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ABSTRACT

Current and temperature patterns in the Ulleung Basin of the Japan/East Sea are examined using acoustic
travel-time measurements from an array of pressure-gauge-equipped inverted echo sounders moored be-
tween June 1999 and July 2001. The focus here is the formation and behavior of a persistent cold eddy
observed south of Dok Island, referred to as the Dok Cold Eddy (DCE), and meandering of the Subpolar
Front. The DCE is typically about 60 km in diameter and originates from the pinching off of a Subpolar
Front meander between Ulleung and Dok Islands. After formation, the DCE dwells southwest of Dok
Island for 1–6 months before propagating westward toward Korea, where it deflects the path of the East
Korean Warm Current (EKWC). Four such DCE propagation events between January and June 2000 each
deflected the EKWC, and after the fourth deflection the EKWC changed paths and flowed westward along
the Japanese shelf as the “Offshore Branch” from June through November 2000. Beginning in March 2001,
a deep, persistent meander of the Subpolar Front developed and oscillated with a period near 60 days,
resulting in the deformation and northwestward displacement of the Ulleung Eddy. Satellite-altimeter data
suggest that the Ulleung Eddy may have entered the northern Japan/East Sea. The evolution of this
meander is compared with thin-jet nonlinear dynamics described by the modified Korteweg–deVries equa-
tion.

1. Introduction

Currents in the Ulleung Basin (UB) of the south-
western Japan/East Sea (JES), which largely derive
from the inflow through the Korea/Tsushima Strait, are
thought to be dominated by a northward-flowing west-
ern boundary current known as the East Korean Warm
Current (EKWC), two branches of the Tsushima Cur-
rent (Nearshore and Offshore Branches), and a Subpo-
lar Front (SF). There have been many different descrip-
tions of the meandering currents in the UB (Suda and
Hidaka 1932; Uda 1934; Naganuma 1977; Kawabe 1982;
Naganuma 1985; Katoh 1994; Morimoto and Yanagi

2001). The meander patterns include both warm- and
cold-water intrusions (Ichiye and Takano 1988), and
warm and cold eddies are commonly observed through-
out the UB (Ichiye and Takano 1988; Isoda and Saitoh
1993; An et al. 1994; Lie et al. 1995; Isoda 1996). How-
ever, cold eddies are less frequently observed than
warm eddies. The formation, structure, and time evo-
lution of the eddies are not well understood. One very
significant cold cyclonic eddy is located south of Dok
Island (Dok Do) throughout much of the year. This
eddy is referred to as the Dok Cold Eddy (DCE) by
Mitchell et al. (2004b). Although there have been a few
observations of cold eddies in the Ulleung Basin men-
tioned in other studies (Kawabe 1982; Tanioka 1968;
and Morimoto et al. 2000), they have been almost en-
tirely ignored in analysis of UB circulation.

Eddies are known to affect the Tsushima Current
and SF and hence influence the dynamics of the entire
JES. Baroclinic Rossby wave theory suggests a length
scale of about 100 km for eddies in the JES (Mat-
suyama et al. 1990). Yoon (1997) depicts the currents in
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the southern JES as a series of cyclonic and anticyclonic
eddies bounded by the SF, EKWC, and Tsushima Cur-
rent. Characteristics and spatial distributions of warm
eddies in the southwestern JES are discussed by An et
al. (1994) using data gathered from 1967 to 1986. Move-
ment of the warm eddies encompassed westward,
northward, and southward trajectories but often the
warm eddies remained in place for several months at a
time. Bottom topography, neighboring currents, and
Rossby waves are thought to influence the movement
of the warm eddies. According to Isoda (1994), warm
eddies in the UB generated in the vicinity of the Oki
Islands propagate eastward. The eastward movement is
attributed to an eastward mean current flow in the
southern UB.

The Ulleung Eddy is perhaps the best known and
most studied eddy feature in the JES. The warm
Ulleung Eddy, present most of the time, has major and
minor axes of about 168 and 86 km in the zonal and
meridional directions, appears to be in geostrophic bal-
ance, and is strongly constrained by the bottom topog-
raphy (Lie et al. 1995). The Ulleung Eddy originates
from the EKWC and forms from a southward flow that
closes into anticyclonic circulation around Ulleung Is-
land (Tanioka 1968). The Ulleung Eddy is frequently
described using hydrographic data, satellite-tracked
drifter data (An et al. 1994; Lie et al. 1995), and alti-
metric data (Morimoto et al. 2000).

Cold eddies in the UB are generally more difficult to
observe, often because of lack of a strong surface sig-
nature. Ichiye and Takano (1988) observed both warm
and cold eddies, with diameters ranging from 30 to 160
km, in isotherm mapping at 100 m, using data taken
during May and June 1987 from the Ten-Day Marine
Reports of the Japan Meteorological Agency. These
eddies are hypothesized to be formed by warm- and
cold-water intrusions from fronts.

Kawabe (1982) observed a cold eddy in the DCE
region in February 1972 and a meandering current in
February 1973. But he noted for the month of March, in
the years 1973–75, that one or two cold eddies could be
seen between the east coast of Korea and the Oki Is-
lands. He theorized that the eddies may have been cut
off from meanders. Cold eddies were also observed in
the DCE region by Tanioka (1968) using temperature
at 100 m and dynamic topography for July 1966 and
March 1967.

Morimoto et al. (2000), in a study of the eddy field of
the entire JES derived from satellite altimetric data,
observed a cold eddy, referred to as C2, in the vicinity
where the DCE is observed here. The cold eddy iden-
tified through the altimetric data analysis corresponded
well with the temperature mapped at 100 m by the
Japan National Fisheries Research Institute. By using
monthly mean temporal fluctuations of sea surface
dynamic heights from May 1995 through January
1996, the cold eddy was found to persist 4 months, from
May to August, and then to disappear in September.

