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Earth and Space Science

Detection of diffuse seafloor venting using a structured
light laser sensor: 1. Development of a classification
based detection method

Clara Smart1 , Chris Roman1,2, and Steven Carey2

1Department of Ocean Engineering, University of Rhode Island, Narragansett, Rhode Island, USA, 2Graduate School of
Oceanography, University of Rhode Island, Narragansett, Rhode Island, USA

Abstract Systematic and remote detection of diffuse hydrothermal venting is complex yet necessary
to establish a comprehensive understanding the distribution, contribution, and context of fluid flow within
hydrothermal systems. Diffuse flow is characterized by both low temperature and low flow rates and cannot
be consistently distinguished during extensive systematic surveys using current vehicle-mounted visual,
acoustic, or environmental sensors. The remotely operated vehicle-mounted structured light laser sensor is
sensitive to fluid density anomalies and seafloor characteristics. Presented advancements to the detection
algorithm include the development and implementation of intensity normalization routines and a support
vector machine classification algorithm. The resulting comprehensive maps establish the spatial distribution
of potential hydrothermal vents and associated bacteria within a vent field.

Plain Language Summary Detection of diffuse hydrothermal venting is complex as associated
fluid density anomalies cannot be detected centimeters above the seafloor. Using a remotely operated
vehicle-mounted structured light laser sensor which images a projected laser line at the seafloor, we have
demonstrated that remote and systematic detection is possible. The index of refraction and turbulent
flow associated with hydrothermal flow distorts the laser line. Detection of this anomaly allows for
comprehensive spatial maps of hydrothermal vent fields which can be used to inform geological research
objectives and improve ocean exploration.

1. Introduction

Diffuse hydrothermal venting is located within diverse seafloor environments which make automated detec-
tion routines complex and inefficient. Low temperature and low flux fluid flow may be found alongside larger
point source vents, surrounded by biological activity including bacteria, mussels, clams, and tubeworms, or it
can emerge from isolated fissures in the seafloor. The presented approach systematically and efficiently iden-
tifies diffuse hydrothermal seafloor venting within varying environments using a structured light laser sensor
mounted on a remotely operated vehicle (ROV). The resulting maps place vent field features, including active
fluid flow, in a spatial context. This tool will improve the geological understanding of the area, allow for better
informed, efficient sampling and near bottom exploration efforts, and aid in documenting temporal changes.

1.1. Geologic Motivation
Low temperature diffuse hydrothermal flow which can occur near low lying mounds and fissures, mixes
quickly, and is therefore elusive. The large spatial extent of diffuse flow, in comparison to discrete smokers,
allows it to potentially be more influential on chemical and thermal processes of the entire ocean [Schultz
et al., 1992]. Currently, there are approximately 689 known sites of hydrothermal activity worldwide [Beaulieu,
2015; Hannington et al., 2005]; however, through a combination of vent site observations and heat flux esti-
mates, it is estimated that 90% of fluid flow on mid-ocean ridges is diffuse [Hannington et al., 2011]. Due to
detection difficulty, it is likely that the majority of diffuse flow sites have not yet been located or quantified as
entire vent fields composed of low flux diffuse flow may remain undiscovered [Corliss et al., 1979; Baker and
German, 2004]. Accurate distribution of diffuse seafloor venting cannot be established without a near bottom
detection method capable of systematically surveying areas greater than a square kilometer in size.
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1.2. Review of Existing Vent Detection Methods
Detectable temperature and chemical signals associated with diffuse venting decay within tens of meters
of the seafloor due to mixing. In most cases, diffuse vent sites are discovered as a secondary consideration
following the localization and exploration of larger point source vents [German et al., 2008] or areas of bacterial
mats and biological activity, which rely on vent fluids for survival [Singh et al., 1999; Shank et al., 2003]. For
these reasons, the full extent and distribution of diffuse vent fields is rarely determined. Specific approaches
for detection of hydrothermal venting have been developed using both visual and acoustic methods.

1.2.1. Point Source Vent Detection
The most successful vent detection schemes focus on point source vents which create buoyant plumes and
require various sensors to detect anomalies in magnetics, chemistry or temperature 50–400 m above the
seafloor [Baker and German, 2004]. Following the detection of a potential plume, vehicle surveys with higher
spatial resolution help to distinguish the location of the vent source [German et al., 2008]. It is not until during
more targeted dives that detailed optical, acoustic, or tactile investigations of the vent field can be completed
[Singh et al., 1999]. At known vent sites three-dimensional acoustic maps of active smokers have provided
volumetric flow analysis and heat flux estimates [e.g., Light et al., 2012; Bemis et al., 2015; Rona et al., 2015;
Xu et al., 2013].

1.2.2. Diffuse Vent Detection
Traditionally, diffuse flow is detected visually by watching ROV video feeds for “shimmering water,” which is
generally the only visible indicator [Bell et al., 2012]. The shimmer, or mirage effect, is caused by the pres-
ence of fluids with altered indices of refraction due to differences in water temperature, salinity, and chemical
composition [Millard and Seaver, 1990]. Experiments recreating this visual anomaly in lab settings produce
Schlieren-like flows which highlight the density fluctuations. With sufficiently defined parameters a quantita-
tive description of a particular flow and the index of refraction can be made [Richard and Raffel, 2001; Dalziel
et al., 2000]. Searching for shimmering water with the human eye is time consuming and unsystematic, as this
phenomena can be only visible within tens of centimeters of the seafloor; however, it is the most common
way to determine areas of scientific interest.

Acoustic approaches for identifying and tracking diffuse flow have included detecting uncorrelated acoustic
backscatter caused by temperature-dependent changes in acoustic impedance. Early efforts are detailed in
Rona et al. [1997] including scanning a 330 kHz Mesotech conical beam sonar parallel to the seafloor to inter-
cept rising near bottom diffuse flow. During data collection the sonar remained stationary and was positioned
to minimize seafloor obstructions. Advancements to this acoustic scintillation method allow the sonar to be
mounted on an ROV; however, as the sonar must remain stationary during the survey a hovering, stop and
start approach was executed [Rona et al., 2002]. Similar technology is implemented on the Cabled Observatory
Vent Imaging Sonar (COVIS), a stationary structure with adjustable sonar systems designed to image
hydrothermal activity within the Main Endeavour Field, Juan de Fuca Ridge [Bemis et al., 2015].

