p �
4�

c�

. �C4�

b. Coefficient Bsat

Our model result suggests that B(k, �) will converge
to Bsat for high k. Therefore, we will match Bsat to
observations of B ( const. Banner et al. (1989) mea-
sured wavenumber spectra of short gravity waves (* �
0.2 � 1.6 m or k � 4 � 31 m�1), using stereophotog-
raphy. They found B(k, �) ( 0.0012. Banner et al. es-
timate the spectrum for all angles between 0° and 360°.
Note that there is a 180° ambiguity for Fourier trans-
forms on stationary images. Since in our theory waves
cannot propagate against the wind direction, we take
Bsat ( 0.0024.

More recently, Melville and Matusov (2002) mea-
sured the wavenumber spectrum along a flight track in
upwind and downwind directions for waves between
k � 0.1 and 3 m�1,

�x�kx� � �
��

�

��kx, ky� dky ,

� �
��

�

B�k�k�4h�k, �� dky, �C5�

where �x denotes the marginal spectrum and k �
�k2

x � k2
y, and � � arctan(ky/kx). In the high k limit,

one may approximate the marginal spectrum from our
solution by

�x�kx� � �
��

�

Bsatk
�4 dky ,

� Bsat�
��

�

�kx
2 � ky

2��2 dky ,

�
�

2
Bsatkx

� 3. �C6�

From the Melville and Matusov (2002) spectrum, we
find for k 	 0.4 m�1, k3

x�x � (1.6 & 0.4) " 10�3, which
results in Bsat � (1.0 & 0.3) " 10�3. Note that, if the
angular spreading is not omnidirectional, the estimate
for Bsat will increase. For example, for B(k, �) �
Bsatcos2�, Bsat � (1.4 & 0.4) " 10�3. Also, Bsat might be
underestimated if the wavenumber range is too close to
the spectral peak, so B(k) still increases with k (as
found by Melville and Matusov for k 	 20 m�1). If

frequency spectra in the saturation range are converted
to wavenumber spectra via the dispersion relation, B(k)
is B(k) ( 0.006 (Phillips 1977). Assuming an omnidi-
rectional spreading function, Bsat results in Bsat ( 0.002.
Banner et al. (2002) found a threshold for the satura-
tion spectrum in the frequency range �/�p � 1 to 2.48,
above which the breaking probability significantly in-
creases. Their data suggest that B(k) does not exceed
0.006, corresponding roughly to B(k, �) � 0.002. In
summary, observations indicate that Bsat is likely be-
tween 0.001 and 0.003. However, since Bsat was also
inferred from one-dimensional spectra and an assumed
angular distribution that peaks in the wind direction
increases Bsat relative to the omnidirectional distribu-
tion, we assume a generous upper bound of Bsat,max �
0.005.
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