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ABSTRACT 

The immunosuppressive agents used to prevent rejection of transplanted organs 

include cyclosporine (CsA), everolimus (EVE), mycophenolic acid (MPA), 

prednisolone (PLN), sirolimus (SIR) and tacrolimus (TAC). Because of the narrow 

therapeutic index and high inter- and intra-subject variability of these agents, 

therapeutic drug monitoring (TDM) is an integral part of immunosuppressive therapy 

following organ transplantation. The immunosuppressants incidence and severity of 

side effects correlate with the degree of exposure while under-dosed patients can be at 

a greater risk for allograft rejection.  Currently, whole blood or plasma samples that 

are obtained via venipuncture are used for routine immunosuppressive monitoring. 

The limitations of venipuncture blood samples include (i) invasive nature associated 

with the sample collection and (ii) weak correlation with the drug concentration at the 

site of action.  This thesis is consisted of the following sections written in a manuscript 

format. 

Manuscript I provides a comprehensive review of literature published on alternative 

techniques that are proposed to overcome the limitation of venipuncture sampling. 

These methods include the use of non-conventional techniques, namely, drug 

monitoring in oral fluids or blood samples obtained from fingertip as well as drug 

concentration measurement in lymphocytes or transplanted tissue. 

Drug concentration measurement in lymphocytes or transplanted tissue is primarily 

aimed at obtaining information on drug level at the site of action thus to facilitate 

prediction of clinical outcomes.  However, these approaches are impractical in clinical 



 

 

setting because of the invasive nature of sampling as well as complicated sample 

preparation procedures. 

The objective of finger prick sampling is to mitigate the discomfort and difficulties 

associated with venipuncture, especially in pediatrics and frail patients. In this 

approach, the fingertip blood samples are either applied onto a filter paper (dried 

blood spots) or are processed as a liquid.  It has been reported that fingertip sampling 

was preferred to venipuncture by both patients and healthcare providers. Nevertheless, 

the main disadvantages of venipuncture whole blood sampling, which is the poor 

correlation with concentration at the site of action, still exist. 

Finally, oral fluid sampling is a promising non-invasive method of therapeutic 

monitoring of immunosuppressive agents. Advances in analytical techniques have 

enabled measuring drug concentration in minute amount of sample. Drug 

concentration in oral fluids represents the free fraction which should theoretically 

represent drug concentration at the site of action. 

Few comprehensive studies investigated the use of oral fluids as a medium for 

therapeutic drug monitoring. Therefore, this dissertation is focused on the 

development of sensitive and robust liquid chromatography tandem mass spectrometry 

methods for quantification of the most commonly used immunosuppressant agents, 

tacrolimus and mycophenolic acid.  The methods are then used to quantify these 

agents in oral fluids samples collected from kidney transplant recipients. 

Manuscript II describes, in details, the development and validation of a liquid 

chromatography tandem mass spectrometry (LC-MS/MS) method for quantification of 

tacrolimus in oral fluids. This method was validated in accordance with the current 



 

 

Food and Drug Administration (FDA) guideline. The Lower Limit of Quantification 

of this method is 30 pg/mL that is adequate for measuring tacrolimus concentration in 

oral fluid samples from transplant recipients.  Full separation between tacrolimus and 

plasma phospholipids components was achieved in very short run time of 2.2 min.  

Very simple sample predations procedure was followed by extraction 50 µL of oral 

fluids with 100µL of acetonitrile.  

Manuscript III in this manuscript, the method presented in manuscript II to quantify 

tacrolimus in oral fluids. It focused on investigating factors that may affect tacrolimus 

measurement in oral fluid, namely, sampling condition (resting, after mouth rinsing, 

and after give a saliva stimulant), sampling time, and blood contamination expressed 

as salivary transferrin level.  The correlation between tacrolimus concentration in 

blood and oral fluids was investigated under these conditions. Correlation analysis 

revealed that samples collected after mouth rinse and at fasting provided better 

correlation in tacrolimus concentrations in blood and oral fluid. 

 

Manuscript IV: Liquid chromatography tandem mass spectrometry methods was 

developed and validated according to current FDA Guidelines to quantify 

mycophenolic acid and its glucuronide metabolites in oral fluids, total concentration in 

plasma, and unbound fraction in plasma. Full separation of mycophenolic acid, 

metabolites, and plasma phospholipids was achieved within the total run time of 2.8 

min. 

Manuscript V:  The assay described in manuscript IV was used to quantify 

mycophenolic acid and glucuronide metabolites in oral fluids. The aim was to 



 

 

investigate factors that may affect mycophenolic acid and glucuronide metabolites 

concentration in oral fluid, namely, sampling condition (resting, after mouth rinsing, 

and after saliva stimulation), sampling time, and blood contamination expressed as 

salivary transferrin level.  The result of this study indicated that the blood 

contamination had an insignificant effect on the concentration of mycophenolic acid 

and metabolites in oral fluids. In addition, a good correlation was observed between 

AUC0-12 of MPA in OF samples and unbound and total MPA.  In contrast, a weak 

association was observed between MPAG concentrations in oral fluids with total and 

unbound plasma concentration. 

Manuscript VI: PF-5190457 is a ghrelin receptor inverse agonist that is currently 

undergoing clinical development for the treatment of alcoholism. In this manuscript, 

the development and validation of a simple and sensitive assay for quantitative 

analysis of PF-5190457 in human or rat plasma and rat brain was described using 

liquid chromatography-tandem mass spectrometry.  Full separation was achieved 

between the analyte and phospholipids of the three matrices within the total 

chromatographic run time of 2.2 minutes. The manuscript also identified and 

described the abundance of phospholipids contents of the three matrices. The 

developed method successfully used to quantify the analytes in the three matrices as 

part of pre-clinical and ongoing clinical studies. 
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PREFACE 

This dissertation was prepared according to the University of Rhode Island 

‘Guidelines   for   the   Format   of   Theses   and   Dissertations’   standards   for   Manuscript  

format. This dissertation consists of six manuscripts that have been combined to 

satisfy the requirements of the department of Biomedical and Pharmaceutical 

Sciences, College of Pharmacy, University of Rhode Island. 

MANUSCRIPT I: Alternative Matrices for Therapeutic Drug of Immunosuppressive 

Agents using LC-MS/MS. 

This manuscript has been accepted for publication and submitted to “Bioanalysis” as 

a review article. 

MANUSCRIPT II: Development and Validation of Sensitive and Selective LC-

MS/MS Method for Quantification of Tacrolimus in Oral Fluid Samples from Kidney 

Transplant Recipients. 

This manuscript has been prepared for publication and will be submitted to “Journal  

of  Chromatography  B” 

MANUSCRIPT III: Therapeutic Drug Monitoring of Tacrolimus in Oral Fluids. 

This manuscript has been prepared for publication and will be submitted  to  “Clinical 

Pharmacokinetics” 

MANUSCRIPT IV: Development and Validation of Sensitive and Selective LC-

MS/MS Method for Quantifying Mycophenolic Acid and Glucuronide metabolites in 

Oral Fluid, Plasma, and Plasma Ultrafiltrate. 

This manuscript has been prepared for publication and will be submitted to “Journal  

of  Chromatography  B” 
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MANUSCRIPT V: Therapeutic Drug Monitoring of Mycophenolic Acid in Oral 

Fluid in Samples from Kidney Transplant Recipients. 

This manuscript has been prepared for publication and will be submitted  to  “Clinical 

Pharmacokinetics” 

MANUSCRIPT VI: Development and Validation of an UPLC-MS/MS Assay for 

Quantitative Analysis of the Ghrelin Receptor Inverse Agonist PF-5190457 in Human 

or Rat Plasma and Rat Brain. 

This manuscript has been prepared for publication and submitted   to  “Analytical and 

Bioanalytical  Chemistry” 
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Abstract 

Immunosuppressive drugs used in solid organ transplants typically have narrow 

therapeutic windows and high intra- and inter-subject variability. To ensure 

satisfactory exposure, therapeutic drug monitoring (TDM) plays a pivotal role in any 

successful post-transplant maintenance therapy. Currently, recommendations for 

optimum immunosuppressant concentrations are based on blood/plasma 

measurements. However, they introduce many disadvantages, including poor 

prediction of allograft survival and toxicity, a weak correlation with drug 

concentrations at the site of action, and the invasive nature of the sample collection.  

Thus, alternative matrices have been investigated. This paper reviews tandem-mass 

spectrometry (LC-MS/MS) methods used for the quantification of immunosuppressant 

drugs utilizing non-conventional matrices, namely oral fluids, fingerprick blood, and 

intra-cellular and intra-tissue sampling. The advantages, disadvantages, and clinical 

application of such alternative mediums are discussed. Additionally, sample extraction 

techniques and basic chromatography information regarding these methods are 

presented in tabulated form. 
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Introduction 

Therapeutic drug monitoring (TDM) is an integral part of immunosuppressive therapy 

following organ transplantation because of the narrow therapeutic index and high 

inter- and intra-subject variability of these agents [1-4]. The immunosuppressive 

agents used in solid organ transplant include cyclosporine (CsA), everolimus (EVE), 

mycophenolic acid (MPA), prednisolone (PLN), sirolimus (SIR) and tacrolimus 

(TAC) [5]. The incidence and severity of side effects of immunosuppressant agents 

correlate with a high exposure [5], while under-dosed patients can be at a greater risk 

for allograft rejection [1, 5]. Currently, whole blood or plasma samples obtained 

through venipuncture are used for routine immunosuppressive monitoring [5]. The 

limitations of venipuncture blood samples include the invasive nature associated with 

the sample collection and the weak correlation with the drug concentration at the site 

of action. In this review, these limitations and proposed alternative methods will be 

discussed. 

Use of tandem mass spectrometry (LC-MS/MS) in drug monitoring 

Advances in LC-MS/MS have enabled researchers to measure drug concentrations in 

limited sample volumes with adequate sensitivity, selectivity and robustness. This 

review will focus mainly on the use of LC-MS/MS in immunosuppressive agents in 

TDM using alternative matrixes, namely oral fluids (OF), dried blood spots (DBS), 

peripheral blood mononuclear cells (PBMC), and a biopsy sample from the implanted 

organ. Other techniques, such as high-performance liquid chromatography (HPLC) 
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and immunoassays, will be briefly discussed wherever significant findings have been 

reported. 

The use of LC-MS/MS has long been a gold standard in pharmacokinetic studies [6], 

and it is becoming an increasingly used technique in clinical laboratories [7]. A 

reduced chromatographic run time and increased sensitivity are typically achieved 

using ultra-performance liquid chromatography (UPLC) and newer stationary phases 

[8,9]. LC-MS/MS has enabled researchers to quantify lower drug concentrations in 

small blood sample volumes (i.e., 4-10 µL) [10-15] with higher specificity in 

comparison with immunoassays [16-20]. In addition, LC-MS/MS allows the 

simultaneous quantification of more than one analyte and/or metabolite [9, 21] with 

different physiochemical properties with a high degree of sensitivity and selectivity 

[22]. 

LC-MS/MS is a system that combines high-performance chromatography (HPLC) 

with mass spectrometry (MS). Three atmospheric pressure ionization (API) 

techniques, namely electrospray ionization (ESI), atmospheric-pressure chemical 

ionization (APCI), and atmospheric-pressure photo-ionization (APPI), are typically 

employed [23]. These techniques provide highly precise quantitative analysis with 

minimal sample preparation of complex samples such as blood, plasma and OF [22, 

24, 25]. ESI technique, most commonly used in quantifying polar to ionic compounds, 

and in metabolomics and proteomics studies [23]. The main challenge that may hinder 

the LC-MS/MS method development is the matrix effect (ME), which may produce 

erroneous results [26, 27]. Proper cleanup of samples [26], the use of a deuterated 
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internal standard [21], and chromatographic separation of analytes from regions of 

ion enhancement or suppression can mitigate/eliminate the effect of ME [28]. 

1. Oral fluids as a matrix for therapeutic drug monitoring 

Oral fluids have been a subject of interest as an alternative medium to venipuncture 

blood [24, 25, 29-39]. The main advantage of OF sampling is the noninvasive sample 

collection, permitting more frequent sampling [40] and allowing more convenient self-

sampling [41]. Moreover, OF sampling offers a significantly lower cost per sample 

[41, 42]. In addition, the drug portion measured in the OF represents the free drug 

concentration [41, 42] (Figure 2). Given that the free drug concentration is responsible 

for the pharmacological and toxicological effects [4, 43, 44], measurement of the drug 

concentrations in OF may provide a better prediction of clinical outcomes and toxicity 

[34,45]. Therefore, salivary drug level measurements are much easier and faster than 

quantifying the free drug concentration in plasma [25, 38]. 

Drugs enter the OF mainly via passive diffusion [35]. Thus, physiochemical 

properties, including protein binding, ionization, lipophilicity, and molecular weight, 

are important determinants for the entry of a drug into the OF [35, 45]. The ability of a 

drug to diffuse and equilibrate between the plasma and tissues is governed by its free 

fraction [[35,45,46]. According  to  Lipinski’s  rule  of  five,  a  molecular  weight  <  500  is  

a prerequisite for good absorption/permeability [47]. However, despite its large 

molecular weight (1202.6 g/mol), the total cyclosporine (CsA) concentration in both 

blood and OF has shown a reasonable correlation (r=0.695) [39]. Blood capillaries 

contain pores that are sufficiently large to allow molecules with a molecular weight 

<1000 to permeate [45]. Because of their large size, drug-protein complexes are 
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prevented from crossing capillaries, and only the unbound drug enters the OF [34]. 

The salivary flow rate (see section 1.1.1), pH and pathophysiological conditions of the 

oral cavity are also important physiological factors that affect the movement of a drug 

between the plasma and the OF [48]. The pH of a medium influences the drug 

distribution by altering the unionized portion of a drug [29,34,35,45,46]. The degree of 

ionization of a drug is determined by its pKa (the pH at which 50% of the drug is 

found in ionized form) and the pH of the medium [33]. Theoretically, basic drugs with 

pKa values less than 5.5 and acidic drugs with pKa values greater than 8.5 are not 

affected by changes in salivary pH (5.8-7.8) [45,48]. Under these conditions, drugs 

predominantly exist in unionized form, therefore; they have higher lipophilicity and 

consequently cross biological membranes more easily [29,35]. The chemical structure 

and physicochemical properties of immunosuppressive agents are presented in Figure 

1 and Table 1, respectively. 

Recently, a Saliva Excretion Classification System has been proposed to predict the 

ability of drugs to diffuse into the OF [49,50]. This system is based on the estimated 

effective intestinal permeability and the percentage of the free fraction. According to 

the authors, high drug permeability and/or high percentage of free fraction are required 

to ensure the smooth movement of a drug between the plasma and OF. Based on the 

logD value at pH 7.4, all immunosuppressive agents have high lipophilicity (Table 1), 

and therefore high permeability is predicted despite the low free fraction. A low free 

fraction thus will be the rate-limiting factor for penetration of drug into saliva making 

saliva a suitable specimen to measure the unbound concentration of 

immunosuppressive agents. 
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1.1. Oral fluid collection techniques and storage 

1.1.1. Resting vs. stimulated OF sampling 

The concentrations of certain drugs in the OF are affected by the salivary flow rate 

[29,35,48]. Stimulated OF has less contact time in comparison to resting OF, 

consequently reducing the influence of tubular re-absorption and secretion [29,48]. 

Stimulation may alter the salivary composition and pH [51], thereby may affect the 

partitioning of drugs between the OF and plasma [52] by modifying the ionized 

portion. Changing the salivary flow rate alters the correlation between the plasma and 

OF drug concentrations of some drugs but has little to no effect on others [29,48]. 

Acidic drugs mainly exist in non-ionized forms at a lower salivary pH, which allows 

better correlation with the plasma concentration [33]. In contrast, basic drugs tend to 

accumulate in acidic saliva because they exist predominately in the ionized form, 

which limits their movement across biological membranes [29] (Table 1). Using 

Henderson-Hasselbach equation, it can be predicted that except for MPA, all 

immunosuppressive agents are mainly (> 99%) unionized at pH 7.4; therefore, their 

high lipophilicity should lead to a good agreement between blood and OF 

concentrations. Conversely, >99% of MPA exist as ionized that should theoretically 

limit the ability of MPA to move through biological barriers. However, published 

reports [25,38] indicate that MPA concentration in OFs associates well with the 

plasma concentration of MPA. 
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In addition, food stimulates protein-rich OF, compared with other stimuli that produce 

protein-poor OF [33]. No published studies have investigated the effects of salivary 

stimulation on the distribution of immunosuppressive agents into the OF. 

1.1.2. Influence of oral fluid collection device materials 

Depending on the analyte of interest, appropriate collection devices should be chosen, 

and OF collection protocols should be optimized [53]. In a study reported by Groschl 

et al. [53], the suitability of different devices for OF sampling of several endogenous 

substances and chemical entities were evaluated. Devices for collecting peptides, 

proteins and steroids that are made of polyester, polyethylene and cellulose were 

found to be superior to those made of cotton. Devices consisting of polyester and 

polyethylene showed excellent stability for small molecules (e.g., antidepressants, 

theophylline and caffeine). With a few exceptions (phenobarbital, ethosuximide and 

amylase), cotton pads exhibited very poor recovery. Salivette® (Sarstedt) devices 

consisting of cotton, polyester or polyethylene roll were highly rated by patients and 

investigators based on their ease of use and practicality. The OF collection methods 

used in the immunosuppressive agent quantification assays are shown in Table 2. 

