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ABSTRACT 

 

This work, consisting of three manuscripts, addresses natural resource management 

under risk due to variation in climate and weather. In three distinct but theoretically 

related applications, I quantify the role of natural resources in stabilizing economic 

outcomes. Manuscript 1 examines policies for controlling the risk of outbreaks of 

cyanobacteria, algae blooms, stimulated by excess nutrient loading transported by 

uncertain and possibly changing rainfall patterns for a drinking water watershed in 

Rhode Island. The manuscript is based on a paper co-authored with Jim Opaluch. 

Manuscript 2 addresses welfare outcomes of optimal, as well as open access, 

extraction of a groundwater resource when demand is variable based on precipitation 

conditions. The groundwater stock is treated as depletable both in height and spatial 

extent. The model is applied to the Ogallala aquifer in Kansas. The manuscript is 

based on a paper co-authored with Todd Guilfoos.  Manuscript 3 models the market 

for natural gas used by the electric sector in New England as a function of weather and 

pipeline capacity. The effect of changes in natural gas import capacity on natural gas 

price and quantity consumed as a function of the severity of winter weather conditions 

is quantified for the New England region. 

 

In Manuscript 1, we address policy designed to effect the risk of cyanobacteria blooms 

in a drinking water reservoir through watershed wide policy. Combining a hydrologic 

and economic model for a watershed in Rhode Island, we solve for the efficient 

allocation of best management practices (BMPs) on livestock pastures to meet a 



 

 

monthly risk-based as well as mean-based water quality objective. In order to solve for 

the efficient allocations of nutrient control effort, we optimize a probabilistically 

constrained integer-programming problem representing the choices made on each farm 

and the resultant conditions that support cyanobacteria blooms. In doing so, we 

employ a genetic algorithm (GA). We hypothesize that management based on 

controlling the upper tail of the probability distribution of phosphorus loading implies 

different efficient management actions as compared to controlling mean loading. We 

find a shift to more intense effort on fewer acres when a probabilistic objective is 

specified with cost savings of meeting risk levels of up to 25% over mean loading 

based policies. Additionally, we illustrate the relative cost effectiveness of various 

policies designed to meet this risk-based objective. 

 

Rainfall and the subsequent overland runoff is the source of transportation of nutrients 

to a receiving water body, with larger amounts of phosphorus moving in more intense 

rainfall events. We highlight the importance of this transportation mechanism by 

comparing policies under climate change scenarios, where the intensity of rainfall is 

projected to increase and the time series process of rainfall to change. The climate 

change scenarios show a shift towards a heightened risk of conditions supporting 

blooms and an increasing importance of spatial prioritization of nutrient control effort. 

 

In Manuscript 2, we introduce a new economic groundwater model that incorporates 

the gradual shift from irrigation to dryland farming as parts of an aquifer run dry. We 



 

 

accomplish this using an upside down cone to represent the spatial depletion, where 

the area of irrigable land above the aquifer shrinks as the water level decreases.  

Depletion of the aquifer may interact with uncertainty of the supply of water because 

the buffer that groundwater provides is no longer available.  In this work, we identify 

the impact of spatial depletion on welfare gains from optimal management when 

rainfall is stochastic and follows a Markov process. Using a stylized model and 

dynamic programming, we estimate gains from moving away from current myopic 

extraction behavior to optimal use of the resource. 

 

When applied to Kansas over a section of the Ogallala Aquifer, we find gains from 

management ranging from 2.88% to 3.01% with larger gains achieved under 

uncertainty in the rainfall process. We find that including the dynamic of the gradual 

spatial depletion of the aquifer does materially impact welfare results compared to 

other estimates of the same region. Surprisingly the serial correlation of rainfall 

matters little.  Empirically, multi-year droughts combined with the loss of access to the 

aquifer only slightly increases welfare gains due to the availability of dryland farming 

and the productivity of that option as a backstop when available. 

 

Manuscript 3 empirically estimates the effect of an increase in natural gas pipeline 

capacity in New England on monthly equilibrium natural gas prices and quantities for 

the electric sector. Weather plays an important role in defining the demand for natural 

gas due to its use for heating and electricity generation in the winter and through 



 

 

electricity demand for cooling in the summer. The cost of natural gas has important 

consequences to the wellbeing and cost of living for millions of customers either 

relying directly on natural gas for heating, or electric energy consumers indirectly. 

This paper presents results of reduced form price and quantity time series regressions 

using Generalized Least Squares (GLS) followed by results of a dynamic simultaneous 

equation model (SEM) of the market system. Using derived empirical relationships, 

prices and quantities for natural gas are estimated under various weather scenarios as 

well as under current and expanded capacity. I highlight the role capacity has in 

effecting the variability of the price of energy to the region. 

 

This work adds to the literature by providing empirical evidence and the quantification 

of the effect of constrained pipeline supply in an important energy market, where 

weather conditions, multiple demand sectors and alternative fuels determine the cost 

of energy. I find that capacity is a significant factor in the prices and quantities of 

natural gas consumed by the electric sector, with an increase in pipeline capacity of 

1% leading to an average decrease in price of .48% and an increase in consumption of 

.2%. The SEM model finds both supply and demand to be price inelastic.
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PREFACE 

This dissertation is written in the three-manuscript form. The first manuscript is co-

authored with Jim Opaluch. The second manuscript is co-authored with Todd Guilfoos 

and is under review at the Journal of Environmental Economics and Management.  

 

Manuscript 1: Controlling Nutrient Pollution and the Risk of Cyanobacteria Blooms 

 
Manuscript 2: Optimal Groundwater Management Under Uncertainty and Spatial 

Depletion 
 
Manuscript 3: Weather, Energy and Capacity: Dynamics of the Natural Gas Market in 

New England 
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Abstract 

This paper assesses policies for controlling the risk of cyanobacteria (blue-green algae) blooms 
stimulated by excess nutrients. We examine cost-effective strategies that are based on addressing the 
probability mass in the upper tail of the distribution of phosphorus loads and resultant concentrations, 
which are disproportionately influential in supporting episodic blooms. Combining a hydrologic and 
economic model for a drinking water reservoir watershed in Rhode Island, we solve for the efficient 
allocation of best management practices (BMPs) on livestock pastures to meet a monthly risk-based 
objective as well as a mean-based water quality objective. We hypothesize that management designed 
to control the upper tail of the probability distribution of phosphorus concentrations implies different 
efficient management actions as compared to controlling mean conditions. We find a shift to more 
intense effort on fewer acres when a risk-based objective is specified with cost savings of meeting risk 
levels of up to 25% over mean-based policies. Additionally, we illustrate the relative cost effectiveness 
of various policies designed to meet this risk-based objective. 

mailto:nateme16@my.uri.edu
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Introduction 

Water quality impairments often present in discrete events, for example: fish kills, 

algal blooms, red tides, and beach closures. For the cases involving excess nutrient 

loading, these perceivable damaging occurrences are the more noticeable result of 

complex interactions across the landscape between humans, climate and ecological 

systems. Rainfall and subsequent runoff is the transportation mechanism for nutrients 

from the landscape to water bodies. Since rainfall is variable, any sought after water 

quality benefits of policy interventions are stochastic. Changes in policy create spatial 

and temporal configurations of human activity that in turn affect the distribution of 

conditions in a water body (Milon 1987).  

This paper assesses policies for controlling the risk of cyanobacteria (blue-green 

algae) blooms stimulated by excess nutrients.  We examine cost-effective strategies 

that are based on addressing the probability mass in the upper tail of the distribution of 

phosphorus concentrations in a water body, which are disproportionately influential in 

supporting episodic blooms. Combining a hydrologic and economic model for a 

drinking water reservoir watershed in Rhode Island, we solve for the efficient 

allocation of best management practices (BMPs) on livestock pastures to meet a 

monthly risk-based as well as a mean-based water quality objective. We hypothesize 

that management based on controlling the upper tail of the probability distribution of 

phosphorus (P) concentrations in the reservoir implies different efficient management 

actions as compared to controlling mean conditions. We find a shift to more intense 

effort on fewer acres when a risk-based objective is specified with cost savings of 

meeting risk levels of up to 25% over mean-based policies. Additionally, we illustrate 
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the relative cost effectiveness of various policies designed to meet this risk-based 

objective.  

Rainfall and the subsequent overland runoff is a source of transportation of nutrients to 

a water body, with larger amounts of P moving in more intense rainfall events. We 

highlight the importance of this transportation mechanism by comparing policies 

under climate change scenarios, where the intensity of rainfall is projected to increase 

and the time series process of rainfall is projected to change for Rhode Island. The 

climate change scenarios show a shift towards a heightened risk of conditions 

supporting blooms and an increasing importance of spatial prioritization of nutrient 

control effort.   

Background 

Cyanobacteria blooms are challenging to address because they are episodic. They are 

patchy and difficult to predict (Hudnell 2008) because they depend upon the 

confluence of factors including sunlight, nutrients (especially phosphorus), pH, 

precipitation, water temperature, water flow, and water column stability (EPA 2012). 

Under favorable conditions, cyanobacteria populations can rapidly proliferate and 

create extensive blooms dominated by a single (or a few) species that release toxins 

harmful to ecosystems and humans. Even in the absence of toxic effects, 

cyanobacteria blooms can result in adverse effects on taste and odor of drinking water 

(EPA 2012). 

Of the conditions supporting blooms in fresh water, P loads and resultant in-lake 

concentrations are the most dependent upon anthropogenic sources and most amenable 
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to management. P loads are stochastic since transport to receiving waters is mediated 

primarily by eroded soil moving in surface runoff (James & Alexander 1998; AL 

Heathwaite 2000; Morgan 2001).  As a consequence, extreme precipitation events are 

influential in determining transport of P to water bodies, and contributing to conditions 

favorable to blooms. Policy within this stochastic context must be effective in 

controlling P loading in larger precipitation events that lie in the tails of the probability 

distribution.  This could be of increasing concern in coming decades, as there are 

projections that climate change will increase high intensity precipitation events (IPCC 

2007; Meehl et al. 2005; IPCC 2011; Kunkel et al. 2013).  

The location and mix of nutrient control effort across a watershed affects both the 

average emissions as well as the shape of the distribution of emissions throughout 

varying weather conditions. When damages from P emissions are attributed to 

threshold based events, those damages are not a linear function of P concentrations, or 

continuous estimates of damages are unknown (Lathrop et al. 1998), then optimal 

nutrient control efforts that address mean conditions may differ greatly from those that 

address damaging occurrences or threshold violations (Shortle & Horan 2001). 

Therefore, simple rules for improving abatement efficiency by focusing on the lowest 

marginal cost abaters in terms of average emissions do not necessarily hold (Shortle 

1990).  Rather, policy must consider the upper tail of the distribution of emissions and 

correlations across emitters.  

Policy prescriptions to address a non-point source nutrient control problem in both a 

static as well as dynamic setting focus on location (and possibly time) differentiated 

taxes, subsidies, or standards based on estimated marginal damage of runoff, ambient 
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conditions or input factors to approach optimal configurations of production and 

abatement effort (Goetz & Zilberman 2000; Segerson 1988; Shortle & Horan 2013). 

Many studies use mean Nitrogen and Phosphorus concentrations or reduction targets 

as constraints to solve for the optimal allocation of nutrient control effort (Rabotyagov 

et al. 2010; Gitau et al. 2004; Arabi et al. 2008; Kling 2011). A number have explored 

costs in addressing probabilistic objectives of nutrient concentrations (Kampas & 

White 2004; Elofsson 2003; Shortle & Horan 2001; Gren et al. 2002; Milon 1987; 

Kataria et al. 2010; Zhu et al. 1994; Huang et al. 2012) and find distributional 

assumptions of emissions and the strictness of the probabilistic objective effect the 

efficiency of nutrient control design.  

This work contributes to the literature by assessing the efficiency of the design of 

water quality improving policy to meet a risk-based objective. In contrast to previous 

work, we quantify the efficiency of policy designed to address a probabilistic 

constraint representing the risk-based objective as compared to mean-based policy 

using a hydrologic and numerical optimization model, while maintaining the important 

discrete nature of the problem. The resultant differences between efficient and second 

best allocations to address a risk-based objective show not just the total cost savings, 

but also the practical implications for how the allocation would differ across the 

watershed. By integrating climate model projections, we show that climate change 

may shift the risk profile and increase the importance of addressing the risk-based goal 

directly. The results underscore the need of spatially prioritizing nutrient control 

activities. 

Conceptual Model 
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We assume a watershed partly consisting of heterogeneous agricultural fields with 

varying physical properties (e.g., slope, soil type, location). P accumulates in the soil 

over time and is transported off fields into waterways with precipitation events.  P 

flows with water downstream to a water body, henceforth, reservoir, which provides 

ecosystem services valued by society.   

We formulate the problem as finding the least-cost allocations of nutrient control 

effort to meet probabilistic constraints. This is in contrast to finding an economically 

optimal solution, which would include a damage function explicitly into the objective 

function. A damage function might take many forms depending on the water quality 

impairment. For instance, if damages were linear in concentrations, addressing mean 

concentrations would be sufficient. However, if the damages were convex to 

concentrations, or based on a threshold where damages are minimal and increase after 

a particular point, then higher order moments in the distribution of conditions matter 

to policy design. A probabilistic constraint can handle this type of least-cost problem 

by addressing the shape of the distribution of conditions (Shortle 1990). Our 

application to cyanobacteria blooms, which are known to be particularly reliant on 

high levels of P concentrations, fits this type problem. The damages are uncertain, but 

damaging blooms are, at the least, nonlinearly related to nutrient concentrations. 

 

The distribution of total P loading at a water body is the sum of individual sources of 

emission less loss in transport. Stricter correlation between the sources leads to more 

burdensome probabilistic constraints and higher costs (Kampas & White 2004; 

Elofsson 2003). Given that each farm’s emissions are highly correlated when rainfall 
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is assumed consistent across the space, highly correlated loadings seem like a 

reasonable assumption, especially in a geographically small watershed. Each 

heterogeneous source will contribute a different but correlated distribution of nutrient 

loading based on its soil type, slope, inputs and location, or more generally a source’s 

place on the P transfer continuum (Haygarth et al. 2005). We assume the watershed of 

concern is sufficiently small that rainfall is perfectly correlated across fields. 

Assumptions of the distribution of pollutant load and transport can have large 

implications for estimates of efficient abatement (Gren et al. 2002; Kataria et al. 

2010). In the numerical application below, we rely on a physical process-based 

hydrologic model to estimate the important relationships. 

The goal of policy is to control the risk of cyanobacteria blooms by taking actions 

across the watershed to maintain P concentrations in a water body, a reservoir in our 

application, below a target concentration to avoid conditions that are favorable for 

blooms.  However, P concentrations are stochastic, since loads depend upon random 

precipitation, especially upon extreme precipitation events. As a consequence, we 

specify policies that control the probability that a threshold is violated.  Hence, the 

optimization problem is formulated as finding the least-costly set of control policies 

such that the probability of exceeding a threshold for P concentrations in the reservoir 

is less than a target level, D.  

Soil P concentration on a field   at time  ,    , is a state variable that evolves over time 

following the dynamic equation 
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where F represents fertilizer inputs, A represents density of animal units,   and E 

represent the associated P application rates per unit, G represents the loss rate for 

phosphorus (e.g., loss through plant uptake).            represents the field-specific 

rate of P emissions associated with a precipitation rate, rt, and soil P 

concentrations,    , at time t. Therefore,            represents the rate of P loss 

associated with soil erosion and runoff from rainfall. It is commonly assumed that the 

relationship between soil erosion, a major source of P loading, and rainfall intensity 

follows a power law. This assumption is based on the characteristics of sediment 

movement as a result of rainfall kinetic energy (van Dijk et al. 2002), and motivates 

the non-linear relationship between rainfall intensity and P loading.  However, erosion 

and nutrient loss are a function of a number of other factors including soil saturation, 

slope and vegetative cover. In the numerical application below, we rely on a physical 

process-based hydrologic model to estimate the important relationships. 

P control practices (BMPs) are represented as affecting runoff and are represented by 

the function    . The simplest, and widely used formulation for P control is to use 

BMP efficiencies, which are a fixed percentage reduction of nutrient runoff based on 

edge of field studies. This is the assumption made in the empirical model presented 

below, but we will leave the theoretical model more general. Therefore, the P 

emissions,    , in total loading (kg) terms from one field in time t are: 

                                        

where    is the size of field i. Since the objective of the study is the water quality at the 

reservoir, the total loading is the sum of the loading from the n heterogeneous fields, 
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as well as the additional loading from all other land use types that are not in the choice 

set of nutrient control. Because water remains in the reservoir for a period of time 

(residence time), the reservoir is itself a sink of nutrients and has its own in-lake 

processes. The P concentration,    , in the reservoir at any one point in time is a stock 

variable progressing by an equation of motion. 

       
                              

   

      
      

 

      is a function of both aggregate loading as well as the associated water 

volume,        in order to convert the P loads (in kg) to concentrations (ppb).        

represents the emission from all other land not considered for nutrient control actions. 

The function   represents the in-lake processes that might affect the progress of P 

concentrations.  

Therefore, the stochastic optimization problem can be described as follows: 

   
   

                   
 

   

 

   

 

    
                                      

       
                               

   

      
      

                 
        

 
Where: 
    - Combination of BMPs on field i in time t 
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   - Set of BMP options 
           - Cost of BMP employed on field i at time t 
  - Size of field i 
   - P soil concentration on field i in time t 
  - Field specific rainfall to emissions function 
   - Fertilizer applied on field i in time t 
   - Animal density on field i in time t 
  - P uptake and stabilization on field 
   - P concentration in reservoir 
      - P concentration threshold 
                - P runoff of field i in time t  
 - In-lake functions  
      - P loading from land uses not in the choice space 
 - Probability of exceeding threshold (risk level) 
  - Rainfall  

 

    represents the set of chosen controls given the available options (BMP), with costs 

in a given period            . The choice of controls effects P runoff,    , from each 

heterogeneous pasture land i with environmental factors (e.g., field size, location, 

slope, soil type) whose runoff to rainfall relationship is defined by   . Each    

distribution varies by environmental factors and its shape is determined by choices of 

P control on each farm. The P threshold,           , is the concentration of P that 

supports damaging cyanobacteria blooms. The term                 , represents 

the probabilistic constraint on the reservoir concentrations being above this threshold 

only  % of the time or less.   captures the risk-based water quality objective.  

 

Replacing the probabilistic constraint above with the following represents the mean-

based water quality objective: 
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where   captures strictness of the mean-based water quality objective.  

 

Empirical Application  

The framework above is applied to the problem of controlling conditions supporting 

cynanobacteria blooms in the Scituate Reservoir watershed in Rhode Island.  The 

Scituate Reservoir Watershed is 86 square miles and is made up of five sub-

watersheds, which drain into the Scituate Reservoir system, which is owned and 

managed by the Providence Water Supply Board, Figure 1.  The watershed is rural and 

mostly forested (79%) with light and medium residential (7%) and (6%) agriculture, 

including pasture, row crop and orchard land. Providence Water owns and manages 

25% of the total watershed area as conservation land. The reservoir system provides 

water services to 60% of residents and business of Rhode Island including the 

municipalities of Providence, N. Providence, Warwick, E. Providence, Western 

Cranston, Kent Co., East Smithfield, Smithfield, Greenville and Lincoln accounting 

for 92 million gallons a day. Taken as a whole system, the water quality is good. As 

described by loadings of nitrogen, it is considered low risk. Phosphorus loading to 

surface water (.18 kg/ac/year) is only slightly elevated above natural background 

values (.09 kg/ac/year) (Scituate Reservoir Source Water Assessment 2003). 

 

The Scituate Reservoir system is made up of five sub-reservoirs (Figure 1). More 

recently, a limnological study was conducted for the Regulating1 and Moswansicut 

sub-reservoirs and found total P levels indicating a body of water in a mesotrophic to 

                                                 
1 “Regulating” is a proper name for the sub-reservoir of the Scituate Reservoir system. 
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eutrophic state.  Given the variable nature of rainfall, P concentration values ranged 

from below detection levels to 36 ppb, indicating a lake in a eutrophic state (ESS 

Group, Inc. 2011). Pollution abatement efforts is well described by the theoretical 

model presented earlier, since the Regulating reservoir is observed crossing a 

threshold of conditions for which algae blooms are present and since damages are 

related to discrete bloom events. A water manager may only care about average 

condition of the lake insomuch as it controls the probability of exceeding the eutrophic 

threshold and exposure to a risk of an algae bloom. More efficient use of resources 

may be to target areas that have loadings, which are particularly sensitive (convex) to 

larger rainfall events, based on environmental factors, therefore limiting the total 

loading during the more extreme events. The possible resource savings and practical 

implications are quantified in the results. 

 

The RI Department of Environmental Management’s maximum total P standard for 

freshwater lakes and reservoirs is 25 ppb (Rhode Island Office of Water Resources 

2009), which corresponds to the eutrophic threshold of 50 on the trophic state index 

(TSI) (Carlson 1977). Based on the standard Vollenweider model, a lake or reservoir 

with characteristics of the Regulating Reservoir with a total volume of 1314 acre feet, 

a mean depth of 1.7 meters and an average residence time of 21.4 days, a yearly 

loading of roughly 790 kg of P would correspond to an annual average P concentration 

of 25 ppb (Vollenweider 1971).  
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A water body with a concentration exceeding 50 ppb, or 60 on the TSI scale, is at a 

level where algae blooms occur and where cyanobacteria may dominate. This would 

correspond to a yearly loading of roughly 1000 kg of P. However, this yearly 

concentration is made up of a series of monthly loadings and water flows. Therefore to 

construct the monthly risk measure for this paper and with the relatively short 

residence time of the reservoir, we use a monthly (May-October) inflow concentration 

above this 50 ppb threshold as the proxy for conditions that could support 

cyanobacteria blooms. This inflow concentration is calculated by using the variable 

monthly flow into the reservoir and the monthly total P loadings. The probability that 

the threshold is violated is the risk-level,   in the conceptual model. This threshold 

and the cumulative distribution function of monthly concentrations modeled for the 

Regulating Reservoir can be found in Figure 2. 

 

We use a flow-calibrated model, the Soil and Water Assessment Tool (SWAT), to 

estimate phosphorus loading to the reservoir as a function of rainfall and land use 

(Gassman et al. 2007).  SWAT is a process-based water-modeling tool designed to 

simulate the surface and ground water quality and quantity, and to predict effects of 

land use change, land management practices, and climate change in complex 

watersheds. SWAT is a public domain model available free for download 

(http://swat.tamu.edu/). The SWAT model was developed and refined by the USDA 

Agricultural Research Service and Texas A&M University over a period of more than 

30 years and has supported hundreds of scientific papers.  



 

 15 

As part of a larger ecosystem service study in the watershed, our work focuses on 

practices installed on small acreage livestock farms to address nutrient loading and 

water quality in the watershed. Including variability in the animal density would be 

preferable as this information also describes the rainfall to P runoff relationships. 

However due to privacy concerns, we were not able to obtain site-specific animal 

counts. As a consequence, we use the average animal density in the watershed (.5 

AU/acre), as described by a livestock tally for the towns overlapping the watershed 

conducted by the Northern Rhode Island Conservation District (NRICD). This density 

was applied to all pastureland in the model. Given these assumptions, loadings from 

pasture land (about 3% of the watershed area) represent about 7% of the total P 

loadings to the Regulating reservoir.  

