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ABSTRACT 

Solid tumors have a microenvironment that is inherently acidic and hypoxic. Hypoxia 

is caused by leaky blood vessels and large diffusion distances from cells to them. It is 

heterogeneous throughout the tumor and while all solid tumors are hypoxic to a 

degree, it is difficult to predict invasiveness based on it. However, acidity is a near 

ubiquitous characteristic of tumors with more aggressive tumors producing greater 

acidity. It is important to measure pH in diseased tissue with accuracy and precision, 

since acidity is associated with the development of various pathological states 

including tumors. In this work we focus on the acidosis aspect of the tumor 

microenvironment by describing the development of pHLIP


 (pH (Low) Insertion 

Peptides) targeting based tools that are capable of imaging the pH of a tumor 

microenvironment. pHLIP was chosen as a targeting vehicle because of its pH 

dependent insertion mechanism that allows it to effectively target acidic tissues, 

including tumors.  

We used pHLIP® to study the roles of carboxyl groups in transmembrane (TM) 

peptide insertion. pHLIP binds to the surface of a lipid bilayer as a disordered peptide 

at neutral pH; when the pH is lowered, it inserts across the membrane to form a TM 

helix. Peptide insertion is reversed when the pH is raised above the characteristic pKa 

(6.0). A key event that facilitates membrane insertion is the protonation of aspartic 

acid (Asp) and/or glutamic acid (Glu) residues, since their negatively charged side 

chains hinder membrane insertion at neutral pH. In order to gain mechanistic 

understanding, we studied the membrane insertion and exit of a series of pHLIP 

variants where the four Asp residues were sequentially mutated to nonacidic residues, 



 

 

including histidine (His). Our results show that the presence of His residues does not 

prevent the pH-dependent peptide membrane insertion at ∼ pH 4 driven by the 

protonation of carboxyl groups at the inserting end of the peptide. We expect that our 

understanding will be used to improve the targeting of acidic diseased tissue by 

pHLIP. 

Looking from the lipid bilayer’s perspective, small angle x-ray scattering studies 

showed membrane thinning by 18% induced by insertion of short-pHLIP (truncated 

version of pH Low Insertion Peptide) into bilayer. Thinning allows to reduce stress on 

membrane associated with negative hydrophobic mismatch. Also we observed 12% of 

membrane thinning when long-pHLIP partitions into outer leaflet of bilayer at high pH 

adopting coil conformations. The long-pHLIP at high pH creates an asymmetric 

inclusion in the bilayer, which results in increase of tension leading to the bilayer 

thinning. The tension and thinning is released when long-pHLIP inserts into bilayer as 

a transmembrane helix at low pH. 

The first tool developed is a new 
64

Cu-pHLIP peptide for targeting, imaging and 

quantifying acidic tumors by positron emission tomography, and our findings reveal 

utility in assessing prostate tumors. The new pHLIP version limits indiscriminate 

healthy tissue binding, and we demonstrate its targeting of extracellular acidification 

in three different prostate cancer models, each with different vascularization and acid-

extruding protein carbonic anhydrase IX (CAIX) expression. We then describe the 

tumor distribution of this radiotracer ex vivo, in association with blood perfusion and 

known biomarkers of acidity such as hypoxia, lactate dehydrogenase A and CAIX. We 



 

 

find that the new probe reveals metabolic variations between and within tumors, and 

discriminates between necrotic and living tumor areas.  

 

The second tool introduced is a novel approach of extracellular pH measurements at 

the surface of cells, which is based on the use of a pH-sensitive fluorescent dye 

SNARF conjugated to a pH Low Insertion Peptide (WT-pHLIP), which targets plasma 

membranes of cells in acidic diseased tissue. Our experimental set up includes two 

different approaches, one is based on acquisition of fluorescent spectra, and other one 

is based on recording of images via two emission filters. By using appropriate 

calibration curves obtained on liposomes and tumor spheroids in the presence of 2-

deoxyglucose, both approaches give the same values of surface pH. The developed 

tool was validated on cancer cells grown in tumor spheroids, in mice and excised 

tumors ex vivo. We establish that highly metastatic cancer cells have lower pH at their 

surface compared to non-metastatic cells. Our approach was sensitive enough to detect 

pH changes in vitro and in vivo induced by glucose, which leads to the enhancement 

of cancer cells metabolism and acidification of the extracellular space. The introduced 

tool could be developed for clinical application of surface pH measurements in biopsy 

samples. It might provide important clinical information about tumor stage and 

invasiveness, and can guide in the choice of treatment approach. 
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PREFACE 
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Anderson,  Ronald G. Blasberg,  Oleg A. Andreev, Donald M. Engelman, 

Jason A. Koutcher, Yana K. Reshetnyak, Jason S. Lewis. Understanding the 

pharmacological properties of a metabolic PET tracer in prostate 

cancer. Proceedings of the National Academy of Sciences, 111(20), 7254-7259 

(2014). 

3. Dhammika Weerakkody, Alexander Karabadzhak, Michael Anderson, Fallon 

Laliberte, Oleg A. Andreev, Theyencheri Narayanan, Yana K. Reshetnyak, 

Insertion of short peptide into lipid bilayer: negative hydrophobic mismatch. In 

preparation for publication. 