The cold eddy appears to have moved westward, to-
ward the Korean coast, where it may have been ab-
sorbed by the EKWC. Morimoto et al. (2000) con-
cluded that warm and cold eddies appear periodically
in the southern part of the UB and that the lifetimes of
the eddies are about 1 month. However, using lag cor-
relation analysis, they determined an eastward propa-
gation of about 1.8 cm s�1, suggesting an eastward ad-
vection by the Offshore Branch. Based on evidence
presented here on propagation of the DCE and by
Morimoto et al. (2000), the eastward propagation might
only be associated with warm eddies in the southern
UB. Westward propagation is associated with the DCE,
which can have a lifetime much longer than 1 month.

There have been many surveys of temperature and
salinity in the UB by Japanese and Korean investiga-
tors. Unfortunately, political boundaries often limited
the coverage areas. In addition, Korean and Japanese
data were sometimes not in good agreement for the
same regions and sampling periods (Kawabe 1982) and
therefore were difficult to combine. Unfortunately, the
DCE apparently is commonly split by the political
boundary between these countries’ economic zones,
making it more difficult to observe. The DCE is not
readily observed in sea surface temperature maps since
the surface temperature differential is usually small.
The DCE is clearly seen in maps of geopotential height
at the surface relative to 500 dbar (lower geopotential
height than surrounding waters) and in vertical sections
of temperature across the eddy. The DCE is also ob-
servable in sea surface height measurements obtained
from satellite altimetry data.

As part of the U.S. Office of Naval Research JES
program an observational program with focus on the
UB was recently completed. Data were obtained from
a two-dimensional array of 23 pressure-sensor–
equipped inverted echo sounders (PIESs) and 11 re-
cording current-meter (RCM) moorings (Fig. 1) de-
ployed for 2 yr, beginning in June 1999. The current-
meter mooring sites were coordinated with those of a
set of four current meter moorings deployed by the
Korean Ocean Research and Development Institute
(KORDI) and an additional mooring deployed by the
Research Institute of Applied Mechanics (RIAM) of
Kyushu University. The near-bottom current data from
all these moorings were used to examine the deep flow
patterns and to level the PIES pressure measurements,
which when combined with the PIES acoustic-echo-
time data form a three-dimensional mapping of the cur-
rent field (Mitchell et al. 2004, 2005). These data have
been used to observe the time-varying currents and ed-
dies, and will be used to understand the coupling be-
tween the shallow and deep currents and eddies and to
quantify cross-frontal and vertical fluxes associated
with mesoscale processes (Mitchell et al. 2005; Teague
et al. 2005b).

This paper concentrates on the meandering of the SF
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in the UB and on the DCE. A large meander of the SF,
with wavelength and amplitude of about 200 km, com-
monly forms in the UB. The meander can persist for
several months and may be described using thin-jet
theory under particular conditions. The DCE most
likely forms from the meander through an instability

process, followed by a retreat of the meander. The
DCE was typically about 60 km in diameter. Its center
was commonly observed between 130.5° and 132°E
during the 2-yr measurement period. The DCE can
have a major impact on the circulation in the UB and
therefore the entire JES.

FIG. 1. (top) Topographic map of the Japan/East Sea. The heavy black box represents the
study area. Contour interval is 500 m. (bottom) Topographic map of the Ulleung Basin. The
locations of the PIES (black triangles) and current meters (dark circles) are shown. The
ground track of TOPEX/Poseidon line 112 is marked by small open black squares. Contour
interval is 500 m.
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2. Data

Twenty-five pressure-gauge-equipped inverted echo
sounders were deployed during June 1999 as 5 � 5
array with 50–60-km spacing covering a 220 km � 240
km region in the UB (Fig. 1). Twenty-three of these
PIESs were recovered in June–July 2001, with deep
crab fishing activities probably responsible for the two
losses. Instrument spacing was selected to allow coher-
ent mapping of mesoscale features, based on a correla-
tion length scale of 100 km estimated for upper-layer
features using Rossby wave theory (Matsuyama et al.
1990).

A PIES measures vertical acoustic travel time with
an accuracy 1.6 ms and a resolution of 0.05 ms, abyssal
pressure with a resolution of 0.001 dbar and an accu-
racy of 0.1–0.3 dbar, and temperature (used to correct
the Digiquartz pressure transducer’s temperature sen-
sitivity) with an accuracy of 0.15°C and a resolution of
0.0007°C. All measurements were recorded hourly. The
vertical profile of temperature and specific volume
anomaly can often be inferred from a travel time mea-
surement through the gravest empirical mode (GEM)
technique, originally developed by Meinen and Watts
(2000). In order to improve the interpretation of PIES
data and separate the eddy variability from the spatially
varying seasonal signal that extends through the depth
of the shallow JES thermocline, the GEM technique is
enhanced by a combined analysis with the U.S. Navy’s
Modular Ocean Data Assimilation System (MODAS)
static climatology (Fox et al. 2002), which contains the
spatially variable seasonal signal. This new method, re-
ferred to as the residual GEM technique, is fully de-
scribed by Mitchell et al. (2004).

3. Observations from PIES data

The surface temperature signature of the DCE,
which is just a fraction of a degree, is not readily iden-
tified in sea surface temperature maps. However, the
DCE is clearly identifiable at 100-m depth where the
signature is often greater than 2°C. The structure of the
DCE suggests that the vertical integral of specific vol-
ume anomaly, that is, geopotential height [primarily de-
termined by temperature variations in the Ulleung Ba-
sin (Mitchell et al. 2004)], is the appropriate parameter
for studying the behavior of the DCE. The residual
GEM technique estimates dynamic height, defined as
the geopotential height at the surface relative to 500
dbar divided by the acceleration of gravity, with a pre-
cision of 2.44 cm (Mitchell et al. 2004). The range of
dynamic height in the UB is about 60 cm, giving a sig-
nal-to-noise ratio of 25:1. In addition, the use of dy-
namic height allows direct comparisons with satellite
altimeter sea surface height measurements and their
associated geostrophic currents.