2. Structured Light Laser Sensor

Initially developed for subcentimeter bathymetric mapping [Roman et al., 2010], the structured light laser
system images a projected laser sheet as it is incident with the seafloor, showing the surface topography as if
it were sliced along the laser plane. Using triangulation and an accurate laser calibration, the vertical position
of the laser line within each image can be converted to a bathymetric profile, analogous to a single ping of
range data from a multibeam sonar [Inglis et al., 2012; Bruno et al., 2011; Moore and Jaffe, 2002; Moore et al.,
2000; Tetlow and Spours, 1999].

The structured light laser sensor is a component of the high-resolution mapping suite mounted on the ROV
Hercules (Figure 1) which also includes stereo cameras. This system has been used to collect coregistered sub-
centimeter mapping data at geological, archeological, and biological sites [Roman et al., 2012]. The 6000 m
rated structured light laser system consists of a 12-bit mono Prosilica camera with a 30∘ × 40∘ field of view in
water and a verged 100 mW 532 nm green sheet laser manufactured by Coherent PowerLine. The laser and
camera are mounted to a rigid frame with known relative geometry.

2.1. Survey Methodology
During a high-resolution imaging survey the vehicle is flown with a constant heading at velocities between
15 and 25 cm/s, and at a constant altitude between 2 and 4 m above the seafloor. The laser line is imaged at
approximately 20 Hz, creating a nominal survey resolution of one laser line per centimeter along track and
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Figure 1. A computer rendering of ROV Hercules showing the stereo camera pair and structured light laser sensor
mounted on the back of the vehicle away from operational lights. The projected sheet laser is imaged at the
seafloor (inset).

2–4 laser points (pixels) per centimeter across track. The range resolution is dictated by the camera and laser
geometry, and is approximately 0.5 cm per camera pixel. Strobe lit stereo images with the same 30∘ × 40∘

field of view are acquired at 0.33 Hz, interlaced with the laser frames. Trackline spacing is set such that across
track overlap between is at least 20%. A survey 30×30 m in size can be completed in about 45 min and the
collected data can be gridded to centimeter resolution.

Mounting the imaging system at the back of the vehicle, away from the ROV’s forward operational lights
improves the signal-to-noise ratio of the images. This ROV is closed loop controlled and capable of exe-
cuting prescribed tracklines at a constant velocity, altitude, or depth. The navigation sensors include a
600 kHz Teledyne RDI Doppler Velocity Log (DVL), IXSEA OCTANS fiber-optic gyroscope and a Paroscientific
depth sensor [Bell et al., 2016]. These data are collected using the DVLNAV software package [Kinsey and
Whitcomb, 2004].

2.2. Vent Detection With a Structured Light Sensor
Diffraction of the laser line occurs as the structured light laser sensor passes over active venting. Image pro-
cessing algorithms implemented to detect this anomaly as a proxy for active diffuse hydrothermal venting
were presented in Smart et al. [2013]. Limitations of this initial work included false positive indications of
active venting in the presence of biology, sensitivity to seafloor bathymetry, and poor robustness over varied
background and seafloor. This paper will present normalization and classification algorithms to address these
limitations.

2.2.1. Interaction With Density Anomalies
In the presence of active hydrothermal fluids the refractive anomaly causes the laser line to appear blurred
instead of crisp within the captured mono image (Figure 2a). The increased temperature, salinity, and chang-
ing chemical composition of venting fluids alters the ray path. Optical changes are well understood for
temperatures up to 30∘C and salinity values up to 40 practical salinity units [Millard and Seaver, 1990] and
are less well defined through interpolation of lab results up to 500∘C [Thormahlen et al., 1985]. The turbulent
nature of actively venting fluids also creates inhomogeneities causing the index of refraction to vary both
spatially and temporally causing continuous angular deviation of the light rays [Mobley, 1994] increasing the
apparent width of the laser line by 3–8 pixels.
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Figure 2. Laser line extraction and processing. (a) In the presence of active venting the laser line is no longer crisp (pixel columns 300–680) instead it appears
blurred (columns 200–250). (b) The peak intensity value of the laser line within each image column, recorded as v∗ . (c) Cross section of the laser line annotated
to define the variables considered for computation of the intensity-weighted second moment about v∗ (equation (1)).

To quantify this spread, which serves as a proxy for active venting, the unitless intensity-weighted second
moment about the peak intensity value of the laser line, v∗, can be computed by

v∗+ w
2∑

i=v∗− w
2

ri

(
vi − v∗)2

, (1)

where vi and ri are the comparison pixel location and intensity respectively and w is the size of the window
about the laser line peak. Figure 2c shows a cross section of the laser line identifying these parameters.

2.3. Acquisition and Processing
The image acquisition process (section 2.1) and the subsequent detection and processing of the laser line is
largely identical for both the presented vent detection methods and structured light bathymetric mapping
[Inglis et al., 2012]. Raw 12-bit black and white images of the laser line incident with the seafloor are thresh-
olded using Otsu’s method [Otsu, 1979], and image processing algorithms determine the laser line location.
The laser extraction batch processing algorithm produces a complete set of profiles and is further detailed in
[Inglis et al., 2012; Smart et al., 2013]. With the peak of each laser line cross section, v∗, identified the second
moment can be computed using equation (1).

2.4. Creating Maps
Combining the extracted laser data with the corresponding vehicle navigation data produces high-resolution
bathymetric, intensity (optical backscatter), and now, seafloor classification maps. No additional acquisition
steps are required. The bathymetric data are derived from the location of v∗, which is proportional to range
along the laser plane. The normalized intensity values corresponding to v∗ indicate variations in seafloor
albedo. The structured light laser data can also be coregistered with the stereo imagery and 2-D mosaics. The
precision of the coregistration is influenced by the accuracy of the laser calibration routine which is an active
area of research.

