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Abstract 

In the last decade, the subspace approach has found prominence in the problem 

of estimating directions of arrival using an array of sensors. Many subspace meth­

ods have been proposed and improved; the most attractive ones among these are 

MUSIC, Min-Norm, State-Space Realization (TAM) and ESPRIT. However, per­

formance analyses are required for justifying and comparing these methods before 

applying them. Early performance justifications and comparisons were based on 

simulations. In recent years, many excellent analytical studies have been reported, 

but these studies have one or more of the following restrictions: (i) assume asymp­

totic measurements, (ii) analyze some specific parameter perturbation directly in­

stead of through the perturbation of the appropriate subspace, (iii) evaluate in­

dividual algorithms using different approximations (so it is hard to compare the 

analyses of different methods), (iv) involve complicated mathematics and statistics 

which result in difficult expressions. In our attempt to obtain a unified, non­

asymptotic analysis to subspace processing algorithms in a greatly simplified and 

self-contained fashion, we 

1. classify these algorithms into category by the subspace they use - orthogonal­

subspace processing and signal-subspace processing. We then derive expres­

sions for the first-order perturbation of the signal and orthogonal subspaces 

using a matrix approximation technique. These formulas provides a common 

foundation for our analysis of all the DOA estimation algorithms mentioned 

above. 



2. define three approaches by the numerical procedure these algorithms exploit 

- extrema-searching, polynomial-rooting approach, matrix-shifting approach. 

We establish a common model for each approach and analyze these common 

models (instead of individual algorithms), and specialize the results for each 

algorithm. 

3. provide a first-order relationship between subspace perturbations and 

direction-of-arrival perturbations. 

4. use the perturbation formulas to derive variance expressions for DOA es­

timates for all the algorithms. We make the comparisons and discussions 

among these algorithms and approaches with our theoretical prediction and 

numerical simulations. 

The tractable formulas derived in this analysis provide insight into the performance 

of the algorithms. Simulations verify the analysis. 

lll 



Acknowledgments 

I would like to express my sincere gratitude and deepest appreciation to my major 

advisor, Dr. Richard J. Vaccaro, for his constant support, encouragement, enthu­

siasm and patience in guiding this research. His probing comments and insightful 

suggestions are invaluable resources which made this research all possible. He 

certainly deserves much credit. 

I am deeply grateful to Drs. Leland B. Jackson and P-T. Liu for their guidance 

and support as the thesis committee members, and Drs. G. Faye Boudreaux­

Bartels, James T. Lewis, E. R. Suryanarayan and H. Ozbay for their services in 

various examinations in my Ph.D. program. 

I also wish to thank Drs. Donald W. Tufts, Ramdas Kumaresan, Steven M. 

Kay and other members of faculty for their contribution in my graduate education. 

I never hesitated to knock their doors whenever I had questions. Thanks are also 

due to Zhigang Fan, Alex C. Kot, !vars Kirsteins, Eleftherios Maragakis and other 

fellow graduate students with whom I had great pleasure to interact with. I feel 

specially privileged to have had my Ph.D. program in University of Rhode Island 

which has exceptional expertise in signal processing. 

I would like to gratefully acknowledge all the people who helped me during my 

Ph.D. program. 

This dissertation is dedicated to my wife, daughter and parents. I will forever 

be indebted to them for their love and sacrifices throughout. 

This research was supported in part by the Office of Naval Research under grant 

N00014-90-J1283 and by the Army Research Office under contract DAAL03-86-K-

0108 

iv 



Preface 

This dissertation is based on research in the area of array signal processing con­
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Chapter 1 

Introduction 

1.1 Statement of the Problem 

This dissertation analyzes the statistical performance of subspace processing algo­

rithms for estimating directions-of-arrival (DOA) from sensor array signals. 

Given an array of L sensors, the problem is to estimate the directions of P 

uncorrelated plane-wave signals which simultaneously impinge on the array. By 

taking measurements simultaneously at all sensors, at M different instants in time, 

an L x M (sensor versus snapshot) data matrix can be formed. The first step 

in the subspace approach to the estimation of directions-of-arrival is to perform 

an eigenvalue decomposition on the covariance estimates of the data matrix or, 

equivalently, perform a singular value decomposition directly on the data matrix. 

The second step is to obtain a signal-subspace spanned by the eigen (singular) vec­

tors associated with P largest eigen (singular) values and an orthogonal-subspace 

spanned by the eigen (singular) vectors associated with L - P smallest eigen (sin­

gular) values. Since these two subspaces are orthogonal complements of each other, 

either of them can be used to estimate the directions of arrival. After acquiring 

the appropriate subspace, each method estimates the interesting parameters in a 

different fashion of exploiting the underlying signal propagation model. 

In the presence of the noise introduced by observation, quantization, etc., the 

direction-of-arrival estimators cannot be error-free. Different subspace methods 

1 



CHAPTER 1. INTRODUCTION 2 

have different sensitivities to perturbations. An analytical justification and com­

parison of their performances is therefore important. Based on a comprehensive 

study of their statistical error, we develop a unified approach to the performance 

analyses of these subspace methods. 

1.2 Scope of the Problem 

Array signal processing has been a very active research field for several decades 

motivated by the increasing demand for radar, sonar, radio, seismic, speech and 

other signal processing in applications of electronic surveillance, telecommunica­

tions, astronomy, geographies, oceanographies, and bio-medical science. In the last 

ten years, the subspace approach has found its prominence in the problem of es­

timating directions of arrival, which is one of the most important topics in array 

processing. Many subspace methods have been proposed and improved. Numerous 

papers and reports were documented in the literature every year. However perfor­

mance analyses are required for justifying and comparing these methods for the 

purpose of applying them. Our study of statistical performance includes a high 

SNR perturbation analysis of the subspaces and of many different subspace-based 

DOA estimation algorithms. A brief list of the topics covered in this dissertation 

is given below: 

• Historic review and classification of algorithms based on subspaces and on 

numerical procedures [Chapter 2] 

• Perturbation analyses of the signal subspace and orthogonal (noise) subspace 

[Chapter 3] 

• Perturbation analyses of extrema-searching algorithms such as MUSIC and 

Extended Min-Norm [Chapter 4] 

• Perturbation analyses of polynomial-rooting algorithms such as Root-MUSIC 

and Min-Norm [Chapter 5] 
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• Perturbation analyses of matrix-shifting algorithms such as State-Space Re-

alization and ESPRIT [Chapter 6] 

• Unified expression of mean-squared error and a numerical example of com-

parison [Chapter 7] 

The first topic addresses the perturbation of the subspaces, which provides 

the common foundation for tl~e analyses of various algorithms. We then classify 

those various algorithms into three categories based on their estimation procedures: 

extrema-searching, polynomial-rooting and matrix-shifting. The analyses of these 

types of algorithms form the topics of latter three chapters. 

1.3 Summary of the Other Works 

Motivated by the increasing popularity of subspace processing algorithms in DOA 

estimation, many researchers turned to study the performance of these algorithms. 

Early performance justification and comparisons are based on simulations [1], which 

cannot avoid dependence on the selection of simulation examples. In recent years, 

analytical performance justification and comparisons have been actively developed. 

Among many other excellent analyses, the following works have specific contribu­

tions: 

• Kaveh and Barabell [2] used the first and second moments of the perturbed 

signal eigenvalues and eigenvectors to derive a first order approximation to 

the mean and variance of the estimated spectrum for MUSIC, and the mean 

for Min-Norm based on first order perturbation of the null-spectrum in the 

signal neighborhoods. 

• Porat and Friedlander [3, 4] later developed a similar approach for Min­

Norm and MUSIC using first-order Taylor series approximations of estimated 

parameters around their true values. 
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• Clergeot, Tressens and Ouamri [5] analyzed the performances of MUSIC and 

Min-Norm based on a first-order linear perturbation method to calculate the 

perturbed signal eigenvectors. 

• Hua and Sarkar [6] presented an analysis of Min-Norm by calculating the 

perturbation of the pseudo-inverse of the truncated data matrix. 

• Bhaskar Rao presented separate statistical analyses of Min-Norm [7, 8], Root­

MUSIC [9], TAM [10] and ESPRIT [9]. 

• Stoica and Nehorai [11, 12, 13] derived an expression for the covariance of 

MUSIC estimate of the direction of arrival and used it for performance com­

parison of MUSIC with the Maximum-Likelihood Method and the Cramer­

Rao Bound. 

• Farrier, Jeffries and Mardani [14, 15] presented a second-order analysis to the 

expected value of MUSIC spectrum. 

• Tufts, Vaccaro and Kot [16] proposed a backward error analysis to Min-Norm 

Linear Prediction of time series using matrix approximation. 

Many of these excellent methodologies and results, especially the simplicity and 

efficiency of the backward error analysis, inspired this research. However, despite 

of their great successes, most of these performance analyses have one or more of 

the following restrictions: 

• assume asymptotic measurements which may not be realistic in practice, 

• analyze some specific parameter perturbation directly instead of the pertur­

bation of the appropriate subspace, 

• evaluate individual algorithms using different approximations, and so it lS 

hard to compare the analyses of the different algorithms. 

• involve complicated mathematics and statistics which result in complicated 

expressions. 
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Therefore, the goal of this research was to provide a non-asymptotic, unified and 

simplified performance analysis. 

1.4 Significance and Contributions 

The novelty of the performance analysis presented in this dissertation is that it 

encompasses a variety of problems and provides a unified framework. A theoreti­

cally and computationally simple analysis is common to all the subspace methods, 

which are formulated in a general framework. In the next few paragraphs, the 

main results of the present work are listed: 

1. A unified approach is developed for the performances of all the subspace 

methods including Pisarenko's method, MUSIC, Min-Norm Linear Predic­

tion, Root-MUSIC, State-Space Realization, ESPRIT and Matrix-Pencil. 

The expressions for the perturbation of the signal-subspace and of orthogonal­

subspace are derived, which provide a common foundation for our analysis of 

all the DOA estimation algorithms mentioned above. This approach is also 

applicable to several other methods beyond subspace processing methods. 

2. The performance is analyzed in a greatly simplified and self-contained fash­

ion, which provides the tractable formulae and insight for the algorithms. 

Unnecessarily complicated mathematics and statistics have been successfully 

avoided. 

3. The performance is analyzed for the case in which only a finite number of 

measurements are available, which is the common restriction for many array 

signal processing applications owing to some practical limitation, for instance, 

nonstationarity. This work makes the assumption of high signal-to-noise ratio 

which is reasonable in some practical situations, and is also of theoretical 

interest. Furthermore, the analyses are shown to agree with simulations 

down to a fairly low signal-to-noise ratio near threshold, which indicates the 

high SNR assumption is only sufficient but may not be necessary. 
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4. To achieve the goal, we have also categorized three different types of sub­

space methods by their procedure of solving the problem: extrema-searching, 

polynomial-rooting and matrix shifting. 

5. We have derived a unified framework for different algorithms in each category, 

which is a necessary step toward unifying all the subspace methods. 

6. As a verification, the predicted performance from our analysis is shown to be 

in good agreement with measured performance from simulations over a wide 

range of signal-to-noise ratios, over various array geometries, over different 

observation lengths, over various angular separations. 

During the course of this work, the application of the Min-Norm Linear Pre­

diction technique to a sensor array of arbitrary geometry has been documented. 

Previous papers describing the Min-Norm technique apply it to linear arrays, and 

use a polynomial rooting procedure to obtain the estimates. It was shown in [ 17] 

that the Min-Norm technique is applicable to arrays of arbitrary geometry by using 

an extrema-searching procedure similar to the MUSIC algorithm. 

1.5 Organization of the Dissertation 

This dissertation is arranged as outlined below: 

Chapter !!'. Provides a comprehensive review of array processing tracing back 

to its origin in time series analysis in the 18th century when Prony initiated the 

linear prediction of time series, up to and including the state-of-art with emphasis 

on an historical perspective of major trends. The classifications based on subspaces 

and numerical procedures of the algorithms are described. 

Chapter 9: The concept of subspace is introduced using the principal compo­

nent decomposition. An equivalence of the covariance based approach (which uses 

the eigendecomposition) and the direct data based approach (which uses the sin­

gular value decomposition) is discussed. The perturbation analyses of subspaces 
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developed in this chapter will play a central role through the whole dissertation. 

The perturbation of the orthogonal-subspace is presented through a first-order per­

turbation expansion. However, it is interesting to see that the perturbation of the 

signal-subspace is not derived in the same way, but rather from the orthogonality 

between the orthogonal subspace and signal subspace. The results in this chapter 

provide a common tool with which to analyze all the subspace methods. 

Chapter .+: The extrema-searching approach of the orthogonal-subspace based 

methods is defined, reviewed and analyzed. The application of Min-Norm Linear 

Prediction to an array of arbitrary geometry (called Search Min-Norm) is presented 

in this chapter. A unified model for MUSIC and Search Min-Norm Linear Predic­

t ion is derived, followed by the perturbation analysis of this common model. The 

perturbation of MUSIC and Search Min-Norm Linear Prediction are deduced as 

special cases of this common model and then compared with each other. 

Chapter 5: The polynomial-rooting approach of the orthogonal-subspace based 

methods is defined, reviewed and analyzed. A common spectral polynomial model 

for Root-MUSIC and Min-Norm Linear Prediction is established as in the previous 

chapter for a unified analysis. The Root-MUSIC and Min-Norm Linear Prediction 

are therefore analyzed as special cases of the unified analysis. The relation between 

root perturbation and the angle perturbation is also utilized. The comparison is 

made for Root-MUSIC and Min-Norm Linear Prediction. 