The mean positions of the EKWC, Ulleung Eddy,
SF, and DCE are easily discerned in a map of the av-

erage dynamic height in the UB derived from the PIES
measurements (Fig. 2). The Ulleung Eddy has a mean
diameter of about 135 km and is centered southwest of
Ulleung Island. The mean path of SF meanders extends
to the south along 131.9°E, which is approximately the
longitude of Dok Island. The DCE has a mean diam-
eter of 60 km and is centered near 131.4°N, 36.6°E when
it is stationary. The path that the DCE follows while
propagating westward is along the southern edge of the
Ulleung Eddy at about 36.2°E, which is also the mean
latitude where it crosses Ocean Topography Experiment
(TOPEX)/Poseiden (T/P) satellite-altimeter line 112
(Fig. 1). Clearly, the DCE was present often enough
during the 2-yr measurement period to leave a clearly
defined signature in the mean dynamic height field.

Maps of dynamic height on representative days for
seven different events are shown in Fig. 3. The DCE is
well defined throughout much of the 2-yr measurement
period, and its center, prior to westward propagation, is
generally located between 36° and 37°N with an east-
ernmost extreme location of about 132.5°E (Fig. 3,
event 7) at the end of the measurement period. The
DCE either remains almost stationary or tends to
propagate westward toward Korea with speeds of 6–8
cm s�1, which is significantly higher than the 1–2 cm s�1

predicted for internal Rossby waves according to c �
���2, where c is the phase speed, � is the northward
gradient of the Coriolis parameter, and � is the internal
Rossby radius (�5–10 km in UB). When stationary, it
tends to elongate in the north–south direction and,
when propagating, it tends to elongate in the east–west
direction. Its shape and position vary with fluctuations
of the Offshore Branch position, changing from nearly
circular when the Offshore Branch is weak to more
elliptical when the Offshore Branch is strong (Mitchell
et al. 2005).

The DCE was centered near 36.6°N, 131.6°E from
June through November 1999 (Mitchell et al. 2005)
before propagating westward. Prior to formation of
the Ulleung Eddy, from 30 June through 20 July 1999
(not shown) the transport through the Korea/Tsushima
Strait diminished from 3 Sv (Sv � 106 m3 s�1) to 2 Sv
(Teague et al. 2002, 2005a). In late July 1999 the DCE
began to split into two eddies, a larger eddy to the
south and a smaller eddy to the north (Fig. 3, event 1).
The smaller northern DCE propagated northwest-
ward above the still-forming Ulleung Eddy and merged
with the cool waters along the Korean coast near 38°N.
After 20 July 1999 the inflow through the Korea/
Tsushima Strait increased to a maximum of 5 Sv du-
ring which time the Ulleung Eddy increased its size
(Fig. 3, event 2) in response to the increased trans-
port. The Ulleung Eddy expanded northward and com-
pletely filled the northern UB from the Korean coast
to the Oki Spur by 15 November 1999. During the
Ulleung Eddy expansion, the southern DCE remained
nearly stationary until December 1999 (Mitchell et al.
2005).
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Between December 1999 and June 2000, the DCE
propagated westward and merged with the EKWC four
separate times (Fig. 3, events 2–5). The first time, the
DCE propagated westward toward Korea in December
1999 and was absorbed by the EKWC in late January
2000 (event 2). In early February 2000, the DCE re-
formed and remained nearly stationary until it began to
propagate toward Korea on about 25 March, reaching
the region of the Korean coast on 6 April 2000 (event
3). Soon after, the DCE re-formed on about 18 June
2000 and immediately propagated southwestward,
reaching the Korean coast in early July 2000 (event 5).
During each of these four DCE propagation events, a
portion of the EKWC was diverted eastward south of
36.5°N. After the first three events, the EKWC re-
turned approximately to its prior path.

Immediately following the fourth DCE westward
propagation event, the EKWC was fully diverted away
from the Korean coast and followed a new path east-
ward along the Japanese shelf break before turning
north along the Oki Spur. The flow of warm water
along this path is traditionally referred to as the “Off-
shore Branch” (Mitchell et al. 2005). After the di-
version of the EKWC into the Offshore Branch, the
Ulleung Eddy divulged a significant portion of its mass
to the east into the Offshore Branch (Fig. 3, event 5,
22 July 2000). Following this, an extreme deepening
of a meander trough of the SF that nearly extended to

the coast of Korea occurred in August 2000 (Fig. 3,
event 5). Correspondingly, the warm Ulleung Eddy
became isolated and entirely surrounded by cold wa-
ters.

After reestablishment of the EKWC in early Novem-
ber 2000, a larger DCE reformed in late November
(Fig. 3, event 6) and remained fairly stationary. Steep
troughs developed in the SF and twice enveloped the
DCE (29 January and 10 March 2001), sometimes
obscuring the DCE. The first time, the DCE merged
with the meander and was reshed as the meander re-
treated. The second time, however, the meander trough
persisted and strengthened. Figure 3 (event 7) shows
the behavior of the large meander from the time of
recapture of the DCE until the time our array of in-
struments was recovered in June 2001. During this pe-
riod the amplitude of the meander is about 200 km,
and the trough oscillates in the east–west direction with
a period of about 60–90 days. In early June 2001, a
small DCE separated from the SF meander and re-
mained near 36.5°N, 132.5°E for the remaining dura-
tion of our measurement period. Also of note during
the oscillation of the SF meander, the Ulleung Eddy
narrows in the east–west direction, elongates in the
north–south direction and is steadily displaced to the
northwest until the entire eddy is north of Ulleung Is-
land, the only time this occurs during our measurement
period.

