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Short Note

Component-Dependent Fréchet Sensitivity Kernels and

Utility of Three-Component Seismic Records

by Yang Shen, Zhigang Zhang, and Li Zhao

Abstract With the exception of shear-wave splitting and receiver function analy-
ses, the phase or amplitude anomaly of a particular arrival is usually measured on only
one of the three-component seismic records. Perfectly good waveforms on the other
components are often unused. In this article we show that the different components of
the same arrival at the same receiver have different travel-time and amplitude sensi-
tivities to variations in the velocity structure. This is a finite-frequency phenomenon
for measurements derived from waveforms. It is important where the scales of veloc-
ity heterogeneities are comparable or smaller than the width of the Fresnel zone. We
calculate the Fréchet sensitivity kernels using the scattering-integral method in
conjunction with finite-difference wave simulation in three-dimensional media.
The differences in the sensitivity kernels for the different components vary with
the wave type, source-receiver geometry, and source mechanism. They are attributed
to scattered waves that affect the waveforms on the different components by various
amounts. Thus, the differential kernels between the different components of the same
arrival may enable us to use the corresponding phase and amplitude measurements,
which are relatively accurate observations unaffected by uncertainties in source ori-
gin time and location, to image the Earth structure, particularly fine structures near
receivers.

Introduction

It has been recognized for some time that seismic waves
have finite-frequency bandwidths and are sensitive to a three-
dimensional (3D) structure off ray paths (e.g., Yomogida,
1992; Friederich et al., 1993; Gudmundsson, 1996; Meier
et al., 1997; Marquering et al., 1999; Spetzler et al., 2002;
Yoshizawa and Kennett, 2002). In recent years advances
in seismic theory have provided theoretical and numerical
formulas to calculate the 3D Fréchet sensitivity kernels,
the functions that relate the perturbations of the media of
wave propagation to seismic observations (e.g., Dahlen et al.,
2000; Zhao et al., 2000; Tromp et al., 2005; Zhao et al.,
2005). Specifically, phase delays and amplitude anomalies
measured by waveform cross correlation are expressed as
a volume integration of the product of the perturbations of
the media and the Fréchet kernels.

Several methods have been developed to calculate the
sensitivity kernels of finite-frequency waves, and there are
important differences among the various approaches. Using
the Born approximation in conjunction with body-wave ray
theory, Dahlen et al. (2000) and Dahlen and Baig (2002)
computed the 3D Fréchet sensitivity kernels for finite-

frequency body-wave phase delays and amplitude anomalies
measured by cross correlation of a broadband waveform with
a synthetic seismogram for a spherical (1D) earth. For com-
putational efficiency, forward and like-type scattering from
single scatterers and far-field approximations are implemen-
ted. The direct P or S body-wave travel-time sensitivity ker-
nels for the one-dimensional (1D) reference earth from these
calculations can be characterized as a hollow banana-shaped
volume surrounding the ray path. In order to obtain a more
accurate and complete wave field in a spherical earth, Zhao
et al. (2000) and Zhao and Jordan (2006) employed normal
modes in the calculation of the Fréchet kernels. In places
where 1D models are inadequate to represent the reference
earth, two different computational approaches have been
developed to calculate the kernels for 3D reference models:
the adjoint (Tromp et al., 2005; Liu and Tromp, 2006)
and scattering-integral (Zhao et al., 2005; Zhang et al.,
2007) methods. To date, wave propagation in these two ap-
proaches is modeled with the spectral element (Komatitsch
et al., 2005) and finite-difference (Olsen, 1994) methods,
respectively.
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In addition to the fact that finite-frequency kernels more
accurately represent the propagation of real seismic waves
than ray approximation (Hung et al. 2000; Baig et al.,
2003), one of the main reasons that finite-frequency sensitiv-
ity kernels have received much attention in the seismological
community is that they allow straightforward integration and
joint interpretation of data measured at different frequencies
and from different phases (body and surface waves). Thus,
the sensitivity kernels provide a powerful tool to extract more
information about the Earth from broadband seismic records.
For the same reason, component-dependent kernels pre-
sented herein are important because they allow us to more
fully utilize information in three-component seismic records.
With the exception of shear-wave splitting and receiver func-
tion analyses, the usual practice in seismic data analysis is
that a particular arrival is measured on only one of the three-
component seismic records. For example, the P wave is usu-
ally measured on the vertical component, and the S wave is
usually measured on the transverse component. Perfectly
good waveforms on the other components are often unused.
This practice is nonetheless consistent with ray theory, which
predicts that the arrival time of a phase is the same on the
various components of seismic records at the same station.