In practice, nutrient control policies can only target a subset of loading to a given 

water body. There are natural loadings as well as other anthropogenic sources that 

may not be considered for management options. Therefore, policy in any watershed 

affects a subset of the total loadings and may have a limited effect on water quality. 

However, certain loading sources may be more sensitive to rainfall intensity and 

runoff and nutrient control effort on this land may affect the distribution of conditions 

in a water body. Pasture land in particular is a large source of sediment bound P 

loading and a natural place to direct effort (Harmel et al. 2006). While representing a 

fraction of the average loadings, management actions taken may affect the water 

quality in the reservoir if damages are convex or based on threshold concentration. In 

our case, management actions could affect the probability that the eutrophic threshold 

is violated. 
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We use historic daily rainfall data collected by the Kingston Weather Station in 

Kingston, RI as well as output from downscaled climate models with the calibrated 

hydrologic model to estimate P loads and concentrations in the reservoir. SWAT is 

used to construct a response surface for exploring the P loading by month under 

different combinations of BMPs applied to pasture land. SWAT is only run once per 

climate rainfall scenario to generate location, soil, and land use specific loadings and 

water flow. 

BMPs were simulated using efficiencies from the literature following common 

practice, as presented in Table 1. These efficiencies are estimated by edge of field 

studies and represent the percent of baseline loadings that are reduced by the 

installation of a certain practice. The effects of BMPs are assumed multiplicative when 

combined (Rao et al. 2009; Gitau et al. 2004). The costs of installing and operating 

each BMP over 20 years is based on the accounting for practices in RI in the NRCS 

EQUIP Payment Practice Schedules for 2012 assuming a 5% discount rate (USDA 

Natural Resource Conservation Service 2012). BMPs are treated as discrete practices. 

With three practices, this results in a total of 8 combinations on each farm. Each 

practice was characterized by a fixed and variable (per acreage) cost. The manure 

management BMP was translated from volume based variable cost to acreage based 

on average animal density in the watershed. These costs are shown in Table 1. For the 

simulation, we assume that it is a one-time decision to install and maintain the BMPs 

over their lifetimes. 

Optimization 
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The objective of the numerical optimization is to solve for the least-cost allocation of 

BMPs across the pasture land at each risk level within the feasible set of solutions for 

each climate rainfall scenario. Given the set of farms and choices there are eight 

combinations of practices on 113 parcels resulting in a problem with 8113 unique 

combinations of practices across the watershed. These discrete choices affect the 

distribution of runoff from each parcel of pasture land, which, when combined with 

loading from all other land types, sum to the total loading and distribution of P 

concentrations at the reservoir. An optimization of this type is a chance-constrained 

integer-programming problem. The problem is large, stochastic, and non-smooth. We 

use Matlab 2013 and the Global Optimization Toolbox’s Genetic Algorithm (GA) 

integer optimization routine combined with output from SWAT and the cost and BMP 

effectiveness estimates described above to estimate the least-cost frontier.  

 

GAs belong to a family of evolutionary algorithms, where possible solutions 

(individuals) to the objective function progress through populations and generations 

based on their relative fitness scores representing the optimization goal. Each new 

generation is created by crossing over (randomly combining) elements of better-fit 

individuals to create offspring. Through repetition, mutation and natural selection, the 

population converges to a solution. GAs have been used in nutrient abatement 

optimization frameworks by many authors (Gitau et al. 2004; Rabotyagov et al. 2010; 

Jha et al. 2009; Srivastava et al. 2002; Arabi et al. 2008).   In our case, the solution is 

the allocation of BMPs across the landscape and its corresponding costs and risk level. 

One of the inequality constraints is the risk level on concentrations of inflow to the 
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reservoir. A GA is well suited for this type of spatial problem, as it does not require 

linearity, continuity, or differentiability in the objective or constraint functions (Arabi 

et al. 2008) 

 

The makeup of the initial population affects the efficiency of the routine as well as the 

width of the solution space that it searches, which is important in confirming a found 

solution is a global and not local optima. Taking advantage of some prior knowledge, 

the initial population for the GA was seeded with individuals representing uniform 

adoption of each practice or across the board adoption of all possible BMP 

combinations, as well as allocations found by incentive based policies described 

below. The remaining individuals were generated randomly using a uniform 

distribution. In order to cover a wide range of solutions, the algorithm was run with a 

population of 500 individuals, for a maximum of 500 generations, or until the 

variability of the fitness values of individuals within the population was within a 

function tolerance. 

 

We solved for the least-cost allocation of BMPs for each level of risk within the lower 

and upper bounds of our choice set, which are the risk levels between no installations 

and all practices installed on every farm. We proceed by seeding the initial 

populations for the GA with previously found optimal solutions. We execute this 

process under the probabilistic constrain as well as under the mean constraint for each 

rainfall scenario. As a robustness check and to confirm the GA was behaving 

correctly, we compared the allocations found by the GA under the mean concentration 
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constraint (without the allocations resulting from policy scenarios in the initial 

population) to the simple method of sorting the farms by the average per unit cost of 

abatement, which defines the efficient progression for the mean concentration goal. 

The two solutions were identical.  

 

Policy Scenarios 

We construct cost functions for each of the following policy designs, where the 

function for each design indicates the cost of achieving each risk level. We compare 

the efficient allocation found using the optimization process above to three simulated 

policies: a location differentiated subsidy; a flat subsidy based on the relative 

effectiveness of the BMPs, but devoid of location specific factors; and a uniform 

standards approach. The subsidies are simulated assuming each farmer chooses the 

practice(s) on his/her farm to maximize the value of a one-time up front subsidy minus 

the discounted present cost of installing and operating the practices. We assess 

efficiency in terms of the cost of the installed practices to meet risk levels. The 

subsidy is treated as a transfer payment rather than a social cost.  

The location-specific subsidy assumes a one time up-front payment is offered for 

installing practices, with the total payment based on the average annual amount of P 

abated at the reservoir due to the practice or combination of practices on a farm. The 

payment is fixed across the watershed for a kg of P abated, but the abatement effects 

of BMPs vary for a particular practice on a farm. For example, if farmer x installs a 

practice which would result in a average reduction of 1 kg P/year from reaching the 

reservoir and the watershed wide per kg P incentive is $1000, the farmer weighs the 
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total one time payment of $1000 against the cost of installing and operating that 

practice over 20 years.2 The farmer chooses the combination of practices that 

maximizes net profit, including the option of no BMP installations. Clearly, this type 

of subsidy requires an agency to model and offer site-specific subsidy schedules based 

on a particular farm’s heterogeneous effect, which is a tall task, both in terms of 

transparency, politics and operational constraints. The benefits, quantified in our 

results, would be a more cost-effective allocation of effort due to using the site-

specific factors.  

This setup is similar to the USDA’s Conservation Reserve Program (CRP), where land 

is retired and put into environmentally friendly management practices in return for a 

rental rate from the government. The program relies on bids from the farmers that are 

then ranked by an Environmental Benefits Index (EBI). The EBI balances many 

environmental goals such as soil conservation, nutrient retention and wildlife habitat. 

The EBI is spatially differentiated by distance to water bodies, soil type and slope, as 

well as giving weight to certain land based on particular initiatives. The government 

picks the top ranked bids based on cost-effectiveness and budgetary constraints. If 

accepted, the yearly payments are set at the bid price the farmer submitted for the life 

of the contract (USDA 2015). The difference compared to the first location-specific 

subsidy policy is that we assume a payment is offered based on the farm’s effect and 

the farmers choose if that is in their best interest. The equivalent in the CRP 

framework would be if the government offered a fixed payment based on a unit of EBI 

and informed a farmer of their possible payment for installing a practice on their 
                                                 
2 An alternative way to think about this on time upfront payment would be to consider an equivalent 
yearly payments whose present value is equal to this $1000. 
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particular farm based on that farm’s total EBI. Thus, there is a difference in market 

mechanism, with the CRP program based on accepting asking prices from farmers, 

and the subsidy described in this paper based on farmers accepting bid prices from the 

government. These differences could have implications to participation, size of 

transfer payments, but not necessarily allocate efficiency in terms of social cost. 

The second policy scenario, a flat subsidy, assumes a subsidy based only on 

information of farm size and practice, but no other site-specific information. 

Therefore, it is a subsidy based on an assumed per acre relative effectiveness of the 

BMPs and the farm size. Hence, if the payment for a practice were $100 per acre, a 

practice that is twice as effective in general would receive $200 per acre regardless of 

the particular farm’s P loading. The installation decisions follow the same logic as 

above, with the farmers choosing the practices that maximize their net profit.  

These subsidy based policy designs are simulated for the full range of achievable 

allocations by varying the payments to cover the whole range of effects. This would be 

the per kg P payments that would induce the range from the minimum to where 

maximum BMPs are installed based on the implementation choices by farmers. The 

allocations are evaluated based on achieving risk levels at various costs in the results 

section. 

The final sets of policies are uniform standards. Under the uniform standard policy, 

each farm is required to adopt a particular combination of the three BMPs. A cost 

function for uniform standards is constructed by calculating the costs and associated 

risk levels for each of the eight possible BMP combinations. 
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Climate Scenarios  

As indicated above, extremes in precipitation intensity are central for determining P 

loads. This could have important implications for P concentrations and associated risk 

of cyanobacteria blooms because, while significant uncertainty is involved, there is an 

expectation that the Northeastern US will experience an increase in total annual 

rainfall and an increased percent that falls in extreme precipitation events (Karl et al. 

2009; IPCC 2011). We use the process described below to model rainfall parameters 

in order to assess management actions under baseline and future climate change 

scenarios, where the probability distribution and time series nature of rainfall changes. 

Baseline downscaled climate model runs did not sufficiently reproduce the same 

statistical properties of the observed time series.3 Consequently we retained the 

statistical parameters of the observed series and apply the implied differences in those 

parameters from the climate model runs to create the future scenarios in order to make 

a proper comparison. The changes between the present and future runs for each of the 

statistical parameters for each month were calculated in percent terms. These deltas 

between the modeled past and future from the climate model runs were averaged by 

RCP scenario and applied to the historic observed parameters (1961-2010) to generate 

the future climate scenarios for input to the hydrologic model (Wilks 2012).  

                                                 
3 For practitioners, Auffhammer et al. (2013) provides a clear overview the pitfalls of using climate 
model output in economic analyses. When comparing the past and future projections, the same spatial 
scale should be used. Since the SWAT model was calibrated using the observed time series from one 
gauge station, and the climate model data was at 1/8°, which reproduces the properties of the average 
conditions in the time step (daily) of an area about 54 square miles, the modeled distribution of daily 
rainfall differs with the past observations. 
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We model precipitation with a two-stage process. First, we determine whether a day is 

wet or dry. Then, we determine precipitation amounts for wet days.  The probability of 

a wet day (more than trace amounts of precipitation) is modeled using a first-order 

Markov process (Srikanthan & McMahon 1999).  Hence, the first stage is to model the 

probabilities of rainfall on date t for the cases where date t-1 was wet and where date t-

1 is dry. To do so, we specify the conditional probability of date t being wet when date 

t-1 was wet (P(wt|wt-1)) and conditional probability of date t being wet when date t-1 

was dry (P(wt|dt-1)). We model rainfall amounts for wet days using a two-parameter 

gamma distribution following the methods described in Davison et al, (2005) and 

Geng et al. (1986).  We estimate the parameters of the gamma distribution of rainfall 

applying method of moments matching to historic daily rainfall data and the climate 

model runs.  

We use historic daily rainfall data for Rhode Island from 1961 to 2010 from the 

Kingston, RI weather station to calculate these two conditional probabilities and 

gamma parameters for each month for the baseline rainfall scenario. We then create a 

100-year time series of simulated daily rainfall with the observed statistical properties 

for input to the hydrologic model. We use a longer series for the simulation than the 

50-year windows used to calculate rainfall parameters in order to better populate the 

discrete distribution of monthly concentrations under each scenario. To create the 

future rainfall scenarios, we calculated the parameters described above for both 

historic (1950-1999) and future (2050-2099) runs of 55 statistically downscaled 
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climate model runs from the CMIP5 multi-model ensemble4 made available at the 

Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections archive 

(Reclamation 2013). Model runs were from both the RCP 6.0 (representative 

concentration pathways) and RCP 8.5 emission scenarios (Reclamation 2013). 

Different teams of researchers developed each pathway with alternate assumptions on 

technology and economic growth. Descriptions of these can be found at the RCP 

Database (2014). The RCP 6.0 scenario is a middle of the road scenario assuming 

technological advances and a leveling off of radiative forcing by 2100. The RCP 8.5 

emission scenario is based on high levels of greenhouse gas concentrations and 

radiative forcing.5 

These results are summarized in Table 2. The average of the changes in the models 

imply that the intensity of daily rainfall will increase, which can be seen in the percent 

increase in the scale parameters from the climate change models. This shifts the rainy 

day distribution to increase the frequency of larger rainfall amounts. The decreases in 

the shape parameter implies rainfall on a wet day will be less normally distributed and 

become closer to an exponentially distributed random variable, in other words: less 

symmetric and more skewed with more probability mass in the upper tails. These 

parameter changes mean an increase in the intensity of daily rainfall events. The 

change in the Markov chain parameters are mixed, but a decrease in the probability of 

                                                 
4 We acknowledge the World Climate Research Programme's Working Group on Coupled Modeling, 
which is responsible for CMIP, and we thank the climate modeling groups for producing and making 
available their model output. For CMIP the US Department of Energy's Program for Climate Model 
Diagnosis and Intercomparison provides coordinating support and led development of software 
infrastructure in partnership with the Global Organization for Earth System Science Portals. 
5 Radiative forcing is the amount of energy that is retained by the atmosphere as a result of greenhouse 
gases. A great explanation is found in Chandler (2010) 
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a wet day followed by a wet day, P (wt|wt-1), means that when rainfall occurs it will 

occur in shorter more intense events over a shorter run of consecutive days than under 

current rainfall conditions. The probability of a wet day following a dry day, P (wt|dt-

1), increases, which means dry spells will be shorter with the exception of August 

where the probability slightly decreases. In summary, these climate models point to a 

climate that is wetter in total and with more intense rainfall events than under the 

current conditions. These more intense events should cause more overland flow, 

sediment erosion, leading to nutrient loading at the reservoir. We rely on the SWAT 

model to simulate the time series nature of soil saturation, runoff at rainfall events, as 

well as nutrients transported and associated water flow to the reservoir. 

Results 

The simulation and optimization provide the least-cost allocation of BMPs and those 

induced by the policy options in the watershed as well as the resultant distribution of 

monthly total P concentrations at the reservoir. We compare the allocations in terms of 

cost, density of practices and size of participating farms. The following results are 

broken down into those under the observed rainfall scenario followed by those under 

the climate change rainfall scenarios.  

Baseline Rainfall Scenario 

The range of outcomes as a result of BMPs installed on pasture land in the watershed 

is in Figure 2. The minimum BMP adoption line (thin black line) shows the reservoir’s 

P concentration exceeding the 50 ppb 18% of the summer months (May-October), 

while at full BMP adoption (thick black line) exceeding this threshold 12% of summer 
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months. The distance between the two lines in Figure 2 at the 50 ppb threshold 

represents the whole range of feasible outcomes as a result of pasture land BMP 

implementation in this watershed.  

Figure 3 has this range as the x-axis and plots the cost of achieving these risk levels 

under the various policy assumptions.  The black line represents the results of the 

optimization routine for the risk-based objective, showing the least-cost allocation to 

meet the various risk levels, which is the efficient frontier. The light dashed line is the 

outcome of the installation costs for the location-specific subsidy based on an 

individual farm’s average annual loading. This perfectly corresponds with the efficient 

allocation when the objective is to control mean P concentrations. The resultant risk 

levels from those allocations are calculated and plotted together. The distance between 

the solid and light dashed line is the possible cost savings in defining a risk-based 

objective as opposed to controlling the risk of cyanobacteria blooms using mean-based 

policy. 

The solid grey line is the cost at various risk levels for the flat-payment scenario where 

the payments offered is based on the relative effectiveness of each BMP, but with no 

regard to the heterogeneous nature of the various pasture land’s emissions. Again, the 

distance between each line and the efficient frontier represents the additional cost to 

meeting various risk levels above the cost of efficient allocations. The black points are 

the cost of the uniform standards, which requires all farmers to adopt the same BMPs, 

for each of the eight possible combinations of practices.  
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The relative cost efficiency of the various policies differs across risk levels, which can 

be seen by the distance between the various alternative policies and the efficient 

frontier changing over the range. The allocations resulting from location-specific 

subsidy, taking advantage of locations’ differentiated effects, are the closest to the 

efficient frontier inducing allocations similar to the least-cost allocations. The 

remaining difference represents the efficiency of addressing the risk-based objective 

explicitly.  

Take an example of achieving a risk level of 13%. The cost of moving from the 

current state of 18% to 13% could be achieved optimally at $300,000, but at $335,000 

if allocations were designed to meet mean concentration goals instead. This is a 

savings of roughly 12% by adopting allocations based on the risk-based objective. The 

potential cost savings of explicitly adopting a risk-based allocation ranges from 0 to 

25%, with an average of 6.5%.  

We have established that the efficient allocation of BMPs across the watershed differs 

in cost for the risk-based goal versus a mean-based goal.  Interestingly, BMP adoption 

strategies for the two approaches differ.  The efficient set of BMPs under the risk-

based approach is more targeted, with more intensive controls placed on fewer acres. 

By comparing the differences in allocations, we can show which farms and practices 

change at each risk level. Figure 4 shows the differences in total acres in each practice. 

Noticeably, the optimal allocations have fewer acres in practices in total. In terms of 

total acres of installed practices, the risk-based objective results in more targeted 

effort, with fewer acres enrolled. This varies, but the number of acres averages 3% less 

while increasing to 15% less in the higher effort and lower risk levels. The biggest 



 

 28 

differences are in the nutrient management practice, a relatively cheap and less 

effective practice, with fewer enrolled acres under efficient allocations to meet a risk-

based goal.  

An additional way to see the differences is using a heat map approach (Wilkinson & 

Friendly 2009), where we characterize the discrete differences based on farm size 

between the second best and least-cost allocations. Figure 5 shows the discrete 

changes between the two allocations, sorted and shaded by their relative size. Each 

rectangle represents a binary decision for a BMP on a farm. The farms are sorted left 

to right by size from smallest to largest. The darker color implies a larger farm with a 

practice installed in the risk-based allocation but not under the mean-based allocation. 

The lighter color implies a larger farm without that BMP in the risk-based allocation, 

but existing in the mean-based allocation. The neutral color means the BMPs are the 

same in both allocations. There is some variation across the risk levels, but in general 

we see the shift to fewer farms in more expensive and impactful practices and a shift 

from nutrient management (less impactful, less expensive practice) to manure 

management (more impactful, more expensive practice). We also see many smaller 

farms shifted out of the risk-based allocations to BMPs on fewer larger farms. The 

lower the risk level, the more farms switch their practices, which means the 

differences are largest in allocations near the upper limit of what is achievable for risk 

reductions. 

Given that P loading from pasture lands only made up 7% of the total modeled loading 

to the reservoir, the range of reduction in mean P concentrations from installing 

practices (23.9 to 27.3 ppb) seems small and the costs hard to justify depending on 
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what damages might be associated with changes in mean concentrations. However, 

depending on the damage function, the effect of nutrient control efforts may look more 

promising in having an overall impact on the water quality by lowering the chances a 

water body supports damaging events. For example, over a 20-year timeframe, the 

range of effects in terms of risk levels means moving the reservoir from 21.6 summer 

months to 14.4 months with P concentrations above the 50 ppb threshold.  

While we treated risk based on strict threshold violations, it may be the case that the 

shape of the distribution of conditions below the threshold matters for other water 

quality goals. It is informative to see the tradeoff of targeting the risk-based objective 

in terms of other moments of the distribution of conditions. There exists a tradeoff 

between addressing the risk levels efficiently versus the mean concentrations. The 

shift towards the addressing the risk levels most cost-effectively comes at the expense 

of a slightly higher mean concentration at each risk level when the allocations differ.  

This difference is small and between 0, where the allocations match, and .03 ppb at the 

maximum difference in spatial allocations of BMPs. So, while there is a difference, 

shifting policy to address a risk-based goal is nearly costless in terms of increased 

mean concentrations.  

We showed that the type of objective, mean or risk-based, matters to the cost-effective 

adoption of BMPs across farms and the magnitude of the efficiency of policy designs.  

The risk-based objective leads to more intensive control on fewer acres, and a shift 

from more spread out effort to fewer, but larger farms with installed BMPs. Our 

project was focused on BMPs, where the cost structure had fixed and per acre variable 

cost components. As a result, the size of the farm to which the policy is aimed matters 
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to the overall cost, with larger farms having generally a smaller per unit cost of P 

reduction all else equal. This would also be the case where significant economies of 

scales occur for pollution control measures. Economy of scales applies to the cost of 

controlling not simply the mean but also higher order moments of a farm’s runoff 

distribution. This lead to a trend of targeted and concentrated effort on fewer but larger 

farms. Therefore, policy that is spread out more evenly, standards, for example, fared 

worse.  

Climate Scenario Results 

Figure 6 shows the cumulative density function of monthly P concentrations in the 

reservoir for both the baseline and the RCP 6.0 rainfall scenarios. The black lines 

represent the effects of the maximum (thick black line) and minimum (thin black line) 

allocation of BMPs under the RCP 6.0 climate change scenario. The thin lines are the 

effects of the maximum (thick grey line) and minimum (thin grey line) allocation but 

under the baseline climate scenario. At the 50 ppb threshold, the minimum BMP 

allocation risk level is 24% and decreases to just over 19% of months exceeding the 

threshold. This compares to a range of 18-12% under the baseline rainfall scenario. 

Under future rainfall scenarios, the P conditions that support algal blooms will be 

heightened and the risk profile shifted.  There is no overlap in risk levels achievable 

between the baseline and climate scenarios based on the available land for 

management actions. Returning to near the status quo risk level of 18%, as under the 

baseline climate scenario, would require near maximum effort (BMP installations) 

under climate change rainfall scenarios. 
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Figure 7 shows the cost of achieving risk levels under the climate change scenario 

using the same second best policies as discussed in the baseline rainfall scenario. The 

cost ranges are similar between the baseline and climate scenarios, but only higher 

level of risk are achievable. Maintaining risk levels close to those of the current 

climate would be just above the upper end of the achievable range and near the highest 

total cost of $704 thousand.   

There exists larger savings from specifying the risk-based objective explicitly over the 

mean-based objective in the climate change scenarios. There are larger cost reductions 

moving to the efficient frontier, varying through the levels, than found under baseline 

rainfall scenarios. The larger total gains are made in the upper limits of what is 

achievable in terms of risk reduction, with an average cost savings in percentage terms 

of 10% and ranging from 0-46% depending on the risk level. This difference is larger 

in mean and range then the difference under the baseline rainfall scenario. The cost 

savings over the flat subsidy policy design is large, averaging 40%, under efficient 

allocations, growing in total magnitude over the risk levels. The standards became 

even less efficient under the climate scenarios. 