FIG. 2. Average dynamic height (geopotential height anomaly at surface relative to 500 dbar
divided by the acceleration of gravity; cm) over the 2-yr deployment in the Ulleung Basin. The
mean positions of the EKWC, Ulleung Eddy, Subpolar Front, and the Dok “Cold Eddy” are
labeled. The white diamonds, from left to right, are Ulleung Island, Dok Island, and a sea-
mount that reaches within 500 m of the surface.
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FIG. 3. Maps of dynamic height (cm) for seven events discussed in text. Event 1: DCE propagates westward north
of the forming Ulleung Eddy. Events 2, 3, 4: The DCE propagates westward along 36.3°N and is absorbed by the
EKWC. Event 5: The propagating DCE fully diverts the EKWC eastward into the Offshore Branch and the EKWC
remains absent for 5 months. Event 6: The DCE is shed and recaptured by the SF meander twice. Event 7: The SF
meander persists and oscillates with a period of about 60 days and the Ulleung Eddy gets distorted and displaced
northward.
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4. Observations from T/P data

Nearly a decade of T/P altimetry data from Decem-
ber 1992 to March 2002 is used for analysis. TOPEX/
Poseiden ground track 112, oriented northwest to
southeast, crosses the western half of the PIES array
(Fig. 1). From these data alone, only surface geo-
strophic velocity anomalies normal to the line can be
calculated. However, using a technique described by
Teague et al. (2004), an absolute referencing of the T/P
data is obtained by using the three-dimensional maps of
specific volume anomaly produced from the two years
of PIES data. Surface geostrophic velocities on the T/P
track and normal to it can then be calculated over the
entire T/P time period and are analyzed here for the
time period of 1993–2002. The T/P sampling interval is
approximately ten days with a spatial resolution of
about 6 km.

A better understanding of the T/P data can be ob-
tained by analyzing it in conjunction with the available
PIES data along the T/P ground track (Fig. 4). The
PIES data along the T/P line can be analyzed within the
context of the circulation for the entire UB (Mitchell et
al. 2005) and the signatures of the DCE and SF mean-
der, within that framework, can be determined. For an
ideal case of a cold eddy crossing a T/P line within a
uniformly warmer ocean, the eddy’s T/P signature
would be a low in dynamic height with a corresponding
negative velocity core at its northern edge and a posi-
tive velocity core at its southern edge. This is indeed a
signature left by the DCE in the PIES and T/P data
(Fig. 4, noted by the letter D). However, matters in the
UB are complicated because of the complex and chang-
ing circulation patterns found in the UB (Mitchell et al.
2005), particularly by the presence of the Ulleung Eddy
and the Offshore Branch. Furthermore, due to the lim-
ited spatial coverage of the PIES data and T/P data
(due to contamination by land), particularly south of
36°N, the southern positive velocity core is sometimes
difficult to discern clearly. Furthermore, after passage
of the DCE the diverted EKWC does not immediately
return to its prior path, but can remain diverted over
the T/P line for several weeks to several months. Also,
as seen in Fig. 3 (event 5), propagation of the DCE
across the T/P line can be followed by an extended stay
of cold water over the T/P line, resulting in a loss of the
return to higher dynamic heights associated with the
passing of the DCE. Thus, half the DCE signature in
the dynamic height field may be missing. The DCE can
also propagate north of 37°N when the Ulleung Eddy is
not fully established (Fig. 3, event 1). The signature of
the DCE crossing the T/P line, in this case, is marked by
a low dynamic height notch within an otherwise north-
ward propagating high (Fig. 4, noted by the letter H)
associated with the formation of the Ulleung Eddy. The
signature is less clear because the warm waters associ-
ated with the forming Ulleung Eddy and the cold wa-
ters along the coast of Korea create such a strong dy-

namic height gradient that the DCE is not clearly de-
lineated from it in either height or velocity fields.

The SF meander leaves a clear signature in both the
dynamic height and geostrophic velocity fields. The dy-
namic height signature, as seen propagating from
southwest to northeast, is marked by a low dynamic
height beginning near 37°N followed by a high dynamic
height (Figs. 4 and 5, noted by the letter M). The low is
generated by the cold water associated with the mean-
der crossing the T/P line and the high by the warm
water associated with the Ulleung Eddy. This low–high
sequence typically migrates northward beyond 38°N in
2–6 months. The velocity signature, also as seen propa-
gating from southwest to northeast, begins with a
strong negative velocity beginning near 37°N followed
by a strong positive velocity (Figs. 4 and 5, noted by M).
The negative velocity comes from the meander crossing
the T/P line on a southwestward trajectory, while the
positive velocity is associated with the western edge of
the Ulleung Eddy. As in the height field, this velocity
sequence also migrates northward in 2–6 months.

The DCE signature can be seen in the decade of T/P
data on 17 occasions (Figs. 4 and 5, noted by D or H).
There are eleven occurrences (noted by a black D),
February and July 1993; March 1994; July 1996; Octo-
ber 1998; January, April, May, July, and September
2000; and March 2001, that have clean signatures in
both the dynamic height and geostrophic velocity fields,
that is, a clear low in the height field along with the
associated negative and positive velocity cores along its
northern and southern edges. There are three occur-
rences (noted by a magenta D) where the signature is
clearly seen in the velocity field, but the signature in the
height field is obscured because the passing of the DCE
is followed by a period of cold water over the T/P line.
They occur in January and December 1995 and April
1997. There are four occurrences of the DCE propa-
gating westward north of 37°N. They occur in August
1993, May and July 1997, and August 1999.

The SF meander signature can be seen in the decade
of T/P data on seven occasions (Figs. 4 and 5, noted by
M). They occur in December 1993–June 1994, August–
November 1994, August–November 1995, September–
November 1996, August–October 1997, May–July 1998,
and April–August 2001. In all seven cases, the high
dynamic height values associated with the Ulleung
Eddy are advected steadily northward by the oscillating
meander until they pass north of 38°N and out of
the UB.