In this article we present several examples of the
component-dependent Fréchet kernels for finite-frequency
seismic waves. The kernels are calculated using the
scattering-integral method (Zhao et al. 2005; Zhang
et al., 2007) in conjunction with finite-difference wave-
propagation calculations (Olsen, 1994; Marcinkovich and
Olsen, 2003) in a full-wave approach. We show that the
sensitivity kernels for the different components of the same
arrival are significantly different, so the usually unused
waveforms on the other components contain additional
constraints on the Earth structure.

Component-Dependent Sensitivity Kernels

We calculate the component-dependent sensitivity ker-
nels using a modified scattering-integral method (Zhao et al.,
2005). For an arrival within the time window t1 and t2, we
define the travel-time and amplitude anomalies for the
component in the direction of a unit vector, êl, δτ

p
l and

δτql , respectively,

δτpl � �
R
t2
t1

_~ul�t�δul�t�dtR
t2
t1 j _~ul�t�j2 dt

; (1)

δτql �
R
t2
t1 ~ul�t�δul�t� dtR

t2
t1 j ~ul�t�j2 dt

; (2)

where ~ul�t� is the displacement calculated from the reference
model in the direction êl, δul�t� is the change in the dis-
placement due to a perturbation in the velocity model,
and _~ul�t� is the time derivative of the displacement field.

We note that the amplitude anomaly defined here is dimen-
sionless, different from that in Zhao et al. (2005) by a con-
stant. Following the same derivation and after the correction
of a typo in Zhao et al. (2005), we have the travel-time and
amplitude sensitivities to perturbations in P- and S-wave
speeds:

Kp
l;α � 1

Pl

Z
t2

t1
2~ρ ~α _~ul�rR; t; rS�

Z ∞
�∞

êl

· ��∇ · ~GT��∇ · ~u�� dτ dt; (3)

Kq
l;α � � 1

Ql

Z
t2

t1
2~ρ ~α ~ul�rR; t; rS�

Z ∞
�∞

êl

· ��∇ · ~GT��∇ · ~u�� dτ dt; (4)

Kp
l;β � 1

Pl

Z
t2

t1
2~ρ ~β _~ul�rR; t; rS�

Z ∞
�∞

êl

· f�∇ ~G�213∶��∇ ~u� � �∇ ~u�T �
� 2�∇ · ~GT��∇ · ~u�g dτ dt; (5)

Kq
l;β � � 1

Ql

Z
t2

t1
2~ρ ~β ~ul�rR; t; rS�

Z ∞
�∞

êl

· f�∇ ~G�213∶��∇ ~u� � �∇ ~u�T �
� 2�∇ · ~GT��∇ · ~u�g dτ dt; (6)

where ~G is ~G�rR; t; r� or ~G�r; t; rR� by reciprocity, the
Green’s tensor between the receiver at rR and a specific
location in the model r; ~u � ~u�r; t; rS� is the displace-
ment from the source at rS to r; and ~ul�rR; t; rS� is the dis-
placement from rS to rR. The superscript T represents the
transpose of a tensor. The superscript 213 represents the
transposition of the first and the second indices of a third-
order tensor. α, β, and ρ are the P-wave speed, the S-wave
speed, and the density, respectively. Pl and Ql are the nor-
malization factors for the component in the direction êl:

