Effect of an Exercise and Dietary Intervention on Cognitive Function in Obese Older Women

Kathleen Mae Uy
University of Rhode Island, kathleenmuy@gmail.com

Follow this and additional works at: https://digitalcommons.uri.edu/srhonorsprog

Part of the Exercise Science Commons

Recommended Citation
https://digitalcommons.uri.edu/srhonorsprog/388

This Article is brought to you for free and open access by the Honors Program at the University of Rhode Island at DigitalCommons@URI. It has been accepted for inclusion in Senior Honors Projects by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu.
Purpose

The purpose of this study was to examine the effect of a combined Tai Chi, resistance training, and dietary intervention on cognitive function in older obese women.

Hypothesis

It is hypothesized that a combined Tai Chi, resistance training and dietary intervention will show positive effects on cognitive function in older obese women.

Study Design

A non-randomized experimental design with baseline testing prior to the intervention and post-testing at the conclusion of the 12-week intervention. The study took place at St. Martin de Porres Senior Center in Providence, Rhode Island. Study approved by the Institutional Review Board of the University of Rhode Island (IRB1213-08).

Participants

- Women (n=27) aged 50 – 80 years
- Obese (body mass index ≥ 30 kg/m²)
- Not engaged in a regular exercise program prior to the start of the intervention
- No significant pulmonary, cardiovascular, metabolic, musculoskeletal, or cognitive disorders
- Medication stable

Measurements

- RBANS tests were used to measure participants’ cognitive functions at baseline and post intervention.
- RBANS was always administered by a licensed Speech Language Pathologist.
- Other pre and post intervention measures were: height, weight, body mass index (kg/m²), and education.

Intervention

- The EXD group (n=16; 5 dropouts) engaged in three 45 min Tai Chi sessions and two 45-min trainings sessions respectively per week.
- A registered dietician conducted the behaviorally based diet sessions for 45 min once a week.
- The CON group (n=9; 1 missing data) was asked to maintain a normal lifestyle.

Effect of an exercise and dietary intervention on the cognitive function of obese older women

K Uy², S Maris², D Quintanilla², A Taetzsch², A Picard³, J Letendre², F Xu¹, IE Lofgren², L Mahler³, MJ Delmonico¹

¹Department of Kinesiology, ²Department of Nutrition and Food Sciences, ³Department of Communicative Disorders University of Rhode Island, Kingston, RI 02881

Introduction

- Risk of cognitive decline and disease are higher in minorities [1].
- Physical activity and healthy dietary patterns have been linked to the prevention of cognitive decline in older adults [2,3].
- Positive associations between obesity and cognitive dysfunction have been reported [4].
- Mind-body exercises positively affect cognitive and memory function [5].
- There have been similar studies on cognitive function but there are no significant data on the effect of Tai Chi, resistance training, and a dietary intervention on cognitive function [6,7].

Statistical Analysis

- Statistical analysis was performed using SAS statistical software. Significance was set at p < 0.05.
- Normality was assessed using Shapiro-Wilk test.
- No outliers were identified using the 3 standard deviations above or below the mean.
- Fisher’s Exact tests were used to analyze education level and race/ethnicity.
- Unpaired t-tests were used for between-group baseline values.
- Paired t-test for within group values.
- To compare between group data, analysis of covariance using the changed score adjusted for baseline values.

Results

There were no significant RBANS score changes between the EXD and CON Groups. Results show positive and negative results in different RBANS categories and subcategories.

Discussion and Conclusion

- There were no significant RBANS score changes between the EXD and CON Groups.
- Risk of cognitive decline and disease are higher in minorities [1].
- Physical activity and healthy dietary patterns have been linked to the prevention of cognitive decline in older adults [2,3].
- There have been similar studies on cognitive function but there are no significant data on the effect of Tai Chi, resistance training, and a dietary intervention on cognitive function [6,7].

Means and subcategories.

- Strengths of the study were the target population, which include a strong minority population, the combined interventions effects and the presence of a CON group.
- This is the first study to report the combined cognitive effects of a 12-week Tai Chi resistance training, and a dietary intervention in older obese women.
- Limitations of this study were the non-randomized design, small sample size, and the study’s main focus was on the anthropometric and blood pressure changes.

The RBANS Subcategory “Story Recall” and “Semantic Fluency” are highlighted because scores from both have been shown to be lower in individuals with Parkinson’s disease [8].