Chapter 6: The matrix-shifting approach for the signal-subspace based methods 

is defined, reviewed and analyzed. A common model for State-Space Realization 

and ESPRIT is found for a unified analysis. The analysis of the matrix-shifting 

approach is .different from the other approaches analyzed in the previous two chap­

ters. We achieve the tractable formulas through analyzing system matrices and 

their principal eigenvalues. The relationship between perturbations of eigenvalues 

and of directions of arrival is derived. 

Chapter 7: A unified expression of mean-squared error for DOA estimation 

with parameters specializing it for different algorithms is presented, followed by a 
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numerical example comparing all the algorithms with respect to variations of signal­

to-noise ratio, source separation, number of sensors and number of snapshots. The 

concluding remarks of this research is made at the end of the chapter. 

1.6 Nomenclature 

• Principal symbols 

S- signal matrix S = [s(l), ... , s(M)] 

N- noise matrix N = [n(l), ... , n(M)] 

Y- data observed at sensor array Y = [y(l), ... ,y(M)] 

R- covariance matrix of data 

P - spatial null-spectrum of the data 

:E, U, V - singular values and associated left- and right- singular vectors 

of data matrix (:E = diag{ ui}) 

A, E - eigenvalues and associated eigenvectors covariance matrix (A = 

diag{,\i}) 

L, M, P - number of sensors, snapshots, sources 

i, j, k - index of sensors, snapshots, sources 

a! - power of observation noise 

Ac - center wavelength of narrow-band plane-wave signal 

d - the distance between adjacent sensors 

8 - direction-of-arrival plane-wave signal 

w - spatial frequency w = 2;_d sin 8 

a( 8) - signal manifold (or steering) vector 

• Matrix notation 

[·]a - signal-subspace affiliated with [·] 
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[·]a - orthogonal-subspace affiliated with [ ·] 

r:1 - noise-corrupted quantity of[·] 

~[·] - perturbed quantity of[·] 

lR[·] - real part of[·] 

~[·] - imaginary part of[·] 

E[·] - expectation of[·] 

9 

Superscripts H, T and * - conjugate transpose, transpose and conjugation 

of the matrix 

Superscripts t and ~ - left- and right- pseudo-inverse of the matrix 

• Chapter 4 

W - weighting matrix 

d- linear prediction error vector 

x, y - sensor position coordinates for an array of arbitrary geometry. 

• Chapter 5 

z - Z transform domain component z = eJ1f!sinl 

r - root of spectral polynomial 

C" - coefficient between angle and and imaginary part of root (or eigenvalue) 

C - A 
le - 2rdcoe8• 

• Chapter 6 

F- transition matrix in SSR and ESPRIT 

0, C- observability and controllability matrices in SSR 

X- data observed at x subarray X = [x(l), ... ,x(P)] 

Z- data observed at z subarray Z = [z(l), ... , z(M)] 

X, u, v- eigenvalue and associated left- and right- eigenvector of ~F 



Chapter 2 

Historical Review and Algorithm 

Classification 

2.1 Assumption and Signal Model 

Given an array of L sensors and M snapshots of measurements taken at each 

sensor, the objective is to estimate the directions of P uncorrelated plane-wave 

signals which simultaneously impinge on the array. 

The following assumptions are made throughout the whole dissertation unless 

being otherwise stated. 

• The L array sensors are identical to each other. The number of sensors is 

greater than the number of signal sources (L > P). 

• The P signal wavefronts s1c are narrow-band (with the center wavelength Ac) 

plane-waves (far-field), uncorrelated from source to source. 

• The observation noise ni at each sensor is additive complex white-Gaussian 

with zero-mean and variance a! (ta! for independent real and imaginary 

parts), independent from sensor to sensor and from the signals. 

Under the above generic assumptions, the signal arriving at the i-th sensor 

located at (xi, Yi) (for i = 1, ... , L) at time t is 

10 
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p 
Yi ( t) L ei f;(z; ain 8k+lli coe 8k) SA: ( t) 

A:=l 

( 

S1:~t) ) 
1 

= ( ei1f(z;ain81+11;coe8i) . • • ei1f(z;ain8p+11;coe8p) ) 

sp(t) 

(2.1) 

i=l, ... ,L; k=l, ... ,P, 

where sA:(t) is the k-th narrowband signal (with center wavelength ,\c) arriving at 

an angle OA:. The signals arriving at all the sensors at time t are 

or in vector form 

&1f(z1 sin8p+t11 coa8p) ) 

ei1f(zL sin8:p+l/L coe8p) 

y(t) ~ ( a(Oi) . . . a(Op) ) s(t) ~f A(O)s(t) 

where A(O) represents the array characteristics. M snapshots of the signal can be 

used to form a data matrix as 

( 

Y1(l) 
Y- . . 

- YL~l) .:~ 
Y1(~: ) ) 

= A(O)S 

yL(M) 

(2.2) 

where 

( 

S1~.l) 
S ~ ( s ( 1) . .. s ( M) ) = 

sp(l) 

(2.3) 

In the case of uniform line array, the signal manifold matrix A(O) has a Vandemonde 

structure 

1 1 1 1 1 
i 2rd sin 8 &¥sin Sp e """J:"' I 

def Z1 Z2 Zp 
A(O) = 

ei¥(L-l)sin81 ei¥(L-l) sin Sp L-1 
Z1 

L-1 
Z2 

L-1 
Zp 
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where 
_j 2r4 nnl 

Z1c = . t:"' A;- k. 

In the presence of additive observation noise, the data matrix is 

Y=Y+N. 

The covariance matrix of the array data vector y is 

(2.4) 

where R, = E[ssH] (P x P) is the covariance matrix of the signal vector. In 

practice, the covariance matrix is estimated from 

- 1 - - H 
R= Myy . (2.5) 

2.2 Pre-Subspace Methods 

The theory of array processing has its origin in time-series analysis and spectral 

estimation, so it can be traced back to the 18th century when Gaspard Riche, the 

Baron de Prony published his work on fitting a sum of sinusoids to data in 1795 

[18]. But most of the Pre-Subspace Methods are restricted to the case of a uniform 

line array. 

2.2.1 Classical Fourier Analysis - Periodogram 

In 1898, Schuster introduced the idea of the periodogram for determining the pe­

riodicities of meterological phenomenon. At that time the calculation of the peri­

odogram was computationally a very expensive procedure. But with the advent of 

digital computers and after the discovery of fast Fourier transform (FFT) algorithm 

[19], the periodogram has become the standard method for frequency estimation 

and is probably the most frequently used method even in recent days. When 

the noise in the observed data is Gaussian distributed, the periodogram has been 

shown to produce a maximum likelihood estimate of the frequency when only a 
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single sinusoid is present. But the periodogram fails to distinguish between two 

closely spaced frequencies (separated by less than ;~, where N is the number of 

observations and T is the observation interval) and provides only a single frequency 

estimate instead of two. The inability to separate the two closely spaced sinusoids 

is due to the length of the data record ( N < 2; I sin (J" - sin 6; I), and is not related 

to the signal-to-noise ratio. When enough data is available, the periodogram of 

sufficiently zero padded data sequence can provide reasonably good estimates. 

2.2.2 Conventional Beamforming 

The conventional method of mapping the monochromatic field power as a function 

of angle from the array axis is the phase-to-phase beamforming operation, which 

consists of phasing the narrow band sensor outputs to a set of plane wavefronts 

whose directions span those of interest. It employs a procedure known as delay­

and-sum processing in an attempt to steer a beam in a particular direction. The 

concept is based on the physics of wave propagation phenomenon whereby sensors 

at different locations with respect to the incoming plane wave receive (nearly) the 

same signal, but with different time-delays with respect to some reference due 

to the propagation path lengths. If delays are inserted at each of the sensors to 

exactly compensate for the propagation and differential receiver delays, and outputs 

of the delay elements summed to form a scalar output, the energy in the signal 

waveforms will add voltage-wise while the measurement noise in each sensor, being 

uncorrelated from sensor to sensor, adds power-wise. The steering vector can be 

solved from a nonlinear constrained maximization problem of finding a unit-norm 

vector w such that the array out.put power is maximum. Such a steering vector 

has a form of 

(2.6) 

The idea behind conventional beamforming as a DOA estimation technique can be 

seen in the weight vector construction. Given measurements from the sensor array, 

and the set of known (calculated or calibrated) weight vectors, scan the region of 

6-space in which the source may present (i.e., V(J E 0) for relative maximal output 
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power 

(2.7) 

The values of fJ which maximizes PBF(O) are DOA estimates. 

The beam.forming technique is conceptually and computationally simple, but 

in the presence of multiple sources, the method breaks down completely because 

maxima are no longer guaranteed to be at the true source DOAs. 

2.2.3 Maximum Entropy Method 

In 1967, Burg [20] pointed out that the conventional beam.forming has the problem 

of utilizing a truncated correlation estimate in lag space which results in a smooth­

ing of true spectral function in frequency space. The extrapolated correlation lags 

should commit least with respect to observed data. Motivated by the results of 

information theory, he proposed a constrained maximization problem, i. e., find a 

P(f) which maximizes 

subject to the constraints 

max Jw log P(f)df, 
P(f) -W 

r(kLlr ) = 1_: P(f)ei2
rflctl.r df, for k = -L, ... , L, 

(2.8) 

(2.9) 

where the 21+1 correlation lags are assumed known and Llr = 1/2W. The resulting 

variational problem obtained by using standard Lagrange multiplier techniques can 

be written as follows: 

(2.10) 

The solution is straightforward 

TR-1 
A U1 U1 

P(f) = jjufR-lajj2' (2.11) 

where R is the Toeplitz correlation matrix of known lags, and 

def [ jT U1 = 1, 0, ... , 0 , (2.12) 



CHAPTER 2. REVIEW AND CLASSIFICATION 15 

(2.13) 

For uniform linear arrays and m known correlation lags, the maximmientropy 

method (MEM) is equivalent to order m auto-regressive (AR(m)) mo fitting 

and Linear Prediction where the extremal problem 

(2.14) 

has as its solution the optimal w given by 

( HR-1 )-lR-1 W = U 1 U1 U1, (2.15) 

which leads to a power spectrum identical to (2.11) . To complete the MM formu­

lation, the DOA estimates are associated with the minima of the null-spMum (or 

maxima of inverse null-spectrum) 

(2.16) 

2.2.4 Minimum Variance Method 

In 1969, Capon [21] argued that, in a filtering interpretation, the cc,iventional 

beamforming at a given angle gives equal weight to all angles, so that•he unde­

sirable contribution from the other sources is not rejected. He proposd a linear 

estimator which minimizes the interference from angles outside the regi:>. of inter­

est. 

min E[llwHy(t) 11 2] subject to wH a(O) = 1, 
w 

(2.17) 

The optimal solution is easily found using the standard Lagrange mult1> lier tech­

niques. Minimizing 

(2.18) 

with respect to w yields 

(2.19) 

where 

(2.20) 
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and the DOA estimates are associated with the minima of the null-spectrum (or 

maxima of inverse null-spectrum) 

(2.21) 

2.3 Subspace Based Algorithms 

The subspace approach to direction-of-arrival (DOA) estimation has found promi­

nence because of its higher resolution and lower computation compared with other 

classical methods. It was pioneered by the work of Pisarenko [22]. 

2.3.1 Subspace Decomposition 

The subspace decomposition can be performed on either the direct data matrix by 

a singular value decomposition (SVD), or on the covariance matrix by an eigenvalue 

decomposition. These two approaches are essentially equivalent are discussed in 

Chapter 3. For simplicity, we will use direct data matrix approach. 

The singular value decomposition of a data matrix Y (L x M) is 

Y = ( U, u. ) ( ~· ~ ) ( ~~ ) = AWs (2.22) 

where the diagonal elements of ~. are arranged as singular values in decreasing 

order. 

0'1 2:': ••• 2:': O'p, 

and for the noisy data Y 

with 

The largest P singular values correspond to the signal powers (plus noise for noisy 

case), and the L - P smallest singular values (zero for noise-free case, close to 
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a" for noisy case) are corresponding to the noise power. Therefore the eigenspace 

spanned by singular vectors is divided into two orthonormal subspaces: the signal 

subspace spanned by singular vectors associated with largest P singular values and 

the orthogonal subspace spanned by singular vectors associated with L- P smallest 

singular values. 

2.3.2 MUSIC 

The MUSIC [23, 24, 25] algorithm first estimates the signal subspace from array 

measurements, then estimates the parameters from the intersections between the 

array manifold and the estimated signal subspace. This search is typically carried 

out by computing a weighted Hermitian norm using the direction vectors for each 

angle of interest and kernel obtained from orthogonal singular vectors of the data 

matrix. It employs the fact that for signal directions 61i:, · k = 1, · · ·, P, 

Thus the DOA estimates of the MUSIC algorithm are given by the P zeros of the 

null-spectrum 

(2.23) 

In this and future equations, the symbol (J without a subscript IS a scalar vari­

able which represents a possible direction of arrival, while the subscripted symbol 

61i:, k = 1, · · ·, P refers to the actual directions of arrival in the noise-free data. 