Pl �
Z

t2

t1

j _~ul�t�j2 dt; (7)

Ql �
Z

t2

t1

j ~ul�t�j2 dt: (8)

The preceding equations show that the sensitivity ker-
nels for the component in the direction êl depend on the
length of the function of the spatial derivatives of the dis-
placement field ~u and the Green’s tensors ~G�r; t; rR� in
the direction êl and the displacement ~ul�rR; t; rS�. The ker-

2518 Short Note

Downloaded from https://pubs.geoscienceworld.org/ssa/bssa/article-pdf/98/5/2517/3679094/2517.pdf
by University of Rhode Island user
on 22 October 2018



nels thus vary with the wave type, source radiation pattern,
and source-receiver geometry.

We use three numerical experiments to illustrate the dif-
ferences of finite-frequency sensitivity kernels on the differ-
ent components of seismic records. Starting with the simplest
case, we present a 3D homogeneous, isotropic model with an
explosive source at depth (Fig. 1a, case 1 in Table 1). The
receiver is on the surface at a horizontal distance comparable
to the depth of the source, so the direct Pwave is recorded on
both the vertical and radial components (Fig. 1b). In this and
following cases, the radial component of the seismic wave is
equivalent to the x component in the local Cartesian coordi-
nate system, the vertical component is equivalent to the z
component in the Cartesian coordinate system, and the trans-

verse component is equivalent to the y component in the Car-
tesian coordinate system. The source has a time function

M�t� �
Z

t

0

e�α�t�t0�
2

dt; (9)

where α equals to 20, resulting in a source time function with
a dominant period of about 1.2 sec. t0 is 0.75 sec in all sim-
ulations. The quality factors, Q, for P and S waves in the
model are set at arbitrarily high values, so we ignore attenua-
tion and focus on the elastic behaviors. The P and S veloc-
ities and the parameters of the finite-difference calculation
are listed in Table 1.

Figure 1. (a) Schematic illustration of a homogeneous, isotropic model with an explosive source at depth (star) and a receiver on the
surface (triangle). The directions of the x, y, and z coordinate system are marked. (b) The P arrival on the z and x components recorded by the
surface receiver. (c) The delay-time kernels for the z and x components and their differential kernel in units of sec =m3. The negative values
(red colors) and positive values (blue colors) are so defined that a low-velocity anomaly located in the region of the negative kernels results in
a phase delay, and the same velocity perturbation in the region of positive kernels leads to an earlier arrival as measured by waveform cross
correlation. The line represents the ray path from the source (distance, 22.4 km; depth, 30.0 km) to the receiver (distance, 64.8 km; depth,
0.0 km). The circle shows the location of the spherical, low-velocity anomaly used to test the effects of the scatterer on the waveforms on the
different components (Fig. 2).
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Figure 1c shows the travel-time sensitivities to
P-velocity perturbations for the z and x components and
their differential kernels. The differential kernels are rela-
tively large near the receiver (Fig. 1c) and become smaller
in magnitude away from the receiver. Near the receiver
and below the ray path, the sensitivities for the z-component
record are much stronger than for the x-component record.
On the other hand, the sensitivities are much stronger for the
x component above the ray path near the receiver. The dif-
ferences in the sensitivities between the different components
can be understood by imagining a scatterer in the model. For
a scatterer near and beneath the receiver, the geometry be-
tween the scatterer and the receiver and the nature of
P-wave particle motion determine that most of the scattered
P-wave energy is on the z component, therefore affecting the
vertical waveform and delay time more strongly than the hor-
izontal waveform and delay time. Similarly, the scattered en-
ergy from a scatterer at a shallow depth near the receiver and
above the ray path is mostly on the x component, affecting
more strongly the x-component waveform and delay time.
Wu and Aki (1985) and Favier et al. (2004) provide exten-
sive discussions on the characteristics of the scattered waves
by elastic heterogeneities.