3. Advancements to Laser Vent Detection

Preliminary diffuse vent detection approaches using the laser rely solely on the intensity-weighted second
moment (equation (1)). While the method identified areas of fluid density anomalies, it was also prone to false
positives, caused by high second moment values associated with range-dependent laser line intensity and
variability of the background seafloor. Errors commonly occurred as the laser passed over reflective seafloor
features including bacteria, shells, tubeworms, and man-made objects as addressed in Smart et al. [2013]. To
correct for these shortfalls, three types of intensity normalization are implemented (section 3.1) and a machine
learning approach is taken to classify seafloor characteristics (section 3.2).
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3.1. Normalization
Intensity values dominate the weighted second moment computation; therefore, normalization of laser line
intensity prior to this computation is important for accurately detecting venting fluid.

3.1.1. Exposure Compensation
During the acquisition process the camera exposure settings are manually adjusted such that the laser line,
the signal of interest, appears crisp and bright while the background is predominantly black, resulting in a
high signal-to-noise ratio. To account for vehicle lighting, survey parameters and environmental characteris-
tics these settings vary, effectively limiting direct comparison between data collected over multiple surveys
without exposure compensation.

Adjusting the intensity range for each survey such that the background pixels are predominately black will
establish an intensity baseline. As 99% of the pixels are background data, the mean intensity of an image is a
good representation of the minimum intensity, which should be set to zero, or black. Therefore, subtracting
this average exposure normalization value from the collected intensity data before laser line extraction, which
is not impacted, establishes an intensity baseline for all collected images. To account for lighting changes dur-
ing the course of a survey, the exposure normalization value is established by computing the mean of 30–50
temporally spaced laser line captures. This normalization process allows for surveys to be directly compared
within the same classification routine regardless of site, acquisition date, and exposure settings.

3.1.2. Accounting for Range
Variations in local bathymetry which alter the distance between the camera and seafloor influence the appar-
ent brightness of the laser line. While range variations on the order of a meter would be considered trivial
in air, the attenuation of water has a significant impact on intensity [Mobley, 1994]. Figure 3 shows a laser
line imaged across a plain sloping seafloor in which the seafloor on left side of the image is 2 m from the
camera while the seafloor on the right side of the image is nearly 3 m away. The corresponding intensity val-
ues and intensity-weighted second moment values are shown on the same horizontal scale to illustrate a
noticeably brighter and wider laser line when the camera is closer to the seafloor. This difference can falsely
indicate a change in seafloor characteristics and increase the second moment calculation enough to indicate
active venting.

Computing the bathymetric range of each point along the laser line allows for normalization using an
approach similar to that used in lidar surveys. The intensity value of each laser line point, Iactual, is multi-
plied by the ratio between the recorded range, Ractual, and ideal range, Rexpected, to determine a normalized
intensity value, Inorm [Luzum et al., 2004]. Rexpected corresponds to the ROV survey altitude parameter, which is
typically 3 m.

Inorm = Iactual ×
Ractual

Rexpected
(2)

Range normalized intensity and second moment values shown in Figure 3b no longer show range-dependent
trends. The resulting laser line intensity values are indicative of changes in seafloor characteristics and not the
bathymetry.

3.1.3. Nonuniformity of the Laser Line
Nonuniformity in the brightness along the laser line will also impact the intensity and second moment com-
putations. For example, due to the line generating optical element, the left side of the laser tends to have
higher intensity values than the right. Such variations are typical of all laser generators.

The correction approach resembles algorithms for removing lighting artifacts from images taken with external
light sources. The along track mean intensity of all thousands of extracted and normalized laser lines is com-
puted effectively averaging away uncorrelated variations in reflectivity. Dividing each normalized extracted
laser line by the resulting illumination pattern produces nominally uniform across track illumination.

3.2. Support Vector Machine Implementation
Given the image coordinates, normalized intensity and second moment values for each laser line pixel,
a robust multi-class support vector machine (SVM) classification process is implemented to differentiate
between plain seafloor, bacteria or other biological activity, and active hydrothermal venting.

A support vector machine (SVM) is a supervised learning method for classification. Labeled training data
are used to determine a hyperplane dividing two classes while also maximizing the distance between the
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Earth and Space Science 10.1002/2017EA000262

Figure 3. Illustrating the need to account for range, a single laser line imaged while on a slope of plain seafloor where the depth differential across the laser
line is approximately 1 m. (a) The left side of the laser line is closer to the camera and the intensity and spread of the laser line are greater, which translates to
increased second moment values that affect the vent detection processes. (b) Following range normalization, the resulting intensity and second moment values
are more uniform across the image without a bias due to range.
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Figure 4. (a) The support vector machine classification space. A point will be classified as seafloor (red area) if both intensity and second moment values are low,
bacteria (blue area) if the intensity dominates, and venting (green area) if second moment result is high. The classification training data are plotted as labeled
points by color. (b) A zoom in on the transition between the three regions.

hyperplane and data points [Boser et al., 1992]. This nonprobabilistic linear classifier is typically applied
to binary data; however, the three class structure of this problem can be decomposed into multiple
“one-versus-all” binary classification problems. The output binary classification function with the highest
score then determines the class. For instance, a pixel showing plain seafloor will receive a high score from
the “seafloor versus not seafloor” classifier and low scores from the ‘biology versus not biology” and “venting
versus not venting” classifiers resulting in a seafloor class label. The trained support vector machine will
provide boundaries for automatic classification of seafloor, biology, and venting based on feature vectors
corresponding to laser line properties.