The advantage of MUSIC is that no constraint on the geometry of the sensor array 

is required. The array pattern can be absolutely arbitrary as long as it is known 

or calibrated. Though performance advantages are substantial, they are achieved 

at a considerable cost in computation (search over parameter space) and storage 

(of array calibration data). Up to now MUSIC is the most popular and often cited 

work. It has been widely studied and new versions have been developed such as 

Weighted-MUSIC [26], and Root-MUSIC [1]. 
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2.3.3 Minimum-Norm 

The Min-Norm method [27, 28] is to apply the linear prediction method to uniform 

line array data. The first step is to identify a single vector d, with first element equal 

to unity and minimum Euclidian norm, in the span of the orthogonal subspace. 

The polynomial D(z) with coefficient vector d has L-1 roots. The P roots on the 

unit circle contain the DOA information and the L - P - 1 extraneous roots tend 

to be uniformly distributed within unit circle. 

If we partition the signal and orthogonal subspace vectors as follows 

U, = ( ~ ) or U, = ( ~ ) 
where gH and cH are the first rows of U, and U 0 , respectively, then from the 

orthogonality of U, and U 0 , 

U!1d = 0. 

the vector d is solved from (2.24) as 

( 
1 ) d= U' 

1-11~~2 ) 
or d= ( ~). 

(2.24) 

This prediction-error vector d is a linear combination of all the vectors in U 0 as 

we can see from 
C def 

d = UoW = Uoc. 

To obtain DOA estimates, a polynomial rooting is then performed, i.e., 

L-1 
D(z) = a(z)Hd = II (1 - riz- 1

). 

i=l 

(2.25) 

In the case of noisy data, the P roots which are closest to the unit circle are chosen 

as the signal-roots and the rest are regarded as noise roots. There are other more 

elaborate signal-root selection procedures. The directions of arrival are found from 

the angles of signal roots. 

The Min-Norm method is also applicable to arbitrary array geometry by search­

ing for the P zeros of the null-spectrum over fJ [17] 

(2.26) 
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2.3.4 Root-MUSIC Algorithm 

As an improvement of MUSIC algorithms, Root-MUSIC, forms and roots the fol­

lowing null-spectrum polynomial [1] 

L-1 

A IT (1- r,z- 1)(1 - r;z). (2.27) 
•=l 

The polynomial PRM(z) has 2(1-1) roots. Unlike Min-Norm, Root-MUSIC always 

chooses the P roots with largest amplitudes inside unit-circle. This choice results 

in a bias in the radial direction of the estimated roots since when white Gaussian 

observation noise is present the signal-roots will be perturbed inside and outside the 

unit-circle. However, DOA estimates are only functions of the angles of the roots, 

not the radii. Thus the radial bias does not affect the DOA estimates obtained by 

Root-MUSIC. 

2.3.5 State-Space Realization 

The state space approach includes a covariance approach and a direct-data ap­

proach [29, 30, 31, 32]. When autCH:orrelation estimates are used, the covariance 

matrix is Toeplitz (yielding the TAM algorithm) but this matrix does not have 

the low-rank property even with noise-free data; for the case of using covariance 

estimates (R = J.t Y Hy), the covariance approach is equivalent to direct-data ap­

proach (sometimes called DDA). 

The State-Space approach can be used with an ESPRIT-type array (see next 

subsection), but what follows is based on a uniform line array for the purpose of 

analysis. 

Recall 

p 

y,(t) = L ei-¥1•in8~(i-l)St(t) 
k=l 

[ 
_j ~sin 8i(i-l) j~ sin 8p(i-l) ]s(t) e- • , ... ,e • . (2.28) 
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A state-space model for a plane-wave signal propagating in a sensor array can 

be derived as 

y,(t) 

or 

Fx1(t) 

hx.(t) (2.29) 

(2.30) 

where the xis the state-vector with the initial value x 1(t) = s(t) and h = [1 , · · · , 1] 

is row-vector of sensor gains, and 

0 0 

0 
F= 

, · l1rcl sin 8 e -r.- l 

0 

0 0 1· l!.!! sin 8 e Ac p 

The diagonal entries of F in a diagonal realization (in general, eigenvalues of the 

system matrix in an arbitrary realization) contain the information of arrival direc­

tion. The data matrix is formed and factored as follows 

y = 
( Yt'.l) 

yi(l) 

h 

hF 
= ( s(O) . . . s(M) ) ~ OC. (2.31) 

hFL-1 

0 and C are respectively the observability matrix and controllability matrix. Let 

QT be 0 except the first row and oi be 0 except the last row. From (2.31) it is 

clear that the following shift-invariance is true 

(2.32) 
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Therefore a transition matrix F is obtained from (2.32) 

(2.33) 

In general, the factors of the data matrix are obtained from a singular value de­

composition (2.22). By taking the principal components and using the concept of 

state-variable balancing 
I 

o = u.:r:1 (2.34) 

and then F can be solved for as 

(2.35) 

The eigenvalues of F provide the estimates of arrival direction. 

2.3.6 ESPRIT 

Estimation of Signal Parameters via Rotational Invariant Techniques (ESPRIT) 

[33, 34, 35, 36, 37, 38, 39, 40, 41] mitigates the computational and storage require­

ments of MUSIC by exploiting an underlying displacement invariance structure of 

an array of sensors. In order to do this, another array which is a displaced ver­

sion of the first array is needed. This could be implemented by one array with 

pairwise matched sensor doublets. To describe mathematically the effect of the 

shift-invariance of the sensor array, it is convenient to describe the array as being 

comprised of two subarrays identical in every respect although physically displaced 

from each other by a known displacement quantity~- The signals received at each 

subarray are 

z(t) = As(t) 

x(t) - AFs(t). (2.36) 



CHAPTER 2. REVIEW AND CLASSIFICATION 22 

The matrix F is diagonal P x P matrix of the phase delays between the subarrays 

for the P wavefronts and is given by 

e'~1inl1 0 0 

F= 
0 

0 O ef~•in8p 

Note that F is a unitary matrix (operator) that relates the measurements from 

subarray z and those from x. Now define 

y(t) = ( z(t) ) = ( A ) s(t). 
x(t) AF 

Using SVD 

y = m;vH = ( ~: ) EVH. (2.37) 

A matrix-pencil is formed as 

(2.38) 

where Uu (Uaz) are the principal components from U.i (U:z:)· If we pre-multiply 

(2.38) by a full-rank (P x L) TH, then the generalized eigenvalues of the matrix­

pencil in (2.38) are equal to the eigenvalues of 

(2.39) 

Since we use a uniform line array here to simplify analysis, the best selection of 

U a:z: and U"' are the first L - 1 and the last L - 1 rows of U,, respectively. Then 

~ = d. If we choose T = Um the ESPRIT method is equivalent to State-Space 

Realization [42, 43]. Here, we choose T = U az as in [39] to yield 

(2.40) 

ESPRIT has certain advantages over MUSIC: 

• It does not require knowledge of the array geometry and element character­

istics. 
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• It is computationally much less complex. 

However, there are still some strong constraints of array geometry: the correspond­

ing sensors in each subarray must have identical characteristics, and they must be 

equally displaced, in parallel and in the same plane. 

2.3. 7 Matrix-Pencil Method 

The ideas that the Matrix-Pencil Method [44, 45, 46] and ESPRIT method ex­

ploit are identical despite the fact that each of them has many different versions. 

ESPRIT was proposed from an array geometrical design point of view while the 

Matrix-Pencil method was developed in applying results from linear algebra to 

the problem of direction-of-arrival estimation. In this sense, we can say that the 

Matrix-Pencil Method is a generalized version of State-Space Realization and ES­

PRIT. The Matrix-Pencil Method forms two matrices with certain relationship in 

between, then solves the generalized eigenvalue problem of matrix-pencil by em­

ploying that relation. Three versions of the Matrix-Pencil Method summarized in 

[47] are as follows: 

1. A matrix pencil is 

X-.\Z (2.41) 

where .\ can be solved from a generalized eigenvalue problem 

(2.42) 

2. Form a data matrix 

Y=(~) 
and take the principal components from the singular value decomposition to 

the same data (2.38) using ESPRIT notation. A matrix pencil is then formed 

as 

(2.43) 
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and ..\ is solved as an eigenvalue of F in (2.38). This solution is from signal 

subspace invariance as in ESPRIT (for this reason, we combine the analysis 

of the Matrix-Pencil method into the analysis ESPRIT). 

3. A total least-squares approach [47] (which is also applicable to State-Space 

Realization and ESPRIT). 

2.3.8 Remark 

Many researchers have been making efforts to unify these subspace processing al­

gorithms. In the linear equispaced array case, there are very clear connections 

among these methods. The null-spectrum of MUSIC is calculated from the in­

tersection between the array manifold and all the orthogonal vectors, while the 

null-spectrum of Min-Norm is from the intersection between the array manifold 

and a single min-norm vector from the orthogonal subspace. The subarray selec­

tion of ESPRIT is equivalent to State-Space Realization. ESPRIT, Matrix-Pencil 

and State-Space Realization use essentially the same shift-invariance property of 

the signal subspace. The MUSIC and Min-Norm searching algorithms are valid for 

arbitrary array geometry, while ESPRIT, Matrix-Pencil and State-Space Realiza­

tion require the certain geometric constraints to obtain the desired shift-invariance 

properties. The polynomial rooting approach is only applicable to the case of a 

linear equispaced sensor array. Comparative studies of some of above methods can 

be found in [48, 42, 43, 49, 50]. 

2.4 Classification of The Subspace Algorithms 

2.4.1 Classification by Subspace 

The subpace-based algorithms can be classified into two categories by the subspace 

which an individual algorithm utilizes: 

• Orthogonal-Subspace Algorithms: Pisarenko Method, MUSIC {including 

Root-MUSIC) and Min-Norm (including searching algorithm). 
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• Signal-Subspace Algorithms: State-Space Realization {TAM and DDA), ES­

PRIT and Matrix-Pencil method. 

In the light of the above classification, the analysis therefore starts with the per­

turbation of each subspace in Chapter 3. 

2.4.2 Classification by Numerical Procedure 

The subspace-based algorithms can also be classified into three approaches by the 

numerical procedure which an individual algorithm exploits: 

• Extrema-Searching Approach: MUSIC and Min-Norm searching algorithm. 

• Polynomial-Rooting Approach: Pisarenko, Min-Norm and Root-MUSIC. 

• Matrix-Shifting Approach: State-Space Realization, ESPRIT and Matrix­

Pencil method. 

We will establish a common model for each approach, analyze the common model 

and specialize the results to each algorithm in Chapters 4, 5, and 6. 



Chapter 3 

Perturbation of Subspaces 

3.1 Introduction 

All the subspace processing algorithms utilize the properties of subspaces obtained 

by subspace decomposition. To analyze the different subspace processing algo­

rithms, it is important to analyze the subspaces. It not only makes the analysis 

better founded, but also provides a common basis for performance comparison of 

these algorithms. The direction of arrival estimates can be expressed as functions 

of the estimated subspace. Thus to compute the perturbations in the estimated 

directions of arrival, we need to to compute the perturbations in the estimated 

subspaces. Most existing analyses focus on parameters of interest such as direc­

tions of arrival or intermediate parameters like prediction coefficients, and not on 

the underlying subspaces. As a result, they fail to give a unified analysis . Our 

analysis originated from examining the perturbation of the linear prediction error 

vector [17], and then examining the perturbations of the orthogonal subspace [51] 

and· of the signal-subspace [52]. 

The effects of perturbations on an estimation algorithm can be classified as 

"above threshold" or "below threshold". An algorithm is said to be above threshold 

when the mean-squared error (MSE) of the parameters is close to the Cramer­

Rao Bound. On the other hand, when the MSE is much larger than the C-R 

bound, the algorithm is said to be below threshold. The threshold phenomenon is 

26 
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a characteristic of nonlinear estimation algorithms. A threshold analysis of Min­

Norm algorithm is given in [53]. In this work, we assume that the SNR is high 

enough so that the algorithm is not in threshold. 

3.2 Subspace Review 

Assume there are P uncorrelated plane waves simultaneously incident on an L 

sensor array. Take M snapshot simultaneously at each sensor. The data matrix is 

formed as 

Y ( y ( 1) . . . y ( M) ) 

( 

Y1~l) Y1(M) ) 

YL(M) YL(M) 

= A(O)S {3.1) 

where the subscript is spatial index of the sensors and the index in parenthesis 

is temporal for snapshots. The covariance estimate of the data matrix and its 

eigenvalue decomposition are 

R = _!_yyH 
M 

~ ( E, E. ) ( ~· ~ ) ( =~ ) 
= A(O)R.A(O)H {3.2) 

where E. are the eigenvectors associated with P non-zero eigenvalues, which span 

the signal subspace, while E 0 are the eigenvectors associated with the zero eigen­

values, which define the orthogonal subspace. The term "noise-subspace" has been 

previously used to describe what we call the orthogonal subspace. Since this sub­

space is the orthogonal complement of the signal-subspace, and since it is well 
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defined whether or not any noise is present in the problem, we believe the term 

"orthogonal-subspace" is more appropriate. 

There are two important properties of the subspaces which the subspace based 

algorithms exploit: 

and 

• The vectors in E, span the signal subspace which is identical to the array 

manifold (column space of A(O)). 

• The vectors in E 0 span the orthogonal subspace which is orthogonal to the 

array manifold. This orthogonality can be expressed as 

a(Ot) 8 E 0 = 0, k = 1, ... , P. (3.3) 

The above result can be seen from the fact that 

(3.4) 

since 

E!'E, = 0. {3.5) 

Even with presence of additive observation noise, 

Y=Y+N {3.6) 

- 1--H (-R= Myy = E, 

under the ergodic assumption, 

lim R = A(O)R,A(0) 8 + u~I 
M-+oo 

the orthogonal-subspace is still (asymptotically) orthogonal to the signal manifold. 