Comparing optimal allocations between baseline and the RCP 6.0 climate scenario, the 

allocations are similar in terms of the progression of practices installed and the relative 

amount of each through the risk levels. The climate scenarios do not imply a major 

difference in efficient policy or allocations, but imply larger gains to targeting the risk-

based objective explicitly, with larger average gains and a larger maximum gain, 46% 

versus 25%. As rainfall becomes more intense, the possible benefits from moving 

towards efficient policy based on a probabilistic objective become larger and uniform 
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standards become progressively less desirable. Given the differences in allocations, 

with a shift to fewer but larger farms with BMPs installed when addressing a risk-

based objective, the results of the climate change scenario suggests the gains from 

doing so are larger. Under future climate conditions, spatial prioritization may become 

more beneficial for this threshold based water quality objective. 

We presented a middle of the road emissions pathway, RCP 6.0, above. From Table 2 

we can see the changes under a more severe scenario of climate change. The same 

trends in the cost effectiveness are intensified under the RCP 8.5 scenario. Figure 8 

shows the cost at risk levels for the baseline and two climate change scenarios 

together. The risk levels for the two climate scenarios overlap, so a direct comparison 

at risk levels can be made. For a given risk level, the allocations under the RCP 8.5 

scenario are further up the cost curves and result in more BMP implementation. 

Equivalent risk levels are achieved at costs $100-500 thousand more than under RCP 

6.0 scenario, visually, the distance between the two curves in Figure 8.  

Conclusion 

The variability of natural systems poses challenges in addressing and quantifying the 

costs and benefits of policies. This paper uses a combined hydrologic and economic 

model to solve the discrete optimization problem to compare the cost effectiveness of 

policies for nutrient loading to the efficient frontier under both a risk-based and a 

mean-based water quality objective. Controlling a risk factor for cyanobacteria blooms 

in drinking water, which are dependent on conditions violating a eutrophic threshold, 

motivated the approach.  



 

 33 

Achieving a risk-based water quality goal, especially applicable to cases where 

damages are convex to a pollutant or are based on a threshold, results in a different 

management strategy than meeting objectives based on average conditions. Different 

sets of pollution control actions and allocations across space can affect higher order 

moments of the distribution of conditions as opposed to just the mean. We find that 

achieving the risk-based objective leads to a more targeted approach, with more 

intensive measures being adopted on fewer but larger sites. Given the results above, 

focusing on fewer, but more important larger farms may be more cost effective in 

controlling episodic loadings and damages.  This is in contrast to traditional 

approaches of uniform technology standards or spatially uniform incentives. 

Policy designs vary in the amount of differentiation in terms of how they treat 

heterogeneous sources of emissions. For a risk-based objective, the importance of 

spatial prioritization becomes larger. In our application, the efficiency of three 

alternative incentive policies showed the relative cost effectiveness of various second 

best policies to the risk-based efficient allocations. Utilizing location-specific mean 

loadings, and a watershed wide uniform payment for P abatement, matched the 

optimal allocations to address a mean concentration goal. This was closest to the risk-

based efficient frontier out of the alternatives considered but still up to 25% more 

costly to meet a given risk level than the efficient allocations.  

Rainfall, which is the transportation mechanism for many pollutants affecting water 

quality, is projected to change in its intensity and timing with climate change. This 

will affect both the mean and higher order moments of the distribution of water born 

pollution conditions in the environment. We find this has implications to the efficiency 
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of policy. Specifically, the climate change scenarios increase the cost difference 

between mean and risk-based policies. Incorporating location specific factors into 

policy when the damages are based on a threshold is more important under more 

intense future rainfall. For our application, this difference grows with up to 46% lost 

between the efficient and second best policies. The non-location differentiated policies 

and uniform standards are also progressively worse in terms of efficiency.  

Depending on how often and how far away from the threshold a water body of interest 

is, marginal changes in effort can have effects on the risk profile of a water body. To 

best make use of what might be a limited area of land where nutrient control effort 

might take place, prioritizing locations based on addressing the objective that best 

represents the damage or goal of the policy could save scarce resources. For the case 

of cyanobacteria blooms, we find that policy designed to address the probability of 

crossing a monthly eutrophic threshold of phosphorus concentrations differ than that 

to address mean concentrations, resulting in more concentrated actions being taken on 

a smaller number of sites. 
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Figures and Tables 

 
TABLE 1 

BMP Characteristics 
 

BMP 
P reduction 
efficiency Fixed Cost Variable Cost 

 Prescribed Grazing 25% $3,750 $266 per acre 
Manure Management 80% $1,000 $2,300 per acre 
Nutrient Management 47% $1,650 $75 per acre 

  
NOTE- BMP efficiencies were adapted from Chesapeake Bay Watershed Model (Chesapeake 
Bay Commission 2012; Gitau et al. 2004; Qui 2011). Cost information was adapted from 
NRCS Equip costing information (USDA Natural Resource Conservation Service 2012). 
These practices are the ones deemed relevant to the RI study area. Manure management 
practice was scaled to reflect the watershed animal density and acreage to create the variable 
cost.  
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TABLE 2 
Climate Change Rainfall Parameters 

 
Historic Rainfall Parameters 

 
Climate Adjustment (RCP 6.0) Climate Adjustment (RCP 8.5) 

 Gamma Parameters Markov Probabilities   Gamma Parameters Markov Probabilities Gamma Parameters Markov Probabilities 

Month 
Scale 
(mm) 

Shape 
(mm) P(Wt|Wt-1) P(Wt|Dt-1)   Scale Shape P(Wt|Wt-1) P(Wt|Dt-1) Scale Shape P(Wt|Wt-1) P(Wt|Dt-1) 

Jan 13.00 0.46 0.40 0.16 
 

19.2% -8.8% -1.9% 5.8% 25.0% -9.2% -1.0% 2.7% 
Feb 13.01 0.46 0.48 0.16 

 
12.6% 1.5% 0.4% -0.9% 19.3% -3.0% 0.4% 0.1% 

Mar 15.57 0.41 0.45 0.15 
 

14.0% -1.2% 0.8% -1.7% 20.3% -2.3% -0.2% 1.0% 
Apr 15.85 0.38 0.45 0.15 

 
10.5% 1.8% -0.1% 0.5% 19.6% -3.2% -2.7% 7.3% 

May 12.26 0.42 0.44 0.15 
 

12.6% -5.1% -3.3% 11.6% 15.7% -5.4% -3.6% 11.3% 
Jun 21.85 0.21 0.47 0.14 

 
13.3% -2.4% -2.4% 7.0% 17.2% -4.3% -3.1% 10.3% 

Jul 15.73 0.34 0.38 0.15 
 

9.4% 6.4% -2.8% 8.3% 14.7% -0.1% 0.0% -0.8% 
Aug 23.61 0.27 0.42 0.15 

 
13.2% 4.2% 0.4% -1.3% 11.6% 5.9% 0.8% -4.1% 

Sep 21.09 0.33 0.35 0.15 
 

2.7% 6.7% -3.9% 5.7% 6.7% 5.2% -2.9% 2.5% 
Oct 18.13 0.39 0.32 0.13 

 
14.7% -7.5% -9.2% 10.1% 13.7% -9.9% -8.4% 10.3% 

Nov 16.93 0.43 0.41 0.15 
 

13.6% -1.5% -3.7% 9.2% 19.3% -7.7% -5.3% 10.5% 
Dec 15.65 0.40 0.45 0.16 

 
17.3% -4.0% -1.8% 4.1% 23.5% -7.0% -2.4% 6.3% 

 
NOTE- Gamma parameters, shape and scale, as well as the Markov chain parameters of wet days were fit to observations from for 
1950-1999 by month in mm of rainfall from the Kingston RI weather station. The differences between past (1950-1999) and future 
(2050-2099) runs of climate models (both RCP 6.0 and RCP 8.5 emission paths) for these same parameters are presented as 
adjustments. These % changes were applied to the observed parameters that were then used to create the time series of future 
rainfall for climate scenarios. The climate model runs were from the Bureau of Reclamation’s Downscaled CMIP3 and CMIP5 
Climate and Hydrology Projections archive (Reclamation, 2013) 
 
 
 
 
 



 

 42 

 
FIGURE 1 

Scituate Reservoir Watershed, RI 
 

 

 
NOTE – The Scituate Reservoir Watershed is 86 square miles and is made 
up of five sub-watersheds, which drain into the Scituate Reservoir system, 
which is owned and managed by the Providence Water Supply Board 
(PWSB). The reservoir system provides water services to 60% of residents 
and business of Rhode Island including the municipalities of Providence, 
N. Providence, Warwick, E. Providence, Western Cranston, Kent Co., East 
Smithfield, Smithfield, Greenville and Lincoln accounting for 92 million 
gallons a day (Scituate Reservoir Source Water Assessment 2003). The 
Regulating reservoir watershed is highlighted in black. 

 

 



 

 43 

 

 

FIGURE 2 
CDF of Monthly P Concentrations at the Reservoir 

Baseline Rainfall Scenario 

 
 

NOTE- The x-axis represents monthly P concentrations of inflows to the reservoir. The 
y-axis is the probability that the reservoir is below that concentration. The two lines 
represent the outcome of the minimum and maximum BMP implementation on pasture 
land in the watershed. The vertical line is the 50 ppb threshold used as an indicator of a 
high risk of algae blooms. The distance between the two lines at the threshold is the 
feasible risk levels, which is the x-axis in Figure 3. 
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FIGURE 3 

Total Costs at Risk Levels 
Baseline Rainfall Scenario 

   
NOTE- The solid lines represent the cost of achieving risk levels assuming optimal 
policy (solid black), a payment based on the yearly average P reductions as a result of 
installed practices (dashed), a flat per acre payment based on the relative BMP 
efficiencies (solid grey), but not taking into account other site specific characteristics. 
The black dots represent the risk levels and costs assuming standards.  
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FIGURE 4 

Differences in Acres with BMPs 
Risk-Based Compared to Mean-Based 

 
 

 
NOTE- The differences in the total amount of acres in the three practices (prescribed grazing, 
manure management, nutrient management) are shown between the monthly risk and mean-
based objective. The positive acres represent additional acres in practices for optimally 
addressing the risk-based objective. The zero line shows the two allocations of BMPs to be the 
same and negative implies more acres in practices than under the mean loading objective. 
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FIGURE 5 

Discrete Differences in Installed BMPs 
Risk Versus Mean Allocations 

 

 

 

 

 

 

 
 

 
NOTE- Discrete changes between the two allocations at various risk levels, sorted 
and shaded by their relative size. Each block represents a discrete decision on a farm. 
Darker color implies a larger farm added to the risk-based allocation and whiter 
color shows a larger farm subtracted from the risk-based objective, or alternatively 
thought of as existing in that practice under the mean-based allocation, but not under 
the risk-based allocations. There is a shift towards more concentrated BMPs on 
larger farms under the monthly risk-based objective. 
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FIGURE 6 

CDF of Monthly P Concentrations at Reservoir 
RCP 6.0 Rainfall Scenario 

  
NOTE- The x-axis represents monthly P concentrations of inflows to the reservoir. The two pairs 
of lines represent the minimum (thin) and maximum (thick) effects of BMP implementation on 
pasture land in the watershed. The grey lines are from Figure 2 and represent the baseline climate 
scenario, while the black lines are from runs of the RCP 6.0 climate change scenario. The climate 
scenarios show increased loadings and concentrations above the threshold. The vertical line is the 
50 ppb threshold used as an indicator of a high risk of algae blooms. The distance between the 
two lines at the threshold is the feasible risk levels, which is the x-axis in Figure 7. 
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FIGURE 7 

Total Costs at Risk Levels 
 RCP 6.0 Rainfall Scenario 

   
NOTE- The black solid lines represent the cost of achieving risk levels assuming 
optimal policy (black), a payment based on the yearly average P reductions as a 
result of installed practices (dashed line), a flat per acre payment based on the 
relative BMP efficiencies (grey line), but not taking into account other site specific 
characteristics. The black dots represent the risk levels and costs assuming blanket 
standards.  

 
 
 

 
 



 

 49 

 

 
 

FIGURE 8 
Total Cost Curves Under Baseline and Climate Change Rainfall Scenarios 

Optimal BMP Allocations 
 

  

 
NOTE- This figure shows the minimum cost of achieving risk levels for the baseline and the 
two climate change scenarios of rainfall parameters. The black line represents the cost curve 
under observed rainfall parameters from 1961-2010 from the Kingston, RI weather station. The 
dashed lines represent the least-cost curves resulting from future projections of rainfall for the 
years 2050-2099 for the RCP 6.0 and RCP 8.5 scenarios. 
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Abstract 

We introduce a model that incorporates two important elements to groundwater 
management: stochasticity and a spatial stock externality.  We estimate welfare gains 
resulting from optimal management under uncertainty as well as a gradual stock 
externality that produces the dynamics of a large aquifer being slowly exhausted.  
Using dynamic programming, we incorporate and compare stochasticity for both an 
independent and identically distributed (i.i.d.) as well as a Markov chain process for 
annual precipitation. We investigate optimal responses for management of 
groundwater resources and the importance of these responses as measured by welfare 
gains. We find that the spatial depletion of the aquifer is significant to welfare gains 
but the inclusion of various forms of uncertainty in rainfall increases estimates only 
slightly. 
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Introduction 

Groundwater plays an important role in mitigating the effect of weather variability on 

economic activity. Agriculture, in particular, is highly dependent on rainfall and is 

thus uniquely exposed to weather-related risk. Many groundwater aquifers around the 

world are stable supplies of water for irrigation to make up for deficits in natural 

rainfall. As more than an additional source of water, they act as a water buffer in low 

rainfall years. According to the World Bank, it is estimated that 2 billion people 

worldwide depend on groundwater for drinking water. In addition, 50% of cereal 

production depends on groundwater for irrigation (Wijnen et al. 2012). As a relatively 

low cost source of clean water, aquifers are being depleted at an alarming rate in many 

places around the world. Groundwater depletion has led to longer pumping heights, 

saline intrusion in coastal systems, and land subsidence (United Nations Environment 

Programme & Division of Early Warning and Assessment 2003). Aquifers such as the 

Indus River plains aquifer on the India-Pakistan boarder, the North China Plain 

aquifer, and the High Plains/Ogallala aquifer in the United States are experiencing 

declines as society’s reliance on groundwater continues to grow (United Nations 

Environment Programme 2012).  

 

Irrigated agricultural plays an important role in reducing the lifespan of many of these 

aquifers.  For instance, over the Ogallala aquifer, irrigation began in the late 1800’s 

but intensified greatly after WWII with the introduction of pivot irrigation systems. As 

of 2011, total storage across the aquifer has fallen 8.3% since 1950. This depletion of 

the resource has not been spatially uniform across the whole system with some limited 
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areas gaining while most areas have faced falling levels. In some places, decreases as 

much as 242 feet have been observed, as can be seen in Figure 1 (McGuire 2012). In 

western Kansas, areas are left with little or no saturated thickness, and farming is 

forced to transition from irrigated crops, mostly corn, to non-irrigated crops such as 

sorghum, wheat and cotton (Steward et al. 2013; The Economist 2013). This switch 

from high value, stable, irrigated crops to lower value dryland varieties is captured by 

the spatial stock dynamics of our model.  

 

As groundwater is depleted, there is a loss in its marginal value due to higher costs of 

extraction. This is in addition to a loss of the groundwater stock’s marginal impact in 

reducing the variability of returns to farming (Tsur & Tomasi 1991; Knapp & Olson 

1995).  Despite this buffer value being a potentially large percentage of the total value 

of a groundwater resource6, welfare gains estimated when moving from open access to 

optimal behavior are relatively small in size, supporting the findings from Gisser and 

Sanchez (1980).7 A review of research addressing the curious finding of Gisser & 

Sanchez (1980) by Koundouri (2004) presents the range of assumptions and the 

welfare gains from management that have been estimated showing the robustness of 

Gisser & Sanchez’s result across many settings.  

 

Groundwater is a valuable source in times of drought. Harou et al. (2010) use a 

synthetic drought time series based on historic droughts to quantify the statewide 

impacts in California based on constraints on optimal monthly flows in a linear 
                                                 
6 Buffer values were estimated at between 5-84% of total value, but a comparison between myopic and 
optimal management was not presented (Tsur and Tomasi 1991) 
7 Knapp and Olson (1995) find gains to optimal management of 2.6% for Kern County, CA 
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programming model. They find that the scarcity value of water increases tenfold under 

drought conditions even when optimally managed, although they do not present results 

in net present value form. The method implies that the exact time series of rainfall is 

perfectly known over the optimal planning horizon, which a stronger assumption then 

knowledge of the rainfall process, but not the exact realization. Roseta-Palma & 

Xepapadeas (2004) present a more general formulation and use robust control 

techniques to estimate optimal groundwater resource use. Precautionary behavior 

implies that optimal management under uncertainty results in extraction rates that are 

lower to save for future shortcomings than under more certainty in the random process 

of rainfall. Welfare effects of optimal versus open access management are not 

discussed in this framework, and the results are theoretical and not parameterized to a 

groundwater source. Zeitouni (2004) presents results for an aquifer with stochastic 

recharge but constant, not rain dependent, demand and constant marginal benefit. This 

leads to a bang-bang solution for optimal control and a target groundwater level. In 

contrast, our paper will use constant recharge, crop yield functions and duel sources of 

water, rainfall and groundwater, in describing the marginal benefit curves, demand, 

extraction rules, and resulting stock dynamics.  

 

In addition to uncertainty in rainfall and surface water sources, other papers have 

addressed irreversibility and catastrophic loss of a resource. Tsur & Zemel (2004) and 

Leizarowitz & Tsur (2012) model the threat of a discrete permanent change in the 

system both with certain and uncertain stock dynamics. In specifications of stock-

dependent event risk, prudence or lower extractions are optimal to save for future 
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states, although this does not hold for irreversible exogenous events, which imply 

larger extractions than otherwise. In contrast, our paper does not address discrete event 

risk or regime changes. We will compare optimal policy and resource savings under 

specifications in the rainfall process as well as quantifying the implications to the 

externalities associated with open access usage.  

 

Steward et al. (2013) estimates the effect of scenarios of irrigation pumping reductions 

on the lifespan of the Ogallala Aquifer as well as crop yields and irrigation supported 

cattle over the next century. The study finds certain wells are located in areas of 

thinner saturated thickness which supports the current trend of steady increases in the 

total yield from dryland compared to irrigated farming across the aquifer.  An 

empirical discussion of the relative returns and drought adaptation of irrigated and 

dryland farming over the Ogallala can be found in Hornbeck and Keskin (2012). 

While they argue that crop adaptation in the long run (extensive margin) can mitigate 

some of the negative consequences of losing access to the aquifer through increased 

dryland farming, they do not attempt to quantify the welfare impacts when the size of 

irrigable land is endogenous and returns are calculated aquifer wide.  

 

The spatial and connected nature of aquifers has been treated in a variety of ways in 

the literature. A review of groundwater representations in the economics literature can 

be found in Katic (2010). Studies that account for lateral flows of groundwater (Saak 

& Peterson 2007; Saak & Peterson 2012; Brozović et al. 2010; Savage & Brozović 

2011; Palazzo & Brozović 2014; Guilfoos et al. 2013) have explored the under, or 
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over, representation of the pumping height externality when assuming a uniform 

single cell aquifer, known as the bathtub model. The specification of this particular 

externality is meaningful for welfare analysis since it is the magnitude of the pumping 

height externality, when taken into account in optimal management, which results in 

welfare gains of optimal extraction. Depending on the spatial and size distribution of 

users, welfare gains to management can be over or under estimated when using a 

bathtub type model of groundwater. In addition, the degree of the associated 

externalities dissipated with increasing degrees of strategic behavior and ownership by 

extractors, as pointed out by Brozović et al. (2010) and Guilfoos et al. (2013). A 

different, and possibly larger stock externality, that of the depletion of the total spatial 

extent of an aquifer, is explored in this paper with a more detailed multi-user spatial 

approach put aside for clarity. Simply put, in the model presented, as a groundwater 

resource is depleted, so too is the irrigable land lying above with access to the aquifer. 

Thus, farm operations on the land that have lost access to groundwater must transition 

from irrigated crops to dryland crops.8  

 

We introduce a new economic groundwater model that incorporates the gradual shift 

from irrigation to dryland farming as parts of the aquifer run dry. We accomplish this 

using an upside down cone to represent the spatial depletion, where the area of 

irrigable land above the aquifer shrinks as the water level decreases.  Depletion of the 

aquifer may interact with uncertainty of the supply of water because the buffer that 

                                                 
8 Koundouri & Christou (2006) show that the value of a backstop, in our case dryland farming, has a 
large effect on the magnitude of the welfare gains from management with the addition of a more 
valuable backstop attenuating the gains available.  
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groundwater provided is no longer available.  In this work, we identify the impact of 

spatial depletion on welfare gains from optimal management when rainfall is 

stochastic and of a Markov process. With this model, we estimate gains from moving 

away from current myopic extraction behavior to optimal use of the resource. When 

applied to Kansas over a section of the Ogallala Aquifer, we find gains from 

management ranging from 2.88% to 3.01% with larger gains achieved under 

uncertainty in the rainfall process. These results quantify the importance of the spatial 

externality as well as including uncertainty. In the process, we make two contributions 

to the literature. First, the introduction of a model that allows for a gradual spatial 

externality with a backstop technology of dryland farming, in contrast to other works 

that model an abrupt loss of the entire aquifer (Koundouri & Christou 2006). Second, 

we estimate the welfare gains from management under various forms of uncertainty to 

understand the impact of modeling serial correlation in rainfall. We find that including 

the gradual depletion of the aquifer does materially impact welfare results compared to 

other estimates of the same region, and surprisingly the serial correlation of rainfall 

matters little.  Empirically, multi-year droughts combined with the loss of access to the 

aquifer only slightly increases welfare gains due to the availability of dryland farming 

and the productivity of that option as a backstop when available.  The model is 

presented in detail below, followed by an empirical application and discussion. 

  

Conceptual Model 
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Large groundwater resources, such as the Ogallala, are examples of common pool 

resources managed subject to various forms of open access, where, given the 

institutions in place, any one user does not have the incentive, or information, to 

internalize the externality of their own pumping in reducing water levels over time as 

discussed in the literature (Hornbeck & Keskin 2012; Steward et al. 2013; Guilfoos et 

al. 2013; Saak & Peterson 2007). As such, groundwater is an acute example of 

resource exploitation leading to possibly larger reliance on variable natural rainfall. In 

times of drought, this can have large economic consequences. Our model captures the 

important interaction of lost access to groundwater and exposure to uncertain rainfall 

events.  

 

When dynamics of the loss of irrigable land are included, the buffer value of 

groundwater in reducing the variability of profits may be particularly important, as 

more farmland is transitioned to dryland, rain dependent farming. The extent to which 

groundwater can act as a buffer against variable future rainfall is also a function of the 

costs of extraction in a given period, which in this model, is dependent on the stock, or 

height of the groundwater. Therefore, with higher levels of groundwater, more can be 

extracted across a larger area of farmland to meet demand in realizations of low 

rainfall, thus limiting the variability of aquifer-wide profits in any given year. As 

groundwater levels fall, so too does the amount available for withdrawal in response to 

low rainfall. Therefore, groundwater depletion increases the variance of possible 

realizations of aquifer wide profits in subsequent periods. The extent of the welfare 
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gain due to optimal management is an empirical question, which we address with an 

application.  