Training data for this classification routine were hand selected and classified from three different data sets.
Compiling a training data set data involved labeling specific pixels after considering the raw laser line images,
second moment computation, and laser intensity values in conjunction with high-definition video, stereo
imagery, and cruise data. Data collected in 2015 at the Iguanas Vent Field in the Galapagos, Ecuador, which
contains three distinct areas of focused flow, diffuse flow, bacteria, and biological activity among pillow basalt
yielded approximately 1500 training points. The second set of training data was collected at a cold seep near
Kick’ em Jenny volcano, Lesser Antilles, which shows an intricate spider web-like pattern of bacteria and bio-
logical activity. As no active venting was observed, the 2300 selected points consist of plain seafloor and
bacteria, which varied in color and uniformity, resulting in a range of intensity values. The third, and small-
est, training data set consisting of 540 training data points, originated from a 2013 survey of a rocky slope
with a single active vent on the Mid-Cayman rise. Bacteria is not present at this location, the only observed
biological activity was tiny shrimp living at the vent orifice. In total, the complete training set consisted of
4340 hand-selected points with 1930 labeled as seafloor, 1773 representing bacteria, and 637 labeled venting.
Further discussion of the training data is presented in section 5.3.

The hand-tagged training data and feature vectors associated with the laser line distribution and intensity
were used to develop SVM classifiers. Somewhat unsurprisingly, the features corresponding to the most suc-
cessful SVM included the intensity of the laser line peak, v∗, and the intensity-weighted second moment.
The resulting classifier is shown in Figure 4 with three distinct regions designating plain seafloor (red), bac-
teria (blue), and venting (green). The training data points are shown in correlating colors. The distribution of
this classifier is logical as plain seafloor should have the lowest intensity and minimal laser line spread. The
transition between bacteria and venting results from the fact not all light refracted by venting is returned to
the camera, and therefore, this class has a lower overall intensity. The presence of bacteria can indicate and
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Table 1. Overivew of Support Vector Machine Classification Metrics

Total Seafloor Bacteria Venting

Full Training Data Set

Data points 4340 1930 1773 637

Correctly classified 89.8% 96.2% 87.9% 76.0%

Spider Seep

Data points 2303 1240 1063 0

Correctly classified 96.0% 99.8% 91.4% 0

Cayman Vent

Data points 541 323 0 218

Correctly classified 81.7% 87.3 % 73.4%

Iguanas Vent

Data points 1496 367 710 419

Correctly classified 83.4% 91.8% 82.5% 77.3%

obstruct low of active vent fluids, even when not observed by the high-definition (HD) camera, emphasizing
the value of classifying bacterial mats. Since training points overlap adjacent classification regions, it is not
possible to set decision boundaries with complete classification accuracy; however, as outlined in Table 1,
venting was successfully detected with 76% accuracy. These classification metrics outline the percentage of
correctly classified points for each data set and indicate robustness of the algorithm to distinguish between
plain seafloor and areas of interest within a vent field.

Laser lines collected during a survey over an area with hydrothermal venting are normalized and passed
through the SVM classifier. The results can then be presented as waterfall plot of laser lines in time or gridded
with navigation to create a geospatial map.

3.3. Spatial and Temporal Averaging to Reduce Noise
The previously described classification process independently analyzes each pixel of the laser line, which cap-
tures less than 0.5 cm2 of seafloor leading to spurious noise within classification results (Figure 5b). Although
noise can likely be attributed to hydrothermal particulates in the water and may provide insight into effu-
sion of venting fluids, the resulting classification is cluttered. In an effort to improve classification consistency
the intensity results were smoothed both spatially, averaging adjacent pixels of the same laser line (across
track), and temporally, considering data from the previous and subsequent laser lines (along track). The
intensity-weighted second moment is then computed using these values and passed through the SVM classi-
fier (Figure 5b). The resulting spatially and temporally averaged intensity and second moment images present
a distinct vent source within the classification image.

4. Results

Detection of diffuse hydrothermal venting at three sample sites visited between 2011 and 2014 will
highlight the presented diffuse seafloor venting algorithm advancements. All data were collected by the
high-resolution imaging suite described in section 2.1. A brief overview of each study site will be provided
before presenting the classification results, associated video observations, and sampling efforts.

4.1. Kick’ em Jenny Diffuse Flow
Laser data collected in 2014 over a small hydrothermal site within the Kick’ em Jenny volcano, Grenada,
are classified using the SVM and validated with high-definition video footage, survey data, and temperature
samples. Within the crater flocculant rust-colored sediment covers the seafloor, bathymetric features include
mounds and extinct iron oxide chimneys, white bacterial mats are present, and diffuse flow is found among
cracks [Carey et al., 2014]. The sample area includes a vent orifice where isolated focused flow was observed
and sampled using the ROV (Figure 6a, inset). The color photomosaic shown in Figure 6a shows no indication
of the vent orifice or active fluid flow, illustrating the difficulty in locating diffuse seafloor venting remotely.

The classification of each normalized laser line pixel is displayed within the SVM classification space for this
subset of data in Figure 5a. Note the dominance of red seafloor points, while fewer green points represent
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Earth and Space Science 10.1002/2017EA000262

Figure 5. Classification of laser pixels for a subset of data collected at a small point source vent, Kick’ em Jenny 2014. (a) Laser pixels plotted within the SVM
classification space, classification boundaries are indicated by dotted lines and correspond to Figure 4b. (b) Classified pixels within laser lines. Spurious noise in
the classification routine (top) is reduced by spatially and temporally averaging the intensity and second moment results before classification showing a more
distinct area of active venting (bottom).

venting and blue points correspond to pixels classified as bacteria. A waterfall of these classified data (276 laser
line images each 680 pixels wide) is shown in Figure 5b. This detection result is consistent with the observed
focused flow emanating from the vent orifice.

When this data are shown spatially gridded to 1 cm, the area of venting is distinctive (Figure 6b). Within this
resulting image blue areas represent seafloor, green is bacteria, and venting is yellow. Although the seafloor
is primarily flocculant orange sediment, the detected areas of bacteria have been confirmed, appearing as
dark iridescent microbes within the stereo images. Inputs to the classification algorithm include laser intensity
which indicates sediment variations (Figure 6c), and the second moment computation which indicates laser
line spreads over active fluid flow (Figure 6d).

These detection results align with the observations and sampling during efforts conducted during the ROV
dive. The temperature probe recorded an ambient temperature of 13.6∘C, a temperature of 21.1∘C within the
vent orifice, and 19∘C above the seafloor within the flow. An additional detected vent site, located approxi-
mately 7 m to the south east, consists of diffuse flow emanating from cracks within the seafloor. Temperature
probe readings taken at this site recorded 14.1∘C as ambient, 86.4∘C within the fissure, and 22∘C in the
diffuse flow.