5. Thin-jet theory

Thin-jet models have been used with some success in
the ocean in studies of meandering and eddy detach-
ment (Robinson and Niiler 1967; Pratt 1988; Cushman-
Roisin et al. 1993). In the thin-jet approximation, varia-
tions along the jet axis are assumed to be gradual in
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comparison with variations normal to the axis. As a
result, along- and cross-axis structures can be de-
coupled, allowing a semianalytic description of nonlin-
ear meandering. This technique can be applied where
eddy-forming meanders have wavelengths much longer
than the across stream width.

Flierl and Robinson (1984) discuss meandering and

stability problems of thin-jet dynamics and describe
meandering motions using the cross-stream integrated
vorticity balance. According to linear theory, under the
long-wave approximation, unstable meanders occur
when wavelengths are less than some critical wave-
length, which is about 150 km for the Gulf Stream for
example. A similar calculation for the JES renders a

FIG. 4. (top) Dynamic height (cm) along T/P track 112 derived from the PIES data. (second)
Geostrophic velocity (cm s�1) along T/P track 112 derived from the PIES data. (third) T/P
measured dynamic height (cm) along T/P track 112. (bottom) T/P geostrophic velocity
(cm s�1) along T/P track 112. DCEs and SF meanders are labeled as follows: black D, DCE;
black H, DCE north of 37°N; black M, persistent SF meander.
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critical wavelength of about 140 km. The shorter-scale
unstable disturbances, which are found to have maxi-
mum growth rates and retrograde phase speeds, are not
well represented because their scale is near that of the
deformation radius, where the long-wave approxima-
tion breaks down. However, as discussed by Pedlosky
(1981), the most rapidly growing linear wave is not al-
ways the one seen at finite amplitude. Flierl and Rob-
inson (1984) further suggest that the observed large-
scale meanders may be stable or weakly growing me-
anders forced by the inlet conditions, while the shorter
rapidly growing instabilities either equilibrate or dissi-
pate at small amplitudes.

Cushman-Roisin et al. (1993) investigate time-depen-
dent meandering of thin ocean jets with a reduced-
gravity, �-plane, nonquasigeostrophic model that may
include outcropping of the density interface. They ex-
pand the governing equations in terms of a small pa-
rameter �, which is the radius of deformation multiplied
by the meander curvature, and derive the following set
of equations to describe the midjet path:

�sX�tY � �sY�tX � a�sK 	 b�sY, 
1�


�sX�2 	 
�sY�2 � 1, and 
2�

K � �sX�ss
2 Y � �sY�ss

2 X, 
3�

where X and Y are Cartesian coordinates of the jet, s is
the distance along the jet, K is the curvature, and t is the
time. The coefficients a and b are defined by the cross-
jet structure and the beta effect:

a �
g�2

f 0
3
h1 � h2�

�h
dh�dn�2 dn and b �
�g�
h1 	 h2�

2f 0
2 .


4�

Here g� is reduced gravity, f0 is the Coriolis parameter,
h1 and h2 are two limiting values of the layer depth far
from the jet, n denotes the distance across the jet, and
� � df/dy describes the beta effect. Equation (1) indi-
cates that the normal velocity to the jet segment is pro-
portional to the rate of change of centrifugal force
along the path (K/s) and the azimuth angle from the
zonal direction (Y/s).

Introducing the local azimuth of the jet � so that

�sX � cos�, �sY � sin�, and K � �s�, 
5�

then from Eqs. (1)–(3) a single equation can be ob-
tained:

�t� � a�sss
3 � 	

a

2

�s��3 	 c0
t��s�. 
6�

The function c0(t) is determined by the boundary con-
ditions at the inflow where s � 0 and X � Y � 0. The
angle �(0, t) and curvature K(0, t) are prescribed by

c0 � b cos�
0, t� �
a

2
��s�
0, t��2. 
7�

For an initial value problem in an unbounded domain
when a localized perturbation of the jet is considered,
c0 � b, and the path [Eq. (6)] can be further trans-
formed into the modified Korteweg–deVries (mKdV)
equation for the curvature. The mKdV equation is
known to describe a variety of long, nonlinear waves,
where the dispersive and nonlinear terms [the first and
second terms in (Eq. (6)] balance. The envelope soli-
tary wave, or “breather,” is particularly interesting for
interpreting the observations presented here.

The detachment of eddies from such a jet begins
when different segments of the jet path come into con-
tact, causing the initially simply connected jet to
“pinch” together. This pinching process is effected pri-
marily by breather solutions to the mKdV equation
(Ralph and Pratt 1994). For a given initial condition the
solution will evolve into a dispersive wave train plus a
finite number of breathers, the connectivity of which is
determined by a steepness parameter lambda. Using
the scattering transform for the mKdV equation the
value(s) of lambda can be calculated in a straightfor-
ward manner, and the detachment (or lack thereof) of
meanders can be forecast to a high degree of confi-
dence by calculating lambda. Examples with simple me-
ander disturbances show a remarkable degree of stabil-
ity and resistance to detachment.

6. Thin-jet dynamics in observations

The SF develops deep meanders between Ulleung
and Dok Islands that can persist from weeks to months.
Once a meander has formed, our PIES observations
indicate two different processes can occur: 1) the me-
ander can persist for a few months while oscillating in
the east–west direction (Fig. 6, panels 1 and 2) or 2) the
meander can pinch off, forming a DCE (Fig. 6, panels 3
and 4). There is a correlation between which process
occurs and the separation angle �, which is related to �
by � � 90 � �, of the EKWC relative to the coast of
Korea. Our observations show that � varies between 0°
(when the EKWC flows northward after separation)
and 90° (when the EKWC separates eastward). Ramp
et al. (2005) suggest that the separation angle is given
by � � arctan (N/M), where M and N are the depth
integrated momentum transports by the EKWC and
North Korean Cold Current (NKCC), respectively.
When N/M is much less than 1, � is near 0° and when
this ratio is much greater than 1, � is near 90°. When �
is near 90° the meander tends to pinch off into a DCE.
When � is near 0° the EKWC separates from the coast
as a free flowing inertial jet, resulting in persistence of
the SF meander for 2–6 months (as seen in the T/P
data). During this period the SF behavior can be re-
lated to thin-jet theory with some caution due to pos-
sible effects of the Ulleung Eddy.