The adsorption of TAC into plastic materials, including polyolefin and polyvinyl 

chloride used in making central venous catheters, has been reported [54]. However, a 

recent study showed that the stability of TAC was not compromised when it was 

stored in either glass or plastic containers [24]. The yield of TAC obtained from OF 

samples with passive drool and polypropylene Salivette® devices was also studied. A 

modest correlation (r = 0.57) was reported in TAC concentrations in drool and 
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Salivette® samples [24]. Although minimal to no interaction was observed between 

CsA and plastic/glass materials used in the manufacture of blood collection tubes, the 

adsorption of CsA into peripheral and indwelling catheter sites has been reported [55]. 

To prevent non-specific binding and to minimize the risk of adsorption, siliconization 

(i.e., the application of a thin layer of highly hydrophilic material) of the OF collection 

and storage containers may prove to be beneficial [39]. To date, no studies have 

investigated the suitability of different OF collection devices or the optimal collection 

conditions for the immunosuppressive agents used in solid organ transplants. For more 

information on OF collecting devices, the reader is referred to other published papers 

[53,56,57]. 

1.2. Sample preparation and extraction 

The mucopolysaccharide content of OF may interfere with the accuracy of pipetting 

[58]. Sample homogenization aids in breaking down salivary proteins and improving 

extraction yields [38]. Subjecting OF samples to freeze and thaw cycles followed by 

centrifugation facilitates sample processing and breaks down mucopolysaccharides 

[58]. Simple pre-analysis treatment and protein precipitation using 2-3 volumes of 

acetonitrile (ACN) has been shown to provide sufficient sample cleanup and good 

recovery [24-26]. Some methods employ more labor-intensive techniques, including 

SPE and drying for sample cleanup [37-39]. 

1.3. Blood contamination of oral fluid 

Predicting the effect of mouth injuries based on the concentration of endogenous 

compounds in OF is not straightforward. For example, the presence of a low 
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concentration of blood in the OF does not alter the cortisol concentration if no visual 

discoloration is detected [58]. In contrast, the validity of salivary testosterone 

measurements can be compromised by even minimal blood contamination from 

micro-injuries caused by routine teeth brushing, as detected by the transferrin 

immunoassay (Salimetrics LLC, State College, PA) [58]. Therefore, the effect of OF 

blood contamination on the accuracy of each analyte should be investigated. 

To analyze the possible effect of blood contamination on MPA and TAC, the salivary 

levels were investigated. Mendonza et al. [38] utilized a Salimetrics transferrin kit to 

detect the presence of transferrin and excluded samples with a transferrin level >1 

mg/dL. Fasting OF samples displayed significantly higher transferrin levels than non-

fasting OF samples, and this difference was accompanied by an elevated MPA 

concentration. In another study [24], the influence of salivary blood contamination on 

the TAC level was investigated. When 1 mL of blank OF samples spiked with 

different volume of blood (<1, 2, 5, and 10 µL) contained TAC (11.2   μg/L) were 

analyzed, only samples that were spiked with 2, 5, and 10 µL of TAC displayed visual 

signs of blood contamination together with proportional increases in TAC 

concentrations up to 28%. Thus, visual inspection might be sufficient for sample 

exclusion due to blood contamination for TAC.  

1.4. Measurement of immunosuppressive agents in oral fluids 

In the following paragraphs, the physiochemical characteristics of immunosuppressive 

drugs will be presented, and LC-MS/MS methods that utilize OF will be discussed.  
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1.4.1. Cyclosporine 

Cyclosporine is an extremely lipophilic compound that is mostly distributed in plasma 

lipoproteins and blood cells [44]. Measurement of unbound fraction of CsA by 

equilibrium dialysis is difficult and time consuming. Because of extreme lipophilicity, 

CsA binds non-specifically to Teflon dialysis cells resulting in low yield and 

prolonged dialysis time. As a result, unbound fraction measurement requires the use of 

custom-made stainless-steel equilibrium dialysis devices [44]. Moreover, all methods 

reported to date have utilized radiolabelled cyclosporine as tracer possibly because of 

lack of sensitivity of analytical methods. 

The degree of binding to plasma proteins is influenced by the time after 

transplantation [60], drugs that modulate the lipid profile [44,59], nutritional status 

[60], and clinical conditions [60,61].  Cyclosporine partitioning between the blood and 

plasma depends on the drug concentration, hematocrit (HT), plasma lipoprotein level 

and temperature. Therefore, whole blood is the recommended matrix for CsA 

therapeutic drug monitoring [60]. The outcome of immunosuppressant therapy with 

CsA is improved by a higher free fraction percentage [62]. There is a high variability 

in the free fraction of CsA with a mean ± SD of 1.53 ± 0.38% in the lung and heart 

transplant recipients [44] and a range from 0.5 to 4.2% [61]. The ease with which 

cyclosporine crosses biological membranes and enters the OF is attributed to its 

lipophilicity. CsA was the first immunosuppressant agent studied in OF by 

radioimmunoassay [36]. A good correlation was reported (r=0.68) between the OF and 

the total cyclosporine serum level in samples from 38 renal transplant recipients. 

Mendonza et al. [39] published the first and, to date, the only method used to measure 
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CsA concentrations in the OF by LC-MS/MS following SPE for sample cleaning 

(Table 2). 

1.4.2. Tacrolimus 

Tacrolimus is a highly lipophilic compound (Table 2) with a plasma free fraction of 

approximately 1% [3]. The unbound fraction is significantly affected by changes in 

plasma lipoprotein concentrations after liver transplantation [43], which may lead to 

incidences of rejection and/or toxicity [43,63]. There is only one published method for 

the utilization of the OF matrix for TAC quantification [24] (Table 2). 

1.4.3. Mycophenolic acid 

The unbound fraction of MPA ranges from 1 to 2.5% [4]. In patients with severe renal 

impairment, the concentration of the major MPA metabolite, MPA-glucuronide 

(MPAG), may increase up to 3-6-fold. This increase in MPAG leads to displacement 

of MPA from its binding sites [4], and as a result, the MPA-free fraction may increase 

up to 7% [4]. Mycophenolic acid has a low molecular weight and lipophilic nature 

(logD 0.76 at pH 7.4) (Table 1). These characteristics make MPA a suitable candidate 

for TDM in OF. LC-MS/MS is used to quantify MPA in negative [38] and positive 

[25,37] ESI modes. In a recent paper [37], MPA and MPAG were quantified 

simultaneously with 82.1% and 65.7% recovery, respectively. It must be noted that 

MPAG is subject to in-source conversion to MPA. This phenomenon is observed as 

small peaks in the MPA chromatogram channel with the same retention time as 

MPAG [25,38,64]. Therefore, the chromatographic separation of MPA and MPAG 

peaks is necessary to avoid overestimating the parent drug concentration. 
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1.4.4. Prednisolone 

Prednisolone (PLN) is a synthetic glucocorticoid with an unspecific mechanism of 

action [65]. Prednisolone is widely prescribed as a part of immunosuppressive therapy 

regimens in solid organ transplantation [66]. The free fraction of PLN increases in 

certain clinical conditions such as diabetes [67]. In addition, the free fraction is dose-

dependent and exhibits circadian variability (approximately 22% higher in the 

morning) [68]. The PLN plasma unbound fraction demonstrates a high correlation 

with the salivary level and a lower correlation with the concentration of the pro-drug 

prednisone (PN) [69,70]. Total and free concentrations of PLN+PN in the OF and 

plasma display an excellent association [70] (Table 2). 

Some studies [24,39] have focused on finding an association between total drug 

concentrations in the blood and OF. Because the drug fraction in OF theoretically 

represents the unbound portion, a good association with the free fraction in the blood 

should be pursued. The total drug concentration may not correlate very well with the 

free fraction [4,43]. However, OF sampling may be considered a non-invasive 

alternative to venous blood sampling if a good correlation between total blood and OF 

drug concentrations is established. 

2. Dried blood spot and liquid fingerprick blood sampling 

Dried blood spot (DBS) and liquid fingerprick blood (LFB) sampling are other 

techniques that have benefited from the introduction of LC-MS/MS [12-14,71-77]. 

The first report of the use of fingertip blood to measure an immunosuppressive agent 

was published in the late 1980s [78]. The radioimmunoassay (RIA) technique was 
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utilized to quantify CsA in 20-µL blood samples obtained from the fingertips of renal 

transplant recipients with a lower limit of quantification (LLOQ) of 62.5 µg/L. 

Fingerprick sampling is much less invasive than venipuncture and offers the 

possibility of home self-sampling   at   the   patient’s   convenience   [79].   However,  

adequate patient training might be needed for optimum sample collection [80]. 

Additionally, proper sample handling and storing after collection are required to avoid 

deterioration and to ensure stability during mailing and transportation [73,79].  

2.1. Sample collection 

After cleaning the fingertip with a suitable disinfectant [11,14,79,81], a small 

laceration is made using spring-loaded lancets that are designed to minimize pain and 

discomfort [73,77,79,82]. A fingerprick blood sample is processed either as a dried 

blood spot (DBS) (Table 3) or in liquid form (LFB) (Table 4). 

In the DBS technique, blood samples are either applied directly from the fingertip 

after discarding the first drop [71,73,74,76,79,82]; or the blood is collected using a 

collecting device from the fingertip or venipuncture is pipetted onto a predetermined 

circular area of a special filter paper [15,77,83]. The latter approach guarantees the 

application of a precise amount of blood sample to the filter paper. However, this 

additional step may make home self-sampling less appealing [15]. In addition, 

capillary self-sampling may result in a significantly different result from sample 

collection by healthcare professionals [15]. Liquid fingerprick blood sampling 

involves the direct extraction of blood samples in liquid form, which are collected 
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using EDTA-containing  devices  such  as  Microvette™  [12,15]  or  Microtainer™  tubes  

[13]. 

2.2. Extraction procedure and recovery of DBS and LFB sampling 

A disc of the blood spot with a diameter between 4 and 8 mm is removed using a 

special puncher. The sample extraction ranges from simple vortex mixing [15,75,82] 

to ultra-sonication at temperatures of up to 80 °C [71,72,77,83]. The different pre-

treatment conditions used for the samples result in significant differences in the final 

yield (Table 3). The applied blood volume, card type, punched area, and hematocrit 

(HT) may also play important roles in the extraction recovery and method 

reproducibility [84,85]. Therefore, these variables should be examined for the analyte 

of interest, and corrections should be applied if necessary and feasible [86]. LFB 

samples are pre-treated with a zinc sulfate solution (0.1- 0.4 mol/L) followed by 

protein precipitation with ACN and centrifugation [11-14]. 

2.2.1 Effect of blood volume 

A good precision of the estimation of CsA, SIR, and TAC (CV=4.3-13.5%) was 

produced using a 25-100-μl  blood  drop  on  a  Whatman  903  card  with  an  8-mm punch 

size [75]. A different study [87] reported that 20 µL of blood was enough to fill the 

designated area on the Whatman 903 card. In contrast, another study [71] used the 

same type of filter paper and punch size reported that drops with a volume of 20 µL 

were insufficient to fill the pre-determined area. The discrepancy between the two 

studies could be attributed to differences in the HT values of the blood samples used. 
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2.2.2. Influence of the type of sampling card 

A Whatman Protein saver 903 card (LifeSciences GH) [88] is the most commonly 

used card for immunosuppressive drug testing (Table 3). This card is additive-free and 

made from 100% pure cotton linters [89]. Whatman FTA and FTA Elute are high 

quality papers that are chemically treated to provide cell lysis, protein denaturation 

and prevention of microorganism growth [89]. Whatman 31 ET CHR 

(chromatography/ethyl acetate) cards are intended for electrophoresis applications of 

large molecules and are also used in immunosuppressant drug DBS testing [88]. 

Finally, Ahlstrom 226 (PerkinElmer) is another additive-free sampling card that 

consists of 100% pure cotton linter and is validated for even and uniform sample 

distribution [90]. 

There are no significant differences between Whatman 31 ET CHR and Whatman 

FTA cards at the method validation level for CsA, EVE, SIR and TAC [86]. Heinig et 

al. [87] compared MPA and MPAG metabolite recovery using five different cards. 

There were lower recoveries of MPA and metabolites from Whatman FTA-DMPK-C 

and FTA-DMPK-A than from Ahlstrom 226, FTA-DMP-B, and Whatman FTA elute 

cards.  In addition, poor reproducibility (CV=17-26%) was observed for FTA-DMPK-

C and FTA-DMPK-A. Although 20 µL of blood was sufficient to fill the designated 

area on the Whatman 903 card, there was a visible clear area on the Ahlstrom 226 

card. 



 

 18 

2.2.3. Effect of the punching location 

The distribution of analytes may differ between the center and the outer area of the 

spot due to the chromatographic properties of the DBS sampling card [85]. The disc 

obtained from punching close to the spot edges on Ahlstrom 226 cards produces 30% 

higher MPA and metabolite (MPAG) concentrations than the concentrations 

determined from central punching [87]. In contrast, the concentrations of MPA and its 

metabolites at the edges were lower on FTA Elute and DMPK-B (4–10% and 14–

19%, respectively) [87]. Consistency of the punching location helps to improve the 

reproducibility [87] and application of a larger spot than the size of the punched disc 

ensures sampling from the center of the spot [71]. 

2.2.4. Effect of hematocrit 

Normal HT values range from 42 to 52% in males and from 37 to 48% in females 

[91]. Samples from patients with a high HT create drops that are more viscous and 

have smaller volumes [92]. Furthermore, a drop with a high HT produces less 

dispersion on the filter paper, and a larger volume is required to fill the same area [86]. 

Consequently, the concentration of certain analytes can be overestimated 

[77,85,86,92]. A high HT has been reported to increase the MPA content by 

approximately 10% [92]. Similar findings have been reported for CsA from blood 

samples with high HT values (0.72%), demonstrating an approximately 10-14% 

higher CsA concentration [77]. Conversely, in blood samples with HT levels less than 

0.20, the CsA concentration was reduced by approximately 9-12%. The normalization 

of individual HT values with an average HT value of venous blood obtained from the 
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precipitating individuals is recommended to minimize the effect of variability in HT 

on the finalized results [71,77,91,92]. Using this approach, the calculated recovery in 

samples with low HT improved to 112.4 and 97.0 for low (39.4 µg/L) and high (590 

µg/L) CsA concentrations, respectively, compared to less than 85% for non-

normalized HT values [71]. The effect of HT on the recovery of EVE, SIR and TAC 

appears to be minimal [71].  

Recently, a new technique has been proposed to overcome variability in volumes of 

blood samples applied to the filter paper arises from differences in HT value [93,94]. 

This utilizes simple and practical procedures using volumetric absorptive 

microsampler devise (VAMS). It consists of porous absorbent polymeric tip capable 

of absorbing more precisely 10 µL of blood utilizing capillary force. 

2.3 Matrix effect 

The extracted matrix from DBS appears to have a negligible effect on ME 

[71,76,77,82,87]. The degree of interference of blood components may depend on the 

type of sampling card used. For example, interfering residue is less pronounced in 

ethanolic extract from samples prepared on the Whatman FTA elute and FTA DMPK-

A card than from samples prepared on the Ahlstrom 226 card [87]. However, remains 

were further reduced after proper sample cleaning using SPE [87]. Using MeOH: 

water (80:20, v:v) as an extracting solvent from the Whatman 31 ET CHR and 

Whatman FTA cards, only CsA showed a significant ME; no interference was 

observed with EVE, SIR or TAC [86]. The ME effect on CsA was diminished when a 

deuterated internal standard was used. 
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2.4. Stability 

Despite the use of the same DBS collection paper (Whatman 903), a discrepancy in 

stability has been reported, especially for CsA (Table 3). Leichtle et al. [15] have 

examined CsA stability in DBS. After the application of capillary venous blood (about 

4  μL),  the  card  was  allowed  to  dry  for  two  hours,  and  the  CsA  was  extracted  from  a  4-

mm disc. Samples collected with capillary devices with or without EDTA were stable 

for up 12 hours at 8 and 20 °C; the concentration decreased significantly by 24 hours. 

In contrast, no identifiable changes in the blood samples processed in liquid form were 

observed. Shorter stability time in the DBS samples compared to the capillary blood 

samples, may indicate an insufficient drying time (2 hours) and/or poor storage 

conditions and handling [89]. 

In another study [77], CsA concentrations were measured in dry blood spots prepared 

by pipetting EDTA venous blood samples (50 µL) onto filter paper that was allowed 

to dry overnight at room temperature. The extracted CsA from an 8-mm disc was 

stable for 17 days at ambient temperature and for up to 45 days at 4 °C. Finally, a 

recent study [75] reported that CsA extracted from an 8-mm disc prepared using 50 µL 

EDTA venous blood dried for 3 hours at room temperature was stable for up to 5 days 

at 60 °C. The only noticeable differences seemed to be the drying time and sample 

volumes, which were approximately 12-fold higher in the latter two studies [75,77] 

(see Table 3). 

Tacrolimus that was measured in EDTA venous blood (50 µL) applied immediately 

onto a filter paper and dried at room temperature for 3 hours showed stability for up to 
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5 days at 60 °C, and SIR was stable for the same period of time at 37 °C [75]. 

Tacrolimus in fingertip blood samples applied directly onto the filter paper also 

showed stability for up to 7 days at 37 °C [82]. In addition, EVE appeared to be stable 

for up to 3 days at 60 °C and for 32 days at 4 °C [76]. Fingertip DBS samples of CsA, 

EVE, SIR and TAC have been reported to be stable for up to 5 months at 2 to 8 °C 

when the blood was applied directly onto the filter paper [71]. 