A simple proof can be stated as follows: 

For i > P, .A;= u~, and 

(.A · - u2 )Ie · 
' n ' 

= 0 
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where e, is the eigenvector ofR associated with eigenvalue .A,. Since A(8)R. (Lx P) 

has rank of P, there is a P x L matrix D of rank P which satisfies 

DA(8)R. =Id 

Then 

DA(8)R.A(8)He, = ldA(8)He, 

= A(8)He, 

0 

this is equivalent to (3.3). 

The subspace decomposition can also be performed on the direct-data matrix 

Y shown in (3.1) by a singular value decomposition. Let the SVD of Y be denoted 

as 

y = m:v" = ( u, u,) ( ~· ~ )( ~n. 
Then we get the same results as before: 

• The vectors in U, span the signal subspace which is identical to array mani­

fold (column space of A(8)). 

• The vectors in U 0 span the orthogonal subspace which is orthogonal to the ar­

ray manifold. This orthogonality can be expressed as a(8~JHU0 = 0, fork= 

1, ... ,P. 

In a noisy environment, 

- ) ( :E, o ) ( V!1 ) Uo - - H • 
0 :Eo Vo 

Obviously, we can see 

:E 2 =AM, (3.7) 

and 
- 2 -:E =AM, U=E. (3.8) 
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We assume that the singular vectors are normalized so that UHU =I and iJHiJ = 

I. 

As shown above the subspaces obtained from the eigenvalue decomposition of 

a covariance matrix and the subspaces from a singular value decomposition of the 

direct data matrix are the same. In this work, all the algorithms used will be based 

on the direct-data. They will have the same performance as the covariance-based 

algorithm described above, with perhaps slightly better numerical properties. One 

reason that the direct-data algorithm might not be often used in practice is that 

the dimensions of the matrices grow wit · the data length (number of observations), 

while the covariance matrix has fixed dimensions (number of sensors). However, 

for the purpose of analysis, the direct-data algorithm is much easier to deal with. 

Because we do not restrict our analysis on uniform line array geometry, only the 

forward data formulation will be considered in this chapter. 

3.3 Perturbation of Orthogonal-Subspace 

Recall that the columns of U 0 are an arbitrary orthonormal basis for the 

orthogonal-subspace of the noise-free signal matrix Y, and the columns of U 0 are 

the estimated orthogonal-subspace vectors associated with smallest singular values 

:E of the noisy data matrix Y. We can write 

where 6. U 0 is the perturbation in the estimated orthogonal-subspace vectors. The 

additive noise in the data matrix Y = Y + N is transformed in a highly nonlinear 

way by the SVD to produce the noisy singular vectors U0 [54, 55]. It is noted 

that the perturbations in estimated subspaces which produce errors in DOA esti­

mates are those orthogonal to the original noise-free subspace under consideration. 

For orthogonal subpace-based algorithms, only the signal-subspace component of 

the perturbation in estimated orthogonal subspace is relevant; for signal-subspace 

based algorithms, only the orthogonal-subspace component of the perturbation in 

the estimated signal-subspace is relevant. At high SNR, we seek an expression for 
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AU0 which is linear in the noise matrix N and which is the projection of U0 onto 

U •. Such an expression can be found by a forward error analysis using a Taylor 

series expansion for the SVD. This approach has been used for a related problem 

and was found that the resulting expression was extremely cumbersome [56]. In 

our previous derivation, we started with a minimization problem for which U0 is 

the solution and by approximating this problem, we obtained a simple expression 

for AU0 • This so-called backward error analysis was first used in [16] to develop 

a performance analysis for linear prediction algorithms suggested by Tufts. It has 

been found that forward and backward error analyses give about the same perfor­

mance predictions, but the expressions resulting from the backward analysis are 

much simpler than those resulting from the forward analysis . 

In this section, we give a simple derivation of AU 0 based on perturbation ex­

pansion theory suggested by Dr. G. W. Stewart. This derivation relies on the 

assumption of high SNR (which all other perturbation analyses assume either im­

plicitly or explicitly) . 

Let us seek AU 0 in the form of U .P, where P is of order of the noise N 

(similarly define AVo = v.P) . Then pre-multiply y = ui:vH by U!1 to obtain 

(3.9) 

Using the fact that i: 0 = A'E 0 , (3.9) can be written as 

(3.10) 

Substituting 6U0 = U.P and 6V0 = V.P into (3.10), we get 

(3.11) 

By neglecting second order terms and using the fact that U!1Y = 0, we get 

(3.12) 

Finally, we post-multiply (3.12) by V. and simplify to obtain 

(3.13) 
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We can solve for P from (3.13) as follows 

(3.14) 

and then we have 

~Uo = -U,I:; 1V,HNHU0 • (3 .15) 

Note that (3.15) expresses ~U0 as a linear function of the noise matrix. 

We emphasize the fact that (3.15) is a general expression for the perturbation of 

the orthogonal-subspace due to additive noise in the data matrix. This expression 

can be used to analyze the performance of any algorithm which estimates the 

orthogonal-subspace from data. 

3.4 Perturbation of Signal-Subspace 

We start the investigation of the signal-subspace perturbation by assuming U, = 

U, + ~ U,. We now seek ~ U 1 in the form of U 0 Q. Using the orthogonality between 

the the orthogonal- and signal- subspaces, we have 

-H-
U0 U, = 0. (3.16) 

Equivalently, we have 

(3.17) 

Substitute ~U0 = U,P and ~U, = U 0 Q into (3.17), 

(3.18) 

or 

(3.19) 

Notice the noise-free signal- and orthogonal- subspaces are orthogonal, so the first 

term and the last term of above equation are zero. Since U !1U 0 = I and U !1'U, = I, 

we then have 

(3.20) 
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and this gives us 

(3.21) 

Notice that in deriving the perturbation of signal-subspace, no further approxima­

tion was made, so the perturbation expansion for the signal-subspace is as good as 

the perturbation expansion for the orthogonal-subspace. 

3.5 Summary 

This chapter presents the perturbation analysis of subspaces obtained from a sin­

gular value decomposition of a data matrix formed using noisy data. The expres­

sions for the perturbed subspaces are derived using perturbation theory. We first 

derived the orthogonal-subspace perturbation through a first-order perturbation 

expansion, then derived the signal-subspace perturbation using the orthogonal­

ity between the two subspaces. The columns of the perturbation matrix for the 

orthogonal-subspace are in signal-subspace while the columns of the perturbation 

matrix for signal-subspace are in the orthogonal-subspace. To first-order, the per­

turbation of subspaces is linear in the observation noise. The analysis of the sub­

space perturbation will provided a common ground for the comparison of various 

subspace processing algorithms. 



Chapter 4 

Performance of Extrema 

Searching Algorithms 

4.1 Introduction 

People had used the classical Fourier analysis and conventional beamforming to 

process sensor array signals and to estimate the directions of arrival until the 

late 1960's when Burg's Maximum-Entropy Methods [20] and Capon's Minimum­

Variance Method [21] were proposed in order to increase the resolution in array 

signal processing. In the 1970's, a high-resolution approach - subspace processing -

emerged, pioneered by Pisarenko [22]. In the late 1970's, Schmidt [23, 24] and, inde­

pendently, Bienvenu and Kopp [25] suggested the MUSIC algorithm which became 

a landmark of subspace processing. In the early 80's, another important method -

Minimum-Norm Linear Prediction was developed by Tufts and Kumaresan [27, 28]. 

Pisarenko's method, MUSIC and Min-Norm were the first three subspace process­

ing methods. They all utilize the orthogonality between the signal manifold and 

orthogonal-subspace to find the directions of arrival. MUSIC and Min-Norm give 

much better performance than Pisarenko's method. MUSIC and Min-Norm have 

gained popularity because of their excellent performance and have been widely 

34 
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used and extensively cited. Also they have attracted most of performance analy­

ses, [2, 57, 4, 58, 14, 15, 11, 12, 13, 59, 51] for MUSIC and [17, 60, 8] for Min-Norm 

searching algorithm. 

Originally, Pisarenko's method and the Min-Norm method used the polynomial 

rooting procedure based on uniform line array geometry; while MUSIC used the 

extrema searching procedure based on arbitrary (calibrated) array geometry. Later, 

a new version of MUSIC - Root-MUSIC was developed by Barabell [1] and Min­

Norm Linear Prediction has been applied to arbitrary (calibrated) array geometry 

by Li, Vaccaro and Tufts [17]. A similar application of Pisarenko's method to 

arbitrary array geometry is easy to show [see Appendix B]. 

The major advantage of the searching algorithm is that array geometry is arbi­

trary as long as the sensor locations are calibrated, i.e. the sensor locations ( x1, y.) 

for i = 1, ... , L are known. The r'7sponse of the i-th sensor to the signal arriving 

at the k-th angle a;(Ok) is 

a'
·(OL) = eif;{z;1in81+11;coe81) r . 1 L k 1 p .. ior i = , ... , ; = , ... , . 

In this chapter, we analyze the searching algorithms of MUSIC and Min-Norm. 

Two versions of them - a MUSIC algorithm based on direct-data and a Min­

Norm algorithm for arbitrary array geometry will be used. A description of these 

algorithms can be found, respectively, in [17],[51] and [61]. Pisarenko's Method, 

because of using different data formulation, is analyzed in Appendix B. 

4.2 Common Model 

Now consider a common problem, which has been referred as Weighted MUSIC[26]. 

The algorithm consists of searching for the P zeros over 0 of the null-spectrum 

(4.1) 

where W is the weighting matrix and 0 is a scalar variable which represents a 

possible direction of arrival. Then by (3.3) 
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Both MUSIC and Min-Norm can be considered as special cases of this algorithm 

by choosing the weights appropriately. 

MUSIC: the weighting matrix is the identity matrix 

W=I. 

Min-Norm: weighting matrix is rank 1 and has the form of 

Equation (4.1) provides a common basis for our analysis of MUSIC and Min­

Norm searching algorithms. 

4.3 Perturbation of the Angle Estimates 

In a noisy environment, the estimated angles of arrival are denoted as perturbations 

from the true directions of arrival as 

(4.2) 

where the D..81c is the perturbation of the k-th direction of arrival. For the purpose 

of analysis, we adopt the following two steps in analyzing D..81c: 

1. Derive the perturbation of the DOA's from P(fJ, U0 ) by one Newton step 

initialized at true arrival angle 81c. 

2. Approximate the Newton Step by a linear function of the orthogonal-subspace 

perturbation D..U 0 • 

Step 1. Perturbation of the DOA's from one Newton step of P(81c). 

We assume at high SNR that the estimated angles can be found by one step of the 

Newton algorithm for finding the minima (no longer zeros) of the estimated null­

spectrum function P(O, U0 ) when the algorithm is initialized at a true direction, 

81c. The Newton method attempts to find a direction B1c which causes the first 
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derivative of the null-spectrum function P(O, U0 ) to be zero. The resulting Ok will 

then minimize P ( 8, U 0 ). This gives the following formula for the estimated angles 

aP(8t,Uo) 

8 - f) -
88 for k = 1, · · ·, P 

k - k 8 2P(8t ,Uo)' 
ae' 

(4.3) 

The first- and second- order partial derivatives of P(O, U 0 ) with respect to f) 

are computed as follows, 

a p ( f), u 0) def 
ao = N(O, U 0 ) 

and 

(4.5) 

where the superscripts (l) and (2) stand for first- and second-order derivatives, 

respectively, with respect to the scalar variable 8. Note that W is not a function 

of 0, but it could be a function of U 0 , as it is in the case of Min-Norm. 