4.2. Palinuro
Active hydrothermal venting sustains tube worm-dominated biological communities at Palinuro Seamount,
Tyrrhenian Sea, Italy. This site was mapped in 2011 and was used in the initial laser vent detection study
[Smart et al., 2013]. Differentiation between areas of active fluid flow and areas of dense biological activity as
established by the SVM method present more consistent results.
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Earth and Space Science 10.1002/2017EA000262

Figure 6. A survey subset showing the areas of active venting at Kick’ em Jenny. (a) Color photomosaic of the area of containing active venting (circle) and HD
image of the vent site (inset). (b) Gridded SVM classification result based on intensity and second moment data. (c) Normalized intensity over the site. (d) The
second moment computation shows areas of laser line blur.
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Figure 7. Overview of the Palinuro vent sites. (a) A 2-D photomosaic of the area containing two areas of active venting, labeled A and B, within tube worm
colonies living on rocky substrate as seen in the HD capture (inset). (b) Shows the vent detection results using the previous algorithm [Smart et al., 2013] which
determined venting based on the un-normalized second moment computation. This image distinctly identifies venting at the southern the tube worm colony,
marked B. (c) In comparison, the vent detection using the normalized SVM approach classifies data as seafloor, bacteria, or venting. Distinct areas of active
venting appear correctly at both tubeworm colonies, marked A and B.

The primary vent site and the location of tubeworm colonies are shown in the photomosaic and HD image
capture (Figure 7a and inset, respectively). This area is relatively flat with two rocky mounds colonized by
tubeworms which are surrounded by bacteria. Imagery obtained using the HD video camera observed vigor-
ous flow within both colonies where temperature probe data were collected. Venting at the northern feature
had a maximum temperature of 60.4∘C, while the southern mound had a maximum temperature of 71.1∘C;
ambient was 13.5∘C.

Highly reflective soft bacteria causes the laser line to bloom due to internal scattering. This effect causes a
blurred laser line to be falsely labeled as active venting, instead of bacteria. An example of this is evident
when comparing Figures 7b and 7c, where the high intensity bacteria within the southern colony, marked B,
dominates the vent detection algorithm. The SVM classification routine independently considers the intensity
and computed second moment values. This allows for differentiation between the increased intensity values
associated with bacteria and tube worms, and the effects of fluid anomalies. The gridded SVM classification
result for this site (Figure 7c) indicates distinct fluid activity surrounded by bacteria on both mounds, which
correlates with the results from the visual survey. The result suggests the SVM classification technique is robust
to seafloor characteristics and is able to isolate diffuse flow independent of biological activity.

Figure 8. Images providing an overview of Shrimp Vent including bathymetric and biologic activity. (a) HD capture from
ROV Argus showing Hercules working at the shrimp vent site along the south west side of the Kick’ em Jenny crater.
(b) Shrimp living under rocks and within cracks near the vent fluids.
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Figure 9. Results of the updated classification algorithm at Shrimp Vent with the main area of sampling indicated by the dashed white circle. (a) 2D photomosaic
of the Shrimp Vent area showing the distribution of bacterial mats and seafloor characteristics. (b) Gridded results of the SVM classification method showing
seafloor (blue), bacteria (green) and active venting (yellow). (c) Classification algorithm results showing only areas of active venting in red indicating the spatial
distribution of active venting.

4.3. Shrimp Vent
The Shrimp Vent area contains prominent areas of venting within the active Kick’ em Jenny Crater, Grenada,
which E/V Nautilus visited in 2013 and 2014. Areas of diffuse fluid flow, and bubbling seeps, are situated on a
steep hillside alongside large areas of bacteria and shrimp (Figure 8).

Low flux diffuse venting was prevalent and usually located when closely examining the shrimp. Extensive
imaging and physical sampling included biological, water, and temperature samples were collected at the
location depicted by the white dashed circle in Figure 9 which corresponds ROV activity in Figure 8a. The
maximum recorded temperature was 113.9∘C, while nearby flow registered closer to 35∘C, and ambient
was 14.8∘C.

A 90 m2 subset of the full Kick’ em Jenny Crater survey containing the majority of the active Shrimp Vent
area is presented in Figure 9. This area represents steep bathymetry with a nearly 10 m differential along the
15 m north-south survey extent as well as the steep western edge of the crater, apparent in Figure 8a. The
two-dimensional photo mosaic (Figure 9a) shows extensive bacterial mat coverage. Successfully detecting
active venting in an area with these bathymetric and seafloor characteristics is complex and can lead to
false positives.

However, bathymetric bias is largely eliminated after implementing the previously discussed range and expo-
sure normalization algorithms. Bacteria is also differentiated from active venting by the SVM classification
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algorithm. Gridded classification results shown in Figure 9b indicate areas of bacteria surrounding multiple
small areas of diffuse flow. Comparison between the mosaic and this classification result illustrates success-
ful differentiation between seafloor (blue) and bacteria (green), independent of terrain and image acquisition
settings. The spatial distribution of small areas of diffuse flow is apparent when viewing only the areas of
determined to be part of the active vent class (Figure 9c). The lack of coherence within these areas indicates
low rate diffuse flow, likely seeping around rocks and through cracks, as opposed to point source venting.

5. Discussion
5.1. Scientific Benefits and Implications
Systematic remote detection of diffuse seafloor venting will increase comprehensive understanding of the
distribution of low flux hydrothermal flow and improve estimates for thermal and chemical ocean budget
computations. Additionally, the ability to detect bacteria and associated biological communities which thrive
in the presence of hydrothermal or cold seep activity holds additional scientific merit.