Cyclosporine A in LFB blood samples collected in Microvette devices containing 

EDTA were found to be stable for 5 days after mail delivery [12]. Tacrolimus [14, 79], 

EVE [76], and CsA [12] DBS samples seemed to be stable during mailing and 

transportation, supporting LFB and DBS home sampling.  

2.5. Patient preference 

Self-fingerprick sampling is well tolerated with no serious discomfort as reported by 

children [14,81] or adult transplant patients [12,79,95]. In solid organ transplant 

patients, LFB was preferred (60%) over venipuncture sampling, and approximately 

68% of patients favored the use of DBS over LFP sampling (18%) [15]. The sampling 

process for LFB may be troublesome for some patients and therefore may produce 

poor sampling [12,15]. Nonetheless, unsupervised capillary and DBS self-sampling 

can be improved by providing brief instructions or over-the-phone consultation 

[12,73]. 
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2.6. Clinical application of DBS and LFB 

The mean difference in CsA concentrations is significantly higher in DBS prepared 

from capillary tube-collected fingertip blood than from venous blood at C0 and C2 

[15]. Despite the low recovery of EVE from DBS (76.5%), the concentration of EVE 

in DBS was slightly higher than in venous blood. The concentrations of EVE in DBS 

samples prepared by patients and in the laboratory were very similar [76]. Cheung et 

al. [79] used DBS to estimate TAC exposure (AUC0–12) utilizing a limited sampling 

strategy (C2 and C4) in 36 kidney transplant recipients. The dried blood spot results 

showed a high correlation with the results obtained from analyzing venous blood 

samples (r2= 96, P<0.001). The calculated AUC0–12 mean difference between DBS and 

venous samples was less than 7.6%.  

A high correlation between venous and fingertip samples is expected because both 

represent whole blood. However, a statistically significant higher TAC has been 

reported in LFB samples compared to venous blood, but the mean difference was 

clinically insignificant (0.29 ng/mL, 95% CI 0.09–0.49), and a good correlation was 

reported (r2 =0.845) [14]. In contrast, the CsA venous blood level was statistically 

significantly higher than in LFB [11]. The mean difference was 9.5 ng/mL (95% CI 

0.8-18.2 µg/L, P<0.03), however, a strong association was also reported between 

venous and LFB samples (r2 = 0.96, P < 0.001). 

Because fingertip sampling utilizes whole blood, a lack of correlation is expected 

between the obtained levels of immunosuppressive agents in DBS or LFB and their 

levels at the site of action (see sections 3 and 4). However, the relative ease of DBS 



 

 23 

and LFB sampling compared to venipuncture, the possibility of home self-sampling, 

and the stability during storage and transportation suggest that both of these 

techniques have the potential to replace venipuncture in TDM.  

3. Intracellular concentration 

Despite maintaining a satisfactory blood level of immunosuppressants through 

intensive TDM, rejection rates still remain between 8-15% [96], which necessitates the 

need to develop a new approach that could further reduce the rejection rate. 

To prevent allograft rejection resulting from suppressing the immune system, 

immunosuppressants must first enter lymphocytes [97-99]. In heart transplant 

recipients, there is a greater incidence of rejection associated with a higher peripheral 

blood monocyte cell (PBMC) count [100]. Lymphocytes express P-glycoprotein efflux 

transporter (P-gp), which is also known as multidrug resistance protein 1 (MDR1) 

encoded by the ABCB1 gene [101-103]. This transporter is responsible for moving 

xenobiotics from the intracellular to the extracellular environment [103]. As a result, 

the intracellular level of P-gp substrates can be affected by genetic polymorphisms in 

the coding gene of P-gp, altering the immune system response [103,104]. Both CsA 

and TAC are well-documented substrates of P-gp [104-106].  In vitro data indicate 

that SIR is a substrate and a weak inhibitor of the P-gp transporter [107-109], while 

EVE has shown a weak inhibitory effect on P-gp [109]. Higher incidence of rejection 

is proportionally correlated with higher expression of MDR1 gene on PBMCs 

obtained from heart [100] and liver [110,111] transplant recipients who have been 

prescribed CsA or TAC. The levels of immunosuppressants in lymphocytes, including 
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CsA [104,112-116], TAC [104-106,113,114,116-124], SIR [125] and EVE [126], have 

been investigated in solid organ transplant patients (Table 5). 

There is a histologically and clinically proven rejection associated with a lower level 

of TAC in PBMCs measured at day 7 post-transplantation in liver transplant recipients 

[117]. No correlation between whole blood and PBMCs’ tacrolimus concentrations in 

heart (r2 = 0.259; P=0.183) and liver (r2 = 0.0142; P=0.42) transplant recipients has 

been reported [106,113]. Contradictory findings have been reported for CsA. A study 

by Gustafsson et al. [119] involving heart transplant recipients co-treated with MPA 

reported a high correlation (r2=0.98, P<0.001) between CsA concentrations in two 

hours post-dose (C2) whole blood samples and lymphocyte AUC0–12h exposure 

(expressed as ng*h/10-6 cells). In contrast, a poor correlation was reported in patients 

co-treated with EVE (r2 = 0.24, P = 0.18). The authors suggested that the difference 

between the two groups could be attributed to the inhibitory effect of EVE on P-gp, 

leading to modulation of intracellular CsA levels. A poor correlation (r2 = 0.055, P = 

0.35) in CsA levels in matched pre-dose (C0) samples of blood and intra-lymphocytes 

from heart transplant patients was also reported in a recent study by Robertsen et al. 

[112]. Robertsen et al. suggested that the high correlation detected in the study by 

Gustafsson et al. could be attributed to the use of C2 blood concentrations, which are 

known to correlate better with blood AUC0–12h than C0. In addition, another study 

reported a weak correlation between blood and PBMC AUC0–12h in healthy volunteers 

following a single dose of CsA (Spearman, r=0.09, P=0.71) [105]. Slightly better 

correlation was observed in C0 samples from stable renal, liver, and lung transplant 

recipients (r = 0.30, P<0.001) [104]. A study by Falck et al. [120] involving kidney 
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transplant recipients reported that, patients who experienced rejection displayed 

significantly lower CsA intra-lymphocyte AUC0–12h exposure compared to the non-

rejection group (P = 0.004), despite identical CsA blood levels. The level of CsA in 

lymphocytes started to decline 7 days prior to clinical signs of rejection. The 

difference in intracellular concentrations between the two groups reached statistical 

significance (P = 0.014) three days before showing clinical signs of rejection. 

Regarding EVE, a poor correlation between blood and PBMCs concentrations has 

been reported (r = 0.32) [126]. Finally, in heart transplant recipients, a higher 

incidence of rejection is associated with elevated PBMC counts in patients who are 

receiving a triple drug regimen, including azathioprine, cyclosporine and steroids 

[100]. 

3.1. Effect of genetic polymorphisms of ABCB1 on intracellular 

immunosuppressants concentrations 

A recent report involving 90 liver transplant patients reported the involvement of 

genetic polymorphisms in P-gp transporters in modulating the concentration of TAC 

in intra-lymphocytes at day 7 and steady-state [106]. Absolute, dose normalized, and 

PBMC/blood TAC concentrations were 1.4 times higher (P<0.002) in carriers of the 

mutant 1199G>A allele than in non-carriers. Additionally, carriers of the mutant 

alleles 3435C>T and 2677G>T/A showed a 1.3-fold higher intracellular TAC 

concentration (expressed in the geometric mean) compared to individuals with 

homozygote wild type alleles (P values = 0.0089 and 0.0122 for 3435T and 2677T/A, 

respectively). A similar effect of genetic polymorphisms in the P-gp transporter on 

CsA has been reported in 3435T carriers among 64 stable renal, liver and lung 
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transplant recipients [104]. Carriers of 3435T showed an increase in intracellular CsA 

concentrations of 1.7 times (P = 0.04) compared to wild type (P = 0.02). However, the 

opposite findings have been reported in 1199A carriers, in whom intracellular 

concentrations of CsA were 1.8 times lower (P = 0.04) compared to wild type. The 

2677T polymorphism did not affect the intracellular concentration of CsA. 

CYP3A-metabolizing enzymes are also expressed in lymphocytes [127,128]. CYP3A 

enzymes are polymorphic [129-132], but the intracellular TAC concentration is 

unlikely to be influenced by genetic polymorphisms in CYP3A enzymes [106]. 

In summary, an adequate intracellular concentration of immunosuppressant drugs is 

pivotal for proper allograft maintenance. Monitoring the intracellular levels of 

immunosuppressants and detecting any changes in exposure could serve as an early 

warning call prior to the clinical manifestation of toxicity or rejection. 

3.2. Sample preparation and extraction of immunosuppressants from PBMCs 

The volume of whole blood needed to prepare PMBCs ranged from as low as 1.5 mL 

to as high as 10 mL (Table 5). To prevent immunosuppressant efflux from PBMCs 

during sample preparation, it is crucial to add a P-gp inhibitor such as verapamil or to 

perform the preparation procedures at 4 °C. The main limitations of intracellular drug 

concentration quantification methods the invasive nature of obtaining blood samples 

and the labor-intensive sample preparation procedures, which involve cells counts, 

drying and reconstitution and solid-phase extraction. 
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4. Intra-tissue concentration 

Early reports on the measurement of intra-tissue concentrations of immunosuppressive 

agents date to the early 1990s [133-135] (. In those studies, HPLC and enzyme 

immunoassay (EIA) methods were used to measure CsA and TAC tissue 

concentrations, respectively. Recently, there has been a renewed interest in utilizing 

biopsied tissue from transplanted heart, kidney and liver allografts [112,136-139] 

(Table 6). 

Post-mortem examinations have revealed that CsA and its metabolites accumulate 

rapidly in tissues after administration [133]. Measured using HPLC, the total 

concentration of CsA and its metabolites reached levels that were 53-fold higher in 

organs and tissues than in whole blood [133]. Tissue CsA concentrations were highest 

in the pancreas, followed by the spleen, liver, kidney, lung, and heart. In a recent study 

[137], analyses of CsA concentrations in kidney biopsies utilizing LC-MS/MS 

confirmed previous study findings and demonstrated a CsA concentration that was 

approximately four times higher in kidney tissue than in whole blood. A poor 

correlation between CsA in blood and liver biopsies obtained from liver transplant 

recipients has been reported. Sandborn et al. [135] showed no differences in the blood 

concentrations of CsA in patients with and without rejection. In contrast, the 

hepatocytes level of CsA was approximately two times higher in patients without 

autopsy-proven rejection compared to the rejection group. Moreover, little to no 

correlation in CsA concentrations has been reported between the blood and the kidney 

(r = 0.168, P>0.05) [137] or endomyocardial biopsies (r2 = 0.029, P = 0.48) [112]. 
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Similar findings have been reported for TAC in liver transplant recipients [134]. There 

was a trend detected in TAC hepatocyte concentrations based on the condition of the 

allograft. The highest TAC levels were found in liver biopsies from patients with no 

detected rejection (median = 144 ng/g), followed by patients with no current signs of 

rejection but with subsequently demonstrated rejection (median = 87 ng/g). The lowest 

concentrations were detected in patients with current rejection (median = 48 ng/g). In 

contrast, all three groups showed no significant differences in plasma concentrations 

(median = 0.9, 0.9 and 0.6 µg/L, respectively). Similar results were found in recent 

studies using LC-MS/MS to evaluate the correlation between TAC concentrations in 

C0 blood samples and liver tissues on day 5 and 7 after transplantation [117,136]. 

Concentrations of TAC in hepatocytes displayed a significant first-order exponential 

correlation r2 = 0.720-0.96 with Banff scores (histological marker of rejection) 

[117,136]. Higher concentrations of TAC in liver tissues were associated with lower 

Banff scores and consequently fewer episodes of rejection [117,136]. In contrast, a 

poor correlation has been reported between Banff scores and the blood level of TAC 

(r2 = 0.0281) [117]. In kidney transplant recipients (2 patients) [138], a decrease in 

TAC was observed in tissue and C0 whole blood over time (16-300 days) but, there 

was no correlation between the two measurements. 

Only one published study investigated the intra-tissue concentrations of MPA. This 

study was performed using biopsies obtained from four kidney transplant patients. The 

authors were unable to determine the association between plasma and intra-tissue 

concentrations of MPA [139]. 
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4.1. Effect of ABCB1 gene polymorphisms on tissues concentrations of 

immunosuppressive agents 

The inter-subject variability of P-gp substrates in tissues may be the result of genetic 

polymorphisms in P-gp transporters. Indeed, significantly higher TAC concentrations 

have been found in hepatic tissue from patients carrying alleles with reduced activity 

[140]. There were significantly higher hepatic tissue TAC concentrations, expressed as 

the geometric mean of the dose-normalized hepatic concentration, in carriers of the 

reduced-activity 1199A allele (1199A) than in non-carriers (P=0.036). 

Correspondingly, hepatic tissue obtained from carriers of the 236C>T and 2677G>T/A 

alleles demonstrated a higher TAC concentration, expressed as the geometric mean of 

the hepatic concentration (P = 0.014 and 0.035, respectively). Finally, although 

CYP3A-metabolizing enzymes are expressed in hepatic tissues, they have no effect on 

hepatocyte TAC concentrations [140]. In summary, the blood concentration of 

immunosuppressive drugs in solid organ transplant recipients is a poor predictor of 

intra-hepatocyte levels. 

5. Conclusions and future prospective 

Optimal exposure to immunosuppressant agents is required to improve allograft 

survival and reduce toxicity. Despite its limitations, venous blood remains the 

recommended medium for TDM of immunosuppressive agents. Limitations include 

the lack of association with in situ concentrations and the invasiveness of the sample 

collection. The introduction of LC-MS/MS into clinical practice has further 

encouraged investigating alternative matrices to overcome these limitations. 
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Intracellular and intra-tissue immunosuppressant measurements are proven predictors 

of allograft survival and toxicity. Nonetheless, the complexity associated with 

obtaining and processing samples makes these approaches impractical for routine 

TDM. The area under the concentration-time curve (AUC) and maximum 

concentration (Cmax) are the best parameters to estimate because they correlate better 

to the clinical outcome and toxicity when whole blood is used [1]. Unfortunately, the 

estimation of AUC and Cmax requires multiple sampling over a dosing interval of up to 

12 hours, which is unsuitable for routine TDM. The relatively simple sample 

preparation procedures involved with fingerprick sampling offer a less invasive 

alternative and the possibility of multiple self-home samplings. However, because 

finger sampling utilizes whole blood, it provides drug measurements that are poorly 

related to the concentration at the site of action. Finally, OF sampling provide a simple 

process to quantify the free drug concentration in non-invasively collected samples 

that can be easily collect by patients at home. Recently, multiple sampling of oral fluid 

has been successfully used to individualize glucocorticoid replacement therapy in 

patients  with  Addison’s  disease  [141]. If a good association is established between the 

drug concentration in OF and the sites of action or blood-free fraction, OF has the 

potential to replace blood drug measurements, making repeated sampling and 

calculations of AUC and Cmax for the TDM of immunosuppressant agents feasible. 

 



 

31 
 

Table   1-1. Physiochemical properties of immunosuppressant drugs measured in oral fluids 
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Figures 

Figure   1-1, Chemical structure of immunosuppressive agents included in this review 
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Figure   1-2. Schematic diagram depicting the relationship between bound and unbound 
concentration of an immunosuppressive agent with the concentration at allograft or 
peripheral blood mononuclear cells as well as concentration in oral fluids or saliva. 
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ABSTRACT  

Tacrolimus (TAC) is a commonly used immunosuppressive agent in solid organs 

transplant recipients.  Due to its high inter-subject and intra-subject variability and the 

consequent risk of toxicity and/or allograft rejection, therapeutic drug monitoring 

(TDM) is required. Venipuncture blood sampling is recommended for tacrolimus 

TDM. Using peripheral blood samples for quantifying TAC concentration has 

limitations of being invasive and provides poor correlation with TAC concentration at 

the site of action, in lymphocytes and tissues. Tacrolimus concentration that is present 

in oral fluid (OF) is considered representative of the free fraction that is responsible 

for the desired clinical outcomes and toxicity. Therefore, measuring salivary TAC may 

provide a suitable alternative to using whole blood. In this study, a validated, rapid, 

sensitive and selective liquid chromatography tandem mass spectrometry (LC-

MS/MS) is presented. Chromatography separation was achieved using Acquity UPLC 

BEH C18 column and gradient elution using 2mM ammonium acetate/0.1 formic acid 

in water (mobile phase A) and in methanol (mobile phase B). Short sample analysis 

cycle with 2.2 min run was achieved. Simple sample preparation and extraction 

procedure with two folds of ACN as precipitating solvent provided sufficient sample 

cleanness and negligible matrix effect. Tacrolimus was stable in OF for up to one 

month at -80 °C and up to 48hr in auto-sampler at 20 °C. The method showed high 

reproducibility as confirmed by incurred sample reanalysis (ISR) test. 
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Introduction 

Tacrolimus (TAC) is a widely described immunosuppressive agent for solid organ 

transplant recipients. It has a narrow therapeutic index, significant intra- [146] and 

inter-subject pharmacokinetic variability [3]. Therefore, routine TDM is required for 

optimized outcomes [147]. Currently, peripheral venous blood is recommended for 

estimation of TAC exposure [148]. However, TAC blood level showed poor 

correlation with, in situ level, in lymphocytes [146] and tissues [146] as well as free 

fraction [146].  As a result, whole blood sampling fails to provide a reliable prediction 

of allograft rejection and toxicity [146]. Moreover, the invasive nature of venipuncture 

sampling makes this approach less appealing as compared to less invasive sampling 

methods [15][146]. 