To validate this interpretation, we place a spherical
perturbation with a P-velocity reduction of 4% and a radius
of 2.5 km below the ray path near the receiver, as shown by
the circle in Figure 1c. All other elastic properties of the
model remain the same. Because delay time is the volume
integration of the product of the kernels and the velocity per-
turbation in the finite-frequency formulation, the component-
dependent kernels in Figure 1c predict a larger delay for the z
component than for the x component. Figure 2 shows the
normalized P waveforms for the models with and without
the spherical perturbation. The waveform change on the z
component caused by the spherical perturbation is signifi-
cantly larger than on the x component, and the delay on
the vertical component measured by cross correlation of
the waveforms with and without the velocity perturbation
(Δt � 0:009 sec) is three times larger than the delay on
the horizontal component (Δt � 0:003 sec). The cross-
correlation measurements are consistent quantitatively with
the predicted values from the component-dependent kernels
(0.008 and 0.003 sec for the z and x components, respec-
tively), within small numerical and round-off errors.

To illustrate how the incidence angle of the arrival af-
fects the sensitivity kernels, we adjust the horizontal distance
between the receiver and source. Figure 3 shows a source-
receiver geometry that results in a direct arrival with a steep
incident angle and, thus, a larger amplitude on the vertical
component than on the horizontal component. Compared to

Table 1
Parameters of the Models Used in the Numerical Examples

Case 1 Case 2 Case 3

Wave type Direct P Headwave (Pn) Direct S (SV, SH)
Source Explosive Explosive Double couple

VP=VS (km=sec) 6:500=3:823 5:207=3:189 (layer 1) 6:500=3:823

9:058=5:307 (layer 2)

Finite-difference grid spacing 400 m 400 m 200 m
Finite-difference timestep 0.02 sec 0.02 sec 0.015 sec
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Figure 2. The normalized P waveforms in particle velocity at
the receiver for the models with (thin line) and without (thick
dashed line) the velocity perturbation in case 1 (Fig. 1). (a) The
top panel shows the P waveforms on the z component. The second
panel is the difference between the waveforms for the models with
and without the velocity perturbation, shown at an enlarged verti-
cal scale. (b) The description is the same as for part (a) but for the
x component.
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Figure 1c, the travel-time kernels for the x component show a
greater asymmetry about the ray path between the source and
receiver. Figure 3 also shows, as an example, the component-
dependent amplitude kernels. Like the travel-time kernels,
the amplitude kernels for the x component also show a great
degree of asymmetry about the ray path. This asymmetry is
due to the fact that the propagation direction of the horizontal
component of a scattered wave from a heterogeneity to the
far side of the receiver is in the opposite direction of the x
component of the direct wave from the source to the receiver,
while the horizontal component of a scattered wave from a

heterogeneity to the near side of the receiver is in the same
direction of the x component of the direct wave. The opposite
effects of the scattered wave on the waveforms at the receiver
result in the opposite polarities of the x-component kernels
about the receiver. Furthermore, the sensitivity for the x com-
ponent is a minimum (zero) directly beneath the receiver, re-
flecting the fact that a Pwave bounced off a scatterer directly
beneath the receiver propagates vertically to the receiver and
thus does not affect the waveform (nor the delay time and
amplitude) on the x component. The differential kernels
are more pronounced than in Figure 1c.

Figure 3. Delay-time (left-hand side) and amplitude (right-hand side) sensitivity kernels for the z and x components and their differential
kernel. The surface receiver (30.8 km, 0) is at a relatively short horizontal distance from the explosive source at depth (22.8, 30.0 km). The
travel-time kernels are defined in the same way as in Figure 1c. For amplitude, the negative values (red colors) and positive values (blue
colors) are so defined that a high-velocity anomaly located in the region of the negative kernels results in an amplitude reduction, and the
same velocity perturbation in the region of positive kernels leads to an increase in amplitude.
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For a receiver directly above the source, the P arrival has
no energy on the x component in this homogeneous and iso-
tropic reference model. Without a reference waveform, the
kernel calculation for the x component becomes unstable
(Pl and Ql in equations 7 and 8 are zero). In practice, when
the signal of the arrival on one of the components is below
the noise level, that component does not yield useful delay-
time and amplitude measurements.

