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Abstract: This paper investigates the dynamic compressive behavior of wollastonite fiber-reinforced
cementitious mortars using multiscale numerical simulations. The rate dependent behavior of the
multiphase heterogeneous systems is captured in a multiscale framework that implements continuum
damage towards effective property prediction. The influence of wollastonite fiber content (% by
mass) as cement replacement on the dynamic compressive strength and energy absorption capacity is
thereafter elucidated. An average compressive strength gain of 40% is obtained for mortars with 10%
wollastonite fiber content as cement replacement, as compared to the control mortar at a strain rate
of 200/s. The rate dependent constitutive responses enable the computation of energy absorption,
which serves as a comparative measure for elucidating the material resistance to impact loads.
Approximately a 45% increase in the dynamic energy absorption capacity is observed for the mixture
containing 10% wollastonite fibers, as compared to the control case. Overall, the study establishes
wollastonite fibers as a sustainable and dynamic performance-enhanced alternative for partial cement
replacement. Moreover, the multiscale numerical simulation approach for performance prediction
can provide an efficient means for the materials designers and engineers to optimize the size and
dosage of wollastonite fibers for desired mechanical performance under dynamic loading conditions.

Keywords: wollastonite microfibers; cementitious composites; dynamic compressive behavior; finite
element analysis; continuum micromechanics

1. Introduction

Portland cement concrete is one of the most widely used construction materials around
the world. However, concrete performs poorly in terms of fracture response [1,2], and
it shows an almost negligible tensile response [3,4]. The shortcomings are even more
magnified under dynamic loading conditions [5,6]. Reinforcing ordinary Portland cement
(OPC)-based systems with fibers exhibit enhanced tensile and flexural strengths with
higher toughness [7–10]. These reinforcements are able to provide enhanced resistance
against the initiation and propagation of micro and macro cracks [11]. Such enhancements
in fracture response have been reported, involving the incorporation of various fibers
in cementitious composites, including steel fibers [12,13], basalt fibers [14,15], polyvinyl
alcohol fibers [16,17], waste carpet fibers [18,19], nano calcium carbonate [20,21], multi-
walled nanotubes of carbon [22,23], two dimensional graphene sheets [24,25], etc. Strength
enhancement has also been reported for the steel fibers embedded in concrete under
compressive and tensile loading conditions [26–28]. Owing to the focus of the majority
of such studies being either static or low-rate loadings, it is worthwhile to explore their
high strain rate performance [10,29,30]. Such dynamic conditions can range from seismic
events and offshore loadings to explosions [31,32]. The incorporation of steel fibers in
concrete has shown to be beneficial in terms of strength enhancement under dynamic
loading conditions [7–10,32]. Enhancements in dynamic compressive response are also
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observed in concretes with polypropylene reinforcement [33], CF (carbon fiber) reinforce-
ment [34], and ceramic reinforcement [10]. While previous studies have reported dynamic
strength enhancement and stiffness gains in concrete with fiber incorporation, these fibers
are expensive, which limits their practical applicability in large-scale projects [35]. An
alternative approach can be adopted using economical fiber alternatives, such as waste
iron powder [32], recycled plastics [36,37], other recycled industrial products [36,38,39], or
affordable natural fibers [40–44]. Natural fibers such as wollastonite, basalt, and wood have
been shown to improve the mechanical performance of concrete under either quasi-static
or low strain rates [41,42,45–47]. Wollastonite has gained much attention in the last decade
due to its biocompatibility, low thermal expansion, low thermal conductivity, and thermal
stability [48–50]. Wollastonite can also be artificially synthesized using SiO2 materials
enriched with calcium [49–52]. While the above-mentioned previous studies have shown
significant improvements in the mechanical performance of cementitious composites under
quasi-static conditions [41,53], studies quantifying the compressive behavior of wollas-
tonite reinforcement in cement-based compositions under dynamic loading conditions are
still limited. This motivates the current study on evaluating the influence of wollastonite
fibers in cementitious mortars under dynamic loading conditions.