Intra-lymphocytes and intra-tissue TAC concentration showed to be good indicators of 

therapeutic efficacy and predictor for allograft rejection in liver [146] and kidney 

[146] transplant recipients.  However, using these techniques in clinical practice are 

hampered by relatively large amount of blood needed for intracellular TAC 

measurement (7-8 mL); laborious lymphocytes isolation and TAC extraction 

procedures; and the need for biopsy for intra-tissue. 

Dried blood spot (DBS) sampling was proposed as a possible less invasive alternative 

to venipuncture [146]. Dried blood spot provides a way of obtaining samples less 

invasively and makes patient self-sampling more feasible [146].  Tacrolimus 

concentration obtained using DBS showed excellent association with TAC venous 

level [146]. However, since whole blood is used in preparing DBS, it still has the main 
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disadvantage of the venous blood of being a poor predictor for intra-lymphocytes and 

intra-tissue concentration. 

For TAC, about 1% of the total amount in blood present in free form, which is 

responsible for clinical outcome and toxicity [3]. The free fraction significantly 

affected by changes in plasma lipoprotein concentration after transplantation [146], 

leading to the incidence of episodes of rejection and/or toxicity [146]. Therefore, 

probably it is sensible to monitor free TAC concentration instead of total 

concentration. 

Accumulated knowledge about how drugs partition into saliva promoted OF as 

possible media for TDM [146]. Due to their large size, protein-bound drugs are unable 

to cross biological membranes, and the only free fraction of a drug can enter OF [146]. 

Therefore, drugs concentration in OF represents free drug fraction [35]. Accordingly, 

OF may enable measuring free drug fraction directly in samples obtained easily and 

non-invasively with minimum sample preparation steps [146]. In this paper, a 

validated, rapid, sensitive and selective method for quantifying TAC in OF is 

presented. The study also investigated optimum sample treatment conditions using 

simple extraction methods. 

 

Chemicals and reagents 

Tacrolimus (C44H69NO12, MW = 804.02, 1.0 mg/mL solution in acetonitrile) and the 

internal standard (IS), ascomycin (ASC, C43H69NO12, Mw = 792.01, 1.0 mg/mL 

solution in acetonitrile) were purchased from Cerilliant Corporation (Round Rock, 

Texas, USA). Optima LC/MS grade of acetonitrile (ACN), ammonium acetate, formic 
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acid, and methanol (MeOH) were obtained from Fisher Scientific (Fair Lawn, NJ, 

USA). Deionized water was obtained using Milli-Q Synthesis system fitted with Q-

Gard 2 Purification Pack (Millipore, Bedford, MA, USA). AquaSil Siliconizing Fluid 

was purchased from Thermo Fisher Scientific Inc (Franklin, MA, USA). Drug-free 

human OF from six donors was obtained from Bioreclamation Inc. (Westbury, NY, 

USA). 

 

Apparatus  

Samples were sonicated using Branson® Sonicator (Danbury, CT, USA) to produce a 

homogeneous mixture. The supernatant was obtained using Eppendorf 5810 centrifuge 

from Micro and Nanotechnology (Urbana, IL, USA). Samples were analyzed using 

Liquid Chromatography tandem Mass Spectrometry (LC-MS/MS). The LC-MS/MS 

system consisted of Acquity UPLC from Waters Corp (Milford, MA, USA) connected 

to Xevo TQ MS mass  spectrometry  from  Waters  Corp.  MassLynx™  software  (V  4.1)  

was used to control the system and data acquisition, and data processed using 

TargetLynx™  tool.  The  UPLC  system  had  a  binary  pump  and  equipped  with  built-in 

column heater. Twenty micro-litters sample loop was used to deliver 10 µL of the 

samples in partial loop mode. For salivary blood contamination assay, SpectraMax 

M5e Microplate Reader (Sunnyvale, CA, USA) was used.  

 

Chromatographic conditions 

An Acquity UPLC BEH C18 (2.1 mm x 50 mm) column with 1.7µm-particle size and 

130Å pores size used (Waters Corp) for chromatographic separation. An Acquity 
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UPLC BEH C18, (2.1 mm x 5 mm) pre-column with 1.7µm particle size and 130Å 

porosity (Waters Corp) was connected immediately to the inlet of the analytical 

column. The temperature of the column was kept at 60 °C, and the auto-sampler 

temperature was maintained at 20 °C. Gradient elution was employed with a mobile 

phase consisted of water containing 2 mM ammonium acetate/0.1% (v/v) formic acid 

(Solvent A); and MeOH containing 2 mM ammonium acetate/0.1% (v/v) formic acid 

(Solvent B). The mobile phase was delivered at 0.4mL/ min flow rate. The run cycle 

started at 50% solvent (B) and increased gradually to 98% over 0.5 min and 

maintained at this level till 1.8 min. To re-equilibrate the column for next run, solvent 

(B) decreased within 0.1 min to 50% and kept till the end of the run at 2.2 min. 

Diversion valve was set to deliver the first 0.70 min and from 1.20 min till the end of 

each run to waste. The elution time of ASC and TAC was 1.0 min.  

 

Mass spectrometry condition 

Mass spectrometry detection and quantification of TAC and ASC performed in 

positive electrospray ionization (ESI) and multiple reaction monitoring (MRM) 

modes. Intellistart tool was used to obtain initial mass spectrometry parameters in low 

mass resolution analysis mode followed by manual tuning to achieve highest possible 

sensitivity. Final mass spectrometry parameters were as following: collision energy 

(CE) = 22 and 20 for ASC and TAC respectively, cone voltage (CV) = 28, capillary 

voltage (kV = 1.50), source temperature (°C) = 150, cone gas flow (L/hr) = 25, 

desolvation gas flow (L/hr) = 1000, and collision gas flow (mL/min) = 0.15. 

Ammonium adducts [M+NH4]+ were selected as precursors for MRM with transitions 
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(m/z, Q1 > Q3) of (m/z, 809.30 > 756.30) and (m/z, 821.30 > 768.35) for ASC and 

TAC, respectively. 

 

Standards, quality controls, and internal standard solutions preparation  

Sub-stock and working stock solutions of ASC and TAC were prepared from the 

original solutions (1mg/mL) using ACN and MeOH, respectively, and stored at – 20 

°C. Standards and quality controls (QCs) were prepared by spiking the OF with 

serially diluted working stock solutions (< 5% of total OF volume) to achieve desired 

concentrations. A final concentration of 600 ng/L ASC in ACN was used as the 

precipitating solvent. 

 

Patients Samples 

Studies protocols approved by Institutional Review Board at Rhode Island Hospital 

(Providence, RI). After giving the formal consent, kidney transplant recipients 

attending kidney transplant clinics were recruited. All patients were on a triple 

immunosuppressive regimen including tacrolimus, prednisone, and mycophenolic or 

azathioprine). After the physical examination by the physician, signed inform consent 

was obtained from each patient.  In two studies, patients were asked to give venous 

blood samples (approximately 4 mL collected ethylenediaminetetraacetic acid 

(EDTA) and matching OF samples. In the first study, 85 samples were collected 

sporadically at certain time points, including, pre-dose (time 0 = C0) and at 0.5, 1, 1.5, 

2, 3, 4, 5, 6, 8, 10 and 12 hrs post-dose from 10 patients. In the second study, samples 

collected at 0 hr (50 samples) and 2 hrs from (46 samples) from 61 patients. The OF 
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samples were collected by passive drool into siliconized plastic cups. All blood and 

OF samples kept on dry ice till transferred to the Department of Biomedical and 

Pharmaceutical Sciences (BPS) at the University of Rhode Island and stored at – 80 

°C until analyzed. 

 

Sample extraction 

Calibration standards, quality controls (QCs), blank, and patients' OF samples were 

allowed to thaw at room temperature.  After vortexing for 5 seconds, samples were 

sonicated for 5-10 seconds (depending on samples volume) to breakdown salivary 

components and produce a homogenous mixture. Fifty micro-liters of the samples 

were transferred into a 1.5 mL polypropylene tube, and 100 µL of precipitating 

solvent were added (IS final concentration was 200 ng/L). After vortexing for 10 

seconds, samples centrifuged at 10,000 xg for 5 min at 20 °C. The supernatant were 

then transferred into an auto-sampler  vial  and  10  μL  was  injected. 

Statistical analysis of the data 

Statistical analysis was performed using the SPSS software (version 19.0, SPSS Inc., 

Chicago, IL, USA) and GraphPad Prism (version 4.0, GraphPad Software, Inc., La 

Jolla, CA, USA). Normal distribution of the data was checked graphically and 

confirmed with the Shapiro-Wilk test. 

 

Assay validation 

Standards and QCs 



  

70 
 

The method was validated in accordance with the current version of FDA guidance for 

industry on bioanalytical method validation [149]. Tacrolimus to internal standard 

peak ratio against tacrolimus nominal concentration was used to construct the 

calibration curve and fitted using (1/x) weighting method. Calibration curve 

concentrations were 10, 20, 50, 100, 250, 750, 1440, and 1600 ng/L. Quality control 

concentrations were set at 30, 200, and 1200 ng/L. To determine accuracy and 

precision of the assay, three different batches of OF were spiked with the working 

stocks solution to achieve standards and QCs (6 replicate) concentrations and 

extracted as described in sample extraction section. 

 

Sensitivity and selectivity 

Lower limit of quantification (LLOQ) was set at the concentration with a signal to 

noise ratio (S/N) of at least 10, accuracy between 80-120%, and Coefficient of 

Variation (CV) less than 20%.  Acceptance criteria for QCs were accuracy between 

85-115% and CV less than 15%. Selectivity was assessed by inspecting the presence 

of noise or peaks in chromatograms that represented blank OF samples (from 6 

donors) as compared with LLOQ sample chromatogram. 

 

Stability  

Stability studies were performed by measuring TAC concentrations in QC1 and QC3, 

in three replicate.  Freeze and thaw (after three freeze and thaw cycles), bench-top, 

auto-sampler (by re-injecting one of validation batch after it was left in the auto-
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sampler for 24 hr and 48 hr), and short-term stability up to one month were 

investigated. 

 

Matrix effect and Recovery 

The presence and possible matrix effect (ME) in OF studied in two different ways.  In 

the first approach, chromatograms obtained from post-column infusion test were 

inspected visually. This test involved continuous infusion of 98% methanol (which 

represents the composition of mobile phase at elution time of ASC and TAC) 

containing 1 ng/mL of ASC and TAC at 20 µL/min flow rate after the column through 

a Tee connection. After establishing the baseline, a 10 µL of blank extracted OF 

sample was injected using the pre-established LC method. The resulting 

chromatogram was checked for symptom of ion suppression and/or enhancement in 

comparison to blank injection of neat solution (1:2, water:ACN).  In the second 

approach, possible interference of OF components, namely the phospholipids, was 

studied.  As such, MRM transitions of abundant phospholipids were added to MS 

method to enable us to visually locate their elution region. 

The effect of increasing ratio of precipitating solvents on the ME was also studied to 

select the ratio that offers best sample cleanness.  Two different sets of QC1 and QC3 

samples were prepared, in triplicate, either by (i) QCs samples (set 1) prepared by 

adding ACN to OF samples spiked with TAC as prescribed in sample extraction 

section (pre-extraction spiked samples); (ii) QCs samples (set 2) prepared using a 

mixture of de-ionized water: ACN (neat solution). In each set, different ratios of ACN 

were added (1:1, 1:2 and 1:3).  In total, 18 samples were analyzed, 9 samples in each 
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set. The absolute ME was measured by calculating the percentage of the ratio of mean 

peaks area of pre-extracted samples to samples prepared in de-ionized water/ACN 

mixture. 

Recovery was assessed by analyzing a third set of QCs samples (set 3) prepared by 

extracting blank OF first with 1:1, 1:2 and 1:3 ACN, followed by adding TAC 

working standard solutions to achieve required concentrations (post-extraction spiked 

samples). The recovery was determined by calculating the percentage of the ratio of 

mean peaks area of pre-extraction samples (set 1) to post-extracted spiked samples (set 

3). 

 

Results and discussion  

Recommended TAC C0 therapeutic blood concentration in kidney transplant recipients 

is between 15-20 µg/L immediately after transplantation [3]. TAC dose is tapered 

gradually, and the maintenance C0 can be as low as 5-7 µg/L after first year post-

transplantation [3].  Since only 1% of TAC amount found in the unbound form that is 

capable of reaching the OF, the expected OF concentration would range between 

0.050-200 ng/L. Therefore, highly optimized mass spectrometry and chromatographic 

conditions were sought to develop a method with adequate selectivity and sensitivity. 

To achieve the highest selectivity feasible, different columns were tested. Acquity 

UPLC BEH C18 seemed to be a good choice as it gave sharp and symmetric peaks. 

Given the above-mentioned UPLC and mass spectrometry conditions, it was possible 

to set LLOQ at 10 ng/L with signal/noise ratio of more than 10 (Figure 1A). No 

carryover was detected when a double blank OF sample was injected following 
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highest calibration concentration (Figure 1B). The calibration curve was constructed 

by plotting nominal standards concentration against peak area ratios of the analyte to 

IS and fitted with 1/x weighted least squares linear regression. The method 

demonstrated adequate accuracy and precision with QCs accuracy between 94.5-

103.6%, and CV within 4– 9.8 (Table 1). The correlation coefficients (r2) calculated 

from validation batches (n=3) were between 0.998-0999. 

Stability studies, namely, freeze and thaw, bench top, auto-sampler, and short-term 

storage at –80 °C for up to four weeks were conducted (Table 2). No stability 

problems were noticed, and TAC was stable in extracted matrix for up to 48 hrs. 

Possible interference from endogenous substances in OF was investigated. 

Chromatograms obtained from acquiring a pooled blank OF from six donors (Figure 

1B) and blank neat solution (66% ACN) (Figure 1C). No signs of interference were 

noticed. 

Using methanol instead of ACN as organic solvent helped improving the sensitivity, 

In addition, LC/MS grade methanol showed to boost the sensitivity by about 20%. 

Positive mode ionization and monitoring ammonium adduct [M + NH4]+ at (m/z, 

821.30 > 768.35) provided better signal compared to [M]+ and [M + Na]+. 

Matrix effect and recovery 

Co-eluting of drug with endogenous substance in OF may lead to either ion 

suppression or enhancement, which collectively named as ME [146]. The presence of 

ME could compromise the reproducibility and may lead to data bias [150]. Different 

cleaning procedures were used in methods aimed to measure the immunosuppressive 

agents OF samples. These techniques included solid phase extraction [146], analytes 
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concentrating by drying and reconstituting [146] and simple protein precipitation 

using organic solvents [146].  Type and percentage of precipitating solution could 

have an effect on sensitivity and selectivity through its effect on the yield of analytes 

and cleanness of extracted sample. Acetonitrile has been reported to provide 

satisfactory protein precipitation in oral fluid samples [146]. Recovery of some drugs 

and ME achieved using MeOH and ACN as precipitating solvent in plasma are 

comparable; however, MeOH tends to retain about 40% more phospholipids [146]. 

Therefore, ACN was chosen as extracting solvent. Belostotsky, et al. [146] used 1:3, 

ACN:OF to measure TAC salivary concentration. In previous studies to quantify 

immunosuppressants simple protein precipitation in OF using, 1:2 and 1:3, OF: ACN 

was used for mycophenolic acid (MPA) and TAC, respectively. To the authors' 

knowledge, no study was published to date that has investigated the optimal 

proportion of extracting solvent (ACN) that gives maximum recovery and sample 

cleaning up.  To examine the effect of using different proportions of ACN on recovery 

and absolute ME, OF samples were extracted with an equal, double and triple amount 

of ACN (Table 3). As it can be seen from the table, there was slightly less variability 

in the areas count in samples extracted with double volume of ACN compared to other 

two categories. Standard deviations were ± 7- 577, ± 4- 138 and ± 11.5- 141.6 for OF 

extracted with the equal, double and 3 times volume ACN, respectively. The recovery 

ranged between (101.6 - 112.7), (100.0 - 113.8), and (113.8 - 124.3); and ME was 

within (79.8 – 93.2), (95.6-116.0) and (100.9 – 131.3) for 1:1, 1:2 and 1:3 OF: ACN, 

respectively. Based on these values, it is obvious that samples extracted with three-

folds ACN gave over estimated recoveries while other two groups showed comparable 
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recovery ranges. For ME, the first group showed to have significant ion suppression of 

about 20% in QC1 samples. Based at the variably of the acquired data, adequate 

sample cleaning, recovery, and minimum sample dilution, two-folds of ACN was 

chosen for protein precipitation. 

Matrix effect was also explored visually using post-column infusion technique [146]. 

The composite chromatograms in figures 2A and 2B was obtained by overlying 

chromatograms acquired from injecting neat solution (66% ACN), blank OF with 

continues infusion of a mixture of ASC and TAC (1 µg/L) and a chromatogram of 

QC2 injection. The only areas of chromatograms that show ion suppression are 

between 0.2-0.5 min, which is far enough from ASC and TAC elution area. 

Finally, potential co-elution of phospholipids was examined by adding MRM of 

transitions of most common ones to the mass spectrometry method [146]. 

Phospholipids transitions included were (m/z, 496 > 184, 520 > 184, 522> 184, 524 > 

184, 758 > 184, 782 > 184). In early stages of method development, ASC and TAC 

peaks co-eluted with low molecular weight phospholipids (m/z 496 and 524). By 

manipulating mobile phase gradient, a full separation between analytes of interest and 

the phospholipids was achieved (Figure 3). The other two phospholipids that have m/z 

> 700 were less problematic and eluted way after analytes of interest. 