5.2. High-Resolution Mapping
5.2.1. Map Creation
The laser line classification results can be viewed in two ways, geospatially or temporally. Detailed analysis
of each laser line pixel is possible when data are viewed temporally, as waterfall image (Figure 5b). Although
navigation data are unaccounted for, the laser line image index can be cross referenced with vehicle time,
navigation, sampling data, and stereo images for vent confirmation

Accurate geospatial maps created by combining laser and navigation data require down sampling the laser
data through averaging as data are collected with a density of 3–5 pixels per centimeter across track and
1–2 pixels per centimeter along track. Although this approach creates a smoother map, fills holes, averages
outliers, and masks discontinuities, areas of vent activity smaller than 20 cm2 represented by very few pixels
may be lost to averaging. Therefore, vent sites discussed in this paper were gridded on a fine scale to increase
the depiction of vent detection at the expense of a cluttered looking map.

Furthermore, impacts of navigation error within a survey were minimized while identifying areas of interest by
incorporating ground truth data. Navigation sensors on ROV Hercules include a DVL and a ultrashort baseline
(USBL) transponder system. The DVL navigation can accumulate error resulting in navigation drift, causing
misalignment over large surveys [Whitcomb et al., 1999]. The acoustic USBL system operates between the ship
and the vehicle on the seafloor and becomes less accurate in the presence of unknown density stratification
due to mixing and while the vehicle is operating near a vertical surface, like a crater wall. Both these scenar-
ios were present while working within the Kick’ em Jenny volcano crater, resulting in USBL navigation errors
up to 10 m. Ground truth data including images of ROV Hercules and key geologic features captured by ROV
Argus’s HD camera, bathymetric maps, and 2-D mosaics were critical in determining the sample and vent loca-
tions. Currently, feature matching is done manually in post processing; however, advancements in structured
light mapping efforts will include minimizing navigation error by implementing simultaneous localization and
mapping techniques which rely on physical features to constrain navigation [Roman and Singh, 2007; Inglis
et al., 2012].
5.2.2. Structured Light Laser Calibration
Calibration of the structured light laser system impacts range normalization, the quality of gridded data, and
automated registration between imaging data products. This calibration processes is complex and an active
area of research [Inglis et al., 2012]. The intensity range normalization requires an accurate calibration to estab-
lish the distance between the camera and seafloor. Range errors due to calibration are typically on the order
of centimeters and can vary between field seasons if the system is re-calibrated or modified. Within grid-
ded data, calibration error is most noticeable as bathymetric discontinuities between adjacent survey lines
and becomes more apparent when data are gridded on a fine scale. Future objectives including automatic
correlation of laser pixels and stereo images, and integration of texture and color data into the classification
algorithm require a precise laser calibration.

5.3. SVM Classification Algorithm
5.3.1. Training Data and Site Specific SVM Development
The presented SVM classifier was developed using data from three distinct vent sites and has been tested at
multiple vent fields with a range of environmental and fluid characteristics. Seafloor training data included
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samples of flocculant sediment, hard substrate, rocky outcrops, and pillow basalt. The SVM seafloor classifica-
tion space effectively determines the sensitivity of the classifier as it defines the lower bounds of the intensity
and second moment values for bacteria and vent classification. Therefore, without a prioi knowledge of the
seafloor type within a target vent field, a classifier composed of many types of seafloor data is important.

Similarly, the type of active venting included in the training data set must correspond to the type of vent-
ing to be detected. To demonstrate the importance of vent type, a second experimental SVM classifier was
trained with seafloor and bacteria data from multiple sites, but only one set of vent data from a relatively high
flux, high-temperature point source vent. Hand-tagged data collected at a small low-temperature, focused
flow vent on the Mid-Cayman rise were then used as test data for this SVM. Due to the inconsistency between
vent types used for training and testing, only 57.8% of the test vent data were correctly classified. Conversely,
when classifying the same test data set using the original SVM classifier which included training data from
multiple types of vent sites, 73.4% of Cayman test data is classified correctly. The ability of a machine clas-
sification algorithm to identify both high and low flux active venting is the dependent on the range of data
included in the training data set. When detection, venting with various or unknown characteristics is desired
and SVM developed using data collected over various types of venting, like the one presented here, should
be implemented.

Given a priori knowledge of the area with potential vent sites, the SVM classifier can be optimized based on
the type of seafloor and anticipated venting. In practice, data gathered during small a survey of a site, on the
order of 200 m2, can be used as training data for the local area. Ideally, this sample site would include active
venting, seafloor and bacteria; however, if data are lacking, previously gathered training data exhibiting similar
characteristics will allow for accurate classification.

Hand-labeling SVM training data require gathering features from well understood surveys with varying
seafloor, biological, and venting characteristics. The process of hand-selecting data is prone to error, especially
in areas where active flow is surrounded by bacteria. Without direct correlation between ground truth data
for each pixel, this error is unavoidable. However, the size and diversity of the training data set will minimize
the impact of mislabeled training data. While an ideal training data set would include an equal number of
samples from each class, seafloor points are very prevalent, bacteria is less so, and confirmed venting is rare.

5.3.2. Detection Limitations
Turbulence and flux appear to have more effect on successful detection than temperature. For instance, the
temperature of the vent successfully detected within Kick’ em Jenny (section 4.1) was only 7.5∘C above ambi-
ent. However, the clearly observable focused flow indicates substantial flow and turbulence. In comparison,
flow emanating from a fissure at Shrimp Vent with maximum temperature 99.1∘C above ambient and only
slightly discernible flow was hardly detected using the presented SVM (Figure 9).

5.3.3. Classification Error
Due to the natural variability of the environments surveyed perfect classification is not possible. Seafloor char-
acteristics define the lower vent detection boundary for laser line spread, which faint diffuse flow and quickly
diffusing plumes may not exceed. Additionally, in the presence of active venting the laser light scatters, effec-
tively decreasing the recorded intensity values while increasing the spread of the laser line. Unfortunately,
active venting occurring over bacteria may return high intensity values and be classified as bacteria. There is
still value in this result as bacteria are typically an indication of active hydrothermal activity.

The presented algorithm successfully detects active diffuse flow within an undisturbed environment. How-
ever, external disturbances, such as stirred up sediment and man-made objects, can alter the laser line and be
identified as either bacteria or venting. For example, fine sediment stirred up by fish can cause scattering of
the laser line effectively increasing the width. This error can be manually identified by checking the associated
stereo images for a dust cloud. Man-made objects including reflective metal, trash, and scientific markers are
not prevalent enough to be accounted for in the classification process and are generally classified as bacteria
due to highly reflective nature.