The current study elucidates the compressive behavior of such systems under dynamic
loads by carrying out simulations in a multiscale, finite element-based framework. The
efficiency of wollastonite fiber incorporation is studied under dynamic loading conditions
and quantified as peak compressive stress and energy absorbed until failure. Towards
that end, dynamic compression is applied, and the constitutive response is evaluated by
employing numerical homogenization and a strain rate dependent damage model [54,55] in
a continuum framework that implements micromechanical simulations. While the matrix
undergoes continuum damage, the inclusion–matrix interfaces adopt cohesive damage.
The interfacial and matrix damages govern the pre-peak and post-peak behavior. The
homogenized rate dependent behavior characterizes the effective constitutive response. In
addition to performance enhancement, the wollastonite fibers partially replace OPC, which
contributes to about 5–7% of global greenhouse gas emissions in the world [56]. Thus, in
addition to the potential performance enhancement, the incorporation of wollastonite fibers
as a partial replacement of OPC can also improve the sustainability credentials of concrete.
Overall, this paper forwards viable avenues to develop wollastonite fiber-reinforced cemen-
titious composites as a more sustainable and dynamic performance-enhanced alternative
to traditional cementitious composites. Moreover, the developed numerical approach can
be used as a starting point to elucidate various innovative avenues to tune the dosage,
shape, and aspect ratio of these wollastonite fiber-reinforced cementitious composites for
their desired performance.

2. Multiscale Numerical Simulations for Dynamic Response Prediction of
Fiber-Reinforced Mortars

The rate dependent constitutive responses of wollastonite fiber incorporated cemen-
titious systems are elucidated in this section using a continuum micromechanics-based
numerical framework. The inherent heterogeneity in such systems is captured at multiple
interactive length scales. For every scale, a representative geometry is generated to capture
the heterogeneity at that scale. A homogenization procedure is adopted to elucidate the
constitutive behavior under strain rates of the representative unit cells. The constitutive
response thus ascertained serves as an input to the subsequent length scale. In the current
scope of the study, the interactive length scales correspond to that of the fiber-reinforced
cementitious systems, which are homogenized as a matrix with dispersed sand at the
mortar scale, as elaborated in Supplementary Materials (Section A). The rate dependent
response for the fiber incorporated mortars is thereafter correlated with the experimental
observations. In the following subsections, the strategy for the framework is elaborated.
This is followed by the rate dependent homogenized responses. The experimental data
for some compositions are thereafter correlated. The analysis is carried out in ABAQUSTM
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using python scripts for geometry generation and user-defined subroutines for material
property assignment, followed by a post-processing module coded in MATLAB.

2.1. Multiscale Simulation Strategy

The current section presents the simulation strategy towards a comparative dynamic
performance evaluation of wollastonite fiber incorporated mortars. The first step involves
capturing the material heterogeneity with representative unit cells that capture the ge-
ometrical attributes of the microstructure. The unit cells implement periodic boundary
conditions (PBCs). A multiphase meshing strategy is adopted thereafter. A strain along the
axis of the unit cell is, then, applied at a finite rate, and the stress response is recorded. A
strain rate dependent damage governs the post-peak behavior of the unit cell in the strategy.
Thus, the constitutive response is acquired at every respective length scale. The scheme
is shown in Figure 1, which elaborates the homogenization approach. The following
subsections further elaborate on the process for a comprehensive understanding.

Materials 2021, 14, x FOR PEER REVIEW 3 of 13 
 

 

pendent response for the fiber incorporated mortars is thereafter correlated with the ex-

perimental observations. In the following subsections, the strategy for the framework is 

elaborated. This is followed by the rate dependent homogenized responses. The experi-

mental data for some compositions are thereafter correlated. The analysis is carried out in 

ABAQUSTM using python scripts for geometry generation and user-defined subroutines 

for material property assignment, followed by a post-processing module coded in 

MATLAB. 