In total 181 samples collected from 71 kidneys transplant patients analyzed only one 

sample had concentration lower than LLOQ with calculated concentration around 8.5 

ng/L, collected 2 hr after dose, even with the corresponding blood concentration was 

within the normal range (11.8 µg/L). The concentration of TAC ranged from 11.7- 
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2864.4 ng/L and 1.7- 46.06 µg/L for OF and whole blood, respectively. The clinical 

finding of this study will be presented in a separate manuscript. 

 

Incurred sample re-analysis  

The incurred samples reanalysis test was performed by re-analyzing about 10% of the 

samples (19 samples) [146]. Whenever many samples were available per patient, two 

samples were selected to represent absorption and elimination phases.  The difference 

between the paired measurements were normally distributed, therefore, the use of 

Bland–Altman method was justified [151]. Repeatability was tested visually (Figure 3) 

and statistically. Good agreement between the two repeated measurements can be 

observed in Figure 3, which plots the percent differences between paired repeated 

measurements against their mean. All points lie between or near the 95% confident 

interval lines. The 95% limit of the agreement was from – 19.16 to 31.98. The bias 

(mean the difference between two occasions) was 6.40. 

 

Conclusion 

In this paper, development and validation of a very sensitive, selective and robust 

method is presented. Simple sample preparation and extraction protocol was 

developed and used to provide minimum sample dilution and appropriate samples 

cleanliness, excellent recovery and minimum sample components interference. In 

addition to lowest reported LLOQ of TAC, this work is the first to study the effect of 

different proportions of precipitating solvent (ACN) on the ME and recovery. In 

addition, this is the first report that investigated and described phospholipids 
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chromatographic elution behavior and the possible interference of phospholipids with 

the analyte in the OF.  
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Abstract 

Oral fluids, has attracted great attention for therapeutic drug monitoring due to 

noninvasive nature and the ease of sampling.  Considering the only unbound drug can 

pass through capillaries of salivary gland, salivary drug concentration that is present in 

can provide an alternative yet convenient specimen for estimating unbound fraction.  

In this study, the correlation between tacrolimus concentration in oral fluids and blood 

was investigated. Moreover, factors that may affect such correlation, including 

sampling time, salivary blood contamination, and food were investigated. In total 256 

oral fluid samples with matching blood samples from stable kidney transplant 

recipients were included in this study. Conclusion: Effect of salivary blood 

contamination on TACs was minimal when TRN level was  ≤  6.6  mg/dL.  Acceptable  

correlation between oral fluid and blood tacrolimus concentration was observed in 

fasted samples collected at pre-dose as compared with non-fasted samples collected 

post dose. 
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Introduction 

To prevent allograft rejection, organ transplant recipients require chronic 

immunosuppressive therapy [1]. Tacrolimus (TAC) is a widely prescribed 

immunosuppressive agent for solid organ transplant recipients [1].  It acts by binding 

to an immunophilin, FK506-binding protein 12 (FKBP12) [2]. The complex then 

inhibits calcineurin phosphatase and thereby halts T-cell activation [3]. TAC is highly 

lipophilic and excreted from the body after undergoing extensive metabolism by the 

CYP450 3A4/5 enzymes [4]. Bioavailability of TAC varies significantly due to 

genetic polymorphism in CYP3A as well as co-administration of CYP3A enzymes 

inhibitors or inducers [5-8], thus increasing intra and inter-subject variability in 

pharmacokinetics [9-12]. In addition, TAC is a substrate for glycoprotein efflux 

transporter (P-gp), which is also known as multidrug resistance protein 1 (MDR1) 

encoded by the ABCB1 gene [13]. Differences in the expression of MDR1 [13] and 

genotype [14] may contribute to inter-individual variability in tacrolimus 

pharmacokinetics. Given narrow therapeutic index and high variability, ongoing 

therapeutic drug monitoring is essential to maintain allograft survival and reduce 

toxicity [15]. 

Venipuncture is the recommended medium for TAC therapeutic drug monitoring [1]. 

However, due the invasive nature of blood sampling, alternative matrices were 

investigated including dried blood spot and oral fluid (OF) monitoring [16-20]. Oral 

fluid has attracted great attention as an alternative medium to venipuncture blood [21-

23]. The main advantage of OF sampling is noninvasive sample collection, 

significantly reduced sample collection cost [24, 25] and the possibility of home self-
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sampling for patient convenience [24].  In addition, biological barriers are permeable 

to free drug fraction only considering that protein bound complexes are excluded from 

passive diffusion because of their large size [26].  Consequently, the portion of a drug 

that is present in OF represents the unbound fraction [26]. Given that the free fraction 

is responsible for therapeutic effect and toxicity [27], measuring drug concentration in 

OF may give better prediction of therapeutic outcomes. 

The area under the concentration-time curve (AUC) and maximum concentration 

(Cmax) correlate better with clinical outcomes and toxicity that blood sample [28]. 

Since calculation of AUC requires collection of several samples over a 12 hour hour 

dosing interval, venipuncture blood sampling is impractical for routine calculation of 

AUC. The simplicity of OF sample collection allows multiple sampling, therefore, 

estimating AUC and Cmax will be possible. A few reports were published on 

immunosuppressant, namely, cyclosporine A [19, 29], mycophenolic acid [17, 30, 31] 

and TAC [20]. 

The aim of this study was to study factors that may affect correlation between the 

TAC concentrations in blood and OF, as well as the quality of OF samples obtained at 

different sampling condition. 

Study population 

Studies protocols approved by Institutional Review Board of Rhode Island Hospital 

(Providence, RI).  Samples included in this paper were collected, in two studies, from 

patients attending kidney transplant clinics. Recruited patients were on triple 
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immunosuppressants regimen included tacrolimus, prednisone, and mycophenolic 

acid. 

Patients Samples 

On the study day, patients underwent the physical examination by the physician and 

asked to sign the informed consent. In the first study, venous blood samples (about 4 

mL) were collected in ethylenediaminetetraacetic acid (EDTA) accompanied by 

passive drooled rested OF samples collected in siliconized plastic cups. Samples 

collected intermittently at certain time points, including pre-dose (time 0 = C0). In the 

second study, blood samples were collected at C0 and C2. Matching OF samples 

collected with ± 5 min from blood sample time at resting, 5 min after mouth rinsing 

using bottled water, and instantly after taking a saliva stimulant (patients asked to put 

a commercial sour candy in their mouth for 10 second with continues tong 

movement). After pre-dose samples collection, patients were given a voucher for free 

breakfast and asked to report back at study location shortly before C2 sampling time 

when blood and corresponding OF samples were collected. All blood and OF samples 

kept on dry ice till transferred to the Biomedical and Pharmaceutical Sciences (BPS) 

department at University of Rhode Island and stored at -80 °C till analyzed. 

Participant’s  Demographic  information  is  showed  in  Table 1. 

Measuring TAC in blood and OF 

Details of the LC-MS/MS method used to quantify TAC blood concentration is 

described elsewhere [32]. In brief, sample extraction involved mixing 200µL of blood 

sample with 800µL precipitating solution of ZnSO4 (17.28 g/L): methanol (30:70, 
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v/v) mixture contained ascomycin as internal standard (100ng/mL). After vortex 

mixing, samples centrifuged for 10min at 13000 rpm.  

Measuring TAC in OF 

TAC concentration in OF was measured using a validated LC-MS/MS method 

(manuscript II). In brief, chromatography separation was achieved with a run time of 

2.2 min using an Acquity UPLC BEH C18 column kept at 60 °C and. Gradient elution 

consisted of 2mM ammonium acetate/0.1 formic acid in water (mobile phase A) and 

in methanol (mobile phase B) at 0.4 mL/ min flow rate. Initial mobile phase composed 

of 50% solvent (B) increased gradually to 98% over 0.5 min and maintained at this 

level till 1.8 min. Then mobile phase returned to initial conditions within 10 seconds 

and maintained until the end of the run at 2.2 min to recondition the column for the 

next run.  The elution times of TAC and internal standard were 1.0 min. 

A simple sample preparation and extraction procedures were followed, involved 

adding 50µL of OF sample with 100µL of ACN precipitating solvent containing 

internal standard (ascomycin, 600 ng/L) in 1.5 mL polypropylene tube. After vortex 

mix for 10 seconds, the mixture was centrifuged at 10,000xg for 5 min at 20°C. The 

supernatant was then transferred into an auto-sampler   vial,   and   10  μL  was   injected.  

The dynamic range of was 30- 4800 ng/L. The lower limit of quantification (LLOQ) 

was set at the concentration that had a signal-to-noise  ratio  (S/N)  of  ≥10;;  accuracy of 

80-120%; and a Coefficient of Variation (CV) less than 20%. Acceptance criteria for 

QCs included accuracy between 85-115% and CV less than 15%. Selectivity assessed 

by inspecting the presence of noise or peaks in chromatograms represent blank OF 

samples injections (from 6 donors) compared with LLOQ sample chromatogram.  
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Statistical data analysis 

Statistical analysis was performed using the SPSS software (version 22, SPSS Inc., 

Chicago, IL, USA). Normal distribution of the data was checked graphically and 

confirmed with the Shapiro-Wilk test, and nonparametric tests were used whenever 

needed.  

Genomic studies: 

DNAzol kit was used to extract genomic DNA from blood samples obtained from 

each  patient  as  described  in  manufacture’s  protocol  (Invitrogen  Corporation, Carlsbad, 

CA, USA). Samples genotyped for SNPs in for CYP3A and P-glycoprotein. The 

genotyping process utilized allelic discrimination with a TaqMan® Drug Metabolism 

Genotyping Assay.  Life Technologies 7500 Real-Time PCR system (Life 

Technologies, Foster City, CA) was used for SNP analysis.  

Salivary blood contamination 

To assess and quantify possible salivary blood contamination, transferrin kit from 

Salimetrics LLC (State College, PA, USA) was used following manufacture's 

recommendation [33]. Transferrin quantification was performed using SpectraMax 

M5e Microplate Reader (Sunnyvale, CA, USA). 

Results and discussion  

12-hours profile 

Eighty-five OF samples collected from 10 patients at rest. All samples had TACs 

within   assay’s   validated   range   (30-4800 pg/mL). The concentration of TACs and 

blood were 5.57±2.58 and 863±641, respectively 

 
2 hours profile study 
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In total, 184 OF samples were analyzed. Five samples were excluded (four samples 

had TAC concentration less than LLOQ all of them were stimulated samples, and one 

rested C0 sample had visible blood contamination). On the other hand, 4 OF samples 

had TAC concentration higher than upper limit of quantification; all of them had 

salivary transferrin (TRNs) level higher than transferrin salivary assay quantification 

range (0.08 - 6.6 mg/dL). Four additional samples had TRNs higher than the upper 

limit of quantification.  In total 171 samples were eligible for further data analysis. 

Following   manufacturer's   recommended   threshold   of   ≤1mg/dL   TRNs,   131samples 

would be eligible for further analysis (Table 2). Samples with TRNs level >1mg/dL 

were 14 rested, 11 rinsed and 4 stimulated samples collected at C0 and 7 rested, 2 

rinsed and 2 stimulated samples collected at C2. 

Blood contamination and TACs concentration 

Transferrin is a plasma protein with molecular weight of 76000 [33]. The presence of 

TRN in OF is an indication of injury in oral cavity [33]. The possibility of salivary 

blood contamination may increase in the presence of micro injuries from poor oral 

hygiene, some infectious diseases and smoking [33]. TRNs level showed to have 

diurnal variation, with a higher level in the afternoon compared with earlier collected 

samples [34]. Contradicting finding regarding the effect of gender differences in the 

TRNs level in children (higher in boys) [34] and adults (higher in females) [35]. 

Therefore, using TRNs as biomarker of salivary blood contamination should take into 

the consideration the physiological and environmental factors that may alter the TRNs 

level. About 85% of tacrolimus distribute into red blood cells [36]. Therefore, the 

presence of blood traces in OF fluids may compromise the integrity of results. The 
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association between the amount of TRNs and TACs in samples collected at different 

sampling conditions was investigated to determine samples to be included if final data 

analysis. 

The effect of increasing salivary TRN level seems to be compound specific. The 

minimum amount of TRN in oral fluids showed a significant increase in testosterone 

concentration, but for cortisol, the association only seen if signs of visual discoloration 

are seen [37]. The concentration of mycophenolic acid in the oral fluid also showed an 

elevated level accompanied by increased level of TRNs (excluding samples with 

TRNs >1 mg/dL), in pre-dose fasted samples [17]. In this study, we measured the 

transferrin concentration in oral fluid as a biomarker for blood contamination to 

determine the threshold value at which TACs measurements would be compromised.  

Following manufacturer's recommended   threshold   of   ≤1mg/dL   TRNs,   data   analysis  

revealed a significant correlation between TACs and TRNs concentration (p-values 

<0.05) in some sampling condition (Table 2, R-values denoted with *). 

High TRNs is an indication of salivary blood contamination that may artificially 

overestimate drugs concentration in OF [34]. Assumed increases of TACs levels in 

response to high TRNs level was investigated in all sub-groups by calculating 

mean+1STD and mean+2STD of TRNs in all samples with TRN level within the 

dynamic range of  the  assay  ≤6.6mg/dL  (Table 3). All samples that have TRNs level 

falls within mean+1STD or mean+2STD were included, and the correlation between 

produced values (mean+1STD or mean+2STD) and TACs was tested. As can be seen 

from Table 4, strong correlation in the same subgroups still exist (P value <0.5) 

despite  changes  in  TRNs  levels.  In  addition,  when  all  samples  with  TRNs  ≤6.6mg/dL  
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included, statistically insignificant correlation is seen (tables 5) which is comparable 

to those when only samples with TRNs ≤1mg/dL   included   (Tables 2). Furthermore, 

when 20 samples with highest TRNs level (Table 6) plot against TACs, no correlation 

is seen (Figures 1). These results are agreement with previous study [20]. In this 

study, the effect of blood contamination on TACs level was investigated by spiking 

OF with increasing amount   of   blood   contained   11.2   μg/L TAC. Only samples that 

showed signs of discoloration had elevated TAC level between 4.5 and 28%. Given all 

above, it seems that there is insignificant/weak correlation between TACs and TRNs 

concentration   in  samples  with  TRNs  ≤6.6mg/dL;;   therefore  all  samples  with  TRNs  ≤  

6.6mg/dL were included in further data analysis. 

Effect of different sampling conditions 

Changing salivary flow rate may alter the drug concentration drug concentrations in 

the OF via altering contact time and the pH, consequently, affecting tubular re-

absorption and secretion [21, 38]. Changes of flow rate may affect some drugs but has 

little to no effect on others [21, 38]. Tacrolimus is a highly lipophilic compound with 

logP and pka value of 3.19- 5.59 and 9.96, respectively [39]. These characteristics 

make TAC non-ionized in physiological pH, therefore, ideal for OF therapeutic drug 

monitoring. Additionally, food consumption produces protein-rich OF compared with 

protein-poor OF produced from other stimuli [40]. In this study, the effect of different 

sampling conditions on quality of OF samples, as determined by TRNs level, and the 

correlation between TAC concentrations in OF and blood, were studied.  
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The concentrations of TAC in OF in all subgroups are showed in Figures 2A and 2B. 

In both time points, there is as decrease in concentration, with the highest level in the 

rested sample followed by rinsed and stimulated samples. 

Correlation between TAC in OF and blood  

Interestingly, when comparing same sampling conditions across the two time points, 

the mean concentration of TACs in C2 samples were always lower compared to C0 

samples (Figures 3A, 3B and 3C, not statistically significant), despite the fact of 

significantly higher TAC in C2 blood samples (Figures 3D). We attribute this to the 

possible effect of food as C2 samples were collected after serving the breakfast. 

Correlation between salivary and blood TAC concentrations are presented in Figures 

4A and 4B. As can be seen, the correlation was best in rinsed samples collected at C0; 

therefore, this subset of data was selected to check possible covariate effect. 

Metabolizing enzymes CYP3A4 [41] and P-gp transporter are expressed in minor and 

major salivary glands [42, 43]. The possible effect of genetic polymorphism in 

CYPA3 enzymes and P-gp on the association between TAC concentration in OF and 

blood was examined. Nonetheless, no statistically significant differences were seen in 

different genotyped patients.  

12 hours profile study 

The High correlation between TACs and TRNs was seen in samples collected over 12 

hours period (Figure 5A, R= 0.67, p <0.001). However, weak correlation was seen 

between TAC concentration in OF and blood (Figure 5B, R = 0.13, p= 0.21). These 

results are online with these obtained in 2 hours profile study in which poor 

correlation in TAC concentration in OF and blood was seen.  
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Conclusion  

Using OF as an alternative to blood for TDM is appealing due to ease and low-cost of 

sampling. Many factors may alter drugs levels in OF. Results of this study indicate 

that salivary blood contamination has minimal on TACs when TRN level was  ≤  6.6  

mg/dL. Better correlation between oral fluid and blood tacrolimus concentration was 

observed in fasted samples collected at pre-dose as compared with non-fasted samples 

collected post dose. 
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Table   3-1: Summary of demographic information of participants 
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Table   3-2: Correlation between salivary   tacrolimus   and   transferrin   concentrations   (≤1  
mg/dL). 

