University of Rhode Island DigitalCommons@URI

Open Access Dissertations

2015

Examining Potential latrogenic Effects of Group Treatment for Incarcerated Adolescents

Shayna S. Bassett University of Rhode Island, SSoenksen@my.uri.edu

Follow this and additional works at: https://digitalcommons.uri.edu/oa_diss Terms of Use All rights reserved under copyright.

Recommended Citation

Bassett, Shayna S., "Examining Potential latrogenic Effects of Group Treatment for Incarcerated Adolescents" (2015). *Open Access Dissertations.* Paper 379. https://digitalcommons.uri.edu/oa_diss/379

This Dissertation is brought to you by the University of Rhode Island. It has been accepted for inclusion in Open Access Dissertations by an authorized administrator of DigitalCommons@URI. For more information, please contact digitalcommons-group@uri.edu. For permission to reuse copyrighted content, contact the author directly.

EXAMINING POTENTIAL IATROGENIC EFFECTS OF GROUP TREATMENT FOR INCARCERATED ADOLESCENTS

BY

SHAYNA S. BASSETT

A DISSERTATION SUBMITTED IN PARTIAL FULLFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN CLINICAL PSYCHOLOGY

UNIVERSITY OF RHODE ISLAND

DOCTOR OF PHILOSOPHY IN CLINICAL PSYCHOLOGY

SHAYNA S. BASSETT

APPROVED:

Dissertation Committee:

Major Professor: Lyn Stein

Charles Collyer

Jill Doerner

Nasser H. Zawia DEAN OF THE GRADUATE SCHOOL

UNIVERSITY OF RHODE ISLAND 2015

ABSTRACT

Rates of substance use among juvenile offenders are disproportionately high and frequently associated with deviant and criminal behavior (Mulvey, Schubert, & Chassin, 2010). Despite the prevalence of group-based treatment for adolescent substance abuse (Young, Dembo, & Henderson, 2007), some authors caution that aggregation of high-risk youth may increase rather than decrease antisocial behavior, thus producing iatrogenic effects. The current study sought to identify the extent to which various group processes as rated by counselors, observers, and adolescents mediate the relationship between type of group treatment received while incarcerated and adolescents' substance use and conduct problems following their release. Of the group processes investigated, only deviancy training (i.e., peers reinforcing each others' antisocial acts during group sessions) was differentially impacted by treatment type as rated by counselors and observers. Treatment differences were not found when using adolescent ratings, suggesting that adolescents may be less able to meaningfully assess their own behaviors during group treatment. Using multiple mediation, simple mediation, and moderated mediation analyses, no evidence was found in support of the claim that deviancy training during group treatment is related to poorer outcomes, or iatrogenic effects. This finding remained consistent across the three different perspectives (i.e., observers, counselors, adolescents) of deviancy training for all substance use outcomes examined at 3- and 6-months post-release. The indirect effect of treatment type was insignificant across all models examined. Findings indicate the effect of treatment on substance use outcomes post-release is not mediated by deviancy training, or any of the other group processes investigated.

ACKNOWLEDGMENTS

Over the course of this work, I've had the privilege of receiving a tremendous amount of help and support from some phenomenal mentors, colleagues, and friends. First and foremost I would like to acknowledge and thank my major professor, Dr. Lyn Stein. None of this would have been possible without your support, guidance, and mentorship. I can confidently say I have learned from one of the best and am incredibly grateful to have had the opportunity to. Thank you for pushing me, encouraging me, and for never failing to be my advocate.

Thanks to Dr. Molly Magill for your statistical expertise and mentorship on this project. I am deeply appreciative of the time and energy it took to guide me through such an unwieldy amount of statistical models and results. You have taught me an immense amount about mediation/moderated-mediation that I anticipate carrying with me through my career.

Thank you to my committee members Drs. Charles Collyer, Jill Doerner, Mary Clair-Michaud, and Adam Roth for your guidance, flexibility, and helpful suggestions. This project and I have benefitted greatly from your participation and feedback.

To Dr. Rick Palumbo, Kelly Doyle, Laurel Murphy, and Cecilia Murgo, thank you for your rigorous and tireless work on the SMART study. Laurel and CeCe, you two in particular have remained a constant source of support and stability throughout this journey. I cannot thank you both enough for all the times you lent a helping hand and provided a sympathetic ear.

I would also like to thank Suzanne Sales for managing the data so meticulously and for always remaining approachable and accessible every time I had questions or

iii

ran into snags. Your problem-solving skills are astonishing, and I have learned a great deal from you.

Last but not least, Chandler. You have supported me, believed in me, and been incredibly understanding of the sacrifices we've had to make along this journey. You have been my rock, never failing to help me see the forest for the trees during the most difficult and taxing of times. No words can accurately express my gratitude to you.

DEDICATION

For Louie

TABLE OF CONTEN

ABSTRACT	ii
ACKNOWELDGEMENTS	iii
DEDICATION	V
TABLE OF CONTENTS	vi
LIST OF TABLES	ix
LIST OF FIGURES	XXV
CHAPTER ONE: INTRODUCTION	1
Substance Abuse and Crime Among Juvenile Offenders	1
Substance Abuse Treatment	2
Evidence for Iatrogenic Effects	2
Evidence Against Iatrogenic Effects	4
Purpose	5
CHAPTER TWO: METHODOLOGY	7
Participants	7
Assessments	8
Interventions	8
Measures	10
A nalyeae	10
Allalysts Draliminary Analyses	
Madiation Analysis	13
Multinle Medicter Medele	13
Multiple Mediator Models	14
Simple Mediation Models	15
Moderated Mediation Models	16
Power and Sample Size Considerations	17
CHAPTER THREE: RESULTS	19
Preliminary Analyses	
Multiple Mediation Models	20
Counselor Session 3 form and 3-month follow-up	20
Observer Session 3 form and 3-month follow-up	
A delegant Session 2 form and 2 month follow up	
Audiestein Session 2 former and Consult follow-up	
Counselor Session 3 form and 6-month follow-up	
Observer Session 3 form and 6-month follow-up	
Adolescent Session 3 form and 6-month follow-up	

(Counselor Session 10 form and 3-month follow-up	35
(Observer Session 10 form and 3-month follow-up	
A	Adolescent Session 10 form and 3-month follow-up	40
(Counselor Session 10 form and 6-month follow-up	42
(Observer Session 10 form and 6-month follow-up	45
A	Adolescent Session 10 form and 6-month follow-up	47
S	Summary	50
Simple	Mediation Models	
(Counselor Session 3 form and 3-month follow-up	
(Observer Session 3 form and 3-month follow-up	
A	Adolescent Session 3 form and 3-month follow-up	
(Counselor Session 3 form and 6-month follow-up	54
(Observer Session 3 form and 6-month follow-up	54
A	Adolescent Session 3 form and 6-month follow-up	56
(Counselor Session 10 form and 3-month follow-up	56
(Observer Session 10 form and 3-month follow-up	57
A	Adolescent Session 10 form and 3-month follow-up	
(Counselor Session 10 form and 6-month follow-up	59
(Observer Session 10 form and 6-month follow-up	59
A	Adolescent Session 10 form and 6-month follow-up	60
S	Summary	61
Modera	ted Mediation of Age in the First Stage $(X \rightarrow M)$	62
(Counselor Session 3 form and 3-month follow-up	
(Observer Session 3 form and 3-month follow-up	
A	Adolescent Session 3 form and 3-month follow-up	65
(Counselor Session 3 form and 6-month follow-up	
(Observer Session 3 form and 6-month follow-up	
F	Adolescent Session 3 form and 6-month follow-up	
(Counselor Session 10 form and 3-month follow-up	
(Counselor Session 10 form and 6-month follow-up	
2	Summary	/0
Modera	ted Mediation of Conduct Disorder in the First Stage	
(X → M)	70
(Counselor Session 3 form and 3-month follow-up	70
(Observer Session 3 form and 3-month follow-up	71
A	Adolescent Session 3 form and 3-month follow-up	73
(Counselor Session 3 form and 6-month follow-up	73
(Observer Session 3 form and 6-month follow-up	74
A	Adolescent Session 3 form and 6-month follow-up	
(Counselor Session 10 form and 3-month follow-up	
(Counselor Session 10 form and 6-month follow-up	
S	Summary	78

Moderated Mediation of Age in the Second Stage ($M \rightarrow Y$)	79
Counselor Session 3 form and 3-month follow-up	79
Observer Session 3 form and 3-month follow-up	80
Adolescent Session 3 form and 3-month follow-up	82
Counselor Session 3 form and 6-month follow-up	83
Observer Session 3 form and 6-month follow-up	83
Adolescent Session 3 form and 6-month follow-up	85
Counselor Session 10 form and 3-month follow-up	85
Counselor Session 10 form and 6-month follow-up	87
Summary	
Moderated Mediation of Conduct Disorder in the Second Stage	
$(M \rightarrow Y)$	89
Counselor Session 3 form and 3-month follow-up	89
Observer Session 3 form and 3-month follow-up	89
Adolescent Session 3 form and 3-month follow-up	91
Counselor Session 3 form and 6-month follow-up	92
Observer Session 3 form and 6-month follow-up	92
Adolescent Session 3 form and 6-month follow-up	94
Counselor Session 10 form and 3-month follow-up	95
Counselor Session 10 form and 6-month follow-up	97
Summary	97
HAPTER FOUR: DISCUSSION	99
APPENDIX	106
SIBLIOGRAPHY	

LIST OF TABLES

TABLE PAGE
Table 1. Means and Standard Deviations (SD) of Substance Use Variables
Table 2. Correlations Among Substance Use Variables 114
Table 3. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Counselor Session 3 Form and 3-month Follow-up
Table 4. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Observer Session 3 Form and 3-month Follow-up
Table 5. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Adolescent Session 3 Form and 3-monthFollow-up117
Table 6. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Counselor Session 3 form and 6-month follow-up
Table 7. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Observer Session 3 Form and 6-month Follow-up
Table 8. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Adolescent Session 3 Form and 6-monthFollow-up120
Table 9. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Counselor Session 10 Form and 3-monthFollow-up121

Table 10. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Observer Session 10 Form and 3-month Follow-up
Table 11. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Adolescent Session 10 Form and 3-monthFollow-up123
Table 12. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Counselor Session 10 Form and 6-monthFollow-up124
Table 13. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Observer Session 10 Form and 6-month Follow-up
Table 14. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training, Positive Group Involvement, Peer Rejection, andTherapist-Praised Positive Behavior: Adolescent Session 10 Form and 6-monthFollow-up126
Table 15. Mediation of the Effect of Treatment Type on Substance Use Outcomes Through Deviancy Training: Counselor Session 3 Form and 3-month Follow-up. 127
Table 16. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training:Observer Session 3 Form and 3-month Follow-up 127
Table 17. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Adolescent Session 3 Form and 3-month Follow-up
Table 18. Mediation of the Effect of Treatment Type on Substance Use Outcomes Through Deviancy Training: Counselor Session 3 Form and 6-month Follow-up . 128
Table 19. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Observer Session 3 Form and 6-month Follow-up 129
Table 20. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Adolescent Session 3 Form and 6-month Follow-up

Table 21. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Counselor Session 10 Form and 3-month Follow-up
Table 22. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Observer Session 10 Form and 3-month Follow-up
Table 23. Mediation of the Effect of Treatment Type on Substance Use Outcomes Through Deviancy Training: Adolescent Session 10 Form and 3-month Follow-up 131
Table 24. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Counselor Session 10 Form and 6-month Follow-up
Table 25. Mediation of the Effect of Treatment Type on Substance Use OutcomesThrough Deviancy Training: Observer Session 10 Form and 6-month Follow-up
Table 26. Mediation of the Effect of Treatment Type on Substance Use OutcomesEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Adolescent Session 10 Form and 6-month Follow-up
Table 27. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage
Table 28. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage
Table 29. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage
Table 30. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage
Table 31. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 3-month Follow-up with Age in First Stage

Table 59. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage149

Table 60. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage149

Table 61. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorderin First Stage150

Table 62. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage150
Table 63. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage151
Table 64. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage151
Table 65. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder inFirst Stage152
Table 66. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage152
Table 67. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage153
Table 68. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage153
Table 69. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorderin First Stage154
Table 70. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in FirstStage154

Table 71. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage155
Table 72. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage155
Table 73. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorderin First Stage156
Table 74. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage156
Table 75. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStageTable 76. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage157
Table 77. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder inFirst Stage158
Table 78. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage158
Table 79. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage159

Table 80. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage159
Table 81. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorderin First Stage160
Table 82. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in FirstStage160
Table 83. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in FirstStage161
Table 84. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in FirstStage161
Table 85. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorderin First Stage162
Table 86. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in FirstStage162
Table 87. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in FirstStage163
Table 88. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in FirstStage163

Table 89. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorderin First Stage164

Table 90. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in FirstStage164

Table 91. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 3-month Follow-up with Age in Second Stage...... 165

Table 92. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 3-month Follow-up with Age in Second Stage...... 165

Table 93. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 3-month Follow-up with Age in SecondStage166

Table 94. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 3-month Follow-up with Age in Second Stage...... 166

Table 97. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 3-month Follow-up with Age in SecondStage168

Table 99. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage 169

Table 100. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage 169

Table 101. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Adolescent Session 3 Form and 3-month Follow-up with Age in SecondStage170

Table 102. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage 170

Table 103. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage...... 171

Table 104. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage...... 171

Table 105. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 6-month Follow-up with Age in SecondStage172

Table 106. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage...... 172

Table 109. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 6-month Follow-up with Age in SecondStage174

Table 111. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage 175

Table 112. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage 175

Table 114. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage 176

Table 115. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage..... 177

Table 116. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage..... 177

Table 117. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 10 Form and 3-month Follow-up with Age in SecondStage178

Table 118. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage..... 178

Table 119. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage..... 179

Table 120. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage..... 179

Table 121. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 10 Form and 6-month Follow-up with Age in SecondStage180

Table 122. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage..... 180

Table 123. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage181

Table 124. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage181

Table 125. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorderin Second Stage182

Table 126. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage182

Table 127. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage183

Table 128. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage183
Table 129. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder inSecond Stage184
Table 130. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage184
Table 131. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage185
Table 132. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage185
Table 133. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorderin Second Stage186
Table 134. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in SecondStage186
Table 135. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage187
Table 136. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage187

Table 137. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorderin Second Stage188
Table 138. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage188
Table 139. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage189
Table 140. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage189
Table 141. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder inSecond Stage190
Table 142. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage190
Table 143. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage191
Table 144. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in SecondStage191
Table 145. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week(MJWK): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorderin Second Stage192

Table 146. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Table 147. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Table 148. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Table 149. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder Table 150. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Table 151. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second Table 152. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second Table 153. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder Table 154. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second

LIST OF FIGURES

FIGURE PA	٩GE
Figure 1. Multiple Mediator Statistical Model	107
Figure 2. Illustration of Simple Mediation Model.	108
Figure 3a. Conceptual Model for Moderated Mediation in the First Stage	109
Figure 3b. Statistical Model for Moderated Mediation in the First Stage	110
Figure 4a. Conceptual Model for Moderated Mediation in the Second Stage	111
Figure 4b. Statistical Model for Moderated Mediation in the First Stage	112

CHAPTER 1: INTRODUCTION

Substance Use and Crime among Juvenile Offenders

Rates of substance use among juvenile offenders are disproportionately high. Among juvenile arrestees, rates of alcohol and other substance use are estimated to range from 42%-55% for males and 26-65% for females (Zhang, 2003). According to a national survey of American adolescents, lifetime prevalence rates of alcohol use range from 27%-66%, with rates for marijuana use ranging from 16%-44% (Miech, Johnston, O'Malley, Bachman, & Schulenberg, 2015). However, a study involving 1,300 serious juvenile offenders found lifetime prevalence rates for alcohol and marijuana use of 80% and 85%, respectively (Mulvey, Schubert & Chassin, 2010). Fifty-seven percent reported smoking marijuana in the past 6 months, averaging 1-3 times a week; 40% of participants reported consuming alcohol in the past 6 months, averaging 1-3 times a month; and 27% reported using other illicit substances an average of 1-2 times in the past 6 months (Mulvey et al., 2010). More alarmingly, approximately half of juvenile detainees have been found to meet criteria for a substance use disorder (Teplin, Abram, McClelland, Dulcan & Mericle, 2002). Gretton & Clift (2011) conducted a more recent study investigating the prevalence of mental health needs among incarcerated male and female youth in Canada. Substance abuse and dependence disorders were found to be the most prevalent mental disorder with 85.5% of males and 100% of females meeting criteria.

Nationwide, 1.3 million juvenile arrests were made in 2012 (Puzzanchera, 2014). Crimes committed by juvenile offenders are often associated with alcohol and

drug use (Mulvey et al., 2010; National Institute of Justice [NIJ], 1997; 2003). In fact, greater use of substances has been found to be associated with increased rates of offending, the severity of offenses, and the duration of delinquent behaviors (Greenwood, 1992; Lipsey & Derzon, 1998; Sealock, Gottfredson & Gallagher, 1997). Most alarming, alcohol use in particular has been found to be consistently and significantly associated with violent crime among this population (Lennings, Copeland & Howard, 2003).

Substance Abuse Treatment

In correctional facilities, substance abuse treatment is generally provided in group format and often includes components of cognitive-behavioral therapy and 12step approaches (The Correctional Association of New York, 2011). According to the Substance Abuse and Mental Health Services Administration (SAMHSA, 2010), 93% of drug treatment programs in the United States offer some form of group counseling.

Evidence for Iatrogenic Effects

Despite its prevalence, contradictory findings regarding the efficacy of group treatment for adolescents have been reported. Group treatment has been found to produce unintended iatrogenic effects with adolescents at-risk for problem behavior (Dishion, McCord & Poulin, 1999; Dishion, Poulin & Burraston, 2001). In one study, high-risk adolescents who participated in cognitive-behavioral group intervention showed greater increases in self-reported smoking and teacher-rated delinquency at 3year follow-up (Poulin, Dishion & Burraston, 2001). Youth reporting positive relationships with a peer counselor and those who were rejected by the group were less likely to increase in problem behavior. These findings suggest that substance use

is especially vulnerable to iatrogenic effects (Weiss, Caron, Ball, Tapp, Johnson, & Weisz, 2005) and appear most pronounced for adolescents reporting low levels of delinquency prior to group intervention. Paradoxically, a meta-analytic study of social skills training groups found homogenous groups comprised of adolescents high on conduct disorder produced worse outcomes than mixed groups comprised of adolescents with no/low and high levels of conduct disorder symptoms (Ang & Hughes, 2001).

One potential mechanism frequently raised as underlying iatrogenic effects is "deviancy training." Consistent with social learning theory (Bandura, 1977), deviancy training is thought to occur in response to peers providing positive external reinforcement for each others' antisocial acts through the use of verbal and nonverbal communication, thus increasing the likelihood of future deviant behaviors (Dishion et al., 1999). Using longitudinal research, Dishion et al. (1999) found that deviancy training that occurred within adolescent friendships was associated with increases in delinquency, substance use, violence, and maladjustment in adulthood. The authors also cite evidence from two experimental studies (the Adolescent Transition Program Study and the Cambridge-Somerville Youth Study Evaluation) in support of the conclusion that the older, more deviant youth are most susceptible to iatrogenic effects resulting from peer aggregation.

Arnold & Hughes (1999) conducted a literature review and found that groupbased skills trainings may produce adverse effects for at-risk children and adolescents. The authors concluded that grouping deviant youth may be counter-productive, with iatrogenic effects outweighing the benefits participants may receive from treatment.

Recommendations for future research included conducting experimental studies utilizing random assignment of participants with externalizing disorder to homogenous versus mixed groups (containing both prosocial and at-risk youth), coding videotaped group sessions for the processes hypothesized to promote iatrogenic effects, and investigating factors that may moderate treatment outcomes, such as age.

Evidence Against Iatrogenic Effects

The hypotheses that group treatments produce iatrogenic effects and that deviancy training is the mechanism through which this occurs have been challenged by Weiss et al. (2005). Conceptually, the authors argue that deviancy training during treatment is likely limited when compared to adolescents' peer influences outside of treatment. Furthermore, Weiss et al. (2005) challenge several earlier studies (e.g., Dishion et al., 1999; Poulin et al., 2001) that reported evidence of iatrogenic effects on empirical grounds. For example, the authors note that the findings reported by Dishion et al. (1999) were largely based on marginally significant effects (p < .10) using a sample in which the majority of teens were not classified as high-risk youth. Lastly, using several of their own data sets on youth psychotherapy outcomes for externalizing conduct problems, Weiss et al. (2005) utilized meta-analytic techniques and concluded that no real evidence of iatrogenic effects was apparent.

Burleson, Kaminer & Dennis (2006) also examined evidence of iatrogenic effects of group treatment. Using data from 400 youth, the authors found that level of conduct disorder within treatment groups was not associated with rates of substance use, emotional problems, or behavioral problems. Youth's individual level of conduct disorder was not found to predict differential improvements in substance use

frequency, nor did youth low on conduct disorder fail to improve when exposed to group members high on conduct disorder. This contradicts Arnold and Hughes's (1999) hypothesis that youth low on measures of antisocial behavior may be most vulnerable to the effects of deviancy training. Instead, results from Burleson et al. (2005) suggest there may be a slight advantage for youth higher in conduct disorder to be placed in groups with lower levels of conduct disorder.

A review of randomized control trials conducted by Waldron & Kaminer (2004) determined that cognitive-behavioral group treatments are consistently associated with reductions in adolescent substance use. Moreover, group treatment has been found to be more cost-effective than and as efficacious as family-based and individual interventions in decreasing substance use and delinquency among adolescents measured at 4- and 7-month follow-up (French, Zavala, McCollister, Waldron, Turner, & Ozechowski, 2008). These contradictory findings further highlight the necessity of assessing group process in order to optimize group interventions and prevent, reduce, and control potential iatrogenic effects of aggregating high-risk individuals (Kaminer, 2005).

Purpose

Although there are reasons to suspect that undesirable iatrogenic effects can occur in group settings, group treatment remains attractive due to the economic and other practical reasons stated above. Therefore, it is important to identify a way of providing group treatment that minimizes the risk of iatrogenic consequences. The proposed study will utilize two types of group interventions to determine the effects of group process on the efficacy of treatments in reducing adolescent substance use and

conduct problems. This will be done using data already collected as part of a randomized control trial comparing two group treatments for substance abusing incarcerated adolescents (R01 DA-13375; PI-Stein).

Utilizing the measure developed by Dishion et al. (2001) and validated by Stein et al. (2014) to observe and assess group process, the purpose of the proposed study is to examine: 1) the extent to which two group interventions for adolescent substance use predict various components of group process; 2) the relationship between these group process variables and substance use and conduct problems at follow-up; and 3) the role of group process variables in mediating the relationship between treatment intervention received and substance use and conduct problems at follow-up. Due to the controversy that still exists within the literature regarding iatrogenic effects resulting from group treatment, no specific hypotheses regarding the strength or direction of results were generated.

Previous studies on iatrogenic effects analyzed data collected from predominately White community teen samples. The proposed study will utilize data collected from a diverse sample of incarcerated adolescents. Incarcerated teens may be most at risk for experiencing iatrogenic effects given that iatrogenic effects may be most pronounced among homogenous groups comprised only of antisocial youth (Dishion, McCord & Poulin, 1999) and the prevalence of group-based treatment in juvenile correctional facilities (Snyder & Sickmund, 2006). Further elucidating the impact of treatment type on group process variables may provide clinicians with important information regarding how to avoid the unintended iatrogenic effects of group-based treatment that have been reported.

CHAPTER 2: METHODOLOGY

Participants

Participants in the parent study were recruited from a state juvenile correctional facility in the Northeast. Immediately after adjudication, adolescents were identified as potential candidates for the parent study if they were between the ages of 14 and 19 years old, inclusive, and were sentenced to the facility for 4 to 12 months. Consent was obtained from parents/legal guardians and adolescents provided assent. Adolescents 18 years or older provided consent (n = 45). Parents/guardians and adolescents were informed that all information was confidential with the following exceptions: plans to escape, plans to hurt self or others, or reports of child abuse and/or neglect. Institutional Review Board approval was obtained for all procedures utilized in the parent study.

Adolescents were included in the study if they met any of the following substance use screening criteria: (a) in the year before incarceration they used marijuana or drank regularly (at least monthly) or binge drank (\geq 5 standard drinks for boys, \geq 4 for girls) at least once; (b) they used marijuana or drank in the 4 weeks before the offense for which they were incarcerated; or (c) they used marijuana or drank in the 4 weeks before they were incarcerated.

Of the 1,280 adolescents who were screened for the study, approximately 80% were eliminated due to not meeting age and sentence length criteria. A total of 205 teens met substance abuse screening criteria and completed the consent procedure. Of those 205 enrolled at baseline, 188 and 176 completed the first and second in-facility

follow-ups, respectively. Primary reasons for not completing these follow-ups were change in sentence length and lack of interest in completing study.

The baseline sample (N = 205) reported identifying with the following ethnic and racial backgrounds: 40% Hispanic, 39.5% African American, 35.1% White, 8.8% Native American, 3.9% Pacific Islander, 3.9% Asian American, and 7.3% selfidentified as other. Most were boys (89.3%), the average age was 17.07 years (SD =1.04), and the average number of times previously detained or incarcerated was 2.53 (SD = 2.31). In the previous year, 32.2% and 61.5% qualified for alcohol and marijuana dependence, respectively.

Assessments

The assessments consisted of 60- to 90-minute interviews conducted by a research assistant. Research assistants received approximately 20 hours of training and were observed by senior-level staff to ensure that all assessments were delivered appropriately. All research assistants received weekly group and individual supervision by a PhD-level staff member. The baseline assessment occurred shortly after the teen was adjudicated, with another assessment occurring after group treatment sessions 3 and 10. Follow-up assessments were conducted 3- and 6-months after the teen's release from the correctional facility.

Interventions

After completing the baseline assessment, adolescents were randomized to two sessions of individually delivered Motivational Interviewing (MI; Stein & Clair, 2010a) or two sessions of combined Meditation-Relaxation Training (RT; Stein & Clair, 2010b). Following MI, adolescents received 10 group-based sessions of

Cognitive Behavioral Therapy (CBT; see Stein, 2005), and similarly following RT, adolescents received 10 group-based sessions of Substance Education and Twelve-Step Introduction (SET; see Rose, Klein, Stein, Lebeau-Craven, & Justus, 2005). As individual treatments are not relevant to the current study, they will not be further discussed. The CBT curriculum, modeled after Sampl & Kadden, 2001, involved counselors working with adolescents to identify interpersonal and intrapersonal stressors, triggers, cravings, and urges related to their alcohol/marijuana use. Adolescents were also taught coping skills for managing stressful circumstances and maintaining reduced substance use. The SET curriculum was based on a psychoeducational model and the principles of Alcoholics/Narcotics Anonymous (AA/NA). In these group sessions, adolescents received information regarding the behavioral, medical, and psychological consequences of substance abuse to guide them to make more productive choices and maintain abstinence. In order to deliver treatments as intended, interventions were manualized and treatment fidelity was evaluated by adolescents and counselors at the end of every session and by supervisors on 31% of sessions. Fidelity procedures were modeled after those described by Sampl & Kadden (2001). Individual sessions generally lasted between 60- and 90- minutes with group sessions lasting about 75 minutes. The treatment groups were gender-segregated and rolling admission procedures were used.

Counselors received about 250 hours of manualized training to provide both intervention types (CBT and SET). A clinical psychologist provided weekly supervision to all counselors and reviewed all study intervention files. All sessions were recorded and coded until counselors demonstrated fidelity to treatment.
Thereafter a random selection of sessions was checked for fidelity every quarter and 42% of sessions rated by supervisors were double-coded for reliability. For more information on fidelity procedures and interventions see Stein et al., 2015.

Measures

Background Questionnaire. Socio-demographic information including gender, race, and age was recorded at baseline.

Center for Epidemiological Studies Depression Scale (CES-D). This measure was administered during the baseline assessment. Coefficient α values on the CES-D have ranged from .85-.90 for alcohol abusers. Furthermore, this scale has been found to be a reliable and valid measure for use with adolescents (Radloff, 1991).

Composite International Diagnostic Interview short-form (CIDI-SF). The CIDI-SF (Kessler, Andrews, Mroczek, Ustun, & Wittchen, 1997) modules for alcohol and marijuana dependence were administered during the baseline assessment.

Group-Process (Individual Level) Questionnaire (GP-IL). This questionnaire consists of scales measuring Reinforcement for Deviance (6 items), Connection to Counselor (Yes/No rating, 1 item), Positive Group Involvement (4 items), Peer Rejection (3 items), and Counselor Praise for Positive Behavior (3 items). Items are rated on a 5-point Likert scale (0 = "No examples, was not observed" to 4 = "Multiple examples or one clear event [very true for teen]"). An average score (range 0 - 4) is calculated across items for each multi-item scale.

The original version of the GP-IL was completed only by observers who coded the first 15 minutes of session, the 15-minute break session, and the last 15 minutes of each session (Dishion et al., 2001). For the current study, observers coded group

sessions in ten-minute segments for each of three blocks at the beginning, middle, and end of a session. The adolescent and counselor versions of the form are identical to the observer version other than some wording modification for adolescents (Stein et al., 2014). Immediately following the 3rd and 10th group sessions, a research assistant (RA) assisted the adolescent in completing the form and the counselor independently completed his/her form.

Poor correspondence between observer and therapist ratings of treatment session activity has been found (Martino, Ball, Nich, Frankforter, & Carroll, 2009). In particular, therapists may overestimate their skills as compared to the estimates of observers (Carroll, Martino, & Rounsaville, 2010; Carroll et al., 2000; Martino et al., 2009). As a result, the observer version of the measure was of primary interest in the analyses; however, models were also examined using counselor and teen versions as these measures have recently demonstrated validity (Stein et al., 2014). Ratings of GP-IL after the 3rd and 10th group treatment sessions were used in order to establish temporal precedence for mediation analyses.

The Misbehaviors Questionnaire (MBQ). This 40-item questionnaire is based on the work of Dembo and colleagues (Dembo et al., 1992; Dembo, Williams, Schmeidler, & Wothke, 1993), Elliott, Ageton, Huizinga, Knowles, & Canter (1983), and on the symptoms of conduct and antisocial personality disorders as defined by the Diagnostic and Statistics Manual-IV-TR (American Psychiatric Association, 1994). At the baseline assessment, adolescents were asked the number of times they committed each crime or misbehavior during the 12 months prior to incarceration. Adolescents were also asked the number of times each act was committed while under

the influence of alcohol or to obtain alcohol; this procedure was repeated for marijuana. These behaviors ranged from truancy to forced sexual activity. At 3- and 6-month follow-up assessments, the time period covered was 3 months. Six scales assessed misbehaviors and included: Alcohol-related predatory aggression; alcoholrelated stealing/delinquency; marijuana-related predatory aggression; marijuanarelated stealing/delinquency; general predatory aggression, and general stealing/delinquency. The validity and reliability of these scales have been demonstrated (Reavy, Stein, Paiva, Quina & Rossi, 2012) and this measure has also been validated to measure conduct disorder (Reavy, Stein, Paiva & Quina, 2014). Given the significant positive relationship that has consistently been found between alcohol use and violent crime among juvenile offenders (Lennings, Copeland, & Howard, 2003), the Alcohol-related Predatory Aggression scale from the MBQ was entered into the models as an outcome variable.

Timeline Follow-back (TLFB). The Timeline Follow-back is a calendarassisted approach for measuring participants' substance use over a specified period of time (Sobell & Sobell, 1992). The TLFB has been found to produce reliability coefficients ranging from .79 to .98 and to have strong content, criterion, and construct validity (Sobell, Maisto, Sobell, & Cooper, 1979). A 90-day TLFB measure was used to collect adolescents' alcohol and marijuana use at baseline and at the 3- and 6-month follow-up assessments. Three variables computed from the TLFB served as outcome measures, since preliminary analyses suggested they are impacted by treatment: (a) average number of drinks per week, (b) percentage of heavy drinking days, and (c) average number of marijuana uses per week. These variables are significantly

correlated but were explored separately in order to ascertain differential changes in the frequency and the quantity of adolescent substance use.

Analyses

Preliminary Analyses. To test for potential covariates, adolescents were compared across the two treatments groups on key variables including gender, ethnicity, race, age, number of days incarcerated, number of days in a controlled environment post-release, conduct disorder symptom count, depressive symptom count, substance disorder symptom count, and number of treatment sessions attended; variations were not expected due to random assignment. Similarly, these key variables were correlated with outcomes to determine covariates. Amount of missing data ranged from 8.3% to 14.1% and was due to attrition. As a result, adolescents assessed at the 6-month follow-up were compared to those who were not assessed at this follow-up on the key variables listed above. TLFB variables were not calculated for adolescents who reported having been in a controlled environment for 100% of days covered by the 6-month follow-up assessment; therefore, those teens were excluded from analyses (n = 22). One of the group process variables, connectedness to counselor, was dropped from analyses because the macros utilized are unable to accommodate dichotomous mediators. Additionally, this variable often contained very limited variance (e.g., 97.3% of adolescents reported feeling connected to their counselor at session 3).

Mediation Analysis. Statistical mediation analyses were used to test whether group processes, such as deviancy training, result in iatrogenic effects following group treatment. Mediation analysis allows one to determine the effect of a causal variable

(X) on proposed outcomes (Y) through one or more potential intervening variables (M). Path a signifies the effect of X on the proposed mediator M, while path brepresents the effect of M on Y after partialling out the effect of X. The *indirect effect* of X on Y through mediator i (M_i) is the product of the two path estimates ($a \times b$) linking X to Y via the mediator. For all mediation analyses conducted, the percentile bootstrap confidence interval (CI) was used to make inferences regarding the significance of indirect effects; this test provides a good compromise in relation to power and Type I error rates and is preferred over other CIs (e.g., Sobel, biascorrected bootstrap) in most cases (Fritz, Taylor, & MacKinnon; Hayes & Scharkow, 2013). The baseline level of the dependent variable was included as a covariate in all analyses. All analyses assumed a two-tailed alpha of .05, were conducted in SPSS version 22.0.0, and utilized listwise deletion. Because research in support of iatrogenic effects (e.g., Dishion et al., 1999; Poulin et al., 2001) has been criticized for basing their conclusions on marginally significant effects (Weiss et al., 2005), only significant (p < .05) findings were considered in the current study.

Multiple Mediator Models. Multiple mediator models were analyzed in order to explore whether type of group treatment received affects substance use outcomes post-release (i.e., average number of drinks per week, percentage of heavy drinking days, average number of marijuana uses per week, alcohol-related predatory aggression) indirectly through greater than one intervening group process variables (i.e., deviancy training, positive group involvement, peer rejection, and therapistpraised positive behavior) using methods described by Preacher & Hayes (2008) and the INDIRECT macro for SPSS. Treatment condition (CBT = 1; SET = 2) was

entered in each regression equation as the independent variable (X). The first set of models examined the mediated effect of each group process variable (M_i) as rated by counselors, observers, and adolescents after the 3rd group treatment session; this process was then repeated for each group process variable assessed after the 10th session. In order to determine the longevity of treatment effects, outcome data (Y) from the 3 and 6-month follow-up assessments were examined. As a result, a total of 48 multiple mediator models were analyzed. Figure 1 provides an illustration of a multiple mediation model and can be found in the Appendix. In a multiple mediator model, the effect of a particular mediator may be attenuated to the extent it correlates with other mediators in the model; this may compromise the significance of a specific indirect effect (Preacher & Hayes, 2008). As a result, the individual path estimates (a_i and b_i) in each model were examined in addition to the indirect effects. Patterns that emerged between X and M_i (a path) or M_i and Y (b path) were further examined in simple mediation models as secondary sensitivity analyses.

Simple Mediation Models. Figure 2, located in the Appendix, provides an illustration of a simple mediation model. Treatment condition (X) remained the independent variable in each model. Of the group processes investigated in the multiple mediator models, only one was found to be differentially impacted by treatment type and was further explored in simple mediation models. The identified group process variable (M) as rated by counselors, observers, and adolescents after the 3rd group treatment session was examined for mediation; this process was then repeated for the group process variable assessed after the 10th session. Again, the four

outcome variables (*Y*) were assessed at 3 and 6-months post-release. This resulted in a total of 48 simple mediation models.

Moderated Mediation Models. Because understanding processes of treatment is a relatively new and expanding field (Kazdin, 2007), moderated mediation was also explored. Informed by the patterns that emerged in the simple mediation models, the moderated mediation models utilized the session 3 mediator from all three perspectives (counselor, observer, adolescent), the session 10 mediator from the counselor perspective, and the four outcome variables at both follow-up periods. Two moderators (W) were selected (age and conduct disorder symptoms) based on findings reported in the literature described above. Moderated mediation models were conducted to estimate moderation of the effect of X on mediator M by each moderator variable W (first stage moderation; see Figures 3a and 3b). Additional moderated mediation models where conducted to estimate moderation of the effect of mediator Mon outcome Y by each moderator variable W (second stage moderation; see Figures 4a and 4b). This resulted in 128 more models, which were conducted using methods described by Hayes (2015) and the PROCESS macro for SPSS. According to Hayes (2015), "[a] mediation process can be said to be moderated if the proposed moderator variable [W] has a nonzero weight in the function linking the indirect effect of X on Y through M to the moderator" (p. 7). To determine whether this weight was different from zero, the *index of moderated mediation* and its corresponding bootstrap confidence interval was examined for each model as a formal test of moderated mediation (Hayes, 2015). Only when this confidence interval does not include zero

can it be inferred that the relationship between the indirect effect and the moderator is not zero (i.e., moderated mediation; Hayes, 2015).

Power and Sample Size Considerations. The following criteria were used to determine the path effect sizes (e.g., a_1): 0.14 = small, 0.26 = small/medium, 0.39 = medium, and 0.59 = large (Cohen, 1988; Fritz & MacKinnon, 2007). The magnitude of the indirect effect does not fit with traditional effect size measures such as Cohen's d, R^2 , or η^2 but is the primary effect of interest in mediation models (Preacher & Kelley, 2013). Because the indirect effect (e.g., a_1b_1) is the product of two effects, the following criteria have been recommended for use with a dichotomous independent variable: .02 = small, .15 = medium, and .40 = large (Kenny, 2014).