 

Spatial Externality 

 

We model the dynamics of how groundwater evolves and access to the resource 

changes by introducing a spatial depletion function where the amount of irrigable 

farmland above the aquifer is a function of the pumping height (Figure 2).  This 

specification represents an upside-down cone shape where the area above the 

remaining groundwater faces uniform pumping heights, but the area no longer above 

the groundwater is left with without any option for irrigation. Doing so creates an 

analytical relationship between the amount of water extracted from the aquifer and the 

evolution of the height of groundwater and the changing access to groundwater.  This 

captures the important heterogeneity in groundwater resources’ usable lifespan over 

the aquifer. Meaningful lifespans for irrigation pumping are a function of various 

location specific factors, including pumping height and saturated thickness, but also 

are affected by hydrologic properties of the soils. As such, the chosen function 

captures the most at risk areas being exhausted sooner. We have simplified the spatial 

externality of lost irrigable acreage by making the percent of remaining irrigable land 

a function of simply the pumping height.   Equation (1) defines the percentage of 

irrigable land as a function of height, which is bounded by 0 and 1. 

 

       
    

    
 
 

 
                      

(1) 
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Where    is the initial groundwater height,   the radius of the circle that is the base of 

a cone that represents the irrigable land area above the aquifer. Derivation of equation 

(1) can be found in the Appendix. This specification captures both the heterogeneity in 

saturated thickness as well as allowing for changes at the extensive margin (switch to 

dryland practices).  This model is most applicable to areas where the marginal cost of 

increased pumping heights is relatively small compared the value of groundwater, or 

when the spatial distribution of wells and water demand is relatively uniform.  By 

simplifying this spatial externality, it allows us to investigate the stochastic dynamics 

while keeping the size of the stochastic dynamic programming problem 

computationally manageable.  

 

Rainfall Process 

There are many ways to model the variability of rainfall, depending on the time and 

spatial scale appropriate to the problem (Srikanthan & McMahon 1999). We choose to 

model annual rainfall expectations and realizations two ways: the first scenario 

assumes independent and identically distributed (i.i.d.) realizations of rainfall. There 

are   discrete rainfall states,   , and corresponding probabilities,   . The probability 

of next year’s rainfall,     , is independent of the current rainfall state,   , thus 

                .   

 

                             
                                          (2) 
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Equation (2) defines expectations when rainfall is i.i.d., where   is the expectation 

operator.  

 

However, it is clear that rainfall time series are not serially independent and there 

exists many stochastic rainfall generation methods to model the serial dependence 

(Srikanthan & McMahon 1999). Therefore, the second scenario presented in this paper 

assumes a simple Markov chain process in order to replicate climate persistence, 

particularly droughts, where the probabilities of future rainfall states are a function of 

the current year’s rainfall. This process defines probabilities of the future state that are 

conditional on the current state,                        , and  

 

                     
                             (3) 

 

By specifying the transition probabilities of moving from one state to another, we 

capture the time dependent process and the persistence of annual rainfall.  

 

Economic Benefits 

 

In order to estimate the per-acre return to farming, we assumed a section that is 

irrigated acreage and a section of farmland that is dryland acreage. The returns to 

irrigated land are a function of per-acre yield, price, irrigation pumping cost and the 

quantity of irrigation water extracted and applied.  Equation (4) gives the per-acre 

returns to irrigated farmland. 
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                                         (4) 
 

Where    is the per-acre yield,    is the irrigation water applied per-acre,    is the 

price of the irrigated crop and    is the lift,        , dependent marginal cost of one 

acre foot of groundwater extraction.    is the elevation of the groundwater level as 

compared the surface elevation,     Taken together, the cost function gives the 

marginal cost of pumping one acre-foot of water to the surface for a given pumping 

height. Myopic farmers that irrigate do so to maximize profits in each time period by 

choosing    to maximize (4). Farmland that does not have access to the aquifer only 

has rainfall as a water input into the production of crops and is represented by, 

 

                
 

(5) 
 

 

Where        is the per-acre yield of dryland crops as a function of rainfall and    the 

prices of those crops.  

 

As mentioned before, irrigable farmland is itself a function of pumping height. So a 

single period’s aquifer wide return would be the area-weighted sum of irrigated and 

dryland profits: 

 
                                             (6) 

 
We assume the homogenous per-acre irrigation water demand across the irrigated 

portion of the aquifer, so the total water extracted is:  

   
                  (7) 
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Based on the cumulative extraction   , the groundwater height changes through time 

following the equation of motion: 

 
 

               
         

        
 

(8) 
 

 

R is the natural recharge,   the percent of irrigation water returning to the aquifer, A 

the total area of the aquifer, S the storitivity and        the percent of irrigated land 

over the initial aquifer area from equation (1). This formulation of the equation of 

motion has consequences to the rate of depletion. Given a similar per-acre pumping 

demand,   , height changes will be smaller under this spatial depletion model than 

under the assumption of a traditional bathtub model. This is due to two factors: the 

loss of irrigated acreage as the heights fall, and the effect of the change in the 

dimensions of the area that the volume of recharge fills. At lower groundwater levels, 

a similar volume of recharge will result in a larger positive height change then at 

higher levels, due to the shape of the function. A more formal discussion of the 

equation of motion is in the Appendix.  

 

The social planner’s problem is to find the extraction path to maximize the discounted 

sum of future profits, subject to the equation of motion (8) and physical constrains, as 

given here: 

 

 
    

  
           

 

   

              
 (9) 
 

               s.t. 
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Where    , is the expected value operator over the stochastic rainfall variable,   .   is 

the discount factor,   the year index and   and   are the maximum and minimum 

groundwater levels. The random nature of rainfall is important in this setting as 

groundwater is used to augment natural precipitation in dry years.    either follows the 

deterministic, i.i.d scenario, or the Markov chain assumption highlighted above. 

 

Dynamic Programming Problem 

 

Since the objective of this paper is to implement stochastic rainfall to address welfare 

gains from optimal management, we use a dynamic programming approach (Bellman 

1957). A discussion of dynamic programming as applied to a groundwater setting can 

be found in Provencher & Burt (1994). The value function represents the expected 

present value of future benefits of the system assuming optimal management in all 

future periods. 

 

 
         

  
                    

 

   

  (10) 
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By applying the principle of dynamic programming, the first order conditions for this 

problem are given by the Hamilton-Jacobi-Bellman equation for this discrete time 

stochastic model (Brito 2007). 

 

          
  

                                   (11) 
 

Where   is the discount factor equal to  
   

, and   the discount rate.    is the 

expectation operator over the random variable      and             the value of next 

period’s stock assuming optimal behavior in all subsequent periods.          

represents the transition equation as a function of current extraction decisions and 

groundwater height, which in our case is the same as equation (8) above. 

 

Intuitively, the optimal extraction of groundwater balances the marginal benefit today 

against the discounted marginal benefits in all subsequent time periods given the 

expectations of the random variable.  The first order condition with respect to 

withdrawals for the Bellman equation above implies the following 

 
 

 
         

   
     

  
     

         
   

    
   (12) 
 
 

 
Inputting equations (6 and 8) into equation (12), 
 
 

        
          

   
      

  
     

  
     

 
     

   
(13) 
 
 

Although we do not know   explicitly, along the optimal path, the marginal value of 

extraction today (the first term) should equal the discounted marginal cost (the second 
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term) imposed by period  ’s extraction. The envelope theorem implies that the 

derivative of the value function with respect to the groundwater stock level generally 

is: 

 

   
   

 
         

   
     

          
     

         
   

  
  (14) 
 
 

Solving for   
     

 in (13) and substituting that into equation (14), moving ahead one 

period and rearranging terms, we arrive at the discrete time Euler equation, which does 

not contain the unknown value function.  

 
 

  
   

     
             

     
 

             
     

             
     

             
     

 
         

   
 

 (15) 
 
 

 
This represents the tradeoff between withdrawals today, the first term, and the 

opportunity cost, the part after the equal sign. With our functions, 

 
 

      
          

   
 

       
        
     

                             

 
              

     
         

 
                    

     
 

       
  

         
        

          
     

    
     

 
  

(16) 
 
 

The opportunity cost includes many components.  The effect of a marginal reduction 

of irrigated land is          
     

              ,  where         
     

     This captures the 

loss at the margin of moving to dryland farming since a drop in water height decreases 
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irrigated land. This is multiplied by returns from irrigated agriculture as compared to 

dryland farming. These losses are also larger under small realizations of rainfall 

because the irrigated production has the ability to increase yields while dryland 

farming is a victim of circumstance. The value of the backstop technology plays an 

important role in management, since as         grows, or as dryland farming returns 

become negligible to irrigated farming returns, the opportunity cost of extraction 

increases.  

 

The next term captures the increased pumping cost on returns from irrigated 

agriculture           
     

      , scaled by how much irrigated land exists. The 

term, 
               

     
 

       
  

   captures the future marginal benefit of extraction divided by the 

marginal change to the height of water. This is the pumping height externality when 

not accounted for by extractors.  This is multiplied by,                 

          
     

, which is the 

additional marginal effect of the change in height on future extraction benefits and 

captures the effect on the changing irrigated acreage through        , as well as the 

effects on height through recharge. 

 

It may be helpful to compare this model to a special case; if we assume        and 

is constant, and     , we have the bathtub model which is the extreme case where 

there is no spatial depletion and no backstop technology available.  This case matches 

other models used in the literature (Gisser and Sanchez 1980, Feinermann and Knapp 
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1983).  Using these restrictive assumptions gives us the equivalent to equation (16) for 

the bathtub model. 

 

 
          

   
        

              
     

   
               

     
 

       
  

   
     

 
  

(17) 
 
 

 

We can see the term         
     

                  , appears in equation (16) but not (17) 

and is positive when      , implying an additional opportunity cost of extraction 

over the bathtub model. The term in equation (16),                 

          
     

, represents the 

additional impact on future benefits from the change in the water table in the spatial 

depletion model. If this is greater than unity it provides an additional cost in the spatial 

depletion model compared to the bathtub model.  It is unclear if this term is always 

greater than one and provides an addition cost to extraction compared to the bathtub 

model.  It is clear that when         is larger that there are greater costs than when 

        is smaller given assumption about the rate of depletion.9 However, a result of 

the cone assumption is that as the water height is lower in the aquifer, a similar 

recharge will result in a larger height change due to the reduced size of the volume it is 

filling. Therefore, the total effect of adding the spatial externality is a matter of 

parameterization. 

 

                                                 
9 The key assumption here would be that the second derivative of the depletion function is constant, and 
the rate of change in irrigable area were constant, then the costs of the change are higher when γ(x)is 
relatively large because it only enters in the numerator of equation (16). 
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Solving equation (11) means finding the function      either explicitly or 

numerically. The addition of a stochastic element and a non-linear spatial depletion 

function makes analytic solution intractable in this case (Brito 2007). For the example 

below, we turn to the numerical method of value function iteration. Total welfare 

gains from management are calculated by differencing the present value of the system 

from the initial groundwater level to reaching the steady state under both optimal and 

myopic behavior. Myopic behavior is used to simulate perfect competition, as farmers 

would behave as if they do not expect to have the rights to the future benefits of water 

savings in the current period due to open access properties of the aquifer. Therefore, 

this behavior is simulated as solving one period’s profit maximization problem, 

maximizing (6) with respect to withdrawals, with no regard to future states by 

equating marginal benefit to marginal cost for each period sequentially.  

 

Empirical Model 

 

We quantify welfare gains in this spatial depletion model under uncertainty with an 

application to the Northwest Kansas section of the Ogallala aquifer. The Kansas Water 

Authority provided the physical parameters of the aquifer (hydraulic conductivity, 

recharge, storativity).  The pumping cost estimates from this region are taken from 

Hendricks & Peterson (2012) for groundwater management district 4 in Kansas.  We 

estimate the crop yield response to applied water using Kansas State’s Crop Yield 

Predictor tool for a variety of crops to estimate irrigated and dryland returns to crops 

under various rainfall scenarios.   
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The physical parameters of the model are presented in Table 1. The spatial externality 

is modeled using the function in equation (1), which captures the loss of irrigated 

acreage as groundwater levels fall. The initial aquifer area is set at 2.19 Million acres, 

of which 373,200 acres are irrigated or 17% of the total land. We assume that this total 

acreage of farmland (irrigated plus dryland) remains constant as the aquifer area is 

depleted. A discussion of the implications of allowing the amount of farmland to vary 

is found in the discussion.  

 

The bottom of the aquifer is set at 2,892 feet above sea level based on the minimum 

water table found over management district 4. The initial water level was set at 3,069 

feet based on the irrigated acreage and initial pumping height to the surface of 26 feet, 

which is the average across management district 4. The depth of the aquifer and initial 

total acreage surface area make up the two physical parameters needed to define the 

cone shaped function used to capture the spatial depletion, Figure 1. As discussed in 

equation (16) above, the gradient of this function describing depletion has implications 

to the optimal extraction time path, as it defines the magnitude of the marginal cost of 

lost irrigated acreage due to a change in groundwater height, or our spatial externality. 

 

To estimate crop yields as a function of rainfall and applied irrigation water, we used 

Kansas State’s Crop Yield Predictor tool, which is parameterized for the Colby, KS 

area (Klocke et al. 2010). We fit functions for corn, sorghum and winter wheat. By 

running the tool for the full range of water applied to crops and rainfall, we estimated 
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per-acre yield as a function of rainfall, or rainfall plus irrigation water applied. The 

assumption used here is that an inch of rainfall is equivalent to an inch of irrigation 

water applied. We fit cubic functions to the yield data. Visually, the yield functions are 

found in Figure 3. Corn is assumed grown on irrigated acreage and a rotation of wheat, 

fallow, sorghum, fallow on dryland acreage (Hansen et al. 2012). Thus, the crop yields 

from dryland are assumed to be 1/3 of the per-acre sorghum yield at a particular 

rainfall plus 1/3 wheat. This assumes that in any year, various dryland farms, which 

are represented as homogenous, are at various stages of the rotation. Prices were 

obtained from USDA ERS Yearbook Tables and average US prices in 2013/2014 were 

used in the parameterization and simulation (USDA ERS 2014). 

 

Expectations of rainfall play an important role in defining optimal management. The 

model presented is flexible to various definitions of rainfall expectations and 

stochastic processes. For clarity of interpretation and limiting the computational 

burden, we chose to use three, roughly equally likely, levels of rainfall representing 

low, medium and high amounts of yearly rainfall10. We fit an empirical time-

homogenous11 Markov chain process to binned rainfall amounts to match the low, 

medium, and high levels to observed rainfall at the Colby, KS gauge. The transition 

probability matrix and details are found in Table 2.  

 

                                                 
10 Yearly rainfall is the input to the Crop Yield Predictor. From there, a weather generator is used to 
create growing season weather to estimate crop yield.  
11 This implies a stationary distribution and constant transition matrices. By simulating this process for 
250,000 years, we estimated the non-conditional probabilities of each state, which are used for our 
stochastic case, as well as the average of the process for the deterministic treatment to match the 
conditions for each scenario for comparison.  
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Numerical Solutions 

 

Optimal policy functions are found numerically by means of stochastic dynamic 

programming using MATLAB 2013. The optimal extraction decisions as a function of 

water level are approximated by first estimating the value function,     , by means of 

value function iteration by solving equation (11) for discrete levels of  , replacing the 

optimized values for      and repeating until the functions converge within a 

specified tolerance (Putterman 1994). Creating the transition probability matrix for 

each realization of rainfall incorporates the Markov chain yearly rainfall process.  

Once the optimal value functions are found, the corresponding policy functions can be 

recovered for any realization of rainfall and groundwater height. The value function 

and policy function are displayed in Figure 5 and 6.  

 

The derived optimal decision rules are iterated through time starting at the initial 

groundwater levels. Realizations of rainfall in each year are generated from the i.i.d or 

the Markov process fitted above to yearly rainfall to match expectations used for 

transition probabilities. To evaluate gains from optimal management, a myopic 

decision is made in each year by using the policy of maximizing equation (6) for each 

year with respect to groundwater withdrawals. These paths through time for the i.i.d 

case can be found in Figure 6.  

 

The welfare implications of making optimal extraction decisions are estimated by 

discounting and summing each year’s profit as defined by equation (6) from the initial 
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year to the end of the time horizon, in our case 500 years, which is well after reaching 

a steady state and where future benefits are essentially discounted to zero. The 

differences between the two welfare values calculated are the estimated gains from 

optimal management of the aquifer. The results are presented in Table 3 for different 

specifications of the problem. 

 

Results  

We present results from our model applied to the characteristics of groundwater 

management district 4. The welfare results can be found in Table 3 under the various 

rainfall assumptions. Gains exist from management in the range of 2.88-3.01%. The 

stochastic scenarios generate slightly larger relative gains (.09-.13% larger), reflecting 

the magnitude of including stochasticity in assessing welfare impacts to management. 

A point found in the literature, reflecting the additional value of groundwater found by 

previous studies under uncertainty (Knapp & Olson 1995; Tsur & Graham-Tomasi 

1991; Provencher & Burt 1993).  

 

The results show that including the loss of the spatial extent of the aquifer leads to a 

larger estimated welfare losses when compared to other modeling assumptions for 

welfare impact studies over parts of the Ogallala. To put our work into perspective, 

our estimates are larger than Lee et al (1981) for the Ogallala in Texas at .3%, 

Nieswiadomy (1985) for the High plains aquifer in Texas at .28%, and similar to Kim 

et al. (1989) also for the High plains in Texas (1-3.7%). Kim’s paper includes 
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endogenous technological change as a function of groundwater heights and therefore 

similarly provides backstop technologies in a sense, albeit under certainty. 

The welfare gains arise from the difference between the optimal decision rules, and 

the myopic pumpers’ choices, Figure 5. The optimal planner internalizes the inter-

temporal stock externality, while the myopic extractor does not. For the stochastic 

rainfall scenarios, the realized rainfall determines the corresponding optimal policy 

function, one for each state of rainfall.  As compared to the myopic decision maker, 

withdrawals following optimal management are about 16% less in low rainfall, 19% 

less in medium rainfall, and 25% less in high rainfall, varying through groundwater 

heights (Figure 5) showing relatively larger savings in better years. When these 

optimal policy functions are iterated through time (Figure 6) meaning the decisions are 

made optimally based on the current rainfall and groundwater state, the groundwater 

stock is depleted more slowly under optimal decisions, as expected.  

 

The lower optimal extractions, in equivalent groundwater heights and rainfall amounts 

compared to the myopic pumper, leads the groundwater levels to settle at a steady 

state height of 2,991 feet on average as opposed to 2,980 feet under myopic 

extractions for a difference of 11 feet in height at the steady state and between 0 and 

17.5 feet through the time-path. With our spatial cone model, where the irrigated 

acreage is a function of the groundwater height, these steady state groundwater levels 

translate to an optimal steady state with 118,360 irrigated acres or 31% of the initial 

irrigated acreage, as opposed to 93,517 irrigated acres under myopic extraction or 25% 

of the initial irrigated acreage. The sources of welfare losses are the higher pumping 
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costs with deeper water tables and the loss of irrigated acres. The magnitude of these 

losses is less obvious as they depend on the rate of depletion, the discount rate, and the 

relative benefits of irrigated farmland as compared to dryland farming.  

 

When comparing welfare across rainfall scenarios, modeling uncertainty increases 

estimated gains from management, resulting in an increase in welfare gains of .09-

.13% over the deterministic welfare gains. The concavity of the one year benefit 

function implies risk aversion in the sense that irrigation water limits the range of 

available water in future years, which is preferred over a wider range of possible states 

as described in Provencher & Burt (1993) and under risk aversion in Knapp & Olson 

(1996). However, the yield of the backstop technology of dryland farming is less 

variable (flatter in Figure 3) than irrigated crop yields. In a sense, the transition to 

dryland farming attenuates the loss of the buffer value of the groundwater, as the crops 

are more resilient to a range of rainfall then non-irrigated corn would be. Overall, the 

increase in welfare gains when including uncertainty reflects the additional benefit 

gained when taking into account groundwater as a steady resource to buffer variation 

in weather in optimal management.  

 

The groundwater height remains higher through time when taking into account 

uncertainty in precipitation as the optimal policy consists of slightly smaller 

extractions on average. The average difference in height is small and only around 1 

foot, well within the margin of error of the simulation runs. Clearly, the year-to-year 

extractions are different in the stochastic cases from the deterministic case, where 
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optimal policy functions imply changing policy rules based on yearly rainfall, Figure 

5. So, although the extraction paths are similar in average groundwater height, the 

stochastic case leads to variable extractions and a range of groundwater levels 

depending on the realization of rainfall (Figure 6).  The addition of a Markov chain 

process added little additional welfare gains (.04%) when optimal policy was matched 

to a stochastic process as described in Table 2.  

 

Discussion 

 

Unlike other approaches, our spatial depletion model captures the gradual loss of 

access to a stabilizing resource as a result of the overall extraction of the aquifer. The 

imbedded assumption of infinite conductivity results in uniform pumping heights 

across the irrigated acreage above the remaining aquifer, representing the average 

height faced by the remaining pumpers. The intertemporal pumping height externality, 

assuming infinite conductivity, is relatively small when the marginal pumping cost as 

a function of height is low compared to the marginal benefit of groundwater extraction 

(Koundouri 2004). Thus, the important externality to welfare is the loss of access over 

time as certain areas have thinner saturated thickness than others and, even with a 

relatively short pumping height, can loose access as a result of the aquifer wide 

extractions, Figure 7. When simulating the aquifer under the assumption of the 

standard bathtub model, the estimated welfare gains are small, .06% (Appendix Table 

1).  
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That modeling the loss of irrigated acreage does not result in significantly larger 

welfare losses than what we found was unexpected, although our welfare estimates are 

larger than those found over similar regions in previous literature. We include a 

backstop technology, dryland farming, which reduces the gains from management, 

since in its absence, we would have assumed infinitely expensive alternatives 

(Koundouri & Christou 2006). Without a backstop, the welfare gains from 

management are larger at 5.2% in the stochastic rainfall scenario (Appendix Table 1). 

We chose to model the dryland crop as a rotation of sorghum, wheat, and fallow in 

equal proportions. Dryland practices require fallowing some areas and rotations of 

other crops to maintain soil conditions.  We assumed no loss of total farmland, when 

some land may have to be fallowed permanently after losing access due to its soil 

characteristics, which may cause us to overstate the value of the backstop technology. 

Advances in dryland techniques and drought resistant crops could mitigate some of the 

negative consequences to losing irrigation access, but even as dryland techniques gain 

efficiency, so too will the returns to irrigated agriculture and it is unclear if the relative 

value difference will change much (Steward et al. 2013).  

 

Second, our model assumes that 17% of the initial aquifer surface area is irrigated 

farmland (Table 1). This is based on the observed number of acres farmed over this 

district. The total surface area of the usable aquifer, or initial irrigation intensity, may 

vary widely across aquifers or regions within an aquifer.  The results are particularly 

sensitive to the intensity of farming, or the amount of farming relative to the size of 

the resource, with a higher percent of acres irrigated leading to larger welfare gains 
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from management (Appendix Figure 1).  This suggests that intensely farmed areas or 

aquifers may have a magnitude of difference in gains from optimal management.  

 

In exploring the implication of the above assumptions, we can say something about 

when management is likely to have a greater welfare gain. When the value of the 

backstop technology is small compared to the value of the use with access to the 

water, the welfare gains are larger. Koundouri and Christou (2006) made this point 

with a backstop of desalinization under certainty and we can see this analytically in 

our model and discussion of equation (16). Under uncertainty, the backstop 

technology’s benefit of reducing variability also plays a role given the concavity of the 

benefit function implying risk aversion. A less variable backstop may have more value 

than one of similar average value but more variable returns and result in smaller gains 

to management, although this is not proven here.  