Sampling Sampling   
Time (hrs) conditions N R  
 Rested 12 0.234 
0 Rinsed 18 0.195 
  Stimulated 25 0.701* 
 Rested 19 -0.371 
2 Rinsed 29 0.422* 
 Stimulated 28 -0.105 
  Total 131   
 *P value < 0.05   
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Table   3-3: shows mean, mean+1std and mean+2std transferrin concentration of all 
samples  transferrin  level  ≤6.6  mg/dL  and  TACs 

Time (hrs) 
Sampling 
conditions N mean std mean+1std mean+2std 

 Rested 26 1.55 1.50 3.05 4.55 
 Rinsed 29 0.89 0.54 1.43 1.97 
0 Stimulated 29 0.42 0.39 0.81 1.19 
 Rested 26 0.83 1.24 2.07 3.31 
 Rinsed 31 0.42 0.34 0.77 1.11 
2 Stimulated 30 0.43 0.40 0.83 1.23 
  Total 171         
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Table   3-4: Correlation between TACs and TRNs including samples that have transferrin 
level of mean+ 1 std or mean+ 2 std. 

Sampling Sampling mean+1std mean+2std 
time (hrs) conditions N R N R 
 Rested 23 0.241 24 0.335 
0 Rinsed 24 0.203 28 0.263 
  Stimulated 24 0.585* 27 0.671* 
 Rested 23 0.337 25 0.617* 
2 Rinsed 23 0.322 29 0.422* 
 Stimulated 24 0.146 29 0.126 
  Total 141   162   
 *P value < 0.05    
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Table   3-5: Correlation between salivary transferrin (<6.6 mg/dL) and concentration. 

 Correlation between TRN (<6.6) and TACs 
Sampling   Sampling   
 Time (hrs) conditions N R 
 Rested 26 0.074 
0 Rinsed 29 0.225 
  Stimulated 29 0.559* 
 Rested 26 0.751* 
2 Rinsed 31 0.439* 
  Stimulated 30 0.085 
  Total 171   
 *P value < 0.05   
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Table 3-6: Oral fluid samples with highest  transferrin concentration 

 
 

 

 

Nominal Sampling  
Tacrolimus 
concentration 

Transferrin level 
in oral fluids 

time (hrs) conditions in oral fluids ≤6.6mg/dL 
0 Rested 919 6.5 
2 Rested 3127 5.9 
0 Rested 1040 5.4 
0 Rested 2143 3.5 
2 Rested 2392 2.5 
2 Rested 1786 2.5 
0 Rested 2425 2.4 
0 Rested 500 2.3 
0 Rinsed 664 2.2 
0 Rested 378 2.2 
0 Rinsed 487 1.9 
0 Rinsed 784 1.7 
0 Rinsed 365 1.7 
0 Rinsed 2538 1.6 
0 Rested 1793 1.6 
0 Rested 1297 1.5 
2 Stimulated 877 1.4 
0 Rested 2609 1.4 
0 Rested 1907 1.4 
2 Rested 1571 1.4 
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Figure   3-1: Correlation between transferrin and tacrolimus in oral fluids in 20 samples 
with highest transferrin concentration. 
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Figure   3-2: levels of tacrolimus at different sampling conditions in pre-dose samples 
(2A) and post-dose samples (2B). 
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Figure   3-3: plots compare tacrolimus levels in oral fluids samples collected at rest 
(3A), after mouth rinse (3B), stimulated samples (3C), and in blood samples (3D) 
collected at pre and post dose. As can be seen, salivary levels of tacrolimus tend to be 
lower in 2 hours post dose oral fluid samples despite higher level in the corresponding 
blood samples. 
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Figure   3-4: plots show the correlation between tacrolimus level in oral fluids and 
blood at different sampling conditions in pre-dose samples (4A) and 2 hours post dose 
samples (4B). 
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Figure 5: plots data from 12 hours profile study show the correlation between salivary 
tacrolimus and transferrin concentrations (5A) and tacrolimus concentrations in oral 
fluids and blood (5B) 
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Abstract 

Free drug fraction in the blood is responsible for pharmacological effect and toxicity. 

However, quantifying unbound fraction is costly and labor intensive. Drug fraction in 

oral fluid (OF) is believed to be in equilibrium with plasma free fraction. Therefore, 

OF may provide a mean for estimating unbound fraction in noninvasively collected 

samples and with a simple sample preparation procedure. In this manuscript, a liquid 

chromatography tandem mass spectrometry method was developed and validated and 

used to quantify the concentration of mycophenolic acid (MPA) and its glucuronide 

metabolites (MPAG) in oral fluid, plasma and in plasma ultrafiltrate. A simple, 

sensitive and selective method was developed for quantification of salivary, unbound, 

total MPA and MPAG. The robustness of the method was confirmed by incurred 

sample reanalysis test. The method was successfully used for quantifying the analytes 

in samples obtained from stable renal transplant recipients. 

Introduction 

Mycophenolic acid (MPA) is an immunosuppressive agent that is widely used in solid 

organ transplantation. In United States, in year 2005, about 87% of kidney and 

pancreas transplant patients were prescribed MPA at hospital discharge [1]. It is 

metabolized by uridine diphosphate glucuronosyltransferases (UGTs) to the major 

inactive  metabolites  mycophenolic  acid  β-D-glucuronide (MPAG) and the minor but 

pharmacologically active metabolites mycophenolic acid acyl-β-D-glucuronide 

(AcMPAG) [2]. MPA highly binds to plasma protein with only 1-3% found in free 

form [2]. In patients with compromised renal, MPAG metabolites level may increases 

by 3-6 folds, resulting displacement of MPA from plasma protein binding sites [2]. As 



  

122 
 

a result, MPA free fraction may increase up to 7% [2]. Currently, whole blood or 

plasma obtained through venipuncture is used for TDM of immunosuppressive agents 

[3]. Because of the invasive nature of blood sampling, alternative matrices were 

investigated, including OF [4-6] and dried blood spot [7]. Because of the narrow 

therapeutic index, therapeutic drug monitoring of MPA is recommended. 

Few reports were previously published utilizing liquid chromatography tandem mass 

spectrometry (LC-MS/MS) for quantification MPA in OF (MPAof) [6]; MPAof, 

plasma free fraction (MPAf), and total plasma (MPAt) [5]; and total MPAt, MPAof, 

total glucuronide metabolites (MPAGt), and oral fluid MPAG metabolites (MPAGof) 

concentrations [4]. None of these methods, however, has quantified MPA and MPAG 

in OF, concurrently with free and total MPA and MPAG in plasma. In this paper, a 

simple, sensitive and robust LC-MS/MS method was developed for quantification of 

MPA and MPAG in OF, as well as, their free and total plasma concentrations. In this 

method, a simple samples preparation procedures were employed using liquid-liquid 

extraction with acetonitrile (ACN) with good recovery, is presented. The quality of the 

method was assessed by re-measurement some of the randomly selected patient 

samples (Incurred Samples Reanalysis procedure) obtained from renal transplant 

recipients. 

Chemicals and reagents 

Mycophenolic acid and (C17H20O6, MW = 320), MPAG (C23H28O12, MW= 496) and 

the deuterated mycophenolic acid internal standard (MPA-d3) (C17H17D3O6, Mw 

=323), in powder form were purchased from Toronto Research Chemicals (Toronto, 

Canada).   Optima™   LC/MS   grade   acetonitrile   (ACN),   ammonium acetate 
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(Crystalline), and formic acid, were obtained from Fisher Scientific (Fair Lawn, NJ, 

USA). Deionized water was obtained using Milli-Q Synthesis system fitted with Q-

Gard 2 Purification Pack (Millipore, Bedford, MA, USA). AquaSil Siliconizing Fluid 

was purchased from Thermo Fisher Scientific Inc. (Franklin, MA, USA). Drug-free 

human OF from six donors was obtained from Bioreclamation Inc. (Westbury, NY, 

USA). For salivary blood contamination, transferrin assay kit from Salimetrics LLC 

(State College, PA, USA) was used [8] and quantified with SpectraMax M5e 

Microplate Reader (Sunnyvale, CA, USA). 

 

Apparatus 

Oral fluid samples were sonicated using Branson® Sonicator (Danbury, CT, USA) to 

produce a homogeneous mixture. The supernatant was obtained from OF and plasma 

samples using Eppendorf 5810 centrifuge from Micro and Nanotechnology (Urbana, 

IL, USA). Free MPA and MPAG concentrations were measured in plasma ultra-

filtrate obtained using Centrifree® Ultrafiltration device from EMD Millipore, Merck 

KGaA (Darmstadt, Germany). 

Samples were analyzed using Liquid Chromatography Tandem Mass Spectrometry 

(LC-MS/MS). The LC-MS/MS system was consisted of Acquity UPLC from Waters 

Corp (Milford, MA, USA) connected to Xevo TQ MS mass spectrometry from Waters 

Corp.   MassLynx™   software   (ver. 4.1) was used to control the system and data 

acquisition,   and   data   processed   using   TargetLynx™   tool.   The   UPLC   system   had   a  

binary pump and equipped with built-in column heater. Twenty micro-litters sample 

loop was used to deliver 10 µL of extracted samples in a partial loop mode. 
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Chromatographic conditions 

An Acquity UPLC BEH C18 (2.1 mm x 50 mm) column with a 1.7µm-particle size 

and 130Å pores size was used (Waters Corp) for chromatographic separation. The 

temperature of the column was kept at 55°C, and the auto-sampler temperature was 

maintained at 20°C. Gradient elution was employed with a mobile phase consisted of 

water containing 95:5% water: ACN mixture contained 2 mM ammonium acetate / 

0.1% (v/v) formic acid (Solvent A); and ACN containing 2 mM ammonium acetate / 

0.1% (v/v) formic acid (Solvent B). The mobile phase was delivered at 0.350 mL/min 

flow rate.  The run cycle started at 85% solvent (A) slowly decreased 5% over 1.4 min 

and maintained at this level till 2.2 min. To re-equilibrate the column for the next run, 

solvent (A) was increased within 0.1 min to 85% and kept till the end of the run at 2.8 

min. Diversion valve was set to deliver the first 0.65 min and from 1.60 min till the 

end of each run to waste. The elution times were 0.93 min MPA and MPA-d3; and 

1.31 min for MPAG. 

 

Mass spectrometry conditions 

Mass spectrometry detection and quantification of MPA and MPAG performed in 

positive electrospray ionization (ESI) and multiple reaction monitoring (MRM) 

modes.  Intellistart tool was used to obtain initial mass spectrometry parameters in unit 

mass resolution analysis mode followed by manual tuning to achieve highest possible 

sensitivity. Final mass spectrometry parameters were as following: collision voltage 

(V)= 25, 14 and 23 for MPA, MPAG and IS respectively, cone voltage (CV) = 30, 
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collision energy (CE) = 20 and capillary voltage (kV = 1.5), source temperature (°C) = 

150, dissolution temperature (°C) = 500, cone gas flow (L/hr) = 25, desolvation gas 

flow (L/hr) = 1000, and collision gas flow (mL/min) = 0.15. Ammonium adducts 

[M+NH4]+ were selected as precursors for MRM with transitions (m/z, Q1 > Q3) of 

(m/z, 338.41>207.28) (m/z, 514.54 > 207.26), and (m/z, 341.45 > 210.33) for MPA, 

MPAG and MPA-d3 respectively. 

 

Preparation of solution for standard, quality control and internal standard 

Stock, sub-stock and working stock solutions of MPA and MPAG were prepared by 

reconstitution in 80% ACN. Internal standard stock and working solution were 

prepared in 100% ACN. All solutions were stored at – 20 °C. Standards and quality 

controls (QCs) were prepared by spiking the OF and plasma with serially diluted 

working stock solutions to achieve desired concentrations. The concentrations of 

internal standard working solution (precipitating solvent) were set at 0.005, 0.025 and 

0.05 µg/mL for OF, ultra-filtrate and plasma samples. 

 

Clinical Samples 

Patients’  samples  included  in  this  report  were  collected  from  patients  attending  kidney  

transplant clinic at Rhode Island Hospital (Providence, RI) after the   hospital’s  

Institutional Review Board approved the study protocol. About 4 mL of blood 

collected in ethylenediaminetetraacetic acid (EDTA) along with matching OF 

samples. All samples kept on dry ice till transferred to the Biomedical and 



  

126 
 

Pharmaceutical Sciences (BPS) department at University of Rhode Island and stored at 

– 80 °C till analyzed. 

Sample extraction 

Plasma and OF calibration curve standards, quality controls (QCs), blank, and patients' 

samples were allowed to thaw at room temperature. Oral fluids samples were vortexed 

for 5 seconds and sonicated for 5-10 seconds (depending on samples volume) to 

breakdown salivary components and produce a homogenous mixture. Fifty micro-

liters of OF or whole plasma samples loaded into 96-well plates contained 100 µL and 

200 µL precipitating solution in each well for OF or plasma respectively. The plate 

mixed on an automatic shaker for 5 min followed by centrifugation a speed of 3000 xg 

for 5 min at 20°C using swing rotor rack. The supernatant then transferred to a new 

plate using a multichannel pipette. For MPAf and MPAGf concentrations 

measurement, 300 µL of calibration curve standards, quality controls (QCs), blank, 

and patients' plasma samples were loaded into the ultra-filtration devices and 

centrifuged following manufacturer's recommendation. One part of ultra-filtrate was 

diluted with five parts of 50% ACN, briefly vortex mix and transferred to an auto-

sampler 96-wells plate. The injection volume was 5 µL for OF and plasma; and 10 µL 

for plasma ultra-filtrate. 

Statistical data analysis 

Statistical analysis was performed using GraphPad Prism software. 



  

127 
 

Assay validation 

Sensitivity and selectivity 

The method was validation in accordance with the current version of FDA guidance 

for industry bioanalytical method validation [9]. The lower limit of quantification 

(LLOQ) was determined by the concentration that had signal/noise ratio of at least 10, 

accuracy between 80-120%, and Coefficient of Variation (CV) less than 20%. 

Acceptance criteria for QCs were accuracy between 85-115% and CV less than 15%. 

Selectivity assessed by inspecting the presence of noise or peaks in chromatograms 

represent blank OF, whole plasma and plasma ultrafiltrate samples (from 6 donors) 

compared with LLOQ samples chromatograms. 

 

Stability 

Stability studies were performed by measuring MPA and MPAG in each matrix, in 

three replicate, at QC1 and QC3 concentrations. Stability studies included freeze and 

thaw (after three freeze and thaw cycles), bench-top (for up to 8hrs) and auto-sampler 

(by re-injecting one of validation batch after it was left in the auto-sampler for 24hrs). 

Matrix effect and Recovery 

The presence and the possible effect of matrix effect (ME) in all matrices studied in 

two different ways. In the first approach, chromatograms obtained from post-column 

infusion test were inspected visually. This test involved continuous infusion of 95% 

ACN (which represents the composition of mobile phase at elution time of the 

analytes and the IS) contains MPA, MPAG and the MPA-d3 at concentrations around 
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highest standards point for each matrix at 10uL/min flow rate after the column through 

a Tee connection. After establishing the baseline, extracted blank samples OF, plasma, 

or ultra-filtrate was injected using pre-established LC method. The obtained 

chromatogram was checked for signs of ion suppression and/or enhancement in 

comparison to chromatograms of blank injection of neat solution (1:2, water: ACN). 

In the second approach, possible interference of matrices components, namely, the 

phospholipids (PLs) was studied. The MRM transitions of abundant PLs were added 

to the MS method to enable us visually locate their elution region.  

Recovery of MPA and MPAG from OF was assessed by analyzed two sets of QCs 

samples (in 3 replicate). The First set was prepared by extracting blank OF first with 

ACN, followed by adding MPA or MPAG working stock solutions to achieve required 

concentrations (post-extraction spiked samples). The second set was prepared by 

spiking OF first with stock solutions followed by extraction with ACN (pre-extraction 

spiked samples). The recovery was determined by calculating percentage ratio of 

mean peaks area of pre-extraction samples to post-extraction spiked samples.  

Results  

Sensitivity and selectivity 

In-source conversion of glucuronide metabolites MPAG to MPA has been reported 

[10], therefore full chromatographic separation is essential to avoid over estimation of 

MPA concentration. In fact, the in-source conversion was very obvious in MPA 

channel [M + H]+ at m/z 321.35 > 207.27 (Figure 1). Given final chromatographic 

conditions, a full separation was achieved. Other adducts were identified for MPA 

included ammonium [M + NH4]+ and sodium adducts [M + Na]+. The highest intensity 
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was seen in [M + NH4]+ adduct at m/z 338.41 >207.28. Other fragments of ammonium 

adduct with lower intensity were m/z 338.41 >303.47 and m/z 338.41 >321.44. For 

MPAG, three ammonium adducts identified which are 514>321, 514>303, and 

514.54>207.26. The later transition showed the highest sensitivity, therefore, was 

chosen. 

Chromatograms obtained from acquiring pooled blank samples of each matrix, from 

six subjects, were visually inspected and compared to chromatograms of blank neat 

solution (50% ACN) for any unusual peaks or noise at elution region. No sign of 

interference was noticed. No carryover was detected when blank extracted matrices 

were injected following highest calibration concentration. Representative 

chromatograms of LLOQ of MPA and MPAG in each matrix are shown in Figure 2. 

Calibration curves ranges of the anlytes were 0.001-1µg/mL and 0.004-1µg/mL in OF; 

0.05-50 µg/mL and 1-100µg/mL in plasma ultrafiltrate; and 0.1-151µg/mL and 1-100 

µg/mL in plasma; for MPA and MPAG, respectively. Analytes to internal standard 

peak ratio against nominal concentration used to construct the calibration curve and 

fitted using (1/x) weighting method. To determine accuracy and precision of the assay, 

three different batches of OF and plasma (for total and unbound concentration) were 

spiked with working stocks solution to achieve QCs concentrations (6 replicate) and 

extracted as described in sample extraction section. Accuracy and precision of the 

assay are showed in Table 1.  