From (4.2)-(4.5), the perturbation in the estimated directions are given as 

t::.Ok = N(Ok, '!a)' 
D(Oc, Uo) 

for k = 1, · · ·, P. (4.6) 

Step 2. Linear approximation of the Newton Step with respect. to orthogonal­

subspace perturbation t::. U 0 • 

We now approximate the numerator and denominator of D,.f)k by first-order pertur­

bation expressions in t::. U 0 in which the nominal term corresponds to the noise-free 

singular vectors U 0 , 

N(Ok, iro) ~ N(Ok, Uo) + t::.N ~ N + t::.N 

D(Ok, Uo) ~ D(fJk, Uo) + t::.D ~ D + t::.D. (4.7) 



CHAPTER 4. PERFORMANCE OF EXTREMA SEARCHING 38 

In the above equations, t::..N and tl.D are linear functions of tl.V 0 • Using the fact 

that a(8A:)HV 0 = 0, we have that 

and 

D(OA:, V 0 ) = 2a(1l(OA:)HV0 WVlf a(1l(OA:)· 

Using (4.6) and (4.7) and the fact the N = 0, we can write !::..Ok as 

t::..N 

D(l + t::..D/ D) 

t::..N t::..D t::..D 2 
= n-!1 -n+(n) -···], 

and keeping only the first-order perturbation yields 

t::..N 
t::..8k=n-· 

(4.8) 

(4.9) 

(4.10) 

D has been calculated in ( 4.8) and it only remains now to calculate tl.N as a linear 

function of tl.V 0 • We first note that W could be a function of V 0 (as in Min­

Norm), and so perturbations in V 0 induce perturbations in W. We approximate 

the perturbed W by a first-order perturbation series as 

w~w+t::..w 

where W is evaluated at V 0 , and !::.. W is a linear function of tl.V0 • Now we 

calculate N(OA:, U0 ) using (4.4) 

N(OA:, V 0 + tl.V 0 ) = -a(1l(OA:)H(V0 + tl.V0 )(W + t::..W)(V 0 + tl.V 0 )Ha(8k) 

-a(8k)H(V 0 + tl.V 0 )(W + !::.. W)(V 0 + tl.V0 )Ha(
1l(OA:) 

(4.11) 

where the nominal term T0 = N(OA:, V 0 ) = 0, T1 represents terms in which !::..Vo 

appears once, T2 represents terms in which t::..V 0 appears twice, and T3 represents 
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terms in which AU 0 appears three times. For a first-order perturbation analysis, 

we ignore the terms in T2 and T3 and only consider the terms in T1 • Most of these 

terms are zero when calculated at()= 61e since they contain the factor a(61e) 8 U 0 • 

In particular, all terms in T1 containing AW are zero at () = 61e. Since the nominal 

term in ( 4.11) is zero, terms in T1 are the first-order perturbation AN we are 

looking for. There are only two non-zero terms in T1 when() = 61e, and the result 

IS 

AN -a(1l(fJ1e) 8 U 0 W AU!1 a(61e) - a(01e) 8 AU0 WU!1 a(1l(01e) 

- 2!R[a(01e) 8 ~ U 0 WU!1 a(ll(01e)]. ( 4.12) 

Finally, using (4.8) (4.10) and (4.12) we have the perturbation A01e which is linear 

in the subspace perturbation U 0 • The result is 

!R[-a(61e)8 ~U0 WU!1 a(1l(01e)] 
~01e = a(ll(01e)HU

0 
WU~ a(1l(01e) . 

We now substitute (3.15) into the above equation to get an expression 

AO _ !R[a(61e) 8 U,I;;- 1V!1NU0 WU!1 a( 1l(01e)] 
1e - a(ll(01e)HU0WU~a(1l(01e) 

To simplify notation, we define the vectors 

and the scalar 

Then we have 
A01e = !R[a1eN.81eJ. 

/le 

( 4.13) 

(4.14) 
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4.4 Statistical Performance 

Since we have used a first-order perturbation analysis, the predicted bias of an 

estimated direction of arrival is 

E(D.81i:) = !R[a1i:E(N).81i:] = 0. 
/A: 

The mean-squared error of an estimated direction of arrival by 

E(D.01i:)2 = E[lR(af
2
N.B1c)]2. 

/1i: 

(4.15) 

It is shown in Appendix A that if the real and imaginary parts of the noise matrix 

N are independent Gaussian random variables with zero mean and variance u!/2, 

then 

E[lR(afN.B1i:)]2 
= illa1i:i!2ll.B1i:l12u!. 

Thus we have the result that 

E(D.01i:)2 = lla1i:ll
2

ll~1i:ll
2

u!. 
211i: 

MUSIC (SMS): the weighting matrix W =I, so that 

ll.81i:ll2 = a(1l(01i:)HU0U!1a(ll(01i:). 

Then the mean-squared error expression becomes 

II a1i: II 2 u! 
E(D.81c)~MS = ( ) ( ) 2[a 1 (81i:)HU0U~a 1 (81c)] 

= 
II a1i: 112 u! 

2lla(l)(01i:)HUoll2. 

Min-Norm (SMN): the weighting matrix W = ccH, so that 

ll.B1i:ll2 = cHc[a(1l(01i:)HUoccHU!1a(1l(01c)]. 

Then the mean-squared error expression becomes 

2[a(ll (81i:)HU0ccHU~ a(ll (81c)] 

II a1i: II 2 IIc112 u! 
2la(1l(01c)HU0cl2 

( 4.16) 

(4.17) 

( 4.18) 

(4.19) 
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or equivalently 

(4.20) 

In above analysis, only the first-order partial derivative of a( 0) with respect to 0 is 

needed. When this derivative is evaluated at a true direction 01c, the result is 

aP) ( 01c) = ei1f-(z; ain 91r.+ll; ccl811r.) j 2; (x, cos 01c - Yi sin 01c). ( 4.21) 

In the special case of a uniform line array, a,(01c) and aP)(01c) reduce to 

(1) · ~ r ( · 1) · a 21rd a, (01c) = e'n ·- •10 v" iT(i - 1) cos 01c. 

where d is the spacing between adjacent sensors. 

4.5 Analytical Comparison of MUSIC and Min­

N orm 

If we divide (4 .19) by (4.18) and use the Schwarz inequality 

it can be seen that 

E(~01c);MN 
E(~o1caMs 

J Ja(l) (01c)HU oJ J2 J JcJ J2 
ja(Il(01c)HUocJ2 

> JJa(1)(01c)HUoJ J2JJcJ J2 
J ja(1) ( 01c)HU o J J2JJcl 12 

= 1. 

(4.22) 

( 4.23) 

In general, the mean-squared error of the estimated directions-of-arrivals from the 

Min-Norm algorithm are lower-bounded by the corresponding mean-squared error 

from MUSIC. In the above equations we are making the correspondence 
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Table 4.1: Parameters of mean-squared error for Extrema Search Algorithms 

y = c. 

The condition for equality in ( 4.22} is that the vector y be proportional to x. Since 

cH is proportional to the first row of U 0 , the condition for equality in equation 

( 4.23} is that 
(1) - ( )T a (OA:} - 8 O . . . O , (4.24} 

where 8 is any non-zero constant. However, by examining (4.21}, it can be seen 

that the zero elements in ( 4.24) cannot be achieved for arbitrary source locations. 

4.6 Numerical Examples 

In this section, we give a simulation example to demonstrate the algorithms as well 

as to verify the performance analysis. A twenty-element uniform circular array 

(shown in Figure 4.1) is used where the distance between adjacent sensors is one 

half the signal wavelength. The first sensor of the array is located at the origin of 

the X-Y plane, and angles are measured with respect to the Y axis. Two sources 

are considered at 0.2 and 0.5 radians. Twenty snapshots of array data were used 

to estimate the directions of arrival for a given trial, data matrices of dimension 

20 x 20 were formed, and 100 trials were run at each value of SNR. Here SNR is 

defined as 10 log(::\-) where the er~ is the variance of the complex, additive noise. 
u,. 

The data is generated according to the following formula 

2 
Yi(n) = L e1¥.(z; sin81+11; coe81)Hkn + ni(n) 

A:=l 
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where (x,, y,) are the sensor locations, Ac is the center wavelength of the narrow­

band signal, and <Pim are independent random phase angles uniformly distributed 

in the interval (-?r,?r). Figure 4.2 shows a null-spectrum function used in the 

extrema search approach of subspace based algorithms. 

The theoretical mean-squared error for each estimated direction was computed 

using (4.18) and (4.19) for each trial. The theoretical mean-squared error is a 

random variable because the signal is random. The mean and standard deviation 

of the theoretical mean-squared error were computed for each set of 500 trials, and 

it was found that the standard deviation was less the 5% of the mean. Thus in the 

figures, we only plot the mean of theoretical mean-squared error. 

Figures 4.3 and 4.4 show the root-mean-squared error of the estimated direc­

tions versus SNR. The simulation results (shown with an *) agree closely with 

theoretical predictions (shown by the solid line). 

4.7 Summary 

In this chapter, a non-asymptotic statistical performance analysis using matrix ap­

proximation on a common model for orthogonal-subspace based extrema searching 

methods (MUSIC and Min-Norm searching algorithm) with arbitrary array geom­

etry has been developed analytically and verified by simulations. The analysis used 

one Newton-Raphson step and a first-order Taylor expansion. The formula for the 

perturbation of the orthogonal-subspace derived in chapter 3 was utilized to unify 

the analyses. The tractable formulas for the mean-squared error of DOA estimates 

of various orthogonal-subspace based methods were derived. These formulas show 

that the mean-squared error of estimated directions of arrival from the Min-Norm 

method is not smaller than that from MUSIC. 



CHAPTER 4. PERFORMANCE OF EXTREMA SEARCHING 

y 

Reference 
Sensor~ 

L .... 

8 

gt; 
jo 
c 
0 

~~ • ·-P 
0 
(.. 

CL 

8 

x 

Figure 4.1: Uniform circular array 

o.so 1.00 l.SO 1.99 2.U 
DOA 

2.99 

Figure 4.2: Null-spectrum function of Extrema Search Approach 

44 



CHAPTER 4. PERFORMANCE OF EXTREMA SEARCHING 

10·1 r-----,.---~---...----~--~---...,....------, 

·-. 
··-

·-... 

5 10 

·- M" N ·-.. .... __ 111- orm 

-.... 

15 20 

·-. ·-

Signal-to-Noise Ratio [dB) 

·- -.. 
··-

25 30 35 

Figure 4.3: RMSE vs. SNR for MUSIC and Min-Norm at source 1 (.2 rads) 

"' ! 
g 

UJ 

1l 
ti! 
:I er 

Cll 

~ ., 

10-1..----~--~---~--~---r----~----. 

·-. 
10·2 ·-

·--- -• .]Ain-Norm 
...... .. .. 

·-
............... 

:E 10·3 

g 
ci::: ....... . 

·-. 

104 '-----'------L----'----'"----'------'---~ 
0 5 10 15 20 25 30 35 

Signal-to-Noise Ratio [dB] 

Figure 4.4: RMSE vs. SNR for MUSIC and Min-Norm at source 2 (.5 rads) 

45 



Chapter 5 

Performance of Polynomial 

Rooting Algorithms 

5.1 Introduction 

I_>olynomial rooting is another orthogonal-subspace processing approach to direc­

tion of arrival estimation for a uniform line array, which has better performance 

than extrema searching if both approaches are applied to a uniform line array. 

But the searching approach is also valid for arbitrary array geometry, which is 

an important property in many applications. The rooting approach is similar to 

the searching approach in many aspects except that the DOA's are determined 

from the roots of a polynomial formed from the intersection of the signal manifold 

and the orthogonal-subspace. MUSIC was originally proposed as a searching al­

gorithm; the uniform line array version - Root-Music was developed by Barabell 

[1]. Pisarenko's Method (see Appendix A) and Min-Norm were proposed as poly­

nomial rooting approaches, and later an extrema search approach was developed 

for these methods [17, 60, 8]. Search algorithms look for minima or maxima of a 

function in one-dimension so that finite sample bias can be induced; however, this 

is easily seen not to be a limitation of orthogonal-subspace approach per se, but 

rather a consequence of using a computationally attractive one-dimensional search. 

46 
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The rooting algorithms are better suited to the geometric nature of the problem 

in the sense that they actually look for a global minimum or maximum over a 

multi-dimension space. In other words, all the roots of the polynomial are simul­

taneously sought. This is important because distinct roots do not imply distinct 

extrema in the spectrum function. H there are two closely spaced roots, the spec­

trum may have only one extremum resulting in an apparent loss in resolution using 

a search procedure. However, the rooting approach can obtain (and resolve) true 

roots. Therefore, locating the roots, and using their angular location to obtain the 

DOA's is preferable in the case where the estimation is performed near threshold. 

In general, for a polynomial with the order greater than 3, iterative root finding 

techniques are required, which means the improvement of resolution is gained at 

a high expense of costly computation. Besides, as long as the roots are distinct, 

i.e., above threshold, the extrema-search algorithm has the same performance as 

polynomial-rooting algorithm, as we shall show in this chapter. 

There have been many analyses of the polynomial-rooting approach of Min­

Norm method [2, 62, 6, 16, 60, 8, 53, 5], while few analyses on Root-MUSIC [SO]. 
We have developed a unified analysis of the polynomial-rooting approach [63] which 

we will elaborate on in this chapter. 

In this chapter, we will first develop a common form of these algorithms for 

analysis (Section 5.2); then we provide a first-order relation between subspace 

perturbations and signal-root perturbations (Section 5.3). This is done with some 

care because the signal roots of the spectral polynomial always have multiplicity 

two. The statistical performance of the algorithms and the relation to the extrema­

search approach, will be derived in section 5.4 and 5.5, respectively. Finally, in 

Section 5.6, the perturbation of signal roots of the spectral polynomial wil be 

discussed. 

5.2 Common Model 

Min-Norm and Root-MUSIC methods estimate the directions of arrival using poly­

nomial rooting when the sensor array has a uniform line geometry. Under the 
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constraint of uniform line structure, the array manifold is 

h j2"'"•in8 d h b d. w ere z = e -r.- an d is t e spacing etween a Jacent sensors. The product 

of the array manifold and orthogonal-subspace vectors a(z- 1)TU0 can be viewed 

as a Z-transform of the columns of U 0 • Using the orthogonality relationship (3.3), 
· 2w.I · 8 

these Z-transforms equal zero at z1c = e1-r.- •m 4 , 

where the 81c 's are directions of arrivals. 

A common model for MUSIC and Min-Norm (also Pisarenko's method) can be 

written in terms of spectral polynomial 

(5.1) 

L-1 

= A IT (1 - r,z- 1)(1 - r; z) (5.2) 
i=l 

where W is a weighting matrix and A is a scalar factor. For future reference we 

define the signal roots of P(z) to be {r1}, i = 1, · · ·, P. These roots correspond 

to the P different sources, and are on the unit circle. The other roots {r1}, i = 

P+l, ···,Lare not on the unit circle. Min-Norm and Root-MUSIC can be obtained 

as special cases of (5.1) and (5.2) by choosing W and A as follows. 