Application of thin-jet theory to the SF meander in
the UB provides valuable insight into some aspects of
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FIG. 5. (top) T/P measured dynamic height (cm) along T/P track 112 from Dec 1992 through
Feb 1995, (second) T/P measured geostrophic velocity (cm s�1) along T/P track 112 from Dec
1992 through Feb 1995, (third) T/P measured dynamic height (cm) for Feb 1995 through Mar
1997, (fourth) T/P measured geostrophic velocity (cm s�1) from Feb 1995 through Mar 1997,
(fifth) T/P measured dynamic height (cm) from Mar 1997 through May 1999, (sixth) T/P
measured geostrophic velocity (cm s�1) from Mar 1997 through May 1999, (seventh) T/P
measured dynamic height (cm) from Jun 2001 through Mar 2002, and (eighth) T/P measured
geostrophic velocity (cm s�1) from Jun 2001 through Mar 2002. DCEs and the SF meander are
labeled as follows: black D, DCE; magenta D, a DCE followed by cold water; black H, DCE
north of 37°N; black M, persistent SF meander.
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the complex behavior of the SF. The observed SF me-
anders in the UB have a wavelength (�w; Fig. 6, panel 1)
of about 225 km. The wavelength of the meander ap-
pears to be constrained by Ulleung Island (approximate
mean position of the northern edge of the Ulleung
Eddy; Fig. 2) and the Oki Spur. The critical meander
scale L (Cushman-Roisin et al. 1993), which is the
length scale where planetary vorticity changes and me-
ander curvature effects balance each other in the rhs of
Eq. (1) and the meander remains stationary, is given by

L � �a/b. In the UB, L �235 km for Rd � 10 km,
Coriolis f0 � 0.877 � 10�4 s�1, and its northward gra-
dient � � 1.83 � 10�11 m�1 s�1, giving a critical mean-
der scale approximately equal to the observed SF me-
ander wavelength. Therefore, such a meander may re-
main stationary in the UB until interactions between
the cross-jet structure with the curvature and � terms
balance. The southern edge of the meander trough is
typically adjacent to water cooler than the southern
edge of the meander crest, which is immediately adja-

FIG. 5. (Continued)
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cent to the warm Ulleung Eddy (Fig. 3, event 7). Under
these conditions the cross-jet temperature gradient in
the trough is significantly less than that of the crest and
results in a reduction in magnitude of the curvature
term in the trough. When the meander is not growing,
as is the case here, the result is a reduction of the �
term, which is proportional to the azimuth angle of the
jet from the zonal direction. Thus, the bottom of the
trough flattens, as seen in Fig. 3, event 7.

Breather solutions to the mKdV equation are pack-
ets of waves propagating through an envelope of per-
manent form. The propagating waves cause the enve-
lope to oscillate so that a large amplitude meander of
one sign may evolve into a meander of opposite sign
and back (see Figs. 6–8 in Cushman-Roisin et al. 1993).
This kind of nonlinear breatherlike evolution can be
related to the formation of the meander (Fig. 3, event

6), when the latitudinal extent of the Ulleung Eddy
increases from about 125 to 200 km after which the SF
meander shape begins oscillating for a few months. The
excitation source for the waves passing through the me-
ander is not known: however, a likely source may be
fluctuations in the inflow through the Korea/Tsushima
Strait, which is known to fluctuate strongly on time
scales of weeks to months (Kim et al. 2004). In our case,
the observed envelope scale is about 225 km. Assuming
the waves passing through the envelope have a wave-
length between 200 and 300 km, the period of oscilla-
tion can be related to the equation T � �/[��(�2	�2)]
of Nycander et al. (1993), where T is the oscillation
period, � is the inverse length of the envelope, � is the
wavenumber of the waves passing through the enve-
lope, and � is given by (c	

3 � c�
3 )/(6f2

0), where c	 and c�

are the internal gravity wave speeds on either side of

FIG. 6. (top) Schematic representation of the meandering SF meander: � represents the separation angle of the EKWC relative to the
coast of Korea, �w is the meander wavelength, and � is the meander width. The thin blue line represents a weak NKCC, relative to the
EKWC. (bottom) Schematic representation of the shedding of a DCE and its effect on the EKWC when it propagates westward. (left)
Theta represents the separation angle of the EKWC relative to the coast of Korea, and � is the meander width. The heavy blue line
represents a strong NKCC, relative to the EKWC, forcing it to separate at a high angle. The open blue circle represents the DCE
waiting to be shed. The heavy dashed red line shows where the meander will pinch off. (right) The thin blue line represents where the
DCE was stationary. The thick blue vector shows its propagation path. The solid blue circle shows the DCE diverting the EKWC. The
thick dashed red line represents the possibility that the DCE can fully divert the DCE into the Offshore Branch.
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the front, resulting in T that ranges from 30 to 100
days. Figure 7 shows the development and oscillation of
the SF meander. In early March 2001 � is nearly 90° and
the width of the meander (�) is narrow, indicating the
DCE may form. However, by the end of March, � ap-
proaches zero and remains steady for the remainder of
the measurement period and � approximately doubles,
after which the meander begins oscillating. Interest-
ingly, on 14 May 2001 the meander develops a pertur-
bation that results in the separation of a small DCE in
early June (Fig. 3, event 7). The observed period of
oscillation is 60–90 days, suggesting that the deforma-
tion of the Ulleung Eddy during meander formation
may generate the waves passing through the envelope.
Also worth noting, nearly stationary breather solutions
give rise to a series of eastward propagating distur-
bances that may themselves become breather solutions
downstream (see Pratt 1988, his Fig. 9). This indicates
that significant meander activity downstream from the
UB may result from formation of a large SF meander in
the UB.