4. Michael Anderson, Linden Wyatt, Gregory Andreev, James Segala, Anna 

Moshnikova, Donald M. Engelman, Yana K. Reshetnyak, Oleg A. Andreev. 
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pH at the surface of cancer cells measured in vitro, in vivo and ex vivo. In 
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CHAPTER 1 

Published in Journal of Molecular Biology on  

21
th

of October, 2011 

Roles of Carboxyl Groups in the Transmembrane Insertion of Peptides 

Francisco N. Barrera
1
,  Dhammika Weerakkody

2
, Michael Anderson

2
,  Oleg A. 

Andreev
2
,  Yana K. Reshetnyak

2
,  Donald M. Engelman

1 

1
 Department of Molecular Biophysics and Biochemistry, Yale University, PO Box 

208114, New Haven, CT 06520, USA 

2
 Physics Department, University of Rhode Island, Kingston, RI 02881, USA 

Research Highlights 

 pHLIP forms a TM helix at acidic pH.  We mutate all aspartic acid residues. His 

residues do not prevent pH-dependent peptide membrane insertion. The number of 

residues that protonate correlates with insertion cooperativity. 

Abbreviations 

TM, transmembrane; wt, wild type; POPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine; OCD, oriented circular dichroism; PEG, polyethylene glycol; pH, 

extracellular pH 

Keywords 
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membrane protein folding; pHLIP; pH trigger; carboxyl titration; transmembrane helix 

 

Abstract 

We have used pHLIP® [pH (low) insertion peptide] to study the roles of carboxyl 

groups in transmembrane (TM) peptide insertion. pHLIP binds to the surface of a lipid 

bilayer as a disordered peptide at neutral pH; when the pH is lowered, it inserts across 

the membrane to form a TM helix. Peptide insertion is reversed when the pH is raised 

above the characteristic pKa (6.0). A key event that facilitates membrane insertion is 

the protonation of aspartic acid (Asp) and/or glutamic acid (Glu) residues, since their 

negatively charged side chains hinder membrane insertion at neutral pH. In order to 

gain mechanistic understanding, we studied the membrane insertion and exit of a 

series of pHLIP variants where the four Asp residues were sequentially mutated to 

nonacidic residues, including histidine (His). Our results show that the presence of His 

residues does not prevent the pH-dependent peptide membrane insertion at ∼ pH 4 

driven by the protonation of carboxyl groups at the inserting end of the peptide. A 

further pH drop leads to the protonation of His residues in the TM part of the peptide, 

which induces peptide exit from the bilayer. We also find that the number of ionizable 

residues that undergo a change in protonation during membrane insertion correlates 

with the pH-dependent insertion into the lipid bilayer and exit from the lipid bilayer, 

and that cooperativity increases with their number. We expect that our understanding 

will be used to improve the targeting of acidic diseased tissue by pHLIP. 
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Introduction 

Extracellular acidification is a hallmark of different pathologies, including cancer, 

inflammation, ischemic stroke, and atherosclerotic plaques. Acidosis might be a useful 

biomarker for diagnosis or treatment if means can be found to target tissue acidity. We 

have found that a peptide derived from helix C of bacteriorhodopsin,
1
 named pHLIP® 

[pH (low) insertion peptide], is capable of targeting acidic tissues and inserting into 

the cell plasma membrane.
2
 pHLIP is able to target mouse tumors in vivo with high 

specificity,
2
 opening the possibility of its use for cancer imaging. Additionally, pHLIP 

has a promising therapeutic potential, as it is able to translocate cell-impermeable 

cargo molecules, such as organic dyes, peptides, peptide nucleic acids, and toxins, 

across the plasma membrane into the cytoplasm of tumor cells. 
2 and 3

 pHLIP itself does 

not have obvious acute toxicity in cells
3
 or in mice.

2
 

pHLIP is monomeric at low concentrations, with a mostly unstructured conformation 

in neutral and basic solutions (state I). If lipid vesicles or membranes are present at 

neutral pH, pHLIP binds to their external surface with an energy of 6–7 kcal/mol (state 

II).
4
 In the membrane-attached state, pHLIP remains largely unstructured.

1
 However, 

if the solution pH is lowered, pHLIP inserts to form a transmembrane (TM) α-helix 

(state III). The insertion is fully reversible and unidirectional, with the C-terminus 

being translocated across the membrane.
3
 The pKa of peptide insertion into lipid 

bilayers is 6.0, and the energy difference between the attached state and the inserted 

state is 1.8 kcal/mol at 37 °C.
4
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The pHLIP sequence is relatively rich in acidic residues (Table 1). At neutral pH, the 

combined negative charges of these residues, together with the carboxy terminus, 

constitute a large energetic barrier to pHLIP insertion across the membrane. The 

estimated energetic cost of the transfer of a single aspartic acid residue from water to 

the hydrophobic core of the membrane is unfavorable by 3.6 kcal/mol for the 

unprotonated (negatively charged) state, but only by 0.4 kcal/mol for the protonated 