Min-Norm 

W = r.r.H and A = 1. 

Note that the choice of Wand A yields the spectral polynomial P(z) corresponding 

to Min-Norm. Half of the roots of P(z) are identical to the roots of Min-Norm 

polynomial in (2.25), and the other half are at locations reflected through the unit 

circle. 

Root-MUSIC 
(L-P) 

W =I and A= llhll2 (5.3) 
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where h is the coefficient vector (with first element of unity) for the polynomial 

H(z). H(z) is the causal spectral factor of P(z), namely, P(z) = H(z)H(z- 1)•. 

The vector h can be easily obtained from the roots {ri}· 

5.3 Perturbation of the Angle Estimates 

In Chapter 3, a formula was given which showed, to first-order, the perturbation 

in the orthogonal subspace. Here we show how the subspace perturbation induces 

perturbations in the estimated directions of arrival. The noise-free spectral polyno­

mial P(z) has roots at z1c = ei¥!- •inBk where 81c are the DOA's. The root locations 

of P(z) are local minima since P(z) is nonnegative. When the spectral polynomial 

is perturbed, the locations of local minima change slightly, and in general, the new 

local minima are not equal to zero (i.e. the perturbed spectral polynomial does 

not have roots on the unit circle). · 

The locations of the local minima of either the noise-free or perturbed spectral 

polynomials are obtained by setting the first derivative equal to zero. In other 

words, the roots of the derivative of P(z) give the locations of the relative min­

ima (and maxima) of P(z). Thus to find the perturbations of the DOA's (which 

correspond to minima of P ( z)), we must calculate the perturbations of the roots 
· l .. d . 8 

of the derivative of P(z). We are only interested in the roots at z1c = e'A;"" 9
'" k 

corresponding to noise-free DOA's. 

These roots will be on the unit-circle if the null-spectrum has distinct minima, 

and off the unit circle otherwise. Since it is only the angle of the roots which 

contains DOA information, it does not matter if the roots are on the unit circle 

or not, and so the analysis given in the this section involving the derivative of the 

spectral polynomial is appropriate whether or not the null spectrum has distinct 

minima. 

The discussion above considers the case when the perturbed null-spectrum has 

distinct minima for each DOA. However, we However, we have pointed out previ­

ous that this is not necessary for polynomial rooting to work. In the case when 

the perturbed null-spectrum polynomial does not possess distinct minima for each 
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DOA, it is still appropriate to look at the roots of the derivative of the spectral 

polynomial. 

In what follows, we calculate the perturbations in the roots of the derivative 

of the spectral polynomial as a function of the perturbation in the orthogonal 

subspace. The following steps are used in the calculation: 

1. Derive a first-order expression of a~~z) as a function of the perturbation of 

the orthogonal subspace. 

2. Derive a first-order expression for the perturbation of a~~z) as a function of 

the perturbation in the signal-roots. 

3. Equate the expressions derived in 1 and 2 above to get the desired relationship 

between subspace and signal-root perturbations. 

Step 1. Perturbation of the derivative of the spectral polynomial as a function of 

the orthogonal-subspace perturbations. 

We start with 

The first derivative with respect to z is 

where 

a(
1l(z) = ~~) = ( 0 1 2z · · · (L - l)zL- 2 t . (5.5) 

Substitute U0 = U 0 + AU0 and W = W +AW into (5.4) to obtain 

aP(z, Uo) 
az 

(5 .6) 

where T0 represents terms in which AU0 does not appear, T1 represents terms in 

which AU0 appears once, T2 represents terms in which AU0 appears twice, and T3 
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represents terms in which AU 0 appears three times. For a first-order perturbation 

analysis, we ignore the terms in T2 and T3• T0 is the nominal term which equals 

zero, and so we only need to consider the terms in T1 • Most of these terms are zero 

when calculated at z = r1c since they contain the factor a(z- 1)TU0 • In particular, 

all terms in T1 containing AW are zero at z = r1c. There are only two non-zero 

terms in T1 when z = r1c, and the result is that to the first order in AU0 

aP~~ iJ 0
) lz=r1 

[-z-2a(1l(z- 1)TU0 WA U!'" a(z) + a(z- 1f A Uo WU!'" a( 1l(z)]lz=r1 

(5.7) 

Step 2. Perturbation of the derivative of the spectral polynomial as a function of 

root perturbations. 

We now investigate how the perturbation of the orthogonal subspace induces a 

t b · · oP(z) W h b d 1 · 1 per ur at1on m az . e write t e pertur e po ynom1a as 

L-1 
P(z, r) =A II (1 - r;z- 1)(1 - r;z) 

i=l 

and take the derivative of P(z, r) over z to get 

aP(z, r) 
az 

L-1 
A L[r;z-2(1- r;z) - r;(l- r;z- 1 )]G(z,r;) 

i=l 

L-1 
_ = Az-1 L[r;z-1 (1- r;z) - r;z(l- r;z- 1)]G(z,r;) (5.8) 

i=l 

where 
L-1 

G(z, ri) ~ II (1 - r;z- 1)(1 - rjz) . 
#;i 
i=l 

Substitute r = r + Ar into above equation 

aP(z, r) 
az 

L-1 
Az-1 L {(r; + Ar;)z- 1 [1 - (r; +Ar;)* z] 

i=l 

(5.9) 
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L-1 

= Az-1 L S(z, ri)G(z, ri) (5.10) 
i=l 

where 

(5.11) 

We want to obtain an expression for (5.10) which contains only first-order terms 

in 6.ri. We first expand G(z, ri) and S(z, ri) in perturbation series in 6.ri as follows 

G(z,1\) = G(z,ri) + 6.G(z,ri) + 0(6.r;) 

S(z, ri) - S(z, ri) + 6.S(z, ri) + 0(6.rf) (5.12) 

where 6.G(z, ri) and 6.S(z, ri) are linear functions of 6.ri. Substituting (5.12) into 

(5.10) yields 
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aP(z, r) 
az 

L-1 
Az-1 L [S(z, ri) + AS(z, r1) + o(Ar;)][G(z, r1) + AG(z, rs)+ o(Ar;)] 

i=l 

L-1 
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= Az-1 L [S(z, r1)G(z, ri) + AS(z, r1)G(z, rs)+ S(z, ri)AG(z, r1) + o(Ar?)]. 
i=l 

(5.13) 

In order to evaluate (5.13), we need expressions for AG(z, r1) and AS(z, r1). From 

(5.11) 

(5.14) 

Collecting the terms in the above equation which are linear in Ar1 and simplifying 

gives the following expression for AS(z, r1): 

A similar calculation for AG(z, r1) yields 

L-1 

(5.15) 

AG(z,r1) = II (1- r;z- 1)Ar;z - Ar1z- 1(1- rjz). (5.16) 
#i 
i=l 

If we now evaluate (5.9) (5.11) and (5.12) at the signal roots of P(z), namely 

r 10 k = 1,. ·., P and note that z- 1 = r; (since r1c is on unit circle), then it can be 

shown that 

0, i=k 

0, (5.17) 

AG(z,r.)lz=rk = 0, if.k. 
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Substituting the above formulas into (5.13) and keeping only the first-order terms 

yields 

8Pa(zz, r) l•=rL - [ ( ) ( )] • 
5 

Ar; tl.S z,r1c G z,r1c 

(5.18) 

Step 3. Equating the perturbation of the derivative of the spectral polynomial as 

a function of signal-roots and orthogonal-subspace perturbations. 

From (5.18) and (5.7), we obtain 

or 

2jArZ~( tl.r1c )G(r1c) 
TJc 

~[a(r; 1 f tl. U 0 WU!1 a(1l(r1c)] 
Ar1cG(r1c) 

where we use rZ = r; 1
. The angle-root relation is given in [16] 

where C1c is in general (see Appendix C) 

C1c = Ac 
27rdcos 81c 

Then 

If we define 

(5.19) 

(5.20) 

(5.21) 

(5.22) 

(5.23) 

(5 .24) 
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and 

/31t; = U 0 WU!1 a(1l(r1t;) 

then ·(5.24) can be simplified as 

6.81t; = C1t; ~[a:NH/J"J. 
Ar1t;G(r1t;) 

5.4 Statistical Performance 
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(5.25) 

Since we have used a first-order perturbation analysis, the predicted bias of an 

estimated direction of arrival is 

= E[C1t; ~(afNH/J")J 
Ar1t;G(r1t;) 

= C ~[af E(NH)/J1t;] 
" Ar1t;G(r1t;) 

- 0. 

The mean-squared error of an estimated direction of arrival by (5.25) is 

E(6.81t;) 2 = c;E[~(6.r")] 2 
T1t; 

C2 E[ ~( a:NH /J1t;) ]2 
" Ar1t;G(r.c) 

c; EJa:NH /J.cJ2 

2 A2Jr1t;J 2 JG(r.c)J2 

c; Jla.cll 2 ll/J.cl12u! 
- 2 A2 JG(r1t;)i 2 • 

Notice that lr.cJ 2 = 1 since the noise-free signal roots are on unit-circle. 

Min-Norm (RMN): the weighting matrix W = ccH and A= 1, so 

where the last equality is obtained by using L'Hospital's rule. Then 

(5.26) 

(5.27) 

E(D.8 )2 = c; IJ~ll21Ja.cll2u! (5.29) 
.c RMN 2 JG(r.c) I 
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Root-MUSIC (RMS): the weighting matrix W = I and A = %iirl, so 

ll.B.1:1!2 = l!a(ll(r.; 1)TU01!2 = AIG(r.c)I 

then 
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(5.30) 

(5.31) 

5.5 Relation to Extrema-Searching Algorithms 

As shown above, using L'Hospital's rule, we have (5.28) and (5.30). Then the mean­

squared error expressions of MUSIC and Min-Norm (5.29) (5.31) can be further 

written as 

(5.32) 

and 

{5.33) 

These expressions are identical to the mean-squared error expressions derived for 

extrema-searching algorithms when they are applied to the uniform line array. 

Therefore the mean-squared error ratio holds for polynomial-rooting approach 

5.6 Mean-Squared Error of Root Perturbation 

From the previous two sections, we can get 

{5.34) 

This is from a derivation where ~r.c is linear in the perturbation of orthogonal­

subspace, and thus linear in the zero-mean observation noise. Under such an as­

sumption, {5.34) gives us the mean-squared error of estimated roots E(~r.c) 2 • 

{5.35) 
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Min-Norm (RMN): 

(5.36) 

Root-MUSIC (RMS): 

(5.37) 

However, when the mean-squared error of root estimates is of interest, we need 

to consider bias. The zero-mean assumption of root estimation error should be 

avoided. We now present an analysis of the mean-squared error of root estimation 

error (including the implied contribution of bias squared) of the spectral polynomial 

(not its derivative). We use similar steps to those used in analyzing the mean­

squared error of the root estimation. The major difference is we are now dealing 

with the spectral polynomial itself, instead of dealing with the derivative of the 

spectral polynomial as we did in the mean-squared error analysis of the angle of 

the roots. 

Step 1. Perturbation of coefficients of spectral polynomial 

(5.38) 

Expand (5.38), and notice that all the terms having the factor a(z-1)TU0 or its 

hermitian conjugate become zero when evaluated at signal roots r1c. The result is 

P(z, V 0 )lz=r• = a(r; 1)T(LlU0 W LlU~)a(r1c) + a(r; 1)T(LlU0 Ll W LlU~)a(r1c). 

(5.39) 

Here we keep the second-order perturbation terms since we are dealing with the 

"spectral" function, and we neglect the higher-order perturbation term (for Root­

MUSIC, this term is zero anyway). The result is 

(5.40) 
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Step 2. Perturbation of signal-roots of spectral polynomial 

L-l 

P(z, r) = A II (1 - riz-1)(1 - r; z) 
i=l 

L-l 

= A II [1- (ri + ~ri)z- 1 ][1 - (ri + ~ritz]. (5.41) 
i=l 

Evaluate this function at the signal-roots rA: and neglect the higher order terms. 

We then have 

L-l 

P(z,r)lz=rk = A II (1- rA:rj 1)(1- r;r;)l~rA:j 2 

i# 

= AG(rA:)j~rA:j2 for i=l, ... ,P. (5.42) 

Step 3. Equating P(z, Uo)lz=rk and P(z, r)lz=rk• then we obtain 

j~rA:i 2 = a(r;
1f (~Uo W ~U!1)a(rA:). 

AG(rA:) 

Substitute (3.15) in (5.43) and take the expectation 

I 1
2 a(rt" 1)TU.E;1V!1 E(NHU 0 WU!1N)V.E;1U!1a(rA:) 

E ~rA: = 
AG(rA:) 

af E(NHU 0 WU!1N)aA: 
AG(rA:) 

where 

aA: = V.E;1U~ a(rA:)· 

MUSIC(RMN): the weighting matrix W =I and A = %1irl, so 

(L - P)1iaA:i121ihi12 2 
Ej~rA:iiwN = (L - P)G(rA:) <J" 

lib II 2 IIaA:112 (J~ 
-

G(rA:) 

(5.43) 

(5.44) 

(5.45) 
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Min-Norm(RMS): the weighting matrix W = ccH and A = 1, so 

E(NHU 0 WU!1N) = l l ci12u~ 

EIAr 
1
2 = llcll2lla1cll 2 u~ 

1c RMS G(r1c) 
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(5.46} 

Comparing the (5.37} and (5.45), we find that E(jAr1cl} 2 /Cf is L-P time larger 

than E(A81c} 2 for MUSIC which indicates a large bias exists in the radial direction 

as verified in simulations. The radial nature of the error makes the extrema in 

the spatial spectrum less distinct. This renders procedures that examine extrema 

using a search procedure less attractive. Notice that (5.36} and (5.46} are identical, 

which indicates the Min-Norm root estimates are unbiased. 