References


Table 1: Baseline Characteristics of the intervention (EXD) and Control (CON) Groups

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>EXD Group</th>
<th>CON Group</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>66.0 (7.6)</td>
<td>66.2 (8.0)</td>
<td>0.945</td>
</tr>
<tr>
<td>Education</td>
<td>0.136</td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School or Less (n)</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Associates or Some College (n)</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Bachelor’s or Higher (n)</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Weight (kg)</td>
<td>99.3 (3.3)</td>
<td>90.8 (4.4)</td>
<td>0.110</td>
</tr>
<tr>
<td>Height (cm)</td>
<td>158.7 (1.5)</td>
<td>158.9 (2.0)</td>
<td>0.934</td>
</tr>
<tr>
<td>Body Mass Index (kg/m²)</td>
<td>39.5 (1.1)</td>
<td>35.7 (1.4)</td>
<td>0.045</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td>0.260</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-white</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Changes in RBANS Scores between Intervention (EXD) and Control (CON) Groups Post Intervention

<table>
<thead>
<tr>
<th>RBANS Categories</th>
<th>EXD Group (n=16)</th>
<th>CON Group (n=10)</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBANS Overall Score</td>
<td>3.1 (2.0)</td>
<td>2.1 (2.7)</td>
<td>0.995</td>
</tr>
<tr>
<td>Immediate Memory</td>
<td>4.1 (2.9)</td>
<td>12.7 (3.7)</td>
<td>0.078</td>
</tr>
<tr>
<td>List Learning</td>
<td>2.0 (0.8)</td>
<td>3.0 (1.1)</td>
<td>0.475</td>
</tr>
<tr>
<td>Story Memory</td>
<td>1.8 (0.7)</td>
<td>3.3 (0.9)</td>
<td>0.204</td>
</tr>
<tr>
<td>Visuospatial/ Constructional</td>
<td>8.9 (0.5)</td>
<td>-3.4 (6.0)</td>
<td>0.038</td>
</tr>
<tr>
<td>Figure Copy</td>
<td>2.1 (0.5)</td>
<td>-0.4 (0.1)</td>
<td>0.081</td>
</tr>
<tr>
<td>Line Orientation</td>
<td>2.1 (0.1)</td>
<td>-6.1 (1.1)</td>
<td>0.147</td>
</tr>
<tr>
<td>Language</td>
<td>-0.7 (3.3)</td>
<td>-0.2 (4.4)</td>
<td>0.181</td>
</tr>
<tr>
<td>Picture Naming</td>
<td>2.0 (0.3)</td>
<td>0.1 (0.0)</td>
<td>0.507</td>
</tr>
<tr>
<td>Semantic Fluency</td>
<td>0.9 (1.4)</td>
<td>-2.1 (1.9)</td>
<td>0.394</td>
</tr>
<tr>
<td>Attention</td>
<td>-4.0 (2.1)</td>
<td>3.3 (2.9)</td>
<td>0.047</td>
</tr>
<tr>
<td>Digit Span</td>
<td>-0.9 (0.6)</td>
<td>-0.9 (0.9)</td>
<td>0.934</td>
</tr>
<tr>
<td>Coding</td>
<td>0.6 (1.5)</td>
<td>-0.2 (2.0)</td>
<td>0.754</td>
</tr>
<tr>
<td>Delayed Memory</td>
<td>4.6 (2.7)</td>
<td>4.3 (3.6)</td>
<td>0.944</td>
</tr>
<tr>
<td>List Recall</td>
<td>0.5 (0.5)</td>
<td>-2.2 (0.5)</td>
<td>0.270</td>
</tr>
<tr>
<td>List Recognition</td>
<td>0.5 (0.2)</td>
<td>0.5 (0.3)</td>
<td>0.968</td>
</tr>
<tr>
<td>Story Recall</td>
<td>2.0 (0.5)</td>
<td>0.8 (0.6)</td>
<td>0.117</td>
</tr>
<tr>
<td>Figure Recall</td>
<td>2.0 (0.8)</td>
<td>-4.1 (1.0)</td>
<td>0.074</td>
</tr>
</tbody>
</table>

There was a difference found in the Visuospatial and Attention categories (p < 0.05).

Data are expressed as means (standard deviations).

Data analyzed using analysis of covariance using the change score adjusted for baseline values.

Table 2: Changes in RBANS Scores between Intervention (EXD) and Control (CON) Groups Post Intervention

Figure 1: Total RBANS Average Score Change Between EXD and CON Groups

Figure 2: RBANS Subcategory Changes (Semantic Fluency and Story Recall) Between EXD and CON Groups

Personal Purpose for the Honors Project was involved fully with the intervention from the beginning to end and I wanted to use part of the data to learn how to create a formal poster presentation. My goal was to achieve a full understanding of the research process, I will be presenting a poster of the same topic at the American College of Surgeons Medical Annual meeting in May 2015.

Acknowledgements

This material is based upon work supported by the Cooperative State Research Service, U.S. Department of Agriculture, under Project NO. RI00NE-1039-INT. Thank you to the individuals from the departments of Kinesiology, Nutrition and Food Sciences, and Communicative Disorders for their hardwork and efforts during this study. Special thanks to Dr. Matthew Delmonico, PhD, MPH & Dr. Leslie Mahler, PhD, CCC-SLP for their support and mentorship throughout the project.