 

We also held prices constant through the time horizon, but adding demand growth for 

the irrigated crop would certainly increase the welfare gains, similar to what is shown 

in Brill & Bruness (1994).   There may be important price dynamics in large aquifers 

that support large monocultures, as irrigation water dries up the prices of irrigated 

crops should increase and the opposite market forces would be in play for dryland 

crops.  These forces would increase the gains from management as the marginal 

benefits from irrigated agriculture would increase compared to dryland agriculture. 
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Our motivation in including uncertainty was that groundwater has a value as a buffer 

to smooth out returns over time (Tsur & Graham-Tomasi 1991; Knapp & Olson 1995). 

With a backstop that does not enjoy the stable source of groundwater, we surmised the 

two aspects together could lead to additional welfare gains from moving away from 

myopic pumping. Despite the small additional percentage gains from management, a 

few points can be made from interpreting the optimal rules under uncertainty. The 

optimal extractions vary year to year, so any management designs to approximate the 

optimal extractions would need to allow for this variability as rules based on a 

deterministic optimal solution would limit welfare beneficial pumping in dry years and 

similarly be too high to induce optimal saving in better years (Figure 5).  

 

The groundwater stock paths are similar under uncertainty and certainty on average, 

but vary in the stochastic cases, shown Figure 6. The gains from management could be 

small and similar to the deterministic case or larger than the average depending on the 

realization of rainfall, only one of which the resource would actually progress through 

in reality.  

 

We included a Markov process to investigate if the type of stochastic rainfall process 

mattered to welfare gains to management, as this is not something that has been 

discussed to our knowledge. We find that changing the process mattered little to the 

estimated gains from management, although it changed the optimal policy rules. In our 

case it slightly increased extractions in each rainfall state, in each groundwater level 

although the differences are well within the modeling uncertainty. Given that adding 
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uncertainty in general added less than a quarter percent to welfare gains, finer 

distinctions, such as defining a different process, did not materially matter.   

 

In our model, we simplified droughts with a Markov chain rainfall process where the 

lengths of the droughts were defined by the transition probabilities.  Drought refers to 

extended periods of lower than normal soil moisture as a result of climatic variables 

including rainfall (used in this paper), temperature, and even wind speed. Drought 

measures such as the Palmer Drought Severity Index include a duration aspect, where 

the progressions of the climatic variables matter and not just the current conditions. 

We do not carry over soil conditions or other stock variables, except the groundwater 

height, that could be affected by the series of yearly rainfall events. This could be done 

by modeling additional processes in the benefit function and is left for future work.  

The addition of the lagged process mattered little to the welfare gains from 

management and only slightly to the optimal policy functions in our application.  

 

The discussion of rainfall processes leads to an important point about the assumptions 

leading to the optimal paths. We matched the rainfall processes to the optimal policy 

rules in each case assuming perfect information about the process that generates the 

annual rainfall.  Any policy rules would be such that the process is not known with 

certainty. The method we chose to use to estimate optimal management assumes that 

the decision makers not only act optimally in each period given the realization of 

rainfall, but also have accurate expectations of the process that generates rainfall. In 

reality, the processes that generate weather and longer-term climate trends are 
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complex and the distribution of rainfall is not stationary. As such, the extent to which 

the policy maker’s expectation of rainfall coincides with the actual process may have 

implications to welfare gains, with mistakes or mis-specifications causing possibly 

large welfare losses.   

 

Conclusion 

 

We introduce a dynamic spatial depletion model of groundwater extraction that 

incorporates stochastic rainfall and a gradual spatial stock externality, leaving more 

farmland at the mercy of variable rainfall as groundwater levels fall and less available 

for irrigation across a smaller area. By building a novel model flexible to rainfall 

expectations and various stochastic processes, we showed the extent of the importance 

to welfare and optimal management when including stochastic elements. We also 

explore the implication of droughts and their persistence on optimal management as it 

compares to myopic extraction behavior.   We find that the addition of randomness 

and persistence of rainfall does not materially affect welfare gains, largely due to the 

relatively good yields from dryland farming.  Incorporating the spatial depletion of the 

aquifer added to welfare estimates of moving from open access to optimal 

management of the resource.  
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Tables and Figures 

TABLE 1 
Parameter values for Northwest Kansas Groundwater Management District 4 

 
Parameter Description Value 

C1 Cost of pumping  $.11 /a-ft/ft 
R Natural recharge 199,040 a-ft 
A 
 

Aquifer area 
Initial Irrigated acres 

2.19 million acres 
373,200 acres 

   Land surface 3094 ft above sea-level 
  Lower aquifer bound 2892 ft above sea-level 
S Storativity .17  
  Irrigation water return 20% 
x0 Initial water level 3068 ft above sea-level 
β 
r 
 
 
 

p 

Discount factor 
Rainfall states 
  High 
  Medium 
  Low 
Crop Prices 
  Corn 
  Sorghum 
  Winter Wheat 

.96% 
 
2 ft 
1.58 ft 
1.25 ft 
 
$4.45 /bushel 
$4.25 /bushel 
$6.53 /bushel 

Note- The physical parameters of the aquifer are provided by the Kansas Water Authority.  The 
pumping cost estimates from this region are taken from Hendricks & Peterson (2012) for groundwater 
management district 4 in Kansas. Prices were obtained from USDA ERS Yearbook Tables and average 
US prices in 2013/2014 were used in the parameterization and simulation (USDA ERS 2014). 
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TABLE 2 
Markov Chain Transition Probability Matrix 

 
Future State 

 
Current State Non-conditional 

 
Low Med High 

 

Low – 1.25 ft 40.48% 21.62% 42.50% 35.29 % 
Med – 1.58 ft 30.95% 37.84% 25.00% 31.10 % 
High - 2 ft 28.57% 40.54% 32.50% 33.61 % 

 
NOTE- Low Med and High refer to the annual precipitation events.  
Probabilities are empirically found from a precipitation time series from 
Colby, KS. The last column represents the non-conditional (on current state) 
probabilities of future rainfall used in the i.i.d. stochastic scenario. 
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TABLE 3 

Welfare Gains From Groundwater Management 
Total Discounted Profit (Billion $) 

 
NOTE- Standard errors of the stochastic figures from 100 iterations through rainfall realizations are in 
parentheses. The deterministic scenario assumes average annual rainfall each year. Stochastic assumes i.i.d. 
random draws from high, average, low rainfall state based on empirical probabilities. Stochastic- MC 
assumes draws from a Markov chain process where the transition probabilities are found in TABLE 2. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 Perfect Competition Optimal Policy Difference % Gain 
Deterministic $ 6.683 $ 6.876 $ .193 2.88 

Stochastic $ 6.589 
(.0937) 

$ 6.785 
(.0938) 

$ .196 
(.006) 

2.97 
(.04) 

Stochastic -MC $ 6.515 
(.0408) 

$6.711 
(.0350) 
 

$.196 
(.006) 
 

3.01 
(.03) 
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FIGURE 1 

Spatial Depletion Model 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

NOTE – u is the radius of the irrigated acreage, x the groundwater height 
and p is the pumping height, which is the difference between the surface 
and the height of the groundwater. Θ is fixed given the parameters x, p, 
and u. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

• Shrinking Bathtub (snow-cone?) 

 

 

Model 

x 

2u 

p 

u 
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FIGURE 2 

Water Level and Storage Change in the High Plains Aquifer 
Predevelopment (1950) to 2011 

 

 
(McGuire 2012) 
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FIGURE 3 

Crop Yield Functions  
Bushels per-acre 

 

 
 
NOTE- Derived from Kansas State University’s Crop Yield Predictor. 
Low, medium and high rainfall amounts are shown as vertical lines. The 
Y-axis represents yield in terms of bushels per-acre as a function of 
rainfall for sorghum and winter wheat, or rainfall plus irrigation water for 
corn. 
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FIGURE 4 

Optimal Value Functions 

 
 
NOTE- This figure plots the optimal value functions for the 
stochastic (one for each realization of rainfall).  The value 
function represents the net present value of the groundwater 
resource assuming optimal future management. 
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FIGURE 5 

Optimal Policy Functions at Groundwater Heights 
i.i.d. Rainfall 

  

 
NOTE- The three states of rainfall (Low, Medium, High) each has a corresponding policy 
function represented by the three colors. At low levels of rainfall, demand for irrigation 
water is higher. The dotted lines represent the decisions made by a myopic extractor, 
while the solid lines are results of the optimal dynamic programming policy functions.  
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FIGURE 6 

Groundwater Height Over Time 
i.i.d Rainfall 

   

 
NOTE- The blue lines represent groundwater levels under optimal 
management. The average (thicker line), standard deviation (blue shaded 
region) and a number of individual runs are plotted. The red is the myopic 
planner’s groundwater heights through time.  
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FIGURE 7 

 
Estimated Usable Lifetime of Ogallala in Kansas 

 

 
 

NOTE- From Kansas Geological Survey (2009). The 1998-2008 trends of 
depletion were extrapolated to estimate useable lifespan.  
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Abstract 

This paper empirically estimates the effect of an increase in natural gas pipeline 
capacity in New England on monthly equilibrium natural gas prices and quantities for 
the electric energy sector. The cost of natural gas has important consequences to the 
wellbeing and cost of living for millions of customers either relying directly on natural 
gas for heating, or electric energy consumers indirectly. I present results of reduced 
form price and quantity regressions using Generalized Least Squares (GLS) followed 
by results of a dynamic simultaneous equation model (SEM) of the market system. 
Using derived empirical relationships, prices and quantities for natural gas are 
estimated under various weather scenarios as well as under current and expanded 
capacity to highlight the role capacity has in effecting the variability of the price of 
energy to the region.  
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Introduction 

 
Natural gas is increasingly being used for electric energy power generation across the 

United States. This trend is driven by increased domestic production from shale gas as 

well as regional environmental initiatives. For the Northeastern United States, it has 

meant a shift from oil and coal-fired generation towards natural gas. Since 2001, 

annual power generation from natural gas has increased from 17% of total MWh 

produced to as much as 36% in 2015 (EIA 2013; EIA 2014).  Depending on the 

season, this increase in demand from electric energy generators is competing with 

other uses for natural gas in the Northeast, such as residential heating and industrial 

consumption. While demand has increased across all sectors, delivery capacity for 

natural gas is at times constrained, especially in New England (CT, ME, MA, NH, RI, 

VT) with nearly all the physical capacity under contract in certain winter months and 

available supplies for variable or unexpected demand, such as in especially cold winter 

months, only available at high prices (DOE 2013). Because they are particularly 

reliant on the share of capacity that is not under firm contract, natural gas generators 

are exposed to volatile fuel costs at the same times when electric power demands are 

high. In turn, the electricity market passes these fuel costs on to electric utilities and 

from there to electric power consumers.  

 

The seasonal scarcity issue is being addressed with new capacity in the form of new 

pipelines and pipeline upgrades, some of which are already in use and a number of 

which are planned to come online over the coming years (EIA 2013). However, the 

pipelines are controversial both for their impact on the planned routs and the implicit 
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support of the controversial production process of hydraulic fracturing, as is evident 

from recent news reports (Marc Levy 2014; Jay Fitzgerald 2014; Ailworth 2013). 

 

This paper will empirically estimate the effect of an increase in natural gas pipeline 

capacity in New England on monthly equilibrium natural gas prices and quantities for 

the electric sector. Weather plays an important role in defining the demand for natural 

gas, due to natural gas’s use for heating and electricity generation in the winter and 

through electricity demand for cooling in the summer. The cost of natural gas has 

important consequences to the wellbeing and cost of living for millions of customers 

either relying directly on natural gas for heating, or indirectly through electric energy 

consumption. This paper presents results of reduced form price and quantity 

regressions using Generalized Least Squares (GLS), followed by results of a dynamic 

simultaneous equation model (SEM) of the market system. Using derived empirical 

relationships, prices and quantities for natural gas will be estimated under various 

weather scenarios as well as under current and expanded capacity to highlight the role 

capacity has in affecting the variability of the price of energy to the region. This work 

adds to the literature by providing empirical evidence and the quantification of the 

effect of constrained pipeline supply in an important energy market, where weather 

conditions, multiple demand sectors and alternative fuels determine the cost of energy.  

 

Background 

Natural gas in New England is used by the residential, commercial, industrial and 

electric sectors. Total yearly consumption has increased from 710,000 to 868,000 
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MMcf from 2001 to 2014, with the largest percent and total volume gains from electric 

energy generation (Figure 1). This increased consumption came partly as a result of 

decreasing prices from a plentiful supply of domestic natural gas due to the 

technological advances in extraction using hydraulic fracturing and horizontal well 

drilling (DOE 2013; DOE 2015). For power generation, this has meant the addition of 

natural gas fired turbines to replace retiring coal and nuclear facilities. Figure 2 shows 

electric generation by fuel type for New England, showing natural gas replacing coal 

over the time frame. The total energy generation has remained mostly constant.  

 

The demand for natural gas is highly seasonal and closely correlated with heating and 

cooling needs. The overall quantity consumed across all sectors peaks in the winter 

months. However, the electric sector follows a different seasonal pattern. The 

residential, commercial and industrial sectors use natural gas in higher volumes in the 

winter for heating, while the electric sector uses more in the summer for meeting 

cooling demand and less in the winter due to higher spot prices and fuel oil as an 

available substitute for many generators (Figure 1).  

 

Pipeline and liquefied natural gas (LNG) infrastructure must be sized to meet the 

needs of the peak demand in the winter, and therefore runs below capacity for the 

other parts of the year. New England receives natural gas through pipelines that carry 

it from producing regions in Canada and states to the west such as Tennessee and 

Pennsylvania. The major pipelines are the Algonquin Gas Transmission, which 

connects to supplies coming from the South, the Tennessee Gas Pipeline, which runs 
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from the Gulf of Mexico through the producing regions of Pennsylvania and Ohio, and 

the Maritimes and Northeast pipeline from Canada.  In addition, imports of liquefied 

natural gas (LNG) from overseas come through facilities located around Boston. As 

there are no major storage sites in New England, the area relies on storage and 

outflows from the states to the west and LNG imports to meet unexpected demand.  

 

Pipeline customers can be divided into two types: those with firm delivery contracts 

for a specified capacity, and those that have interruptible contracts for pipeline 

capacity and the associated gas volumes. Residential and many commercial customers 

are serviced by local distribution companies (LDCs), utilities who have long-term 

contracts with the pipeline for capacity to guarantee supply to their customers (DOE 

2014). To a lesser extent, industrial users also enter into longer-term agreements for 

supply, resulting in higher average but less volatile prices. Electric energy generators, 

on the other hand, generally do not enter into long-term contracts. Their supply is 

interruptible for a number of regulatory as well as economic reasons explained below. 

Therefore, the price the generators pay for natural gas varies greatly and a stable 

supply is at risk in times of high constraint in the system. The prices across sectors can 

be seen in Figure 3.  

 

Pipeline owners operate in a highly regulated market, where the price charged for 

capacity is capped by the Federal Energy Regulatory Committee (FERC) in order to 

counteract the monopoly power and protect customers (EIA 2015a). However, firm 

capacity contract holders can sell their owned capacity and volume of gas in an 
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unregulated secondary market. These transactions are made between buyer and seller 

and are not cleared through a market entity. As laid out in Oliver and Mason, et al. 

(2014) and Oliver and Finnoff, et al. (2014), capacity constraints lead to higher spot 

prices in constrained demand regions and higher price spreads between pipeline nodes. 

Therefore, additional rents are made available for firm capacity contract holders with 

the existence of the secondary market.  

 

In New England, these firm contract holders are the utilities and large industrial users. 

Why electric generators have not sought more firm supplies is unclear. Ideas put 

forward include the availability of alternative fuels for generation (oil), the inability to 

store gas or electric energy, the ability to pass the higher spot costs along in liberalized 

electric energy market, the lower average price received from more interruptible 

contracts in the summer, and issues of counterparty risk due to the heterogeneity in 

sizes of gas producers and electric energy consumers (Morris 2013; ISO New England 

2015). Generators may enter more long-term agreements over time, but it is currently 

clear that the electric energy sector pays significantly higher prices for natural gas in 

times of constraint due to the market structure described above.  

 

Constraints are prominent in the winter months when heating needs and natural gas for 

generating electricity compete for relatively scarce capacity. The severity of the winter 

in terms of low temperatures determines to what extent the pipeline constraint is 

binding. Particularly cold winter seasons, when combined with constrained supply, 

have led to high prices in the recent past, particularly the winters of 2012/2013 and 
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2013/2014. Monthly average prices for natural gas in the electric sector were as high 

as 18.52 $/Mcf in the winter for 2012/13 and 21.95 $/Mcf in the winter of 2013/14, 

when the long-term average is 6.65 $/Mcf overall and between 8 and 9 $/Mcf in 

December, January and February. Historically it is December, January and February 

when the constraints are the highest. The exposure of the region’s energy costs to risks 

from colder then average winters influences both the cost of living and the cost of 

doing business. Using empirical relationships fit to the years 2002-2014 for natural gas 

prices paid by the electric sector, a simulation is created to estimate price and 

consumption as a function of planned pipeline capacity improvements for New 

England under a range of possible winter temperatures.  

 

There is a vast literature of modeling approaches to estimate natural gas price 

relationships across a multitude of markets. Early approaches focused on end users’ 

costs and substitutability between energy sources using panel and system of equation 

approaches to identify the elasticities of interest. A review of this early work is 

presented in Al-Sahlawi (1989). In that time, demand was inelastic over the short 

term, yet elastic over the longer run, and closely related to the price of substitutes, 

namely oil. Given the simultaneity and endogeneity issues in estimating price 

elasticities in a supply and demand system, simultaneous equation models (SEM) and 

variations of instrumental variable approaches were used for identification of price 

elasticity and fuel substitution effects (Zellner & Palm 1974).  
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While these methods lead to a deeper understanding of the long-term drivers of natural 

gas prices, fundamental factors of supply and demand, such as weather and storage, 

which can be important at a national and certainly a regional level were largely 

attributed to unexplained noise. Mu (2007), used a reduced form approach to model 

equilibrium prices for natural gas contracts based on the Henry Hub spot price, to 

show that both weather and storage deviations from normal levels are important 

determinants in both the average price as well as in explaining changes in daily price 

volatility. Both changes in weather and surprise weekly storage announcements were 

important in explaining the price dynamics of this particular natural gas price. Since 

many financial derivative contracts are based on the Henry Hub price, the work is 

relevant for that financial market, but modeling these financial derivative prices in 

Chicago tells us little about the prices for the final consumers of natural gas and little 

about the prices for the New England region. 

 

Endogeneity between prices, quantities and other fundamental factors, such as gas 

storage, makes estimating the structural parameters of demand and supply tricky. Time 

series methods have been employed, including variations of the ARIMA models or 

VAR (vector autoregressive) models for the case of multiple time series when the 

equilibrium price and quantity are the variables of economic interest and not 

necessarily estimates of structural parameters. A number of papers (Nick & Thoenes 

2013; Marmer et al. 2007; Brown & Yücel 2008) present VAR approaches, where 

they include weather and storage to test previous findings of the relationship between 

oil prices and natural gas prices. They find that, when accounting for these factors in 
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the VAR framework, oil prices maintain their prominent role in explaining natural gas 

price movements. With these modeling approaches, none of the identification issues 

are resolved and the parameter estimates are predicated on the idea that all the 

variables are endogenous to the system. The coefficient estimates represent 

quantification of the time path of the effects of an unexpected shock of one of the 

variables of interest on others in the system that is assumed to be moving towards 

equilibrium. The VAR approach is less helpful in investigating long-term relationships 

or structural drivers or a permanent change in one of the included variables. For 

example, the marginal changes are an estimate of the shock working through each 

variable simultaneously. An exception to this drawback is if any of the variables are 

deemed to be co-integrated. Cointegration refers to the property between two or more 

non-stationary variables, where there exists a consistent relationship between the 

levels of the variables. This property can be tested by regressing one against another 

and ending up with a stationary error term (Murray 1994). For example, this is the 

case for the Henry Hub natural gas price and the WTI price for crude oil found in 

Brown & Yücel (2008). Because of this they were able to estimate a long run 

relationship between the two. 

 

The Henry Hub price is important for many financial contracts and represents the spot 

price of natural gas in the most liquid market in the US. The difference between this 

spot price and the price paid by end users in each region has been the topic of a 

number of studies. Since the 1970s, the market for natural gas has undergone a 

number of rounds of deregulation. By 1989, wellhead price ceilings had been 
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removed. Resultant regional natural gas spot markets emerged and an interstate 

network of pipelines developed. In 1992, pipelines were required to provide “open-

access” transportation, separating the pipeline owners’ ability to sell the commodity 

and the transportation capacity together (Apergis et al. 2015). De Vany & Walls 

(1993) argued that a measure of the extent of integration is to test the level of 

cointegration between wellhead prices and spot markets separated by a pipeline 

system. They found that in 1987, before the deregulation, cointegration relationships 

did not exist between most wellheads and spot prices. By 1991, more than 65% had 

become cointegrated as a result of the deregulation according to the authors. 

Subsequent studies have used this idea and tested the effect of deregulation and 

connectedness on the co-integration of a number of price series (Walls 1993; Apergis 

et al. 2015; Arano & Velikova 2010). They each find that deregulation led to a more 

integrated market where prices are functionally related to each other in the long run. 

To what extent pipeline capacity works to increase or decrease the level of integration 

is not addressed. These papers also do not address a marginal change in capacity on a 

region’s prices or consumption. Arano & Velikova (2010), for example, ask if citygate 

(the price the local utilities pay) and residential prices are cointegrated within a state. 

They find that they are related in the long run post-deregulation supporting the thesis 

that deregulation has led to better market integration. However, Marmer et al. (2007) 

use similar cointegration tests to identify constrained regions, whose price time series 

deviate from long-term relationships with the Henry Hub spot price. Surprisingly, they 

find that California is the most isolated and that there were no bottlenecks into the 

Northeast. The constrained conditions have been more recent, while their study’s data 
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covers 1988-2003. In any case, the methods in the paper would not allow for an 

estimate of a marginal change in pipeline capacity on price and quantity.  

 

Imposing more structure on a VAR system, typically by limiting directions of 

causality between variables, allows for estimates of a selection of structural 

relationships as well as estimates of the transient shock effects estimated from the 

VAR model. This approach is known as the Structural Vector Auto Regression 

(SVAR). Nick & Thoenes (2013) present an SVAR model for the German natural gas 

market. They find that supply side shocks may be overstated when viewed in a model 

that includes a more comprehensive account for other explanations of price 

movements, namely abnormal demand scenarios (particularly cold winters). Market 

fundamentals of storage and weather are found to be significant explanatory variables 

of the respective natural gas prices that the authors sought to model. While unexpected 

shocks are important to understand, they tell us little about a permanent change in 

supply, such as the addition of pipeline capacity to a region. 

 

A recent report prepared for the Department of Energy uses a proprietary modal and 

agent based model from Deloitte consulting to estimate longer-term (15-year) national 

and regional prices under various demand scenarios (DOE 2015; Deloitte Center for 

Energy Solutions 2015). The report supports the need for larger pipeline capacity to 

constrained regions, such as New England, but does not present marginal impacts of 

improved capacity or their interaction with other fundamentals explicitly. A more 

detailed study specific to the New England region was prepared by Competative 
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Energy Services (2014), which econometrically modeled daily demand but assumed 

exogenous prices of the various supply sources (pipeline, LNG, other compressed gas 

substitutes).  The Department of Energy assessed the adequacy of capacity in the 

Northeast region based on planned pipeline expansions and demand scenarios, but did 

not consider prices, but rather if the capacity would meet “essential human needs” in 

terms of quantity in disruption events (DOE 2013). The needs curiously do not include 

the need for natural gas in electric power generation, but just residential and 

commercial uses. The study finds that New England and New York City are 

vulnerable to pipeline disruptions by their definitions.  