Due to the inconsistent results that have been reported on iatrogenic effects resulting from group treatment, and the dearth in the literature regarding the processes through which iatrogenic effects occur, little guidance concerning the magnitude of the *a* and *b* path effects is currently available. However, sample size estimates needed to achieve .80 power for various combinations of *ab* path effects is available from Fritz and MacKinnon (2007). Based on their simulation results, N = 163 was expected to provide enough power to detect *a* path and *b* path effect sizes of .26 or more. Additionally, Preacher, Rucker, and Hayes (2007) provide estimates of power for detecting moderated mediation effects, also known as conditional indirect effects, at varying effect magnitudes and sample sizes. Again, power was expected to be acceptable for all but a small conditional indirect effect. Although the N is already determined, bootstrap resampling was used to estimate all mediated and moderated

mediated effects, and this approach has been found to optimize the balance of Type I and Type II error rates (Fritz & MacKinnon, 2007).

CHAPTER 3: RESULTS

Preliminary Analyses

Significantly more adolescents in SET identified as Hispanic compared to adolescents in CBT (t[197] = 2.39, p < .05). No significant differences were found between treatment groups in regards to gender, race, age, number of days incarcerated, number of days in a controlled environment post-release, conduct disorder symptom count, depressive symptom count, or substance disorder symptom count, or number of treatment sessions attended. Adolescents assessed at the 6-month follow-up attended significantly more treatment sessions than adolescents who were not assessed at this follow-up period (t[203] = 9.54, p < .01). This likely limits generalizability, but also suggests adolescents assessed at the 6-month follow-up and included in analyses had the greatest cumulative exposure to each of the group process variables examined. This may be particularly relevant for investigating iatrogenic effects as youth in treatment longer have been found to be more susceptible to iatrogenic effects than matched controls (McCord, 1990). No significant differences were found between adolescents assessed at the 6-month follow-up period and those who were not in regards to gender, race, ethnicity, age, number of days incarcerated, number of days in a controlled environment post-release, conduct disorder symptom count, depressive symptom count, or substance disorder symptom count. Of the key variables listed above, number of alcohol dependence symptoms was moderately correlated with the alcohol use outcome variables (r = .28 - .37). However, because number of alcohol dependence symptoms was strongly correlated with the alcohol use variables at

baseline (r = .52 - .54), only the baseline level of the dependent variable was included as a covariate in subsequent analyses. None of the other key variables were at least moderately correlated with outcomes.

Descriptive statistics for all substance use variables are located in Table 1 with the correlations among them displayed in Table 2; both tables are located in the Appendix. All outcome variables and their corresponding baseline measurements were found to violate the assumption of normality and were log-transformed for use in further analyses.

Multiple Mediation Models

Counselor Session 3 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.070, $SE_c = .078$, p = .377) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.058$, SE = .127, p = .651), positive group involvement ($a_2 = -.042$, SE = .088, p = .633), peer rejection ($a_3 = .005$, SE = .078, p = .946), or therapist-praised positive behavior ($a_4 = -.040$, SE = .061, p = .516). Additionally, none of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .096$, SE = .053, p = .072; positive group involvement: $b_2 = -.091$, SE = .075, p = .227; peer rejection: $b_3 = -.075$, SE = .086, p = .384; therapist-praised positive behavior: $b_4 = -.048$, SE = .108, p = .653). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .006$, SE = .014), positive group involvement ($a_2b_2 = .004$, SE = .010), peer rejection ($a_3b_3 = .000$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = .002$, SE = .008) as determined by the confidence interval for each effect including zero. Confidence intervals for all

indirect effects resulting from the Counselor Session 3 form and 3-month follow-up multiple mediation models are located in Table 3 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.043, $SE_c = .071$, p = .545) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.055$, SE = .127, p = .666), positive group involvement ($a_2 = -.042$, SE = .088, p = .633), peer rejection ($a_3 = .005$, SE = .078, p = .949), or therapist-praised positive behavior ($a_4 = -.042$, SE = .061, p = .498). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = .092$, SE = .048, p = .059; positive group involvement: $b_2 = -.069$, SE = .068, p = .315; peer rejection: $b_3 = -.042$, SE = .079, p = .599; therapist-praised positive behavior: $b_4 = -.014$, SE = .098, p = .890). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.005$, SE = .013), positive group involvement ($a_2b_2 = .003$, SE = .009), peer rejection ($a_3b_3 = .000$, SE = .007), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .007) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.118, $SE_c = .080$, p = .143) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 =$ -.044, SE = .128, p = .733), positive group involvement ($a_2 = -.055$, SE = .089, p =.537), peer rejection ($a_3 = .004$, SE = .078, p = .963), or therapist-praised positive behavior ($a_4 = -.049$, SE = .061, p = .423). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy

training: $b_1 = .065$, SE = .054, p = .235; positive group involvement: $b_2 = -.048$, SE = .077, p = .531; peer rejection: $b_3 = .057$, SE = .089, p = .520; therapist-praised positive behavior: $b_4 = .088$, SE = .112, p = .432). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.003$, SE = .011), positive group involvement ($a_2b_2 = .003$, SE = .010), peer rejection ($a_3b_3 = .000$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = -.004$, SE = .010) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .062, $SE_c = .062$, p = .320) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .041$, SE = .126, p = .746), positive group involvement ($a_2 = .041$, SE = .089, p = .647), peer rejection ($a_3 = .004$, SE = .078, p = .962), or therapist-praised positive behavior ($a_4 = -.027$, SE = .061, p = .658). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .044$, SE = .042, p = .303; positive group involvement: $b_2 = .062$, SE = .059, p = .293; peer rejection: $b_3 = .037$ SE = .069, p = .595; therapist-praised positive behavior: $b_4 = -.084$, SE = .086, p = .330). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .002$, SE = .008), positive group involvement ($a_2b_2 = .003$, SE = .009), peer rejection ($a_3b_3 = .000$, SE = .007), and therapist-praised positive behavior ($a_4b_4 = .002$, SE = .007) as determined by the confidence interval for each effect including zero.

Observer Session 3 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.054, $SE_c = .081$, p =

.510) at 3-month follow-up. In this model, treatment type significantly related to deviancy training ($a_1 = -.194$, SE = .083, p = .021), but not to positive group involvement ($a_2 = -.105$, SE = .095, p = .267), peer rejection ($a_3 = -.057$, SE = .063, p = .365), or therapist-praised positive behavior ($a_4 = -.079$, SE = .065, p = .228). None of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = -.023$, SE = .080, p = .779; positive group involvement: $b_2 = .044$, SE = .079, p = .578; peer rejection: $b_3 = -.031$, SE = .106, p = .773; therapist-praised positive behavior: $b_4 = -.143$, SE = .113, p = .208). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .004$, SE = .013), positive group involvement ($a_2b_2 = -.005$, SE = .011), peer rejection ($a_3b_3 = -.002$, SE = .010), and therapist-praised positive behavior ($a_4b_4 = .011$, SE = .013) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Observer Session 3 form and 3-month follow-up multiple mediation models are located in Table 4 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.016, $SE_c = .073$, p = .829) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.195$, SE = .083, p = .021), but not to positive group involvement ($a_2 = -.103$, SE = .095, p = .277), peer rejection ($a_3 = -.058$, SE = .063, p = .357), or therapist-praised positive behavior ($a_4 = -.080$, SE = .065, p = .226). None of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = -.047$, SE = .072, p = .512; positive group involvement: $b_2 = .052$, SE = .071, p = .464; peer rejection: $b_3 = .056$, SE = .095, p = .559; therapist-praised positive behavior: $b_4 = -.143$, SE = .101, p = .226

.161). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .009$, SE = .012), positive group involvement ($a_2b_2 = -.005$, SE = .012), peer rejection ($a_3b_3 = -.003$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = .011$, SE = .012) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = ..115, $SE_c = .084$, p = .174) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = ..193$, SE = .084, p = .023), but not to positive group involvement ($a_2 = ..113$, SE = .096, p = .242), peer rejection ($a_3 = ..052$, SE = .063, p = .404), or therapist-praised positive behavior ($a_4 = ..086$, SE = .066, p = .193). None of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .060$, SE = .083, p = .943; positive group involvement: $b_2 = .118$, SE = .081, p = .149; peer rejection: $b_3 = ..025$, SE = .110, p = .819; therapist-praised positive behavior: $b_4 = ..045$, SE = .117, p = .701). The indirect effects were also insignificant for deviancy training ($a_1b_1 = ..001$, SE = .015), positive group involvement ($a_2b_2 = ..013$, SE = .016), peer rejection ($a_3b_3 = .001$, SE = .011), and therapist-praised positive behavior ($a_4b_4 = .004$, SE = .013) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .082, $SE_c = .063$, p = .196) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.190$, SE = .084, p = .025), but not to positive group involvement ($a_2 = -.104$, SE = .095, p = .279), peer rejection ($a_3 = -.054$, SE = .063, p = .396), or therapist-praised positive behavior ($a_4 = -.078$, SE = .066, p = .239). None of the mediators were found to significantly predict

alcohol-related predatory aggression (deviancy training: $b_1 = -.039$, SE = .063, p = .533; positive group involvement: $b_2 = .038$, SE = .062, p = .545; peer rejection: $b_3 = .044$, SE = .083, p = .596; therapist-praised positive behavior: $b_4 = -.009$, SE = .088, p = .916). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .007$, SE = .011), positive group involvement ($a_2b_2 = -.004$, SE = .009), peer rejection ($a_3b_3 = -.002$, SE = .008), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .008) as determined by the confidence interval for each effect including zero.

Adolescent Session 3 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.070, $SE_c = .078$, p =.377) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training $(a_1 = -.016, SE = .130, p = .905)$, positive group involvement ($a_2 = .042$, SE = .120, p = .727), peer rejection ($a_3 = -.083$, SE = .083, SE =.066, p = .211), or therapist-praised positive behavior ($a_4 = -.109$, SE = .125, p = .386). Peer rejection ($b_3 = -.335$, SE = .092, p < .001) and therapist-praised behavior ($b_4 =$ -.134, SE = .051, p < .01) were found to significantly predict heavy drinking days, but deviancy training ($b_1 = .074$, SE = .047, p = .116) and positive group involvement (b_2 = .013, SE = .055, p = .817) did not. The indirect effects were insignificant for deviancy training $(a_1b_1 = -.001, SE = .012)$, positive group involvement $(a_2b_2 = .001, SE = .001)$ SE = .007), peer rejection ($a_3b_3 = .028$, SE = .022), and therapist-praised positive behavior ($a_4b_4 = .015$, SE = .020) as determined by the confidence interval for each effect including zero. Confidence intervals for all specific indirect effects resulting from the Adolescent Session 3 form and 3-month follow-up multiple mediation models are located in Table 5 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.043, $SE_c = .071$, p = .545) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.013$, SE = .131, p = .922), positive group involvement ($a_2 = .046$, SE = .120, p = .704), peer rejection ($a_3 = -.080$, SE = .066, p = .232), or therapist-praised positive behavior ($a_4 = -.109$, SE = .126, p = .386). Again, peer rejection ($b_3 = -.270$, SE = .083, p = .001) and therapist-praised behavior ($b_4 = -.100$, SE = .047, p = .033) were found to significantly predict average number of drinks per week, but deviancy training ($b_1 = .069$, SE = .042, p = .107) and positive group involvement ($b_2 = -.043$, SE = .120, p = .704) did not. The indirect effects were insignificant for deviancy training ($a_1b_1 = -.001$, SE = .011), positive group involvement ($a_2b_2 = -.002$, SE = .009), peer rejection ($a_3b_3 = .022$, SE = .017), and therapist-praised positive behavior ($a_4b_4 = .011$, SE = .016) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.118, $SE_c = .080$, p = .143) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.015$, SE = .133, p = .913), positive group involvement ($a_2 = .058$, SE = .121, p = .629), peer rejection ($a_3 = -.052$, SE = .059, p = .379), or therapist-praised positive behavior ($a_4 = -.112$, SE = .126, p = .377). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .014$, SE = .050, p = .785; positive group involvement: $b_2 = -.012$, SE = .059, p = .844; peer rejection: $b_3 = -.030$, SE = .113, p = .787; therapist-praised

positive behavior: $b_4 = .062$, SE = .055, p = .261). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .000$, SE = .008), positive group involvement ($a_2b_2 = -.001$, SE = .009), peer rejection ($a_3b_3 = .002$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = -.007$, SE = .012) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .062, $SE_c = .062$, p = .320) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .020$, SE = .129, p = .878), positive group involvement ($a_2 = .040$, SE = .121, p = .738), peer rejection ($a_3 = -.094$, SE = .068, p = .169), or therapist-praised positive behavior ($a_4 = -.077$, SE = .125, p = .530). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = -.003$, SE = .040, p = .935; positive group involvement: $b_2 = -.056$, SE = .046, p = .220; peer rejection: $b_3 = .009$, SE = .075, p = .906; therapist-praised positive behavior: $b_4 = .008$, SE = .043, p = .854). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .000$, SE = .006), positive group involvement ($a_2b_2 = -.002$, SE = .010), peer rejection ($a_3b_3 = -.001$, SE = .007), and therapist-praised positive behavior behavior ($a_4b_4 = -.001$, SE = .006) as determined by the confidence interval for each effect including zero.

Counselor Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.232, $SE_c = .095$, p = .015) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .061$, SE = .133, p = .646), positive

group involvement ($a_2 = -.071$, SE = .095, p = .460), peer rejection ($a_3 = .120$, SE = .076, p = .116), or therapist-praised positive behavior ($a_4 = -.050$, SE = .066, p = .453). Additionally, none of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .120$, SE = .064, p = .064; positive group involvement: $b_2 = -.153$, SE = .089, p = .088; peer rejection: $b_3 = -.170$, SE = .113, p = .134; therapist-praised positive behavior: $b_4 = .053$, SE = .128, p = .679). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .007$, SE = .020), positive group involvement ($a_2b_2 = .011$, SE = .016), peer rejection ($a_3b_3 = -.020$, SE = .019), and therapist-praised positive behavior ($a_4b_4 = -.003$, SE = .010) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Counselor Session 3 form and 6-month follow-up multiple mediation models are located in Table 6 in the Appendix.

Treatment type was not significantly related to average number of drinks per week (c = -.138, $SE_c = .084$, p = .103) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .064$, SE = .133, p = .632), positive group involvement ($a_2 = -.071$, SE = .095, p = .460), peer rejection ($a_3 = .120$, SE = .076, p = .115), or therapist-praised positive behavior ($a_4 = -.051$, SE = .066, p = .442). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = .080$, SE = .057, p = .168; positive group involvement: $b_2 = -.122$, SE = .080, p = .129; peer rejection: $b_3 = -.155$, SE = .101, p = .127; therapist-praised positive behavior: $b_4 = .072$, SE = .115, p = .535). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .005$, SE = .015), positive group involvement ($a_2b_2 = .009$, SE = .014),

peer rejection ($a_3b_3 = -.019$, SE = .018), and therapist-praised positive behavior ($a_4b_4 = -.004$, SE = .010) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.001, $SE_c = .091$, p = .988) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .088$, SE = .135, p = .516), positive group involvement ($a_2 = -.090$, SE = .096, p = .351), peer rejection ($a_3 = .114$, SE = .077, p = .141), or therapist-praised positive behavior ($a_4 = -.065$, SE = .067, p = .329). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .045$, SE = .063, p = .477; positive group involvement: $b_2 = -.124$, SE = .087, p = .157; peer rejection: $b_3 = .003$, SE = .110, p = .979; therapist-praised positive behavior: $b_4 = .074$, SE = .127, p = .561). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .004$, SE = .013), positive group involvement ($a_2b_2 = .011$, SE = .019), peer rejection ($a_3b_3 = .000$, SE = .015), and therapist-praised positive behavior deviancy training ($a_4b_4 = -.005$, SE = .012) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.019, $SE_c = .029$, p = .498) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = .075$, SE = .134, p = .578), positive group involvement ($a_2 = -.071$, SE = .095, p = .458), peer rejection ($a_3 = .118$, SE = .076, p = .122), or therapist-praised positive behavior ($a_4 = -.043$, SE = .066, p = .523). Additionally, none of the mediators were found to

significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .022$, SE = .020, p = .270; positive group involvement: $b_2 = .014$, SE = .027, p = .600; peer rejection: $b_3 = .016$, SE = .035, p = .646; therapist-praised positive behavior: $b_4 = .006$, SE = .040, p = .881). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .002$, SE = .005), positive group involvement ($a_2b_2 = -.001$, SE = .004), peer rejection ($a_3b_3 = .002$, SE = .005), and therapist-praised positive behavior ($a_4b_4 = .000$, SE = .002) as determined by the confidence interval for each effect including zero.

Observer Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.254, $SE_c = .096$, p = .009) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.187$, SE = .094, p = .048), but not to positive group involvement ($a_2 = -.117$, SE = .100, p = .242), peer rejection ($a_3 = -.041$, SE = .068, p = .547), or therapist-praised positive behavior ($a_4 = -.048$, SE = .073, p = .512). Therapist-praised behavior was found to significantly predict heavy drinking days ($b_4 = -.284$, SE = .128, p = .029), but the other mediators were not (deviancy training: $b_1 = .074$, SE = .091, p = .418; positive group involvement: $b_2 = .174$, SE = .095, p = .070; peer rejection: $b_3 = -.025$, SE = .125, p = .841). The indirect effects were insignificant for deviancy training ($a_1b_1 = -.014$, SE = .025), positive group involvement ($a_2b_2 = -.020$, SE = .023), peer rejection ($a_3b_3 = .001$, SE = .011), and therapist-praised positive behavior ($a_4b_4 = .014$, SE = .023) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect

effects resulting from the Observer Session 3 form and 6-month follow-up multiple mediation models are located in Table 7 in the Appendix.

Treatment type was not significantly related to average number of drinks per week (c = ..151, $SE_c = .085$, p = .079) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = ..188$, SE = .094, p = .047), but not to positive group involvement ($a_2 = ..115$, SE = .100, p = .250), peer rejection ($a_3 = ..041$, SE = .068, p = .543), or therapist-praised positive behavior ($a_4 = ..048$, SE = .073, p = .509). Again, therapist-praised behavior was significantly related to average number of drinks per week ($b_4 = ..270$, SE = ..114, p = ..020), but the other mediators were not (deviancy training: $b_1 = .049$, SE = .081, p = .544; positive group involvement: $b_2 = ..143$, SE = .085, p = .093; peer rejection: $b_3 = ..064$, SE = ..111, p = ..562). The indirect effects were insignificant for deviancy training ($a_1b_1 = ..009$, SE = ..021), positive group involvement ($a_2b_2 = ..016$, SE = ..020), peer rejection ($a_3b_3 = ..003$, SE = ..011), and therapist-praised positive behavior ($a_4b_4 = .013$, SE = .022) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = .001, $SE_c = .096$, p = .996) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .095, p =.049), but not to positive group involvement ($a_2 = -.118$, SE = .102, p = .249), peer rejection ($a_3 = -.032$, SE = .068, p = .642), or therapist-praised positive behavior ($a_4 =$ -.054, SE = .074, p = .471). None of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .018$, SE = .092, p= .846; positive group involvement: $b_2 = .156$, SE = .094, p = .101; peer rejection: $b_3 =$ -.009, SE = .126, p = .944; therapist-praised positive behavior: $b_4 = -.099$, SE = .128, p = .440). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.003$, SE = .018), positive group involvement ($a_2b_2 = -.019$, SE = .022), peer rejection ($a_3b_3 = .000$, SE = .011), and therapist-praised positive behavior ($a_4b_4 = .005$, SE = .014) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.021, $SE_c = .030$, p = .477) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.186$, SE = .094, p < .05), but not to positive group involvement ($a_2 = -.116$, SE = .100, p = .249), peer rejection ($a_3 = -.040$, SE = .068, p = .557), or therapist-praised positive behavior ($a_4 = -.048$, SE = .073, p = .519). None of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .012$, SE = .029, p = .643; positive group involvement: $b_2 = .034$, SE = .030, p = .260; peer rejection: $b_3 = .001$, SE = .039, p = .982; therapist-praised positive behavior: $b_4 = -.024$, SE = .040, p = .548). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.003$, SE = .008), positive group involvement ($a_2b_2 = -.004$, SE = .005), peer rejection ($a_3b_3 = .000$, SE = .004), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .004) as determined by the confidence interval for each effect including zero.

Adolescent Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.232, $SE_c = .095$, p = .015) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.045$, SE = .134, p = .740), positive group involvement ($a_2 = -.015$, SE = .132, p = .907), peer rejection ($a_3 = -.072$, SE = .095).

.074, p = .332), or therapist-praised positive behavior ($a_4 = .060$, SE = .136, p = .658). None of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .047$, SE = .063, p = .452; positive group involvement: $b_2 = .020$, SE = .069, p = .779; peer rejection: $b_3 = .216$, SE = .114, p = .059; therapist-praised positive behavior: $b_4 = .060$, SE = .065, p = .355). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .002$, SE = .011), positive group involvement ($a_2b_2 = .000$, SE = .087), peer rejection ($a_3b_3 = .016$, SE = .019), and therapist-praised positive behavior ($a_4b_4 = .004$, SE = .012) as determined by the confidence interval for each effect including zero. Confidence intervals for all specific indirect effects resulting from the Adolescent Session 3 form and 6-month follow-up multiple mediation models are located in Table 8 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.138, $SE_c = .084$, p = .103) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.041$, SE = .136, p = .763), positive group involvement ($a_2 = -.014$, SE = .132, p = .915), peer rejection ($a_3 = -.069$, SE = .074, p = .353), or therapist-praised positive behavior ($a_4 = -.062$, SE = .137, p = .650). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = .028$, SE = .056, p = .614; positive group involvement: $b_2 = -.027$, SE = .062, p = .662; peer rejection: $b_3 = -.173$, SE = .101, p = .087; therapist-praised positive behavior: $b_4 = -.027$, SE = .057, p = .639). The indirect effects were insignificant for deviancy training ($a_1b_1 = -.001$, SE = .009), positive group involvement ($a_2b_2 = .000$, SE = .009), peer rejection ($a_3b_3 = .012$, SE = .016), and therapist-praised positive

behavior ($a_4b_4 = .002$, SE = .009) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.001, $SE_c = .091$, p = .988) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.034$, SE = .140, p = .807), positive group involvement ($a_2 = .008$, SE = .134, p = .952), peer rejection ($a_3 = -.024$, SE = .065, p = .709), or therapist-praised positive behavior ($a_4 = -.061$, SE = .139, p = .661). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .023$, SE = .060, p = .700; positive group involvement: $b_2 = .005$, SE = .069, p = .939; peer rejection: $b_3 = -.184$, SE = .128, p = .153; therapist-praised positive behavior: $b_4 = .021$, SE = .062, p = .731). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.001$, SE = .010), positive group involvement ($a_2b_2 = .000$, SE = .010), peer rejection ($a_3b_3 = .005$, SE = .014), and therapist-praised positive behavior ($a_4b_4 = -.001$, SE = .009) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.019, $SE_c = .029$, p = .498) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.017$, SE = .135, p = .901), positive group involvement ($a_2 = -.016$, SE = .132, p = .904), peer rejection ($a_3 = -.080$, SE = .076, p = .300), or therapist-praised positive behavior ($a_4 = -.037$, SE = .136, p = .789). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training:

 $b_1 = -.004$, SE = .019, p = .857; positive group involvement: $b_2 = -.003$, SE = .021, p = .886; peer rejection: $b_3 = .023$, SE = .034, p = .503; therapist-praised positive behavior: $b_4 = .006$, SE = .020, p = .774). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .000$, SE = .003), positive group involvement ($a_2b_2 = .000$, SE = .003), peer rejection ($a_3b_3 = -.002$, SE = .004), and therapist-praised positive behavior ($a_4b_4 = .000$, SE = .002) as determined by the confidence interval for each effect including zero.

Counselor Session 10 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.068, $SE_c = .081$, p =.401) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training $(a_1 = -.340, SE = .138, p = .015)$, but not to positive group involvement ($a_2 = .091$, SE = .081, p = .268), peer rejection ($a_3 = -.024$, SE = .086, p = .086.779), or therapist-praised positive behavior ($a_4 = -.042$, SE = .055, p = .455). None of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .038$, SE = .054, p = .478; positive group involvement: $b_2 =$ -.145, SE = .089, p = .103; peer rejection: $b_3 = -.101$, SE = .082, p = .221; therapistpraised positive behavior: $b_4 = -.024$, SE = .127, p = .848). The indirect effects were also insignificant for deviancy training $(a_1b_1 = -.013, SE = .020)$, positive group involvement $(a_2b_2 = -.013, SE = .018)$, peer rejection $(a_3b_3 = .002, SE = .012)$, and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .008) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Counselor Session 10 form and 3-month follow-up multiple mediation models are located in Table 9 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.045, $SE_c = .074$, p = .544) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.334$, SE = .140, p = .018), but not to positive group involvement ($a_2 = .090$, SE = .082, p = .274), peer rejection ($a_3 = -.022$, SE = .086, p = .799), or therapist-praised positive behavior ($a_4 = -.042$, SE = .055, p = .444). None of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = .025$, SE = .048, p = .613; positive group involvement: $b_2 = -.083$, SE = .080, p = .301; peer rejection: $b_3 = -.107$, SE = .075, p = .158; therapist-praised positive behavior: $b_4 = -.051$, SE = .116, p = .661). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.008$, SE = .018), positive group involvement ($a_2b_2 = -.008$, SE = .012), peer rejection ($a_3b_3 = .002$, SE = .012), and therapist-praised positive behavior ($a_4b_4 = .002$, SE = .008) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = ..118, $SE_c = .083$, p = .156) at 3-month follow-up. Again, treatment type was significantly related to deviancy training ($a_1 = ..310$, SE = .141, p = .029), but not to positive group involvement ($a_2 = .080$, SE = .082, p = .331), peer rejection ($a_3 = ..004$, SE = .085, p = .965), or therapist-praised positive behavior ($a_4 = ..050$, SE = .054, p = .363). None of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .082$, SE = .053, p = .126; positive group involvement: $b_2 = ..098$, SE = .088, p = .264; peer rejection: $b_3 = .060$, SE = .085, p = .478; therapist-praised positive behavior: $b_4 = .195$, SE = .130, p = .136). The indirect effects were also insignificant for deviancy training ($a_1b_1 = ..082$). -.025, SE = .022), positive group involvement ($a_2b_2 = -.008$, SE = .014), peer rejection ($a_3b_3 = .000$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = -.010$, SE = .014) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .026, $SE_c = .028$, p = .349) at 3-month follow-up. In this model, treatment type remained significantly related to deviancy training ($a_1 = .322$, SE = .142, p = .025), but not to positive group involvement ($a_2 = .091$, SE = .082, p = .273), peer rejection ($a_3 = -.039$, SE = .086, p = .649), or therapist-praised positive behavior ($a_4 = -.037$, SE = .056, p = .503). None of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .003$, SE = .018, p = .854; positive group involvement: $b_2 = .032$, SE = .030, p = .287; peer rejection: $b_3 = .007$, SE = .029, p = .800; therapist-praised positive behavior: $b_4 = -.058$, SE = .044, p = .187). The indirect effects were also insignificant for deviancy training ($a_1b_1 = ..001$, SE = .006), positive group involvement ($a_2b_2 = .003$, SE = .004), peer rejection ($a_3b_3 = .000$, SE = .003), and therapist-praised positive behavior ($a_4b_4 = .002$, SE = .004) as determined by the confidence interval for each effect including zero.

Observer Session 10 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.050, $SE_c = .100$, p = .619) at 3-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.105$, SE = .107, p = .332), positive group involvement ($a_2 = -.065$, SE = .113, p = .564), peer rejection ($a_3 = .050$, SE = .078, p = .518), or therapist-praised positive behavior ($a_4 = -.093$, SE = .082, p = .259). Peer rejection was significantly related to percentage of heavy drinking days ($b_3 = -.298$, SE = .131, p = .564)

.025), but the other mediators were not (deviancy training: $b_1 = .144$, SE = .092, p = .121; positive group involvement: $b_2 = -.030$, SE = .092, p = .745; therapist-praised behavior: $b_4 = -.013$, SE = .121, p = .912). The indirect effects were insignificant for deviancy training ($a_1b_1 = -.015$, SE = .022), positive group involvement ($a_2b_2 = .002$, SE = .011), peer rejection ($a_3b_3 = -.015$, SE = .025), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .015) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Observer Session 10 form and 3-month follow-up multiple mediation models are located in Table 10 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = .007, $SE_c = .092$, p = .939) at 3-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = .105$, SE = .108, p = .332), positive group involvement ($a_2 = .065$, SE = .113, p = .568), peer rejection ($a_3 = .048$, SE = .077, p = .536), or therapist-praised positive behavior ($a_4 = -.088$, SE = .082, p = .283). Again, peer rejection was significantly related to average number of drinks per week ($b_3 = -.249$, SE = .121, p = .042), but the other mediators were not (deviancy training: $b_1 = .104$, SE = .086, p = .227; positive group involvement: $b_2 = -.025$, SE = .085, p = .765; therapist-praised behavior: $b_4 = -.007$, SE = .114, p = .948). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .011$, SE = .018), positive group involvement ($a_2b_2 = .002$, SE = .011), peer rejection ($a_3b_3 = -.012$, SE = .021), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .015) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.067, $SE_c = .102$, p = .512) at 3-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.093$, SE = .109, p = .393), positive group involvement ($a_2 = -.075$, SE = .114, p = .511), peer rejection ($a_3 = .068$, SE = .077, p = .375), or therapist-praised positive behavior ($a_4 = -.105$, SE = .083, p = .211). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .046$, SE = .096, p = .633; positive group involvement: $b_2 = .056$, SE = .095, p = .559; peer rejection: $b_3 = -.064$, SE = .138, p = .646; therapist-praised positive behavior: $b_4 = .006$, SE = .127, p = .963). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.004$, SE = .019), positive group involvement ($a_2b_2 = -.004$, SE = .014), peer rejection ($a_3b_3 = -.004$, SE = .015), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .016) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .080, $SE_c = .082$, p = .333) at 3-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.114$, SE = .107, p = .288), positive group involvement ($a_2 = -.075$, SE = .113, p = .507), peer rejection ($a_3 = .046$, SE = .077, p = .549), or therapist-praised positive behavior ($a_4 = -.099$, SE= .082, p = .233). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .060$, SE = .078, p= .445; positive group involvement: $b_2 = -.079$, SE = .076, p = .305; peer rejection: b_3 = -.106, SE = .110, p = .337; therapist-praised positive behavior: $b_4 = -.013$, SE = .102, p = .901). The indirect effects were also insignificant for deviancy training $(a_1b_1 = .007, SE = .026)$, positive group involvement $(a_2b_2 = .006, SE = .013)$, peer rejection $(a_3b_3 = ..005, SE = .011)$, and therapist-praised positive behavior $(a_4b_4 = .001, SE = .013)$ as determined by the confidence interval for each effect including zero.

Adolescent Session 10 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.083, $SE_c = .080$, p = .299) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training $(a_1 = -.151, SE = .122, p = .218)$, positive group involvement ($a_2 = .036$, SE = .119, p = .761), peer rejection ($a_3 = -.070$, SE = .070, SE = .000, SE =.064, p = .280), or therapist-praised positive behavior ($a_4 = .086$, SE = .113, p = .449). Additionally, none of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .066$, SE = .056, p = .244; positive group involvement: $b_2 = .006$, SE = .063, p = .924; peer rejection: $b_3 = -.188$, SE = .101, p = .101.066; therapist-praised positive behavior: $b_4 = -.071$, SE = .068, p = .298). The indirect effects were insignificant for deviancy training ($a_1b_1 = -.010$, SE = .016), positive group involvement ($a_2b_2 = .000$, SE = .008), peer rejection ($a_3b_3 = .013$, SE = .013) .019), and therapist-praised positive behavior ($a_4b_4 = -.006$, SE = .015) as determined by the confidence interval for each effect including zero. Confidence intervals for all specific indirect effects resulting from the Adolescent Session 10 form and 3-month follow-up multiple mediation models are located in Table 11 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.058, $SE_c = .073$, p = .427) at 3-month follow-up. In this model,

treatment type was not found to be significantly related to deviancy training (a_1 = -.151, SE = .122, p = .219), positive group involvement (a_2 = .040, SE = .118, p = .736), peer rejection (a_3 = -.068, SE = .065, p = .295), or therapist-praised positive behavior (a_4 = .086, SE = .114, p = .454). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: b_1 = .039, SE = .051, p = .444; positive group involvement: b_2 = -.041, SE = .058, p = .481; peer rejection: b_3 = -.094, SE = .091, p = .303; therapist-praised positive behavior: b_4 = -.097, SE = .061, p = .115). The indirect effects were insignificant for deviancy training (a_1b_1 = -.006, SE = .013), positive group involvement (a_2b_2 = -.002, SE = .009), peer rejection (a_3b_3 = .006, SE = .011), and therapist-praised positive behavior (a_4b_4 = -.008, SE = .016) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = ..131, $SE_c = .082$, p = .112) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 =$..152, SE = .123, p = .217), positive group involvement ($a_2 = .045$, SE = .120, p =.708), peer rejection ($a_3 = .073$, SE = .066, p = .268), or therapist-praised positive behavior ($a_4 = .086$, SE = .115, p = .456). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .083$, SE = .058, p = .156; positive group involvement: $b_2 = .054$, SE =.065, p = .409; peer rejection: $b_3 = .092$, SE = .102, p = .369; therapist-praised positive behavior: $b_4 = .004$, SE = .070, p = .951). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .013$, SE = .016), positive group involvement ($a_2b_2 =$ -.002, SE = .011), peer rejection ($a_3b_3 = -.007$, SE = .012), and therapist-praised positive behavior ($a_4b_4 = .000$, SE = .010) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = .060, $SE_c = .064$, p = .352) at 3-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = ..137$, SE = .122, p = .262), positive group involvement ($a_2 = .043$, SE = .119, p = .719), peer rejection ($a_3 = -.063$, SE = .065, p = .338), or therapist-praised positive behavior was significantly related to alcohol-related predatory aggression ($b_4 = ..109$, SE = .054, p = .046), but the other mediators were not (deviancy training: $b_1 = .035$, SE = .045, p = .030, SE = .080, p = .711). The indirect effects were insignificant for deviancy training ($a_1b_1 = .005$, SE = .011), positive group involvement ($a_2b_2 = .001$, SE = .006), peer rejection ($a_3b_3 = -.002$, SE = .013), and therapist-praised positive behavior ($a_4b_4 = ..008$, SE = .015) as determined by the confidence interval for each effect including zero.

Counselor Session 10 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.226, $SE_c = .097$, p = .022) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.295$, SE = .148, p = .048), but not to positive group involvement ($a_2 = .063$, SE = .085, p = .461), peer rejection ($a_3 = -.007$, SE = .092, p = .939), or therapist-praised positive behavior ($a_4 = -.089$, SE = .061, p = .144). None of

the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = .056$, SE = .066, p = .400; positive group involvement: $b_2 =$ -.071, SE = .112, p = .529; peer rejection: $b_3 = -.085$, SE = .101, p = .399; therapistpraised positive behavior: $b_4 = .103$, SE = .151, p = .498). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.017$, SE = .026), positive group involvement ($a_2b_2 = -.005$, SE = .011), peer rejection ($a_3b_3 = .001$, SE = .013), and therapist-praised positive behavior ($a_4b_4 = -.009$, SE = .014) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Counselor Session 10 form and 6-month follow-up multiple mediation models are located in Table 12 in the Appendix.

Treatment type was not significantly related to average number of drinks per week (c = -.129, $SE_c = .086$, p = .135) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.291$, SE =.149, p = .054), positive group involvement ($a_2 = .065$, SE = .086, p = .453), peer rejection ($a_3 = -.006$, SE = .092, p = .947), or therapist-praised positive behavior ($a_4 =$ -.089, SE = .060, p = .143). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = .027$, SE = .057, p = .644; positive group involvement: $b_2 = -.033$, SE = .098, p = .733; peer rejection: $b_3 = -.057$, SE = .090, p = .524; therapist-praised positive behavior: $b_4 =$.058, SE = .134, p = .669). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.008$, SE = .022), positive group involvement ($a_2b_2 = -.002$, SE =.010), peer rejection ($a_3b_3 = .000$, SE = .011), and therapist-praised positive behavior $(a_4b_4 = -.005, SE = .013)$ as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = .011, $SE_c = .093$, p = .910) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = ..241$, SE = .153, p = .119), positive group involvement ($a_2 = .052$, SE = .086, p = ..553), peer rejection ($a_3 = .011$, SE = .091, p = .902), or therapist-praised positive behavior ($a_4 = ..102$, SE = .060, p = .091). Additionally, none of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = ..036$, SE = .061, p = .558; positive group involvement: $b_2 = .082$, SE = .104, p = .435; peer rejection: $b_3 = .010$, SE = .099, p = .923; therapist-praised positive behavior: $b_4 = .195$, SE = .146, p = .182). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .009$, SE = .018), positive group involvement ($a_2b_2 = .004$, SE = .012), peer rejection ($a_3b_3 = .000$, SE = .009), and therapist-praised positive behavior ($a_4b_4 = .020$, SE = .019) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.021, $SE_c = .029$, p = .477) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 =$ -.272, SE = .153, p = .078), positive group involvement ($a_2 = .062$, SE = .086, p =.474), peer rejection ($a_3 = -.014$, SE = .092, p = .882), or therapist-praised positive behavior ($a_4 = -.086$, SE = .061, p = .156). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .012, SE = .019, p = .528$; positive group involvement: $b_2 = .045, SE = .033, p = .175$; peer rejection: $b_3 = .042, SE = .031, p = .177$; therapist-praised positive behavior: $b_4 = -.037, SE = .045, p = .413$). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.003, SE = .007$), positive group involvement ($a_2b_2 = .003, SE = .005$), peer rejection ($a_3b_3 = -.001, SE = .005$), and therapist-praised positive behavior ($a_4b_4 = .003, SE = .005$) as determined by the confidence interval for each effect including zero.