(noncharged) state.
5
 Simultaneously moving four charged Asp residues, one Glu 

residue, and the carboxy terminus into the membrane would cost 21.6 kcal/mol, 

assuming 3.6 kcal/mol for each carboxyl group, and peptide partitioning into the 

membrane at equilibrium would be about 1:10
16

. Thus, for pHLIP to be able to insert 

into membranes, protonation of a large fraction of the acidic residues can be expected, 

and knowledge of the protonation pattern of the acidic residues of pHLIP is an 

essential part of understanding the molecular mechanism of the membrane insertion 

process for any peptide containing carboxyl groups. Two classes of carboxyl groups 

are of interest: those that remain buried in the membrane after pHLIP is inserted into 

the membrane and those that traverse the hydrophobic core of the membrane during 

insertion.
6
 Accordingly, we have studied both the pH-driven membrane insertion and 

the exit process for a series of peptides where the key aspartic acid residues are 

sequentially mutated. 
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Results 

Previous studies in our laboratories revealed that sequence variations in the TM region 

of pHLIP can disrupt the delicate balance that preserves its water solubility. For 

example, a simultaneous change in the two aspartic acid residues at positions 14 and 

25 to the homologous glutamic acid (Asp14/25Glu) resulted in a loss of pH-dependent 

membrane insertion due to aggregation of the peptide in aqueous solution
7
 (we have 

recently developed new pHLIP variants with several Glu residues, which preserve pH-

dependent properties; unpublished data). In order to reduce the likelihood that the 

introduced variations in the peptides used in this work could cause aggregation, we 

decided to follow a dual strategy to increase their water solubility: (i) we added an Asp 

tag to the N-terminus (noninserting end) to increase the number of charges in the 

molecule, which typically improves the solubility of hydrophobic peptides
8 and 9

; this 

resulted in the replacement of the N-terminal sequence AAEQ with DDDED      

(Table 1); and (ii) we used the TANGO algorithm
10

 to define the region of the pHLIP 

sequence with the highest aggregation tendency and found this to be the stretch from 

residue 21 to residue 30 (coinciding with the most hydrophobic region of the peptide). 

We then mutated Leu26 to Gly, which greatly reduced the predicted aggregation 

tendency. 

We incorporated these modifications into a series of pHLIP variants, where four 

aspartic acid residues were sequentially mutated to nonacidic polar residues. The 

aspartic acid residues at the C-terminus of the peptide that transitorily traverse the core 

of the membrane upon insertion (Asp31 and Asp33) were replaced with polar but 
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uncharged asparagine residues. On the other hand, for the Asp residues that are located 

in the core of the membrane after insertion (in positions 14 and 25), histidine was 

chosen as the replacement residue, as it is expected to be partially charged at neutral 

pH (thus improving water solubility) while being only slightly polar in its uncharged 

state (the transfer energies from water to the bilayer interior are 0.43 and 

0.11 kcal/mol for the neutral forms of Asp and His,
5
 respectively) so that the insertion 

properties of pHLIP may not be altered. The peptides were named D0–D3 according 

to the number of aspartic acid residues present in the regions of interest (TM and C-

terminus; the positively charged N-terminus is not expected to interact with the 

membrane). For the variants with three aspartic acids, two alternatives were studied: 

one that kept Asp14 (D3a peptide) and the other that kept Asp25 (D3b peptide). 

We conducted experiments to test the state of the variants in solution, where pHLIP is 

largely found as an unstructured monomer.
11

 Sedimentation velocity experiments were 

conducted to determine the oligomerization state of the different peptide variants in 

aqueous buffer. Previous analysis of wild-type (wt) pHLIP (at 7 μM in 10 mM 

phosphate buffer and 100 mM NaCl, pH 8)
11

 showed that pHLIP is mostly 

monomeric, but a small oligomer population is observed (∼ 6%). We performed our 

sedimentation velocity experiments under the same conditions, but without NaCl in 

the solution. For each peptide, we observed a peak with a sedimentation coefficient of 

0.72 ± 0.12 S (Table 2 and Fig. 1), which corresponds to a molecular mass of 

3.4 ± 0.8 kDa. This is in agreement with the expected monomer masses of the 

different peptides (4126 Da for wt and  ∼ 4300 Da for the different variants), with the 

differences being ascribed to shape effects from the extended peptide. In the case of 
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D1 and D0, a minor peak with a sedimentation coefficient of 3.3 ± 0.3 S was also 

observed. This component represents 5 ± 2% of the total population, and its 

sedimentation coefficient corresponds to a molecular mass of 43 kDa (roughly 

consistent with the presence of an octameric or decameric particle). Comparison of our 

results with the previous report for wt suggests that the presence of oligomers is 

reduced at lower ionic strength. For the particular case of the D1 and D0 peptides, they 

seem to have a slightly higher oligomerization tendency in solution, but they are still 

95% monomeric. Thus, our results suggest that all the peptide variants remain soluble 

and are essentially monomeric. For the rest of the experiments, we employed peptide 

concentrations (1.5–5 μM) lower than that used for sedimentation analysis (7 μM); 

thus, the level of oligomers present for D1 and D0 is expected to be lower. 