 

While including pipeline capacity directly has, to my knowledge, not been included in 

econometric estimates of New England’s regional natural gas prices or quantities, it is 

often cited as a major driver in elevated prices for the region in recent winter months 

(Evans-Brown 2014; Gellerman 2015; National Grid 2014; Ailworth 2014b). There is 

theoretical and previous empirical justification for this hypothesis using economic 

theories of congestion. Oliver et al. (2014) present a model of the price differential 

between two hubs and the congestion of a connecting pipeline to motivate an 

empirical analysis of a Rocky Mountain region pipeline that closely matches their 

theoretical model. They find strong empirical support for the effect of congestion on 

spot prices.  

 

This paper will build on previous work modeling natural gas prices by including 

relevant fundamental factors of weather, storage, and alternative fuels while adding 
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and testing the addition of an indicator of pipeline capacity as an important 

explanatory variable for a regional natural gas market. A description of the data is 

followed by the econometric methods and results. 

 

Data 

The data for the study spans January 2002 to December 2014. Monthly data on natural 

gas prices and consumption of each state by sector (electric, residential, commercial, 

industrial) are from the EIA’s Natural Gas Monthly reports and obtained through the 

online data portal. Oil and LNG prices were also obtained through the EIA.  

 

There are multiple prices for natural gas, depending on the market of interest. The 

city-gate price (Algonquin Citygate for New England) is the wholesale price of gas 

received by local gas utilities from a pipeline operating company.  The sector-specific 

prices and consumption data comes from surveys reported from individual purchasers 

and the prices reflect the total cost of the natural gas: the commodity as well as 

delivery to the end-user (EIA 2015b). These sector prices reflect the type of 

contractual arrangement that the buyers have with the pipeline or utility for residential, 

commercial and industrial prices. So, although the Algonquin spot price is a general 

indicator of the monthly cost of natural gas in the region, it does not reflect the actual 

price paid by end users.  

 

Pipeline capacity data by state and region is reported annually by the FERC (Federal 

Energy Regulatory Commission), which is tasked with regulating pipeline use and 
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construction. FERC also approves future projects and release a projection of capacity 

based on announced or under construction additions and subtractions. Pipeline 

capacity is represented in MMcf/d, million cubic feet per day. An estimate of pipeline 

utilization for a month is the difference between total consumption for the month and 

the maximum possible based on pipeline capacity. For example, for the year 2014 the 

northeast states had a net import capacity of 120 bcf/month (billion cubic feet) and a 

consumption of 98 bcf in January, but only 62 bcf in July. For non-firm contract 

holders, the capacity remaining after firm demand is met reflects their time-varying 

supply.  

 

Total monthly consumption by sector is used to separate the firm contract demand 

(local utilities for residential, commercial and industrial uses) from electric sector gas 

consumption, which occurs under interruptible contracts. The difference between 

pipeline capacity and firm demand determines the capacity leftover for the electric 

sector. This is the capacity variation I use to identify the effect of a marginal increase 

in capacity on the gas market for the electric energy generators. In essence, this would 

assume price inelastic short-term demand from firm contract sectors. Exact monthly 

utilization data reported from each pipeline operator and not gleaned from EIA 

consumption data would be ideal, but it could not be obtained in a consistent manner 

and is not made available through public reporting.  

 

Previous studies have found strong relationships between the storage, or deviations 

from normal storage, and the price of natural gas (Mu 2007; Nick & Thoenes 2013). 
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Natural gas is stored in underground reserves in depleted oil and gas fields and in 

places where the right geologic properties for storage naturally occur such as salt 

caves and aquifers. The amount of gas in storage less the base gas needed to keep the 

storage site operational is known as the site’s working gas reserves. The EIA reports 

the quantity of gas stored by consuming region. This study uses working gas for the 

eastern consuming region. The extent to which storage affects regional prices within 

the context of other constraints will be tested in the SEM econometric specification.  

 

Degree days are defined as the difference between the daily average temperature and 

65°F. The monthly measure is the sum of the degree days for the month. Both heating 

and cooling degree days are expressed as positive values. The idea is that cooling 

demand is determined by how far above the temperature is from 65°F and the opposite 

for heating. Degree days and differences from their long-run (1981-2010) averages, or 

degree day anomalies, are strong explanatory variables for natural gas demand and 

prices. This data comes from NOAA’s National Weather Service Degree Day 

Statistics database, which provides population-weighted heating and cooling degree 

days by month, state, and region (NOAA 2015).  

 

 Model 

The economic system can be summarized by a system of simultaneous equations. 

There is one equation for each endogenous variable and one identity. Assessing the 

system in the structural form helps make clear the assumptions of the econometric 

specifications. 
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(1) 

                                                     

                             

(2) 

                                                

                     

(3) 

                                                        (4) 

               (5) 

 

The variables are defined as follows: 

 

Table 1 
 
 

Equation (1) is the natural gas demand equation for the electric energy generating 

sector and equation (2) is the supply equation. Equation (3) is the firm contract natural 

gas quantity consumed. Equation (4) represents working gas storage. Equation (5) is 

the identity making explicit the estimate of capacity left for the electric sector being 

the difference between firm contract consumption and total pipeline capacity. 

Including    , the measure of capacity for the electric energy sector in the 

econometric specifications, will test its importance in explaining price and quantity in 

this market. 
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The simultaneity between prices, quantities and working gas storage makes identifying 

the structural parameters (  for exogenous and   for endogenous variables) difficult. 

For example, to estimate a change in supply as a result of a change in price for natural 

gas (   ) using OLS, one would have to ensure that the variable for the price (    was 

uncorrelated with the error term (     in that equation. Given that the quantity and 

prices are simultaneous, the correlation is guaranteed. To see this, substitute     from 

equation (2) into equation (1) and solve for    . This algebra involves dividing 

equation (1), including the error term, through by a term including the parameter    , 

after the substitution. Therefore, the error term is correlated with consumption, 

violating an assumption of OLS leading to bias in the coefficient estimate (Murray 

2005). Using OLS to estimate a structural parameter would be a biased representation 

of the effect of prices on consumption as well as biasing other coefficients in the 

regression. The same logic holds for the other coefficients on endogenous variables.  

 

The reduced form equations, which represent endogenous variables only as a function 

of exogenous variables (from each equation), can provide unbiased estimates of the 

marginal effect of only exogenous regressors on the equilibrium price and quantity of 

natural gas for the electric sector. The reduced form models can be seen as simplified 

versions of the structural equation system with substitutions made for each 

endogenous variable. The path of the effect, such as a shift in demand leading to a 

change in price, is not identified with reduced form models. However, the reduced 

form equations are sufficient to estimate the effect of exogenous variables on the 

equilibrium values of endogenous variable to the system. They estimate changes in 
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equilibrium values as a result of changes in an exogenous variable since the exogenous 

variable may directly affect a number of endogenous variables simultaneously, which 

in turn determine equilibrium values of endogenous variables. By excluding the 

endogenous variables from each reduced form equation, but including exogenous 

variables from each structural equation in each estimated reduced form equation, the 

effect of the exogenous variables are captured, but their path through each endogenous 

variable is not.  

 

Taking an example of a change in temperature, an exogenous variable to the system, 

the reduced form equations would estimate the marginal effect on the equilibrium 

price and quantity for natural gas as a results of simultaneous shifts in both the 

demand and supply curves due the change in temperature. Whereas, the marginal 

effects estimated in the SEM model are interpreted as the marginal effect of a variable 

assuming the other endogenous variables are held fixed. To estimate the corollary 

equilibrium effects from the SEM model one has to multiply the indirect effects 

(through changes in other structural equations) and add that to the direct effect from 

the exogenous variable in the structural equation of interest. An overview and 

explanation of the use of reduced form models in estimating equilibrium price and 

quantities is covered in Murray (2005) and a full techincal explaination in Zellner 

(1974). The primary interest of this study, the effect of a capacity expansion on 

equilibrium price and quantity for natural gas for the electric sector can be addressed 

with a reduced from equations of the system. Therefore, I estimated the following 

reduced form equations: 
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(6) 

                                                           

         

(7) 

 

The capacity left for the electric sector,    , is exogenous to these two equations 

assuming     and     do not belong in the equation for    , firm contract demand. 

Essentially, this assumes firm demand and pipeline capacity are exogenous to the 

natural gas price and quantity for the electric sector. As the equations are stated in the 

structural form, there may be an indirect path from    , to     through working gas 

reserves, possibly challenging this assumption. Put another way, if changes in working 

gas reserves affect both firm and interruptible natural gas price supply and demand, 

which both in turn affect changes in working gas reserves, the firm demand and 

leftover capacity may be endogenous to equation (6) and (7) above. We will put this 

path of effects aside for investigation in the estimation of the SEM model, which can 

deal with this endogeneity.  

 

In order to obtain unbiased and consistent estimates of the reduced form equations 

above, a number of additional econometric issues need to be overcome. To meet the 

assumptions needed of OLS to be unbiased and consistent, the error term must be 

stationary, not correlated with its lags, and normally distributed. Stationarity refers to 
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the property of mean, variance, and autocorrelation of a time series that is consistent 

across time. Price and quantity time series are notoriously non-stationary. 

 

Regressions between non-stationary variables may lead to spurious results if the two 

variables happen to follow a similar random path across the observed time period 

(even if the error term of a regression appears stationary). If this is the case, large 

values of one series do correlate with large values of the others and vice-versa. 

Running OLS would then assume, incorrectly, that the mean is constant which leads to 

estimating relationships that are meaningless. Regressions between stationary and 

non-stationary variables also lead to estimation issues, as the non-stationarity is then 

passed on to the error term. Therefore, I ran tests for stationarity in the form of an 

augmented Dickey Fuller test, which tests the presence of a unit root, or a coefficient 

of 1 on a regression of a variable with the lag of itself. These are presented in Table 2. 

Those variables where we fail to reject a unit root, implying non-stationarity, are 

differenced and then re-tested for difference stationarity. The failure to reject a unit 

root for oil prices and LNG prices implies these are non-stationary series.  

 

The price variables and the measure of leftover capacity are included in natural log 

form. Therefore, I am estimating a log-log model between those variables and a log-

linear relationship between the variables left in levels. Both of these specifications 

assume a non-linear underlying relationship. Oliver et al. (2014) find this sort of non-

linear relationship between the capacity constraint and the price differential between 

pipeline nodes. How well this type of relationship describes the price and quantity data 
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in the Northeast will depend on the behavior of the error term in the regression. 

Namely, after variable transformations, the residuals from the regression should be 

normally distributed. Using only non-logged data led to a non-normally distributed 

error term and a fitted model that underestimated the price increases in constrained 

months. The quantile plots of the residuals of both specifications are found in Figure 4 

showing the residuals to be closer to normally distributed (the straight lines) using the 

log transformations.  

 

In each specification of the model using OLS, there exists month-to-month 

autocorrelation in the residual, which would bias the estimates of the coefficient 

standard errors. Although the inclusion of the degree-day variables captures much of 

the seasonality in the relationships, there exists a remaining seasonal correlation 

component of the error term. To overcome these two autocorrelation issues, I include a 

seasonal lag of the dependent variable and handle the remaining autocorrelation 

process using GLS (generalized least squares) using maximum likelihood estimation 

methods. First, I present the OLS estimates with no consideration for non-stationary 

variables followed by including them in differenced form. The preferred models, one 

for price and one for quantity, are the furthest right in Tables 3 and 5. 

  

GLS is well suited to handling time series data by modeling autocorrelation in the 

residual in order to obtain unbiased estimates of the standard errors of the coefficients 

for statistical inference of marginal effects. ARIMA (autoregressive integrated moving 

average) are closely related and are often used for near-term forecasting of economic 
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time series. The method relies on past history of a time series to make prediction of 

future values. Without the inclusion of exogenous regressors (ARIMAX in the 

parlance of these models), the method is considers atheoretical, as there exists no 

underlying theory as to why the series should behave in the way described (Hyndman 

& Athanasopoulos 2013). With the inclusion of exogenous regressors, the models 

become nearly equivalent to a GLS specification if the error lag structure is specified 

similarly. In the end, both are estimated using distributional assumptions and 

maximization of a log likelihood function to fit the parameters. Therefore as a 

robustness check, I performed an ARIMA analysis. The marginal effect results are 

similar, but the simulation predictions are slightly different due to how the error term 

is treated in step ahead forecasting. The model and results from this analysis are in the 

Appendix.   

 

Reduce Form Results 

Table 3 presents the results of the reduced form price regressions. Columns 1-4 show 

the OLS results with additions of oil prices, the seasonal lag, and LNG prices. Column 

5-6 shows the GLS estimates taking into account the remaining autocorrelation in the 

OLS error term. I specified an ARMA (1,1) process based on comparing the AIC from 

alternative model specifications for the residual autocorrelation. The resulting GLS 

estimates show a well-behaved, stationary error term with no autocorrelation. The 

same process was repeated for column 6, where the non-stationary regressors were 

replaced with the differenced series.  

 



 

 119 

The results show a significant relationship between the pipeline capacity left for the 

electric sector after taking into account firm demand and the price of gas for this 

sector. The coefficient (-.48) means that an increase in capacity left of 1% lead to a 

.48% decrease in price. The coefficient on degree day anomalies is significant and 

positive. Degree day deviations remain in level form, so a 1 degree change in degree 

day anomalies for a month leads to .06% increase in price.  

 

The coefficients on heating and cooling degree days are insignificant. These are highly 

correlated with the measure of leftover capacity, which is itself a function of degree 

days through firm demand, equation (3). Including both raises issues of collinearity. 

The coefficient correlation matrix reveals that the estimates of the coefficients of 

HDD, and CDD are in fact correlated with the leftover capacity, our variable of 

interest (correlations of .82 and .24 respectively).  Specifications with combinations of 

including temperature and capacity variables together and separately are in Table 4 as 

robustness checks. One would expect collinearity to inflate standard errors of 

coefficient on both variables, inflate t-values and thus I would fail to reject that 

coefficients are different then zero more often. The significance of the coefficient on 

leftover capacity in the model including both leftover capacity and temperature 

measures remains strong. This means that it is to a larger extent the congestion that 

drives the price electric generators pay. It also supports modeling the leftover capacity 

once the firm demand is accounted for when estimating natural gas prices for the 

electric sector. 
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That degree day anomalies were significant and not degree days itself may be partly a 

result of including a seasonal lag, which takes up much of the variation in monthly 

average temperatures. It is the deviations from normal conditions that provide 

explanation above and beyond the average monthly conditions. I left the working gas 

reserve variable out of the regression due to the simultaneity issues. Thus, the 

estimates of the effect of the temperature variables could be working through changes 

in working gas as well as through other excluded endogenous variables in the reduced 

form estimates. In order to separate those effects, one would have to estimate the 

whole system of equations with identifying restrictions.  

 

Table 5 shows the results for the reduced form equilibrium quantity estimates. The 

coefficients are of the expected sign. The seasonal pattern of natural gas consumption 

for electricity generation means more is consumed in the summer when prices are low 

and demand is high and less is consumed in the winter with constrained capacity and 

high prices (Figure 1). The positive and significant coefficient on CDD reflects the 

summer cooling demand. Since the equation is in reduced form, the negative sign on 

degree day anomalies may reflect the effect of the resultant increase in price that go 

along with those conditions. Again, a system of equations with identifying restrictions 

would be needed to disentangle these two effects. Lastly, our variable of interest, 

leftover capacity is significant and positively related to the amount consumed by 

electric energy generation.  

 

Increase in Capacity Scenario Analysis 
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The estimates of equilibrium price and quantity allows for estimating the effect of an 

increase in pipeline capacity to the region. Holding other covariates constant, a 1% 

increase in pipeline capacity would lead to .48% decrease in price and an increase in 

consumption of .21%. Price and quantity series for a number of weather scenarios are 

estimated as follows. The scenarios are assessed under current and future pipeline 

capacities. To do so, first I estimate the leftover capacity as a function of the quantity 

of gas consumed by firm contract holders, equation (5) in the system of equations 

above. Again, I am assuming that the price and quantity consumed by the electric 

energy sector is exogenous to the firm quantity demand    . As a result, I can 

estimate this separately, as neither    , or     appear in the equation for leftover 

capacity,    .   

 

The regression results for estimating     are in Table 6. I use the same process as the 

previous regressions. First, I fit the OLS model with the covariates, determine the 

error structure of the residuals, and then re-estimate with GLS accounting for the error 

structure (ARMA(2,1)). The model is a good fit with a small standard error (.12), 

which is a 1.1% percent error. The difference between this estimate of firm demand 

and the pipeline capacity, equation (5), creates the capacity left for the electric sector. 

 

Based on current proposed expansion on the Algonquin and Tennessee pipelines, a 

marginal increase in capacity of 450 MMcf/d, about an 11% increase in total capacity 

into New England is currently planned (ICF International 2014). The expansion on the 

Algonquin line is largely along existing routs and is comprised of increasing the 
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diameter of the pipeline in certain sections as well as upgrading compressors stations 

and adding a few auxiliary loops (FERC 2015). The Tennessee pipeline expansion 

involves siting new routs from New York through western Massachusetts to the 

greater Boston, MA area (Kinder Morgan 2015). Both projects are making their way 

through the review and regulatory process and face opposition for their impacts on the 

planned routs and the environmental implications of the fossil fuel energy (Ailworth 

2014a; Jay Fitzgerald 2014; Zeller 2014; Marc Levy 2014). They are both slated to be 

completed in 2016. While the timing and exact capacity of these particular project will 

likely change over time, this study will use the 450 MMcf/d as the increase in pipeline 

capacity for the scenarios and to estimate the effect under scenarios of winter weather.  

 

To generate the weather scenarios, temperature series for a selection of years are made 

from the temperature dataset. The degree day data from NOAA in this form goes back 

to 1997. On the basis of cumulative HDD, the coldest winter was that of 2003/4, 

followed closely by the winter of 2013/14. The winter of 2003/04 is used as the severe 

cold scenario, 2008/09 the median and 2011/12 the low demand scenario. I simulate a 

year window, for example from September 2003 to the end of August 2004, to capture 

the path of the equilibrium price and quantity through a continuous winter. By 

presenting a range of winter severities, the impact of the expansions is shown under a 

range of possible weather conditions. The other exogenous covariates, oil prices and 

LNG prices, neither of which exhibit seasonality, are held fixed at their averages, and 

thus differenced to equal zero, for the scenarios. The lagged dependent variables, 

natural gas prices for electric power generation and total consumption from all other 
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sectors are the 2014 price series.  

 

Figure 5 and Tables 7 and 8 show the price and quantity projections for the winter 

scenarios under the current and expanded pipeline capacities. The figures show price 

in solid lines and quantity in dashed lines for both the current (black) and future (red) 

capacity scenarios. Prices are the highest in January when the system is constrained by 

high heating demand from firm contract holders, while the quantity consumed is 

highest in the summer months when price is low and electric energy demand is high. 

The severity of the winter increases the price spike as well as increasing the difference 

between the two capacity scenarios.  For the mild winter, there is a difference in price 

of  $1.16/Mcf in January, while under the severe winter scenario this increases to 

$2.96/Mcf. The quantity projections are inversely related to the price. The increase in 

capacity alleviates the congestion but is relatively more important in colder winters. In 

terms of the difference in total expenditure (price times quantity) of natural gas 

consumed by the electric sector, the increased capacity reduces overall total 

expenditure in the electric sector by just over $35 million for the month of January 

alone. This reflects the lower price and slightly increased quantity consumed. The 

difference is $31 million under the median January and $15 million under the mild 

scenario.  

 

SEM Model 
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The reduced form models are useful in estimating equilibrium price and quantity, but 

have their drawbacks. I was unable to include working gas reserves, a possibly 

important explanatory variable, directly due to endogeneity. The reduced form 

coefficients are the total, direct plus indirect, effects between the variables in the 

system. Thus, I may be attributing an effect to degree days, for instance, that is the 

sum of degree day’s direct effect on demand as well as its indirect effect through 

changes in working gas reserves, if working gas reserves effect supply or demand 

directly. Additionally, the structural parameters describe the shape of the demand and 

supply curve. Of particular interest are the price elasticities. Disentangling these 

effects by estimating the structural parameters that describe the supply and demand 

curve for natural gas in this market requires estimating the SEM model.  

 

Simultaneous equation models are used to identify the path of effects of a change in an 

exogenous variable on endogenous variables in the system. They are used to identify 

the direct and indirect effects (through other endogenous variables) in order to infer 

causality from one variable to another. For example, if the effect of increased capacity 

shifted both the supply of natural gas, but also the storage, which may lead to a change 

in equilibrium price, an SEM model could quantify what portion of the effect of the 

change in capacity on prices was due to a change in storage versus a change in supply. 

The reduced form model estimates only the total effect, thus I could not separate the 

direct and indirect (through storage) effects. Therefore, for causal inference, which 

relies on estimating the effect on one variable conditional on all other held constant, 

SEMs are superior. A reduced form model does not assume all other variables are held 
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constant and thus the estimated marginal effects are exposed to issues of indirect 

causality explained above. This is important for estimating the shape of the demand or 

supply curve, but not necessary for estimating changes in equilibrium values. 

Equilibrium values are, by definition, the outcome of all the endogenous variables 

changing simultaneously. Therefore, to identify the price elasticities of supply and 

demand (shape of the curves), I use an SEM model. To estimate changes in 

equilibrium values as a results of an expansion of capacity, I use a reduced form 

model. Additionally, I compare the total effect from the SEM model to the reduced 

form. Analytically these are the same, but the methods to estimate the equations are 

slightly different.  

 

I estimate the dynamic simultaneous equations model (SEM) of the system presented 

earlier. I include the one-month lag of each endogenous variable as well as one 

seasonal lag term to its respective equation to handle the time series nature of the data. 

This was based on autocorrelation function plots of the residuals post estimation. After 

the lags were added, there are no significant lags in the errors term from each 

equation.  

 

To identify the structural parameters, there needs to be included at least as many 

exogenous variables as there are equations for endogenous variables in the system. I 

use the temperature series, oil and LNG prices as well as the lags of each endogenous 

variable as instruments in the 3SLS estimation of the system. Therefore, my model is 

over-identified with 13 exogenous or predetermined variables, including the lags, to 4 
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structural equations. The lagged endogenous variables are considered predetermined, 

therefore not correlated with the current period’s error term and exogenous to the 

current period (Fox 2002; Henningsen et al. 2007). In addition, a minimum of one 

exogenous variable must be left out of each equation for identification. This is the 

SEM version of the exclusion restriction in instrumental variable estimates. 12 

 

The 3SLS results are presented in Table 9. Each column presents the results of the 

structural equations described in the model. 3SLS combines 2SLS, the system of 

equations version of instrumental variables, and SUR (seemingly unrelated 

regression), which takes into account the remaining correlation between the error 

terms across each equation and is estimated with generalized method of moments 

(GMM). 3SLS is therefore more efficient then 2SLS. The null hypothesis of the 

Hausman test is that the exogenous variables are uncorrelated with the errors term 

from each equation. Under the null hypothesis both 2SLS and 3SLS are consistent, 

while under the alternative hypothesis 2SLS is consistent while 3SLS is not. I am 

unable to conduct a Hausman test due to computational issues in the R package 

systemfit. Workarounds are currently being explored. In the meantime as a robustness 

check, the 2SLS results are shown in Table 10. The 2SLS are less efficient but 

unbiased in the case where the exogenous variables are correlated with the error terms.  