Stability 

Bench top, freeze and thaw, auto-sampler, were studied (Table 2). No stability 

problems were noticed, and analytes were stable in extracted matrices for up to 24hrs. 
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Recovery and matrix effect 

Samples processing and extraction procedures showed excellent recovery form both 

OF and plasma. The recovery ranged in OF and plasma from 88.71-103.09% for both 

MPA and MPAG (Table 2). In a recent paper [4] MPA and its metabolites, MPAG, 

were quantified simultaneously with 82.1and 65.7% recovery, respectively, following 

solid phase extraction procedures. 

Biological fluids contain endogenous components that may interfere and compete with 

analytes of interest at the ionization site in LC-MS/MS [11-13]. The ME is the term 

that describes this phenomenon. The ME may lead to either ionization suppression or 

enhancement, both of which may compromise the integrity of the results [11-13]. 

To investigate possible inference of matrices component, post-column infusion 

technique was utilized [13]. Figures 3A, 3B and 3C show composite chromatograms 

obtained by post-column infusion of MPA, MPAG, and MPA-d3, respectively, 

overlaid on chromatograms represents injections of blank matrices (OF, plasma, and 

plasma ultra-filtrate) and blank solvent using pre-established LC method, as well as 

chromatogram of MQC injection. Comparing traces of all three blank specimens 

injection with traces of blank solvent injection reveals an area of ion suppression 

between 0.25 and 0.7 min. There were no sign of ionization suppression or 

enhancement at the retention time of analytes or IS.  

Additionally, ME was also investigated visually by monitoring their MRM transitions. 

Mass transitions of PLs included (m/z, 496 >184, 520 >184, 522>184, 524 >184, 758 

>184, 782 >184) [11, 12]. Figure 4A, 4B, and 4C show the detected PLs and their 
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elution regions in OF, ultra-filtrate, and plasma, respectively. As can be seen, the 

investigated PLs eluted far enough after analytes of interest.  

Finally, the use of plasma samples obtained from healthy volunteers in preparing 

calibration curve may not completely mimic plasma obtained from transplant patients. 

Transplant patients usually co-prescribed a large number of medications to prevent 

rejection and manage coexisting conditions [14, 15]. Therefore, incurred sample 

reanalysis test was performed by re-measure  about  10%  of  patient’s  samples  [16].  As  

can be seen in Figures 5A, 5B, and 5C, great agreements between two repeated 

measurements of MPA (upper) and MPAG (lower) in OF, plasma, and plasma ultra-

filtrate, respectively. In these figures, Bland and Altman plots constructed by plotting 

the differences between paired repeated measurements against their average reveal 

good agreement between the two repeated measurements. All points lie between or 

near the 95% confident interval lines (dotted line).  

Conclusion 

In this paper, sensitive, selective and robust method for quantification of MPA and 

MPAG metabolites in OF, plasma, and plasma ultra-filtrate is presented. Simple 

sample preparation and extraction protocol was developed and used to provide 

minimum sample dilution and appropriate samples cleanliness, excellent recovery and 

minimum sample components interference. 
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Table   4-2. Results of stability studies and recovery 
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Figure   4-1: Representative chromatograms of [M + NH]+ MPAG at m/z 
514.54>207.26 (A); MPA [M + NH]+ at m/z 338.41>207.28) (B); and MPA [M + H]+ 
at m/z 321.53 > 207.27 (C). As can be seen in (C), there is an MPA peaks in MPA 
channel (m/z 321.53 > 207.27) at the retention time of MAPG as a result of in source 
conversion. The in source conversion is not obvious in MPA channel with m/z 
338.41>207.28 transition 
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Figure   4-2: Representative chromatograms show LLOQS of MPA (2A, 2 and 2CB) 
and MPAG (2D, 2E and 2F) in oral fluids plasma ultrafiltrate and plasma, 
respectively. 
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Figure   4-3: Composite chromatogram of traces obtained from continues post-column 
infusion chromatograms of MPA (3A), MPAG (3B) and the internal standard (3C) 
overlaid on a chromatograms of injections of blank injections of mobile phase, oral 
fluids, plasma ultra filtrate and plasma rat and human plasma. There is now area of ion 
suppression or enhancement is seen at elution areas of the analytes. 
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 Figure   4-4: Chromatograms depicting traces of phospholipids obtained from injecting 
pooled blank samples of rat oral fluids (4A), plasma ultrafiltrate (4B) and plasma (4C). 
MRM transition of each individual phospholipids species is shown on the right side of 
the graph. Peaks of MPA and MPAG are also shown. 
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Figure 5: Bland-Altman plot of difference between the repeated measurements plotted 
against mean differences. 
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Abstract 

Mycophenolic acid (MPA) is widely described immunosuppressive agent for solid 

organ transplant patients. It has a narrow therapeutic index. Therefore routine 

therapeutic drug monitoring (TDM) is recommended. Since the free drug fraction is 

responsible for pharmacological and toxic effect, quantifying unbound fraction might 

be more sensible. Quantifying plasma-unbound fraction is costly and labor intensive. 

However, drugs presented in oral fluid (OF) are considered a preventative of plasma 

free fraction. Therefore, oral fluid drug concentration may provide a mean for 

estimating unbound fraction with simple sample preparation procedures in 

noninvasively collected samples. In this paper, the concentration of MPA and its 

glucuronide metabolites (MPAG) were quantified in OF, plasma and plasma ultra-

filtrate. 

The correlation between MPA and MPAG concentrations in three matrices was 

investigated. Moreover, factors that may affect such correlation, including sampling 

time, salivary blood contamination, and food were investigated.  

Introduction 

In United States, in year 2005, about 87% of kidney and pancreas transplant patients 

were prescribed Mycophenolic acid (MPA) at hospital discharge [1]. MPA is a 

substrate for uridine diphosphate glucuronosyltransferases (UGTs). It is metabolized 

to a major inactive metabolite mycophenolic  acid  β-D-glucuronide (MPAG) and the 

minor but pharmacologically active metabolites mycophenolic acid acyl-β-D-

glucuronide (AcMPAG) [2]. About 97-99% of MPA binds to plasma protein [2]. 

MPAG metabolites also bind to plasma protein and increased level MPAG, as in 
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patients with compromised renal function, may increases by 3-6 folds resulting 

displacement of MPA from plasma protein binding sites [2]. As a result, MPA free 

fraction may increase up to 7% [2]. Because of the narrow therapeutic index, 

therapeutic drug monitoring of MPA is recommended. Currently, plasma obtained 

through venipuncture is used for TDM of MPA [3]. Due to the invasive nature of 

blood sampling, alternative matrices were investigated, including dried blood spot [4] 

and OF [5-7]. 

The free fraction of a drug is responsible for pharmacological and toxicological effects 

[2,8,9], Therefore, measuring drug concentrations in OF may provide a better 

prediction of clinical outcomes and toxicity. The concentration of a drug in OF 

represents free drug concentration [10-12]. Thus, salivary drug level measurements are 

much easier and faster compared to quantifying free drug concentrations in plasma 

[6,7,13]. Mycophenolic acid is a small molecule with a molecular weight of 320.3, has 

a lipophilic nature (LogD = 2.57 and 0.75 at pH 5.5 and 7.4, respectively) [14].  These 

characteristics facilitate its movement through biological and entering OF [11,15]. In 

this paper, the association between MPA and MPAG metabolites in oral fluid, plasma, 

and plasma ultra-filtrate was studied. 

Study population  

Samples included collected in two studies from patients attending kidney transplant 

clinics and recruited in two studies. Patients' were on triple immunosuppressants 

regimen included tacrolimus or sirolimus, prednisone, and mycophenolic acid. Before 

conducting the studies, protocols were reviewed and approved by Institutional Review 

Board at Rhode Island Hospital (Providence, RI). 
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Patients Samples 

After the physical examination by the physician, patients were asked to sign the 

informed consent. In the first study, patients were asked to give about 4mL venous 

blood samples, collected ethylenediaminetetraacetic acid (EDTA), and matching OF 

samples collected sporadically at certain time points, including, pre-dose (time 0 = 

C0). In the second study, C0 blood samples were collected with 3 matching OF 

samples collected at resting, 5 min after mouth rinsing using bottled water, and 

immediately after giving a saliva stimulant (commercial sour candy). Following, the 

patients were given vouchers for free breakfast and asked to report back at the study 

location shortly before 2 hours after dose (C2) sampling time when blood a sample and 

correspond OF samples were collected. The OF samples were collected by passive 

drool into siliconized plastic cups. Blood and OF samples kept on dry ice till 

transferred to the Biomedical and Pharmaceutical Sciences (BPS) department at 

University of Rhode Island and stored at – 80 °C till analyzed. 

Statistical data analysis 

Statistical analysis was performed using the SPSS software (version 19.0, SPSS Inc., 

Chicago, IL, USA). Normal distribution of the data was checked graphically and 

confirmed with the Shapiro-Wilk test, and nonparametric tests were used whenever 

needed.  

Measuring MPA and MPAG in OF and blood 

Concentrations of MPA and MPAG in OF (MPAof and MPAGof, respectively), 

plasma (MPAt and MPAGt, respectively) and plasma ultrafiltrate (MPAf and MPAGf, 

respectively) were measured using a validated LC-MS/MS method (not published, 
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Chapter IV). In brief, an Acquity UPLC BEH C18 column (Waters Corp) was 

utilized as a stationary phase. Full chromatography separation between MPA and 

MPAG was achieved within a run time of 2.8 min using gradient elution delivered at 

0.350 mL/ min flow rate. The mobile phase consisted of water containing 95:5% 

water: acetonitrile (ACN) mixture contained 2 mM ammonium acetate / 0.1% (v/v) 

formic acid (Solvent A); and ACN containing 2 mM ammonium acetate / 0.1% (v/v) 

formic acid (Solvent B).  

Sample preparation involved extracting 50 µL of OF or plasma patients' samples, 

calibration curve standards, quality controls (QCs), blank, with 100µL or 200 µL of 

ACN precipitating solvent containing the internal standard, respectively, in 96-well 

plates. After shake mix and centrifugation, the supernatant then transferred to a new 

plate using a multichannel pipette. For MPAf and MPAGf quantification, 300uL of 

patients' plasma samples, calibration curve standards, QCs and blank were loaded into 

the ultra-filtration devices and centrifuged following manufacturer's recommendation 

(Centrifree® ultrafiltration device from EMD Millipore, Merck KGaA, Darmstadt, 

Germany). One part of ultra-filtrate was diluted with five parts of 50% ACN, briefly 

vortex mix and transferred to 96-wells plate. The injection volumes were 5µL for OF 

and plasma; and 10µL for plasma ultra-filtrate.  

Salivary pH and blood contamination   

Orion STAR A111 pH meter equipped with Micro Electrode from Thermo Scientific 

(Waltham, MA, USA) was used to measure salivary pH. To assess and quantify 

possible salivary blood contamination, transferrin kit from Salimetrics LLC (State 

College, PA, USA) was used following manufacture's recommendations [16]. 
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Transferrin (TRN) quantification was performed using SpectraMax M5e Microplate 

Reader (Sunnyvale, CA, USA). 

 

Results 

Clinical studies 

The demographic information of studies participants is showed in Table 5.1. In total 

267 samples were collected. Transferrin level higher than the recommended limit 

(>1mg/dL), was seen in 81 OF samples, therefore, excluded from further analysis. In 

the first study, intensive sampling was used to obtain blood and OF samples at rest 

with a total of 144 samples included in the statistical analysis. In the second study, 

blood and OF samples were collected at C0 and C2, a total of 142 samples were 

included. All included samples had MPA concentrations higher than the lower limit of 

quantification (LLOQ) Twenty-two samples had MPAG concentration lower LLOQ, 

but higher than the lower limit of detection (LLOD).  

Results and discussion 

12 hours profile study 

Summary statistics of MPA and MPAG concentrations in all matrices is showed in 

Table 5.2. As can be seen in Table 5.2, the plasma concentration of MPAG is about 

13 times higher than corresponding MPA (mean± STD, 46.03±45.50 vs. 3.43±2.50, 

respectively) which has been previously reported [2]. A comparable percentage of 

MPA unbound fraction (MPAf, mean± STD, 6.99±6.14) and MPAGf (mean± STD, 

7.03±4.79) was observed.  Conversely, a smaller percentage of MPAG (0.07±0.06) 

detected in OF compared to MPA (0.78±0.55). In fact, the oral fluid concentration of 
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MPA was about 10 folds higher than MPAG. The lower salivary concentration of 

MPAGs can be attributed to lower lipophilicity and higher molecular weight. High 

variability in MPA and MPAG is obvious in all matrices which have is previously 

reported [17].  

 

The area under the plasma concentration-time curve (AUC) and the maximum 

concentration are the best parameters to measure to estimate exposure to predict 

clinical outcome and toxicity [18]. Nevertheless, estimating AUC and Cmax requires 

multiple sampling over a dosing interval period of up to 12 hrs, which is impractical 

for routine TDM using venipuncture blood sampling. Owing to the ease of sample 

collection, and possible self-home sampling [19]; and significantly reduced sample 

cost [19,20], oral fluid as a medium has the potential to make calculating AUC 

feasible. In this study, the AUC0-12 for OF, unbound and total MPA and MPAG were 

calculated. Summary statistics of AUC0-12 is presented in Table 5.3.  

Plots of mean concentrations versus time of MPA and MPAG in three matrices are 

shown in Figure 5.1A and 5.1B, respectively. The mean (tmax) of MPA was at around 

one-hour after dose. A second peak is seen around four-hours after dose representing 

enterohepatic recirculation of MPAG back to MPA [21]. 

Good   correlation   can   be   seen   when   individual’s   AUC0-12 of MPA in OF samples 

plotted against unbound and total MPA, (Figure 2.1A and 2.2A, respectively). 

Weaker association is seen between MPAf and MPAt (Figure 2.3A). In contrast, only 

unbound and total MPAG concentrations showed reasonable association (Figure 

2.3B).  
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Representative diagrams of the mean TRN and pH concentrations are shown in Figure 

5.3. The mean TRN concentration had an elevated level in pre-dose and started to 

decline and level out after one hour after the dose. In the other hand, pH level showed 

a random pattern. 

2 hours profile study 

In the second study, the aim was to investigate the effect of different sampling 

conditions on the quality of OF samples obtained before (C0) and two hours (C2) after 

taking morning medications. The samples were collected either at rest, after mouth 

rinsing and after giving OF stimulants. In addition, the effect of salivary blood 

contamination on quality and amount of the MPA and MPAG was studied. Shapiro-

Wilk test revealed the abnormal distribution of salivary pH; TRN, MPA, and MPAG 

levels. Therefore, nonparametric tests were used.  

Effect of blood salivary contamination on endogenous substances has been studied 

[22]. According to the authors, high TRN level was associated with higher 

dehydroepiandrosterone but had a mitigated effect on the salivary level of compounds 

studied, cortisol and testosterone. For MPA, high concentrations in OF samples 

collected at C0 combined with elevated TRN level have been reported [7]. Similar 

finding is seen in this study, where significantly higher TRN levels in C0 resting and 

rinsed samples (Figures 5.4.A and 5.4.B, respectively.) compared with C2 resting and 

rinsed samples. No significant difference between stimulated OF samples collected at 

both time points (Figure 5.4.C). 
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In addition, significant differences in TRN concentration in resting and rinsed samples 

compared with stimulated samples only seen in C0 (Figure 5.5.C). However, the 

concentration of MPA was not significantly different between resting, rinsed, and 

stimulated OF samples (Figure 5.5.A), which may suggest limited/ no effect of TRN 

level on MPA salivary concentration. No difference in TRN level is seen in OF 

samples collected at C2 (Figure 5.5.D). This may indicate the abundance of TRN in 

fasting samples, that even mouth rising was not enough to reduce salivary blood 

contamination. 

Conclusion 

In samples obtained from stable renal transplant recipients good correlation between 

AUC0-12 of MPA in OF samples and unbound and total MPA. In contrast, a weak 

association between MPAG concentrations in oral fluids with total and unbound 

plasma fraction. Limited effect of TRN level in OF on MPA concentration. 
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ABSTRACT 

PF-5190457 is a ghrelin receptor inverse agonist that is currently undergoing clinical 

development for the treatment of alcoholism. Our aim was to develop and validate a 

simple and sensitive assay for quantitative analysis of PF-5190457 in human or rat 

plasma and rat brain using liquid chromatography-tandem mass spectrometry.  The 

analyte  and  stable  isotope  internal  standard  were  extracted  from  50  μL  plasma  or  rat  

brain homogenate by protein precipitation using 0.1% formic acid in acetonitrile.  