Observer Session 10 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.240, $SE_c = .116$, p =.042) at 6-month follow-up. In this model, treatment type was not significantly related to deviancy training $(a_1 = -.095, SE = .123, p = .443)$, positive group involvement $(a_2 = .095, SE = .123, p = .443)$ -.071, SE = .122, p = .560), peer rejection ($a_3 = .039$, SE = .088, p = .654), or therapistpraised positive behavior ($a_4 = -.058$, SE = .093, p = .535). Additionally, none of the mediators were found to significantly predict percentage of heavy drinking days (deviancy training: $b_1 = -.001$, SE = .105, p = .997; positive group involvement: $b_2 = .001$.044, SE = .111, p = .691; peer rejection: $b_3 = -.147$, SE = .149, p = .328; therapistpraised positive behavior: $b_4 = -.010$, SE = .142, p = .943). The indirect effects were insignificant for deviancy training $(a_1b_1 = .000, SE = .018)$, positive group involvement $(a_2b_2 = -.003, SE = .016)$, peer rejection $(a_3b_3 = -.006, SE = .021)$, and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .016) as determined by the confidence interval for each effect including zero. Confidence intervals for all indirect effects resulting from the Observer Session 10 form and 6-month follow-up multiple mediation models are located in Table 13 located in the Appendix.
Treatment type was not significantly related to average number of drinks per week (c = -.129, $SE_c = .104$, p = .219) at 6-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.097$, SE = .123, p = .431), positive group involvement ($a_2 = -.076$, SE = .123, p = .538), peer rejection ($a_3 = .038$, SE = .088, p = .670), or therapist-praised positive behavior ($a_4 = -.058$, SE = .093, p = .533). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = -.003$, SE = .095, p = .973; positive group involvement: $b_2 = .062$, SE = .099, p = .535; peer rejection: $b_3 = -.081$, SE = .134, p = .546; therapist-praised positive behavior: $b_4 = .001$, SE = .129, p = .994). The indirect effects were insignificant for deviancy training ($a_1b_1 = .000$, SE = .017), positive group involvement ($a_2b_2 = -.005$, SE = .015), peer rejection ($a_3b_3 = -.003$, SE = .017), and therapist-praised positive behavior ($a_4b_4 = .000$, SE = .014) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = .063, $SE_c = .114$, p = .585) at 6-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = .074$, SE = .126, p = .558), positive group involvement ($a_2 = .102$, SE = .125, p = .419), peer rejection ($a_3 = .075$, SE = .088, p = .394), or therapist-praised positive behavior ($a_4 = -.072$, SE= .096, p = .455). None of the mediators were found to significantly predict average number of marijuana uses per week (deviancy training: $b_1 = .032$, SE = .100, p = .750; positive group involvement: $b_2 = .169$, SE = .106, p = .114; peer rejection: $b_3 = -.051$, SE = .145, p = .725; therapist-praised positive behavior: $b_4 = .055$, SE = .136, p =.687). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .002$, SE = .023), positive group involvement ($a_2b_2 = -.017$, SE = .026), peer rejection ($a_3b_3 = -.004$, SE = .019), and therapist-praised positive behavior ($a_4b_4 = -.004$, SE = .017) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.042, $SE_c = .040$, p = .293) at 6-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.107$, SE = .122, p = 385), positive group involvement ($a_2 = -.084$, SE = .123, p = .494), peer rejection ($a_3 = .040$, SE = .088, p = .653), or therapist-praised positive behavior ($a_4 = -.067$, SE = .093, p = .477). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = .008$, SE = .037, p = .830; positive group involvement: $b_2 = -.008$, SE = .038, p = .832; peer rejection: $b_3 = .030$, SE = .051, p = .558; therapist-praised positive behavior: $b_4 = -.019$, SE = .049, p = .702). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.001$, SE = .006), and therapist-praised positive behavior ($a_4b_4 = .001$, SE = .006) as determined by the confidence interval for each effect including zero.

Adolescent Session 10 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.226, $SE_c = .097$, p = .022) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.134$, SE = .132, p = .310), positive group involvement ($a_2 = .008$, SE = .124, p = .949), peer rejection ($a_3 = -.017$, SE = .071, p = .812), or therapist-praised positive behavior ($a_4 = .127$, SE = .118, p = .284). None of the mediators were found to significantly predict percentage of heavy

drinking days (deviancy training: $b_1 = .060$, SE = .068, p = .383; positive group involvement: $b_2 = -.064$, SE = .077, p = .408; peer rejection: $b_3 = -.118$, SE = .123, p = .337; therapist-praised positive behavior: $b_4 = .078$, SE = .083, p = .350). The indirect effects were also insignificant for deviancy training ($a_1b_1 = -.008$, SE = .016), positive group involvement ($a_2b_2 = -.001$, SE = .013), peer rejection ($a_3b_3 = .002$, SE = .016), and therapist-praised positive behavior ($a_4b_4 = .010$, SE = .016) as determined by the confidence interval for each effect including zero. Confidence intervals for all specific indirect effects resulting from the Adolescent Session 10 form and 6-month follow-up multiple mediation models are located in Table 14 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.129, $SE_c = .086$, p = .135) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.134$, SE = .132, p = .309), positive group involvement ($a_2 = .008$, SE = .123, p = .945), peer rejection ($a_3 = -.016$, SE = .071, p = .826), or therapist-praised positive behavior ($a_4 = .125$, SE = .118, p = .293). Additionally, none of the mediators were found to significantly predict average number of drinks per week (deviancy training: $b_1 = -.018$, SE = .061, p = .765; positive group involvement: $b_2 = -.060$, SE = .069, p = .389; peer rejection: $b_3 = -.106$, SE = .108, p = .330; therapist-praised positive behavior: $b_4 = .017$, SE = .073, p = .815). The indirect effects were insignificant for deviancy training ($a_1b_1 = .002$, SE = .012), positive group involvement ($a_2b_2 = -.001$, SE = .011), peer rejection ($a_3b_3 = .002$, SE = .015), and therapist-praised positive behavior ($a_4b_4 = .002$, SE = .012) as determined by the confidence interval for each effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = .011, $SE_c = .093$, p = .910) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = ..128$, SE = .133, p = .339), positive group involvement ($a_2 = .039$, SE = .125, p = ..754), peer rejection ($a_3 = ..013$, SE = .073, p = .857), or therapist-praised positive behavior ($a_4 = .115$, SE = .120, p = .339). Deviancy training did significantly predict average number of marijuana uses per week ($b_1 = ..133$, SE = .065, p = .043), but the other mediators did not (positive group involvement: $b_2 = .012$, SE = .074, p = .867; peer rejection: $b_3 = .054$, SE = .115, p = .636; therapist-praised positive behavior: $b_4 = ..036$, SE = .078, p = .646). The indirect effects were insignificant for deviancy training ($a_1b_1 = .017$, SE = .020), positive group involvement ($a_2b_2 = .001$, SE = .009), peer rejection ($a_3b_3 = -.001$, SE = .010), and therapist-praised positive behavior ($a_4b_4 = ..004$, SE = .014) as determined by the confidence interval for each effect including zero.

Lastly, treatment type was not significantly related to alcohol-related predatory aggression (c = -.021, $SE_c = .029$, p = .478) at 6-month follow-up. In this model, treatment type was not found to be significantly related to deviancy training ($a_1 = -.129$, SE = .132, p = .327), positive group involvement ($a_2 = .020$, SE = .124, p = .874), peer rejection ($a_3 = -.012$, SE = .071, p = .865), or therapist-praised positive behavior ($a_4 = .118$, SE = .118, p = .319). Additionally, none of the mediators were found to significantly predict alcohol-related predatory aggression (deviancy training: $b_1 = -.016$, SE = .021, p = .447; positive group involvement: $b_2 = -.012$, SE = .024, p = .613; peer rejection: $b_3 = .026$, SE = .037, p = .477; therapist-praised positive behavior:

 $b_4 = .001$, SE = .025, p = .981). The indirect effects were also insignificant for deviancy training ($a_1b_1 = .002$, SE = .005), positive group involvement ($a_2b_2 = .000$, SE = .003), peer rejection ($a_3b_3 = .000$, SE = .006), and therapist-praised positive behavior ($a_4b_4 = .000$, SE = .005) as determined by the confidence interval for each effect including zero.

Summary. Treatment condition (CBT vs. SET) was found to differentially predict only one of the potential mediators examined as assessed by counselors and observers. More specifically, CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. This relationship was found again at the six-month follow-up period for all four outcome variables as assessed by observers at session 3 and for percentage of heavy drinking days as assessed by counselors at session 10. Less consistent support was found for the relationships between group process variables and substance use outcomes at follow-up. Irrespective of treatment type, increased rates of peer rejection and therapist-praised positive behavior as rated by adolescents at session 3 were associated with lower percentage of heavy drinking days and lower average number of drinks per week at 3-month follow-up. The negative relationships between peer rejection and these alcohol-use outcomes were also found as assessed by observers at session 10; similarly, negative relationships were found between therapist-praised positive behavior and percentage of heavy drinking days and average number of drinks per week at 6-month follow-up as assessed by observers at session 3. Therapist-praised positive behavior was negatively associated with alcohol-related predatory aggression

at 3-month follow-up and deviancy training was negatively associated with average number of marijuana uses per week at 6-month follow-up as assessed by adolescents at session 10. The indirect effect of treatment type was insignificant across all models examined.

In a multiple mediator model, the significance of a specific indirect effect may be compromised as a result of a particular mediator's effect being attenuated by other mediators in the model (Preacher & Hayes, 2008). Because deviancy training was differentially impacted by treatment type and carries the most theoretical support, it was further examined in simple mediation models. Directions for future research based on the findings between peer rejection, therapist-praised positive behavior, and the alcohol-use related outcomes are outlined in the Discussion section.

Simple Mediation Models

Counselor Session 3 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.070, $SE_c = .078$, p = ..377) at 3-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.058$, SE = .127, p = .651). Similarly, deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .088$, SE = .048, p = .070). The indirect effect remained insignificant ($a_1b_1 = -.005$, SE = .013) as determined by the confidence interval for the effect including zero. Confidence intervals for all indirect effects resulting from the Counselor Session 3 form and 3-month follow-up single mediation models are located in Table 15 in the Appendix.

Treatment type was not significantly related to average number of drinks per week (c = -.043, $SE_c = .071$, p = .545) at 3-month follow-up. In this model, treatment

type was not significantly related to deviancy training ($a_1 = -.055$, SE = .127, p = ..666), but deviancy training was found to significantly predict average number of drinks per week ($b_1 = .088$, SE = .044, p = .044). However, the indirect effect remained insignificant ($a_1b_1 = -.005$, SE = .013) as determined by the confidence interval for the effect including zero.

No significant results were found in regards to average number of marijuana uses per week (c = -.118, $SE_c = .080$, p = .143; $a_1 = -.044$, SE = .128, p = .733; $b_1 = .081$, SE = .049, p = .105; $a_1b_1 = -.004$, SE = .012) or alcohol-related predatory aggression (c = .062, $SE_c = .062$, p = .320; $a_1 = -.041$, SE = .128, p = .746; $b_1 = .050$, SE = .038, p = .188; $a_1b_1 = -.002$, SE = .008).

Observer Session 3 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.054, $SE_c = .081$, p = .510) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.194$, SE = .083, p = .021), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = -.019$, SE = .079, p = .810). The indirect effect was insignificant ($a_1b_1 = .004$, SE = .013) as determined by the confidence interval for the effect including zero. Confidence intervals for all indirect effects resulting from the Observer Session 3 form and 3-month follow-up single mediation models are located in Table 16 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.016, $SE_c = .073$, p = .829) at 3-month follow-up. Again, treatment type was significantly related to deviancy training ($a_1 = -.195$, SE = .083, p = .021), but deviancy training was not found to significantly predict average number of

drinks per week ($b_1 = -.041$, SE = .071, p = .564). The indirect effect remained insignificant ($a_1b_1 = .008$, SE = .011) as determined by the confidence interval for the effect including zero.

Treatment type was not significantly related to average number of marijuana uses per week (c = -.115, $SE_c = .084$, p = .174), but did predict deviancy training ($a_1 =$ -.193, SE = .084, p = .023). However, deviancy training was not significantly related to average number of marijuana uses per week ($b_1 = .026$, SE = .081, p = .748) and the indirect effect of treatment remained insignificant ($a_1b_1 = -.005$, SE = .014).

Similar results were found for alcohol-related predatory aggression. Treatment type was not significantly related to the dependent variable (c = .082, $SE_c = .063$, p = .196) but did predict deviancy training ($a_1 = -.190$, SE = .084, p = .025). Deviancy training was not related to alcohol-related predatory aggression ($b_1 = -.030$, SE = .061, p = .623) and the indirect effect of treatment type remained insignificant ($a_1b_1 = .006$, SE = .010).

Adolescent Session 3 form and 3-month follow-up. No significant results were found in regards to percentage of heavy drinking days (c = -.070, $SE_c = .078$, p = ..377; $a_1 = -.016$, SE = .130, p = .905; $b_1 = .061$, SE = .048, p = .203; $a_1b_1 = -.001$, SE = .011), average number of drinks per week (c = -.043, $SE_c = .071$, p = .545; $a_1 = -.013$, SE = .131, p = .922; $b_1 = .067$, SE = .043, p = .118; $a_1b_1 = -.001$, SE = .011), average number of marijuana uses per week (c = -.118, $SE_c = .080$, p = .143; $a_1 = -.015$, SE = .133, p = .913; $b_1 = .006$, SE = .048, p = .898; $a_1b_1 = .000$, SE = .007), or alcoholrelated predatory aggression (c = .062, $SE_c = .062$, p = .320; $a_1 = .020$, SE = .129, p = ..878; $b_1 = .007$, SE = .038, p = .845; $a_1b_1 = .000$, SE = .005). Confidence intervals for all indirect effects resulting from the Adolescent Session 3 form and 3-month followup single mediation models are located in Table 17 in the Appendix.

Counselor Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.232, $SE_c = .095$, p = .015) at 6-month follow-up. However, treatment type was not significantly related to deviancy training ($a_1 = .061$, SE = .133, p = .646), nor was deviancy training found to significantly predict percentage of heavy drinking days ($b_1 = .100$, SE = .060, p = .099). The indirect effect of treatment type was insignificant ($a_1b_1 = .006$, SE = .019). Confidence intervals for all indirect effects resulting from the Counselor Session 3 form and 6-month follow-up single mediation models are located in Table 18 in the Appendix.

No significant results were found in regards to average number of drinks per week (c = -.138, $SE_c = .084$, p = .103; $a_1 = .064$, SE = .133, p = .632; $b_1 = .059$, SE = .054, p = .278; $a_1b_1 = -.004$, SE = .012), average number of marijuana uses per week (c = -.001, $SE_c = .091$, p = .988; $a_1 = .088$, SE = .135, p = .516; $b_1 = .053$, SE = .059, p = .369; $a_1b_1 = .005$, SE = .013) or alcohol-related predatory aggression (c = -.045, $SE_c = .066$, p = .498; $a_1 = .075$, SE = .134, p = .578; $b_1 = .054$, SE = .042, p = .206; $a_1b_1 = .004$, SE = .011).

Observer Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.254, $SE_c = .096$, p = .009) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.187$, SE = .094, p = .048), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .093$, SE = .091,

p = .307). The indirect effect of treatment type was insignificant ($a_1b_1 = -.017$, SE = .024). Confidence intervals for all indirect effects resulting from the Observer Session 3 form and 6-month follow-up single mediation models are located in Table 19 in the Appendix.

Treatment type was not significantly related to average number of drinks per week (c = -.151, $SE_c = .085$, p = .079) at 6-month follow-up. Again, treatment type was significantly related to deviancy training ($a_1 = -.188$, SE = .094, p = .047), but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .062$, SE = .080, p = .445). The indirect effect remained insignificant ($a_1b_1 = -.012$, SE = .020) as determined by the confidence interval for the effect including zero.

Similarly, treatment type was not significantly related to average number of marijuana uses per week (c = .001, $SE_c = .096$, p = .996), but did predict deviancy training ($a_1 = -.189$, SE = .095, p = .049). However, deviancy training was not significantly related to average number of marijuana uses per week ($b_1 = .044$, SE = .090, p = .624) and the indirect effect of treatment remained insignificant ($a_1b_1 = -.008$, SE = .018).

Treatment type was not significantly related to alcohol-related predatory aggression (c = -.049, $SE_c = .069$, p = .477) at 6-month follow-up, but did predict deviancy training ($a_1 = -.186$, SE = .094, p < .05). Deviancy training was not related to alcohol-related predatory aggression ($b_1 = .043$, SE = .065, p = .507) and the indirect effect of treatment type remained insignificant ($a_1b_1 = -.008$, SE = .019).

Adolescent Session 3 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.232, $SE_c = .095$, p = .015) at 6-month follow-up. However, treatment type was not significantly related to deviancy training ($a_1 = -.045$, SE = .134, p = .740), nor was deviancy training found to significantly predict percentage of heavy drinking days ($b_1 = .029$, SE = .061, p = .636). The indirect effect of treatment type was insignificant ($a_1b_1 = -.001$, SE = .010). Confidence intervals for all indirect effects resulting from the Adolescent Session 3 form and 6-month follow-up single mediation models are located in Table 20 in the Appendix.

No significant results were found in regards to average number of drinks per week (c = -.138, $SE_c = .084$, p = .103; $a_1 = -.041$, SE = .136, p = .763; $b_1 = .021$, SE = .053, p = .699; $a_1b_1 = -.001$, SE = .009), average number of marijuana uses per week (c = -.001, $SE_c = .091$, p = .988; $a_1 = -.034$, SE = .140, p = .807; $b_1 = .001$, SE = .057, p = .980; $a_1b_1 = .000$, SE = .008), or alcohol-related predatory aggression (c = -.045, $SE_c = .066$, p = .498; $a_1 = -.017$, SE = .135, p = .901; $b_1 = -.002$, SE = .042, p = .966; $a_1b_1 = .000$, SE = .005).

Counselor Session 10 form and 3-month follow-up. Treatment type was not significantly related to percentage of heavy drinking days (c = -.068, $SE_c = .081$, p = .401) at 3-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.340$, SE = .138, p = .015), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .043$, SE = .047, p = .368). The indirect effect of treatment type was insignificant ($a_1b_1 = -.014$, SE = .019) as determined by the confidence interval for the effect including zero.

Confidence intervals for all indirect effects resulting from the Counselor Session 10 form and 3-month follow-up single mediation models are located in Table 21 in the Appendix.

Similarly, treatment type was not significantly related to average number of drinks per week (c = -.045, $SE_c = .074$, p = .544) at 3-month follow-up. Again, treatment type was significantly related to deviancy training ($a_1 = -.334$, SE = .140, p = .018), but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .016$, SE = .042, p = .706). The indirect effect remained insignificant ($a_1b_1 = -.005$, SE = .016).

Treatment type was not significantly related to average number of marijuana uses per week (c = -.118, $SE_c = .083$, p = .156). However, treatment type was significantly related to deviancy training ($a_1 = -.310$, SE = .141, p = .029) and deviancy training was found to significantly predict average number of marijuana uses per week ($b_1 = .095$, SE = .047, p = .042). The indirect effect of treatment type remained insignificant ($a_1b_1 = -.030$, SE = .022).

Treatment type was not significantly related to alcohol-related predatory aggression (c = .060, $SE_c = .063$, p = .349) at 3-month follow-up. Again, treatment type was significantly related to deviancy training ($a_1 = -.322$, SE = .142, p = .025), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .013$, SE = .036, p = .723). The indirect effect was insignificant (a_1b_1 = -.004, SE = .013).

Observer Session 10 form and 3-month follow-up. No significant results were found in regards to percentage of heavy drinking days (c = -.050, $SE_c = .010$, p =

.619; $a_1 = -.105$, SE = .107, p = .332; $b_1 = .087$, SE = .089, p = .329; $a_1b_1 = -.009$, SE = .018), average number of drinks per week (c = .007, $SE_c = .092$, p = .949; $a_1 = -.105$, SE = .108, p = .332; $b_1 = .055$, SE = .082, p = .502; $a_1b_1 = -.006$, SE = .016), average number of marijuana uses per week (c = -.067, $SE_c = .102$, p = .512; $a_1 = -.093$, SE = .109, p = .393; $b_1 = .025$, SE = .091, p = .780; $a_1b_1 = -.002$, SE = .017), or alcoholrelated predatory aggression (c = .080, $SE_c = .082$, p = .334; $a_1 = -.114$, SE = .107, p = .288; $b_1 = .049$, SE = .074, p = .509; $a_1b_1 = -.006$, SE = .026) at 3-month follow-up. Confidence intervals for all indirect effects resulting from the Observer Session 10 form and 3-month follow-up single mediation models are located in Table 22 in the Appendix.

Adolescent Session 10 form and 3-month follow-up. No significant results were found in regards to percentage of heavy drinking days (c = ..068, $SE_c = .081$, p = ..401; $a_1 = ..122$, SE = .125, p = .329; $b_1 = .094$, SE = .052, p = .071; $a_1b_1 = ..012$, SE = ..015), average number of drinks per week (c = ..045, $SE_c = .074$, p = .544; $a_1 = ..122$, SE = ..125, p = ..330; $b_1 = ..092$, SE = ..047, p = ..052; $a_1b_1 = ..011$, SE = ..014), average number of marijuana uses per week (c = ..118, $SE_c = ..083$, p = ..156; $a_1 = ..124$, SE = ..125, p = ..327; $b_1 = ..030$, SE = ..053, p = ..569; $a_1b_1 = ..004$, SE = ..012), or alcoholrelated predatory aggression (c = ..060, $SE_c = ..063$, p = ..349; $a_1 = ..110$, SE = ..125, p = ..125, p = ..125, SE = ..041, p = ..910; $a_1b_1 = ..001$, SE = ..008) at 3-month follow-up. Confidence intervals for all indirect effects resulting from the Adolescent Session 10 form and 3-month follow-up single mediation models are located in Table 23 in the Appendix. **Counselor Session 10 form and 6-month follow-up.** Treatment type was significantly related to percentage of heavy drinking days (c = -.226, $SE_c = .097$, p = .022) at 6-month follow-up. In this model, treatment type was significantly related to deviancy training ($a_1 = -.295$, SE = .148, p = .048), but deviancy training did not significantly predict percentage of heavy drinking days ($b_1 = .043$, SE = .058, p = .457). The indirect effect of treatment type was insignificant ($a_1b_1 = -.013$, SE = .023). Confidence intervals for all indirect effects resulting from the Counselor Session 10 form and 6-month follow-up single mediation models are located in Table 24 in the Appendix.

No significant results were found in regards to average number of drinks per week (c = -.129, $SE_c = .086$, p = .135; $a_1 = -.291$, SE = .149, p = .054; $b_1 = .016$, SE = .051, p = .754; $a_1b_1 = -.005$, SE = .018), average number of marijuana uses per week (c = .011, $SE_c = .093$, p = .910; $a_1 = -.241$, SE = .153, p = .119; $b_1 = -.033$, SE = .054, p = .540; $a_1b_1 = .008$, SE = .017) or alcohol-related predatory aggression (c = -.048, $SE_c = .068$, p = .477; $a_1 = -.272$, SE = .153, p = .078; $b_1 = .042$, SE = .039, p = .275; $a_1b_1 = -.012$, SE = .015).

Observer Session 10 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.240, $SE_c = .116$, p = .042) at 6-month follow-up. In this model, treatment type was not significantly related to deviancy training ($a_1 = -.095$, SE = .123, p = .443), and deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = -.036$, SE = .099, p = .715). The indirect effect of treatment type was insignificant ($a_1b_1 = .003$, SE = .017). Confidence intervals for all indirect effects resulting from the Observer

Session 10 form and 6-month follow-up single mediation models are located in Table 25 in the Appendix.

No significant results were found in regards to average number of drinks per week (c = -.129, $SE_c = .104$, p = .219; $a_1 = -.097$, SE = .123, p = .431; $b_1 = -.029$, SE = .089, p = .756; $a_1b_1 = .003$, SE = .016), average number of marijuana uses per week (c = .063, $SE_c = .114$, p = .585; $a_1 = -.074$, SE = .126, p = .558; $b_1 = .002$, SE = .096, p = .981; $a_1b_1 = .000$, SE = .020) or alcohol-related predatory aggression (c = -.097, $SE_c = .092$, p = .293; $a_1 = -.107$, SE = .122, p = .385; $b_1 = .038$, SE = .079, p = .630; $a_1b_1 = .004$, SE = .020) at 6-month follow-up.

Adolescent Session 10 form and 6-month follow-up. Treatment type was significantly related to percentage of heavy drinking days (c = -.226, $SE_c = .097$, p = .022) at 6-month follow-up. However, treatment type was not significantly related to deviancy training ($a_1 = -.134$, SE = .132, p = .310), nor was deviancy training found to significantly predict percentage of heavy drinking days ($b_1 = .042$, SE = .065, p = .521). The indirect effect of treatment type was insignificant ($a_1b_1 = -.006$, SE = .014). Confidence intervals for all indirect effects resulting from the Adolescent Session 10 form and 6-month follow-up single mediation models are located in Table 26 in the Appendix.

Treatment type was not significantly related to average number of marijuana uses per week (c = .011, $SE_c = .093$, p = .910) or deviancy training ($a_1 = -.128$, SE = .133, p = .339). Although deviancy training was related to average number of marijuana uses per week ($b_1 = -.121$, SE = .061, p = .049) the indirect effect was insignificant ($a_1b_1 = .016$, SE = .019).

No significant results were found in regards to average number of drinks per week (c = -.129, $SE_c = .086$, p = .135; $a_1 = -.134$, SE = .132, p = .309; $b_1 = -.021$, SE = .057, p = .715; $a_1b_1 = .003$, SE = .012) or alcohol-related predatory aggression (c = -.048, $SE_c = .068$, p = .477; $a_1 = -.129$, SE = .132, p = .327; $b_1 = -.027$, SE = .045, p = .552; $a_1b_1 = .004$, SE = .010) at 6-month follow-up.

Summary. Deviancy training was examined as measured at group session 3 and 10 from counselor, teen, and observer perspectives. The four outcome variables were examined at both the 3- and 6-month follow-up periods. Again, CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. This relationship was found at the sixmonth follow-up period for all four outcome variables as assessed by observers at session 3 and for percentage of heavy drinking days as assessed by counselors at session 10. Less consistent support was found for the relationship between deviancy training and substance use outcomes at follow-up. Irrespective of treatment type, increased rates of deviancy training as rated by counselors at session 3 were associated with greater average number of drinks per week at 3-month follow-up. Increased rates of deviancy training as rated by counselors at session 10 were associated with increased average number of marijuana uses per week at 3-month follow-up. However, both of these relationships became insignificant at the 6-month follow-up period. Again, the indirect effect of treatment type was insignificant across all models examined.

Based on these findings, the session 3 deviancy ratings for all three perspectives and the session 10 ratings from the counselor perspective were further examined in moderated mediation models. The session 10 ratings from the observer and adolescent perspectives were excluded from further analyses as these models did not produce any significant path estimates.

Moderated Mediation of Age in the First Stage ($X \rightarrow M$)

Counselor Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 27-30 located in the Appendix. Treatment type was not significantly related to deviancy training ($a_1 = -.052$, SE = .127, p = .685), nor was deviancy training found to significantly predict percentage of heavy drinking days ($b_1 = .088$, SE = .048, p = .070) at 3-month follow-up. Similarly, the effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .198$, SE = .060, p = .104) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.005, .062). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Treatment type was not significantly related to deviancy training ($a_1 = -.047$, SE = .127, p = .204) but deviancy training was found to significantly predict average number of drinks per week ($b_1 = .089$, SE = .044, p = .044) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .206$, SE = .122, p = .093) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.004, .059). This indicates that the

indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

Treatment type was not significantly related to deviancy training ($a_1 = -.035$, SE = .127, p = .216), nor was deviancy training found to significantly predict average number of marijuana uses per week ($b_1 = .081$, SE = .049, p = .105) at 3-month follow-up. Similarly, the effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .195$, SE = .121, p = .110) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.005, .056). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age.

Similarly, treatment type was not significantly related to deviancy training ($a_1 = -.030$, SE = .127, p = .813), nor was deviancy training found to significantly predict alcohol-related predatory aggression ($b_1 = .050$, SE = .038, p = .188) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .197$, SE = .120, p = .102) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.006, .036). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by youths' age.

Observer Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 31-34 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .083, p = .024), but deviancy training was not found to significantly predict

percentage of heavy drinking days ($b_1 = -.019$, SE = .079, p = .810) at 3-month followup. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .019$, SE = .077, p = .808) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.020, .008). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.190, SE = .083, p = .024) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = -.041$, SE = .071, p = .564) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .016$, SE = .078, p = .837) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.018, .009). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

Again, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .084, p = .026), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .026$, SE = .081, p = .748) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .019$, SE = .078, p = .804) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.017, .017). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.183$, SE = .084, p = .030), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = -.030$, SE = .061, p = .623) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .022$, SE = .077, p = .780) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.014, .010). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by youths' age.

Adolescent Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 35-38 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.016$, SE = .131, p = .902; $b_1 = .061$, SE = .048, p = .203; $a_3 = .022$, SE = .077, p = .780; 95% CI for index of moderated mediation = -.009, .031), average number of drinks per week ($a_1 = -.012$, SE = .132, p = .926; $b_1 = .067$, SE = .043, p = .118; $a_3 = .103$, SE = .126, p = .414; 95% CI for index of moderated mediation = -.015, SE = .134, p = .909; $b_1 = .006$, SE = .048, p = .898; $a_3 = .081$, SE = .127, p = .525; 95% CI for index of moderated predatory aggression ($a_1 = .024$, SE = .130, p = .854; $b_1 = .007$, SE = .038, p = .845; $a_3 = .097$, SE = .123, p = .432; 95% CI for index of moderated mediation = -.010, .014) at 3-month follow-up.

Counselor Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 39-42 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = .064$, SE = .133, p = .630; $b_1 = .100$, SE = .060, p = .099; $a_3 = .213$, SE = .122, p = .083; 95% CI for index of moderated mediation = -.006, .076), average number of drinks per week ($a_1 = .068$, SE = .133, p = .607; $b_1 = .059$, SE = .054, p = .278; $a_3 = .224$, SE = .122, p = .069; 95% CI for index of moderated mediation = -.012, .060), average number of marijuana uses per week ($a_1 = .095$, SE = .134, p = .482; $b_1 = .053$, SE = .059, p = .369; $a_3 = .208$, SE = .121, p = .089; 95% CI for index of moderated mediation = -.012, .060), average number of marijuana uses per week ($a_1 = .095$, SE = .134, p = .482; $b_1 = .053$, SE = .059, p = .369; $a_3 = .208$, SE = .121, p = .089; 95% CI for index of moderated mediation = -.016, .051), or alcohol-related predatory aggression ($a_1 = .081$, SE = .133, p = .543; $b_1 = .054$, SE = .042, p = .206; $a_3 = .198$, SE = .120, p = .163; 95% CI for index of moderated mediation = -.008, .045) at 6-month follow-up.

Observer Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 43-46 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.182$, SE = .093, p = .054; $b_1 = .093$, SE = .091, p = .307; $a_3 =$.029, SE = .085, p = .736; 95% CI for index of moderated mediation = -.030, .032), average number of drinks per week ($a_1 = -.182$, SE = .094, p = .053; $b_1 = .062$, SE =.080, p = .445; $a_3 = .022$, SE = .085, p = .795; 95% CI for index of moderated mediation = -.026, .022), average number of marijuana uses per week ($a_1 = -.184$, SE =.095, p = .056; $b_1 = .044$, SE = .090, p = .624; $a_3 = .032$, SE = .085, p = .710; 95% CI for index of moderated mediation = -.023, .025), or alcohol-related predatory aggression (a_1 = -.178, SE = .094, p = .059; b_1 = .043, SE = .065, p = .507; a_3 = .026, SE = .084, p = .762; 95% CI for index of moderated mediation = -.031, .014) at 6month follow-up.

Adolescent Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 47-50 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.046$, SE = .135, p = .731; $b_1 = .029$, SE = .061, p = .636; $a_3 = .157$, SE = .123, p = .206; 95% CI for index of moderated mediation = -.016, .034), average number of drinks per week ($a_1 = -.041$, SE = .136, p = .763; $b_1 = .021$, SE = .053, p = .699; $a_3 = .152$, SE = .125, p = .227; 95% CI for index of moderated mediation = -.015, .029), average number of marijuana uses per week ($a_1 = -.035$, SE = .141, p = .805; $b_1 = .001$, SE = .057, p = .980; $a_3 = .115$, SE = .127, p = .366; 95% CI for index of moderated predatory aggression ($a_1 = -.014$, SE = .136, p = .917; $b_1 = -.002$, SE = .042, p = .966; $a_3 = .118$, SE = .122, p = .334; 95% CI for index of moderated mediation = -.014, .013) at 6-month follow-up.

Counselor Session 10 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 3-month follow-up moderated mediation models are displayed in Tables 51-54 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.335$, SE = .138, p = .017), but deviancy training was not found to significantly predict

percentage of heavy drinking days ($b_1 = .043$, SE = .047, p = .368) at 3-month followup. Similarly, the effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .080$, SE = .132, p = .544) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.012, .027). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Treatment type was significantly related to deviancy training ($a_1 = -.328$, SE = .140, p = .021), but deviancy training did not significantly predict average number of drinks per week ($b_1 = .016$, SE = .042, p = .704) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .084$, SE = .135, p = .536) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.012, .019). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

Treatment type was significantly related to deviancy training ($a_1 = -.305$, SE = .142, p = .033) and deviancy training did significantly predict average number of marijuana uses per week ($b_1 = .095$, SE = .047, p = .042) at 3-month follow-up. However, the effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .065$, SE = .135, p = .630) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.020, .039). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age. Lastly, treatment type was significantly related to deviancy training ($a_1 = -.313$, SE = .143, p = .030), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .013$, SE = .036, p = .723) at 3-month follow-up. The effect of treatment type on deviancy training by age yielded a nonsignificant result ($a_3 = .041$, SE = .135, p = .760) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.009, .013). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by youths' age.

Counselor Session 10 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 6-month follow-up moderated mediation models are displayed in Tables 55-58 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.293$, SE = .149, p = .051; $b_1 = .043$, SE = .058, p = .457; $a_3 = .093$, SE = .136, p = .496; 95% CI for index of moderated mediation = -.013, .035), average number of drinks per week ($a_1 = -.287$, SE = .150, p = .058; $b_1 = .016$, SE = .051, p = .754; $a_3 = .098$, SE = .138, p = .479; 95% CI for index of moderated mediation = -.014, .027), average number of marijuana uses per week ($a_1 = -.236$, SE = .154, p = .129; $b_1 = -.033$, SE = .054, p = .540; $a_3 = .054$, SE = .140, p = .698; 95% CI for index of moderated predatory aggression ($a_1 = -.265$, SE = .154, p = .088; $b_1 = .042$, SE = .039, p = .275; $a_3 = .025$, SE = .139, p = .858; 95% CI for index of moderated mediation = -.015, .020) at 6-month follow-up.

Summary. CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. Less consistent support was found for the relationship between deviancy training and substance use outcomes at follow-up. Irrespective of treatment type, increased rates of deviancy training as rated by counselors at session 3 were associated with greater average number of drinks per week at 3-month follow-up. Increased rates of deviancy training as rated by counselors at session 10 were associated with increased average number of marijuana uses per week at 3-month follow-up. However, both of these relationships became insignificant at the 6-month follow-up period.

Across all moderated mediation models examined, the effect of treatment type on deviancy training by age was not found to produce a significant effect. Furthermore, none of the bootstrap confidence intervals produced evidence of moderated mediation. Therefore, no evidence was found to indicate the indirect effect of treatment type on substance use outcomes through deviancy training is moderated by youths' age.

Moderated Mediation of Conduct Disorder Symptoms in the First Stage $(X \rightarrow M)$

Counselor Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 59-62 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.053$, SE = .129, p = .677; $b_1 = .088$, SE = .048, p = .070; $a_3 = -.027$, SE = .038, p = .478; 95% CI for index of moderated mediation = -.011, .005).

Treatment type was not significantly related to deviancy training ($a_1 = -.051$, SE = .128, p = .688) but deviancy training was found to significantly predict average number of drinks per week ($b_1 = .089$, SE = .044, p = .044) at 3-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.028$, SE = .038, p = .470) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.011, .005). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

No significant findings were found in regards to average number of marijuana uses per week ($a_1 = -.038$, SE = .128, p = .765; $b_1 = .081$, SE = .049, p = .105; $a_3 = -.037$, SE = .038, p = .329; 95% CI for index of moderated mediation = -.012, .004) or alcohol-related predatory aggression ($a_1 = -.040$, SE = .128, p = .755; $b_1 = .050$, SE = .038, p = .188; $a_3 = -.032$, SE = .038, p = .396; 95% CI for index of moderated mediation = -.012, .004) or mediation = -.008, .003).