In case 2, we introduce one layer over a higher-velocity
half-space. Within the layer and the half-space, the velocities
are uniform (Table 1). We use the same explosive source as in
case 1 but examine the sensitivity kernels for the headwave
instead (Fig. 4). In order to investigate the effects of the scat-
terers near the receiver in a different setting, we place the
receiver below the surface. Because the velocity in the half-
space is uniform, the downward bending of the kernels in the
half-space is attributed to the increasing Fresnel-zone width
from the source and receiver and has nothing to do with a
vertical velocity gradient (Zhang et al., 2007). Again the dif-
ferences between the travel-time sensitivity kernels for the z
and x components are pronounced. Below the layer interface
and near the receiver, the sensitivity for the z component is
stronger in absolute values than for the x component at the

same location. Above the interface and to the source side of
the receiver, the sensitivity for the x component is stronger
than for the z component. The differences can also be ex-
plained in the same way as for the direct P arrival. Depending
on the location of the scatterer, the scattered energy is mostly
on one or the other component and therefore affects the
waveforms and delay times on the two components un-
evenly. Numerical experiments with a spherical P-velocity
perturbation, similar to that in case 1, again validate this in-
terpretation of the headwave kernels (not shown). However,
unlike case 1, the differential kernels are very small near the
source. The lack of differential kernels near the source can
be explained by the fact that away from the receiver only the
scattered waves that propagate (sub-) horizontally below the
interface arrive within the time window of the headwave and
contribute to the calculation of the headwave kernels. Con-
sequently, scattered waves from velocity perturbations near
the source do not disproportionally perturb the z and x com-
ponents of the headwave and cause differential kernels.

Case 3 has a double-couple source with a strike of 0°, a
dip of 30°, and a rake of 45° in a homogeneous and isotropic
model. The strike of 0° is defined as the direction of the y axis
in the local coordinate. The source-receiver geometry is sim-
ilar to that in case 1 (Fig. 1) except that the source is at 40 km
depth and the receiver is (7 km) below the surface. The SV
wave is recorded on the x and z components. The SH wave is
recorded on the y component. Figure 5 is a comparison of the
S travel-time sensitivities to S-velocity perturbations for the
three components at three depths: 7, 15, and 25 km. There are
obvious differences in the kernels for the different compo-
nents, though it is difficult to separate and visualize the in-
dividual contributions of the various scattered waves in this
double-couple case because of SV to P, SV, and SH scattering
and SH to P, SV, and SH scattering (Wu and Aki, 1985; Dah-
len et al., 2000). Also complicating the picture are the radia-
tion patterns of SV and SH waves for the double-couple
source. But it is still straightforward to validate the compo-
nent dependence of the S-wave kernels numerically. We put a
spherical anomaly with an S-velocity reduction of 4% and a
radius of 3.0 km at 15 km depth as shown by the circle in
Figure 5. The kernels predict that the resultant S delays on
the z component should be larger than on the x and y com-
ponents. The waveform changes on the three components
caused by the velocity perturbation are shown in Figure 6.
Indeed the perturbed waveform is most pronounced on the
z component. The delay time on the vertical component from
the cross correlation of the reference and perturbed wave-
forms (Δt � 0:019 sec) is about twice as large as the delay
time on the x component (Δt � 0:009 sec), while the delay
time on the y component (Δt � 0:015 sec) is about 50%
larger than on the x component, again consistent with the
kernel predictions (0.018, 0.009, and 0.014 sec for the z,
x, and y components, respectively).