5.7 Numerical Examples 

A twenty-element uniform line array (with d = 'Ac/2} is used as shown in Figure 

5.1. Angles of arrival signals are measured with respect to the normal of the array. 

Two sources are considered at 0.2 and 0.5 radians. Twenty snapshots of array data 

were used to estimate the directions of arrival for a given trial. Data matrices as 

in (3.1} of dimension 20 x 20 were formed, and 500 trials were run at each value of 

SNR. 

Figures 5.2 and 5.3 show the standard deviation of the estimated directions 

versus SNR of Min-Norm (forward-only), MUSIC, and C-R bound (from top to 

bottom, respectively). The the measured mean-squared error (shown with an *) 

agrees well with predicted mean-squared error (shown by the lines) . Again, our 

analysis starts from a high-SNR assumption, but the simulation results show that 

the analytical expressions give accurate results over a wide range of SNR. We also 

tried the Min-Norm algorithm using a forward-backward data matrix (instead of 

(3.1)} and then its performance was improved. 

Figure 5.4 and 5.5 show the scattergram of the signal roots of Min-Norm and 

Root-MUSIC algorithms. 
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RMN 

Table 5.1: Parameters of mean-squared error for Polynomial Rooting Algorithms 
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Figure 5.1: Uniform line array 
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Figure 5.2: RMSE vs. SNR for Min-Norm and Root-MUSIC at source 1 (.2 rads) 
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Figure 5.3: RMSE vs. SNR for Min-Norm and Root-MUSIC at source 2 (.5 rads) 
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Figure 5.4: Scattergram of Estimated Roots for Min-Norm 
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Figure 5.5: Scattergram of Estimated Roots for Root-MUSIC 
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5.8 Summary 

In this chapter, a non-asymptotic statistical performance analysis using matrix ap­

proximation to a common model for orthogonal-subspace based polynomial-rooting 

methods (Min-Norm and Root-MUSIC) of uniform line array has been developed 

analytically and verified by simulations. Parallel analyses have been made of the 

mean-squared error (using the derivative of the spectral polynomial) of the esti­

mated signal direction and mean-squared error (using the spectral polynomial) of 

the estimated signal-roots. The mean-squared error of Root-MUSIC estimates of 

the DOA's is very close to the Cramer-Rao Bound compared to the mean-squared 

error of the Min-Norm estimates of the DOA's. This means that Root-MUSIC is 

preferable in DOA estimation when the signal-to-noise ratio is above threshold. 

But since Root-MUSIC has a large radial bias in root estimation while Min-Norm 

is unbiased in root estimation, so Min-Norm is preferable in root estimation or 

damped sinusoid estimation of time series. 



Chapter 6 

Performance of Matrix Shifting 

Algorithms 

6.1 Introduction 

After the extensive research and application of orthogonal subspace methods (Pis­

arenko, MUSIC and Min-Norm), several signal-subspace based algorithms have 

been developed more recently. 

State-Space Realization (sometimes called Toeplitz Approximation Method and 

Direct Data Approximation) was first suggested by Kung, Arun and Rao in 1983 

[29, 30], and further studied by Rao [64, 65, 10], separately by Foka [31, 32] and by 

Le Cadre [66]. This approach applies the stochastic realization technique to direc­

tion of arrival estimation. The property of minimum roundoff noise and coefficient 

sensitivity of state-space structures was summarized by Jackson for filter design in 

[67]. Arun proved that a newly developed state-variable balancing technique has 

the minimum sensitivity with respect to parameter quantization [ 68]. 

Estimation of Signal Parameters via Rotational Invariant Techniques (ESPRIT) 

was proposed by Paulraj, Roy and Kailath [33, 34, 35, 36, 37, 38, 39, 40, 41], and 

also studied by Zoltowski [49]. This approach suggests a shift-invariant array which 

can be considered as two subarrays. The corresponding sensors in each subarray 

64 
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are identical, spaced equally in the same direction so that the second subarray 

can viewed as a shifted version of the first one. The shift-invariance property is 

therefore utilized. 

The Matrix-Pencil Method was proposed by Ouibrahim, Weiner and Sarkar 

[44, 45, 46], and summarized by Hua and Sarkar [47]. It forms two data matrices 

with a certain relationship between them, and solves the generalized eigenvalue 

problem for the matrix-pencil by exploiting that relationship. Different matrix 

pencil methods are obtained by using the delay relation (which results in the same 

algorithm of ESPRIT), the moving-window relation, or the summation relation 

[46]. 

The statistical performance of individual signal subspace algorithms have been 

analyzed: State-Space Realization [65, 69, 70, 10] and Matrix-Pencil [4 7]. Bhaskar 

Rao and Hari [50, 71] recently presented an interesting analysis of ESPRIT and 

TAM but their result is based on an asymptotic argument valid only for large data 

records. 

In general, signal-subspace based algorithms utilize a shift-invariant structure of 

the signal-subspace. So our analysis of performance is based on the signal-subspace 

perturbation we derived in Chapter 3. Recall that the derivation assumes finite 

measurements. We begin our analysis of signal subspace methods by establishing 

a conunon model of shift invariance. 

6.2 Common Model 

Define a transition equation 

AF=B. (6.1) 

The transition matrix is solved as 

(6.2) 

State-Space Realization 

A= or and B = o! (6.3) 
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ESPRIT 

(6.4) 

If the transition matrix is defined as 

FA=B (6.5) 

the solution is 

F =BA1 (6.6) 

where the superscript ~ stands for right pseudo-inverse. 

6.3 Perturbation of the Angle Estimates 

In analyzing the perturbation of estimated DOA, we adopt the following three 

steps: 

1. Perturbation of the transition Matrix F 

2. Perturbation of the eigenvalues of transition matrix 

3. Perturbation of the angles of the eigenvalues 

Step 1. Perturbation of the transition Matrix F. 

With the presence of observation noise, the transition equation is 

If we define 

then 

- - -AF=B. 

A= A+D.A 

B = B + D.B 

F = F + D.F 

(A+ D.A)(F + D.F) = (B + D.B), 
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which can be expanded and re-arranged as 

AF +A6F + 6AF + 6A6F = B + 6B. 

We can cancel AF and B, and neglect the second-order perturbation term 6A6F 

to obtain 

A6F + 6AF = 6B. 

Finally, we can solve for 6F as 

where the superscript t denotes left pseudo-inverse. 

If the transition equation is 

FA=B 

a similar result can be derived: 

6F = {6B -F6A)A1 

where the superscript ~ denotes right pseudo-inverse. 

State-Space Realization 

The transition equation in the noise-free case for State-Space Realization is 

{6.7) 

and the transition matrix is 

{6.8) 

Therefore the perturbation of the transition matrix is 

(6.9) 

where from {2.35), 
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Notice that since the column vectors of 0 are linear combinations of the column­

vectors of the left-most matrix U •• the up- and down- shift of 0 are obtained by 

an up- and down- shift of U. 

Also 
I 

~o = u.El 

and so 

In addition 

with 

ort = E;iu!t and oit = E;iu;t. 

Substituting into (6.9) yields 

(6.10) 

ESPRIT 

The transition matrix of ESPRIT in the noise-free case is obtained from 

and in noisy case, from 

We can expand the above equation to obtain 

Expand both sides of the above equation yields 
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We can cancel the first terms on both sides, keep the first-order perturbation terms, 

and drop the higher-order terms to obtain 

which can be re-arranged as 

The last term on right hand-side is zero because it satisfies the noise free transition 

equation, and so we obtain 

(6.11) 

Step 2. Perturbation of the eigenvalues of the transition matrix. 

The perturbations of an eigenvalue and corresponding eigenvector are given in 

[72]. The first-order perturbation of an eigenvalue is 

= v.1:At(ti.B - LlAF)u.1: 

v,1:A t (LlB - X.1:.'.lA)u.1: (6.12) 

where the v,1: and u,1: are the left- and right- eigenvectors of F associated with X,1:. 

State-Space Realization 

The eigenvalue perturbation of (6.9) is 

ESPRIT 

I t I I 

v.1:(I::; 2 u; (ti.U!I::l - ti.U!I::lF)u.1: 
ti.X.1: = 

A.1: 

v,1:I.":;4u;t(ti.U!I::i - X.1:LlU!I::hu.1: 
= 

..\.1: 
(6.13) 
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The eigenvalue perturbation of (6.11) is 

- V,1:(U!U,,,)- 1U!(~Uu: - F~Uu)U.1: 
~A.1: = 

A.1: 

H )-1 H - ) v.1:(U.zUU' u.z(~U.z - A,1:~U,,, U,1: 
= 

A.1: 
(6.14) 

Step 3. Perturbation of the angles of the eigenvalues. 

The eigenvalues of the transition matrix are the same as the roots of the pa-

rameter polynomial, so the angle-root relationship in Appendix C holds 

~0.1: = C.1:~(~X.1:) 
A.1: 

= C.1:~(V.1:~~.1:) 

C.1:~[v.1:At(~BA~ ~AF)u.1:] 

C.1:~[v.1:At(~B A~ X.1:~A)u.1:] 

where C.1: ~ 2~d~0881 , and~[·] is the imaginary part of[·]. 

State-Space Realization 

Substitute 

in (6.13) to obtain 

-t ! t( t - !) H -t 
= C.1:~[v,1::Ea U. U 0 - ~~o U 0 NV.:E. U,1:] 

C.1:~[0:{1~/h] 

(6.15) 

(6.16) 
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where 

and 
I 

f3t = V,"E;"lut 

where the D! and D; are defined as the up- and down- shift of D 0 • 

ESPRIT 

Substitute 

in (6.14) to obtain 

71 

~Ot = Ct~[ Vt{D!D ut1
D!(Doz D!"N~:'E;- 1 

- XtDoz D!"NV,'E;-
1 
)ut] 

Ct~[ Vt(D!U u)- 1D~(Doz ,\~ Xt Do.s)D!"NV,'E:;
1
ut l 

Ct~[ a{1~f3t ] (6.17) 

where 

and 

where the Doz and Doz are defined from the rows in D 0 corresponding to subarray 

X and Z. 

6.4 Statistical Performance 

Under the first-order approximation, the bias of an estimated direction of arrival 

lS 
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= 0. 

The mean-squared error of an estimated direction of arrival is 

2 -

= C1c El~..\"12 
2 ..\1c 

c; El v1cA t (.6.B - X1c6.A)u1c 12 
2 ..\1c 

Ci ElafN/31cl2 
= 2 IX1cl2 

= c; lla1cll 2 ll/31cll2u~. 
2 

(6.19) 

Notice that IX1cl 2 = 1 because the noise-free signal roots are on the unit circle. 

State-Space Realization (SSR) 

With a1c and /31c of State-Space Realization 

H _ -t l.t t - l. H a1c -v1c:E, U~ (U0 -..\1cU0 )U0 

and 

the mean-squared error of an estimated direction of arrival is 

ESPRIT (ESP) 

With a1c and /31c of ESPRIT 
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and 

the mean-squared error of an estimated direction of arrival is 

SSR ESP 

lla"ll2 llv":E;fu; t (U! - )." u ;)U!'ll2 llvk(U~Uu)- 1U~(Uoz - AA:Uoz)U!'ll2 

11.B" 11
2 llV,:E;1u"ll2 11v.:E;1u"ll2 

Table 6.1: Parameters of mean-squared error for Matrix Shifting Algorithms 

6.5 Numerical Examples 

In general, the array geometry of the Matrix Shifting approach requires some type 

of shift-invariance. For instance, the ESPRIT array shown in Figure 6.1 has a 

displacement invariance (sensors can be grouped in pairs with identical displace­

ments). In the example in this section, we use the uniform line array with same 

configuration as in Chapter 5 for the purpose of comparison. 

Figure 6.2 shows the scattergram of the eigenvalues of the matrix shifting ap­

proaches (no difference between State-Space Realization and ESPRIT). 

Figures 6.3 and 6.4 show the standard deviation of the estimated directions ver­

sus of SSR, ESPRIT, and C-R bound (from top to bottom, respectively). The sim­

ulation results (shown with an*) agree closely with theoretical predictions (shown 

by the lines). Our analysis starts from a high-SNR assumption, but the simula­

tion results show that the analytical expressions give accurate results over a wide 

range of SNR extending down near the threshold SNR of the algorithms. SSR and 
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ESPRIT had virtually identical performance (the middle lines on the graphs). We 

also tried the Min-Norm algorithm using a forward-backward data matrix (instead 

of (3.1)) and then its performance was the same as SSR and ESPRIT. 

6.6 Summary 

In this chapter, a non-asymptotic statistical performance using matrix approxi­

mation to a common model for signal-subspace based matrix-shifting algorithms 

(applicable to State-Space Realization, ESPRIT and Matrix-Pencil Method) of an 

array with shift-invariant geometry has been developed analytically and verified 

by simulations. The analysis was made in steps of analyzing the perturbations of 

the transition matrix, its eigenvalues, and finally perturbations of the signal arrival 

angles. The formula for the perturbation of the signal-subspace derived in chapter 

3 was used as the basis for our unified analysis. Tractable mean-squared error 

formulas of various signal-subspace based methods for DOA estimation have been 

derived. 