Fluorescence spectra of the peptides in aqueous solution at neutral pH showed that, in 

all cases, the emission maximum is centered around 347–349 nm (Fig. 2, black lines, 

and Table 2), indicating that the two tryptophan residues of the peptides are largely 

exposed to aqueous solution, as in fully unfolded proteins, and consistent with the 

slightly low sedimentation coefficient. This finding represents an improvement over 

the previously studied Asp14/25Glu mutant peptide, where peptide aggregation shifts 

the emission maximum to 342 nm in buffer at pH 8.
7
 A similar fluorescence maximum 

was also observed for the Asp14/25Asn mutant under the same conditions.
2
 The 

presence of mostly unstructured species in aqueous solution for each of the studied 

peptides was confirmed by circular dichroism (CD) experiments, since the observed 

CD spectra were characterized by a minimum at 203 nm (Fig. 3, black lines), as 

observed for pHLIP in state I. 
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The two lipid-interacting states of the pHLIP variants were then examined: state II, 

where wt pHLIP is mostly unstructured and attached at the bilayer surface, and state 

III, where wt pHLIP forms a TM helix at low pH.
1 and 6

 Fluorescence experiments in 

the presence of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) liposomes 

revealed that for the two D3 variants, the characteristic fluorescence signatures for 

states II and III were evident: (i) in the presence of liposomes at neutral pH (Fig. 2, 

blue lines), the fluorescence emission maxima of the peptides were slightly shifted 

from 348.7 ± 1.0  to 346.2 ± 1.2 nm, accompanied by a small fluorescence increase 

(Table 2); and (ii) when the pH was lowered to pH 4, we observed a large fluorescence 

increase and a spectral blueshift to 336.2 ± 1.1 nm (red lines), which are typically 

observed when the Trp side chain is buried in the membrane hydrophobic core. To 

complement the fluorescence data, we performed CD experiments under the same 

conditions (Fig. 3). The CD signature of the pHLIP membrane insertion process 

consists of the appearance of the characteristic signals associated with the formation of 

α-helix: minima at 208 and 222 nm and positive ellipticity at 190 nm. Both D3 

variants showed spectral changes very similar to those observed for wt upon 

acidification. Thus, we concluded that replacement of one of the Asp residues in the 

TM region of the peptide does not lead to changes in the peptide's ability to interact 

with the membrane in a pH-dependent manner. 

The D2 variant, where both Asp residues are replaced by His residues, also 

demonstrates a pH-dependent membrane interaction. However, the spectral pattern is 

slightly different from those for wt and D3 variants: the fluorescence intensity of D2 

in the presence of POPC decreases in the pH range 8–6, with no significant changes in 
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the spectral maximum at pH 8–7 and with a small shift to lower wavelengths at pH 6 

(Fig. S1). The amount of the helical structure of D2 at neutral pH is slightly higher 

than those of wt and D3 (Fig. 2 and Table 2), while no change is seen in the pH range 

8–6. As an explanation, we suggest that D2 partitions somewhat more deeply into the 

membrane lipid bilayer than wt and D3 at neutral pH values, since His residues are 

expected to be only partially charged at neutral pH values, enhancing the 

hydrophobicity of the peptide TM and its affinity for the lipid bilayer. The decrease in 

fluorescence signal in the pH range 8–6 might be attributed to the partial quenching of 

emission of at least one of the Trp residues by one of the partially protonated His 

residues. At the same time, at neutral pH values, the peptide C-terminus containing 

four negative charges (two Asp, one Glu, and the C-terminus) does not partition into 

the membrane, keeping the peptide at the membrane surface. A further drop of the pH 

to pH 3–4 is associated with a fluorescence spectral maximum blueshift, an increase in 

fluorescence intensity (Fig. 2), and the appearance of a more pronounced negative 

band at 222 nm on CD spectra (Fig. 3), which is usually an indication of peptide 

insertion into the bilayer.
1
 Reduction of pH leads to the protonation of negatively 

charged groups at the C-terminus and peptide insertion into the membrane. At the 

same time, we expect that protonation of His residues at low pH should occur; this 

might lead to the peptide's exit from the lipid bilayer or, alternatively, the formation of 

a pore channel in the lipid bilayer, where positively charged His residues would be 

pointed toward the channel. Calcein encapsulation control experiments that rule out 

the formation of pores in the membrane by the D2 and D3 peptides were performed 

(Fig. S2). Thus, most probably, the pKa for the protonation of His is shifted to very 
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low pH values when it is embedded in a lipid bilayer. We carried out fluorescence pH 

titrations to compare the behaviors of D2 and wt peptides at pH values lower than 3.5 

(Fig. S3). While no fluorescence change was detected for wt at acidic pH values, we 

observed that an additional process was present for D2 (with an apparent pKa of 2.5), 

characterized by a fluorescence decrease and a redshift of the spectral maximum, 

which might be associated with peptide exit from the lipid bilayer. 

To establish the orientation of each helix in the membrane, we performed oriented 

circular dichroism (OCD) measurements in which the light beam is oriented 

perpendicular to the planes of a stack of oriented lipid bilayers containing the peptides 

of interest. Theoretical calculations and experimental data indicate that helices 

oriented with axes parallel with the membrane surface (perpendicular to the incident 

light) give CD signals distinctly different from those of helices oriented across the 

bilayer (parallel with the incident light).
12, 13 and 14

 In the range of 190–240 nm, the 

peptide CD spectrum is dominated by π–π* and n–π* transitions.
15

 The π–π* transition 

in a helix splits into three components, one of which gives rise to a negative Gaussian 

band near 205 nm, with its electric transition dipole parallel with the helical axis. 