Observer Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 63-66 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.188$, SE = .082, p = .024), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = -.019$, SE = .079, p = .810) at 3-month followup. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.037$, SE = .025, p = .139) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.006, .007). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.190, SE = .082, p = .022) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = -.041$, SE = .071, p = .564) at 3-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.036$, SE = .025, p = .123) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.003, .008). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Again, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .083, p = .024), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .026$, SE = .081, p = .748) at 3-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.036$, SE = .025, p = .152) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.010, .004). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .083, p = .024), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = -.030$, SE = .061, p = .623) at 3-month

follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.037$, SE = .025, p = .138) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.003, .007). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Adolescent Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 67-70 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = .001$, SE = .128, p = .994; $b_1 = .061$, SE = .048, p = .203; $a_3 = .019$, SE = .038, p = .623; 95% CI for index of moderated mediation = -.004, .009), average number of drinks per week ($a_1 = .003$, SE = .129, p = .982; $b_1 = .067$, SE = .043, p = .118; $a_3 = .013$, SE = .039, p = .738; 95% CI for index of moderated mediation = -.004, .009), average number of marijuana uses per week ($a_1 = .001$, SE = .131, p = .995; $b_1 = .006$, SE = .048, p = .898; $a_3 = .006$, SE = .039, p = .885; 95% CI for index of moderated mediation = -.004, .009), average number of marijuana uses per week ($a_1 = .001$, SE = .131, p = .995; $b_1 = .006$, SE = .048, p = .898; $a_3 = .006$, SE = .039, p = .885; 95% CI for index of moderated mediation = -.004, .009), average number of marijuana uses per week ($a_1 = .001$, SE = .131, p = .995; $b_1 = .006$, SE = .048, p = .898; $a_3 = .006$, SE = .039, p = .885; 95% CI for index of moderated mediation = -.003, .005), or alcohol-related predatory aggression ($a_1 = .024$, SE = .128, p = .854; $b_1 = .007$, SE = .038, p = .845; $a_3 = .004$, SE = .038, p = .923; 95% CI for index of moderated mediation = -.003, .005), or alcohol-related predatory aggression ($a_1 = .024$, SE = .128, p = .854; $b_1 = .007$, SE = .038, p = .845; $a_3 = .004$, SE = .038, p = .923; 95% CI for index of moderated mediation = -.003, .003) at 3-month follow-up.

Counselor Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 71-74 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = .065$, SE = .134, p = .626; $b_1 = .100$, SE = .060, p = .099; $a_3 =$

-.049, SE = .040, p = .217; 95% CI for index of moderated mediation = -.018, .004), average number of drinks per week ($a_1 = .067$, SE = .133, p = .616; $b_1 = .059$, SE = .054, p = .278; $a_3 = -.049$, SE = .040, p = .225; 95% CI for index of moderated mediation = -.014, .004), average number of marijuana uses per week ($a_1 = .091$, SE = .134, p = .497; $b_1 = .053$, SE = .059, p = .369; $a_3 = -.059$, SE = .040, p = .141; 95% CI for index of moderated mediation = -.014, .005), or alcohol-related predatory aggression ($a_1 = .076$, SE = .134, p = .570; $b_1 = .054$, SE = .042, p = .206; $a_3 = -.054$, SE = .040, p = .175; 95% CI for index of moderated mediation = -.012, .002) at 6month follow-up.

Observer Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 75-78 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.183$, SE = .092, p = .049), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .093$, SE = .091, p = .307) at 6-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.042$, SE = .028, p = .135) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.021, .004). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training (a_1 = -.185, SE = .092, p = .047) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .062$, SE = .080, p = .445) at 6-month follow-

up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.043$, SE = .028, p = .122) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.015, .005). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Again, treatment type was significantly related to deviancy training ($a_1 = -.188$, SE = .094, p = .047), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .044$, SE = .090, p = .624) at 6-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.042$, SE = .028, p = .136) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.012, .006). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.187$, SE = .093, p = .046), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .043$, SE = .065, p = .507) at 6-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.041$, SE = .027, p = .140) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.008, .007). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Adolescent Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 79-82 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.032$, SE = .133, p = .812; $b_1 = .029$, SE = .061, p = .636; $a_3 = -.001$, SE = .040, p = .982; 95% CI for index of moderated mediation = -.005, .004), average number of drinks per week ($a_1 = -.028$, SE = .134, p = .834; $b_1 = .021$, SE = .053, p = .699; $a_3 = -.004$, SE = .040, p = .924; 95% CI for index of moderated mediation = -.002, SE = .138, p = .876; $b_1 = .001$, SE = .057, p = .980; $a_3 = -.011$, SE = .041, p = .797; 95% CI for index of moderated predatory aggression ($a_1 = -.012$, SE = .134, p = .929; $b_1 = -.002$, SE = .042, p = .966; $a_3 = -.014$, SE = .040, p = .728; 95% CI for index of moderated mediation = -.003, .003) at 6-month follow-up.

Counselor Session 10 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 3-month follow-up moderated mediation models are displayed in Tables 83-86 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.334$, SE = .138, p = .016), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .043$, SE = .047, p = .368) at 3-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.001$, SE = .043, p = .989) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.005, .007).

This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training ($a_1 = -.330$, SE = .139, p = .019), but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .016$, SE = .042, p = .706) at 3-month follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.007$, SE = .043, p = .866) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.004, .005). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Treatment type was significantly related to deviancy training ($a_1 = -.305$, SE = .140, p = .031), and deviancy training was found to significantly predict average number of marijuana uses per week ($b_1 = .095$, SE = .047, p = .042) at 3-month follow-up. However, the effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.025$, SE = .043, p = .552) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.013, .005). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.323$, SE = .142, p = .024), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .013$, SE = .036, p = .723) at 3-month

follow-up. The effect of treatment type on deviancy training by conduct disorder yielded a nonsignificant result ($a_3 = -.023$, SE = .043, p = .586) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.005, .003). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Counselor Session 10 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 6-month follow-up moderated mediation models are displayed in Tables 87-90 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.292$, SE = .148, p = .051; $b_1 = .043$, SE = .058, p = .457; $a_3 = -.021$, SE = .046, p = .656; 95% CI for index of moderated mediation = -.012, .004), average number of drinks per week ($a_1 = -.287$, SE = .149, p = .056; $b_1 = .016$, SE = .051, p = .754; $a_3 = -.022$, SE = .046, p = .636; 95% CI for index of moderated mediation = -.019, .004), average number of marijuana uses per week ($a_1 = -.238$, SE = .152, p = .120; $b_1 = -.033$, SE = .054, p = .540; $a_3 = -.040$, SE = .047, p = .395; 95% CI for index of moderated predatory aggression ($a_1 = -.273$, SE = .153, p = .076; $b_1 = .042$, SE = .039, p = .275; $a_3 = -.040$, SE = .047, p = .394; 95% CI for index of moderated mediation = -.011, .003) at 6-month follow-up.

Summary. Again, CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. This relationship was found at the six-month follow-up period for all four outcome

variables as assessed by observers at session 3. Less consistent support was found for the relationship between deviancy training and substance use outcomes at follow-up. Irrespective of treatment type, increased rates of deviancy training as rated by counselors at session 3 were associated with greater average number of drinks per week at 3-month follow-up. Increased rates of deviancy training as rated by counselors at session 10 were associated with increased average number of marijuana uses per week at 3-month follow-up. However, both of these relationships became insignificant at the 6-month follow-up period.

Across all moderated mediation models examined, the effect of treatment type on deviancy training by conduct disorder was not found to produce a significant effect. Furthermore, none of the bootstrap confidence intervals produced evidence of moderated mediation. Therefore, no evidence was found to indicate the indirect effect of treatment type on substance use outcomes through deviancy training is moderated by conduct disorder.

Moderated Mediation of Age in the Second Stage ($M \rightarrow Y$)

Counselor Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 91-94 located in the Appendix. Treatment type was not significantly related to deviancy training ($a_1 = -.058$, SE = .127, p = .651), nor was deviancy training found to significantly predict percentage of heavy drinking days ($b_1 = .094$, SE = .048, p = .051) at 3-month follow-up. Similarly, the effect of deviancy training on percentage of heavy drinking days by age yielded a nonsignificant result ($b_3 = .041$, SE = .048, p = .388) and the bootstrap

confidence interval for the index of moderated mediation included zero (95% CI = -.021, .019). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Treatment type was not significantly related to deviancy training ($a_1 = -.055$, SE = .117, p = .666) but deviancy training was found to significantly predict average number of drinks per week ($b_1 = .096$, SE = .043, p = .029) at 3-month follow-up. The effect of deviancy training on average number of drinks per week by age yielded a nonsignificant result ($b_3 = .061$, SE = .043, p = .158) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.024, .019). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

No significant results were found in regards to average number of marijuana uses per week ($a_1 = -.044$, SE = .128, p = .733; $b_1 = .089$, SE = .049, p = .071; $b_3 = .027$, SE = .049, p = .586; 95% CI for index of moderated mediation = -.018, .018), or alcohol-related predatory aggression ($a_1 = -.041$, SE = .128, p = .746; $b_1 = .056$, SE = .038, p = .148; $b_3 = .065$, SE = .038, p = .091; 95% CI for index of moderated mediation = -.023, .017) at 3-month follow-up.

Observer Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 95-98 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.194$, SE = .083, p = .021), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .005$, SE = .081, p = .953) at 3-month followup. The effect of deviancy training on percentage of heavy drinking days by age yielded a nonsignificant result ($b_3 = .016$, SE = .060, p = .784) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.024, .015). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.195, SE = .083, p = .021) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .022$, SE = .073, p = .768) at 3-month follow-up. The effect of deviancy training on average number of drinks per week by age yielded a nonsignificant result ($b_3 = .009$, SE = .054, p = .865) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.019, .017). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

Again, treatment type was significantly related to deviancy training ($a_1 = -.193$, SE = .084, p = .023), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .057$, SE = .083, p = .494) at 3-month follow-up. The effect of deviancy training on average number of marijuana uses per week by age yielded a nonsignificant result ($b_3 = .035$, SE = .061, p = .572) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.034, .014). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age.
Lastly, treatment type was significantly related to deviancy training ($a_1 = -.190$, SE = .084, p = .025), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = -.021$, SE = .064, p = .740) at 3-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by age yielded a nonsignificant result ($b_3 = .024$, SE = .047, p = .609) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.022, .008). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by youths' age.

Adolescent Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 99-102 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.016$, SE = .130, p = .905; $b_1 = .059$, SE = .047, p = .217; $b_3 = -.020$, SE = .055, p = .716; 95% CI for index of moderated mediation = -.019, .017), average number of drinks per week ($a_1 = -.013$, SE = .131, p = .922; $b_1 = .066$, SE = .043, p = .121; $b_3 = .014$, SE = .050, p = .779; 95% CI for index of moderated mediation = -.015, SE = .133, p = .913; $b_1 = .003$, SE = .047, p = .947; $b_3 = -.011$, SE = .055, p = .840; 95% CI for index of moderated predatory aggression ($a_1 = .020$, SE = .129, p = .878; $b_1 = .008$, SE = .038, p = .831; $b_3 = .023$, SE = .044, p = .606; 95% CI for index of moderated mediation = -.009, .016) at 3-month follow-up.

Counselor Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 103-106 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days (a_1 = .061, SE = .133, p = .646; b_1 = .102, SE = .061, p = .094; b_3 = .013, SE = .056, p = .817; 95% CI for index of moderated mediation = -.014, .030), average number of drinks per week (a_1 = .064, SE = .133, p = .632; b_1 = .061, SE = .054, p = .263; b_3 = -.004, SE = .050, p = .944; 95% CI for index of moderated mediation = -.014, .024), average number of marijuana uses per week (a_1 = .088, SE = .135, p = .516; b_1 = .055, SE = .057, p = .338; b_3 = -.046, SE = .053, p = .384; 95% CI for index of moderated mediation = -.014, .024), average number of marijuana uses per week (a_1 = .088, SE = .135, p = .516; b_1 = .055, SE = .057, p = .338; b_3 = -.046, SE = .053, p = .384; 95% CI for index of moderated mediation = -.015, SE = .134, p = .578; b_1 = .055, SE = .042, p = .192; b_3 = -.001, SE = .040, p = .987; 95% CI for index of moderated mediation = -.014, .019) at 6-month follow-up.

Observer Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 107-110 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.187$, SE = .094, p = .048), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .109$, SE = .095, p = .255) at 6-month followup. The effect of deviancy training on percentage of heavy drinking days by age yielded a nonsignificant result ($b_3 = .006$, SE = .068, p = .934) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.036, .036). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youth's age.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.188, SE = .094, p = .047) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .085$, SE = .084, p = .312) at 6-month followup. The effect of deviancy training on average number of drinks per week by age yielded a nonsignificant result ($b_3 = .019$, SE = .060, p = .757) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.036, .032). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youth's age.

Again, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .095, p = .049), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .097$, SE = .090, p = .287) at 6-month follow-up. The effect of deviancy training on average number of marijuana uses per week by age yielded a nonsignificant result ($b_3 = .051$, SE = .064, p = .422) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.043, .016). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.186$, SE = .094, p < .05), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .078$, SE = .067, p = .260) at 6-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by

age yielded a nonsignificant result ($b_3 = .060$, SE = .047, p = .207) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.044, .019). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by age.

Adolescent Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 111-114 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.045$, SE = .134, p = .740; $b_1 = .023$, SE = .060, p = .701; $b_3 = .080$, SE = .064, p = .213; 95% CI for index of moderated mediation = -.040, .024), average number of drinks per week ($a_1 = -.041$, SE = .136, p = .763; $b_1 = .016$, SE = .053, p = .769; $b_3 = .063$, SE = .056, p = .265; 95% CI for index of moderated mediation = -.034, .021), average number of marijuana uses per week ($a_1 = -.034$, SE = .140, p = .807; $b_1 = -.008$, SE = .055, p = .885; $b_3 = .056$, SE = .059, p = .344; 95% CI for index of moderated mediation = -.034, .021), as erage number of marijuana uses per week ($a_1 = -.034$, SE = .140, p = .807; $b_1 = -.008$, SE = .055, p = .885; $b_3 = .056$, SE = .059, p = .344; 95% CI for index of moderated mediation = -.029, .025), or alcohol-related predatory aggression ($a_1 = -.017$, SE = .135, p = .901; $b_1 = -.003$, SE = .042, p = .951; $b_3 = .049$, SE = .045, p = .277; 95% CI for index of moderated mediation = -.023, .017) at 6-month follow-up.

Counselor Session 10 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 3-month follow-up moderated mediation models are displayed in Tables 115-118 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.340$, SE = .138, p = .015), but was deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .050$, SE = .047, p = .293) at 3-month followup. The effect of deviancy training on percentage of heavy drinking days by age yielded a nonsignificant result ($b_3 = .019$, SE = .046, p = .683) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.043, .032). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youths' age.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.334, SE = .140, p = .018) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .023$, SE = .042, p = .587) at 3-month followup. The effect of deviancy training on average number of drinks per week by age yielded a nonsignificant result ($b_3 = .017$, SE = .042, p = .682) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.040, .027). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by youths' age.

Treatment type was significantly related to deviancy training ($a_1 = -.310$, SE = ..141, p = .029), and was deviancy training was found to significantly predict average number of marijuana uses per week ($b_1 = .099$, SE = .046, p = .034) at 3-month follow-up. However, the effect of deviancy training on average number of marijuana uses per week by age yielded a nonsignificant result ($b_3 = -.035$, SE = .047, p = .452) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.019, .051). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by youths' age.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.322$, SE = .142, p = .025) but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .016$, SE = .036, p = .661) at 3-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by age yielded a nonsignificant result ($b_3 = .023$, SE = .037, p = .531) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.035, .017). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by youths' age.

Counselor Session 10 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 6-month follow-up moderated mediation models are displayed in Tables 119-122 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.295$, SE = .148, p = .048), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .044$, SE = .058, p = .452) at 6-month follow-up. The effect of deviancy training on percentage of heavy drinking days by age yielded a nonsignificant result ($b_3 = -.023$, SE = .053, p = .666) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.028, .060). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by youth's age.

No significant results were found in regards to average number of drinks per week ($a_1 = -.291$, SE = .149, p = .054; $b_1 = .018$, SE = .051, p = .731; $b_3 = -.035$, SE = .047, p = .454; 95% CI for index of moderated mediation = -.020, .060), average number of marijuana uses per week ($a_1 = -.241$, SE = .153, p = .119; $b_1 = -.028$, SE = .028

.053, p = .598; $b_3 = -.024$, SE = .050, p = .639; 95% CI for index of moderated mediation = -.021, .046), or alcohol-related predatory aggression ($a_1 = -.272$, SE =.153, p = .078; $b_1 = .043$, SE = .039, p = .278; $b_3 = -.026$, SE = .037, p = .493; 95% CI for index of moderated mediation = -.018, .044) at 6-month follow-up.

Summary. CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. This relationship was found at the six-month follow-up period for all four outcome variables as assessed by observers at session 3 and for percentage of heavy drinking days as assessed by counselors at session 10. Less consistent support was found for the relationship between deviancy training and substance use outcomes at follow-up. Irrespective of treatment type, increased rates of deviancy training as rated by counselors at session 3 were associated with greater average number of drinks per week at 3-month follow-up. Increased rates of deviancy training as rated by counselors at session 10 were associated with increased average number of marijuana uses per week at 3-month follow-up. However, both of these relationships became insignificant at the 6-month follow-up period. These findings are consistent with those resulting from the simple mediation models.

Across all moderated mediation models examined, the effect of deviancy training on substance use outcomes by age was not found to produce a significant effect. Furthermore, none of the bootstrap confidence intervals produced evidence of moderated mediation. Therefore, no evidence was found to indicate the indirect effect

of treatment type on substance use outcomes through deviancy training is moderated by youths' age.

Moderated Mediation of Conduct Disorder Symptoms in the Second Stage $(M \rightarrow Y)$

Counselor Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 123-126 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.058$, SE = .127, p = .651; $b_1 = .079$, SE = .048, p = .103; $b_3 = .019$, SE = .015, p = .222; 95% CI for index of moderated mediation = -.009, .006), average number of drinks per week ($a_1 = -.055$, SE = .127, p = .666; $b_1 = .084$, SE = .044, p = .057; $b_3 = .002$, SE = .014, p = .860; 95% CI for index of moderated mediation = -.0044, SE = .128, p = .733; $b_1 = .079$, SE = .050, p = .118; $b_3 = -.003$, SE = .016, p = .864; 95% CI for index of moderated predatory aggression ($a_1 = -.041$, SE = .128, p = .746; $b_1 = .051$, SE = .038, p = .183; $b_3 = -.008$, SE = .012, p = .485; 95% CI for index of moderated mediation = -.003, .005).

Observer Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 127-130 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.194$, SE = .083, p = .021), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = -.036$, SE = .084, p = .670) at 3-month follow-

up. The effect of deviancy training on percentage of heavy drinking days by conduct disorder yielded a nonsignificant result ($b_3 = -.001$, SE = .021, p = .980) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.012, .008). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.195, SE = .083, p = .021) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .055$, SE = .075, p = .467) at 3-month follow-up. The effect of deviancy training on average number of drinks per week by conduct disorder yielded a nonsignificant result ($b_3 = .007$, SE = .019, p = .718) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.008, .008). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Again, treatment type was significantly related to deviancy training ($a_1 = -.193$, SE = .084, p = .023), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .042$, SE = .087, p = .961) at 3-month follow-up. The effect of deviancy training on average number of marijuana uses per week by conduct disorder yielded a nonsignificant result ($b_3 = .007$, SE = .022, p = .756) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.010, .007). This indicates that the indirect effect

of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.190$, SE = .084, p = .025), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = -.032$, SE = .066, p = .629) at 3-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by conduct disorder yielded a nonsignificant result ($b_3 = -.007$, SE = .017, p = .690) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.004, .008). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Adolescent Session 3 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 3-month follow-up moderated mediation models are displayed in Tables 131-134 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.016$, SE = .130, p = .905; $b_1 = .039$, SE = .053, p = .459; $b_3 = .008$, SE = .017, p = .664; 95% CI for index of moderated mediation = -.005, .007), average number of drinks per week ($a_1 = -.013$, SE = .131, p = .922; $b_1 = .074$, SE = .048, p = .122; $b_3 = -.016$, SE = .016, p = .315; 95% CI for index of moderated mediation = -.015, SE = .133, p = .913; $b_1 = -.009$, SE = .053, p = .874; $b_3 = .005$, SE = .018, p = .762; 95% CI for index of moderated mediation = -.015, SE = .133, p = .913; $b_1 = -.009$, SE = .005, .007), or alcohol-related predatory aggression ($a_1 = .020$, SE = .129, p = .878; $b_1 = .000$, SE = .042, p = .999; $b_3 = .001$, SE

= .014, p = .952; 95% CI for index of moderated mediation = -.004, .004) at 3-month follow-up.

Counselor Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 135-138 located in the Appendix. No significant results were found in regards to percentage of heavy drinking days ($a_1 = .061$, SE = .133, p = .646; $b_1 = .098$, SE = .061, p = .109; $b_3 = .010$, SE = .019, p = .606; 95% CI for index of moderated mediation = -.009, .005), average number of drinks per week ($a_1 = .064$, SE = .133, p = .632; $b_1 = .054$, SE = .054, p = .322; $b_3 = .002$, SE = .017, p = .322; 95% CI for index of moderated mediation = -.008, .SE = .135, p = .516; $b_1 = .048$, SE = .060, p = .412; $b_3 = .005$, SE = .018, p = .791; 95% CI for index of moderated predatory aggression ($a_1 = .075$, SE = .134, p = .578; $b_1 = .054$, SE = .042, p = .203; $b_3 = .009$, SE = .013, p = .493; 95% CI for index of moderated mediation = -.007, .003) at 6-month follow-up.

Observer Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Observer Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 139-142 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.187$, SE = .094, p = .048), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .033$, SE = .097, p = .753) at 6-month followup. The effect of deviancy training on percentage of heavy drinking days by conduct disorder yielded a nonsignificant result ($b_3 = .020$, SE = .024, p = .411) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.020, .010). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training (a_1 = -.188, SE = .094, p = .047) but deviancy training was not found to significantly predict average number of drinks per week (b_1 = .023, SE = .086, p = .789) at 6-month follow-up. The effect of deviancy training on average number of drinks per week by conduct disorder yielded a nonsignificant result (b_3 = .006, SE = .022, p = .771) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.015, .012). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Again, treatment type was significantly related to deviancy training ($a_1 = -.189$, SE = .095, p = .049), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .031$, SE = .097, p = .749) at 6-month follow-up. The effect of deviancy training on average number of marijuana uses per week by conduct disorder yielded a nonsignificant result ($b_3 = .002$, SE = .024, p = .938) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.011, .015). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.186$, SE = .094, p < .05), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .075$, SE = .069, p = .284) at 6-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by conduct disorder yielded a nonsignificant result ($b_3 = -.027$, SE = .017, p = .118) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.005, .019). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Adolescent Session 3 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Adolescent Session 3 form and 6-month follow-up moderated mediation models are displayed in Tables 143-146 located in the Appendix. Treatment type was not significantly related to deviancy training ($a_1 =$ -.041, SE = .136, p = .763), nor was deviancy training found to significantly predict average number of drinks per week ($b_1 = .033$, SE = .055, p = .553) at 6-month follow-up. The effect of deviancy training on average number of drinks per week by conduct disorder yielded a significant result ($b_3 = -.042$, SE = .019, p = .028). However, the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.010, .016). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

No significant results were found in regards to percentage of heavy drinking days ($a_1 = -.045$, SE = .134, p = .740; $b_1 = .038$, SE = .063, p = .547; $b_3 = -.039$, SE = .039, SE = .03

.022, p = .072; 95% CI for index of moderated mediation = -.010, .016), average number of marijuana uses per week ($a_1 = -.034$, SE = .140, p = .807; $b_1 = .017$, SE = .060, p = .781; $b_3 = -.034$, SE = .021, p = .108; 95% CI for index of moderated mediation = -.009, .015), or alcohol-related predatory aggression ($a_1 = -.017$, SE = .135, p = .901; $b_1 = .009$, SE = .044, p = .833; $b_3 = -.023$, SE = .015, p = .140; 95% CI for index of moderated mediation = -.007, .009) at 6-month follow-up.

Counselor Session 10 Form and 3-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 3-month follow-up moderated mediation models are displayed in Tables 147-150 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.340$, SE = .138, p = .015), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = -.024$, SE = .048, p = .620) at 3-month follow-up. The effect of deviancy training on percentage of heavy drinking days by conduct disorder yielded a nonsignificant result ($b_3 = .021$, SE = .015, p = .157) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.021, .002). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

Similarly, treatment type was significantly related to deviancy training ($a_1 =$ -.332, SE = .140, p = .018) but deviancy training was not found to significantly predict average number of drinks per week ($b_1 = .000$, SE = .043, p = .994) at 3-month followup. The effect of deviancy training on average number of drinks per week by conduct disorder yielded a nonsignificant result ($b_3 = .015$, SE = .014, p = .285) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.017, .004). This indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder.

Again, treatment type was significantly related to deviancy training ($a_1 = -.310$, SE = .141, p = .029), but deviancy training was not found to significantly predict average number of marijuana uses per week ($b_1 = .090$, SE = .048, p = .064) at 3-month follow-up. The effect of deviancy training on average number of marijuana uses per week by conduct disorder yielded a nonsignificant result ($b_3 = .006$, SE = .015, p = .700) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.015, .008). This indicates that the indirect effect of treatment type on average number of marijuana uses per week through deviancy training is not moderated by conduct disorder.

Lastly, treatment type was significantly related to deviancy training ($a_1 = -.322$, SE = .142, p = .025), but deviancy training was not found to significantly predict alcohol-related predatory aggression ($b_1 = .007$, SE = .037, p = .844) at 3-month follow-up. The effect of deviancy training on alcohol-related predatory aggression by conduct disorder yielded a nonsignificant result ($b_3 = .001$, SE = .012, p = .916) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.008, .006). This indicates that the indirect effect of treatment type on alcohol-related predatory aggression through deviancy training is not moderated by conduct disorder.

Counselor Session 10 Form and 6-month Follow-up. The estimated regression coefficients resulting from the Counselor Session 10 form and 6-month follow-up moderated mediation models are displayed in Tables 151-154 located in the Appendix. Treatment type was significantly related to deviancy training ($a_1 = -.295$, SE = .148, p = .048), but deviancy training was not found to significantly predict percentage of heavy drinking days ($b_1 = .034$, SE = .058, p = .566) at 6-month follow-up. The effect of deviancy training on percentage of heavy drinking days by conduct disorder yielded a nonsignificant result ($b_3 = -.005$, SE = .018, p = .788) and the bootstrap confidence interval for the index of moderated mediation included zero (95% CI = -.016, .014). This indicates that the indirect effect of treatment type on percentage of heavy drinking days through deviancy training is not moderated by conduct disorder.

No significant results were found in regards to average number of drinks per week ($a_1 = -.291$, SE = .149, p = .054; $b_1 = .004$, SE = .051, p = .936; $b_3 = .003$, SE = .016, p = .865; 95% CI for index of moderated mediation = -.018, .010), average number of marijuana uses per week ($a_1 = -.241$, SE = .153, p = .119; $b_1 = -.040$, SE = .055, p = .475; $b_3 = .004$, SE = .018, p = .822; 95% CI for index of moderated mediation = -.015, .008), or alcohol-related predatory aggression ($a_1 = -.272$, SE = .153, p = .078; $b_1 = .039$, SE = .039, p = .324; $b_3 = -.001$, SE = .012, p = .947; 95% CI for index of moderated mediation = -.015, .008).

Summary. Again, CBT was associated with greater rates of deviancy training compared to SET as rated by observers at session 3 and counselors at session 10 for all four substance use outcome variables at the 3-month follow-up period. This

relationship was found at the six-month follow-up period for all four outcome variables as assessed by observers at session 3 and for percentage of heavy drinking days as assessed by counselors at session 10. No significant relationships were found between deviancy training and substance use outcomes at follow-up. The effect of deviancy training on average number of drinks per week at 6-month follow-up by conduct disorder was found to produce a significant effect as rated by adolescents at session 3. However, the bootstrap confidence interval for the index of moderated mediation included zero which indicates that the indirect effect of treatment type on average number of drinks per week through deviancy training is not moderated by conduct disorder. None of the other moderated mediation models examined found a significant effect effect of deviancy training on substance use outcomes by conduct disorder. Furthermore, none of the bootstrap confidence intervals produced evidence of moderated mediation. Therefore, no evidence was found to indicate the indirect effect of treatment type on substance use outcomes through deviancy training is moderated by conduct disorder.

CHAPTER 4: DISCUSSION

The current study sought to identify the extent to which various group processes as rated by counselors, observers, and adolescents mediate the relationship between type of group treatment received while incarcerated and adolescents' substance use and conduct problems following their release. Of the group processes investigated, only deviancy training was differentially impacted by treatment type as rated by counselors and observers. Treatment differences were not found when using adolescent ratings, suggesting that adolescents may be less able to meaningfully assess their own behaviors during group treatment.

Treatment type was found to have a significant direct effect of small/medium size on percentage of heavy drinking days at 6-month follow-up. Adolescents who received SET group treatment showed greater decreases in this outcome variable than adolescents who received CBT group treatment. No other significant direct effects of treatment type on substance use outcomes were found. See the main outcomes paper by Stein et al. (2015).

Although the present study utilized the same measure of group process dimensions as Dishion et al. (2001), direct comparisons are difficult to make due to stark differences in research methodology (i.e., statistical analyses, outcome variables, follow-up periods); however similarities in findings across studies will be discussed. Contrary to earlier research (Dishion & Andrews, 1995; Dishion et al., 1999; Dishion et al., 2001; Poulin et al., 2001), results from the present study support the literature against iatrogenic effects resulting from group treatment. When using counselor and observer ratings of group process, more deviancy training was found to occur in CBT groups compared to SET groups. These results are unlikely due to counselor effects or poor implementation given that counselors conducted both intervention types and received close supervision with manualized fidelity procedures. Moreover, this finding is consistent with Poulin et al. (2001) who found CBT to be associated with increases in deviancy. Why more deviancy training occurs in CBT group treatment compared to other forms of group treatment warrants further research. It may be that the interactive format of CBT merely provides more opportunities for adolescents to display deviant behavior compared to the more didactic psycho-educational format of SET. The present study examined the role of age and conduct disorder in the relationship between group treatment type and deviancy training. Future research may wish to examine the impact of additional client characteristics. For example, significantly more adolescents identified as Hispanic in SET than in CBT in the present study. Additional research is needed to determine whether cultural factors influence deviancy training in group treatment.

Little evidence was found in support of the hypothesis that deviancy training occurring in group treatment is related to poorer outcomes, or iatrogenic effects. A positive significant relationship was found between deviancy training and average number of drinks per week at 3-month follow-up as rated by counselors at session 3, and between deviancy training and average number of marijuana uses per week at 3-month follow-up as rated by counselors at session 10. However, neither of these relationships ($b_1 = .088$ and .095, respectively) met criteria for a small effect size (i.e., .14) and both vanished by the 6-month follow-up period. Relaxing the level of

significance to p < .10 as done by Dishion et al. (1999; 2001) produces three additional positive relationships between deviancy training and percentage of heavy drinking days and one additional positive relationship between deviancy training and average number of drinks per week, but none of these relationships produced even a small effect size ($b_1 = .088$ to .100). These findings seem to suggest that any iatrogenic effects that may result from group treatment are weak and temporary. Furthermore, the indirect effect of treatment type was insignificant across all models examined. This suggests that the effect of treatment on the substance use outcomes examined is not mediated by deviancy training, or any of the other group processes investigated.

Across all moderated mediation models tested, neither age nor conduct disorder symptoms were found to moderate the relationship between type of group treatment received and deviancy training (first stage; $X \rightarrow M$), or the relationship between deviancy training and substance use outcomes at follow-up (second stage; M \rightarrow Y). The findings regarding conduct disorder are consistent with those reported by Burleson et al. (2006), who found that neither individual level of conduct disorder, nor group composition in terms of conduct disorder, were associated with poorer substance use outcomes. Weiss et al. (2005) tested interaction effects to investigate whether specific subgroups of participants are associated with stronger iatrogenic effects. Of the 18 tests conducted, only one produced statistically marginal support for potential iatrogenic effects. According to this test, the likelihood of producing a negative effect size (i.e., producing iatrogenic effects) peaked at age 11. This finding may explain some of the discrepancy in the literature regarding iatrogenic effects resulting from group treatment. For example, in the study conducted by Dishion and Andrews (1995) in which evidence of iatrogenic effects were found, participants ranged in age from 11 to 14 with a mean age of 12. Participants ranged in age from 14-18 in the current study and from 12-17 in the study conducted by Burleson et al. (2006), neither of which found support for iatrogenic effects. Future research investigating this phenomenon may wish to focus on younger cohorts of participants to identify potential mechanisms through which iatrogenic effects may occur.

Additional research is needed to determine the role of connectedness to counselor in mediating the relationship between treatment type received and substance use outcomes. More specifically, developing a psychometrically sound multi-item scale for assessing connectedness to counselor seems of particular importance in order to replicate Dishion et al.'s (2001) finding that a positive relationship with an older peer counselor leads to more optimal outcomes. Therapist-praised positive behavior and peer rejection also warrant additional research. Therapist-praised positive behavior was found to be associated with better outcome at follow-up in some of the multiple mediator models. This may suggest that therapists can improve treatment outcomes for adolescents with more praise irrespective of treatment type; it may also be that less deviant youth tend to receive greater amounts of praise by their therapists. Interestingly, greater amounts of peer rejection were associated with better outcome at follow-up in some of the multiple mediator models. This finding is consistent with the study conducted by Dishion et al. (2001) in which peer rejection was found to be associated with less iatrogenic growth for smoking. It may be that rejected peers are more isolated; therefore, to the extent that substance abuse occurs in a social context,

rejection by peers may relate to decreased substance abuse. More research is needed to clarify this finding.

Future studies might investigate other variables that are likely to mediate the relationship between treatment type and substance use outcomes post-release in order to help elucidate why adolescents who received SET group treatment reported more optimal outcomes compared to adolescents who received CBT group treatment. For example, it may be that adolescents are more attracted to the curriculum and/or structure of SET groups compared to the more interactive structure of CBT groups, which require meta-cognition (i.e., thinking about thinking). Future studies may wish to examine the role of treatment engagement in mediating this relationship to test this possibility.

The present study may be limited by its relatively short follow-up periods (i.e., 3- and 6-months post-release) compared to the studies in support of iatrogenic effects; Dishion & Andrews (1995) found iatrogenic effects at 1-year follow-up, Poulin et al. (2001) at 2- and 3-year follow-ups, and McCord (1978) at 30-year follow-up. On the other hand, treatment studies generally produce stronger immediate than delayed effects (Weiss et al, 2005), somewhat mitigating the possibility that longer follow-ups in the present study might have produced iatrogenic treatment effects as mediated by group processes.

The present study utilized data collected from group interventions but did not assess for dependence in the data resulting from the nesting of participants in groups. This has the potential to inflate Type I error rates and result in spurious "significant" findings (Tasca, Illing, Ogrodniczuk, & Joyce, 2009). However, no significant

findings indicative of mediation or moderated mediation were found; thus, there is little need for concern that the results presented here represent spurious findings. Future research may wish to utilize a multilevel approach to determine whether deviancy training mediates the relationship between type of group intervention received and substance use and conduct problems following release in order to account for the non-independence that is typical of group data. Furthermore, it may be that adolescents are more susceptible to deviancy training resulting from peer relationships that are more time-intensive than those resulting from group treatment. For example, incarcerated youth spend much more time per day interacting with the youth on their housing unit than those in their treatment group(s). It may be these peer interactions, along with those the adolescents return to or develop once released back to their communities, that have the greatest potential for producing iatrogenic effects. Multilevel modeling could be used to account for these group relationships as well.

Additionally, modern approaches for handling missing data (e.g., multiple imputation) were not used. This is because the macros used to conduct the analyses do not accommodate missing data imputation routines. Missing data procedures would have resulted in N=205 for all analyses; however, this sample size still would not have been large enough to detect small path effect sizes (Fritz & MacKinnon, 2007) or small conditional indirect effects (Preacher et al., 2007). Additional research with larger sample sizes is needed to test for small effects, particularly within a multilevel framework. Future research could also examine the role of group processes as measured at the group-level using the Group Process-Group Leavel (GP-GL) measure (Bassett et al., 2015).

This study is important for several reasons. It is the first study to date known to specifically test whether deviancy training is the mechanism through which iatrogenic effects of group treatment purportedly occur using mediation analyses. Additionally, this study included measures of deviancy training from multiple vantage points (counselors, observers, and adolescents) to test whether one perspective is more predictive of treatment outcomes. The present study utilized data collected from a diverse sample of incarcerated adolescents who may be most at risk for experiencing iatrogenic effects given earlier findings that iatrogenic effects are most pronounced among homogenous groups comprised only of antisocial youth (Dishion et al., 1999). Although more research is warranted, no support for iatrogenic effects was found due to deviancy training or other group processes. As a result, the findings suggest group treatment remains an attractive and economical approach to providing clinical services to adolescents with substance abuse problems.

APPENDIX

Figure 1. Multiple Mediator Statistical Model. The *a* paths represent the effect of *X* on the proposed mediators, the *b* paths represent the effect of *M* on *Y* partialling out the effect of *X*, and *c*' represents the direct effect of *X* on *Y*.

Figure 2. Illustration of Simple Mediation Model. *X* is hypothesized to exert an indirect effect on *Y* through *M*.

Figure 3a. Conceptual Model for Moderated Mediation in the First Stage $(X \rightarrow M)$.

Figure 3b. Statistical Model for Moderated Mediation in the First Stage $(X \rightarrow M)$.

Figure 4a. Conceptual Model for Moderated Mediation in the Second Stage $(M \rightarrow Y)$.

Figure 4b. Statistical Model for Moderated Mediation in the Second Stage $(M \rightarrow Y)$.

Table 1. Means and Standard Deviations (SD) of Substance Use variables						
Variable Name	N	Mean	SD	%∆ ^a	\mathscr{M}^b	
Baseline						
PHDD	167	11.21	17.29			
DRWK	167	9.92	15.80			
MJWK	167	18.14	20.24			
PRAG	167	1.49	2.21			
3-month follow-up						
PHDD	167	5.68	15.64	-49.33		
DRWK	167	4.48	10.75	-54.84		
MJWK	166	6.64	11.38	-63.40		
PRAG	167	.38	1.36	-74.50		
6-month follow-up						
PHDĎ	141	7.72	18.22	-31.13	35.92	
DRWK	141	5.29	11.14	-46.67	18.08	
MJWK	139	6.68	12.55	-63.18	.60	
PRAG	141	.30	1.17	-79.87	-21.05	

Table 1.	Means and	Standard	Deviations	(SD)	of Substance	Use '	Variables
				·			

Notes: Data shown are non-transformed. PHDD = percentage of heavy drinking days; DRWK = average number of drinks per week; MJWK = average number of marijuana uses per week; PRAG = alcohol-related predatory aggression; $\% \Delta^a$ = Percent change from baseline; $\% \Delta^a$ = Percent change from 3-month follow-up.