6. Conclusions

Diffuse hydrothermal venting was successfully detected by applying an SVM classification algorithm to data
collected systematically and remotely with a structured light laser system. Intensity normalization of the raw
laser data eliminates errors due to exposure settings, nonuniformity of the laser line, and seafloor bathymetry.
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The SVM method was developed to classify this normalized data as plain seafloor, biologic activity, or active
venting. Successful detection has been established across multiple surveys collected within various environ-
ments over multiple years. Ideally, this system will be deployed on an ROV or autonomous underwater vehicle
during vent field exploration efforts to provide comprehensive maps of areas of potential venting to better
inform scientific observation and sampling efforts.

References
Baker, E. T., and C. R. German (2004), On the global distribution of hydrothermal vent fields, in Mid-Ocean Ridges, edited by C. R. German,

J. Lin, and L. M. Parson, pp. 245–266, AGU, Washington, D. C., doi:10.1029/148GM10.
Beaulieu, S. E. (2015), Interridge global database of active submarine hydrothermal vent fields: Prepared for interridge. World Wide Web

Electronic Publication.
Bell, K. C., P. Nomikou, S. Carey, E. Stathopoulou, P. Polymenakou, A. Godelitsas, C. Roman, and M. Parks (2012), Continued exploration of the

Santorini Volcanic Field and Cretan Basin, Aegean Sea, Oceanography, 25(1), 30–31.
Bell, K. C., M. L. Brennan, J. Flanders, N. Raineault, and K. Wagner (2016), Technology, Exploration Vessel Nautilus, Oceanography, 29(1), 4–9,

doi:10.5670/oceanog.2016.supplement.01.
Bemis, K. G., D. Silver, G. Xu, R. Light, D. Jackson, C. Jones, S. Ozer, and L. Liu (2015), The path to COVIS: A review of acoustic imaging of

hydrothermal flow regimes, Deep Sea Res., Part II, 121, 159–176, doi:10.1016/j.dsr2.2015.06.002.
Boser, B. E., I. M. Guyon, and V. N. Vapnik (1992), A training algorithm for optimal margin classifiers, in Proceedings of the 5th Annual

Workshop on Computational Learning Theory, COLT ’92, pp. 144–152, ACM Press, Pittsburgh., doi:10.1145/130385.130401.
Bruno, F., G. Bianco, M. Muzzupappa, S. Barone, and A. Razionale (2011), Experimentation of structured light and stereo vision for

underwater 3D reconstruction, ISPRS J. Photogramm. Remote Sens., 66(4), 508–518.
Carey, S., et al. (2014), Cold seeps associated with a submarine debris avalanche deposit at Kick’em Jenny Volcano, Grenada (Lesser Antilles),

Deep Sea Res., Part I, 93, 156–160, doi:10.1016/j.dsr.2014.08.002.
Corliss, J. B., et al. (1979), Submarine thermal springs on the Galapagos Rift, Science, 203, 1073–1083.
Dalziel, S. B., G. O. Hughes, and B. R. Sutherland (2000), Whole-field density measurements by ‘synthetic schlieren’, Exp. Fluids, 28, 322–335.
German, C. R., D. R. Yoerger, M. Jakuba, T. M. Shank, C. H. Langmuir, and K. Nakamura (2008), Hydrothermal exploration with the

Autonomous Benthic Explorer, Deep Sea Res., Part I, 55(2), 203–219.
Hannington, M., J. Jamieson, T. Monecke, S. Petersen, and S. Beaulieu (2011), The abundance of seafloor massive sulfide deposits, Geology,

39(12), 1155–1158, doi:10.1130/G32468.
Hannington, M. D., C. D. J. de Ronde, and S. Petersen (2005), Sea-floor tectonics and submarine hydrothermal systems, in Economic Geology,

100th Anniversary, pp. 111–141, Society of Economic Geologists, Littleton, Colo.
Inglis, G., C. Smart, J. Vaughn, and C. Roman (2012), A pipeline for structured light bathymetric mapping, in Proceedings of the 2012 IEEE/RSJ

International Conference on Intelligent Robots and Systems, pp. 4425–4432, IEEE, Algarve, Portugal.
Kinsey, J. C., and L. L. Whitcomb (2004), Preliminary field experience with the DVLNAV integrated navigation system for oceanographic

submersibles, Control Eng. Pract., 12, 1541–1549.
Light, R., V. Miller, P. Rona, and K. Bemis (2012), Acoustic instrumentation for imaging and quantifying hydrothermal flow in the NEPTUNE

Canada Regional Cabled Observatory at Main Endeavour Field, PDF.
Luzum, B., M. Starek, and K. C. Slatton (2004), Normalizing ALSM intensities, GEM Center Report No. Rep 2004-07-001, Geosensing

Engineering and Mapping (GEM) Civil and Coastal Engineering Department, Univ. of Florida.
Millard, R. C., and G. Seaver (1990), An index of refraction algorithm for seawater over temperature, pressure, salinity, density, and

wavelength, Deep Sea Res., Part A, 37(12), 1909–1926.
Mobley, C. D. (1994), Light and Water Radiative Transfer in Natural Waters, Academic Press, San Diego, Calif.
Moore, K., and J. Jaffe (2002), Time-evolution of high-resolution topographic measurements of the sea floor using a 3-D laser line scan

mapping system, IEEE J. Oceanic Eng., 27(3), 525–545, doi:10.1109/JOE.2002.1040936.
Moore, K. D., J. S. Jaffe, and B. L. Ochoa (2000), Development of a new underwater bathymetric laser imaging system: L-Bath, J. Atmos.