The separation angle of the EKWC controls which of
the above processes occur by affecting the SF meander

width (�) (Fig. 6, panels 1 and 2). When � is near 0° the
west side of the meander tends to flow south near
131°E (Fig. 3, event 7) and � remains large. In contrast,
when � is near 90° (Fig. 3, event 3) the west side of the
meander flows south to the east of 131°E, causing � to
decrease. Of course, when the self-interaction of the jet
occurs during the DCE formation, the thin-jet approxi-
mation is violated, and a more general model should be
used. A small enough width of a large amplitude cy-
clonic meander is a necessary condition for an eddy to
pinch off as demonstrated in reduced-gravity interme-
diate model simulations (Sutyrin and Yushina 1989).
The DCE, once formed, may remain nearly stationary
for time periods of less than a month to 6 months or
more. During our measurement period, the DCE occa-
sionally disappeared in two different ways. Sometimes
the DCE propagated westward toward Korea where it
merged with the EKWC (Fig. 3, events 2–5). The DCE
also disappeared when the SF intruded southward, en-
gulfing the DCE in the meander (Fig. 3, event 6). The
first time the meander engulfed the DCE, the DCE was
subsequently shed again as the meander pinched off.
The second time the meander persisted until the end of

FIG. 7. Dynamic height contours (45, 47.5, and 50 cm) plotted every 4 days from 10 Mar 2001 through 13 Jun 2001, showing an
oscillatory, meandering trough of the Subpolar Front.
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our measurement period. As described above, the man-
ner in which the DCE disappears is determined by �.
When the DCE approaches the coast of Korea during
westward propagation the EKWC diverts eastward
around it (Fig. 3, event 2, e.g.). After three such events
between January and May 2000, the EKWC returned
approximately to its prior path. However, after a fourth
occurrence in June 2000 (Fig. 3, event 5), the EKWC
was completely absent from 11 June until 5 November
2000, having been diverted into the Offshore Branch
(Mitchell et al. 2005). This suggests that the DCE plays
a crucial role in the rearrangement of the EKWC.

7. Seasonality

Cho and Kim (2000) and Isobe (1997) studied the
branching mechanism of the Tsushima Current in the
Korea/Tsushima Straits using two-layer numerical
models. Cho and Kim concluded that the causal mecha-
nism of the EKWC was the generation of negative rela-
tive vorticity through shrinkage of the upper layer
caused by the intrusion of bottom cold water into the
Korea/Tsushima Strait in summer. They also argued
that the EKWC weakened or disappeared completely
in winter when the bottom cold water retreated and
could no longer cause shrinkage of the upper layer.
Isobe (1997) came to a similar conclusion. A significant
weakness of both these modeling studies was the north-
ern boundary condition, which was set to allow no vol-
ume transport across the SF. Thus, external forcing,
such as the presence of the DCE, was not considered.
Both studies also compared their results to temperature
observations, but the observations only covered a lim-
ited region (west of 131.25°E) and were collected only
every two months. Thus, they were unlikely to measure
a DCE because the DCE, according to our observa-
tions, resides west of 131°E only for limited durations
while propagating westward. However, Isobe’s Fig. 4
clearly shows the western edge of the DCE at 36.25°N,
131°E in August 1985, similar to what we observe in
January 2000 [Fig. 3, event 2 (panel 5)], indicating that
the event observed in August 1983 was likely the tail
end of a DCE propagation after it merged with the
EKWC.

The seasonality of the EKWC suggested by Cho and
Kim (2000) and Isobe (1997) is present during our mea-
surements, but was much stronger during the first year.
The transport through the Korea/Tsushima Strait rose
to a maximum in October 1999, fell to a minimum in
January 2000, and rose to an intermediate value that
remained relatively constant throughout the remainder
of the PIES measurement period (Kim et al. 2004). In
response to the maximum transport in October 1999,
the Ulleung Eddy increased dramatically in size (Fig. 3,
event 2). After the transport reached its minimum
value in January 2000, the DCE became very active

from January to June 2000, with four DCE propagation
events. During the DCE propagation events, the
EKWC was diverted eastward into the position of the
Offshore Branch (Mitchell et al. 2005), temporarily re-
sulting in a significantly weakened EKWC (Fig. 3, event
3). The EKWC again strengthened in late November
2000, but the Ulleung Eddy only slightly expanded in
size (Fig. 3, event 6). After this, the DCE formed, but
instead of propagating westward, it was reabsorbed by
the SF meander, which persisted for the rest of our
measurement period (Fig. 3, event 7). Since the trans-
port for the second year of measurements was relatively
steady and the EKWC seasonal response less pro-
nounced than that of the first year, the seasonality of
the transport must have two components: 1) variations
in transport through the Korea/Tsushima Strait and 2)
seasonality of the density of the inflow. This seems to
agree with Cho and Kim’s and Isobe’s conclusions
about the seasonality of the transport of the EKWC
being dependent upon the increased stratification
caused by the inflow of warmer waters in the summer
and decreased stratification by the inflow of cooler wa-
ters in the winter. However, their conclusions are in-
complete.

In stark contrast to Cho and Kim (2000) and Isobe
(1997), we found the EKWC absent in summer (June–
November 2000) when they argued it should be strong-
est due to the southward intrusion of cold bottom water
under the increased temperature of the inflowing wa-
ters. Our observations indicate that the inflowing water
is indeed much warmer in June 2000 (�21°C) than in
February 2000 (�14°C). However, the upper surface of
the bottom cold water in the presence of the impinging
DCE in June 2000 rose to within 30 m of the surface,
not 100 m as found by Cho and Kim (2000). This sug-
gests that, if the bottom layer becomes too thick, the
EKWC cannot flow over it, so the surface layers are not
compressed. Therefore, the need to generate negative
vorticity is removed and the inflowing warm waters
flow east as the Offshore Branch instead of north as the
EKWC. Furthermore, the disappearance and reestab-
lishment of the EKWC does not appear to be associ-
ated with transport variations as indicated by the nearly
steady transport between February 2000 and June 2001.