	BL	BL	BL	BL	3m	3m	3m	3m	6m	6m	6m	6m
	PHDD	DRWK	MJFQ	PRAG	PHDD	DRWK	MJFQ	PRAG	PHDD	DRWK	MJFQ	PRAG
BL	-	.903**	.205**	.394**	.280**	.335**	.093	.279**	.236**	.247**	.019	.231**
PHDD												
BL		-	.227**	.417**	.284**	.316**	.073	.279**	.214*	.239**	.036	.219**
DRWK												
BL			-	.168*	.102	.094	.310**	.133	.167*	.160	.235**	.192*
MJFQ												
BL				-	.296**	.367**	.143	.457**	.238**	.277**	.086	.304**
PRAG												
3m					-	.904**	.371**	.394**	.569**	.553**	.254**	.242**
PHDD												
3m						-	.451**	.562**	.631**	.674**	.381**	.392**
DRWK												
3m							-	.324**	.333**	.414**	.651**	.374**
MJFQ												
3m								-	.295**	.396**	.344**	.633**
PRAG												
6m									-	.926**	.387**	.500**
PHDD											50 5 k k	5 0 (***
6m										-	.505**	.596**
DRWK												5 (0**
6m											-	.568**
MJFQ												
6m												-
PRAG												

Table 2. Correlations Among Substance Use Variables

Notes. Data shown are log-transformed. BL = baseline; 3m = 3-month follow-up; 6m = 6-month follow-up. PHDD = percentage of heavy drinking days; DRWK = average number of drinks per week; MJWK = average number of marijuana uses per week; PRAG = alcohol-related predatory aggression. * p < .05; ** p < .01.

Table 3. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Counselor Session 3 Form and 3-month Follow-up

Point <u>Percentile 9</u>		95% CI
Estimate	Lower	Upper
0055	0327	.0265
.0038	0185	.0239
0004	0206	.0203
.0019	0159	.0183
0002	0411	.0399
0050	0296	.0263
.0029	0167	.0208
0002	0183	.0132
.0006	0177	.0139
0018	0392	.0325
0028	0268	.0224
.0026	0142	.0270
.0002	0190	.0180
0043	0285	.0137
0043	0433	.0362
0018	0178	.0189
0025	0234	.0124
.0001	0161	.0132
.0023	0110	.0174
0019	0298	.0249
	Point Estimate 0055 .0038 0004 .0019 0002 0002 0029 0002 .0006 0018 0018 0028 .0026 .0002 0043 0043 0043 0043 0025 .0001 .0023 0019	PointPercentileEstimateLower 0055 0327 $.0038$ 0185 0004 0206 $.0019$ 0159 0002 0411 0050 0296 $.0029$ 0167 0002 0183 $.0006$ 0177 0018 0392 0028 0268 $.0026$ 0142 $.0026$ 0142 $.0026$ 0142 $.0026$ 0142 $.0043$ 0285 0043 0433 0018 0178 0025 0234 $.0001$ 0161 $.0023$ 0110 0019 0298

Notes: PHDD = percentage of heavy drinking days; DRWK = average number of drinks per week; MJWK = average number of marijuana uses per week; PRAG = alcohol-related predatory aggression; Point Estimate = indirect effect of treatment on outcome through Mediator_i.

Table 4. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Observer Session 3 Form and 3-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 156)			
Deviancy	.0044	0227	.0320
Positive Involvement	0047	0328	.0147
Peer Rejection	0018	0277	.0140
Praised Behavior	.0013	0093	.0423
TOTAL	.0093	0323	.0470
DRWK (<i>n</i> = 156)			
Deviancy	.0092	0123	.0339
Positive Involvement	0054	0362	.0096
Peer Rejection	0032	0271	.0112
Praised Behavior	.0114	0092	.0394
TOTAL	.0120	0286	.0482
MJWK (<i>n</i> = 155)			
Deviancy	0011	0286	.0312
Positive Involvement	0133	0505	.0123
Peer Rejection	.0013	0237	.0208
Praised Behavior	.0039	0240	.0296
TOTAL	0092	0573	.0352
PRAG $(n = 156)$			
Deviancy	.0074	0105	.0318
Positive Involvement	0039	0279	.0108
Peer Rejection	0024	0240	.0097
Praised Behavior	.0007	0162	.0183
TOTAL	.0019	0325	.0344

Notes: PHDD = percentage of heavy drinking days; DRWK = average number of drinks per week; MJWK = average number of marijuana uses per week; PRAG = alcohol-related predatory aggression; Point Estimate = indirect effect of treatment on outcome through Mediator_i.

Table 5. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Adolescent Session 3 Form and 3-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 164)			
Deviancy	0011	0283	.0216
Positive Involvement	.0005	0144	.0152
Peer Rejection	.0279	0164	.0723
Praised Behavior	.0146	0172	.0613
TOTAL	.0418	0187	.1072
DRWK (<i>n</i> = 164)			
Deviancy	0009	0263	.0201
Positive Involvement	0020	0259	.0133
Peer Rejection	.0215	0118	.0564
Praised Behavior	.0110	0140	.0507
TOTAL	.0294	0263	.0892
MJWK (<i>n</i> = 163)			
Deviancy	0002	0118	.0223
Positive Involvement	0007	0197	.0190
Peer Rejection	.0016	0155	.0215
Praised Behavior	0070	0325	.0169
TOTAL	0063	0407	.0344
PRAG ($n = 164$)			
Deviancy	0001	0129	.0117
Positive Involvement	0023	0249	.0166
Peer Rejection	0008	0182	.0110
Praised Behavior	0006	0148	.0122
TOTAL	0038	0368	.0230

Notes: PHDD = percentage of heavy drinking days; DRWK = average number of drinks per week; MJWK = average number of marijuana uses per week; PRAG = alcohol-related predatory aggression; Point Estimate = indirect effect of treatment on outcome through Mediator_i.
Table 6. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Counselor Session 3 form and 6-month follow-up

	Point	Percentile	entile 95% CI
	Estimate	Lower	Upper
PHDD (<i>n</i> = 139)			
Deviancy	.0074	0255	.0578
Positive Involvement	.0108	0228	.0435
Peer Rejection	0203	0666	.0046
Praised Behavior	0027	0283	.0155
TOTAL	0048	0663	.0513
DRWK (<i>n</i> = 139)			
Deviancy	.0051	0198	.0440
Positive Involvement	.0086	0201	.0394
Peer Rejection	0185	0598	.0048
Praised Behavior	0037	0298	.0126
TOTAL	0085	0616	.0383
MJWK (<i>n</i> = 137)			
Deviancy	.0039	0150	.0383
Positive Involvement	.0112	0138	.0602
Peer Rejection	.0003	0335	.0338
Praised Behavior	0048	0328	.0179
TOTAL	.0106	0344	.0762
PRAG (<i>n</i> = 139)			
Deviancy	.0016	0060	.0150
Positive Involvement	0010	0103	.0043
Peer Rejection	.0019	0094	.0131
Praised Behavior	0003	0044	.0053
TOTAL	.0023	0129	.0171

Table 7. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Observer Session 3 Form and 6-month Follow-up

	Point	Percentil	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 132)			
Deviancy	0138	0723	.0262
Positive Involvement	0203	0760	.0146
Peer Rejection	.0010	0248	.0258
Praised Behavior	.0136	0269	.0654
TOTAL	0195	0983	.0427
DRWK (<i>n</i> = 132)			
Deviancy	0092	0609	.0259
Positive Involvement	0164	0638	.0148
Peer Rejection	.0027	0188	.0269
Praised Behavior	.0130	0267	.0629
TOTAL	0100	0773	.0469
MJWK (<i>n</i> = 130)			
Deviancy	0034	0413	.0362
Positive Involvement	0185	0667	.0217
Peer Rejection	.0003	0273	.0180
Praised Behavior	.0053	0213	.0372
TOTAL	0162	0736	.0380
PRAG $(n = 132)$			
Deviancy	0025	0222	.0113
Positive Involvement	0039	0164	.0042
Peer Rejection	.0000	0096	.0068
Praised Behavior	.0012	0062	.0091
TOTAL	0053	0297	.0120

Table 8. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Adolescent Session 3 Form and 6-month Follow-up

	Point	Percentil	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 139)			
Deviancy	0021	0319	.0143
Positive Involvement	0003	0203	.0185
Peer Rejection	.0156	0224	.0546
Praised Behavior	.0036	0196	.0306
TOTAL	.0168	0358	.0636
DRWK (<i>n</i> = 139)			
Deviancy	0012	0243	.0119
Positive Involvement	.0004	0183	.0204
Peer Rejection	.0120	0205	.0455
Praised Behavior	.0017	0139	.0227
TOTAL	.0129	0335	.0555
MJWK (<i>n</i> = 137)			
Deviancy	0008	0240	.0182
Positive Involvement	.0000	0184	.0219
Peer Rejection	.0045	0202	.0364
Praised Behavior	0013	0181	.0220
TOTAL	.0024	0358	.0471
PRAG (<i>n</i> = 139)			
Deviancy	.0001	0061	.0067
Positive Involvement	.0000	0052	.0076
Peer Rejection	0018	0135	.0042
Praised Behavior	0002	0051	.0054
TOTAL	0019	0142	.0086

Table 9. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Counselor Session 10 Form and 3-month Follow-up

	Point	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 159)			
Deviancy	0130	0554	.0274
Positive Involvement	0132	0600	.0078
Peer Rejection	.0024	0225	.0280
Praised Behavior	.0010	0184	.0192
TOTAL	0227	0914	.0305
DRWK (<i>n</i> = 159)			
Deviancy	0082	0478	.0261
Positive Involvement	0075	0408	.0078
Peer Rejection	.0023	0230	.0285
Praised Behavior	.0022	0128	.0209
TOTAL	0111	0692	.0336
MJWK (<i>n</i> = 158)			
Deviancy	0253	0761	.0055
Positive Involvement	0079	0435	.0105
Peer Rejection	0002	0237	.0161
Praised Behavior	0097	0427	.0130
TOTAL	0431	1067	.0037
PRAG (<i>n</i> = 159)			
Deviancy	0011	0138	.0122
Positive Involvement	.0029	0045	.0120
Peer Rejection	0003	0076	.0047
Praised Behavior	.0021	0042	.0122
TOTAL	.0036	0127	.0203

Table 10. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Observer Session 10 Form and 3-month Follow-up

	Point	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 112)			
Deviancy	0151	0701	.0152
Positive Involvement	.0019	0170	.0312
Peer Rejection	0149	0663	.0303
Praised Behavior	.0013	0297	.0362
TOTAL	0267	1076	.0382
DRWK (<i>n</i> = 112)			
Deviancy	0109	0594	.0121
Positive Involvement	.0016	0173	.0289
Peer Rejection	0120	0596	.0260
Praised Behavior	.0007	0310	.0318
TOTAL	0206	0912	.0381
MJWK (<i>n</i> = 111)			
Deviancy	0043	0603	.0102
Positive Involvement	0042	0342	.0252
Peer Rejection	0043	0436	.0209
Praised Behavior	0006	0372	.0350
TOTAL	0134	0920	.0355
PRAG (<i>n</i> = 112)			
Deviancy	0068	0882	.0150
Positive Involvement	.0059	0113	.0402
Peer Rejection	0049	0309	.0160
Praised Behavior	.0013	0230	.0311
TOTAL	0046	0907	.0511

Table 11. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Adolescent Session 10 Form and 3-month Follow-up

	Point	Percentil	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 158)			
Deviancy	0099	0486	.0144
Positive Involvement	.0002	0176	.0180
Peer Rejection	.0131	0105	.0642
Praised Behavior	0061	0486	.0126
TOTAL	0027	0539	.0491
DRWK (<i>n</i> = 158)			
Deviancy	0059	0369	.0171
Positive Involvement	0016	0243	.0153
Peer Rejection	.0064	0144	.0334
Praised Behavior	0083	0537	.0115
TOTAL	0094	0635	.0299
MJWK (<i>n</i> = 157)			
Deviancy	.0126	0094	.0522
Positive Involvement	0024	0277	.0184
Peer Rejection	0068	0326	.0166
Praised Behavior	0004	0217	.0233
TOTAL	.0030	0356	.0519
PRAG (<i>n</i> = 158)			
Deviancy	.0048	0129	.0318
Positive Involvement	.0008	0125	.0144
Peer Rejection	0019	0431	.0099
Praised Behavior	0083	0432	.0160
TOTAL	0045	0558	.0309

Table 12. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Counselor Session 10 Form and 6-month Follow-up

	Point	Percentil	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 134)			
Deviancy	0165	0771	.0268
Positive Involvement	0045	0328	.0151
Peer Rejection	.0006	0288	.0270
Praised Behavior	0091	0399	.0181
TOTAL	0295	1046	.0269
DRWK (<i>n</i> = 134)			
Deviancy	0077	0566	.0364
Positive Involvement	0022	0284	.0150
Peer Rejection	.0003	0250	.0208
Praised Behavior	0051	0303	.0213
TOTAL	0146	0749	.0357
MJWK (<i>n</i> = 132)			
Deviancy	.0085	0236	.0489
Positive Involvement	0042	0358	.0145
Peer Rejection	.0001	0228	.0165
Praised Behavior	0199	0629	.0147
TOTAL	0155	0782	.0382
PRAG $(n = 134)$			
Deviancy	0033	0194	.0076
Positive Involvement	.0027	0068	.0133
Peer Rejection	0006	0148	.0082
Praised Behavior	.0032	0031	.0177
TOTAL	.0021	0206	.0227

Table 13. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Observer Session 10 Form and 6-month Follow-up

	Point	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 95)			
Deviancy	.0000	0453	.0270
Positive Involvement	0032	0388	.0312
Peer Rejection	0058	0634	.0265
Praised Behavior	.0006	0312	.0395
TOTAL	0083	0859	.0548
DRWK $(n = 95)$			
Deviancy	.0003	0461	.0260
Positive Involvement	0047	0380	.0255
Peer Rejection	0030	0462	.0246
Praised Behavior	0001	0275	.0336
TOTAL	0075	0752	.0480
MJWK (<i>n</i> = 93)			
Deviancy	0024	0777	.0137
Positive Involvement	0171	0730	.0330
Peer Rejection	0039	0513	.0264
Praised Behavior	0039	0424	.0287
TOTAL	0273	1245	.0395
PRAG $(n = 95)$			
Deviancy	0008	0289	.0081
Positive Involvement	.0007	0066	.0140
Peer Rejection	.0012	0120	.0139
Praised Behavior	.0012	0061	.0182
TOTAL	.0023	0291	.0289

Table 14. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training, Positive GroupInvolvement, Peer Rejection, and Therapist-Praised PositiveBehavior: Adolescent Session 10 Form and 6-month Follow-up

	Point	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 134)			
Deviancy	0080	0479	.0161
Positive Involvement	0005	0258	.0321
Peer Rejection	.0020	0228	.0469
Praised Behavior	.0099	0192	.0446
TOTAL	.0033	0497	.0567
DRWK ($n = 134$)			
Deviancy	.0024	0240	.0285
Positive Involvement	0005	0214	.0275
Peer Rejection	.0017	0244	.0390
Praised Behavior	.0021	0232	.0290
TOTAL	.0057	0382	.0563
MJWK (<i>n</i> = 132)			
Deviancy	.0169	0150	.0644
Positive Involvement	.0005	0168	.0246
Peer Rejection	0007	0223	.0207
Praised Behavior	0042	0341	.0272
TOTAL	.0125	0289	.0678
PRAG ($n = 134$)			
Deviancy	.0021	0046	.0161
Positive Involvement	0002	0068	.0056
Peer Rejection	0003	0209	.0056
Praised Behavior	.0001	0094	.0115
TOTAL	.0016	0187	.0172

	Point <u>Per</u>	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 164)			
Deviancy	0051	0321	.0251
DRWK ($n = 164$)			
Deviancy	0049	0301	.0228
MJWK ($n = 163$)			
Deviancy	0035	0300	.0218
PRAG (n = 164)			
Deviancy	0021	0178	.0156

Table 15. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Counselor Session 3Form and 3-month Follow-up

<u> </u>			
	Point	Percentile	<u>e 95% CI</u>
	Estimate	Lower	Upper
PHDD (<i>n</i> = 156)			
Deviancy	.0037	0220	.0299
DRWK $(n = 156)$			
Deviancy	.0080	0124	.0319
MJWK $(n = 155)$			
Deviancy	0050	0334	.0261
PRAG ($n = 156$)			
Deviancy	.0057	0120	.0287

Table 16. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Observer Session 3Form and 3-month Follow-up

	Point	Point <u>Percentile 95% CI</u>	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 164)			
Deviancy	0009	0263	.0192
DRWK ($n = 164$)			
Deviancy	0009	0284	.0202
MJWK ($n = 163$)			
Deviancy	0001	0108	.0204
PRAG (n = 164)			
Deviancy	.0001	0115	.0103

Table 17. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Adolescent Session 3Form and 3-month Follow-up

	Point	Percentile	e 95% CI
	Estimate	Lower	Upper
PHDD (<i>n</i> = 139)			
Deviancy	.0062	0234	.0484
DRWK $(n = 139)$			
Deviancy	.0038	0151	.0357
MJWK (<i>n</i> = 137)			
Deviancy	.0046	0134	.0386
PRAG (<i>n</i> = 139)			
Deviancy	.0040	0129	.0308

Table 18. Mediation of the Effect of Treatment Type onSubstance Use Outcomes Through Deviancy Training:Counselor Session 3 Form and 6-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 132)			
Deviancy	0174	0759	.0191
DRWK (<i>n</i> = 132)			
Deviancy	0116	0599	.0206
MJWK (<i>n</i> = 130)			
Deviancy	0083	0461	.0274
PRAG $(n = 132)$			
Deviancy	0080	0546	.0207
-			

Table 19. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Observer Session 3Form and 6-month Follow-up

roi in and o-month ronow-up			
	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 139)			
Deviancy	0013	0301	.0124
DRWK ($n = 139$)			
Deviancy	0008	0267	.0108
MJWK (<i>n</i> = 137)			
Deviancy	.0000	0179	.0167
PRAG (<i>n</i> = 139)			
Deviancy	.0000	0121	.0113

Table 20. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Adolescent Session 3Form and 6-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 159)			
Deviancy	0144	0536	.0243
DRWK (<i>n</i> = 159)			
Deviancy	0053	0373	.0288
MJWK (<i>n</i> = 158)			
Deviancy	0295	0818	.0027
PRAG (<i>n</i> = 159)			
Deviancy	0041	0315	.0220

Table 21. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Counselor Session 10Form and 3-month Follow-up

Table 22. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Observer Session 10Form and 3-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 112)			
Deviancy	0091	0584	.0131
DRWK ($n = 112$)			
Deviancy	0058	0480	.0133
MJWK (<i>n</i> = 111)			
Deviancy	0024	0547	.0115
PRAG $(n = 112)$			
Deviancy	0056	0919	.0147

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 159)			
Deviancy	0115	0481	.0143
DRWK (<i>n</i> = 159)			
Deviancy	0112	0431	.0135
MJWK (<i>n</i> = 158)			
Deviancy	.0037	0120	.0362
PRAG (<i>n</i> = 159)			
Deviancy	.0005	0154	.0190

Table 23. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Adolescent Session 10Form and 3-month Follow-up

roi in and o-month ronow-up			
	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 134)			
Deviancy	0127	0639	.0272
DRWK ($n = 134$)			
Deviancy	0046	0469	.0311
MJWK (<i>n</i> = 132)			
Deviancy	.0079	0226	.0477
PRAG $(n = 134)$			
Deviancy	0115	0474	.0106

Table 24. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Counselor Session 10Form and 6-month Follow-up

	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 95)			
Deviancy	.0034	0381	.0037
DRWK $(n = 95)$			
Deviancy	.0027	0373	.0290
MJWK $(n = 93)$			
Deviancy	0002	0061	.0150
PRAG $(n = 95)$			
Deviancy	0041	0663	.0129
Deviancy MJWK $(n = 93)$ Deviancy PRAG $(n = 95)$ Deviancy	.0027 0002 0041	0373 0061 0663	.0290 .0150 .0129

Table 25. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Observer Session 10Form and 6-month Follow-up

Form and 6-month Follow-up			
	Point	Percentile 95% CI	
	Estimate	Lower	Upper
PHDD (<i>n</i> = 134)			
Deviancy	0056	0384	.0205
DRWK ($n = 134$)			
Deviancy	.0028	0187	.0315
MJWK (<i>n</i> = 132)			
Deviancy	.0155	0154	.0601
PRAG (<i>n</i> = 134)			
Deviancy	.0035	0116	.0313

Table 26. Mediation of the Effect of Treatment Type on SubstanceUse Outcomes Through Deviancy Training: Adolescent Session 10Form and 6-month Follow-up

Counselor Dessit	01010	i in and e mont	n i onon up men i	ige m	I list Stage (li	101).
		Dev	iancy (M)		3mo P	HDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0516	3025, .1993	c'	0644	2184, .0895
		(.1270)			(.0779)	
Deviancy (M)				b_1	.0880	0073, .1832
• • • /					(.0482)	
Age (W)	a_2	0379	1559, .0800			
		(.0597)				
$X \times W$	<i>a</i> ₃	.1977	0412, .4365			
		(.1209)				
BL PHDD (U)	a_4	.1180	0901, .3262	b_2	.2337***	.1070, .3605
		(.1054)			(.0642)	
Constant	$i_{\rm M}$	1.0357***	.8434, 1.2280	$i_{ m Y}$.0944	0600, .2487
		(.0974)			(.0782)	
		$R^{2} =$.0246		$R^{2} =$.1042
		F(4, 159) = 1	.0045, <i>p</i> = .4070		F(3, 160) = 6.2	2028, p = .0005

Table 27. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage (n=164).

Table 28. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage (*n*=164).

		Devi	Deviancy (M)			RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0470	2980, .2040	ċ	0384	1780, .1011
		(.1271)			(.0707)	
Deviancy (M)				b_1	.0886*	.0022, .1749
					(.0437)	
Age (W)	a_2	0425	1608, .0757			
		(.0599)				
$X \times W$	<i>a</i> ₃	.2056	0346, .4457			
		(.1216)				
BL DRWK (U)	a_4	.1475	0877, .3827	b_2	.2722***	.1434, 4009
		(.1191)			(.0652)	
Constant	$i_{\rm M}$	1.0133***	.8040, 1.2226	$i_{ m Y}$.0684	0776, .2143
		(.1060)			(.0739)	
		R^2 :	= .0263		$R^2 =$.1283
		F(4, 159) = 1	1.0755, p = .3705		F(3, 160) = 7	.8512, $p = .0001$

		Deviancy (M)			3mo N	IJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0354	2870, .2163	Ċ	1144	2719, .0431
		(.1274)			(.0798)	
Deviancy (M)				b_1	.0805	0171, .1780
					(.0494)	
Age (W)	a_2	0413	1592, .0765			
		(.0597)				
$X \times W$	<i>a</i> ₃	.1946	0442, .4334			
		(.1209)				
BL MJWK (U)	a_4	.0259	2050, .2568	b_2	.3253***	.1825, .4682
		(.1169)			(.0723)	
Constant	i_{M}	1.0828***	.8160, 1.3496	$i_{ m Y}$.0689	1286, .2663
		(.1351)			(.1000)	
		R^2	= .0195		$R^{2} =$.1419
		F(4, 158) =	.7847, p = .5367		F(3, 159) = 8	.7630. $p < .0001$

 Table 29. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):

 Counselor Session 3 Form and 3-month Follow-up with Age in First Stage (n=163).

Table 30. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 3-month Follow-up with Age in First Stage (*n*=164).

		Devia	ancy (M)	_	3mo PRAG (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	0303	2819, .2213	Ċ	.0639	0582, .1859
		(.1274)			(.0618)	
Deviancy (M)				b_1	.0504	0249, .1258
					(.0382)	
Age (W)	a_2	0534	1726, .0658			
		(.0603)				
$X \times W$	<i>a</i> 3	.1972	0393, .4336			
		(.1197)				
BL PRAG (U)	a_4	.1494	0310, .3299	b_2	.2879***	.2013, .3744
		(.0914)			(.0438)	
Constant	$i_{\rm M}$	1.0223***	.8519, 1.1927	$i_{ m Y}$	0775	1911, .0361
		(.0863)			(.0575)	
		R^2	= .0332		$R^{2} =$.2282
		F(4, 159) = 1	1.3657, p = .2482	I	F(3, 160) = 15	.7709, <i>p</i> < .0001

		Devi	Deviancy (M)		3mo PHDD (Y)		
	_	Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	1894*	3536,0252	Ċ	0572	2203, .1060	
		(.0831)			(.0826)		
Deviancy (M)				b_1	0190	1748, .1367	
					(.0788)		
Age (W)	a_2	0604	1362, .0154				
		(.0384)					
$X \times W$	a_3	.0188	1342, .1719				
		(.0774)					
BL PHDD (U)	a_4	.0404	0954, .1762	b_2	.2350***	.1032, .3668	
		(.0687)			(.0667)		
Constant	i_{M}	.3285***	.2035, .4536	$i_{ m Y}$.1961	.0641, .3280	
		(.0633)			(.0668)		
		R^2	= .0523		$R^2 =$.0790	
		F(4, 151) = 2.0825, p = .0858			F(3, 152) = 4.3462, p = .0057		

Table 31. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 3-month Follow-up with Age in First Stage (*n*=156).

 Table 32. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Drinks per Week (DRWK):

 Observer Session 3 Form and 3-month Follow-up with Age in First Stage (n=156).

	Devi	ancy (M)	_	3mo DRWK (Y)		
	Coeff.	95% CI		Coeff.	95% CI	
a_1	1902*	3548,0256	c	0237	1705, .1231	
	(.0833)			(.0743)		
			b_1	0409	1808, .0990	
				(.0708)		
a_2	0606	1367, .0155				
	(.0385)					
<i>a</i> ₃	.0161	1378, .1700				
	(.0779)					
a_4	.0164	1369, .1696	b_2	.2682***	.1357, .4006	
	(.0776)			(.0671)		
$i_{\rm M}$.3449***	.2083, .4816	$i_{ m Y}$.1762**	.0478, .3045	
	(.0692)			(.0650)		
	R^2	$R^2 = .0504$.0979	
	F(4, 151) = 2	2.0032, p = .0969	i	F(3, 152) = 5.5005, p = .0013		
		$\begin{array}{r c} & & & & \\ \hline Coeff. \\ \hline a_1 &1902^* \\ (.0833) \\ \hline a_2 &0606 \\ (.0385) \\ a_3 & .0161 \\ (.0779) \\ a_4 & .0164 \\ (.0776) \\ i_M & .3449^{***} \\ (.0692) \\ \hline R^2 = \\ F(4, 151) = 2 \\ \hline \end{array}$	$\begin{tabular}{ c c c c c } \hline \hline Deviancy (M) \\ \hline \hline Coeff. & 95\% CI \\ \hline a_1 &1902* &3548,0256 \\ (.0833) \\ \hline a_2 &0606 &1367, .0155 \\ (.0385) \\ \hline a_3 & .0161 &1378, .1700 \\ (.0779) \\ \hline a_4 & .0164 &1369, .1696 \\ (.0776) \\ \hline i_M & .3449*** & .2083, .4816 \\ (.0692) \\ \hline R^2 = .0504 \\ F(4, 151) = 2.0032, p = .0969 \\ \hline \end{tabular}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Table 33. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):Observer Session 3 Form and 3-month Follow-up with Age in First Stage (n=155).

		Devi	_	3mo MJWK (Y)		
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	1888*	3548,0229	Ċ	1095	2786, .0595
		(.0840)			(.0856)	
Deviancy (M)				b_1	.0261	1344, .1866
					(.0812)	
Age (W)	a_2	0566	1327, .0195			
		(.0385)				
$X \times W$	<i>a</i> ₃	.0194	1346, .1734			
		(.0779)				
BL MJWK (U)	a_4	.0592	0925, .2110	b_2	.3289***	.1784, .4794
		(.0768)			(.0762)	
Constant	$i_{\rm M}$.2987***	.1249, .4724	$i_{ m Y}$.1552	0232, .3336
		(.0879)			(.0903)	
		R^2	$R^2 = .0548$		$R^{2} =$.1294
		F(4 150) = 2 1731 n = 0747		F(3 151) = 7 4835 n = 0001		

Table 34. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Observer Session 3 Form and 3-month Follow-up with Age in First Stage (n=156).

		Devi	ancy (M)		3mo F	PRÁG (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	1826* (.0835)	3476,0176	Ċ	.0764 (.0644)	0509, .2036
Deviancy (M)		()		b_1	0302 (.0612)	1512, .0908
Age (W)	a_2	0654 (.0388)	1430, .0113			
$X \times W$	<i>a</i> ₃	.0216 (.0773)	1312, .1744			
BL PRAG (U)	<i>a</i> ₄	.0535 (.0601)	0653, .1723	b_2	.3058*** (.0449)	.2172, .3945
Constant	i _M	.3228*** (.0562)	.2116, .4339	$i_{ m Y}$	0218 (.0470)	1146, .0710
		R^2	= .0551		$R^2 =$.2353
		F(4, 151) = 2	2.1999, p = .0716	1	F(3, 152) = 15	.5926, p < .0001

		Devi	ancy (M)	8	3mo P	HDD (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	0161	2739, .2418	Ċ	0686	2232, .0860
		(.1306)			(.0783)	
Deviancy (M)				b_1	.0607	0331, .1545
					(.0475)	
Age (W)	a_2	.0130	1082, .1343			
		(.0614)				
$X \times W$	<i>a</i> ₃	.1062	1392, .3517			
		(.1243)				
BL PHDD (U)	a_4	.2852**	.0713, .4991	b_2	.2253***	.0957, .3550
		(.1083)			(.0656)	
Constant	i_{M}	.5606***	.3630, .7582	$i_{ m Y}$.1528*	.0957, .3550
		(.1001)			(.0656)	
		R^2	= 0438		$R^{2} =$	= 0948
		F(4, 159) = 1	1.8214, p = .1273		F(3, 160) = 5	.5847, p = .0011

 Table 35. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD):

 Adolescent Session 3 Form and 3-month Follow-up with Age in First Stage (n=164).

Table 36. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3 Form and 3-month Follow-up with Age in First Stage (*n*=164).

Autorescent Sessi	01510	n in and 5-mon	th Fonow-up with A	ige m	Filst Stage (n-	-10+).	
		Devi	Deviancy (M)			3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0123	2730, .2484	Ċ	0424	1826, .0977	
		(.1320)			(.0710)		
Deviancy (M)				b_1	.0670	0172, .1512	
					(.0426)		
Age (W)	a_2	.0067	1162, .1295				
		(.0622)					
$X \times W$	<i>a</i> ₃	.1034	1461, .3528				
		(.1263)					
BL DRWK (U)	a_4	.2385	0058, .4828	b_2	.2667***	.1363, .3970	
		(.1237)			(.0660)		
Constant	$i_{\rm M}$.5905***	.3731, .8078	$i_{ m Y}$.1207	0052, .2465	
		(.1101)			(.0637)		
		R^2	= .0249		$R^2 = .1196$		
		F(4, 159) = 1.0149, p = .4015			F(3, 160) = 7.2421, p = .0001		

 Table 37. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):

 Adolescent Session 3 Form and 3-month Follow-up with Age in First Stage (n=163).

		Devi	Deviancy (M)			3mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0154	2802, .2494	c	1178	2766, .0410	
		(.1341)			(.0804)		
Deviancy (M)				b_1	.0062	0880, .1004	
					(.0894)		
Age (W)	a_2	.0198	1042, .1438				
		(.0628)					
$X \times W$	a_3	.0810	1702, .3323				
		(.1272)					
BL MJWK (U)	a_4	.1401	1028, .3830	b_2	.3246***	.1801, .4691	
		(.1230)			(.0732)		
Constant	$i_{\rm M}$.6175***	.3368, .8983	$i_{ m Y}$.1546	0220, .3313	
		(.1421)			(.0894)		
		D?	0100		D ²	1076	
		R^2	= .0102		$R^2 =$	= .12/6	
		F(4, 158) = .4081, p = .8027			F(3, 159) = 7	.7550, <i>p</i> < .0001	

Table 38. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 3-month Follow-up with Age in First Stage (*n*=164).

		Devia	Deviancy (M)		3mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0240	2334, .2814	Ċ	.0616	0610, .1843
		(.1303)			(.0621)	
Deviancy (M)				b_1	.0074	0673, .0821
					(.0378)	
Age (W)	a_2	0169	1388, .1050			
		(.0617)				
$X \times W$	<i>a</i> ₃	.0966	1453, .3384			
		(.1225)				
BL PRAG (U)	a_4	.2949**	.1103, .4795	b_2	.2919***	.2028, .3810
		(.0935)			(.0451)	
Constant	i_{M}	.5708***	.3965, .7451	$i_{ m Y}$	0291	1221, .0639
		(.0883)			(.0471)	
		R^2	= .0609		$R^{2} =$	2200
		F(4, 159) = 2	2.5770, p = .0396		F(3, 160) = 15	5.0405, p < .0001

		Devia	Deviancy (M)			HDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0642	1987, .3271	Ċ	2382*	4240,0525	
		(.1329)			(.0939)		
Deviancy (M)				b_1	.1004	0190, .2098	
					(.0604)		
Age (W)	a_2	0188	1369, .0994				
		(.0597)					
$X \times W$	a_3	.2125	0284, .4535				
		(.1218)					
BL PHDD (U)	a_4	.1367	0800, .3534	b_2	.2161**	.0652, .3670	
		(.1096)			(.0763)		
Constant	i_{M}	.9978***	.7942, 1.2014	$i_{ m Y}$.1532	0344, .3408	
		(.1029)			(.0948)		
		R^2	= .0303		$R^2 = .1167$		
		F(4, 134) =	1.0454, <i>p</i> = .3863		F(3, 135) = 5.9464, p = .0008		

Table 39. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

Table 40. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

		Devi	ancy (M)		6mo D	RWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0683	1939, .3305	Ċ	1414	3071, .0241	
		(.1326)			(.0838)		
Deviancy (M)				b_1	.0588	0479, .1654	
					(.0539)		
Age (W)	a_2	0249	1430, .0932				
		(.0597)					
$X \times W$	<i>a</i> 3	.2238	0178, .4654				
		(.1222)					
BL DRWK (U)	a_4	.1875	0559, .4309	b_2	.2187**	.0680, .3694	
		(.1230)			(.0762)		
Constant	iм	.9592***	.7386, 1.1798	$i_{ m Y}$.1797*	.0064, .3529	
		(.1115)			(.0876)		
		R^2	= .0357		$R^2 = .0882$		
		F(4, 134) = 1.2402, p = .2969			F(3, 135) = 4.3549, p = .0058		

Table 41. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):Counselor Session 3 Form and 6-month Follow-up with Age in First Stage (n=137).

		Devia	Deviancy (M)			6mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0946	1710, .3602	Ċ	0060	1871, .1751	
		(.1343)			(.0915)		
Deviancy (M)				b_1	.0529	0632, .1689	
					(.0587)		
Age (W)	a_2	0245	1430, .0941				
		(.0599)					
$X \times W$	a_3	.2075	0324, .4475				
		(.1213)					
BL MJWK (U)	a_4	.0679	1744, .3103	b_2	.2436**	.0806, .4066	
		(.1225)			(.0824)		
Constant	$i_{\rm M}$	1.0164***	.7384, 1.2944	$i_{ m Y}$.1911	0321, .4142	
		(.1405)			(.1128)		
		_			_		
		R^2 =	= .0261		R^{2} =	= .0686	
		F(4, 132) = .8832, p = .4760			F(3, 133) = 3	.2656, p = .0235	

Table 42. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

		Devia	Deviancy (M)			6mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0814	1824, .3451	c	0486	1784, .0812	
		(.1334)			(.0656)		
Deviancy (M)				b_1	.0535	0298, .1367	
					(.0421)		
Age (W)	a_2	0356	1558, .0847				
		(.0608)					
$X \times W$	<i>a</i> ₃	.1980	0392, .4351				
		(.1199)					
BL PRAG (U)	a_4	.1357	0556, .3269	b_2	.1809***	.0882, .2737	
		(.0967)			(.0469)		
Constant	i_{M}	1.0060***	.8236, 1.1885	$i_{ m Y}$	0502	1734, .0729	
		(.0922)			(.0623)		
		R^2	= .0332		$R^{2} =$	= .1221	
		F(4, 134) = 1.1499, p = .3360			F(3, 135) = 6.2566, p = .0005		

		Devi	ancy (M)		6mo PHDD (Y)		
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	1816	3663, .0031	c	2370*	4305, -	
		(.0933)			(.0978)	.0434	
Deviancy (M)				b_1	.0931	0863,	
					(.0906)	.2724	
Age (W)	a_2	0688	1511, .0136				
		(.0416)					
$X \times W$	a_3	.0286	1389, .1961				
		(.0846)					
BL PHDD (U)	a_4	.0389	1135, .1912	b_2	.1791*	.0240, .3342	
		(.0770)			(.0784)		
Constant	$i_{\rm M}$.3321***	.1887, .4755	$i_{ m Y}$.2485**	.0904, .4066	
		(.0725)			(.0799)		
		R^2	= .0529		$R^2 =$.0966	
		F(4, 127) = 1.7727, p = .1384			F(3, 128) = 4.5633, p = .0045		

Table 43. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=132).

Table 44. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=132).

		Devi	ancy (M)		6mo D	RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1823	3673, .0027	Ċ	1395	3114, .0323
		(.0935)			(.0868)	
Deviancy (M)				b_1	.0616	0974, .2206
					(.0804)	
Age (W)	a_2	0693	1518, .0133			
		(.0417)				
$X \times W$	<i>a</i> ₃	.0221	1462, .1905			
		(.0851)				
BL DRWK (U)	a_4	.0044	1667, .1755	b_2	.1912*	.0377, .3447
		(.0865)			(.0776)	
Constant	i_{M}	.3569***	.2008, .5129	$i_{ m Y}$.2375**	.0855, .3896
		(.0789)			(.0769)	
		R^2	= .0510		$R^{2} =$	= .0727
		$F(4 \ 127) = 1 \ 7062 \ n = 1526$			F(3 128) = 3	$3466 \ n = 0.0213$

Table 45. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):Observer Session 3 Form and 6-month Follow-up with Age in First Stage (n=130).