CHAPTER 6. PERFORMANCE OF MATRIX SHIFTING 75 

Figure 6.1: ESPRIT Array geometry from [35] 
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CHAPTER 6. PERFORMANCE OF MATRIX SHIFTING 76 

10-2 ~--~--~------.--------.-------,....---, 

········ ... 
·· .. 

······ ... 

C-R Bou~d · 

. . . . . . . . . . . . . 

10-s .___ __ _.__ __ __.__ __ ___._ ___ ...___ __ ~--~--~ 
0 5 10 15 20 25 30 35 

Signal-to-Noise Ratio (dB) 

Figure 6.3: RMSE vs. SNR for SSR and ESPRIT at source 1 (.2 rads) 
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Chapter 7 

Comparison and Conclusion 

7.1 Introduction 

We have analyzed three different numerical approaches for direction of arrival es­

timation based on either the signal or the orthogonal subspaces. We shall, in this 

chapter, first summarize the analysis [Section 7.1]. Then we present numerical ex­

amples of the predicted and observed performance with respect to signal-to-noise 

ratio, number of sensors, number of snapshots, separation of the source angles 

[Section 7.2] . Finally, we make the concluding remarks of this dissertation [Section 

7.3]. 

7.2 Summary of Analysis 

The predicted mean-squared error of direction of arrival estimates for all subspace 

based algorithms can be summarized by the following formula 

For different algorithms, one just needs to substitute the appropriate C, ak, f3A: and 

/k as shown below 
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• MUSIC (SMS) 

c = 1 

ak - lla(8k)HU ,E;1v .11 2 

f3k = lla(1l ( 8k)Hu o 112 

tk - I la(l) ( 8k)HU 01!2. 

• Min-Norm (searching) (SMN) 

• Min-Norm (RMN) 

• Root-MUSIC (RMS) 

c = 1 

ak = I la(8k)HU ,E;1v .11 2 

f3k = I la(l) ( 8k)HU oll 21lcl12 

/k = lla(l) ( 8k)HU oC 11 2. 

c = ( Ac ) 2 
27rdcos 8k 

ak = lla(rk)HU ,E;1v. 11 2 

f3k = I la(1l(rk)HUol l2l lcl 12 

L-1 
/k = II 1(1 - r,r;1)l2. 

i# 
i=l 

c = ( Ac ) 2 

27rdcos 8k 

ak = lla(rk)Hu,E;1v.112 

f3k = lla(ll(rk)HUoll2 
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• State-Space Realization (SSR) 

C = ( Ac )2 
21f'dcos 01c 

a1c = llv1c:E;iu;t(U~ - A1cU!)U~i12 
I 

f31c 11v.:E;'iu1cll2 

/It: 1. 

• ESPRIT (EPR) 

C = ( Ac )2 
27rdcos 01c 

a1c = llv1c(U!U..-t 1U!(Uoz - A1cUoz)U~ll 2 

/It: 1. 

The above results are listed in table 7.1. 

7.3 Comparative Examples 

The configuration of the experiment is: a twenty-element uniform line array (with 

d = Ac/2) with two sources at 0.2 and 0.5 radians (angles are measured with respect 

to the normal of the array). Twenty snapshots of array data were taken under 20dB 

SNR[ = 10 log(::\-)] where the u! is the variance of the complex, additive noise] for 
q" 

500 hundred trials. The data matrices as in (2.2) were formed (for the purpose 

of comparison, we use forward-only formulation (F). Our other results show that 

the forward-back formulation decreases the mean-squared error of the Min-Norm 



E(~on = 0 11atll211Ptll2"~ 
21i 

r --- In--c--u, ----- -11C:tll2 ml 11Ptll2 I it I 
SMS 1 lla(9t)HU ,E;-1v .112 11a<1> ( llt)Hu a 112 lla(l) { 9t)HUoll2 

SMN 1 lla{9t)HU,E;-1V .112 lla(l) ( 9t)HUol l2llcl1 2 lla(l) ( llt)HU0 c 11 2 

RMN ( .\, )2 I la{r;1 )TU ,E;-1V, 112 I la(l) (r;1 )TUol l2llcl 12 n;;"l 1(1 - r;r;l)l2 2irdca.lt 
_i_=l 

RMS ( .\1 )2 lla(r;1 )TU ,E;-1v, 112 lla(l)( r;l )TU oll2 ~ nL-1 l{l - . -1)12 
2irdca.lt i# r1 rt 

i_=l 
SSR ( .\, )2 llvtE;Iu!T(U! - .XtU!}U!'°ll2 11v,E;Iutll2 1 21rdca.l1 

ESP ( .\, )2 
2irdca.lt llvt(U!U,,:)-1U!{Uoz - .XtUo~)U!'°ll 2 llV,E;-1utll2 1 

Table 7.1: Parameters of mean-squared estimation error 
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estimation by a factor of 2). The signals are sA:(n) = ei(f;nH.1: .. ), where <l>A:n are 

independent random phase angles uniformly distributed in the interval (-7r, 7r). 

In the figures displayed here, the lines are theoretical prediction, and discrete 

symbols are simulation measurements. Solid and dashed lines (discrete symbols * 
and+) of MUSIC and Min-Norm are respectively for extrema searching and poly­

nomial rooting approaches. We also use solid and dashed lines (also * and +) for 

State-Space Realization and ESPRIT. Statistical performances for all algorithms 

versus signal-tcrnoise ratio, source separation, number of sensors and number of 

snapshots are shown in Figures 7.1-4. 

Under high SNR, all the algorithms appear to be unbiased in DOA estimation, 

so the important statistical characteristic is the mean-squared error of the esti­

mation. With mean-squared error as the performance measure the subspace based 

algorithms get ranked as MUSIC, State-Space Realization and ESPRIT, Min-Norm 

(for the purpose of comparison, we used forward-only data). However, as indicated 

in a preliminary study of threshold (low SNR) performance, that at low SNR, 

the estimates' bias, rather than mean-squared error, assumes more importance in 

determining resolution. In this this case, with the bias as performance measure 

the algorithms can be ranked in the order of Min-Norm, ESPRIT and State-Space 

Realization, MUSIC. 
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7.4 Concluding Remarks 

In summary, we have 

• categorized DOA estimation algorithms into orthogonal subspace based algo­

rithms and signal subspace based algorithms according to the subspace being 

utilized. 

• derived a first-order expression of the subspace perturbations induced by 

observation noise. 

• classified the algorithms into extrema searching, polynomial rooting and ma­

trix shifting approaches by the numerical procedures they exploit. 

• obtained a linear relationship between perturbation of DOA and perturbation 

of a given subspace. 

• established a general expression of mean-squared error of DOA estimation 

which can be specialized to all the algorithms by substituting the appropriate 

parameters. 

• demonstrated that the mean-squared error of DOA estimation by extrema 

searching and by polynomial rooting are equivalent. 

• proved that the mean-squared error of DOA estimation by MUSIC is lower 

than that by Min-Norm. 

The following areas should be pursued: 

• sensor error analysis; 

• low SNR analysis {threshold analysis); 

• coherent interference (or multipath time-delay) analysis; 

• wideband signal performance. 



Appendix A 

Mean-Squared Error Calculation 

Here we derive equation (4 .16) . We start by writing 

E[lR(aHN,8)] 2 

= E(aHN.B + .BHNHa)2 
2 

1 
-E[(aHN,B + ,BHNHa)(,BHNHa + aHN,B)j 
4 

!aH E(N.B.BHNH)a + !aH E(N.BaHN).B + !,aH E(NH a,BHNH)a 
2 4 4 

1 1 1 
= -E(aHN,8) 2 + -aH E(N,BaHN),B + -,BH E(NH a,BHNH)a. (A.1) 

2 4 4 

If the real and imaginary parts of the noise matrix N are independent Gaussian 

random variables with zero mean and variance of ~. then for each element n of 

the noise matrix N, we have 

1 2 1 2 -u - -u 
2 2 

= 0. (A.2) 

Now consider the second term of (A.1). We expand N.B as a weighted sum of the 

columns of N, and expand aHN as a weighted sum of the rows of N and use (A.2) 
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to obtain 

E[l: {3( i)!!; L a(j) ·n;] 
; 

- L L[f3(i)a(j)"]E(!!;fi1) 
; 

0 

86 

(A.3) 

where!!; and fi; denote the i-th column and j-th row of N, and the {J(i) and a(j) • 

are the i-th and j-th elements of the {3 and a8 vectors, respectively. In a similar 

way, it can be shown that the third term of {A.l) is zero. This proves that 

Furthermore, since 

we can write 

E[!R{a8 Nf3)] 2 = ~aH E(N{3{38 NH)a 
2 

= ~EJaHNf3 J 2 • 
2 

E(nn") = E(n~ + jn9)(n~ - jn9) 

1 1 
= -0'2 + -0'2 

2 2 

E(N{J{JHNH) = E[LfJ(i)!!a LfJ(i)"n.f] 
i 

L L[fJ(i){J(j)" ]E(!!;nf) 
i i 

E E!P(i)fJUtJa2ts(i - i) 
i ; 

= I lfJ 112 a 2I. 

Using (A.4) and the above equation, we have 

E[!R(aHNf3)] 2 = ~ J Jai12J l fJ l l 2 a2 • 

(A.4) 

(A.5) 

(A.6) 

(A.7) 



Appendix B 

Pisarenko's Method 

The analysis presented in this research can be easily applied to Pisarenko's method 

[22]. Pisarenko's Method is the first subspace based estimation algorithm, orig­

inately designed for the harmonic· retrieval problem. Pisarenko's Method ap­

plied principal component decomposition on a covariance matrix of dimension 

'. (P + 1) x (P + 1)]. Then the P + 1-th eigenvector Up+i is in the orthogonal­

subspace which is perpendicular to the signal manifold at a source direction. The 

covariance matrix, limited to be dimension of [(P + 1) x (P + 1)], can be estimated 

from array data in a spatial smoothing manner of shifted subarray data [73]. Pis­

arenko's method was originally designed as a polynomial-rooting algorithm for 

uniform line array, but it can be easily applied to extrema-searching algorithm for 

the array of arbitrary geometry, like we did for the Min-Norm method. 

The orthogonality relationship is 

a(8.&:)uP+l = 0 for k = 1, ... , P. (B.1) 

For a uniform line array the above equation can viewed as a polynomial evaluated 
· lrrd . e 

at the signal-roots with z = e'-Te" •m t. The searching algorithm is to find these 

minima over 8 where 8 is in 

The statistical performance can be analyzed in the similar procedure as in the 

analyses for MUSIC and Min-Norm. 
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Polynomial-Rooting algorithm: 

The bias of estimated direction of arrival is 

c ~[a(r; 1 Vu,:E; 1v;1 E{NH)up+iuff+1a(ll(r.c)] 
- .c ArZG(r.c) 

- 0. 

The mean-squared error of DOA estimation is 

where 

and 

and 

E(Ll8.c)2 = Cl (o:: o:.c)(f3f f3.c)a2 
2 A2 jG{r.c)i2 

Cl ilo:.ci12a2 
Z U~+ 1 {1)G{r.c) 

A= u~+i{l) 

Up+1(1) is the first entry of vector UP+l· 

Extrema-Searching algorithm: 

The bias of the estimated direction of arrival is 

!R[-a(8.c)HU ,:E;1v;1 E(NH)uP+1uff+1a(ll (8.c)] 
a(1l ( 8.c)H Up+1 u:!+i a(1l ( 8.c) 

= 0. 

The mean-squared error of DOA estimation is 
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where 

and 



Appendix C 

Perturbation of Angle and Root 

The relation between an arrival angle and a signal root of the characteristic poly­

nomial (or eigenvalue of the signal transition matrix) can be derived as follows: 

The noise-free signal roots are 

...i l•A ain 8 
r=c-""T 

and the signal roots in noisy case are 

- -...i~aini r = Cc- A • 

where r = r + 6r. Define an intermediate variable w 

with 

27r 6 . (J 
w = --sm 

,\ 

27r6 -w -::::::, -,\- sin fJ 

and w = w + 6w. It is easy to show that 

27r6 
6w = -,\- cos fJ 68. 

Define 

f(r) = ln(r), 

90 

(C.l) 

(C.2) 
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and expand ln(r) into a power series terms, and keep only the first two terms: 

f(r) ~ f(r) + f'(r)D.r. 

Using (C.1), we can write 

lnc+jD.w = f'(r)D.r 

where f'(r) = ~ The imaginary part in the both sides of the equation must be 

equal 

Using ( C.2), we obtain 

where C is defined as 

D.r 
D.w = ~[-]. 

T 

D.r 
D.0 = C D.w = C~[-] 

T 

C~ A 
2?rD. cos 0 

(C.3) 

(C.4) 



Appendix D 

Cramer-Rao Bound Calculation 

The formula for calculating the Cramer-Rao Lower Bound used in this research 

is suggested by Clergeot, Tressens and Ouamri. The interested reader can find 

the detailed derivations in [5]. For uncorrelated signals, the lower bound of mean­

squared error can be expressed as 

(D.l) 

where Pk is the power of k-th signal calculated from k-th diagonal element of 

Rs = E(ssH). Il0 is the projector on orthogonal-subspace, defined as 

(D.2) 

where U 0 are the left-singular vectors associated with L- P smallest singular values 

from the noise-free data matrix. The approach we used, independent from data, is 

p 

I - L {a(01c)[a(01c)H a(01c)]-1a(01c)H}. (D.3) 
k=l 
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