Chromatography was carried on an Acquity UPLC BEH C18 (2.1 mm X 50 mm) with 

1.7 µm particle size and 130Å pore size.  Flow rate was 0.5 mL/min and total 

chromatographic run time was 2.2 minutes.  Mobile phase consisted of gradient 

mixture of water: acetonitrile 95:5% (v/v) containing 0.1% formic acid (Solvent A), 

and 100% acetonitrile containing 0.1% formic acid (Solvent B). Multiple reaction 

monitoring was carried out in positive electro-spray ionization mode using m/z 513.35 

→  209.30  for  PF-5190457  and  m/z  518.47  →  214.43   for the internal standard.  The 

recovery ranged from 102-118% with CV less than 6% for all matrices.  The 

calibration curves for all matrices were linear over the studied concentration range 

(R2  ≥  0.998,  n  =  3).    Lower  limit  of  quantification  was  1  ng/mL  in rat or human plasma 

and 0.75 ng/g in rat brain.  Intra- and inter-run mean percent accuracy were between 

85–115%  and  percent  imprecision  was  ≤  15%.    The  assays  were  successfully  utilized  

to measure the concentration of PF-5190457 in pre-clinical and clinical pharmacology 

studies of the compound. 
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Introduction 

Ghrelin is a 28-amino acid peptide primarily produced by the endocrine X/A-like cells 

of the fundus mucosa of the stomach and acts as an endogenous ligand for the growth 

hormone secretagogue receptor (GHS-R1a).  GHS-R1a is a G-protein coupled receptor 

that induces growth hormone (GH) release from the pituitary [1].  Ghrelin activates 

hypothalamic orexigenic neurons and inhibits anorectic neurons to induce hunger 

[2,3].  In humans, intravenous (IV) acetylated ghrelin administration increases appetite 

and food intake [4,5].  Moreover, ghrelin infusion can suppress glucose-dependent 

insulin secretion in rodents and humans resulting in insulin resistance [2,6].  

Therefore, it is conceivable to believe that pharmacological modulation of ghrelin may 

be beneficial in regulating appetite and body weight or in treating type 2 diabetes 

mellitus. 

Consistent with converging evidence illustrating that alcohol and food-seeking 

behaviors share common neural pathways [7,8], ghrelin signaling has been proposed 

as a potential novel pharmacological target for the treatment of alcoholism [9]. In 

mice, central ghrelin administration to reward nodes of the brain increased alcohol 

intake while central or peripheral administration of ghrelin receptor antagonists 

suppressed alcohol intake [10].  Furthermore, clinical studies from our team have 

shown that plasma concentrations of ghrelin were different in abstinent compared to 

active drinking alcohol-dependent individuals and correlated with alcohol craving 

[11]. Additionally, in a human laboratory setting, intravenous administration of 3 

µg/kg ghrelin to alcohol-dependent, heavy-drinking individuals resulted in a 

significant acute increase in cue-induced alcohol craving [12].  Furthermore, there was 
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a positive significant correlation between post-infusion blood ghrelin levels and 

increased alcohol craving [12]. 

Generally, it appears that GHS-1Ra antagonism can possibly increase satiety and does 

not only result in weight loss and improvement in glycemic control but it may also be 

helpful for treating alcoholism. PF-5190457 is a sensitive and specific ghrelin receptor 

inverse agonist that is orally bioavailable [13].  It is a member of a spiro-azetidino-

piperidine series that was identified through high-throughput screening by Pfizer 

Pharmaceuticals.  PF-5190457 (Mw=512), has a measured logD value of 1.5 at pH 7.4 

and a topological polar surface area of 95.  Pharmacokinetics studies in rats have 

shown a high volume of distribution and clearance and an almost 100% fraction 

absorption in portal vein cannulated rats [10].  Here, we report the development and 

validation of a sensitive, specific and robust assay for measurements of PF-5190457 in 

either human or rat plasma or in rat brain homogenate using an ultra-performance 

liquid chromatography tandem mass spectrometry (UPLC-MS/MS) technique. 

Chemicals and reagents 

PF-5190457 and the internal standard (IS) PF-06340740 (stable labeled isotope) were 

kindly donated by Pfizer. OptimaTM LC/MS grade of acetonitrile, ammonium acetate, 

formic acid, and methanol were obtained from Fisher Scientific (Fair Lawn, NJ, 

USA).  Deionized water was obtained using a Milli-Q Synthesis system fitted with a 

Q-Gard 2 Purification Pack (Millipore, Bedford, MA, USA).  Drug-free K2EDTA rat 

plasma or brain specimens were from Wistar rats (n=6) aged between 2 to 4 months 

and weighing between 300-500 grams (Bioreclamation IVT Inc., Westbury, NY, 

USA).  Similarly, K2EDTA human plasma from 6 subjects (3 male, 3 female) were 
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obtained from Bioreclamation IVT Inc. 

Instruments 

Eppendorf 5810 refrigerated centrifuge from Micro and Nanotechnology (Urbana, IL, 

USA) was used to obtain supernatants.  Acquity UPLC from Waters Corp (Milford, 

MA, USA) connected to Xevo TQ MS mass spectrometry (Waters Corp) was used to 

quantify PF-5190457 concentrations.  Acquity UPLC system had a binary pump and 

was equipped with a built-in column heater. A 20µL sample loop was used to deliver 

samples in partial loop injection mode. The system was controlled  with  MassLynx™  

software  (V  4.1)  and  data  was  processed  using  TargetLynx™  tool. 

Chromatographic conditions 

Chromatographic separation was carried out in an Acquity UPLC BEH C18 (2.1 mm 

X 50 mm) with 1.7 µm particle size and 130Å pore size analytical column (Waters 

Corp, Milford, MA).  An Acquity UPLC BEH C18 pre-column was used to preserve 

the performance of the analytical column.  The column was maintained at 55 °C and 

an auto-sampler temperature was kept at 20°C. A gradient elution method was utilized 

with a mobile phase consisting of water: acetonitrile 95:5% (v/v) containing 0.1% 

formic acid (Solvent A), and 100% acetonitrile containing 0.1% formic acid (Solvent 

B).  The mobile phase was delivered at 0.5 mL /min flow rate.  Each chromatographic 

cycle started and maintained at 2% solvent (B) for 0.3 min and increased gradually to 

98% over 0.7 min and maintained at this level until 1.8 min. To re-equilibrate the 

column for the next run, the proportion of solvent (B) was decreased within 0.1 min to 

2% and kept constant until the end of the run at 2.2 min. To minimize detector 

contamination, a diversion valve was set to deliver the first 0.60 min and from 1.10 
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min until the end of each run to waste.  The elution time for both analyte and IS was 

0.83 min. 

Mass spectrometry conditions 

Multiple reaction monitoring (MRM) in positive electro-spray ionization (ESI) mode 

was used for detection and quantification of analytes and IS.  The MS scan of infused 

PF-5190457 detected protonated molecules [M+H]+ (m/z= 513.61) with highest 

intensity, followed by sodium adduct (m/z= 535.61) [M+NA]+ as seen in Figure 1.  

Therefore, the protonated form was selected. Protonated precursors were fragmented 

into two compounds of similar intensity with m/z values of 127.21, and 209.30; a third 

compound (m/z =335.35) was fragmentized with 50% intensity compared to the first 

two fragments (Figure 2). The two fragments with the highest m/z values were 

selected. MRM transitions were monitored (m/z, Q1> Q3); m/z, 513.35 > 209.30 

transition was used for quantification while m/z, 513.35 > 335.35 transition was used 

as backup. M/z, 518.47 > 214.43 transition was selected for the internal standard. The 

proposed fragment formation of PF-5190457 is illustrated in Figure 3.  All chemical 

structures were produced using ChemDraw version 14.0.0.117 from PerkinElmer Inc 

(Waltham, Massachusetts, USA). A gradient elution method was utilized with a 

mobile phase consisting of water: acetonitrile 95:5% (v/v) containing 0.1% formic 

acid (Solvent A), and 100% acetonitrile containing 0.1% formic acid (Solvent B).  

After automatically obtaining initial mass spectrometry parameters with IntelliStart 

tool, manual tuning of final parameters were performed to achieve the highest possible 

signal.  Final mass spectrometry parameters were: capillary voltage = 0.30 kV, 

extractor voltage = 3 V source temperature = 150°C, desolvation temperature =650°C, 
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desolvation gas flow = 400 L/hr, and collision gas flow 0.15 mL/min.  Cone voltages 

and collision energy were 32 and 38 for analytes   with   m/z,   513.35   →>   209.30  

transition   and   32   and   18   for   analytes   with   m/z,   513.35   >→   335.35   transition,  

respectively; and 38, and 44 for the internal standard. 

Preparation of standards, quality controls, and IS solutions 

Sub-stock and working stock solutions of PF-5190457 and IS were prepared using 

50% acetonitrile (ACN) and were stored at 4 °C.  Standards and quality controls 

(QCs) samples were prepared by spiking rat or human plasma or rat brain homogenate 

to achieve desired PF-5190457 concentrations while  keeping  the  organic  solvent  ≤  5%  

of total volume.  Standard concentrations of PF-5190457 in rat brain homogenates 

before extraction were: 0.15, 0.30, 0.68, 2.40, 4.80, 9.60, 19.20, and 24.00 µg/L; QCs 

concentrations were 0.45, 3.00, and 18.00 µg/L for LQC, MQC, and HQC, 

respectively.  The final standard and QCs concentrations in brain samples are shown 

in Tables 1 and 2. 

Plasma standard concentrations before extraction were 1, 2, 10, 100, 250, 500, 800 and 

1000 µg/L; QCs concentrations were 3, 200, 750 µg/L for LQC, MQC, and HQC, 

respectively.  Working internal standard solutions (WIS) composed of 0.1% formic 

acid in ACN at concentrations of 5 and 10µg/L were used as precipitating solvents for 

brain and plasma samples, respectively.  The final standard and QCs concentrations in 

plasma samples are shown in Tables 1 and 2. 

Protein precipitation and sample extraction 

A. Rat brain samples 
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Brain segments from each rat were weighed individually and homogenized manually 

on ice using a glass tissue homogenizer with four-fold volume of de-ionized water 

(w:v) until a homogenous mixture was formed.  One part brain homogenate of control 

blank, standards, QCs, and samples was extracted with two parts of 5 µg/L WIS in 1.5 

mL Eppendorf tubes. Double blank samples were extracted with 100% ACN.  After 

vortex mixing for 10 seconds, samples were centrifuged at 5000 xg for 5 min and 10 

µL of supernatant was injected onto LC-MS/MS. 

B. Rat and human plasma samples 

One part of rat or human plasma as control blank, standards, QCs, and plasma samples 

was mixed with four parts of 10 ng/mL WIS in a 1.5 mL microfuge tube.  Double 

blank samples were extracted with 100% ACN.  After vortex mixing for 10 seconds, 

samples were centrifuged at 5000 xg for 5 min and 5µL of the supernatant was 

injected onto LC-MS/MS. 

Assay validation 

Standards and QCs 

The method was validated in accordance with the current version of the Food and 

Drug Administration (FDA) guidance for industry bioanalytical method validation 

[14]. Calibration curves were constructed by plotting analyte/IS peak area ratio against 

the nominal concentration of analytes and fitted using a (1/x) weighting method.  

Accuracy and precision of the assay were determined using three different batches of 

brain or plasma that were spiked with working stock solutions to achieve standards 

and QCs concentrations (6 replicate) and extracted as described in the sample 
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extraction section. 

Sensitivity and selectivity 

Lower limit of quantification (LLOQ) was determined by concentrations that had % 

bias  ≤ ±  20%,   coefficient   of  variation   (CV)  ≤  ±20%  and   signal   to  noise   ratio   (S/N)  

≤10.  Acceptance  criteria  for  QCs  (LQC,  MQC  and  HQC)  was  %bias  ≤  ±15%and  CV  ≤  

±15%. Selectivity assessed by inspecting the presence of noise or peaks at analyte and 

IS elution time on chromatograms represented blank brain or plasma samples (from 6 

subjects). 

Stability 

Stability of PF-5190457 was investigated by quantifying QC1 and QC3 concentrations 

in three replicates.  Freeze and thaw (three freeze and thaw cycles), bench-top, and 

short-term stability for up to one month were investigated.  Auto-sampler stability was 

assessed, by re-injecting one of the validation batches kept in the auto-sampler for 

over 72 hours. 

Matrix effect and recovery  

Possible interference of matrix effect (ME) in brain and plasma samples was inspected 

visually through two ways. First, possible interference of matrices components was 

visually inspected on chromatograms generated using post-column infusion [15]. The 

test was performed by continuously infusing, after the column via a Tee connection, 

98% ACN solution (represents the composition of mobile phase at elution time) 

containing PF-5190457 and IS at highest standards concentrations at a flow rate of 10 

µL/min. Simultaneously, extracted blank brain samples, plasma samples, and neat 
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solution (%50 ACN) were injected using the pre-established LC method. 

Chromatograms obtained from injecting blank brain or plasma samples were 

compared with a chromatogram that represented neat solution chromatograms for any 

signs of suppression and/or enhancement at analyte and IS elution region. Second, 

possible co-elution of analytes and IS with PL was also checked [16,17]. By including 

MRM transitions of abundant phospholipids (PL) in MS method, we were able to 

visually locate PL elution region at early stages of method development. Co-elution 

was avoided by manipulating liquid chromatography conditions and mobile phase 

gradients. 

To determine recovery, two sets of QCs (form six subjects) were prepared. The first 

set of QCs was prepared in either brain or plasma and was extracted as prescribed in 

the samples extraction section (pre-extracted matrices QCs).  The second set was 

prepared by spiking extracted blank matrices with standard working solutions to 

achieve the same final concentration as the concentration in the first set.  The 

percentage ratio of mean peak areas of pre-extracted samples to mean post-extracted 

spiked samples was used to calculate recovery. 

Results and discussion  

Sensitivity and selectivity 

Brain concentration of analyte was expected to be very low compared to plasma. 

Therefore, mass spectrometry and chromatographic conditions were optimized using 

extracted brain samples to improve lower limit of quantification. Adequate sensitivity 

and selectivity were obtained using Acquity UPLC BEH C18 column. The final UPLC 

and mass spectrometry parameters were appropriate to set LLOQs at 0.75 and 1 µg/L 
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for brain and plasma, respectively (Figure 4).  Chromatograms obtained from pooled 

blank samples from six subjects and blank neat solutions (50% ACN) were visually 

inspected and compared for any peaks or noises at elution regions.  No sign of 

interference was noticed.  No carryover was detected when double blank samples were 

injected following the highest calibration concentration. 

Curve fitting of the standard curve was comprised of 1/x weighted least squares linear 

regression. The average correlation coefficient (r2) of the three validation batches was 

0.999. The inter-run % bias and coefficient of variation (CV) were in the 

recommended limit of ±20 for LLOQ and ±15 for QCs (Table 2). 

Stability 

Bench top, freeze and thaw, auto-sampler, and short-term storage at –80 Co for up to 

four weeks were studied (Table 3).  No stability problems were noticed and analytes 

were stable in extracted matrices for up to 72hrs. 

Recovery and matrix effect 

Samples processing and extraction procedures showed excellent recovery.  The 

recovery ranged from 102-118% with CV less than 6% for all matrices (Table 3).  

Endogenous components in biological fluids may interfere and compete for ionization 

with the analytes of interest [15]. The ME could be either ionization suppression or 

enhancement, both of which can potentially compromise the integrity of the data [16]. 

A post-column infusion technique was utilized to examine possible interference of 

components present in matrices of interest. Figure 5 shows a representative composite 

of PF-5190457 and IS traces obtained from post-column infusion at a concentration of 
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1 µg/mL overlaid on chromatograms obtained from injecting samples. An area of 

ionization suppression was seen around 0.25 minute in chromatogram from all 

matrices; slight ionization enhancement was also seen around 0.5 minute in all 

matrices (Figure 5). There was no sign of ionization suppression or enhancement at 

the retention time of analyte or IS. 

The ME was investigated visually first by detecting elution regions of PL components 

of rat brain, rat plasma and human plasma.  MRM of transitions of most common PLs 

[16,17] were added to the mass spectrometry method.  Mass transitions of PLs include 

m/z, 496 →  184, 520 →  184, 522 →  184, 524 →  184, 758 →  184, 782 →  184. As 

shown in Figure 6, the investigated PLs eluted far enough after analytes of interest in 

rat  brain  (A),  rat  plasma  (B)  and  human  plasma  (C).  It  must  be  noted  that  PLs’s   that 

have m/z of 524 are more abundant in the brain when compared to rat and human 

plasma.  In contrast, PLs’s  with m/z of 522 seem to be more abundant in rat and 

human plasma than in rat brain. Since the dilution factors (15 and 5 times for brain and 

plasma, respectively) and final water proportion in each final matrix extract was 

different, direct quantitative comparison was not possible. 

Assay application 

The assay was successfully utilized to measure compound concentrations in rat brains 

and plasma after administration of PF-5190457 as well as preliminary 

pharmacokinetic studies in human plasma conducted in the context of phase 1b study. 

Appropriate approvals were granted by the appropriate NIH Institutional Animal Care 

and Use Committee (IACUC) and the Institutional Review Board (IRB). Figure 7 

depicts a concentration-time profile of PF-5190457 in a representative human subject 
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at steady-state after administration of 50 and 100 mg oral dose of PF-5190457. 

Conclusion 

This is the first reported analytical method for quantification of PF-5190457 in rat 

brain, rat plasma and human plasma. This LC-MS/MS method was developed and 

validated in accordance with the current FDA guideline and showed high sensitivity, 

selectivity and robustness. Simple extraction processes with excellent recovery and 

sufficient sample cleanness was used. The method allowed us to examine the presence 

and describe relative components and elution behaviors of the investigated PLs 

species. The assays were successfully applied for quantification of PF-5190457 in 

both pre-clinical and clinical studies. 
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Figure   6-3. Chromatograms of ghrelin antagonist (PF-5190457) (A, B, and C) and the 
internal standard) at LLO Q (D,E and F) and in rat brain, rat plasma and human 
plasma samples, respectively. 
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