The results are very close, showing similar magnitudes and significance in important 

relationships although the price elasticity of demand is only significantly different than 

zero at the 10% level. 
                                                 
12 Formally, The order condition (necessary for identification), as many exogenous variables as 
endogenous variables in the system, is therefore satisfied.  I also checked that the rank condition 
(sufficient for identification) is also satisfied given the system specified.  
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The coefficients for heating degree days and degree day anomalies are positive and 

significant in the demand equation, reflecting demand being driven by temperature. 

The variable of interest, capacity for the electric sector, is significant in the supply 

equation. An increase of capacity of one percent leads to an increase of .7% in 

quantity supplied, capturing the shift in the supply curve. While the reduced form 

regressions quantified the total effect on equilibrium price and quantity, the SEM 

model made explicit the path of the effect, through shifts in the supply curve. The 

price elasticity of demand is -.57 and significant. Thus the total effect of a 1% change 

of capacity on equilibrium price, the multiplication of the indirect effects of capacity 

on supply and quantity supplied on demand, is -.404%. This should be, and it is in this 

case, close to the reduced form estimate. The advantage of the SEM is now I can 

identify the path of the effect and the shape of the supply and demand curve. The 

supply price elasticity is small, negative and significant, which is against what theory 

would imply. However, very low and sometimes negative supply price elasticities for 

natural gas, especially over the short run, have been found before, but are not common 

(Arora 2014).  The elasticity results show that both supply and demand are price 

inelastic over this period. The inelastic demand and supply price elasticities means that 

small excess supplies or demands are only cleared with a large change in price, which 

helps explain the volatility of the price for natural gas, especially for interruptible 

contract holders.  
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Previous work has found changes in natural gas storage conditions to be significant in 

describing price movements in reduced form models (Brown & Yücel 2008; Mu 

2007), but by including them, each assumes that their measure of storage levels is 

exogenous to the current price of natural gas. If this is not the case, the coefficients 

from those regression results are biased. The inclusion of working gas reserves to the 

SEM as an endogenous variable led to unexpected results. Changes in working gas 

reserves was insignificant in explaining shifts in the supply curve but positively and 

significantly related to demand. The results of the working gas structural equation are 

also unexpected. Changes in reserves are positively related to electric energy 

consumption of natural gas, which would naturally be a draw on reserves. Working 

gas reserves are also, curiously, significantly positively related with both HDD and 

CDD. The effect of degree day anomalies are negative and significant which may 

reflect the difference from average storage conditions in times of particularly high 

demand. The results raise more questions then answers for the effect of natural gas 

storage in the market for the electric generating sector.  

 

The way the variation in working gas explains the dynamics of this system appears to 

be against what theory would imply. One would expect larger working gas reserves to 

decrease price by increasing available supply. While I included demands and therefore 

withdrawals on the reserves, explanatory variables for the variation in additions to 

working gas storage from producers were not included and could be a direction of 

future inquiry. Since the seasonal pattern is handled by the seasonal lagged term and 

the temperature variables, variation in additions to storage above and beyond normal 
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conditions is assumed to be random noise. The gas is being stored to meet 

expectations of future demand, so if explanatory variables of storage additions are 

correlated with already included variables to the system, the results could be biased. 

 

Between the curious supply price elasticities and the results of the working gas 

variable, I do not put much weight on the SEM results at this point other then to 

reinforce that leftover capacity is a possibly significant driver of supply for this natural 

gas consuming sector and that the system appears to be price inelastic. These low price 

elasticities are understandable as supply is fixed with pipeline capacity and demand 

the result of running large fixed capital.  

 

Discussion 

The results of the reduced form regressions show that capacity constraints are a driver 

of the increase in the price of natural gas in cold winter months. The SEM results 

support the case for including the capacity constraints as an explanatory variable of the 

supply of gas to a constrained region such as New England.  

 

Capacity additions represent a shift in the supply curve for natural gas, as identified 

through the SEM results. The total effect (direct and indirect) of a 1% increase in 

capacity of prices from the SEM results was similar, but slightly smaller, to that found 

with the reduced form model, -.44 and -48% respectively. Analytically, these marginal 

effects on equilibrium prices should be identical assuming the structural model is the 

correct model of the system. The reduced form model is just a simplification of the 
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structural model. However, the reduced form models are estimated with GLS using 

maximum likelihood methods, while the 3SLS estimate with GMM. While both are 

consistent, meaning they converge to the true value of a parameter they no not have 

identical small sample properties. Additionally, the SEM model explicitly includes the 

working gas reserves, which could provide a back-door rout for electric sector demand 

to effect firm demand and thus challenge an assumption needed for the reduced form 

models to be unbiased. This rout, working gas reserves effecting firm demand, is 

insignificant in the SEM equations. The two approaches produced similar equilibrium 

results, but the SEM model allowed for the identification of the shape of the supply 

and demand curves. 

 

To a large extent, the entire system is driven by temperature dependent demand, so 

identifying the effect of the capacity constraint above and beyond the effect of the 

temperature variation was always going to be a tall task. That the variable proposed in 

this study to represent the leftover capacity for the non-firm contract holders remained 

significant through many specifications, including ones with other correlated 

covariates, supports the inclusion of this fundamental factor.  

 

The inclusion of the capacity measure and its significance to explaining both price and 

quantity provides a path to estimate the effect of increasing the capacity of pipelines 

into New England. This study considers both equilibrium price and quantity changes 

based on the marginal effects of constrained conditions through the study period. 

Other approaches have estimated the effect of pipeline additions for New England 
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(Competitive Energy Services 2014; DOE 2013; ICF International 2014) which either 

assume price schedules or do not allow for feedbacks between price and quantity, or 

only consider price not quantity or vice versa. Studies up until this point have left an 

incomplete picture for the consequences for the electric energy sector. These results 

quantify the effect when both supply and demand are taken into account to come to an 

estimate of the change in total expenditure on natural gas by the electric energy 

generators.  

 

Temperature is a significant driver of price and quantity variations, which is in line 

with studies of other natural gas markets (Mu 2007; Stephen P. A. Brown & Mike K. 

Yucel 2008; Nick & Thoenes 2013). While quantities consumed reflect fundamental 

demand factors, prices reflect scarcity and the extent to which conditions surprise 

market participants. Large degree day anomalies capture conditions that are relatively 

more rare and may misalign with market participants expectations of a month’s 

conditions and drive up or down prices to a larger extent. I estimated the effect of 

increased capacity under a range of winter severities. January, in particular, over the 

study period led to constrained conditions and large price increases. Depending on the 

severity of the winter month, the effect of the capacity additions of 450 MMcf/d in 

terms of total expenditure bye the electric sector varies by over 100% (15 Million to 

31 Million) for a single month. The non-linear relationship between temperature 

conditions and the benefits of additional capacity makes using average conditions 

misleading.  Considering the benefits under more severe winters, or with a 
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probabilistically weighted expected benefit may provide directions moving forward to 

estimate the benefits of additional pipeline capacity.  

 

Given this non-linearity, pipeline capacity affects the range of prices, reducing the 

winter spikes to a larger extent in abnormal conditions. Thus, pipeline capacity 

reduces the price risk of energy supply for the region. However, excess capacity to 

address winter constrained conditions will come as an additional cost in other times, 

where the large fixed cost of the system are spread out over the smaller gas volumes 

that are flowing. A weakness of the methods used in this study is that they do not 

address directly the possible price changes due to the effect of larger fixed costs of 

pipeline operation. To what extent the firm demand or interruptible customers share 

the burden of the increased fixed cost is unclear.  

 

The objective of this paper was to estimate changes in equilibrium prices and 

quantities of natural gas consumed by the electric sector as the results of a change in 

pipeline capacity. It is the equilibrium prices for natural gas that describe the per-unit 

cost of the input to electric generation. These costs are passed along to electric 

ratepayers. Thus, to estimate the effect of increased capacity on ratepayers, and inform 

the debate about how the cost of electric energy might change, a reduced form model 

is well suited. Translating the price for gas that natural gas generators pay to the cost 

of electric energy to residents and businesses is left for future work. The SEM results 

clear up the causal mechanism, a shift in supply, and confirm a similar total effect as 
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from the reduced form models. In addition, the SEM model shows that both the supply 

and demand curves are price inelastic. 

 

This study provides one piece of the puzzle in determining the effects of proposed 

expansions, but not the whole picture. In the debate about the impact of proposed 

pipelines, this study offers a way to quantify the effect on the electric energy 

generators input price and quantity for natural gas. The benefits to the electric energy  

sector are potentially large by allowing larger quantities of gas to be consumed at 

lower price for generation. These benefits should be weighed against the costs of the 

planned routs, the environmental consequences, natural gas price in other sectors and 

other indirect benefits and costs.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 134 

REFERENCES 

Ailworth, 2013. Wholesale Gas Prices Rise in N.E. Boston Globe. Available at: 
http://www.bostonglobe.com/business/2013/08/01/tight-pipeline-capacity-
pushes-natural-gas-prices-
higher/vApWO3InNMvmgeHx93QZ7O/story.html#comments [Accessed 
December 5, 2014]. 

 
Ailworth, E., 2014a. Company proposes natural gas pipeline to cross Massachusetts - 

The Boston Globe. BostonGlobe.com. Available at: 
https://www.bostonglobe.com/business/2014/06/08/company-proposes-
natural-gas-pipeline-cross-
massachusetts/uvoxHT3zECRockdVzTIADO/story.html [Accessed April 28, 
2015]. 

Ailworth, E., 2014b. Natural gas prices spike - The Boston Globe. BostonGlobe.com. 
Available at: https://www.bostonglobe.com/business/2014/01/10/natural-gas-
prices-spike/H8d7cjyAbnE8cnNliWzEHN/story.html [Accessed April 28, 
2015]. 

 
Apergis, N., Bowden, N. & Payne, J.E., 2015. Downstream integration of natural gas 

prices across U.S. states: Evidence from deregulation regime shifts. Energy 
Economics, 49, pp.82–92. 

Arano, K. & Velikova, M., 2010. Estimating the long-run equilibrium relationship: 
The case of city-gate and residential natural gas prices. Energy Economics, 
32(4), pp.901–907. 

Arora, V., 2014. Estimates of the price elasticities of natural gas supply and demand in 
the United States. Available at: http://mpra.ub.uni-muenchen.de/54232/ 
[Accessed May 28, 2015]. 

Brown, S.P.A. & Yücel, M.K., 2008. Deliverability and regional pricing in U.S. 
natural gas markets. Energy Economics, 30(5), pp.2441–2453. 

Competitive Energy Services, 2014. Assessing Natural Gas Supply Options for New 
England and Their Impacts of Natural Gas and Electricity Prices. 

Deloitte Center for Energy Solutions, 2015. Deloitte Market Point. Available at: 
http://www.deloitte.com/assets/Dcom-
UnitedStates/Local%20Assets/Documents/us_er_marketpoint_marketbuilder0
11411.PDF. 

DOE, 2013. Assessment of the Adequacy of Natural Gas Pipeline Capacity in the 
Northeast United States. 



 

 135 

DOE, 2014. July 28 Stakeholder Meeting on Natural Gas – Electricity 
Interdependence. Available at: 
http://energy.gov/sites/prod/files/2014/07/f17/qermeeting_denver_background
memo.pdf. 

DOE, 2015. Natural Gas Infrastructure Implications of Increased Demand From the 
Electric Power Sector. 

EIA, 2015a. About U.S. Natural Gas Pipelines. Available at: 
http://www.eia.gov/pub/oil_gas/natural_gas/analysis_publications/ngpipeline/r
egulatory.html [Accessed April 1, 2015]. 

EIA, 2014. New England relying more on natural gas along with hydroelectric imports 
from Canada. Available at: 
http://www.eia.gov/todayinenergy/detail.cfm?id=17671 [Accessed December 
9, 2014]. 

EIA, 2013. Northeast grows increasingly reliant on natural gas for power generation. 
Today in Energy. Available at: 
http://www.eia.gov/todayinenergy/detail.cfm?id=13751 [Accessed December 
4, 2014]. 

EIA, 2015b. Table Definitions, Sources, and Explanatory Notes. Available at: 
http://www.eia.gov/dnav/ng/TblDefs/ng_pri_sum_tbldef2.asp [Accessed April 
10, 2015]. 

 
 
Evans-Brown, S., 2014. New England Electricity Prices Spike As Gas Pipelines Lag. 

NPR.org. Available at: http://www.npr.org/2014/11/05/361420484/new-
england-electricity-prices-spike-as-gas-pipelines-lag [Accessed April 28, 
2015]. 

FERC, 2015. Algonquin Incremental Market Project: Final Environmental Impact 
Statement. 

Fox, J., 2002. Structural equation models. appendix to an r and s-plus companion to 
applied regression, McMaster University, Canada, http://cran. r-project. 
org/doc/contrib/Fox-Companion/appendixsems. pdf. Available at: 
http://www.vps.fmvz.usp.br/CRAN/doc/contrib/Fox-Companion/appendix-
sems.pdf [Accessed May 28, 2015]. 

Gellerman, B., 2015. As Winter Electricity Prices Jump, Mass. Debate Over Natural 
Gas Pipelines Heats Up. wbur. Available at: 
http://www.wbur.org/2015/03/10/natural-gas-pipelines [Accessed April 28, 
2015]. 



 

 136 

Henningsen, A., Hamann, J.D. & others, 2007. systemfit: A package for estimating 
systems of simultaneous equations in R. Journal of Statistical Software, 23(4), 
pp.1–40. 

Hyndman, R.J. & Athanasopoulos, G., 2013. Forecasting: principles and practice, 
S.l.: OTexts. 

ICF International, 2014. Assessment of New England’s Natural Gas Pipeline Capacity 
to Satisfy Short and Near-Term Electric Generation Needs: Phase II. 

ISO New England, 2015. ISO on Background: State of the Grid - Managing a System 
in Transition. 

 
Jay Fitzgerald, 2014. In face of opposition, company to reroute pipeline. The Boston 

Globe. Available at: http://www.bostonglobe.com/business/2014/12/05/face-
opposition-company-reroute-pipeline/wj0k4WbfYr5FFyyHtPmFGJ/story.html 
[Accessed December 8, 2014]. 

Kinder Morgan, 2015. Kinder Morgan Northeast Expansion Project Open Season. 
Available at: 
http://www.kindermorgan.com/business/gas_pipelines/east/neenergydirect/ 
[Accessed April 20, 2015]. 

Marc Levy, 2014. U.S. Shale Gas Line to the Northeast Gets Federal Nod. Associated 
Press. Available at: http://abcnews.go.com/US/wireStory/shale-gas-pipeline-
northeast-fed-nod-27343406 [Accessed December 8, 2014]. 

Marmer, V., Shapiro, D. & MacAvoy, P., 2007. Bottlenecks in regional markets for 
natural gas transmission services. Energy Economics, 29(1), pp.37–45. 

Mohammed A. Al-Sahlawi, 1989. The Demand for Natural Gas: A Survey of Price 
and Income Elasticities. The Energy Journal, 10(1), pp.77–90. 

Morris, G., 2013. Long-Term Contracts Remain Elusive In Power Sector. Available 
at: http://www.aogr.com/web-exclusives/exclusive-story/long-term-contracts-
remain-elusive-in-power-sector [Accessed April 1, 2015]. 

Murray, M.P., 1994. A Drunk and Her Dog: An Illustration of Cointegration and Error 
Correction. The American Statistician, 48(1), p.37. 

Murray, M.P., 2005. Econometrics: A Modern Introduction 1 edition., Boston: 
Prentice Hall. 

Mu, X., 2007. Weather, storage, and natural gas price dynamics: Fundamentals and 
volatility. Energy Economics, 29(1), pp.46–63. 



 

 137 

National Grid, 2014. National Grid Files for Winter Rates Massachusetts. Available 
at: http://www.nationalgridus.com/aboutus/a3-1_news2.asp?document=8764 
[Accessed December 4, 2014]. 

Nick, S. & Thoenes, S., 2013. What drives natural gas prices? A structural VAR 
approach, EWI Working Paper. Available at: 
http://www.econstor.eu/handle/10419/74410 [Accessed December 3, 2014]. 

NOAA, 2015. Climate Prediction Center - Monitoring & Data: Degree Days Statistics. 
Available at: 
http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/cdus/degree_days
/ [Accessed April 10, 2015]. 

Oliver, M., Finnoff, D. & Mason, C., 2014. Optimal Capacity and Two-Part Pricing 
for Natural Gas Pipelines under Alternative Regulatory Constraints. Available 
at: 
http://www.usaee.org/usaee2014/submissions/OnlineProceedings/Oliver_Finn
off_Mason_Feb2014.pdf [Accessed May 13, 2015]. 

Oliver, M., Mason, C. & Finnoff, D., 2014. Pipeline Congestion and Natural Gas 
Basis Differentials: Theory and Evidence. Journal of Regulatory Economics, 
14(3), pp.261–291. 

Pfaff, B., 2008. VAR, SVAR and SVEC models: Implementation within R package 
vars. Journal of Statistical Software, 27(4), pp.1–32. 

Stephen P. A. Brown & Mike K. Yucel, 2008. What Drives Natural Gas Prices. The 
Energy Journal, 29(2), pp.45–60. 

De Vany, A. & Walls, W.D., 1993. Pipeline Access and Market Integration in the 
Natural Gas Industry: Evidence from Cointegration Tests. The Energy Journal, 
14(4), pp.1–19. 

Walls, W.D., 1993. Competition, Prices, and Efficiency in the Deregulated Gas 
Pipeline Network: A Multivariate Cointegration Analysis. Journal of Energy 
and Development, 19(1). Available at: 
http://www.osti.gov/scitech/biblio/229903 [Accessed May 13, 2015]. 

Zeller, T., 2014. Natural Gas Pipeline Plan Creates Rift in Massachusetts. The New 
York Times. Available at: 
http://www.nytimes.com/2014/07/11/business/energy-environment/new-
england-confronts-surging-demand-for-natural-gas.html [Accessed April 28, 
2015]. 

Zellner, A. & Palm, F., 1974. Time Series Analysis and Simultaneous Equation 
Econometric Models. Journal of Econometrics, 2(1), pp.17–54. 

 



 

 138 

Tables and Figures 

TABLE 1 
Variable Definitions 

Symbol Name Units Exogenous 
   NG price for electric sector $  
   NG quantity for electric sector MMcf   
   NG capacity for electric sector MMcf  
   NG consumed by other sectors MMcf  
   Working gas reserves MMcf  
    Heating degree days °F x 
CDD Cooling degree days °F x 

    Degree day anomaly °F x 

     WTI oil price $ x 
     LNG import price $ x 

      New England pipeline capacity MMcf x 

 
Note: Price, consumption and capacity data are from the EIA’s Natural Gas Monthly. 
Degree day data are from NOAA’s National Weather Service Degree Day Statistics 
database. The last column indicates the assumptions of erogeneity of the variables to the 
system for identification.  
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TABLE 2 
Unit Root Tests 

Augmented Dickey-Fuller  

 Levels Differences 
NG price for electric -3.6283**  
Leftover capacity -5.49***  
Degree days -17.61***  
Degree day diff -5.09***  
Oil price -2.36 -5.9732*** 
Working gas diff -3.33* -5.1506*** 
Working gas -7.57***  
LNG price -2.53 -5.6432*** 

*p<.10 **p<.05 ***p<0.01 
Note: The test statistic for the Augmented Dickey-Fuller 
test of a unit root is presented for both the level data as well 
as the differenced data. The null hypothesis of a unit root, 
implying non-stationary is rejected with significant test 
statistics. Variables are in levels or first differences.  
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TABLE 3 
Equilibrium Natural Gas Price 
New England Electric Sector 

 
Dependent variable:   

Log NG Price Electric   
 OLS    GLS  
 (1) (2) (3) (4) (5) (6) 

Log NG Capacity  0.030 -0.586** -0.979*** -0.595*** -0.563*** -0.479** 
 (0.201) (0.235) (0.214) (0.176) (0.187) (0.186) 

HDD 0.00048*** 0.00010 -0.00026 -0.00004 0.00001 0.00005 
 (0.0002) (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) 

CDD 0.00058 0.00013 0.00003 0.00023 0.00021 0.00028 
 (0.001) (0.001) (0.001) (0.0004) (0.0003) (0.0003) 

DDd 0.00121*** 0.00128*** 0.00103*** 0.00066** 0.00060*** 0.00058*** 
 (0.0004) (0.0004) (0.0004) (0.0003) (0.0002) (0.0002) 

Log Oil Price  0.356*** 0.191** 0.017 0.171  
  (0.081) (0.080) (0.067) (0.139)  

Seasonal Lag   0.406*** 0.239*** 0.301*** 0.280*** 
   (0.070) (0.059) (0.076) (0.080) 

Log LNG Price    0.629*** 0.123**  
    (0.071) (0.061)  

Δ Log Oil Price      0.060 
      (0.163) 

Δ LNG Price      0.003 
      (0.004) 

Observations 156 156 144 144 144 144 
R2 0.209 0.300 0.427 0.638   

Adjusted R2 0.188 0.277 0.401 0.620   
Log Likelihood     46.593 45.653 
Akaike Inf. Crit.     -71.185 -69.306 

Bayesian Inf. 
Crit.     -38.594 -36.638 

Residual Std. 
Error 

0.386 (df = 
151) 

0.364 (df 
= 150) 

0.318 (df = 
137) 

0.255 (df = 
135)   

F Statistic 
9.985*** 
(df = 4; 

151) 

12.883*** 
(df = 5; 

150) 

16.988*** (df 
= 6; 137) 

34.049*** (df 
= 7; 135)   

*p<.10 **p<.05 ***p<0.01 
 

Note: Each column represents a different specification of the model explaining natural gas prices paid 
by the electric energy sector. The last 2 columns are from GLS regressions with ARMA(1,1) errors 
specified based on the residuals of the OLS regression. Observation lengths differ to the inclusion of a 
seasonal lag. Oil and LNG prices are in first differences in the last column due to non-stationarity 
issues. 
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TABLE 4 
Test of Treatment of Temperature Variables 

Equilibrium Natural Gas Price for New England Electric Sector 
 

Dependent variable:   
Log NG Price Electric   

 (1) (2) (3) (4) (5) 
Log NG Capacity    -0.47868** -0.56018*** -0.50246*** 

   (0.18643) (0.10376) (0.18817) 
HDD  0.00038*** 0.00005  0.00008 

  (0.00009) (0.00014)  (0.00014) 
CDD  0.00051* 0.00028  0.00024 

  (0.00029) (0.00029)  (0.00035) 
DDd 0.00079*** 0.00048*** 0.00058*** 0.00065***  

 (0.00016) (0.00018) (0.00019) (0.00017)  
HDDd     0.00055*** 

     (0.00019) 
CDDd     0.00091 

     (0.00063) 
Seasonal Lag 0.03009*** 0.02609***  0.02876*** 0.02826*** 

 (0.00913) (0.00898)  (0.00884) (0.00894) 
Δ Log Oil Price   0.28047***   

   (0.07951)   
Δ LNG Price 0.10587 0.04734 0.05992 0.06945 0.01851 

 (0.15612) (0.16058) (0.16323) (0.16083) (0.16679) 
Observations 144 144 144 144 144 