8. Discussion

In each of the DCE propagation events described
above, the merging of the DCE with the EKWC may
have resulted in the formation of a new DCE 5–10 days
later. It is possible that the merging of the DCE with
the EKWC, or interaction between the DCE and the
Ulleung Eddy, causes a flow disturbance that grows
into a meander and then develops into a new DCE;
hence this is a cyclic phenomenon. The distance the
disturbance travels, from the location where the DCE
merges with the EKWC to where the new DCE is

286 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 35



formed, ranges from 250 to 300 km. The typical advec-
tion rate of the EKWC is between 0.4 and 0.6 m s�1,
suggesting a delay ranging from 5 to 10 days. Figure 3
(event 3) shows an interaction of the DCE with the
Ulleung Eddy, which appears to initiate a disturbance
on the fringe of the Ulleung Eddy that then propagates
around the Ulleung Eddy, possibly initiating the next
pinching off of the SF meander into a new DCE.

The disappearance of the Ulleung Eddy may be re-
lated to meandering of the SF. The PIES data indicate
that, when � is near 0°, the oscillating SF meander (Fig.
3, event 7) causes the Ulleung Eddy to narrow in the
east–west direction and to lengthen and be displaced
northward until the Ulleung Eddy is either no longer a
coherent feature or has entered the northern JES as a
warm-core eddy. The T/P data (bottom two panels, and
Fig. 5, panels 7 and 8) suggest that the Ulleung Eddy
left the UB and entered the northern JES, only to be
replaced by a new Ulleung Eddy when the summer
transport increase occurred, in a manner similar to that
shown in Fig. 3 (event 1). Thin-jet theory, although it
fails once the meander has oscillated far enough to im-
pact itself, suggests that this is one of the mechanisms
by which eddies can detach. The PIES data indicate
that the SF meander may oscillate far enough east to
impact the EKWC (Fig. 3, event 7), which would then
allow the Ulleung Eddy to detach and enter the north-
ern JES.

A low separation angle does not guarantee that a SF
meander will persist. The size of the Ulleung Eddy can
be increased by high transport through the Korea/
Tsushima Strait (Fig. 3, events 1 and 2). A tongue of
low dynamic height, stretching southward between Ul-
leung and Dok Islands (Fig. 3, event 1 on 29 August
1999) after the DCE propagates westward to the north
of the forming Ulleung Eddy, could be interpreted as a
SF meander. Soon after, the transport through the Ko-
rea/Tsushima Straits significantly increases (Teague et
al. 2002), causing a significant increase in Ulleung Eddy
size (Fig. 3, event 2). The expansion of the Ulleung
Eddy forces the meander neck to narrow until the DCE
is again pinched off from the meander. Thus, significant
transport increases in summer, when the density con-
trast with the cold waters is highest, can cause the Ul-
leung Eddy to increase in size enough to pinch off the
DCE despite the near-zero value of �, which is a con-
dition that indicates a meander may persist.

Upwelling along the southeastern coast of Korea has
been frequently observed during the summer months
(Byun 1989). Many different explanations have been
proposed to explain this phenomenon. The classical
wind-driven scenario predicts upwelling associated
with southerly winds and several studies have con-
firmed this (Lee 1983; Lee and Na 1985; Byun 1989).
Kim and Kim (1983) suggested it originated from the
southward flowing NKCC, and Seung (1974) suggested
that the strengthening of the EKWC during summer
forced deep cold water to shoal toward the coast. One

weakness of previous observations stems from their
limited temporal coverage, with typical conductivity–
temperature–depth (CTD) surveys taken only every
two months (An et al. 1994). The results presented here
(Fig. 3) clearly demonstrate that mesoscale eddy activ-
ity near the coast of Korea can occur on shorter time
scales. Furthermore, our results show that structures
observed north of 36°N interpreted as upwelling events
based on a single CTD survey may occur as a result of
the DCE propagating westward and encountering the
coast of Korea. For example, Fig. 3 events 2–5 all have
low dynamic height (cool) features extending out from
the coast of Korea. Any of these features viewed in
isolation could be interpreted as large upwelling fea-
tures. However, our time series clearly shows that the
westward propagation of the DCE generated these fea-
tures, not upwelling.

9. Conclusions

New insight into the circulation of the UB has been
gained by examining SF meanders and the previously
unrecognized DCE. Large amplitude meanders (�200
km) of the SF form between Ulleung and Dok Islands.
When the separation angle of the EKWC relative to
Korea is near zero and the transport through the Ko-
rea/Tsushima Strait is steady, the meander oscillates in
the east–west direction with a period near 60 days. Un-
der these conditions, the dynamics of the oscillating
meander can be related to a breather solution of the
mKdV equation. The oscillating meander deforms
and displaces the Ulleung Eddy and may result in the
Ulleung Eddy being pinched off as a warm-core eddy in
the northern JES.

The DCE forms when a large amplitude SF meander
pinches off between Ulleung and Dok Islands. The
pinching off of the DCE may occur when different seg-
ments of the jet path come into contact, causing the
initially simply connected jet to “pinch” together. This
pinching process is affected primarily by the width of
the SF meander, which decreases when the separation
angle of the EKWC increases. The DCE, once formed,
may either remain stationary for many months or
propagate westward toward Korea. When the DCE ap-
proaches Korea, it diverts the EKWC eastward and
temporarily enhances the Offshore Branch. After the
DCE has passed, the EKWC may either return to its
prior path or the EKWC may remain as the Offshore
Branch for an extended period, as it did between June
and November 2000. Although the DCE and SF mean-
ders have been sporadically observed in previous stud-
ies, their significance in the circulation of the UB has
not been previously recognized.
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