2.1. Multiscale Simulation Strategy 

The current section presents the simulation strategy towards a comparative dynamic 

performance evaluation of wollastonite fiber incorporated mortars. The first step involves 

capturing the material heterogeneity with representative unit cells that capture the geo-

metrical attributes of the microstructure. The unit cells implement periodic boundary con-

ditions (PBCs). A multiphase meshing strategy is adopted thereafter. A strain along the 

axis of the unit cell is, then, applied at a finite rate, and the stress response is recorded. A 

strain rate dependent damage governs the post-peak behavior of the unit cell in the strat-

egy. Thus, the constitutive response is acquired at every respective length scale. The 

scheme is shown in Figure 1, which elaborates the homogenization approach. The follow-

ing subsections further elaborate on the process for a comprehensive understanding. 

 

Figure 1. Schematic representation of the homogenization strategy. 

2.1.1. Representative Geometry Generation 

In this study, the unit cell for the respective length scale is generated using the hard 

particle contact model, also called Lubachhevsky–Stillinger algorithm [57,58]. The com-

puter program ensures no overlap between particles. The program has been carried out 

and adequately detailed in the authors’ previous publications [32,59–63]. Additional de-

tails are provided in the supplementary materials (Section B). 

2.1.2. Periodically Bounded Unit Cells 

After meshing the representative geometry using a python script, periodic boundary 

conditions (PBCs) [60,62,64] are implemented. Under such boundary conditions, both the 

displacements and tractions are continuous in neighboring cells. The continuity is ensured 

across the boundaries of such cells. Such BCs are implemented in the previous studies for 

Interface

Rate dependent elastic and inelastic models

Post Effective 

dynamic 

responseProcessing

Undamaged State Damaged State

Meshed unit cell

with PBC

Inclusions with interfaces 

embedded in matrix

Apply 

Strain

Increasing strain

Matrix

Figure 1. Schematic representation of the homogenization strategy.

2.1.1. Representative Geometry Generation

In this study, the unit cell for the respective length scale is generated using the hard
particle contact model, also called Lubachhevsky–Stillinger algorithm [57,58]. The com-
puter program ensures no overlap between particles. The program has been carried out and
adequately detailed in the authors’ previous publications [32,59–63]. Additional details are
provided in the Supplementary Materials (Section B).

2.1.2. Periodically Bounded Unit Cells

After meshing the representative geometry using a python script, periodic boundary
conditions (PBCs) [60,62,64] are implemented. Under such boundary conditions, both
the displacements and tractions are continuous in neighboring cells. The continuity is
ensured across the boundaries of such cells. Such BCs are implemented in the previous
studies for random heterogeneous systems using FE analyses [32,61–63,65]. Owing to the
efficiency PBCs offer during computation, smaller unit cells with faster convergence can be
achieved [60]. Detailed analysis of PBCs can be found in [60,61,66]. For ease of reference,
more details on PBCs are provided in Section C of the Supplementary Materials.
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2.1.3. Constitutive Behavior Prediction

The meshed RVEs are subjected to compressive strain at a strain rate of 200/s. This
enables the framework to emulate displacement control during experimental loading. The
response of the homogenized composite at the pre-peak regime is dominantly characterized
by the dynamic modulus of the matrix, which is a function of strain rate expressed as [54]

E =

[
C1 + C2

( .
εd
.

εs

)C3
]

(1)

where C1, C2, and C3 are material parameters,
.

εd is the strain rate for dynamic loads, and
.

εs
(
= 3× 10−6) is the quasi-static strain rate.

2.1.4. Rate Dependent Damage

The elastic constitutive behavior is determined by the dynamic modulus, whereas
strain rate governed damage determines the inelastic response. In this study, a rate
dependent damage model in [54,55] is adopted. For isotropic damage, the constitutive
equation incorporating the damage variable can be expressed as [54,55]

σd
( .
ε, ε
)
= [1− D]σ

( .
ε, ε
)

(2)

where σd and σ correspond to damage stress and undamaged stress as a function of strain
(ε) and strain rate (

.
ε), respectively. A damage variable D, which is a function of (

.
ε, ε), takes

a value between 0 and 1, where zero means no occurrence of damage and one corresponds
to a material when the crack is fully propagated. The damage evolution (see Equation (3))
follows a non-linear relationship with the strain rate.