When the incident light propagates parallel with the helical axis, the electric field 

vector is orthogonal to the  205-nm π–π* dipole transition, and there is no interaction 

between the electromagnetic wave and the dipole, leading to the disappearance of the 

negative band at 205 nm in a CD spectrum. Thus, when the supported bilayers are 

oriented perpendicular to the light propagation, a helix with a TM orientation will 

have a CD spectrum that contains a positive  190-nm band and a negative  225-nm 

band. If the helix adopts a membrane surface orientation on the supported bilayer, then 
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all transitions are seen, and the OCD spectrum is the same as for a peptide CD 

spectrum in solution, with randomly oriented helices. Our data clearly indicate that D2 

adopts a TM orientation at pH 3.5–4.5, while increasing the pH leads to peptide exit 

and the appearance of a membrane surface orientation of the helix (Fig. 4). The OCD 

spectrum at pH 1.9 does not correspond to a TM helix. Thus, we conclude that the pKa 

of both or at least one of the His residues is significantly shifted from 6.3–6.9
16

 to a 

lower value (2.5) due to their location at the bilayer interface in state II, emphasizing 

the important influence of bilayer surface properties on the pK values of dissociating 

groups in interacting peptides. A similar trend was previously observed for peptides 

that insert into membranes via the deprotonation of His residues, 
17 and 18

 although the 

magnitude of the pKa shift was smaller. However, large changes in pKa are typically 

observed when the side chains are in different environments, as the protonation of 

titratable amino acids depends on the dielectric properties of their environment.
19

 A 

fitting example of large pKa changes is found in the native environment of pHLIP, 

bacteriorhodopsin, where Asp14 and Asp25 have pKa values of 7.5 and >  9, 

respectively,
20

 significantly higher than the pKa values of 3.7–4.0 found for fully 

solvated aspartic acid side chains.
16

 

D1 has one less Asp residue at the C-terminus than D2. The slightly larger blueshift of 

fluorescence emission (Fig. 2) and the higher content of helicity observed in the 

presence of POPC at neutral pH values (Fig. 3) could be associated with an even 

deeper position of the peptide in the membrane. Fluorescence spectral blueshift and 

intensity increase, together with an increase in ellipticity at 222 nm, occur upon 

acidification; this might indicate protonation of Asp33, Glu34, and the C-terminus, as 
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well as peptide insertion into the lipid bilayer. The OCD spectrum obtained for D1 at 

pH 3.3 (Fig. 4) does not show a clear TM orientation of the helix: some decrease in 

ellipticity at 205–225 nm—which might indicate the existence of a mixture of TM and 

surface-parallel orientations of helices or the appearance of a significantly tilted TM 

helix—is observed. D0, in contrast to all other pHLIP variants described above, has a 

blueshifted maximum of fluorescence emission (Fig. 2) at neutral pH values in the 

presence of POPC, with a high content of helical structure (Fig. 3). Virtually no 

changes in spectral signal occur for D0 upon acidification (Figs. 2 and 3). The OCD 

data primarily reveal a surface orientation of the helix at low pH values (Fig. 4), as 

expected for a peptide with no aspartic acids. 

To study the magnitude and directionality of the membrane insertion of the peptides, 

we used a biotin–avidin binding assay. A biotin moiety was attached to the C-terminus 

of each peptide. The level of binding to avidin was measured, and the protection of the 

biotin molecule from avidin interaction was used to assess the translocation of the 

peptide C-terminus into the liposome interior. The biotin moiety was linked to the C-

terminal Cys of the peptides via a long polar polyethylene glycol (PEG) linker. The 

linker has a double purpose. It facilitates biotin access to the avidin binding site and—

more critically for our experiments—helps to delineate between an intraliposomal 

location and an extraliposomal location of the biotin, since the polarity of the moiety 

makes a location inside the hydrophobic region of the bilayer unlikely. We quantified 

the amount of biotin that binds to avidin molecules present exclusively outside the 

liposomes (see Materials and Methods for details). We did not detect avidin binding to 

biotin for the D2 peptide at low pH (Fig. 5a) due to the biotin translocation across the 
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membrane, which complements our data (suggesting complete insertion of this peptide 

across the lipid bilayer) and confirms that the directionality of insertion is the same as 

for wt. Only partial translocation and no translocation of biotin across the membrane 

were seen for D1 and D0, respectively (Fig. 5a), in agreement with our results 

indicating partial (or tilted) insertion and no insertion into the lipid bilayer of D1 and 

D0, respectively. Additionally, the translocation of biotin (which can be considered as 

a cargo) across the membrane does not appear to significantly hinder the membrane 

insertion of the peptides. This might be explained by its small size (526 Da) and its 

moderate polarity (logP = − 1.4; see Materials and Methods for details), which are 

both well within the range of cargo properties that pHLIP has been reported to 

effectively translocate.
21

 However, as the biotin assay used here is responsive to 

changes in the level of binding to avidin present outside of the liposomes, we cannot 

rule out the possible influences of different processes such as peptide aggregation, 

although we have no reason to suspect them. 