		Deviancy (M)			6mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1839	3722, .0044	c	.0088	1842, .2019	
		(.0951)			(.0975)		
Deviancy (M)				b_1	.0440	1332, .2211	
					(.0895)		
Age (W)	a_2	0632	1465, .0200				
		(.0421)					
$X \times W$	a_3	.0317	1365, .1998				
		(.0849)					
BL MJWK (U)	a_4	.0665	1049, .2380	b_2	.2515**	.0804, .4226	
		(.0866)			(.0865)		
Constant	i_{M}	.2932**	.0979, .4885	$i_{ m Y}$.2285*	.0275, .4295	
		(.0987)			(.1016)		
		D ²	- 0571		D ² -	- 0674	
		К Г(4, 125) —	03/1		K = E(2, 12C) - 2	00/4	
		F(4, 125) = 1.8921, p = .1159			F(3, 126) = 3.0344, p = .0317		

 Table 46. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):

 Observer Session 3 Form and 6-month Follow-up with Age in First Stage (n=132).

				,		,	
		Devi	ancy (M)	_	6mo P	RAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1784	3639, .0072	c	0410	1792, .0973	
		(.0938)			(.0699)		
Deviancy (M)				b_1	.0429	0846, .1704	
					(.0645)		
Age (W)	a_2	0725	1561, .0111				
		(.0423)					
$X \times W$	<i>a</i> ₃	.0255	1406, .1915				
		(.0839)					
BL PRAG (U)	a_4	.0311	1042, .1664	b_2	.2007***	.1032, .2981	
		(.0684)			(.0492)		
Constant	i_{M}	.3397***	.2117, .4677	$i_{ m Y}$	0118	1152, .0916	
		(.0647)			(.0522)		
		R^2	= .0525		$R^{2} =$	= .1250	
		F(4, 127) = 1.7600, p = .1410			$F(3 \ 128) = 6 \ 0928 \ n = \ 0007$		

		Deni		8	(
	_	Devi	ancy (M)		6m0 P	HDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0463	3125, .2198	Ċ	2308*	4182,0433
		(.1346)			(.0948)	
Deviancy (M)				b_1	.0287	0909, .1483
					(.0605)	
Age (W)	a_2	.0211	0985, .1408			
		(.0605)				
$X \times W$	a_3	.1567	0873, .4007			
		(.1234)				
BL PHDD (U)	a_4	.3103**	.0909, .5297	b_2	.2181**	.0626, .3737
		(.1109)			(.0787)	
Constant	$i_{\rm M}$.5411***	.3350, .7472	$i_{ m Y}$.2403**	.0821, .3985
		(.1042)			(.0800)	
		R^2	= 0607		R ² =	= 1001
		F(4, 134) = 2.1654, p = .0763			F(3, 135) = 5	5.0078, p = .0025

Table 47. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

Table 48. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

	_	Devi	Deviancy (M)			RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0411	3099, .2278	Ċ	1368	3031, .0294
		(.1359)			(.0840)	
Deviancy (M)				b_1	.0206	0845, .1257
					(.0532)	
Age (W)	a_2	.0115	1095, .1326			
		(.0612)				
$X \times W$	<i>a</i> ₃	.1522	0955, .3999			
		(.1252)				
BL DRWK (U)	a_4	.2847*	.0352, .5342	b_2	.2216**	.0686, .3745
		(.1262)			(.0773)	
Constant	i_{M}	.5562***	.3301, .7824	$i_{ m Y}$.2265**	.0764, .3766
		(.1144)			(.0759)	
		$R^2 = .0423$ F(4, 134) = 1.4783, p = .2123			R^{2} =	= .0812
					$F(3 \ 135) = 3\ 9788\ n = \ 0094$	

Table 49. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):Adolescent Session 3 Form and 6-month Follow-up with Age in First Stage (n=137).

		Devi	Deviancy (M)			6mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI		
Treatment (X)	a_1	0348	3127, .2430	c	0013	1827, .1801		
		(.1405)			(.0917)			
Deviancy (M)				b_1	.0014	1107, .1135		
					(.0567)			
Age (W)	a_2	.0248	0992, .1488					
		(.0627)						
$X \times W$	a_3	.1151	1359, .3662					
		(.1269)						
BL MJWK (U)	a_4	.1519	1017, .4054	b_2	.2455**	.0814, .4096		
		(.1282			(.0830)			
Constant	iм	.6102***	.3194, .9010	$i_{ m Y}$.2459*	.0455, .4462		
		(.1470)			(.1013)			
		R^2	= 0164		R ² =	= 0629		
		F(4, 132) = .5496, p = .6997			F(3, 133) = 2	.9769, p = .0339		

Table 50. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 6-month Follow-up with Age in First Stage (*n*=139).

		Devia	Deviancy (M)			RAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0142	2826, .2542	Ċ	0447	1751, .0858	
		(.1357)			(.0660)		
Deviancy (M)				b_1	0018	0847, .0811	
					(.0419)		
Age (W)	a_2	0109	1332, .1114				
		(.0619)					
$X \times W$	<i>a</i> ₃	.1184	1229, .3596				
		(.1220)					
BL PRAG (U)	a_4	.2575**	.0629, .4522	b_2	.1875***	.0924, .2825	
		(.0984)			(.0480)		
Constant	i_{M}	.5932***	.4076, .7788	$i_{ m Y}$.0057	0966, .1080	
		(.0938)			(.0517)		
		R^2	= .0542		$R^{2} =$	1116	
		F(4, 134) = 1.9204, p = .1106			F(3, 135) = 5.6526, p = .0011		

Table 51. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Age in First Stage (*n*=159).

		Dev	iancy (M)		3mo PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	3347*	6082,0613	c	0538	2168, .1093	
		(.1384)			(.0825)		
Deviancy (M)				b_1	.0425	0505, .1354	
					(.0470)		
Age (W)	a_2	0503	1792, .0785				
		(.0652)					
$X \times W$	a_3	.0804	1805, .3412				
		(.1320)					
BL PHDD (U)	a_4	.3942***	.1695, .6190	b_2	.2052**	.0704, .3400	
		(.1138)			(.0682)		
Constant	i_{M}	1.0216***	.8128, 1.12304	$i_{ m Y}$.1664*	.0120, .3208	
		(.1057)			(.0782)		
		$R^2 =$.1081		$R^2 = .0768$		
		F(4, 154) = 4.	6663, <i>p</i> = .0014		F(3, 155) = 4.3000, p = .0060		

Table 52. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Age in First Stage (*n*=159).

-

Counselor Sessi	Counselor Session to Form and 5-month Fonow-up with Age in First Stage (n-157).								
		Devia	ancy (M)		3mo DR	WK (Y)			
		Coeff.	95% CI		Coeff.	95% CI			
Treatment (X)	a_1	3279*	6047,0511	Ċ	0395	1879, .1090			
		(.1401)			(.0752)				
Deviancy (M)				b_1	.0160	0677, .0996			
					(.0423)				
Age (W)	a_2	0611	1920, .0698						
		(.0663)							
$X \times W$	<i>a</i> ₃	.0835	1822, .3492						
		(.1345)							
BL DRWK (U)	a_4	.3721**	.1146, .6296	b_2	.2523***	.1163, .3883			
		(.1303)			(.0688)				
Constant	i_{M}	1.0318***	.8011, 1.2624	$i_{ m Y}$.1690	.0207, .3173			
		(.1167)			(.0751)				
			$R^2 = .0869$		$R^2 = 0.901$				
	F(4, 154) = 3.6633, p = .007				F(3, 155) = 5.1162, p = .0021				

Table 53. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 3-month Follow-up with Age in First Stage (*n*=158).

		Deviancy (M)			3mo MJWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3047*	5849,0245	Ċ	0882	2520, .0756
		(.1418)			(.0829)	
Deviancy (M)				b_1	.0953*	.0034, .1871
					(.0465)	
Age (W)	a_2	0475	1790, .0840			
		(.0666)				
$X \times W$	<i>a</i> ₃	.0651	2016, .3319			
		(.1350)				
BL MJWK (U)	a_4	.2451	0115, .5016	b_2	.2966***	.1491, .4441
		(.1299)			(.0747)	
Constant	$i_{\rm M}$	1.0386***	.7429, 1.3342	$i_{ m Y}$.0763	1174, .2699
		(.1496)			(.0980)	
		R^2	= .0580		$R^2 =$	1431
		F(4, 153) = 2.3549, p = .0563		F(3, 154) = 8.5759, p < .0001		

Table 54. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 3-month Follow-up with Age in First Stage (*n*=159).

		Deviancy (M)		_	3mo	PRAG (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3131*	5949,0312	Ċ	.0636	0640, .1911
		(.1427)			(.0646)	
Deviancy (M)				b_1	.0127	0581, .0835
					(.0358)	
Age (W)	a_2	0670	2014, .0673			
		(.0680)				
$X \times W$	a_3	.0413	2249, .3076			
		(.1348)				
BL PRAG (U)	a_4	.1989	0031, .4009	b_2	.2963***	.2073, .3853
		(.1022)			(.0451)	
Constant	i_{M}	1.1705***	.9793, 1.3617	$i_{ m Y}$	0377	1565, .0812
		(.0968)			(.0602)	
		R^{2} =	= .0616		$R^2 =$	2251
		F(4, 154) = 2	2.5283, p = .0429	F(3	, 155) = 15.0	0079, <i>p</i> < .0001

Table 55. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 6-month Follow-up with Age in First Stage (*n*=134).

		Devia	ancy (M)		6mo PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	2925	5868, .0018	c	2135*	4090,0179	
		(.1488)			(.0989)		
Deviancy (M)				b_1	.0429	0708, .1567	
					(.0575)		
Age (W)	a_2	0373	1696, .0950				
		(.0669)					
$X \times W$	<i>a</i> ₃	.0932	1768, .3631				
		(.1364)					
BL PHDD (U)	a_4	.4260***	.1861, .6660	b_2	.1836*	.0227, .3445	
		(.1213)			(.0813)		
Constant	$i_{\rm M}$	1.0162***	.7893, 1.2431	$i_{ m Y}$.2392*	.0518, .4267	
		(.1147)			(.0948)		
		$R^{2} =$	= .1125		$R^2 =$.0874	
		F(4, 129) = 4.0897, p = .0037		F(F(3, 130) = 4.1497, p = .0037		

 Table 56. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session

 10 Form and 6-month Follow-up with Age in First Stage (n=134).

		Deviancy (M)			6mo I	DRWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	2865	5827, .0097	Ċ	1247	2979, .0485	
		(.1497)			(.0875)		
Deviancy (M)				b_1	.0159	0842, .1160	
					(.0506)		
Age (W)	a_2	0530	1865, .0806				
		(.0675)					
$X \times W$	<i>a</i> ₃	.0980	1752, .3712				
		(.1381)					
BL DRWK (U)	a_4	.4467**	.1743, .7191	b_2	.1896*	.0311, .3481	
		(.1377)			(.0801)		
Constant	i_{M}	.9949***	.7461, 1.2438	$i_{ m Y}$.2537**	.0803, .4272	
		(.1258)			(.0877)		
		_					
		R^2 =	= .1010		$R^2 = .0631$		
		F(4, 129) = 3.6232, p = .0078		F(3	, 130) = 2.9	161, <i>p</i> = .0368	

		Deviancy (M)			6mo I	MJWK (Y)
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_l	2360	5415, .0695	Ċ	.0026	1841, .1892
		(.1544)			(.0943)	
Deviancy (M)				b_1	0330	1392, .0732
- · ·					(.0537)	
Age (W)	a_2	0406	1770, .0959			
/		(.0689)				
$X \times W$	<i>a</i> 3	.0543	2222, .3308			
		(.1397)				
BL MJWK (U)	a_4	.2719	0059, .5498	b_2	.2617**	.0933, .4300
		(.1404)			(.0851)	
Constant	i_{M}	1.0395***	.7219, 1.3571	$i_{\rm Y}$.2865*	.0666, .5064
		(.1605)			(.1111)	
		R^2	= .0525		$R^2 = .$	0689
		F(4, 127) = 1	1.7602, p = .1409	F(3	(128) = 3.1	583, $p = .0270$

Table 57. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 6-month Follow-up with Age in First Stage (*n*=132).

Table 58. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 6-month Follow-up with Age in First Stage (n=134).

	Deviancy (M)		6mo	PRAG (Y)	
Coeff	95% CI		Coeff.	95% CI	
2649	5696, .0398	Ċ	0369	1725, .0987	
(.1540)		(.0685)		
		b_1	.0424	0341, .1188	
			(.0387)		
0624	2020, .0772				
(.0706)				
.0250	2498, .2998				
(.1389)				
.2078	0129, .4285	b_2	.1841***	.0884, .2799	
(.1115)		(.0484)		
м 1.1850*	** .9740, 1.3960	$i_{ m Y}$	0450	1746, .0847	
(.1067)		(.0655)		
	$R^2 = 0.531$		$R^2 = 1228$		
<i>F</i> (4, 1)	(29) = 1.8096, p = .1309	F(3	(3, 130) = 6.0	683, p = .0007	
		$\begin{array}{r c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c} \hline Deviancy (M) \\ \hline \hline Coeff. & 95\% CI \\ \hline &2649 &5696, .0398 & c \\ (.1540) & & & b_1 \\ \hline \\ 2 &0624 &2020, .0772 \\ (.0706) \\ \hline \\ 3 & .0250 &2498, .2998 \\ (.1389) \\ \hline \\ 4 & .2078 &0129, .4285 & b_2 \\ (.1115) \\ \hline \\ M & 1.1850^{***} & .9740, 1.3960 & i_Y \\ (.1067) & & \\ \hline \\ R^2 = .0531 \\ \hline \\ F(4, 129) = 1.8096, p = .1309 & F(3) \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

		Devia	ancy (M)		3mo PHDD (Y)	
	_	Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_l	0533	3057, .1991	Ċ	0644	2184, .0895
		(.1278)			(.0779)	
Deviancy (M)		· · · ·		b_1	.0880	0073, .1832
					(.0482)	
Conduct	a_2	.0141	0239, .0521			
Disorder (W)		(.0192)				
$X \times W$	a_3	0273	1032, .0486			
		(.0384)				
BL PHDD (U)	a_4	.0666	1467, .2798	b_2	.2337***	.1070, .3605
		(.1080)			(.0642)	
Constant	$i_{\rm M}$	1.0748***	.8808, 1.2687	$i_{ m Y}$.0944	0600, .2487
		(.0982)			(.0782)	
		R^2	= .0125		$R^{2} =$	= .1042
		F(4, 159) = .5050, p = .7321			F(3, 160) = 6	.2028, p = .0005

Table 59. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=164).

Table 60. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=164).

		Devi	ancy (M)		3mo D	RWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	0514	3039, .2011	c	0384	1780, .1011	
		(.1279)			(.0707)		
Deviancy (M)				b_1	.0886*	.0022, .1749	
					(.0437)		
Conduct	a_2	.0140	0240, .0520				
Disorder (W)		(.0192)					
$X \times W$	<i>a</i> 3	0277	1033, .0479				
		(.0383)					
BL DRWK (U)	a_4	.0782	1601, .3165	b_2	.2722***	.1434, 4009	
		(.1207)			(.0652)		
Constant	i_{M}	1.0657***	.8559, 1.2756	$i_{ m Y}$.0684	0776, .2143	
		(.1062)			(.0739)		
		R^2	= .0128		$R^{2} =$	= .1283	
		F(4, 159) = .5150, p = .7248			F(3, 160) = 7.8512, p = .0001		

Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

		Devia	ancy (M)		3mo M	IJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_l	0382	2905, .2140	c	1144	2719, .0431
		(.1277)			(.0798)	
Deviancy (M)				b_1	.0805	0171, .1780
					(.0494)	
Conduct	a_2	.0199	0184, .0582			
Disorder (W)		(.0194)				
$X \times W$	a_3	0371	1118, .0376			
		(.0378)				
BL MJWK (U)	a_4	0327	2679, .2025	b_2	.3253***	.1825, .4682
		(.1191)			(.0723)	
Constant	$i_{\rm M}$	1.1447***	.8751, 1.4143	$i_{ m Y}$.0689	1286, .2663
		(.1365)			(.1000)	
		R^2	= .0132		$R^{2} =$	1419
		F(4, 158) =	.5280, <i>p</i> = .7153		F(3, 159) = 8	.7630, <i>p</i> < .0001

Table 61. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=163).

 Table 62. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3

 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=164).

		Devia		3mo P	o PRAG (Y)	
	_	Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0401	2929, .2128	c	.0639	0582, .1859
		(.1280)			(.0618)	
Deviancy (M)				b_1	.0504	0249, .1258
					(.0382)	
Conduct	a_2	.0082	0315, .0479			
Disorder (W)		(.0201)				
$X \times W$	a_3	0321	1068, .0425			
		(.0378)				
BL PRAG (U)	a_4	.1105	0795, .3006	b_2	.2879***	.2013, .3744
		(.0962)			(.0438)	
Constant	i_{M}	1.0500***	.8750, 1.2250	$i_{ m Y}$	0775	1911, .0361
		(.0886)			(.0575)	
		R^2	= 0183		$R^{2} =$	= 2.282

F(4, 159) = .7422, p = .5646 F(3, 160) = 15.7709, p < .0001Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered;

BL = baseline; * p < .05; ** p < .01; *** p < .001

		Devi	Deviancy (M)			HDD (Y)	
	_	Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1880*	3503,0257	c	0572	2203, .1060	
		(.0822)			(.0826)		
Deviancy (M)				b_1	0190	1748, .1367	
					(.0788)		
Conduct	a_2	.0253*	.0005, .0501				
Disorder (W)		(.0126)					
$X \times W$	a_3	0372	0865, .0121				
		(.0250)					
BL PHDD (U)	a_4	0071	1448, .1305	b_2	.2350***	.1032, .3668	
		(.0697)			(.0667)		
Constant	$i_{\rm M}$.3592***	.2344, .4840	$i_{ m Y}$.1961	.0641, .3280	
		(.0632)			(.0668)		
		_			_		
		R^2	= .0744		$R^2 = .0790$		
		F(4, 151) = 1	3.0342, <i>p</i> = .0193		F(3, 152) = 4.3462, p = .0057		

 Table 63. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer

 Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=156).

Table 64. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=156).

		Devi	Deviancy (M)			RWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	1899*	3522,0276	c [°]	0237	1705, .1231	
		(.0822)			(.0743)		
Deviancy (M)				b_1	0409	1808, .0990	
					(.0708)		
Conduct	a_2	.0262*	.0015, .0509				
Disorder (W)		(.0125)					
$X \times W$	a_3	0385	0876, .0106				
		(.0248)					
BL DRWK (U)	a_4	0405	1934, .1123	b_2	.2682***	.1357, .4006	
		(.0774)			(.0671)		
Constant	i_{M}	.3830***	.2479, .5181	$i_{ m Y}$.1762**	.0478, .3045	
		(.0684)			(.0650)		
		R^2	= .0760		$R^2 = .0979$		
		F(4, 151) = 3	3.1055, p = .0172		F(3, 152) = 5	.5005, p = .0013	

Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

		Devi	ancy (M)		3mo M	IJWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	1891*	3532,0249	Ċ	1095	2786, .0595	
		(.0831)			(.0856)		
Deviancy (M)				b_1	.0261	1344, .1866	
					(.0812)		
Conduct	a_2	.0234	0019, .0487				
Disorder (W)		(.0218)					
$X \times W$	a_3	0357	0847, .0133				
		(.0248)					
BL MJWK (U)	a_4	.0257	1276, .1790	b_2	.3289***	.1784, .4794	
		(.0776)			(.0762)		
Constant	$i_{\rm M}$.3299***	.1556, .5042	$i_{ m Y}$.1552	0232, .3336	
		(.0882)			(.0903)		
		- 2			- 2		
		R^2	= .0746		$R^2 =$	= .1294	
		F(4, 150) = 1	3.0242, <i>p</i> = .0196		F(3, 151) = 7.4835, p = .0001		

Table 65. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=155).

 Table 66.
 Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):
 Observer Session 3

 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=156).

_

		Deviancy (M)		_	3mo PRAG (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	1886*	3517,0255	Ċ	.0764	0509, .2036
		(.0825)			(.0644)	
Deviancy (M)				b_1	0302	1512, .0908
					(.0612)	
Conduct	a_2	.0255	0006, .0515			
Disorder (W)		(.0132)				
$X \times W$	a_3	0367	0854, .0120			
		(.0246)				
BL PRAG (U)	a_4	0060	1295, .1174	b_2	.3058***	.2172, .3945
		(.0625)			(.0449)	
Constant	i_{M}	.3581***	.2457, .4705	$i_{ m Y}$	0218	1146, .0710
		(.0569)			(.0470)	
		$R^2 = .0744$ F(4, 151) = 3.0339, p = .0193			$R^2 = .2353$	
					<i>F</i> (3, 152) = 15.5926, <i>p</i> < .0001	

Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

		Deviancy (M)			3mo P	3mo PHDD (Y)	
	-	Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0010	2513, .2532	Ċ	0686	2232, .0860	
		(.1277)			(.0783)		
Deviancy (M)				b_1	.0607	0331, .1545	
					(.0475)		
Conduct	a_2	.0525**	.0145, .0904				
Disorder (W)		(.0192)					
$X \times W$	<i>a</i> ₃	.0189	0569, .0948				
		(.0384)					
BL PHDD (U)	a_4	.2308*	.0176, .4440	b_2	.2253***	.0957, .3550	
		(.1079)			(.0656)		
Constant	i_{M}	.6031***	.4092, .7970	$i_{ m Y}$.1528*	.0957, .3550	
		(.0982)			(.0656)		
		$R^2 = .0838$ F(4, 159) = 3.6360, p = .0073			$R^2 = .0948$ F(3, 160) = 5.5847, p = .0011		
				3			

Table 67. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=164).

 Table 68. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3

 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=164).

		Deviancy (M)			3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0029	2517, .2575	Ċ	0424	1826, .0977
		(.1289)			(.0710)	
Deviancy (M)				b_1	.0670	0172, .1512
					(.0426)	
Conduct	a_2	.0549**	.0166, .0932			
Disorder (W)		(.0194)				
$X \times W$	a_3	.0129	0633, .0891			
		(.0386)				
BL DRWK (U)	a_4	.1672	0731, .4074	b_2	.2667***	.1363, .3970
		(.1216)			(.0660)	
Constant	<i>i</i> _M	.6450***	.4335, .8565	$i_{ m Y}$.1207	0052, .2465
		(.1071)			(.0637)	
		$R^2 = .0685$			$R^2 = .1196$	

 $F(4, 159) = 2.9240 \ p = .0228 \qquad F(3, 160) = 7.2421, \ p = .0001$ Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001
	_	Devi	Deviancy (M)			IJWK (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	.0008	2572, .2589	c	1178	2766, .0410	
		(.1307)			(.0804)		
Deviancy (M)				b_1	.0062	0880, .1004	
					(.0894)		
Conduct	a_2	.0582**	.0190, .0974				
Disorder (W)		(.0198)					
$X \times W$	a_3	.0056	0708, .0820				
		(.0387)					
BL MJWK (U)	a_4	.0454	1952, .2860	b_2	.3246***	.1801, .4691	
		(.1218)			(.0732)		
Constant	$i_{\rm M}$.7167***	.4410, .9925	$i_{ m Y}$.1546	0220, .3313	
		(.1396)			(.0894)		
		D ²	- 0595		D ² -	- 1076	
		R ²	= .0383		$K^2 = .12/6$		
		F(4, 158) = 2	2.4546, p = .0480		F(3, 159) = 7.7550, p < .0001		

Table 69. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=163).

 Table 70. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3

 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=164).

	_	Devi		3mo PRAG (Y)		
	_	Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0236	2298, .2770	Ċ	.0616	0610, .1843
		(.1283)			(.0621)	
Deviancy (M)				b_1	.0074	0673, .0821
					(.0378)	
Conduct	a_2	.0445*	.0047, .0843			
Disorder (W)		(.0202)				
$X \times W$	a_3	.0036	0711, .0784			
		(.0379)				
BL PRAG (U)	a_4	.2107*	.0202, .4012	b_2	.2919***	.2028, .3810
		(.0964)			(.0451)	
Constant	iм	.6277***	.4524, .8031	$i_{ m Y}$	0291	1221, .0639
		(.0888)			(.0471)	
		$R^2 = .0849$			$R^{2} =$.2200

F(4, 159) = 3.6890, p = .0067 F(3, 160) = 15.0405, p < .0001Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

		Dev	iancy (M)		6mo P	PHDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment	a_1	.0652	1988, .3291	c	2382*	4240,0525
(X)		(.1335)			(.0939)	
Deviancy (M)				b_1	.1004	0190, .2098
• • /					(.0604)	
Conduct	a_2	.0121	0278, .0521			
Disorder (W)		(.0202)				
X×W	a_3	0494	1283, .0294			
		(.0399)				
BL PHDD	a_4	.0688	1514, .2890	b_2	.2161**	.0652, .3670
(U)		(.1113)			(.0763)	
Constant	$i_{\rm M}$	1.0479***	.8436, 1.2512	$i_{ m Y}$.1532	0344, .3408
		(.1033)			(.0948)	
		R^2	e = .0220		R^2	= .1167
		F(4, 134) =	= .7550, p = .5564		F(3, 135) = 3	5.9464. p = .0008

Table 71. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=139).

 Table 72. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3

 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=139).

		Deviancy (M)			6mo D	RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0670	1967, .3306	c	1414	3071, .0241
		(.1333)			(.0838)	
Deviancy (M)				b_1	.0588	0479, .1654
					(.0539)	
Conduct	a_2	.0115	0283, .0513			
Disorder (W)		(.0201)				
$X \times W$	a_3	0485	1272, .0302			
		(.0398)				
BL DRWK (U)	a_4	.1046	1404, .3496	b_2	.2187**	.0680, .3694
		(.1239)			(.0762)	
Constant	i_{M}	1.0213***	.8010, 1.2416	$i_{ m Y}$.1797*	.0064, .3529
		(.1114)			(.0876)	
		R^2	= .0244		R^{2} =	= .0882
		F(4, 134) =	.8392, p = .5026		F(3, 135) = 4.3549, p = .0058	

		Devia	Deviancy (M)			IJWK (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	.0913	1740, .3566	c	0060	1871, .1751
		(.1341)			(.0915)	
Deviancy (M)				b_1	.0529	0632, .1689
					(.0587)	
Conduct	a_2	.0180	0222, .0581			
Disorder (W)		(.0203)				
$X \times W$	a_3	0587	1370, .0197			
		(.0396)				
BL MJWK (U)	a_4	0002	2461, .2456	b_2	.2436**	.0806, .4066
		(.1243)			(.0824)	
Constant	$i_{\rm M}$	1.0856***	.8060, 1.3652	$i_{ m Y}$.1911	0321, .4142
		(.1414)			(.1128)	
		$R^2 = .0264$			R^{2} =	= .0686
		F(4, 132) =	.8948, <i>p</i> = .4691		F(3, 133) = 3.2656, p = .0235	

Table 73. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=137).

 Table 74. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3

 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=139).

		Deviancy (M)			6mo P	RAG (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	.0760	1881, .3400	Ċ	0486	1784, .0812
		(.1335)			(.0656)	
Deviancy (M)				b_1	.0535	0298, .1367
					(.0421)	
Conduct	a_2	.0079	0333, .0490			
Disorder (W)		(.0208)				
$X \times W$	a_3	0538	1318, .0242			
		(.0395)				
BL PRAG (U)	a_4	.1031	0948, 3010	b_2	.1809***	.0882, .2737
		(.1001)			(.0469)	
Constant	i_{M}	1.0286***	.8430, 1.2141	$i_{ m Y}$	0502	1734, .0729
		(.0938)			(.0623)	
		$R^2 = .0270$			$R^{2} =$.1221

F(4, 134) = .9282, p = .4497 F(3, 135) = 6.2566, p = .0005Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

		Dev	viancy (M)		6mo PH	HDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1831*	3657,0006	Ċ	2370*	4305,0434	
		(.0922)			(.0978)		
Deviancy (M)				b_1	.0931	0863, .2724	
• • • /					(.0906)		
Conduct	a_2	.0256	0026, .0537				
Disorder (W)		(.0142)					
$X \times W$	a_3	0419	0971, .0132				
		(.0279)					
BL PHDD (U)	a_4	0078	1609, .1453	b_2	.1791*	.0240, .3342	
		(.0774)			(.0784)		
Constant	$i_{\rm M}$.3643***	.2218, .5068	$i_{ m Y}$.2485**	.0904, .4066	
		(.0720)			(.0799)		
		R	$^{2} = .0745$		$R^2 = .0966$		
		F(4, 127) =	= 2.5541, p = .0421		F(3, 128) = 4.5633, p = .0045		

Table 75. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=132).

Table 76. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=132).

		Deviancy (M)			6mo D	6mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1845*	3669,0022	Ċ	1395	3114, .0323	
		(.0921)			(.0868)		
Deviancy (M)				b_1	.0616	0974, .2206	
					(.0804)		
Conduct	a_2	.0269	0011, .0548				
Disorder (W)		(.0141)					
$X \times W$	a_3	0433	0983, .0117				
		(.0278)					
BL DRWK (U)	a_4	0520	2213, .1174	b_2	.1912*	.0377, .3447	
		(.0856)			(.0776)		
Constant	i_{M}	.3967***	.2431, .5503	$i_{ m Y}$.2375**	.0855, .3896	
		(.0776)			(.0769)		
		D ²	- 0771		D ² -	- 0727	
		K	0//1		$K^{-}=$	0/2/	
		F(4, 127) = 2	2.6511, p = .0362		F(3, 128) = 3.3466, p = .0213		

		Deviancy (M)			6mo N	IJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1884*	3746,0022	c	.0088	1842, .2019
		(.0941)			(.0975)	
Deviancy (M)				b_1	.0440	1332, .2211
					(.0895)	
Conduct	a_2	.0226	0062, .0513			
Disorder (W)		(.0145)				
$X \times W$	a_3	0421	0975, .0134			
		(.0280)				
BL MJWK (U)	a_4	.0331	1398, .2061	b_2	.2515**	.0804, .4226
		(.0874)			(.0865)	
Constant	\dot{i}_{M}	.3245**	.1290, .5200	$i_{ m Y}$.2285*	.0275, .4295
		(.0988)			(.1016)	
		$R^2 = 0.765$			R^2 =	= .0674
		F(4, 125) = 2.5897, p = .0399			F(3, 126) = 3	0.0344, p = .0317

Table 77. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=130).

 Table 78. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Observer Session 3

 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=132).

		Deviancy (M)			6mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1866*	3696,0035	c [°]	0410	1792, .0973
		(.0925)			(.0699)	
Deviancy (M)				b_1	.0429	0846, .1704
					(.0645)	
Conduct	a_2	.0274	0016, .0564			
Disorder (W)		(.0146)				
$X \times W$	a_3	0412	0960, .0136			
		(.0277)				
BL PRAG (U)	a_4	0317	1699, .1065	b_2	.2007***	.1032, .2981
		(.0698)			(.0492)	
Constant	i_{M}	.3795***	.2512, .5078	$i_{ m Y}$	0118	1152, .0916
		(.0649)			(.0522)	
		R^2	= .0759		$R^{2} =$	= .1250
		F(4, 127) = 2.6072, p = .0388			F(3, 128) = 6.0928, p = .0007	

		Devi	ancy (M)		6mo F	HDD (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	0317	2949, .2316	c	2308*	4182,0433
		(.1331)			(.0948)	
Deviancy (M)				b_1	.0287	0909, .1483
					(.0605)	
Conduct	a_2	.0440*	.0041, .0838			
Disorder (W)		(.0201)				
$X \times W$	a_3	0009	0795, .0777			
		(.0398)				
BL PHDD (U)	a_4	.2332*	.0136, .4527	b_2	.2181**	.0626, .3737
		(.1110)			(.0787)	
Constant	$i_{\rm M}$.6001***	.3963, .8039	$i_{ m Y}$.2403**	.0821, .3985
		(.1030)			(.0800)	
		R^2	= .0809		R^2 =	= .1001
		F(4, 134) = 2	2.9496, <i>p</i> = .0225		F(3, 135) = 5	5.0078, p = .0025

Table 79. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=139).

 Table 80. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3

 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=139).

		Devi		6mo DRWK (Y)			
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0281	2932, .2370	Ċ	1368	3031, .0294	
		(.1340)			(.0840)		
Deviancy (M)				b_1	.0206	0845, .1257	
					(.0532)		
Conduct	a_2	.0465*	.0065, .0865				
Disorder (W)		(.0202)					
$X \times W$	a_3	0038	0830, .0753				
		(.0400)					
BL DRWK (U)	a_4	.1978	0486, .4442	b_2	.2216**	.0686, .3745	
		(.1246)			(.0773)		
Constant	i_{M}	.6228***	.4012, .8443	$i_{ m Y}$.2265**	.0764, .3766	
		(.1120)			(.0759)		
		R^2	= .0682		R^2 =	= .0812	
		F(4, 134) = 2.4521, p = .0490			F(3, 135) = 3.9788, p = .0094		

		Deviancy (M)			6mo N	IJWK (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	0216	2941, .2509	c	0013	1827, .1801
		(.1377)			(.0917)	
Deviancy (M)				b_1	.0014	1107, .1135
					(.0567)	
Conduct	a_2	.0509*	.0097, .0922			
Disorder (W)		(.0208)				
$X \times W$	a_3	0105	0910, .0700			
		(.0407)				
BL MJWK (U)	a_4	.0574	1950, .3099	b_2	.2455**	.0814, .4096
		(.1276)			(.0830)	
Constant	$i_{\rm M}$.7077***	.4205, .9948	$i_{ m Y}$.2459*	.0455, .4462
		(.1452)			(.1013)	
		$P^2 = 0.526$			R ² =	= 0629
		$F(4 \ 132) = 1\ 8317\ n = \ 1265$			$F(3 \ 133) = 2$	$9769 \ n = 0339$

 Table 81. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent

 Session 3 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=137).

 Table 82. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3

 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=139).

		Deviancy (M)			6mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0119	2768, .2530	c	0447	1751, .0858
		(.1340)			(.0660)	
Deviancy (M)				b_1	0018	0847, .0811
					(.0419)	
Conduct	a_2	.0402	0011, .0815			
Disorder (W)		(.0209)				
$X \times W$	a_3	0138	0921, .0645			
		(.0396)				
BL PRAG (U)	a_4	.1870	0115, .3855	b_2	.1875***	.0924, .2825
		(.1004)			(.0480)	
Constant	i_{M}	.6417***	.4556, .8279	$i_{ m Y}$.0057	0966, .1080
		(.0941)			(.0517)	
		$R^2 = .0746$			$R^{2} =$	= .1116
		F(4, 134) = 2.7020, p = .0332			F(3, 135) = 5.6526, p = .0011	

		Deviancy (M)			3mo PHDD (Y)	
		Coeff.	95% CI	-	Coeff.	95% CI
Treatment (X)	a_1	3344*	6063,0625	Ċ	0538	2168, .1093
		(.1376)			(.0825)	
Deviancy (M)				b_1	.0425	0505, .1354
					(.0470)	
Conduct Disorder	a_2	.0336	0084, .0755			
(W)		(.0212)				
$X \times W$	a_3	0006	0845, .0834			
		(.0425)				
BL PHDD (U)	a_4	.3524**	.1253, .5795	b_2	.2052**	.0704, .3400
		(.1150)			(.0682)	
Constant	$i_{\rm M}$	1.0527***	.8443, 1.2611	$i_{ m Y}$.1664*	.0120, .3208
		(.1055)			(.0782)	
		R^2	= .1171		$R^2 = .$	0768
		F(4, 154) = 5.1055, p = .0007		F(3, 155) = 4.3000, p = .0060		

Table 83. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=159).

Table 84. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=159).

		Devia	ancy (M)	_	3mo E	DRWK (Y)
	-	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3295*	6046,0544	Ċ	0395	1879, .1090
		(.1393)			(.0752)	
Deviancy (M)				b_1	.0160	0677, .0996
					(.0423)	
Conduct	a_2	.0357	0067, .0781			
Disorder (W)		(.0215)				
$X \times W$	<i>a</i> 3	0073	0919, .0774			
		(.0429)				
BL DRWK (U)	a_4	.3094*	.0527, .5660	b_2	.2523***	.1163, .3883
		(.1299)			(.0688)	
Constant	i_{M}	1.0781***	.8497, 1.3064	$i_{ m Y}$.1690*	.0207, .3173
		(.1156)			(.0751)	
		$R^2 = .0965$			$R^2 = .$	0901
		F(4, 154) = 4	4.1115, p = .0034	F(3, 155) = 5.1	162, $p = .0021$
Notes Standard en	rore in r	arentheses. Condu	uct disorder sympton	ne and t	reatment are	mean

	_	Devia	ancy (M)	_	3mo MJWK (Y)	
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3049*	5820,0279	Ċ	0882	2520, .0756
		(.1403)			(.0829)	
Deviancy (M)				b_1	.0953*	.0034, .1871
					(.0465)	
Conduct	a_2	.0403	0027, .0833			
Disorder (W)		(.0218)				
$X \times W$	<i>a</i> 3	0254	1097, .0589			
		(.0427)				
BL MJWK (U)	a_4	.1827	0737, .4391	b_2	.2966***	.1491, .4441
		(.1298)			(.0747)	
Constant	$i_{ m M}$	1.1019***	.8083, 1.3955	$i_{ m Y}$.0763	1174, .2699
		(.1486)			(.0980)	
		R^{2} =	= .0771		$R^2 = .$	1431
		F(4, 153) = 3	6.1938, <i>p</i> = .0149	F(3	(154) = 8.5	759, <i>p</i> < .0001

Table 85. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in First Stage (*n*=158).