.
D = C4

.
ε

λ
+ C5

.
ε (3)

For a constant strain rate, the damage parameter D is obtained by integrating Equation (3)
with respect to time, which can be written as

D = (C4
.
ε

ξ
+ C5)ε + C6; ξ = λ− 1 (4)

Using an initial boundary condition where D|ε = 0 = 0 , Equation (4) yields C6 = 0 .
Thus, D can be further expressed as

D = (C4
.
ε

ξ
+ C5)ε; ε > εD0 (5)

The values C4, C5, and ξ are material constants. Thus, beyond εD0 , the damage is
characterized as given in Equation (5). It is to be noted that εD0 is the strain at which
damage is initiated. A user-defined subroutine implements the aforementioned damage
model in ABAQUSTM.

2.1.5. Post-Processing

A post-processor coded in MATLAB computes the volume-averaged stresses in the
unit cells corresponding to every strain state. An iterative process is implemented to com-
pute the homogenized constitutive response for each strain rate (quasi-static and dynamic).
Since the stiffness degrades with damage evolution, both pre-peak and post-peak responses
can be similarly obtained. The subsequent section implements the simulation strategy
explained herewith. The material composition for the demonstration includes wollastonite
micro-reinforcements in cement-based systems. Under dynamic loading conditions, the
effective constitutive behavior aims to draw a contrast with control composition, thus
explicating the benefits of wollastonite incorporation.
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3. Results and Discussion
3.1. Representative Length Scales for Numerical Simulation

The two scales in the study correspond to that of the paste scale and, subsequently, the
mortar scale, as shown in Figure 2. Figure 2 shows the two length scales for a representative
mortar with a 10% wollastonite fiber. The wollastonite fibers have an average size of
4 µm [41]. The average length of the fibers is 12 µm with an aspect ratio of three. For sand
inclusions, the median size of the sand is 600 µm, adopted after [32]. The homogenization
algorithm is applied both at the cement paste scale and the mortar scale to ascertain the
homogenized stress–strain response. In the cement paste scale (Figure 2a), the fibers are,
first, homogenized with the hardened cement paste (HCP) matrix. The effective behavior
thus obtained corresponds to wollastonite-reinforced pastes. The choice of unit cell size
and the mesh convergence are provided in the Supplementary Materials, Section A.
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Figure 2. Representative geometry at (a) paste scale with 10% wollastonite fibers in HCP matrix and
(b) mortar scale with sand inclusions in homogenized paste.

The homogenized properties from the paste scale are assigned in the mesoscale (refer
to Figure 2b) as input property of the matrix in which sand inclusions are embedded.
The responses obtained at the mortar scale represent the effective strain rate dependent
compressive constitutive response of fiber incorporated mortars. While no interfacial
areas between the fiber and HCP are considered due to lack of data [67], the interfacial
transition zones (ITZ) at the sand–matrix interfaces are successfully implemented herein.
The adopted thickness of ITZ is 20 µm, which is also experimentally observed in the
cementitious mortar scale [68,69]. The fiber and sand inclusions are modeled as linear
elastic due to their significantly higher strength than that of the matrix. Such an approach
has also been adopted in various previous studies. The mesh convergence studies can
be found in the Supplementary Materials (Section A). The strength is computed from the
constitutive response as the peak stress, while the area under the stress–strain curve is
computed as the absorbed energy. The DIF is computed as the ratio of the strengths under
dynamic and quasi-static loads. The multiscale homogenization is implemented at both
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the paste and mortar scales in the forthcoming subsections that characterize the behavior
of the wollastonite incorporated mortars.

3.2. Quasi-Static Compressive Behavior

The quasi-static compressive strength of the control and wollastonite microfiber-
reinforced mortars are determined using a constant strain rate of 1 × 10−5/s. The material
parameters used for hardened cement paste (HCP) are presented in Table 1. For a compara-
tive performance evaluation, the quasi-static modulus of wollastonite fibers is considered
300 GPa [41] while that of sand is 70 GPa [32]. The inclusions and the matrix have a
Poisson’s ratio of 0.2.

Table 1. Material parameters for HCP [54,70].