How does the number of carboxyl groups affect the pK and cooperativity of insertion? 

We monitored the pH-induced changes in the position of the fluorescence emission 

maximum of the peptides, which provide details about peptide insertion into the lipid 

bilayer, in the presence of POPC (Fig. 6). A plot of the positions of the spectral 

maxima follows a sigmoid behavior as a function of pH, corresponding to the 

transition between the interfacial state and the inserted state for all variants (except for 

D0). Fitting the experimental data provides the two main parameters that describe the 

insertion process: pKa and cooperativity (m). The pKa of membrane insertion obtained 

for wt pHLIP is 5.94 ± 0.09, which is in agreement with previous reports. 
1 and 7

 For the 
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different variants, shifts of the pKa to lower values (∼ 5.2) were detected (Fig. 7a). 

The reason for this decrease is unclear, but it might be related to the lower number of 

aspartic residues or to the presence of histidines in the TM region of the pHLIP 

variants. We do not think that the N-terminal DDDED sequence will influence the pKa 

values of the peptides in our study, since its polarity should preclude hydrophobic 

interaction with the lipid bilayer; thus, it is not expected to be involved in the insertion 

process. However, we cannot rule out that it might reduce the overall membrane 

affinity of the peptide. While the pKa values for the variants changed very little, we 

observed a gradual decrease in the cooperativity of the insertion process (m 

parameter) for peptides with fewer Asp residues, as the titration occurred 

progressively over a wider pH range (∼ 1 pH unit for wt and ∼ 2 pH units for D1) 

(Figs. 6 and 7b). Our data indicate that the cooperativity of insertion is linked to the 

number of protonatable residues. Cooperativity and pKa might also respond to the 

position of protonatable groups in the peptide sequences and their proximity to each 

other. When pHLIP is at the surface of the vesicle and the pH is lowered, the 

protonation of one Asp residue might facilitate the protonation of other protonatable 

residues, shifting their pKa values. The protonation of the first Asp residue might 

induce partial insertion of the peptide into the membrane. In this scenario, the 

protonation of the neighboring Asp residues would be energetically favored to shield 

the negative charge (i.e., the pKa value of the neighboring Asp is shifted to higher 

values in a more hydrophobic environment) and then a positive feedback would be 

established, triggering membrane insertion. 
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How do the number and the location of Asp residues affect peptide exit from the 

membrane? The CD and fluorescence changes associated with wt pHLIP lipid 

insertion at acidic pH are completely reversible.
11

 Here we also followed changes in 

the CD and fluorescence signals and in the reversibility of biotin translocation across 

the membrane. The ellipticity increase associated with each peptide insertion into the 

membrane was found to be essentially reversible for wt and D3b (Fig. 3, broken blue 

lines overlap with continuous blue lines), while for D3a, D2, and D1, the reversibility 

was only partial. Since changes in the CD signal upon acidification for D2–D0 are less 

pronounced than those for wt and D3, the reversibility of the D2–D0 membrane 

insertion was also assessed by changes in the fluorescence signal (Fig. S4). It is 

interesting to note the different levels of reversibility of the two D3 peptides: the 

insertion process is significantly more reversible in D3b (90%) than in D3a (70%) 

(Fig. 5b), suggesting nonequivalence of the two buried positions. We observed an 

overall linear relationship between the number of aspartic acid residues interacting 

with the membrane and the degree of α-helix formation reversibility (Fig. 5b). The 

results obtained for the reversibility of the biotin translocation (exit process) were also 

in agreement (Fig. 5b). 

An important consideration in the interpretation of the exit data is the time course of 

equilibration of the pH inside the liposomes, so we encapsulated the membrane-

impermeable fluorescent probe 5(6)-carboxy-2′,7′-dichlorofluorescein in POPC 

liposomes to follow the pH changes. The fluorescence of the probe is pH-sensitive, 

with a pKa of 5.1. When we varied the pH of the solution outside the liposomes, the 

fluorescence of the encapsulated probe changed in a sigmoid fashion, with an apparent 
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pKa of 5.05 (data not shown). A relatively high proton permeation through unilamellar 

POPC liposomes in the minute timescale has been reported elsewhere. 
22 and 23

 On the 

other hand, our kinetic data suggest that the time of wt peptide exit (with two TM 

groups and four C-terminal protonatable groups) is in the range of milliseconds.
6
 

Thus, peptides exit from the lipid bilayer much faster such that the pH is completely 

equilibrated inside the liposomes and, most probably, C-terminal residues cross the 

membrane in their noncharged form. The question is: ‘Why is the reversibility of D3a, 

D2, and, to some degree, D1 only partial?’ To provide an explanation, we take into 

account the location of the Asp residues. For the peptide exit from the lipid bilayer to 

take place, the deprotonation of Asp residues must energetically destabilize the 

inserted state. Destabilization of the inserted state is mainly caused by the charges 

resulting from the deprotonation of groups deeply buried in the hydrophobic core of 

the membrane. Therefore, the exit of wt and D3b, which have two Asp or one Asp in 

the hydrophobic core of the membrane, is fully reversible. The reason for the 

difference in peptide insertion reversibility between D3a and D3b might be related to 

the presence of an arginine residue at position 11. Accordingly, the deprotonation of 