Oceanic Technol., 17(8), 1106–1117.
Otsu, N. (1979), A threshold selection method from gray-level histograms, IEEE Trans. Syst. Man Cybern., 9(1), 62–66,

doi:10.1109/TSMC.1979.4310076.
Richard, H., and M. Raffel (2001), Principle and applications of the background oriented schlieren (BOS) method, Meas. Sci. Technol., 12,

1576–1585.
Roman, C., and H. Singh (2007), A Self-consistent bathymetric mapping algorithm, J. Field Rob., 24(1–2), 23–50, doi:10.1002/rob.20164.
Roman, C., G. Inglis, and J. Rutter (2010), Application of structured light imaging for high resolution mapping of underwater archaeological

sites, in Proceedings of the MTS/IEEE Oceans, pp. 1–9, IEEE, Sydney, Australia.
Roman, C., G. Inglis, J. I. Vaughn, C. Smart, B. Douillard, and S. Williams (2012), The development of high-resolution seafloor mapping

techniques, Oceanography, 25(1), 42–45.
Rona, P., D. R. Jackson, T. Wen, C. Jones, K. Mitsuzawa, K. G. Bemis, and J. G. Dworski (1997), Acoustic mapping of diffuse flow at a seafloor

hydrothermal site: Monolith Vent, Juan de Fuca Ridge, Geophys. Res. Lett., 24(19), 2351–2354.
Rona, P., D. R. Jackson, K. G. Bemis, C. D. Jones, K. Mitsuzawa, D. R. Palmer, and D. Silver (2002), Acoustics advances study of sea floor

hydrothermal flow, Eos Trans. AGU, 83(44), 497–502.
Rona, P. A., K. G. Bemis, G. Xu, and K. Mitsuzawa (2015), Estimations of heat transfer from Grotto’s North Tower: A NEPTUNE Observatory case

study, Deep Sea Res., Part II, 121, 95–111, doi:10.1016/j.dsr2.2015.05.010.
Schultz, A., J. R. Delaney, and R. E. McDuff (1992), On the partitioning of heat flux between diffuse and point source seafloor venting,

J. Geophys. Res., 97(B9), 12,299–12,314.
Shank, T., D. Fornari, D. Yoerger, S. Humphris, and A. Bradley (2003), Deep submergence synergy: Alvin and ABE explore the Galapagos Rift

at 86 W, Eos Trans. AGU, 84(41), 425–440.
Singh, H., F. Weyer, J. Howland, A. Duester, D. Yoerger, and A. Bradley (1999), Quantitative stereo imaging from the Autonomous

Benthic Explorer (ABE), in OCEANS ’99 MTS/IEEE. Riding the Crest into the 21st Century, vol. 1, pp. 52–57, IEEE, Seattle, Wash.,
doi:10.1109/OCEANS.1999.799706.

Smart, C., and C. Roman (2017), Detection of diffuse seafloor venting using a structured light laser sensor: 2. Evaluation of detection
sensitivity and limitations, Earth and Space Science, 4, doi:10.1002/2017EA000263.

Acknowledgments
The authors would like to
acknowledge support of the Roman
Lab at the University of Rhode island
and the Ocean Exploration Trust
which operates the E/V Nautilus.
Data collection was completed using
ROV Hercules, owned and operated
by Ocean Exploration Trust.
Expedition data, including vehicle
sensor data, navigation data, video
footage, and HD imagery, are available
though Ocean Exploration Trust
(http://www.oet.org/data-request).
High-resolution survey data, including
stereo images and structured light
laser captures, are available though
Chris Roman, Graduate School of
Oceanography, University of Rhode
Island (croman2@uri.edu).

SMART ET AL. ADVANCES TO LASER VENT DETECTION 362

 23335084, 2017, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2017E

A
000262, W

iley O
nline L

ibrary on [21/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1029/148GM10
http://dx.doi.org/10.5670/oceanog.2016.supplement.01
http://dx.doi.org/10.1016/j.dsr2.2015.06.002
http://dx.doi.org/10.1145/130385.130401
http://dx.doi.org/10.1016/j.dsr.2014.08.002
http://dx.doi.org/10.1130/G32468
http://dx.doi.org/10.1109/JOE.2002.1040936
http://dx.doi.org/10.1109/TSMC.1979.4310076
http://dx.doi.org/10.1002/rob.20164
http://dx.doi.org/10.1016/j.dsr2.2015.05.010
http://dx.doi.org/10.1109/OCEANS.1999.799706
http://dx.doi.org/10.1002/2017EA000263
http://www.oet.org/data-request
mailto:croman2@uri.edu


Earth and Space Science 10.1002/2017EA000262

Smart, C. J., C. Roman, and S. N. Carey (2013), Detection of diffuse seafloor venting using structured light imaging, Geochem. Geophys.
Geosyst., 14(11), 4743–4757, doi:10.1002/ggge.20280.

Tetlow, S., and J. Spours (1999), Three-dimensional measurement of underwater work sites using structured laser light, Meas. Sci. Technol.,
10(12), 1162–1167.

Thormahlen, I., J. Straub, and U. Grigull (1985), Refractive index of water and its dependence on wavelength, temperature and density,
J. Phys. Chem., 14, 933–945.

Whitcomb, L., D. Yoerger, and H. Singh (1999), Advances in Doppler-based navigation of underwater robotic vehicles, in Proceedings 1999
IEEE International Conference on Robotics and Automation (Cat. No.99CH36288C), vol. 1, pp. 399–406, IEEE, Detroit, Mich.

Xu, G., D. R. Jackson, K. G. Bemis, and P. A. Rona (2013), Observations of the volume flux of a seafloor hydrothermal plume using an acoustic
imaging sonar, Geochem. Geophys. Geosyst., 14, 2369–2382, doi:10.1002/ggge.20177.

SMART ET AL. ADVANCES TO LASER VENT DETECTION 363

 23335084, 2017, 6, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1002/2017E

A
000262, W

iley O
nline L

ibrary on [21/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://dx.doi.org/10.1002/ggge.20280
http://dx.doi.org/10.1002/ggge.20177

	Detection of diffuse seafloor venting using a structured light laser sensor: 1. Development of a classification based detection method
	Citation/Publisher Attribution

	Detection of diffuse seafloor venting using a structured light laser sensor: 1. Development of a classification based detection method
	Keywords
	Creative Commons License

	Abstract
	Plain Language Summary
	References