Log Likelihood 13.718 6.764 9.250 23.793 2.970 
Akaike Inf. Crit. -11.436 6.473 3.501 -29.586 18.060 

Bayesian Inf. 
Crit. 12.040 35.673 35.540 -3.241 52.923 

*p<.10 **p<.05 ***p<0.01 
Note: GLS regressions of variations of the preferred natural gas price model are presented. 
Column 3 is the preferred model, column 6 in Table 3. The measure of capacity for the electric 
energy sector remains significant through alternative specifications of the model with 
combinations of correlated temperature variables 
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TABLE 5 
Equilibrium Natural Gas Quantity 

New England Electric Sector 
 

Dependent variable:      
Log NG Quantity for Electric      

 OLS    GLS  
 (1) (2) (3) (4) (5) (6) 

Log NG Capacity  0.522*** 0.443*** 0.293*** 0.266*** 0.268*** 0.214** 
 (0.072) (0.094) (0.079) (0.078) (0.097) (0.090) 

HDD 0.00019*** 0.00014* 0.00009 0.00008 0.00006 0.00003 
 (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) (0.0001) 

CDD 0.00178*** 0.00172*** 0.00143*** 0.00141*** 0.00139*** 0.00143*** 
 (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) (0.0002) 

DDd -0.00016 -0.00017 -0.00028** -0.00021 -0.00018 -0.00018 
 (0.0002) (0.0002) (0.0001) (0.0001) (0.0001) (0.0001) 

Log Oil Price  0.040 -0.057* -0.021 -0.045  
  (0.030) (0.030) (0.032) (0.046)  

Seasonal Lag   0.293*** 0.286*** 0.211*** 0.193*** 
   (0.064) (0.063) (0.065) (0.062) 

Log LNG Price    -0.085*** -0.011  
    (0.030) (0.036)  

Δ Log Oil Price      -0.165 
      (0.102) 

Δ LNG Price      0.005 
      (0.003) 

Observations 168 168 156 155 155 156 
R2 0.607 0.611 0.695 0.710   

Adjusted R2 0.597 0.599 0.683 0.696   
Log Likelihood     135.010 137.551 
Akaike Inf. Crit.     -246.020 -251.101 

Bayesian Inf. 
Crit.     -209.499 -214.503 

Residual Std. 
Error 

0.151 (df = 
163) 

0.151 (df 
= 162) 

0.122 (df = 
149) 

0.119 (df = 
147)   

F Statistic 
62.860*** 
(df = 4; 

163) 

50.868*** 
(df = 5; 

162) 

56.584*** (df 
= 6; 149) 

51.371*** (df 
= 7; 147)   

*p<.10 **p<.05 ***p<0.01 
 

Note: Each column represents a different specification of the model explaining natural gas quantity 
consumed by the electric sector. The last 2 columns are from GLS regressions with ARMA(2,1) errors 
specified based on the residuals of the OLS regression. Observation lengths differ due to the inclusion 
of a seasonal lag. Oil and LNG prices are in first differences in the last column due to non-stationarity 
issues. 
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TABLE 6 
Estimate of Natural Gas Quantity 

New England Firm Contract Quantity 
  

 Dependent variable: 
 Firm Contract Quantity Consumed 

 OLS  GLS 

 (1) (2) (3) 
HDD 0.00120*** 0.00039*** 0.00051*** 

 (0.00004) (0.0001) (0.0001) 
CDD -0.00008 -0.00016 -0.00007 

 (0.0003) (0.0002) (0.0001) 
DDd -0.00028 0.00043*** 0.00017 

 (0.0002) (0.0001) (0.0001) 
Δ Log Oil Price 0.106 -0.123 -0.150* 

 (0.157) (0.115) (0.088) 
Δ Log LNG Price  0.694*** 0.590*** 

  (0.056) (0.058) 
Seasonal Lag  0.69370*** 0.59027*** 

  (0.05569) (0.05819) 
Observations 167 156 156 

R2 0.905 0.955  
Adjusted R2 0.902 0.953  

Log Likelihood   158.531 
Akaike Inf. Crit.   -297.063 

Bayesian Inf. Crit.   -266.564 
Residual Std. Error 0.171 (df = 161) 0.120 (df = 149) 0.13 (df=149) 

F Statistic 
308.309*** (df = 5; 

161) 
523.714*** (df = 6; 

149)  
*p<.10 **p<.05 ***p<0.01 

 
Note: Models for the firm contract quantity consumed are presented in each column. 
The GLS regression specifies a ARMA(2,0) errors based on minimizing AIC from 
alternate lag specifications. The results are used to estimate the leftover natural gas 
capacity for the electric sector. The simulation uses these fitted firm quantity 
estimates to create the capacity left for the electric sector.



 

 

144 

 
TABLE 7 

Equilibrium Natural Gas Price Under Increased Capacity Scenarios 
New England Electric Sector 

 
 

  Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 
Mild Winter             

DDd 9 -112 46 -147 -95 -27 3 -7 -10 48 126 -31 
Current 4.84 5.16 6.64 7.66 11.07 7.96 7.1 5.76 5.25 5.37 5.41 4.81 

+450MMcf/d 4.6 4.89 6.19 7.04 9.91 7.25 6.51 5.4 4.97 5.1 5.15 4.58 
Difference -0.24 -0.27 -0.45 -0.62 -1.16 -0.71 -0.59 -0.36 -0.28 -0.27 -0.26 -0.23 

             
Median Winter 

            DDd 19 24 31 -30 171 -31 26 -62 -15 10 -43 58 
Current  4.88 5.7 6.56 8.63 16.15 7.92 7.26 5.52 5.22 5.16 4.65 5.19 

+450MMcf/d 4.64 5.39 6.12 7.87 13.75 7.22 6.66 5.18 4.94 4.9 4.42 4.94 
Difference -0.24 -0.31 -0.44 -0.76 -2.40 -0.70 -0.60 -0.34 -0.28 -0.26 -0.23 -0.25 

             Severe Winter 
            DDd -69 17 41 -48 228 -41 -38 -50 -37 4 -20 -14 

Current 4.57 5.67 6.61 8.47 17.9 7.94 6.82 5.57 5.14 5.16 4.77 4.89 
+450MMcf/d 4.34 5.37 6.17 7.73 14.94 7.23 6.27 5.22 4.87 4.91 4.54 4.65 

Difference -0.23 -0.3 -0.44 -0.74 -2.96 -0.71 -0.55 -0.35 -0.27 -0.25 -0.23 -0.24 
                          

Note: Prices are differences in $/Mcf. Scenarios based on the regression results from column six of Table 3. The winter scenarios present a range of severities of 
winters. Price is highest in January. The effect of increased capacity is largest in more severe winters.  
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TABLE 8 

Equilibrium Natural Gas Quantities Under Increased Capacity Scenarios 
New England Electric Sector 

 
 

  Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug 
Mild Winter             

DDd 9 -112 46 -147 -95 -27 3 -7 -10 48 126 -31 
Current 32799 29920 27152 27169 24050 25628 26548 28995 30482 37221 47576 36069 

+450MMcf/d 33546 30643 27995 28198 25246 26698 27570 29822 31218 38056 48631 36868 
Difference 747 723 844 1029 1196 1071 1022 828 736 835 1054 799 

             
Median Winter 

            DDd 19 24 31 -30 171 -31 26 -62 -15 10 -43 58 
Current 33071 29180 27248 26206 21134 25661 26364 29641 29861 33384 36885 39872 

+450MMcf/d 33825 29904 28090 27288 22683 26730 27396 30470 30583 34136 37702 40758 
Difference 753 724 841 1082 1549 1069 1032 829 722 752 817 885 

             Severe Winter 
            DDd -69 17 41 -48 228 -41 -38 -50 -37 4 -20 -14 

Current 32212 29218 27184 26358 20359 25651 26872 29307 30153 34775 39560 37108 
+450MMcf/d 32940 29942 28027 27431 22042 26733 27878 30132 30878 35555 40434 37930 

Difference 728 724 843 1073 1683 1082 1006 825 726 780 875 822 
                          

Note: Consumption and differences is in MMcf. Scenarios based on the regression results from column six of Table 5. The winter scenarios present a range of 
severities of winters. 
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TABLE 9 

New England Market for Natural Gas for the Electric Sector 
3SLS SEM Estimates  

 

NG Demand 
Equation 

 
 

NG Supply 
Equation 

 
 

Firm Quantity 
  

Working Gas 
 

NG quantity 
consumed -0.567** 

 

NG for electric 
price -0.121*** 

 
HDD 44.967*** 

 
Firm Quantity -0.000069*** 

 
(0.230) 

  
(0.032) 

  
(2.076) 

  
(0.00001) 

HDD .00018** 
 
Log NG Capacity 0.713** 

 
CDD 40.174*** 

 
Quantity Electric .000016** 

 
(-0.0001) 

  
(0.290) 

  
(5.868) 

  
(-0.00001) 

CDD .0011* 
 
HDD 0.0004** 

 
DDd -14.350*** 

 
HDD 0.003*** 

 (-0.0005)   (0.0002)   (4.674)   (0.0003) 

DDd 0.00072**  CDD .0018***  Δ Log Oil Price -566.816  CDD 0.002*** 

 (-0.0002)   (0.0002)   (2,617.112)   (0.001) 

Δ Log Oil 
Price 0.057  DDd -.000061  

Δ Log LNG 
Price 13.463  DDd -0.001*** 

 (0.190)   (0.0001)   (103.250)   (0.0003) 
Working 
Gas 0.221*** 

 
Δ Log Oil Price -0.112 

 
Working Gas 9,539.078*** 

 
R-squared 0.60 

 

(0.048) 
 
 

(0.111) 
 
 

(1,283.210) 
 
N 144 

R-squared 0.80 
 
Δ Log LNG Price 0.006 

 
R-squared 0.97 

 
DF 137 

N 144 
 
 

(0.004) 
 
N 144 

 
  DF 133 

 
Working Gas -0.071 

 
DF 134 

  
     (0.050)     System  

   R-squared 0.73     R-Squared 0.97 

  
 
N 144 

 
  

 
N 576 

 
 

 
DF 132 

 
  

 
DF 536 

 
Note: Each column presents the results of the 3SLS estimates of each structural equation. Time trends, seasonal and one 
period lags are included of each endogenous variable. Standard errors are in parentheses. *p<.10 **p<.05 ***p<0.01 
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TABLE 10 
New England Market for Natural Gas for the Electric Sector 

2SLS SEM Estimates  
 

NG Demand 
Equation   

 

NG Supply 
Equation   

 

Firm Quantity  

 

Working Gas  

NG quantity 
consumed -0.419* 

 

NG for electric 
price -0.113*** 

 

HDD 38.384*** 

 

Firm Quantity -0.00005*** 

 (0.236) 
 

 (0.034) 
 

 (2.728) 
 

 (0.00001) 

HDD 0.0002*** 

 

Log NG 
Capacity 0.602** 

 

CDD 38.037*** 

 

Quantity 
Electric 0.00003*** 

 (0.0001) 
 

 (0.305) 
 

 (5.942) 
 

 (0.00001) 

CDD 0.001 
 

HDD 0.0004* 
 

DDd -0.672 
 

HDD 0.002*** 

 (0.001)   (0.0002)   (5.277)   (0.0004) 

DDd 0.001***  CDD 0.002***  Δ Log Oil Price -285.735  CDD 0.0005 

 (0.0002)   (0.0003)   (3,563.617)   (0.001) 

Δ Log Oil 
Price 0.121  DDd -0.0001  Δ Log LNG Price 75.274  DDd -0.001*** 

 (0.193)   (0.0001)   (141.149)   (0.0003) 

Working Gas 0.238*** 
 

Δ Log Oil Price -0.124 
 

Working Gas -966.776 
 

R-squared 0.75 

 
(0.049) 

  
(0.111) 

  
(1,771.276) 

 
N 144 

R-squared 0.80 

 

Δ Log LNG 
Price 0.009* 

 

R-squared 0.97 

 

DF 137 

N 144 
  

(0.005) 
 

N 144 
   

DF 133 
 

Working Gas -0.073 
 

DF 134 
 

 
 

    (0.052)     System  

   R-squared 0.77     R-Squared 0.97 

   
N 144 

 
 

 
 N 576 

 
  

DF 132 
 

 
 

 DF 536 
 
Note: Each column presents the results of the 2SLS estimates of each structural equation. Time trends, seasonal and one 
period lags are included of each endogenous variable. Standard errors are in parentheses. *p<.10 **p<.05 ***p<0.01 
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FIGURE 1 
Natural Gas Consumption by Sector 

New England 
 

 
 

Note: Data is from the EIA. Residential, commercial and industrial uses increase in the winter due 
to heating requirements, while electric energy uses peak in the summer due to cooling demand.
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FIGURE 2 

Electric Energy Generation by Fuel Source 
New England 

 

 
Note: Data is from ISO-NE and represents the total GWh from each source for the year. Natural 
gas generators have replaced retiring coal plants. Total consumption has remained mostly 
constant.
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FIGURE 3 
Natural Gas Price by Consuming Sector 

New England 
 

 
Note: The price data is from surveys conducted by the EIA and accessed through the EIA’s data portal. 
Each sector’s price is the per unit price of natural gas including delivery. Residential, industrial and 
commercial prices follow a different path based on the structure of the local utilities. The electric sector 
operates under interruptible contracts, which leads to increases in times of pipeline constraint. 
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FIGURE 4 
Log Transformation Q-Q Plot Test 

Preferred model 
 
 

Level Model 

 
Log Transformed Model 

 

 
 
Note- This figure shows the quintile plot of the residuals from the preferred price 
model, column 6 in Table 3, when specifications with the dependent and 
independent variables are in levels compared to in logs.  The temperature 
variables remain in levels in both models. The log transformations create errors 
that are closer to normally distributed, the strait lines in the plots. 
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FIGURE 5 

Simulation of Equilibrium Price and Quantity 
New England Electric Sector 

 
 

Mild 

 
Median 

 
Severe 

 
 

Note: Price and quantity projections of an increase in 450 MMcf/d of 
pipeline capacity. Each plot represents a different winter weather scenario. 
Price is in solid lines and quantity in dashed lines for both the current 
(black) and future (red) capacity scenarios. 
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MANUSCRIPT 2 APPENDIX 

Derivation of Equation 1 
 
The area of a circle representing the irrigated agriculture acreage above the aquifer. 

      
 
With a fixed initial aquifer area and maximum depth, we can relate geometry of the 
aquifer to the radius of the irrigated acreage 

  
 

       
 

 
Using these two, we get irrigated area as a function of the groundwater height and 
geometry of the aquifer.  

    
 

       
 
 

 
With the initial conditional known, we can solve for initial radius and       : 

   
  

       
 

 
        

  

  
 

 
With these we can come to equation (1) in the paper by making at a percent of the initial 
aquifer area: 
 

       
    

    
 
 

 
 

 
 
 
 
Discussion of Equation 8 
 
Here we want to illuminate the model dynamics of including a cone and uniform spatial 
depletion of the groundwater resource.  The speed of depletion is important in the model 
and is determined by the irrigated area and thus a function of the height of groundwater; 
therefore we compare the speed of height change in our model to the speed of height 
change in a bathtub model.   
 
Proposition 1:           given the same demand for water and a decreasing path of 
groundwater height.  The change in groundwater height is larger in the bathtub model 
than in the spatial depletion model.   
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We start with defining per acre water demand constant to give a fair comparison between 
models 
 

                             
 
where   is the per acre water demand in the bathtub and spatial depletion model at a 
given height defined by the price of water P.  The total amount of water extracted is a 
function of the height of the water as is the change in groundwater height.  The total 
water extracted decreases in the spatial model because there are less irrigated acres as the 
height of groundwater decreases. This is realized through the spatial depletion function 
       or equation (1) in the main text.  The rate at which groundwater height changes, 
the equation of flow, is also a function of       .      refers to the spatial depletion model 
and      refers to the bathtub model. 

     
                

        
        

 

     
          

  
            

 
and 

       
  

 
    

  
 
 
  

 
                    

 
Equation (4a) describes how the percent of irrigated area of the of the spatial depletion 
model changes. Increase in height cause an increase in irrigable area, and a decrease in 
height causes a decrease in irrigable area at this rate described in in (4a).  Taking a 
difference in equation (2a) and (3a) we find  
 

          
 

        
 

 
  

            

 
   
   

                         
 

   
   

                         

 
Equations (6a) and (7a) state that as the aquifer is depleted the change in height is less in 
the spatial the depletion model at the rate given in equation (4a) and because the spatial 
component becomes smaller and is in the denominator of equation (2a) the recharge acts 
as a buffer to loss in height in the spatial depletion model.  As the depletion parameter,  , 
gets closer to one the difference converges to zero.  As   decreases so does  , which 
drives the differential to be positive.   
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Proposition 2:           when there is compaction of the aquifer which reduces storage 
in the spatial depletion model under the same per acre water demand. 
A special case of equation (2a) is when total recharge decreases as the height declines, 
this could be the case when subsidence occurs which shuts out storage to the aquifer 
(Scanlon et al. 2012).  If recharge is scaled to the remaining irrigable acreage to reflect 
this subsidence and loss in storage which we define as  
 

                                  
 
The equation flows are equal under the same demand curve. 
 

          
                   

  
            

 
 
Scanlon, Bridget R., et al. "Groundwater depletion and sustainability of irrigation in the 
US High Plains and Central Valley." Proceedings of the national academy of 
sciences 109.24 (2012): 9320-9325. 
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APPENDIX FIGURE 1 
Welfare Gains to Management as a function of farming intensity 

Stochastic Scenario 

 
 

NOTE- Welfare gains from management are sensitive to the assumption of 
farming intensity which defines demand for groundwater and its marginal 
value. As farming intensity is increased so to are the estimated gains to 
management. 
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APPENDIX TABLE 1 
Welfare Gains From Groundwater Management 

Stochastic Rainfall Scenario  
Total Discounted Profit (Billion $) 

 

NOTE- Standard errors of the stochastic figures from 100 iterations through rainfall realizations are in 
parentheses. The deterministic scenario assumes average annual rainfall each year. Stochastic assumes i.i.d. 
random draws from high, medium, low rainfall state based on empirical probabilities.  The bathtub model 
assumes no loss in irrigated land as groundwater levels fall. The no backstop scenario assumes that as 
irrigated land falls, no farming at all occurs on acreage that no longer has access to the aquifer.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Perfect 
Competition 

Optimal Policy Difference % Gain 

Stochastic - Spatial 
Depletion 

$ 6.589 
(.0937) 

$ 6.785 
(.0938) 

$ .196 
(.006) 

2.97 
(.04) 

Stochastic - No Backstop  $ 6.021 
(.0623) 

$ 6.335 
(.0670) 

$ .313 
(.006) 

5.20 
(.06) 

Stochastic - Bathtub Model $ 8.297 
(.0063) 

$ 8.302 
(.0054) 

$ .0052 
(.0015) 

0.06 
(.02) 
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MANUSCRIPT 3 APPENDIX 

ARIMA Reduced Form Model 
 
The I in ARIMAX stands for the level of integration, or how many times the dependent 
variable must be differenced to be stationary. Using the stationary series, having first 
differenced the non-stationary variables, an ARMAX of the following form is estimated.  
 

                            

 

 

 

 

 

 
Where      is the lagged,   period, dependent variable with coefficients   . Seasonal 
lags enter in the same manner, but lagged 12 periods on our model. These terms handle 
the autoregressive, ARp, process.    are coefficients on the moving average, MAq, 
process on pervious residuals of a lag length  . X is a matrix of exogenous regressors 
with coefficient estimates  . The appropriate length of the lag is a choice of the modeler, 
but can be guided by evaluating the autocorrelation correlation function (ACF) and 
partial autocorrelation function (PACF). From there it is common to use measures of AIC 
and BIC can determine the most appropriate lag lengths. 
 
I estimate the reduced form equations for both price and quantity based on the criteria 
described above, which turned out to be the lag structures found in the OLS residuals and 
specified in the GLS regressions from Table 3 and 5. The price equation is of the form 
ARIMAX(1,0,0)(1,0,0)12 and the quantity equation of the form ARIMAX(2,0,0)(1,0,0)12, 
where ARIMAX(p,d,q)(P,D,Q)m. The second set of parentheses specifies the seasonal 
terms. M is the seasonal period lag. The results are presented in Table 8.  
 
The results are similar to that found in the GLS regressions with an increase in leftover 
capacity effecting prices negatively. The coefficient is larger in magnitude, implying a 
1% change in capacity leading to a .6% change in price. Degree day anomalies are 
significant and of similar magnitude. The quantity equation similarly shows a larger 
effect of the leftover capacity on the equilibrium quantity consumed.  
 
The results confirm the results of the GLS regressions. A benefit of the ARIMAX models 
is that predictions can be made that take into account the time series of the error structure, 
as opposed the GLS results, which use the unbiased estimates of the coefficients to 
estimate values, but does not take into account the recent error term innovations in 
making step ahead forecasts. Therefore, once values for the exogenous regressors are 
provided, future values can be assessed under both current and increased capacity. 
Similarly to the policy simulations above, first I estimate the firm demand, using an 
ARIMAX model, calculate the remaining capacity and estimate the price and quantity for 
electric energy generation equations. I estimate 2 years ahead, with the time series of the 
severe winter scenario. The results are in Figure 6. 
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APPENDIX FIGURE 1 

Natural Gas Price and Quantity for Electric Energy Generation 
ARMAX Models 

 

  

 Dependent variable:  

 NG Electric Price NG Electric Quantity 
Model Type ARIMAX(1,0,0)(1,0,0)12 ARIMAX(2,0,0)(1,0,0)12 
Log NG Capacity  -0.60164*** 0.29561** 

 (0.19503) (0.12055) 
HDD 0.00004 0.00006 

 (0.00021) (0.00012) 
CDD 0.00031 0.00161*** 

 (0.00035) (0.00024) 
DDd 0.00051** -0.00006 

 (0.00020) (0.00015) 
Δ Log Oil Price 0.04783 -0.19237* 

 (0.15305) (0.10412) 
Δ LNG Price 0.00524 0.00584* 

 (0.00427) (0.00306) 

AR1 Lag 0.88330*** 0.63403*** 

 (0.03803) (0.06562) 
Seasonal Lag 0.28594*** 0.30880*** 

 (0.08417) (0.09055) 
Log Likelihood  48.69 129.07 
AIC -76.07 -238.14 
BIC -45.44 -206.21 

*p**p***p<0.01 

Note: Reduced from equation of the natural gas price and quantity for 
the electric energy generating sector are presented. The lag structure is 
based on minimizing AIC with the inclusion of the exogenous covariates 
and a 12-month seasonal lag.  
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APPENDIX FIGURE 2 
Natural Gas Prices for Electric Energy Generation 

Equilibrium Price and Quantity 
ARIMAX Models 

 
Price 

 

 
Quantity 

 
Note: Price and Quantity projections from the ARIMAX model in 
Table 8. Months count ahead from January, 2015 to December 2017. 
The red line represents an increase of 450 MMcf/d of pipeline capacity 
added at the stat of 2016, or 12 months ahead in the figure. The 
increased capacity leads to lower prices and higher quantity consumed.
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