Asp25 in D3b would strongly destabilize the membrane-inserted state due to the 

presence of a negative charge in the hydrophobic core of the membrane, favoring the 

exit process. However, the negative charge of Asp14 in D3a might be forming a salt 

bridge with the neighboring side chain of Arg11, which would result in a weaker 

destabilization of the inserted state. Another potential explanation is an altered 

position of the TM domain, which was mentioned above. There is a possibility that the 

TM domain in variants is shifted toward the C-terminal residues, leading to a greater 
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exposure of the amino acid in position 14 (with His in D3a) to the aqueous 

environment and a shift to the hydrophobic core of amino acids at positions 31 and 33. 

As a result, the deprotonation of His14 in D3a might be associated with less 

destabilization of the helix than deprotonation of His25 in D3b. The side chains of 

Asp31 and Asp33 most probably are interacting with the headgroup region of the 

bilayer. The destabilization energy associated with their deprotonation is not enough 

to cause a complete exit from the membrane. Our results suggest that the 

deprotonation of acidic residues located in the hydrophobic core of the membrane 

ensures complete exit of the peptide. 

Discussion 

We have previously observed that even conservative changes in the pHLIP sequence 

can lead to peptide aggregation in solution at neutral pH.
7
 Our results show that all the 

peptides in this study are soluble in solution, being essentially monomeric (the 

addition of a D-tag at the N-terminus and the L26G mutation appear to favor peptide 

solubility). Spectral data obtained with D3–D0 peptides indicate that the lower is the 

number of negatively charged groups in the peptide sequence, the deeper are the 

peptide partitions into a lipid bilayer and the greater is the helicity. At the same time, 

TM orientation (at least for the D3–D2 peptides) requires protonation of the Asp/Glu 

residues and the terminal carboxyl group at the C-terminus, which can readily go 

across a membrane in its noncharged form. We confirmed our previous finding
2
 

suggesting that TM Asp residues are not essential for peptide insertion. Interestingly, 

we have observed here that membrane insertion upon acidification occurs in our 

peptides in the presence of two His residues in the predicted TM region. Histidines 

http://www.sciencedirect.com/science/article/pii/S0022283611008771#bb0040
http://www.sciencedirect.com/science/article/pii/S0022283611008771#bb0010
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have been used in the past to drive the insertion of peptides into membranes at neutral 

pH values.
17 and 18

 However, in these examples, acidic residues were completely absent 

in the sequence. For the peptides described in this article, the establishment of states II 

and III is driven by acidic residues. Since the protonated (charged) state of the side 

chains of His14 and His25 in the hydrophobic core of the membrane would be 

energetically very unfavorable, in the peptides, their pKa values are expected to shift to 

lower values in the membrane-inserted state (favoring the unprotonated state). Further 

acidification eventually causes their protonation, resulting in a strong destabilization 

of the inserted TM helix and peptide exit. We cannot rule out that the diminished 

membrane insertion of the D1 and D0 peptides might be influenced by the 

hydrophobicity change concomitant to the Asp-to-Asn mutations at the C-terminus. 

The free energy of membrane transfer of the Asn side chain is 0.42 kcal/mol, which is 

a less favorable value than the free energy of transfer of the neutral state of Asp 

(− 0.07 kcal/mol)
5
; thus, the membrane translocation of the C-terminus would be less 

favorable. A similar effect might occur in the insertion reversibility of D1. 

We conclude that protonation of negatively charged residues located in the TM or in 

the C-terminal inserting end must occur in order to preserve the pH-dependent ability 

of pHLIP to interact with the membrane. These residues act as switches for pHLIP 

membrane insertion, as the negative charges of their side chains block membrane 

insertion. Acidification causes the protonation of these side chains, resulting in an 

increase in the overall hydrophobicity of the peptide, which leads to TM helix 

formation, shielding the hydrophobic residues of pHLIP from water molecules. When 

the pH is raised to near neutrality, the negatively charged state of the carboxyl groups 
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is again favored, decreasing the peptide hydrophobicity and resulting in exit from the 

TM position. Peptide exit from the lipid bilayer is completed when deprotonation of 

Asp/Glu residues located in the hydrophobic core of the membrane occurs and the TM 

helix is destabilized. 

The knowledge gained from our experiments can be used as a guide to improve the 

imaging and therapeutic properties of pHLIP. For the specific case of tumor targeting, 

the pHLIP insertion characteristics should be finely tuned to exploit the low 

extracellular pH (pHe) of tumors. Tumor targeting by wt pHLIP conjugated to a Cu
64

–

1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid chelate for positron emission 

tomography imaging correlates with the pHe of tumors, where the contrast index was 

higher for LNCaP tumors (pHe 6.78 ± 0.29) than for PC-3 tumors (pHe 7.23 ± 0.10
24

). 