C1 C2 C3 ξ C4 C5 εD0

5064.1 4.71 1.70 0.487 0.019 0.657 0.001

As explained earlier, the homogenized wollastonite fibers and HCP matrix is used as
the input property of the matrix for the mortar scale to obtain the effective compressive
strength under quasi-static conditions for the mortars. Figure 3a shows the compres-
sive strength of control and fiber-reinforced mortars for quasi-static loads. For the fiber-
reinforced mortars, a consistent compressive strength gain of about 35% is observed with
respect to the control specimen. As the cement is replaced with the wollastonite fibers, the
strength gain due to the fibers roughly compensates for the loss due to cement replacement
thus producing similar values of strength with increasing fiber content. The wollastonite
microfibers are also likely to act as fillers [55] that contribute to strength enhancements [41].
In this paper, the wollastonite fiber content was not increased beyond 10%, since such
mixtures did not provide adequate rheological behavior, as noted elsewhere [41]. The
specific energy absorption (see Figure 3b) is defined as the integral of the stress response
with strain. It is observed that the energy absorption capacity increases with increasing
fiber content, as contrasted with the control mortar.
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Figure 3. (a) Quasi-static compressive strengths and (b) strain energy absorption of control (shown
in red) and wollastonite fiber-reinforced mortars (shown in blue).

It is worth mentioning that the simulated quasi-static compressive strength for the
control and wollastonite-reinforced specimens obtained in this study lies in the experimen-
tal ranges of 45 ± 5 MPa and 55 ± 5 MPa, respectively [41,71]. The good correlation, as
observed, serves to enhance the confidence in the numerical simulation presented herewith.
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3.3. Compressive Response under Dynamic Loads

Having ascertained the quasi-static responses of the wollastonite fiber incorporated
systems where the fibers reinforce the otherwise brittle cementitious matrix, this section
evaluates the trends for dynamic loading conditions. Besides obtaining the constitutive
behavior under a high rate, the dynamic increase factors are computed that embody the
high-rate deformation characteristics.

The homogenized numerical results obtained from multiscale analyses are demon-
strated in this section. In this study, the strain is applied along the x-direction, and the
time steps are implemented to simulate a 200/s loading rate, as applied on a periodically
meshed unit cell (refer to Figure 4a). The parameters characterizing the material inputs
for control HCP as a function of strain rate are reported in Table 1. To this end, these
parameters are used for the HCP matrix at a paste scale when simulated with wollastonite
fibers. The Young’s modulus of wollastonite fiber from a quasi-static experiment lies
between 300–530 GPa [41]. For a comparative performance evaluation, the quasi-static
modulus is considered 300 GPa. Here, a gain of 53% in Young’s modulus is considered [72],
as compared to a quasi-static modulus of wollastonite fiber for the stain rate of 200/s. The
phases adopt a Poisson’s ratio of 0.2. Studies have shown insignificant changes for such
when the Poisson’s ratio is varied in between 0.18–0.22 [65,73]. The progressive damage, as
implemented in ABAQUS™, is illustrated in Figure 4 for a strain rate of 200/s.
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Figure 4. Damage states at 200/s rate with increasing strain for the mortar with 10% fiber content at
strain states of (a) undeformed, (b) 0.0027, and (c) 0.0045.

Figure 4a–c show the progressive damage states observed as the strain is increased
from zero to 0.0027 and 0.0045. The damage onset and evolution are depicted in Figure 4b,c,
respectively. Table 2 reports the material parameters for wollastonite-reinforced pastes.
These material parameters at the microscale are implemented to define the material model
for the matrix in the mortar scale.

Table 2. Homogenized material properties for wollastonite fibers in HCP.