Table 86. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in First Stage (n=159).

	_	Deviancy (M)			3mo l	PRAG (Y)
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3226*	6024,0429	Ċ	.0636	0640, .1911
		(.1416)			(.0646)	
Deviancy (M)				b_1	.0127	0581, .0835
					(.0358)	
Conduct	a_2	.0348	0101, .0796			
Disorder (W)		(.0227)				
$X \times W$	a_3	0234	1083, .0614			
		(.0430)				
BL PRAG (U)	a_4	.1265	0808, .3338	b_2	.2963***	.2073, .3853
		(.1049)			(.0451)	
Constant	i_{M}	1.2168***	1.0244, 1.4092	$i_{ m Y}$	0377	1516, .0812
		(.0974)			(.0602)	
		$R^2 = .0720$			$R^2 =$	2251
		F(4, 154) = 2	2.9862, p = .0208	F(3	, 155) = 15.0	0079, <i>p</i> < .0001

		Deviancy (M)			6mo	PHDD (Y)	
	-	Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	2917	5845, .0010	c	2135*	4090,0179	
		(.1480)			(.0989)		
Deviancy (M)				b_1	.0429	0708, .1567	
					(.0575)		
Conduct	a_2	.0298	0160, .0756				
Disorder (W)		(.0231)					
$X \times W$	a_3	0205	1115, .0704				
		(.0460)					
BL PHDD (U)	a_4	.3713**	.1307, .6119	b_2	.1836*	.0227, .3445	
		(.1216)			(.0813)		
Constant	i_{M}	1.0567***	.8310, 1.2824	$i_{ m Y}$.2392*	.0518, .4267	
		(.1141)			(.0948)		
		23			53	~~ - /	
		$R^2 = .1221$			$R^2 = .0874$		
		F(4, 129) = 4	1.4451, p = .0021	F(3)	(3, 130) = 4.1497, p = .0076		

 Table 87. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor

 Session 10 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=134).

Table 88. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=134).

		Devia	ancy (M)		6mo DRWK (Y)	
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	2873	5818, .0073	c	1247	2979, .0485
		(.1489)			(.0875)	
Deviancy (M)				b_1	.0159	0842, .1160
					(.0506)	
Conduct	a_2	.0325	0134, .0784			
Disorder (W)		(.0232)				
$X \times W$	<i>a</i> ₃	0219	1135, .0696			
		(.0463)				
BL DRWK (U)	a_4	.3761**	.1062, .6460	b_2	.1896*	.0311, .3481
		(.1364)			(.0801)	
Constant	$i_{\rm M}$	1.0479***	.8022, 1.2936	$i_{\rm Y}$.2537**	.0803, .4272
		(.1242)			(.0877)	
		$R^2 = .1100$			$R^2 = .$	0631
		F(4, 129) = 3	.9880, <i>p</i> = .0044	F(3	, 130) = 2.9	161, <i>p</i> = .0368
Notes Standard en	rors in n	arentheses. Condu	ict disorder sympton	is and t	reatment are	mean

(n-152).							
		Deviancy (M)			6mo l	MJWK (Y)	
	-	Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	2380	5391, .0632	Ċ	.0026	1841, .1892	
		(.1522)			(.0943)		
Deviancy (M)				b_1	0330	1392, .0732	
					(.0537)		
Conduct	a_2	.0398	0073, .0868				
Disorder (W)		(.0238)					
$X \times W$	<i>a</i> ₃	0400	1326, .0527				
		(.0468)					
BL MJWK (U)	a_4	.2074	0692, .4840	b_2	.2617**	.0933, .4300	
		(.1398)			(.0851)		
Constant	$i_{ m M}$	1.1036***	.7894, 1.4178	$i_{ m Y}$.2865*	.0666, .5064	
		(.1588)			(.1111)		
		$P^2 - 0.0774$			$R^2 =$	0689	
		F(4, 127) = 2	2.6629, p = .0355	<i>F</i> (3	$(3 \ 128) = 3 \ 1583 \ n = \ 0270$		
		1(1, 127) 2.0029, p .00000		1(3, 120) 5.1303, p .0270			

Table 89. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in First Stage (*n*=132).

Table 90. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in First Stage (n=134).

	_	Devia	ancy (M)	_	6mo PRAG (Y)	
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	2725	5742, .0293	Ċ	0369	1725, .0987
		(.1525)			(.0685)	
Deviancy (M)				b_1	.0424	0381, .1188
					(.0387)	
Conduct	a_2	.0337	0146, .0821			
Disorder (W)		(.0244)				
$X \times W$	a_3	0401	1329, .0527			
		(.0469)				
BL PRAG (U)	a_4	.1408	0815, .3631	b_2	.1841***	.0884, .2799
		(.1124)			(.0484)	
Constant	$i_{\rm M}$	1.2288***	1.0184, 1.4392	$i_{\rm Y}$	0450	1746, .0847
		(.1064)			(.0655)	
		$R^2 = .0690$			$R^2 = .$	1228
		F(4, 129) = 2	2.3888, <i>p</i> =.0543	F(z)	(3, 130) = 6.0	683, p = .0007

		Devia	incy (M)		3mo	PHDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0576	3089, .1937	Ċ	0806	2347, .0735
		(.1272)			(.0780)	
Deviancy (M)				b_1	.0943	0004, .1891
					(.0480)	
Age (W)				b_2	.0730*	.0010, .1450
					(.0365)	
$M \times W$				b_3	.0413	0529, .1355
					(.0477)	
BL PHDD (U)	a_2	.0923	1143, .2988	b_4	.2301***	.1043, .3559
		(.1046)			(.0637)	
Constant	i_{M}	.0232	4072, .4537	$i_{ m Y}$.3198*	.0557, .5838
		(.2180)			(.1337)	
		R	$e^2 = .0062$		$R^{2} =$.1293
		F(2, 161)	= .5039, p = .6051		F(5, 158) = 4.	6928, <i>p</i> = .0005

 Table 91. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3

 Form and 3-month Follow-up with Age in Second Stage (n=164).

Table 92.	Unstandardized	OLS Regressio	n Coefficients	with Confid	lence Interva	ls Estimating
Deviancy	Training and Ave	erage Number o	of Drinks per V	Week (DRW	K): Counse	lor Session 3
Form and	3-month Follow-	un with Age in	Second Stage	(n=164).		

-		Devia	incy (M)	3mo DRWK (Y)			
	_	Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0550	3065, .1965	Ċ	0580	1973, .0813	
		(.1273)			(.0705)		
Deviancy (M)				b_1	.0956*	.0101, .1812	
					(.0433)		
Age (W)				b_2	.0651	0001, .1303	
					(.0330)		
$M \times W$				b_3	.0612	0239, .1463	
					(.0431)		
BL DRWK (U)	a_2	.1054	1261, .3369	b_4	.2627***	.1350, .3904	
		(.1171)			(.0647)		
Constant	i_{M}	.0090	4325, .4504	$i_{ m Y}$.2650*	.0204, .5096	
		(.2235)			(.1238)		
					73		
		R	² = .0064		$R^2 = .1581$		
		F(2, 161) =	= .5189, <i>p</i> = .5962		F(5, 158) = 5.	9321, <i>p</i> < .0001	

Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline. * p < .05; ** p < .01; *** p < .001

		Devia	ncy (M)	3mo	3mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0436	2957, .2084	c	1308	2872, .0257	
		(.1276)			(.0792)		
Deviancy (M)				b_1	.0887	0075, .1850	
					(.0487)		
Age (W)				b_2	.0986**	.0258, .1715	
					(.0369)		
$M \times W$				b_3	.0265	0693, .1222	
					(.0485)		
BL MJWK (U)	a_2	.0008	2278, .2295	b_4	.3360**	.1952, .4768	
		(.1158)			*		
					(.0713)		
Constant	i_{M}	.0655	4149, .5460	$i_{ m Y}$.3479*	.0510, .6447	
		(.2433)			(.1503)		
		R	2 = .0007	$R^2 = .1800$			
		F(2, 160) =	= .0590, p = .9427		F(5, 157) = 6.5	8927, <i>p</i> < .0001	

Table 93. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=163).

Table 94. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=164).

		Devia	ncy (M)		3mo	PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0414	2933, .2105	Ċ	.0476	0756, .1708	
		(.1276)			(.0624)		
Deviancy (M)				b_1	.0556	0199, .1310	
					(.0382)		
Age (W)				b_2	.0125	0456, .0705	
					(.0294)		
$M \times W$				b_3	.0651	0105, .1407	
					(.0383)		
BL PRAG (U)	a_2	.1226	0552, .3004	b_4	.2735***	.1847, .3623	
		(.0900)			(.0450)		
Constant	$i_{\rm M}$	0156	4453, .4142	$i_{ m Y}$	0814	2936, .1309	
		(.2176)			(.1075)		
		R	$e^2 = .0128$		$R^2 = .2424$		
		F(2, 161) = 1.0426, p = .3549			F(5, 158) = 10.1134, p < .0001		

Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline. * p < .05; ** p < .01; *** p < .001

		Devia	ncy (M)		3mo	3mo PHDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1936*	3580,0292	Ċ	0576	2199, .1048	
		(.0832)			(.0822)		
Deviancy (M)				b_1	.0048	1555, .1652	
					(.0811)		
Age (W)				b_2	.0705	0037, .1447	
					(.0376)		
$M \times W$				b_3	.0164	1017, .1346	
					(.0598)		
BL PHDD (U)	a_2	.0360	0987, .1713	b_4	.2298***	.0979, .3618	
		(.0684)			(.0668)		
Constant	$i_{ m M}$.2702	0129, .5533	$\dot{i}_{ m Y}$.2819*	.0038, .5599	
		(.1433)			(.1407)		
		R	$^{2} = .0365$		$R^2 = .1007$		
		F(2, 153) =	= 2.8965, p = .0582		F(5, 150) = 3.3608, p = .0066		

Table 95. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=156).

Table 96. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=156).

		Deviancy (M)			3mo	DRWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1949*	3597,0302	c	0248	1710, .1214
		(.0834)			(.0740)	
Deviancy (M)				b_1	0215	1655, .1224
					(.0729)	
Age (W)				b_2	.0628	0041, .1297
/					(.0339)	
$M \times W$				b_3	.0091	0970, .1153
					(.0537)	
BL DRWK (U)	a_2	.0046	1466, .1558	b_4	.2572***	.1243, .3901
		(.0766)			(.0673)	
Constant	$i_{\rm M}$.2942*	.0035, .5848	$i_{ m Y}$.2079	0492, .4650
		(.1471)			(.1301)	
		R	2 = .0347		$R^2 =$.1184

F(2, 153) = 2.7523, p = .0669 F(5, 150) = 4.0276, p = .0019Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline. * p < .05; ** p < .01; *** p < .001

		Devision (M) amo MIWK (V)							
		Devia			51110				
		Coeff.	95% CI		Coeff.	95% CI			
Treatment (X)	a_1	1926*	3585,0267	Ċ	1085	2761, .0590			
		(.0840)			(.0848)				
Deviancy (M)				b_1	.0570	1070, .2210			
					(.0830)				
Age (W)				b_2	.0822*	.0061, .1583			
					(.0285)				
$M \times W$				b_3	.0345	0858, .1547			
					(.0608)				
BL MJWK (U)	a_2	.0640	0859, .2139	b_4	.3397***	.1903, .4891			
		(.0759)			(.0756)				
Constant	$i_{\rm M}$.2301	0897, .5499	$i_{ m Y}$.3221*	.0026, .6416			
		(.1619)			(.1617)				
			2 0400		D2	1.570			
		R	= .0409	$R^2 = .1573$					
		F(2, 152) =	= 3.2371, p = .0420		F(5, 149) = 5.5644, p = .0001				

Table 97. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=155).

Table 98. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Observer Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=156).

		Devia	incy (M)	````	3mo	3mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1896*	3549,0244	c	.0772	0509, .2052	
		(.0836)			(.0648)		
Deviancy (M)				b_1	0212	1470, .1047	
					(.0637)		
Age (W)				b_2	.0063	0527, .0653	
					(.0299)		
$M \times W$				b_3	.0239	0683, .1161	
					(.0467)		
BL PRAG (U)	a_2	.0362	0807, .1531	b_4	.3041***	.2138, .3945	
		(.0592)			(.0457)		
Constant	$i_{ m M}$.2665	0160, .5490	$i_{ m Y}$	1474	3655, .0706	
		(.1430)			(.1103)		
		R	$e^2 = .0371$		$R^{2} =$.2369	

 $F(2, 153) = 2.9440, p = .0556 \qquad F(5, 150) = 9.3143, p < .0001$ Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)	•	3mo	PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI		
Treatment (X)	a_1	0155	2720, .2410	Ċ	0746	2290, .0798		
		(.1299)			(.0782)			
Deviancy (M)				b_1	.0587	0348, .1521		
					(.0473)			
Age (W)				b_2	.0653	0077, .1383		
					(.0370)			
$M \times W$				b_3	0200	1282, .0883		
					(.0548)			
BL PHDD (U)	a_2	.2723*	.0615, .4831	b_4	.2267***	.0968, .3567		
		(.1068)			(.0658)			
Constant	$i_{\rm M}$	1661	6054, .2732	$i_{\rm Y}$.3117*	.0464, .5771		
		(.2224)			(.1344)			
			_		_			
		R	2 = .0391		$R^2 =$	$R^2 = .1142$		
		F(2, 161) =	= 3.2726, p = .0404		F(5, 158) = 4.0751, p = .0017			

Table 99. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=164).

 Table 100. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Drinks per Week (DRWK):

 Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage (n=164).

		Devia	ncy (M)		3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0129	2720, .2462	Ċ	0506	1908, .0895
		(.1312)			(.0710)	
Deviancy (M)				b_1	.0662	0177, .1501
					(.0425)	
Age (W)				b_2	.0593	0071, .1258
					(.0336)	
$M \times W$				b_3	.0139	0839, .1117
					(.0495)	
BL DRWK (U)	a_2	.2214	0172, .4599	b_4	.2570***	.1264, .3877
		(.1208)			(.0662)	
Constant	$i_{\rm M}$	1371	5920, .3178	$i_{ m Y}$.2552*	.0084, .5020
		(.2303)			(.1250)	
		R		$R^2 =$.1366	

F(2, 1561) = 1.6978, p = .1863 F(5, 158) = 4.9993, p = .0003Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)		3mo	3mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0146	2777, .2485	Ċ	1277	2848, .0294	
		(.1332)			(.0795)		
Deviancy (M)				b_1	.0031	0898, .0961	
					(.0471)		
Age (W)				b_2	.0930*	.0190, .1671	
					(.0375)		
$M \times W$				b_3	0112	1199, .0976	
					(.0551)		
BL MJWK (U)	a_2	.1262	1125, .3649	b_4	.3337***	.1910, .4764	
		(.1209)			(.0723)		
Constant	$i_{\rm M}$	1060	6075, .3956	$i_{ m Y}$.3446*	.0457, .6435	
		(.2540)			(.1513)		
		R	$e^2 = .0070$		$R^2 =$.1619	
		F(2, 160)	= .5640, p = .5700		F(5, 157) = 6.0673, p < .0001		

Table 101. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage (*n*=163).

 Table 102. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):

 Adolescent Session 3 Form and 3-month Follow-up with Age in Second Stage (n=164).

		Deviancy (M)			3mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0200	2356, .2756	Ċ	.0584	0655, .1824
		(.1294)			(.0628)	
Deviancy (M)				b_1	.0584	0655, .1824
					(.0628)	
Age (W)				b_2	.0079	0512, .0671
					(.0299)	
$M \times W$				b_3	.0226	0638, .1091
					(.0438)	
BL PRAG (U)	a_2	.2841**	.1037, .4644	b_4	.2871***	.1954, .3789
		(.0913)			(.0465)	
Constant	i_{M}	2120	6480, .2239	$i_{ m Y}$	1095	3227, .1036
		(.2208)			(.1079)	
		$P^2 - 0560$			$R^2 =$	2215

F(2, 161) = 4.8554, p = .0090 F(5, 158) = 8.9894, p < .0001Notes. Standard errors in parenteses; Age and treatment are mean centered; BL = baseline.

		Deviancy (M)			6mo	PHDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0614	2022, .3250	Ċ	2462*	4344,0579	
		(.1333)			(.0952)		
Deviancy (M)				b_1	.1022	0177, .2221	
					(.0606)		
Age (W)				b_2	.0468	0370, .1306	
					(.0423)		
$M \times W$				b_3	.0130	0980, .1240	
					(.0561)		
BL PHDD (U)	a_2	.1010	1126, .3146	b_4	.2166**	.0652, .3681	
		(.1080)			(.0766)		
Constant	$i_{\rm M}$	1647	6120, .2826	$i_{\rm Y}$.6354***	.3156, .9552	
		(.2262)			(.1617)		
		R	$R^2 = .0079$		$R^2 = .1250$		
		F(2, 136)	= .5396, p = .5842		F(5, 133) = 3.7992, p = .0030		

Table 103. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=139).

Table 104. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=139).

		Devia	ncy (M)		6mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0639	1993, .3272	Ċ	1467	3140, .0206
		(.1331)			(.0846)	
Deviancy (M)				b_1	.0606	0461, .1673
					(.0539)	
Age (W)				b_2	.0553	0192, .1298
					(.0377)	
$M \times W$				b_3	0035	1021, .0950
					(.0498)	
BL DRWK (U)	a_2	.1373	1013, .3759	b_4	.2128**	.0619, .3636
		(.1207)			(.0763)	
Constant	$i_{\rm M}$	1959	6525, .2607	$i_{ m Y}$.4702**	.1796, .7608
		(.2209)			(.1469)	
		P		$R^2 =$	1029	

F(2, 136) = .7502, p = .4742 F(5, 133) = 3.0509, p = .0122Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)	0	6mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0877	1785, .3539	Ċ	0086	1868, .1696	
		(.1346)			(.0901)		
Deviancy (M)				b_1	.0549	0582, .1680	
					(.0572)		
Age (W)				b_2	.1172**	.0386, .1959	
					(.0527)		
$M \times W$				b_3	0460	1503, .0582	
					(.0527)		
BL MJWK (U)	a_2	.0381	2018, .2780	b_4	.2570**	.0981, .4158	
		(.1213)			(.0803)		
Constant	$i_{\rm M}$	1707	6767, .3352	$i_{ m Y}$.2473	0897, .5843	
		(.2558)			(.1703)		
			_		_		
		R	2 = .0036	$R^2 = .1327$			
		F(2, 134) =	= .2442, p = .7837		F(5, 131) = 4.0099, p = .0020		

Table 105. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=137).

Table 106. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=139).

		Deviancy (M)			6mo PRAG (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0745	1896, .3386	c	0536	1856, .0783	
		(.1335)			(.0667)		
Deviancy (M)				b_1	.0554	0282, .1391	
					(.0423)		
Age (W)				b_2	.0356	0238, .0951	
					(.0301)		
$M \times W$				b_3	0007	0788, .0774	
					(.0395)		
BL PRAG (U)	a_2	.1136	0742, .3014	b_4	.1702***	.0743, .2660	
		(.0950)			(.0485)		
Constant	i_{M}	1875	6353, .2603	iγ	.0967	1295, .3229	
		(.2264)			(.1144)		
		$D^2 = 0.110$			D ²	1212	
		$R^2 = .0119$			$K^{2} = .1313$		

 $F(2, 136) = .8188, p = .4431 \qquad F(5, 133) = 4.0205, p = .0020$ Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	incy (M)		6mo	PHDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1866*	3717,0014	Ċ	2373*	4317,0429	
		(.0936)			(.0982)		
Deviancy (M)				b_1	.1086	0793, .2964	
					(.0949)		
Age (W)				b_2	.0444	0419, .1307	
					(.0426)		
$M \times W$				b_3	.0056	1280, .1393	
					(.0675)		
BL PHDD (U)	a_2	.0375	1130, .1879	b_4	.1797*	.0226, .3368	
		(.0760)			(.0794)		
Constant	$i_{\rm M}$.2558	0604, .5721	$i_{ m Y}$.6417***	.3111, .9723	
		(.1598)			(.1617)		
			_				
		R	$e^2 = .0319$		$R^{2} =$	$R^2 = .1041$	
		F(2, 129) = 2.1274, p = .1233			F(5, 126) = 2.	9282, <i>p</i> = .0155	

Table 107. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=132).

Table 108. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=132).

		Devia	ancy (M)		6mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1876*	3730,0022	c	1398	3116, .0321
		(.0937)			(.0868)	
Deviancy (M)				b_1	.0849	0807, .2505
					(.0837)	
Age (W)				b_2	.0555	0208, .1317
					(.0385)	
$M \times W$				b_3	.0185	0995, .1365
					(.0596)	
BL DRWK (U)	a_2	0058	1740, .1623	b_4	.1834*	.0286, .3382
		(.0850)			(.0782)	
Constant	$i_{\rm M}$.2885	0352, .6122	$i_{ m Y}$.4788**	.1794, .7783
		(.1636)			(.1513)	
		R	2 = .0301		$R^2 =$.0886

F(2, 129) = 2.0047, p = .1389 F(5, 126) = 2.4495, p = .0373Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Deviancy (M)			6mo	MJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1819*	3775,0007	Ċ	.0092	1783, .1967
		(.0952)			(.0947)	
Deviancy (M)				b_1	.0967	0822, .2755
					(.0904)	
Age (W)				b_2	.1245**	.0421, .2069
					(.0416)	
$M \times W$				b_3	.0512	0746, .1770
					(.0636)	
BL MJWK (U)	a_2	.0729	0962, .2420	b_4	.2718**	.1052, .4384
		(.0854)			(.0842)	
Constant	$i_{\rm M}$.2139	1477, .5754	$i_{ m Y}$.2147	1415, .5709
		(.1827)			(.1800)	
		$R^2 = .0392$			$R^2 = .1354$	
		F(2, 127) =	= 2.5894, p = .0790		F(5, 124) = 3.	8834, <i>p</i> = .0026

Table 109. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=130).

Table 110. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): ObserverSession 3 Form and 6-month Follow-up with Age in Second Stage (n=132).

		Deviancy (M)			6mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1863*	3723,0002	c [°]	0401	1778, .0976
		(.0940)			(.0696)	
Deviancy (M)				b_1	.0757	0566, .2080
					(.0669)	
Age (W)				b_2	.0385	0233, .1003
					(.0312)	
$M \times W$				b_3	.0599	0336, .1533
					(.0472)	
BL PRAG (U)	a_2	.0094	1237, .1425	b_4	.1899***	.0915, .2884
		(.0673)			(.0497)	
Constant	i_{M}	.2761	0400, .5921	$i_{ m Y}$.0768	1566, .3103
		(.1597)			(.1180)	

 $\frac{R^2 = .0303}{F(2, 129) = 2.0124, p = .1378} \frac{R^2 = .1468}{F(5, 126) = 4.3356, p = .0020}$ Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	incy (M)		6mo	PHDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0447	3103, .2209	c	2455*	4344,0576
		(.1343)			(.0950)	
Deviancy (M)				b_1	.0233	0963, .1428
					(.0604)	
Age (W)				b_2	.0498	0347, .1343
					(.0427)	
$M \times W$				b_3	.0796	0461, .2053
					(.0635)	
BL PHDD (U)	a_2	.2830*	.0678, .4982	b_4	.2100**	.0540, .3660
		(.1088)			(.0789)	
Constant	$i_{ m M}$	1340	5847, .3167	$i_{ m Y}$.6369***	.3175, .9562
		(.2279)			(.1615)	
		$R^2 = .0482$			$R^{2} =$.1178
		F(2, 136) =	F(2, 136) = 3.4432, p = .0348			5510, <i>p</i> = .0048

Table 111. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=139).

 Table 112. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Drinks per Week (DRWK):

 Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage (n=139).

		Deviancy (M)			6mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0410	3090, .2270	Ċ	1507	3169, .0155
		(.1355)			(.0840)	
Deviancy (M)				b_1	.0156	0892, .1204
					(.0530)	
Age (W)				b_2	.0586	0163, .1334
					(.0378)	
$M \times W$				b_3	.0627	0481, .1734
					(.0560)	
BL DRWK (U)	a_2	.2535*	.0105, .4964	b_4	.2115**	.0589, .3642
		(.1228)			(.0772)	
Constant	$i_{ m M}$	1215	5863, .3434	$i_{ m Y}$.4755**	.1868, .7642
		(.2351)			(.1460)	
		$R^2 = .0312$			$R^2 =$.1036

F(2, 136) = 2.1898, p = .1159 F(5, 133) = 3.0734, p = .0117Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)		6mo	MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0343	3106, .2421	Ċ	0223	1996, .1550	
		(.1397)			(.0896)		
Deviancy (M)				b_1	0880	1174, .1013	
					(.0553)		
Age (W)				b_2	.1216**	.0423, .2008	
					(.0401)		
$M \times W$				b_3	.0560	0606, .1726	
					(.0589)		
BL MJWK (U)	a_2	.1305	1185, .3796	b_4	.2600**	.1001, .4200	
		(.1259)			(.0809)		
Constant	i_{M}	0793	6046, .4460	$i_{ m Y}$.2645	0716, .6006	
		(.2656)			(.1699)		
		R	$e^2 = .0088$		$R^2 = .1270$		
		F(2, 134) =	= .5972, <i>p</i> = .5518		F(5, 131) = 3.	8098, p = .0030	

Table 113. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage (*n*=137).

 Table 114. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):

 Adolescent Session 3 Form and 6-month Follow-up with Age in Second Stage (n=139).

		Deviancy (M)			6mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1378	5901, .3145	Ċ [°]	0568	1880, .0744
		(.2287)			(.0663)	
Deviancy (M)				b_1	0026	0854, .0802
					(.0419)	
Age (W)				b_2	.0385	0214, .0985
					(.0303)	
$M \times W$				b_3	.0487	0394, .1368
					(.0445)	
BL PRAG (U)	a_2	.2475*	.0578, .4372	b_4	.1678***	.0697, .2658
		(.0959)			(.0496)	
Constant	i_{M}	1378	5901, .3145	$i_{ m Y}$.1018	1226, .3261
		(.2287)			(.1134)	
		$R^2 = 0.475$			$R^{2} =$	1279

F(2, 136) = 3.3902, p = .0366 F(5, 133) = 3.8995, p = .0025Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

	_	Devia	ncy (M)		3mo	3mo PHDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	3397*	6119,0675	Ċ	0583	2205, .1038	
		(.1378)			(.0821)		
Deviancy (M)				b_1	.0496	0433, .1426	
					(.0470)		
Age (W)				b_2	. 0737	0014, .1488	
					(.0380)		
$M \times W$				b_3	.0189	0722, .1100	
					(.0461)		
BL PHDD (U)	a_2	.3816***	.1603, .6028	b_4	.2005**	.0664, .3347	
		(.1120)			(.0679)		
Constant	i_{M}	.2463	2148, .7074	$i_{ m Y}$.3139*	.0434, .5845	
		(.2334)			(.1369)		
			_		_		
		R	2 = .1027		$R^2 =$.0997	
		F(2 156) = 8 9291 n = 0.002			F(5 153) = 3	$3880 \ n = 0.062$	

Table 115. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage (*n*=159).

Table 116. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage (*n*=159).

					0	
		Devia	uncy (M)		3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	3344*	6101,0586	Ċ	0434	1913, .1044
		(.1396)			(.0748)	
Deviancy (M)				b_1	.0231	0607, .1069
					(.0424)	
Age (W)				b_2	.0640	0048, .1328
					(.0348)	
$M \times W$				b_3	.0173	0659, .1004
					(.0421)	
BL DRWK (U)	a_2	.3470**	.0958, .5982	b_4	.2404***	.1043, .3764
		(.1272)			(.0689)	
Constant	i_{M}	.2576	2202, .7354	$i_{ m Y}$.2647*	.0118, .5176
		(.2419)			(.1280)	
		$R^2 = 0.0799$			$R^2 = .$	1105

F(2, 156) = 6.7732, p = .0015 F(5, 153) = 3.8003, p = .0028Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)		3mo N	MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	3102*	5889,0315	Ċ	0962	2575, .0652	
		(.1411)			(.0817)		
Deviancy (M)				b_1	.0986*	.0077, .1896	
					(.0460)		
Age (W)				b_2	.0947*	.0200, .1695	
					(.0378)		
$M \times W$				b_3	0352	1275, .0570	
					(.0467)		
BL MJWK (U)	a_2	.2370	0151, .4891	b_4	.2970***	.1438, .4376	
		(.1276)			(.0743)		
Constant	$i_{ m M}$.2296	2940, .7531	$i_{\rm Y}$.3482*	.0485, .6478	
		(.2650)			(.1517)		
		R	2 = .0535		$R^2 = .1806$		
		F(2, 155) =	4.3849, <i>p</i> = .0140		F(5, 152) = 6.7	/017, <i>p</i> < .0001	

Table 117. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage (*n*=158).

Table 118. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 3-month Follow-up with Age in Second Stage (*n*=159).

						()	
		Deviancy (M)			3mo PRAG (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	3220*	6024,0416	Ċ	.0632	0652, .1916	
		(.1420)			(.0650)		
Deviancy (M)				b_1	.0160	0559, .0879	
					(.0364)		
Age (W)				b_2	.0058	0546, .0663	
					(.0306)		
$M \times W$				b_3	.0232	0497, .0960	
					(.0369)		
BL PRAG (U)	a_2	.1780	0189, .3749	b_4	.2904***	.1982, .3826	
		(.0997)			(.0467)		
Constant	i_{M}	.3721	1013, .8455	$i_{ m Y}$	1114	3274, .1045	
		(.2397)			(.1093)		
	$R^2 = .0553$				$R^2 = .$.2272	

F(2, 156) = 4.5670, p = .0118 F(5, 153) = 8.9965, p < .0001Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Devia	ncy (M)	•	6mo PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	2952*	5878,0025	Ċ	2174*	4134,0213	
		(.1479)			(.0991)		
Deviancy (M)				b_1	.0437	0709, .1583	
					(.0579)		
Age (W)				b_2	.0497	0372, .1365	
					(.0439)		
$M \times W$				b_3	0230	1280, .0820	
					(.0531)		
BL PHDD (U)	a_2	.4098***	.1758, .6438	b_4	.1827*	.0215, .3440	
		(.1183)			(.0815)		
Constant	i_{M}	.1496	3402, .6394	$i_{ m Y}$.6216***	.2979, .9452	
		(.2476)			(.1636)		
		D	- 1075		D ²	0000	
		<i>K</i> ⁴	-=.10/5		$R^2 = 0$	0980	
		F(2, 131) = 7.8879, p = .0006			F(5, 128) = 2.7	829, p = .0202	

Table 119. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage (*n*=134).

 Table 120. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Drinks per Week (DRWK):

 Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage (n=134).

		Devia	ncy (M)		6mo I	6mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	2905	5854, .0044	Ċ	1291	3018, .0436	
		(.1491)			(.0873)		
Deviancy (M)				b_1	.0175	0829, .1178	
					(.0507)		
Age (W)				b_2	.0588	0180, .1355	
					(.0388)		
$M \times W$				b_3	0351	1277, .0574	
					(.0468)		
BL DRWK (U)	a_2	.4184**	.1545, .6824	b_4	.1794*	.0210, .3378	
		(.1334)			(.0801)		
Constant	i_{M}	.1305	3729, .6338	$i_{ m Y}$.4741**	.1830, .7652	
		(.2544)			(.1471)		

 $\frac{R^2 = .0937}{F(2, 131) = 6.7754, p = .0016} \frac{R^2 = .0842}{F(5, 128) = 2.3535, p = .0442}$ Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline.

		Deviancy (M)			6mo N	AJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	2407	5440, .0626	Ċ	0076	1902, .1751
		(.1533)			(.0923)	
Deviancy (M)				b_1	0279	1323, .0765
					(.0528)	
Age (W)				b_2	.1128**	.0320, .1937
					(.0409)	
$M \times W$				b_3	0236	1226, .0755
					(.0501)	
BL MJWK (U)	a_2	.2656	0067, .5378	b_4	.2618**	.0957, 4280
		(.1376)			(.0840)	
Constant	$i_{\rm M}$.0958	4709, .6625	$i_{ m Y}$.2530	0856, .5916
		(.2864)			(.1711)	
		R	$e^2 = .0490$		$R^2 = .$	1242
		F(2, 129) = 3.3225, p = .0392		F	(5, 126) = 3.5	745, <i>p</i> = .0047

 Table 121. Unstandardized OLS Regression Coefficients with Confidence Intervals

 Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK):

 Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage (n=132).

Table 122. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG):Counselor Session 10 Form and 6-month Follow-up with Age in Second Stage (n=134).

		Deviancy (M)			6mo I	PRAG (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	2716	5745, .0312	Ċ	0403	1761, .0955
		(.1531)			(.0686)	
Deviancy (M)				b_1	.0426	0348, .1199
					(.0391)	
Age (W)				b_2	.0345	0272, .0961
					(.0321)	
$M \times W$				b_3	0256	0994, .0481
					(.0373)	
BL PRAG (U)	a_2	.1865	0276, .4005	b_4	.1777***	.0784, .2770
		(.1082)			(.0502)	
Constant	i_{M}	.2843	2226, .7911	$i_{\rm Y}$.0745	1523, .3013
		(.2562)			(.1146)	
		R^2	= .0473		$R^2 = .1$	1351

 $F(2, 131) = 3.2516, p = .0419 \qquad F(5, 128) = 3.9990, p = .0021$ Notes. Standard errors in parentheses; Age and treatment are mean centered; BL = baseline. * p < .05; ** p < .01; *** p < .001

		Devi	ancy (M)	_	3mo PHDD (Y)	
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_l	0576	3089, .1937	Ċ	0533	2071, .1004
		(.1272)			(.0778)	
Deviancy (M)				b_1	.0793	0161, .1746
					(.0483)	
Conduct				b_2	.0162	0069, .0393
Disorder (W)					(.0117)	
$M \times W$				b_3	.0185	0113, .0483
					(.0151)	
BL PHDD (U)	a_2	.0923	1143, .2988	b_4	.2188***	.0908, .3468
		(.1046)			(.0648)	
Constant	$i_{ m M}$.0232	4072, .4537	$i_{ m Y}$.2811*	.0179, .5443
		(.2180)			(.1333)	
		D2	0060			
		R^2	= .0062		$R^2 = .12$	229
		F(2, 161) =	.5039, p = .6051	F(z)	5, 158) = 4.429	94, $p = .0008$

Table 123. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=164).

Table 124. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=164).

		Devia	ancy (M)		3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0550	3065, .1965	Ċ	0334	1734, .1065
		(.1273)			(.0709)	
Deviancy (M)				b_1	.0844	0024, .1711
					(.0439)	
Conduct				b_2	.0153	0058, .0363
Disorder (W)					(.0106)	
$M \times W$				b_3	.0024	0247, .0295
					(.0137)	
BL DRWK (U)	a_2	.1054	1261, .3369	b_4	.2558***	.1251, .3864
		(.1171)			(.0661)	
Constant	$i_{\rm M}$.0090	4325, .4504	$i_{ m Y}$.2298	0157, .4753
		(.2235)			(.1243)	
		R ²	2 = .0064		$R^2 = .1$	397

F(2, 161) = .5189, p = .5962 F(5, 158) = 5.1298, p = .0002Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered;

BL = baseline; * p < .05; ** p < .01; *** p < .001

Table 125. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=163).

		Devi	iancy (M)		3mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0436	2957, .2084	Ċ	1134	2723, .0455	
		(.1276)			(.0804)		
Deviancy (M)				b_1	.0787	0201, .1776	
					(.0500)		
Conduct				b_2	.0079	0162, .0320	
Disorder (W)					(.0122)		
$M \times W$				b_3	0027	0337, .0283	
					(.0157)		
BL MJWK (U)	a_2	.0008	2278, .2295	b_4	.3148***	.1671, .4624	
		(.1158)			(.0748)		
Constant	iм	.0655	4149, .5460	$i_{ m Y}$.3425*	.0391, .6458	
		(.2433)			(.1536)		
		D ²	- 0007		$D^2 - 1$	112	
		К Г(2, 1(0)	0007		$K^{-} = .1443$		
		F(2, 160) = .0590, p = .9427		F(5, 157) = 5.29	p/2, p = .0002	

Table 126. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=164).

		Dev	iancy (M)		3mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0414	2933, .2105	c	.0620	0605, .1845
		(.1276)			(.0620)	
Deviancy (M)				b_1	.0513	0244, .1271
					(.0384)	
Conduct				b_2	.0091	0101, .0283
Disorder (W)					(.0097)	
$M \times W$				b_3	0084	0320, .0153
					(.0120)	
BL PRAG (U)	a_2	.1226	0552, .3004	b_4	.2748***	.1824, .3673
		(.0900)			(.0468)	
Constant	i_{M}	0156	4453, .4142	$i_{ m Y}$	1051	3146, .1045
		(.2176)			(.1061)	
		20	0100		D2 0	250
		R^2	= .0128	-	$R^2 = .2$	350
		F(2, 161) =	1.0426, p = .3549	F(5, 158) = 9.70	93, $p < .0001$

Table 127. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=156).

		Deviancy (M)			3mo P	3mo PHDD (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_l	1936*	3580,0292	Ċ	0567	2201, .1067	
		(.0832)			(.0827)		
Deviancy (M)				b_1	0360	2023, .1304	
					(.0842)		
Conduct				b_2	.0175	0074, .0423	
Disorder (W)					(.0126)		
$M \times W$				b_3	0005	0428, .0417	
					(.0214)		
BL PHDD (U)	a_2	.0360	0987, .1713	b_4	.2168**	.0811, .3525	
		(.0684)			(.0687)		
Constant	i_{M}	.2702	0129, .5533	$i_{ m Y}$.2885*	.0060, .5710	
		(.1433)			(.1430)		
		R^2	= .0365		$R^2 = .0$	907	
		F(2, 153) = 2.8965, p = .0582		F(5, 150) = 2.9928, p = .0132			

Table 128. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=156).