While the ratios of the travel-time anomalies on the
different components are large, the absolute differential de-
lays calculated previously are likely smaller than observed

Figure 4. Headwave delay-time sensitivity kernels for the z and
x components and their differential kernel. The dashed line marks
the interface between the top layer and a higher-velocity half-space.
The source is located on the left-hand side of the model (26.0,
18.0 km). The receiver is near the surface (113.2, 6.4 km). The neg-
ative values (red colors) and positive values (blue colors) are defined
in the same way as in Figure 1c.
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travel-time anomalies in real seismic experiments. The small
travel-time delays are the direct results of the relatively small
volume of the input spherical velocity perturbation. When a
much larger volume of the velocity heterogeneity is located
in places where the differential kernels (Figs. 1 and 3) are
strong, it can cause much greater differential delays on the
different components.

Conclusions

We demonstrate that the finite-frequency Fréchet kernels
calculated from a full-wave method can be significantly dif-
ferent for the different components of the same arrival at a

receiver. The differences in the kernels are attributed to the
scattered waves that affect the different components of seis-
mic records unequally and suggest that a seismic arrival on
more than one component of the three-component records
can be utilized to constrain the Earth structure. This com-
ponent dependence of the sensitivity kernels is a finite-
frequency phenomenon for measurements derived from
waveforms. It is important where the scales of velocity het-
erogeneities are comparable or smaller than the sensitivity
regions (Figs. 1, 3, 4 and 5). As a rule of thumb, the size of
the sensitivity region can be approximated by the full width
of the first plane-wave Fresnel zone (

��������������������
4λL� λ2

p
or ∼2 �������

λL
p

when L ≫ λ, where λ is the wavelength and L the distance

Figure 5. Comparison of the travel-time sensitivities to S-velocity perturbations for the x, y, and z components of the direct S wave in a
homogeneous and isotropic model (case 3). The source and receiver locations in kilometers and the x, y, and z directions are (27.8, 31.2, 40.0)
and (58.6, 31.2, 7.0), respectively. The top row shows the kernels for the x component at 7 (the depth of the receiver), 15, and 25 km. The
middle and bottom rows are for the y and z components, respectively. The negative values (red colors) and positive values (blue colors) are
defined in the same way as in Figure 1c. The circles mark the location of the spherical S-velocity perturbation used to test the effect of the
scatterer on the S waveforms on the different components (Fig. 6).
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to the receiver). For scale, a 20 sec P-wave propagating near
vertically at 400 km depth to a surface receiver has a full
Fresnel-zone width of ∼570 km. As wave frequency in-
creases, the size of the Fresnel zone decreases, and the com-
ponent dependence of the sensitivity kernels becomes less
important for broad and smooth velocity heterogeneities.
Nevertheless as one can see from geological outcrops, strong
heterogeneities may exist at many length scales down to the
size of hand samples. Because the differential travel-time and
amplitude measurements between the different components
of the same arrival are not affected by uncertainties in earth-
quake origin time and, in some cases, source location errors,
the differential travel-time and amplitude measurements may
be particularly useful for imaging the fine structure near re-
ceivers. Finally, the component-dependent sensitivity kernels
suggest that caution should be practiced in the interpretation
of shear-wave splitting in places where heterogeneities are
strong and have dimensions that are comparable to the width

of the sensitivity kernels, as both intrinsic anisotropy and iso-
tropic heterogeneities may cause an apparent travel-time dif-
ference on two components of an S wave.

Data and Resources

No observational data were used in this article. The cal-
culations were carried out on a nine-node Linux PC cluster at
the Graduate School of Oceanography, University of Rhode
Island.
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Figure 6. The normalized S waveforms in particle velocity at
the receiver for the models with (thin line) and without (thick
dashed line) the spherical velocity perturbation in case 3 (Fig. 5).
(a) The top panel shows the S waveforms on the x component, re-
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nents. The second panel is the difference between the waveforms for
the models with and without the velocity perturbation. (b) The same
description as for (a) but for the y component. (c) The same descrip-
tion as for (a) but for the z component.
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