Fiber Content (%) C1 C2 C3 ξ C4 C5 εD0

5% 6501 3.92 1.691 0.468 0.014 0.687 0.0014

10% 10,298 4.53 1.701 0.502 0.015 0.702 0.0018

The dynamic modulus of the sand–matrix interface (ITZ) elements is considered as
40% of that of the matrix [68,74]. As the cracking strain for ITZ is unknown, an inverse
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analysis is performed. In such an analysis, the volume fraction of sand is 50%. The three
phase unit cells have sand inclusions surrounded by a 20 µm thick ITZ. The inverse analysis
results in a cracking strain εITZ

D0
of 0.00048 for ITZ. The cracking strain corresponds to an

applied strain of εM
D0

/4 , which is reported as the strain state for initiation of debonding [70].
The matrix cracking strain, denoted by εM

D0
, equals 0.001 for HCP [70]. The damage in ITZ

evolves in a rate dependent fashion, as explained earlier. The material parameters of the
ITZ besides the dynamic modulus and the εITZ

D0
are considered equal to that of cement

paste, owing to limited data available in the literature. For sand inclusions, the secant
modulus follows a linear relation with the logarithmic strain rate [75], with the modulus
under quasi-static loads at 70 GPa [32]. The rate dependent modulus is obtained by a gain
of 50% for a strain rate of 200/s [32].

Figure 5 presents the progressive damage states at the mortar scale for the mortar
mixture of 10% at a strain rate of 200/s. While Figure 5(a-1–a-4) present the progres-
sive interfacial damage, Figure 5(b-1–b-4) depict the corresponding progressive damage
in the matrix. Figure 5(a-1,b-1) correspond to the undeformed state. Figure 5(a-2,b-2)
correspond to a strain of 0.0018, which is under elastic regime from the global response.
Figure 5(a-3,b-3) correspond to the interfacial and matrix damages at a strain of 0.0033.
Similarly, Figure 5(a-4,b-4) correspond to the progressive interfacial and matrix damage
at a strain of 0.0044. It is observed that the interfacial damage initiates much earlier be-
fore reaching the peak global strain. The interfacial damage continues to propagate as
the applied strain increases. This process stops when the stress in the matrix exceeds its
compressive strength, beyond which the matrix damage initiates and starts propagating,
defining the post-peak regime.

Materials 2021, 14, x FOR PEER REVIEW 8 of 13 
 

 

10% 10,298 4.53 1.701 0.502 0.015 0.702 0.0018 

The dynamic modulus of the sand–matrix interface (ITZ) elements is considered as 

40% of that of the matrix [68,74]. As the cracking strain for ITZ is unknown, an inverse 

analysis is performed. In such an analysis, the volume fraction of sand is 50%. The three 

phase unit cells have sand inclusions surrounded by a 20 µm thick ITZ. The inverse anal-

ysis results in a cracking strain 𝜀𝐷0
𝐼𝑇𝑍 of 0.00048 for ITZ. The cracking strain corresponds 

to an applied strain of 𝜀𝐷0
𝑀 /4, which is reported as the strain state for initiation of debond-

ing [70]. The matrix cracking strain, denoted by 𝜀𝐷0
𝑀 , equals 0.001 for HCP [70]. The dam-

age in ITZ evolves in a rate dependent fashion, as explained earlier. The material param-

eters of the ITZ besides the dynamic modulus and the 𝜀𝐷0
𝐼𝑇𝑍 are considered equal to that 

of cement paste, owing to limited data available in the literature. For sand inclusions, the 

secant modulus follows a linear relation with the logarithmic strain rate [75], with the 

modulus under quasi-static loads at 70 GPa [32]. The rate dependent modulus is obtained 

by a gain of 50% for a strain rate of 200/s [32]. 

Figure 5 presents the progressive damage states at the mortar scale for the mortar 

mixture of 10% at a strain rate of 200/s. While Figure 5(a-1–a-4) present the progressive 

interfacial damage, Figure 5(b-1–b-4) depict the corresponding progressive damage in the 

matrix. Figure 5(a-1,b-1) correspond to the undeformed state. Figure 5(a-2,b-2) correspond 

to a strain of 0.0018, which is under elastic regime from the global response. Figure 5(a-

3,b-3) correspond to the interfacial and matrix damages at a strain of 0.0033. Similarly, 

Figure 5(a-4,b-4) correspond to the progressive interfacial and matrix damage at a strain 

of 0.0044. It is observed that the interfacial damage initiates much earlier before reaching 

the peak global strain. The interfacial damage continues to propagate as the applied strain 

increases. This process stops when the stress in the matrix exceeds its compressive 

strength, beyond which the matrix damage initiates and starts propagating, defining the 

post-peak regime. 