		Deviancy (M)			3mo D	3mo DRWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	1949*	3597,0302	Ċ	0251	1713, .1212	
		(.0834)			(.0740)		
Deviancy (M)				b_1	0548	2032, .0937	
					(.0751)		
Conduct				b_2	.0212	0010, .0433	
Disorder (W)					(.0112)		
$M \times W$				b_3	0069	0446, .0308	
					(.0191)		
BL DRWK (U)	a_2	.0046	1466, .1558	b_4	.2417***	.1067, .3767	
		(.0766)			(.0683)		
Constant	i_{M}	.2942*	.0035, .5848	$i_{ m Y}$.2206	0388, .4800	
		(.1471)			(.1313)		
		5	00.15			105	
		R^2	= .0347		$R^2 = .1$	195	
		F(2, 153) =	2.7523, p = .0669	F((5, 150) = 4.07	14, p = .0017	

Table 129. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=155).

	_	Devi	ancy (M)		3mo M	IJWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1926*	3585,0267	Ċ	1090	2786, .0606
		(.0840)			(.0858)	
Deviancy (M)				b_1	.0042	1667, .1752
					(.0865)	
Conduct				b_2	.0147	0112, .0407
Disorder (W)					(.0131)	
$M \times W$				b_3	.0068	0363, .0499
					(.0218)	
BL MJWK (U)	a_2	.0640	0859, .2139	b_4	.3069***	.1512, .4625
		(.0759)			(.0788)	
Constant	<i>i</i> M	.2301	0897, .5499	$i_{ m Y}$.3514*	.0250, .6778
		(.1619)			(.1652)	
		R^2	= .0409		$R^2 = .1$	372
		F(2, 152) = 1	3.2371, p = .0420	F((5, 149) = 4.73	90, $p = .0005$

Table 130. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Observer Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=156).

		Dev	iancy (M)		3mo PRAG (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1896*	3549,0244	Ċ	.0735	0543, .2013
		(.0836)			(.0647)	
Deviancy (M)				b_1	0317	1610, .0976
					(.0654)	
Conduct				b_2	.0101	0102, .0304
Disorder (W)					(.0103)	
$M \times W$				b_3	0066	0391, .0260
					(.0165)	
BL PRAG (U)	a_2	.0362	0807, .1531	b_4	.2890***	.1940, .3840
		(.0592)			(.0481)	
Constant	i_{M}	.2665	0160, .5490	$i_{ m Y}$	1321	3515, .0873
		(.1430)			(.1110)	
		R^2	= .0371		$R^2 = .2$	411
		F(2, 153) =	2.9440, p = .0556	F((5, 150) = 9.52	88, $p < .0001$

Table 131. Unstandardized OLS Regression Coefficients with Confidence Intervals EstimatingDeviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3Form and 3-month Follow-up with Conduct Disorder in Second Stage (n=164).

		Dev	iancy (M)		3mo P	PHDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0155	2720, .2410	Ċ	0644	2194, .0905
		(.1299)			(.0785)	
Deviancy (M)				b_1	.0391	0651, .1435
					(.0528)	
Conduct				b_2	.0155	0087, .0398
Disorder (W)					(.0123)	
$M \times W$				b_3	.0075	0266, .0416
					(.0173)	
BL PHDD (U)	a_2	.2723*	.0615, .4831	b_4	.2175**	.0860, .3491
		(.1068)			(.0666)	
Constant	$i_{\rm M}$	1661	6054, .2732	$i_{ m Y}$.2972*	.0299, .5645
		(.2224)			(.1353)	
		R^2	= .0391		$R^2 = .1$	042
		F(2, 161) =	3.2726, <i>p</i> = .0404	F(5, 158) = 3.67	751, p = .0036

Table 132. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating
Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3
Form and 3-month Follow-up with Conduct Disorder in Second Stage (<i>n</i> =164).

		Deviancy (M)		_	3mo D	RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0129	2720, .2462	Ċ	0383	1784, .1018
		(.1312)			(.0709)	
Deviancy (M)				b_1	.0735	0197, .1668
					(.0472)	
Conduct				b_2	.0114	0105, .0334
Disorder (W)					(.0111)	
$M \times W$				b_3	0157	0464, .0151
					(.0156)	
BL DRWK (U)	a_2	.2214	0172, .4599	b_4	.2500***	.1181, .3820
		(.1208)			(.0668)	
Constant	i_{M}	1371	5920, .3178	$i_{ m Y}$.2524*	.0050, .4997
		(.2303)			(.1252)	
		R^2	= .0207		$R^2 = .1$	333
		F(2, 1561) =	1.6978, p = .1863	F((5, 158) = 4.86	08, p = .0004

Table 133. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=163).

	_	Devi	ancy (M)		3mo MJWK (Y)		
	_	Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0146	2777, .2485	Ċ	1154	2750, .0442	
		(.1332)			(.0808)		
Deviancy (M)				b_1	0085	1133, .0964	
					(.0531)		
Conduct				b_2	.0103	0150, .0355	
Disorder (W)					(.0128)		
$M \times W$				b_3	.0054	0295, .0402	
					(.0176)		
BL MJWK (U)	a_2	.1262	1125, .3649	b_4	.3138***	.1648, .4628	
		(.1209)			(.0754)		
Constant	iм	1060	6075, .3956	$i_{ m Y}$.3422*	.0354, .6491	
		(.2540)			(.1553)		
		R^2	= 0070		$R^2 = 1$	314	
		F(2, 160) =	.5640, p = .5700	F((5, 157) = 4.74	94, <i>p</i> < .0005	

Table 134. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=164).

		Devi		3mo PRAG (Y)		
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0200	2356, .2756	Ċ	.0626	0605, .1856
		(.1294)			(.0623)	
Deviancy (M)				b_1	.0000	0823, .0823
					(.0417)	
Conduct				b_2	.0098	0101, .0297
Disorder (W)					(.0101)	
$M \times W$				b_3	.0008	0260, .0277
					(.0136)	
BL PRAG (U)	a_2	.2841**	.1037, .4644	b_4	.2780***	.1840, .3720
		(.0913)			(.0476)	
Constant	$i_{\rm M}$	2120	6480, .2239	$i_{ m Y}$	1100	3221, .1020
		(.2208)			(.1074)	
		R^2	= 0569		$R^2 = 2$	247
		F(2, 161) =	4.8554, p = .0090	F((5, 158) = 9.15	66, p < .0001

Table 135. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=139).

		Dev	iancy (M)		6mo P	HDD (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0614	2022, .3250	Ċ	2373*	4242,0504
		(.1333)			(.0945)	
Deviancy (M)				b_1	.0975	0221, .2171
					(.0605)	
Conduct				b_2	.0227	0054, .0508
Disorder (W)					(.0142)	
$M \times W$				b_3	0096	0463, .0271
					(.0186)	
BL PHDD (U)	a_2	.1010	1126, .3146	b_4	.1986*	.0360, .3433
		(.1080)			(.0777)	
Constant	i_{M}	1647	6120, .2826	$i_{ m Y}$.6427***	.3247, .9607
		(.2262)			(.1608)	
		R^2	$r^{2} = 0.079$		$R^2 = 1$	354
		F(2, 136) =	$= 5396 \ n = 5842$	F(5(133) = 416	$53 \ n = 0.015$
	*191	(.2262) R^2 F(2, 136) =	P = .0079 = .5396, p = .5842	F((.1608) $R^2 = .1$ (.133) = 4.16	354 53, <i>p</i> = .0015

Table 136. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=139).

		Deviancy (M)			6mo DRWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	.0639	1993, .3272	Ċ	1341	3009, .0327	
		(.1331)			(.0843)		
Deviancy (M)				b_1	.0536	0532, .1605	
					(.0540)		
Conduct				b_2	.0206	0044, .0456	
Disorder (W)					(.0126)		
$M \times W$				b_3	.0021	0306, .0348	
					(.0165)		
BL DRWK (U)	a_2	.1373	1013, .3759	b_4	.1955*	.0425, .3485	
		(.1207)			(.0774)		
Constant	i_{M}	1959	6525, .2607	$i_{ m Y}$.4634**	.1735, .7533	
		(.2209)			(.1466)		
		R^2	= .0109		$R^2 = .1$	061	
		F(2, 136) =	.7502, <i>p</i> = .4742	F(5, 133) = 3.15	88, <i>p</i> = .0100	

Table 137. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=137).

		Devi	iancy (M)	_	6mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0877	1785, .3539	Ċ	.0001	1841, .1842
		(.1346)			(.0931)	
Deviancy (M)				b_1	.0480	0697, .1658
					(.0595)	
Conduct				b_2	.0094	0183, .0370
Disorder (W)					(.0140)	
$M \times W$				b_3	.0049	0314, .0411
					(.0183)	
BL MJWK (U)	a_2	.0381	2018, .2780	b_4	.2301**	.0617, .3986
		(.1213)			(.0851)	
Constant	i_{M}	1707	6767, .3352	$i_{ m Y}$.2612	0884, .6107
		(.2558)			(.1767)	
		R^2	= .0036		$R^2 = .0$	772
		F(2, 134) =	.2442, p = .7837	F((5, 131) = 2.03	77, $p = .0775$

Table 138. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=139).

		Deviancy (M)			6mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	.0745	1896, .3386	Ċ	0531	1844, .0782
		(.1335)			(.0664)	
Deviancy (M)				b_1	.0543	0296, .1382
					(.0424)	
Conduct				b_2	.0064	0139, .0267
Disorder (W)					(.0103)	
$M \times W$				b_3	0090	0348, .0169
					(.0131)	
BL PRAG (U)	a_2	.1136	0742, .3014	b_4	.1740***	.0756, .2724
		(.0950)			(.0497)	
Constant	i_{M}	1875	6353, .2603	$i_{ m Y}$.0950	1280, .3180
		(.2264)			(.1127)	
		R^2	= .0119		$R^2 = .1$	281
		F(2, 136) =	= .8188, p = .4431	F((5, 133) = 3.90	81, p = .0024

Table 139. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=132).

	_	Devi		6mo PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1866*	3717,0014	Ċ	2333*	4246,0419
		(.0936)			(.0967)	
Deviancy (M)				b_1	.0326	1585, .2238
					(.0966)	
Conduct				b_2	.0325*	.0032, .0619
Disorder (W)					(.0148)	
$M \times W$				b_3	.0200	0281, .0681
					(.0243)	
BL PHDD (U)	a_2	.0375	1130, .1879	b_4	.1505	0083, .3094
		(.0760)			(.0803)	
Constant	$i_{\rm M}$.2558	0604, .5721	$i_{ m Y}$.6498***	.3202, .9794
		(.1598)			(.1665)	
		$R^2 = .0319$ F(2, 129) = 2.1274, p = .1233		$R^2 = .1350$ F(5, 126) = 3.9315, p = .0024		

Table 140. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=132).

		Dev	_	6mo DRWK (Y)		
	_	Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1876*	3730,0022	Ċ	1399	3104, .0306
		(.0937)			(.0862)	
Deviancy (M)				b_1	.0230	1469, .1930
					(.0859)	
Conduct				b_2	.0280*	.0020, .0540
Disorder (W)					(.0131)	
$M \times W$				b_3	.0063	0364, .0490
					(.0216)	
BL DRWK (U)	a_2	0058	1740, .1623	b_4	.1615*	.0050, .3179
		(.0850)			(.0791)	
Constant	$i_{\rm M}$.2885	0352, .6122	$i_{ m Y}$.4915**	.1908, .7922
		(.1636)			(.1520)	
		$R^2 = .0301$ F(2, 129) = 2.0047, p = .1389		$R^2 = .1058$ F(5, 126) = 2.9826, p = .0140		
Table 141. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=130).

		Devi	ancy (M)		6mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1819*	3775,0007	Ċ	.0079	1867, .2025
		(.0952)			(.0983)	
Deviancy (M)				b_1	.0311	1606, .2228
					(.0969)	
Conduct				b_2	.0115	0182, .0413
Disorder (W)					(.0150)	
$M \times W$				b_3	.0019	0458, .0495
					(.0241)	
BL MJWK (U)	a_2	.0729	0962, .2420	b_4	.2346*	.0568, .4124
		(.0854)			(.0898)	
Constant	i_{M}	.2139	1477, .5754	$i_{ m Y}$.2486	1258, .6231
		(.1827)			(.1892)	
		R^2	= .0392		$R^2 = 0$	0718
		F(2, 127) = 1	2.5894, p = .0790	F(z)	5, 124) = 1.91	96, <i>p</i> = .0957

Table 142. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Observer Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=132).

		Devi	ancy (M)		6mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1863*	3723,0002	Ċ	0492	1876, .0891
		(.0940)			(.0699)	
Deviancy (M)				b_1	.0747	0627, .2121
					(.0694)	
Conduct				b_2	.0052	0166, .0269
Disorder (W)					(.0110)	
$M \times W$				b_3	0272	0613, .0070
					(.0173)	
BL PRAG (U)	a_2	.0094	1237, .1425	b_4	.1917***	.0891, .2943
		(.0673)			(.0518)	
Constant	$i_{ m M}$.2761	0400, .5921	$i_{ m Y}$.0925	1440, .3289
		(.1597)			(.1195)	
		R^2	= .0303		$R^2 = .1$	434
		F(2, 129) =	2.0124, p = .1378	F((5, 126) = 4.21	69. $p = .0014$

Table 143. Unstandardized OLS Regression Coefficients with Confidence Intervals EstimatingDeviancy Training and Percentage of Heavy Drinking Days (PHDD): Adolescent Session 3Form and 6-month Follow-up with Conduct Disorder in Second Stage (n=139).

		Deviancy (M)			6mo PHDD (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0447	3103, .2209	c	2328*	4179,0477	
		(.1343)			(.0936)		
Deviancy (M)				b_1	.0378	0859, .1614	
					(.0625)		
Conduct				b_2	.0180	0111, .0471	
Disorder (W)					(.0147)		
$M \times W$				b_3	0392	0818, .0035	
					(.0216)		
BL PHDD (U)	a_2	.2830*	.0678, .4982	b_4	.1979*	.0424, .3533	
		(.1088)			(.0786)		
Constant	$i_{ m M}$	1340	5847, .3167	$i_{ m Y}$.6521***	.3359, .9683	
		(.2279)			(.1599)		
		R^2	e = .0482		$R^2 = .1$	390	
		F(2, 136) =	3.4432, p = .0348	F((5, 133) = 4.29	53, p = .0012	

Table 144. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=139).

	_	Dev	iancy (M)		6mo D	RWK (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	0410	3090, .2270	c	1405	3036, .0227
		(.1355)			(.0825)	
Deviancy (M)				b_1	.0325	0756, .1407
					(.0547)	
Conduct				b_2	.0148	0109, .0404
Disorder (W)					(.0130)	
$M \times W$				b_3	0422*	0798,0046
					(.0190)	
BL DRWK (U)	a_2	.2535*	.0105, .4964	b_4	.2085**	.0566, .3604
		(.1228)			(.0768)	
Constant	i_{M}	1215	5863, .3434	$i_{ m Y}$.4894***	.2051, .7737
		(.2351)			(.1437)	
		R^2	= 0312		$R^2 = 1$	314
		F(2, 136) =	2.1898, p = .1159	F((5, 133) = 4.02	52, p = .0020

Table 145. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=137).

		Devi	ancy (M)	_	6mo MJWK (Y)		
		Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	0343	3106, .2421	c	0074	1884, .1736	
		(.1397)			(.0915)		
Deviancy (M)				b_1	.0166	1013, .1345	
					(.0596)		
Conduct				b_2	.0059	0227, .0344	
Disorder (W)					(.0144)		
$M \times W$				b_3	0338	0751, .0075	
					(.0209)		
BL MJWK (U)	a_2	.1305	1185, .3796	b_4	.2234**	.0558, .3910	
		(.1259)			(.0847)		
Constant	$i_{ m M}$	0793	6046, .4460	$i_{ m Y}$.3010	0472, .6491	
		(.2656)			(.1760)		
		R^2	= .0088		$R^2 = .0$	851	
		F(2, 134) =	.5972, <i>p</i> = .5518	F(z)	(5, 131) = 2.43	69, p = .0379	

Table 146. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Adolescent Session 3 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=139).

		Devi	iancy (M)		6mo P	RAG (Y)
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	1378	5901, .3145	Ċ	0488	1791, .0815
		(.2287)			(.0659)	
Deviancy (M)				b_1	.0093	0774, .0959
					(.0438)	
Conduct				b_2	.0046	0163, .0255
Disorder (W)					(.0106)	
$M \times W$				b_3	0225	0524, .0075
					(.0151)	
BL PRAG (U)	a_2	.2475*	.0578, .4372	b_4	.1743***	.0756, .2731
		(.0959)			(.0499)	
Constant	i_{M}	1378	5901, .3145	$i_{ m Y}$.1003	1233, .3238
		(.2287)			(.1130)	
		R^2	= .0475		$R^2 = .1$	296
		F(2, 136) =	3.3902, p = .0366	F((5, 133) = 3.95	94. $p = .0022$

Table 147. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=159).

		Devi	ancy (M)	_	3mo	PHDD (Y)
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3397*	6119,0675	Ċ	0513	2134, .1108
		(.1378)			(.0820)	
Deviancy (M)				b_1	.0237	0705, .1179
					(.0477)	
Conduct				b_2	.0153	0096, .0402
Disorder (W)					(.0126)	
$M \times W$				b_3	.0211	0082, .0504
					(.0148)	
BL PHDD (U)	a_2	.3816***	.1603, .6028	b_4	.2043**	.0685, .3402
		(.1120)			(.0688)	
Constant	i_{M}	.2463	2148, .7074	$i_{ m Y}$.2892*	.0170, .5614
		(.2334)			(.1378)	
		R^2	= .1027		$R^2 = .$	1003
		F(2, 156) =	8.9291, p = .0002	F((5, 153) = 3.4	102, p = .0060

Table 148. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Drinks per Week (DRWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=159).

		Devi	ancy (M)		3mo E	RWK (Y)
	_	Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3344*	6101,0586	Ċ	0379	1857, .1098
		(.1396)			(.0748)	
Deviancy (M)				b_1	.0003	0846, .0852
					(.0430)	
Conduct				b_2	.0164	0063, .0392
Disorder (W)					(.0115)	
$M \times W$				b_3	.0145	0122, .0412
					(.0135)	
BL DRWK (U)	a_2	.3470**	.0958, .5982	b_4	.2453***	.1083, .3824
		(.1272)			(.0694)	
Constant	$i_{ m M}$.2576	2202, .7354	$i_{ m Y}$.2448	0097, .4990
		(.2419)			(.1287)	
		R^2	= .0799		$R^2 = .1$	111
		F(2, 156) = 0	6.7732, p = .0015	F(5, 153) = 3.82	261, p = .0027

Table 149. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 3-month Follow-up with Conduct Disorder in Second Stage (*n*=158).

		Devi	iancy (M)	_	3mo N	AJWK (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3102*	5889,0315	c	0871	2519, .0778
		(.1411)			(.0834)	
Deviancy (M)				b_1	.0895	0052, .1842
					(.0479)	
Conduct				b_2	.0043	0213, .0300
Disorder (W)					(.0130)	
$M \times W$				b_3	.0059	0244, .0362
					(.0153)	
BL MJWK (U)	a_2	.2370	0151, .4891	b_4	.2944***	.1426, .4462
		(.1276)			(.0768)	
Constant	iм	.2296	2940, .7531	$i_{ m Y}$.3297*	.0199, .6396
		(.2650)			(.1568)	
		R^2	= 0535		$R^2 = 1$	448
		F(2, 155) =	4.3849, p = .0140	F((5, 152) = 5.14	176, p = .0002

Table 150. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating
Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10
Form and 3-month Follow-up with Conduct Disorder in Second Stage (<i>n</i> =159).

		Deviancy (M)			3mo I	PRAG (Y)
		Coeff.	95% CI	_	Coeff.	95% CI
Treatment (X)	a_1	3220*	6024,0416	Ċ	.0619	0661, .1899
		(.1420)			(.0648)	
Deviancy (M)				b_1	.0072	0650, .0794
					(.0365)	
Conduct				b_2	.0112	0092, .0316
Disorder (W)					(.0103)	
$M \times W$				b_3	.0012	0218, .0242
					(.0116)	
BL PRAG (U)	a_2	.1780	0189, .3749	b_4	.2805***	.1868, .3741
		(.0997)			(.0474)	
Constant	i_{M}	.3721	1013, .8455	iγ	1051	3211, .1110
		(.2397)			(.1094)	
		R^2	= .0553		$R^2 = .2$	2313
		F(2 156) =	$45670 \ n = 0118$	F((5, 153) = 9.20	$0.76 \ n < 0.001$

F(2, 156) = 4.5670, p = .0118 F(5, 153) = 9.2076, p < .0001Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered; BL = baseline; * p < .05; ** p < .01; *** p < .001

 Table 151. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating

 Deviancy Training and Percentage of Heavy Drinking Days (PHDD): Counselor Session 10

 Form and 6-month Follow-up with Conduct Disorder in Second Stage (n=134).

	_	Devi	ancy (M)	_	6mo PHDD (Y)		
	_	Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	2952*	5878,0025	Ċ	2160*	4144,0205	
		(.1479)			(.0988)		
Deviancy (M)				b_1	.0335	0816, .1486	
					(.0581)		
Conduct				b_2	.0262	0043, .0566	
Disorder (W)					(.0154)		
$M \times W$				b_3	0049	0405, .0308	
					(.0180)		
BL PHDD (U)	a_2	.4098***	.1758, .6438	b_4	.1584	0065, .3233	
		(.1183)			(.0833)		
Constant	i_{M}	.1496	3402, .6394	$i_{ m Y}$.6404***	.3126, .9682	
		(.2476)			(.1657)		
		R^2	= .1075		$R^2 = .$	1075	
		F(2, 131) = .	7.8879, <i>p</i> = .0006	F((5, 128) = 3.0	847, <i>p</i> = .0116	

Table 152. Unstandardized OLS Regression Coefficients with Confidence IntervalsEstimating Deviancy Training and Average Number of Drinks per Week (DRWK):Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second Stage(n=134).

		Deviancy (M)			6mo DRWK (Y)		
	_	Coeff.	95% CI		Coeff.	95% CI	
Treatment (X)	a_1	2905	5854, .0044	Ċ	1245	2977, .0486	
		(.1491)			(.0875)		
Deviancy (M)				b_1	.0041	0970, .1052	
• • •					(.0511)		
Conduct				b_2	.0222	0046, .0491	
Disorder (W)					(.0136)		
$M \times W$				b_3	.0027	0286, .0340	
					(.0158)		
BL DRWK (U)	a_2	.4184**	.1545, .6824	b_4	.1732*	.0127, .3338	
		(.1334)			(.0811)		
Constant	$i_{\rm M}$.1305	3729, .6338	$i_{ m Y}$.4722**	.1767, .7677	
		(.2544)			(.1493)		
		$R^2 = 0.0037$		$R^2 = 0.834$			
		$F(2 131) = 6 7754 \ n = 0016$		F(F(5, 128) = 2,3298, n = 0.0004		

Table 153. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Average Number of Marijuana Uses per Week (MJWK): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second Stage (*n*=132).

		Deviancy (M)			6mo MJWK (Y)	
		Coeff.	95% CI		Coeff.	95% CI
Treatment (X)	a_1	2407	5440, .0626	Ċ	.0043	1845, .1932
		(.1533)			(.0954)	
Deviancy (M)				b_1	0396	1487, .0696
					(.0551)	
Conduct				b_2	.0081	0215, .0377
Disorder (W)					(.0149)	
$M \times W$				b_3	.0040	0308, .0388
					(.0176)	
BL MJWK (U)	a_2	.2656	0067, .5378	b_4	.2558**	.0817, .4300
		(.1376)			(.0880)	
Constant	$i_{\rm M}$.0958	4709, .6625	$i_{ m Y}$.2404	1167, .5975
		(.2864)			(.1804)	
		$R^2 = .0490$ F(2, 129) = 3.3225, p = .0392		$R^2 = .0718$ F(5, 126) = 1.9491, p = .0908		

Table 154. Unstandardized OLS Regression Coefficients with Confidence Intervals Estimating Deviancy Training and Alcohol-Related Predatory Aggression (PRAG): Counselor Session 10 Form and 6-month Follow-up with Conduct Disorder in Second Stage (n=134).

		Deviancy (M)			6mo PRAG (Y)		
	_	Coeff.	95% CI	_	Coeff.	95% CI	
Treatment (X)	a_1	2716	5745, .0312	Ċ	0384	1753, .0985	
		(.1531)			(.0692)		
Deviancy (M)				b_1	.0390	0389, .1168	
					(.0393)		
Conduct				b_2	.0077	0140, .0295	
Disorder (W)					(.0110)		
$M \times W$				b_3	0008	0254, .0238	
					(.0124)		
BL PRAG (U)	a_2	.1865	0276, .4005	b_4	.1748***	.0750, .2747	
		(.1082)			(.0505)		
Constant	\dot{i}_{M}	.2843	2226, .7911	$i_{ m Y}$.0752	1543, .3047	
		(.2562)			(.1160)		
		$R^2 = .0473$			$R^2 = .1262$		

 $\frac{F(2, 131) = 3.2516, p = .0419}{\text{Notes. Standard errors in parentheses; Conduct disorder symptoms and treatment are mean centered;}}$

BL = baseline; * p < .05; ** p < .01; *** p < .001

BIBLIOGRAPHY

- American Psychiatric Association. (1994). *Diagnostic and statistical manual of mental disorders* (4th ed.). Washington, DC: Author.
- Ang, R. P., & Hughes, J. N. (2001). Differential benefits of skills training with antisocial youth based on group composition: A meta-analytic investigation. *School Psychology Review*, 31, 164-185.
- Arnold, M. E., & Hughes, J. N. (1999). First do no harm: Adverse effects of grouping deviant youth for skills training. *Journal of School Psychology*, 37(1), 99-115.

Bandura, A. (1977). Social learning theory. Englewoods, NJ: Prentice Hall.

- Bassett, S. S., Stein, L. A. R., Martin, R. Lebeau, R., Rohsenow, D., Kahler, C., . . .,Hurlbut, W. (2015). Validation of the Group Process Questionnaire forincarcerated youth: Coding at the group level. Manuscript in preparation.
- Burleson, J. A., Kaminer, Y., & Dennis, M. L. (2006). Absence of iatrogenic or contagion effects in adolescent group therapy: Findings from the Cannabis Youth Treatment (CYT) Study. *The American Journal on Addictions, 15*, 4-15.
- Carroll, K. M., Martino, S., & Rounsaville, B. J. (2010). No train, no gain? *Clinical Psychology: Science and Practice*, *17*(1), 36-40.
- Carroll, K. M., Nich, C., Sifry, R. L., Nuro, K. F., Frankforter, T. L., Ball, S. A., . . . Rounsaville, B. J. (2000). A general system for evaluating therapist

adherence and competence in psychotherapy research in the addictions. *Drug and Alcohol Dependence*, *57*, 225-238.

- Cohen, J. (1988). *Statistical power analysis for the behavioral sciences* (2nd ed). Hillside, NJ: Erlbaum.
- Dembo, R., Williams, L., Schmeidler, J., Berry, E., Wothke, W., Getreu, A., . . . Christensen, C (1992). A structural model examining the relationship between physical child abuse, sexual child victimization, and marijuana/hashish use in delinquent youth: A longitudinal study. *Violence and Victims*, 7, 41-62.
- Dembo, R., Williams, L., Schmeidler, J., & Wothke, W. (1993). A longitudinal study of the predictors of the adverse effects of alcohol and marijuana/hashish use among a cohort of high risk youths. *International Journal of the Addictions*. 28, 1045-1083.
- Dishion, T. J., & Andrews, D. W. (1995). Preventing escalation in problem behaviors with high-risk young adolescents: Immediate and 1-year outcomes. *Journal of Consulting and Clinical Psychology*, 63, 538-548.
- Dishion, T. J., McCord, J., & Poulin, F. (1999). When interventions harm: Peer groups and problem behavior. *American Psychologist*, *54*, 755-764.
- Dishion, T. J., Poulin, F., & Burraton, B. (2001). Peer group dynamics associated with iatrogenic effects in group interventions with high-risk young adolescents.
 In D.W. Nagle & C.A. Endley (Eds.), *The role of friendship in psychological adjustment* (79-92). San Francisco, CA: Jossey-Bass.

- Elliot, D. S., Ageton, S. S., Huizinga, D., Knowles, B. A., & Canter, R. J. (1983). The prevalence and incidence of delinquent behavior: 1976-1980. Boulder, CO: Behavioral Research Institute.
- French, M. T., Zavala, S. K., McCollister, K. E., Waldron, H. B., Turner, C. W., & Ozechowski, T.J. (2008). Cost-effectiveness analysis of four interventions for adolescents with a substance use disorder. *Journal of Substance Abuse Treatment*, 34(3), 272-281.
- Fritz, M. S., & MacKinnon, D. P. (2007). Required sample size to detect the mediated effect. *Psychological Science*, 18(3), 233-239.
- Fritz, M. S., Taylor, A. B., & MacKinnon, D. P. (2012). Explanation of two anomalous results in statistical mediation analysis. *Multivariate Behavioral Research*, 47, 61-87.
- Greenwood, P.W. (1992). Substance abuse problems among high-risk youth and potential intervention. *Crime and Delinquency*, *38*, 444-458.
- Gretton, H. M., & Clift, R. J. W. (2011). The mental health needs of incarcerated youth in British Columbia, Canada. *International Journal of Law and Psychiatry*, 34, 109-115.
- Hayes, A. F. (2015). An index and test of linear moderated mediation. *Multivariate Behavioral Research*, *50*(1), 1-22.
- Hayes, A. F., & Scharkow, M. (2013). The relative trustworthiness of inferential tests of the indirect effect in statistical mediation analysis: Does method really matter? *Psychological Science*, 24(10), 1918-1927.

- Kaminer, Y. (2005). Challenges and opportunities of group therapy for adolescent substance abuse: A critical review. *Addictive Behaviors*, 30, 1765-1774.
- Kazdin, A. E. (2007). Mediators and mechanisms of change in psychotherapy research. *Annual Review of Clinical Psychology*, 3, 1-17.
- Kenny, D. A. (2014). Effect size of the indirect effect and the computation of Power.*Mediation*. Retrieved from: http://davidakenny.net/cm/mediate.htm#IE
- Kessler, R., Andrews, G., Mroczek, D., Ustun, B., & Wittchen, H. (1997). The World Health Organization Composite International Diagnostic Interview Short Form (CIDI-SF). *International Journal of Methods in Psychiatric Research*, 7, 171-185.
- Lennings, C.J., Copeland, J., Howard, J. (2003). Substance use patterns of young offenders and violent crime. *Aggressive Behavior, 29*, 414-422.
- Lipsey, M.W., & Derzon, J.H. (1998). Predictors of violent or serious delinquency in adolescence and early adulthood: A synthesis of longitudinal research. In R.
 Loeber & D.P. Farrington (Eds.). Serious and Violent Offenders (pp. 313-345).
 Thousand Oaks, CA: Sage Publications, Inc.
- Martino, S., Ball, S., Nich, C., Frankforter, T. L., & Carroll, K. M. (2009).
 Correspondence of motivational enhancement treatment integrity ratings among therapists, supervisors, and observers. *Psychotherapy Research*, *19*(2), 181-193.
- McCord, J. (1978). A thirty-year follow-up of treatment effects. *American Psychologist*, *33*, 284-289).

- Miech, R. A., Johnston, L. D., O'Malley, P. M., Bachman, J. G., & Schulenberg, J. E. (2015). *Monitoring the Future national survey results on drug use, 1975–2014: Volume I, Secondary school students*. Ann Arbor: Institute for Social Research, The University of Michigan.
- Mulvey, E.P., Schubert, C.A., & Chassin, L. (2010). Substance use and delinquent behavior among serious adolescent offenders. *Juvenile Justice Bulletin*. U.S. Department of Justice, Washington, D.C.
- National Institute of Justice. (1997). 1997 annual report on adult and juvenile arrestees. U.S. Department of Justice, Washington, DC.
- National Institute of Justice. (2003). 2000 arrestee drug abuse monitoring: Annual report (NCJ 193013). U.S. Department of Justice, Washington, DC.
- Poulin, F., Dishion, T. J., & Burraston, B. (2001). 3-year iatrogenic effects associated with aggregating high-risk adolescents in cognitive-behavioral preventative interventions. *Applied Developmental Science*, 5(4), 214-224.
- Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. *Behavior Research Methods*, 40(3), 879-891.
- Preacher, K. J., & Kelley, K. (2013). Effect size measures for mediation models: Quantitative strategies for communicating indirect effects. *Psychological Methods*, 16(2), 93-115.
- Preacher, K. J., Rucker, D. D., & Hayes, A. F. (2007). Addressing moderated mediation hypotheses: Theory, methods, and prescriptions. *Multivariate Behavioral Research*, 42(1), 185-227.

- Puzzanchera, C. (2014). Juvenile arrests 2012. Juvenile Offenders and Victims: National Report Series, Bulletin (NCJ 248513). U.S. Department of Justice, Washington, D.C.
- Radloff, L. S. (1991). The use of the Center for Epidemiologic Studies Depression Scale in adolescents and young adults. *Journal of Youth and Adolescence, 20*, 149-166.
- Reavy, R., Stein, L. A. R., Paiva, A., Quina, K., & Rossi, J. S. (2012). Validation of the delinquent activities scale for incarcerated adolescents. *Addictive Behaviors*, 37, 875-879.
- Reavy, R., Stein, L. A. R., Quina, K., & Paiva, A. (2014). Assessing Conduct Disorder: A new measurement approach. *Journal of Correctional Healthcare*, 20(1), 4-17.
- Rose, M., Klein, J., Stein, L. A. R., Lebeau-Craven, R., & Justus, A., (2005). Substance education treatment: A manual for treating incarcerated adolescents. Unpublished manual, Brown University, Providence, RI; NIDA/NIAAA, Rockville, MD.
- Sampl, S., & Kadden, R. (2001). Motivational enhancement therapy and cognitive behavioral therapy for adolescent cannabis users: 5 sessions (Cannabis Youth Treatment [CYT] Series, Vol. 1). Rockville, MD: Center for Substance Abuse Treatment, Substance Abuse and Mental Health Services Administration.
- Sealock, M.D., Gottfredson, D.C., & Gallagher, C.A. (1997). Drug treatment for juvenile offenders: Some good and bad news. *Journal of Research on Crime and Delinquency*, 34, 210-236.

- Snyder, H., & Sickmund, M. (2006). Juvenile offenders and victims: 2006 national report. Washington, DC: Office of Juvenile Justice and Delinquency Prevention.
- Sobell, L. C., Maisto, S. A., Sobell, M. B., & Cooper, A. M. (1979). Reliability of alcohol-abusers' self-reports of drinking behavior. *Behavior Research and Therapy*, 17(2), 57-60.
- Sobell, L. C., & Sobell, M. B. (1992). Timeline follow-back: A technique for assessing self- reported alcohol consumption. In R. Z. Litten & J. P. Allen (Eds). *Measuring alcohol consumption: Psychosocial and biochemical methods* (pp. 41-72). Totowa, New Jersey: Humana Press.
- Stein, L. A. R. (2005). Cognitive behavior therapy for alcohol and marijuana use: A manual for treating incarcerated teens. Unpublished manual, Brown University, Providence, RI; NIDA/NIAAA, Rockville, MD.
- Stein, L. A. R., & Clair, M. (2010a). Motivational Enhancement therapy for alcohol and marijuana use: A manual for treating incarcerated teens. Unpublished manual, University of Rhode Island, Kingston, RI.
- Stein, L. A. R., & Clair, M. (2010b). *Relaxation therapy for alcohol and marijuana* use: A manual for treating incarcerated teens. Unpublished manual, University of Rhode Island, Kingston, RI.
- Stein, L.A.R., Clair, M., Martin, R.A., Soenksen, S., Lebeau, R., Rohsenow, D.J., . . .
 Monti, P.M. (2014). Measuring behaviors of individual adolescents during group-based substance abuse intervention. *Substance Use*, *35*(4), 408-417.

- Stein, L.A.R., Martin, R., Lebeau, R., Clair, M., Kahler, C., Rohsenow, D., . . . Hurlbut, W. (2015). *Efficacy of Behavioral versus 12-Step Psycho-Ed Treatments in Reducing Substance Use for Incarcerated Youth*. Manuscript in preparation.
- Substance Abuse and Mental Health Services Administration, Office of Applied
 Studies. (2010). National Survey of Substance Abuse Treatment Services (N-SSATS): 2009. Data on Substance Abuse Treatment Facilities, DASIS Series:
 S-54, HHS Publication No. (SMA) 10-4579, Rockville, MS.
- Tasca, G. A., Illing, V., Ogrodniczuk, J. S., & Joyce, A. S. (2009). Assessing and adjusting for dependent observations in group treatment research using multilevel models. *Group Dynamics: Theory, Research, and Practice, 13*(3), 151-162.
- Teplin, L. A., Abram, K. M., McClelland, G. M., Dulcan, M. K., & Mericle, A. A. (2002). Psychiatric disorders in youth in juvenile detention. *Archives of General Psychiatry*, 59, 1133-143.
- The Correctional Association of New York. (2011). Treatment behind bars: Substance abuse treatment in New York prisons. New York, New York: Author.
- Tsikriktsis, N. (2005). A review of techniques for treating missing data in OM survey research. *Journal of Operations Management, 24*, 53-62.
- Waldron, H. B., & Kaminer, Y. (2004). On the learning curve: The emerging evidence supporting cognitive-behavioral therapies for adolescent substance abuse. *Addiction, Suppl 2, 99*, 93-105.

- Weiss, B. Caron, A., Ball, S., Tapp, J., Johnson, M., & Weisz, J. R. (2005).
 Iatrogenic effects of group treatment for antisocial youth. *Journal of Consulting and Clinical Psychology*, 73(6), 1036-1044.
- Young, D. W., Dembo, R., & Henderson, C. E. (2007). A national survey of substance abuse treatment for juvenile offenders. *Journal of Substance Abuse Treatment*, 32(3), 255-266.
- Zhang, Z. (2003). Drug and alcohol use and related matters among arrestees. U.S. Department of Justice, Washington, D.C.