 

Figure 5. Progressive damage for mortar composition with 10% wollastonite fibers for a strain rate of 200/s at (a) interface 

and (b) matrix in fiber; the strain states correspond to (a-1) and (b-1) undeformed, (a-2) and (b-2) at 0.0018, (a-3) and (b-3) 

at 0.0033, and (a-4) and (b-4) at 0.0044. 

(a-1) (a-2) (a-3) (a-4)

(b-1) (b-2) (b-3) (b-4)

Initial state Elastic regime Inelastic regime

M
a

tr
ix

In
te

rf
a

ce

Figure 5. Progressive damage for mortar composition with 10% wollastonite fibers for a strain rate of 200/s at (a) interface
and (b) matrix in fiber; the strain states correspond to (a-1) and (b-1) undeformed, (a-2) and (b-2) at 0.0018, (a-3) and (b-3) at
0.0033, and (a-4) and (b-4) at 0.0044.

Figure 6 shows the comparative performance of the wollastonite fiber incorporated
cementitious systems at a strain rate of 200/s. The trends observed for dynamic loading
cases are consistent with the ones obtained for quasi-static loadings. The mixtures with
wollastonite fibers show higher peak loads than does the control mixture. Figure 6a
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summarizes the dynamic compressive strengths of the wollastonite fiber incorporated
mortars, as compared to the control mortar. While the fiber incorporated systems show an
average strength gain of 40%, the trends are consistent with those observed for quasi-static
loadings. In order to understand the rate effect, it is worthwhile to compute the dynamic
increase factors, which is the ratio of the strengths at a high strain rate to the quasi-static
strengths, expressed as a ratio. For every composition, the rate effects can be exemplified
by their respective dynamic increase factors. The fiber incorporated specimens show
significantly higher dynamic increase factors, as compared to the control specimens (see
Figure 6b), thus, substantiating their applicability for superior dynamic performance. It is
observed in Figure 6c that the fiber-reinforced mixtures show significantly higher energy
absorption, as compared to the control case. Such an enhancement in energy absorption
can be attributed to crack bridging and/or deflection effects of wollastonite fibers.
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varying wollastonite content at a strain rate of 200/s.

While the experimental dynamic increase factor for compressive strength in mor-
tar reported in the literature is 1.57 ± 0.08 [71], the simulated dynamic increase factor
obtained is 1.54. Thus, an excellent correlation is observed with the current numerical
simulation framework.

4. Conclusions

The multiscale numerical simulation methodology presented in this paper enables
the development of an efficient predictive tool toward the design of these wollastonite
microfiber-reinforced cementitious systems for efficient dynamic performance. In order to
capture the hierarchical geometrical features at multiple length scales, numerical homoge-
nization is employed at each scale. A rate dependent damage evolution in a continuum
mechanics framework is implemented on periodically bound unit cells. This facilitates
computation of effective dynamic behavior of the fiber-reinforced heterogeneous systems.
While the numerical simulation results clearly demonstrate a significant enhancement in
compressive strength and energy absorption capacity under dynamic loading conditions
for wollastonite-reinforced mortars, it needs to be noted that such trends should be con-
firmed by experimental studies. Nevertheless, in the absence of experimental results, the
numerical results presented in this paper can be used as a starting point for the design
and development of such wollastonite fiber-reinforced cementitious composites. Such
a performance enhancement under dynamic loading conditions can be attributed to the
presence of wollastonite microfibers that act as micro-reinforcements to bridge the micro-
cracks in the matrix. Additionally, the wollastonite microfibers act as fillers that block
the voids, resulting in strength enhancement. Such performance enhancement can pave
the way for the utilization of wollastonite as a viable fiber alternative under high strain
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rate conditions. In addition, the numerical approach presented here can be adopted as
a starting point for a microstructure-optimized design of wollastonite fiber incorporated
cementitious composites and their upscaling to concretes for enhanced performance under
dynamic loading conditions.
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predicted Young’s modulus along three orthogonal directions for mortar.
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