Thus, pHLIP variants where Asp14/Asp25 were replaced by Glu, with a higher pKa 

(pKa = 6.5),
7
 might be more effective for targeting tumors with higher pHe values. Our 

present results suggest that the number of Asp residues in the TM region can also 

modulate the pKa value. Thus, a peptide containing an extra Asp in the TM region 

might have a higher pKa and might be directed to tumors more effectively. Another 

important factor to be considered is the broadness of the pH transition of the peptide, 

which is dictated by the cooperativity of the transition. On one hand, for the case 

where the peptide pKa is lower than the tumor pHe but the transition is broad (m value 

is low), a significant part of the pH transition could intercept the pHe value, resulting 

in a significant pHLIP tumor insertion. However, such a scenario will also lead to 

more accumulation in healthy tissue. Since it is usually desirable to have a high 

tumor/organ ratio, an insertion transition of high cooperativity might be best. This 
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would ensure greater differentiation between the amount of inserted peptides and the 

amount of noninserted peptides over a narrow range of pH values, favoring selective 

tumor targeting, since the difference in pH between normal tissue and cancerous tissue 

may be only 0.5–0.7 units. However, we must bear in mind that the measured pHe 

provides an indication of the average acidity outside the cell for a given tumor and can 

vary between different tumor regions. Furthermore, pHe may not reflect the precise pH 

on the exterior surface of the cells, since the cells pump protons to the extracellular 

medium and ΔpH will lead to proton accumulation at the membrane surface.
25

 

Another feature that is expected to shift the equilibrium toward the membrane-inserted 

form is the presence of Asp/Glu residues at the C-terminus of the peptide. After being 

translocated across the plasma membrane into the cytoplasm, where the pH is neutral, 

these groups would be deprotonated. Since the translocation of charges across 

membranes is unfavorable, the inserted form would be stabilized. 

pHLIP shows promise as a means of targeting cells in acidic tissues and delivering 

agents for therapy and imaging. At the same time, we are learning more about the 

binding and insertion of peptides at the membrane surface. Here we have shown that 

variation in the positions and numbers of carboxyl group titrations modulates the pK 

and cooperativity of insertion. 
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Materials and methods 

Peptide synthesis and assessment of monomeric state 

Peptides were made by solid-phase synthesis, using standard 9-

fluorenylmethyloxycarbonyl chemistry, at the W. M. Keck Foundation Biotechnology 

Resource at Yale University (New Haven, CT) and were purified by reverse-phase 

chromatography (C18 column, using a water/acetonitrile gradient in 0.01% 

trifluoroacetic acid). Purity was checked by matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry. Peptides were quantified by absorbance 

spectroscopy using a molar extinction coefficient of 13,940 M
−
 
1
 cm

−
 
1
. Some peptides 

contain a single Cys residue in the C-terminus and thus have the potential to form 

intermolecular disulfide bonds, leading to the formation of dimers. To rule out the 

possibility that this might occur under our experimental conditions, we ran HPLC on 

peptide samples incubated (at room temperature for 3 h) at concentrations higher than 

those used in our experiments and in the absence and in the presence of POPC. No 

dimer band could be detected, and concentrations in the range of 0.1 mM peptide and 

overnight incubation were required to detect a significant amount of dimer (∼ 10%). 

The peptides described in Table 1 were used in the experiments, except for some 

experiments with D2–D0, where a Cys-less version was employed (similar results 

were obtained for both results; data not shown). 

Analytical ultracentrifugation 

Sedimentation velocity experiments were performed at 25 °C in a Beckman Optima 

XL-I analytical centrifuge at 35,000 rpm. Peptides at a concentration of 7 μM were 
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dissolved in 5 mM phosphate buffer (pH 8)  after 1  h of incubation at room 

temperature. Absorbance at 280 nm was used to monitor centrifugation, and analysis 

was performed using SEDFIT.
26

 

Liposome preparation 

The required amount of chloroform-dissolved POPC (Avanti Polar Lipids) was placed 

in a glass tube, dried with argon, and then held under vacuum overnight. The dried 

film was resuspended in water or 10 mM phosphate buffer (pH 8) and vortexed. 

Extrusion to make unilamellar vesicles was performed using a Mini-Extruder (Avanti 

Polar Lipids), with Nuclepore polycarbonate membranes of 0.1 or 0.05 μm pore size 

(Whatman). To obtain the final large unilamellar vesicles, we performed 15–25 

extrusion steps, depending on the lipid concentration. 

Fluorescence spectroscopy 

Peptides were dissolved in 5 or 10 mM phosphate buffer (pH 8) and incubated with 

POPC vesicles prepared in water, resulting in a molar lipid/peptide ratio of 250:1. The 

incubation time with POPC liposomes varied from 90 min to 18 h. The pH of the 

samples was adjusted with a 10 mM concentration of the buffers for the indicated pH 

ranges (H3PO4, pH 1.0–3.5; sodium acetate, pH 3.5–5.5; Na2HPO4/NaH2PO4, pH 5.5–

8.0; sodium borate, pH 8.0–10.5) or by addition of concentrated HCl. The final 

peptide concentration was varied from 1.5 to 5 μM in different experiments. Emission 

spectra were measured in SLM-Aminco 8000C and PC2 ISS spectrofluorometers at 
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room temperature (controlled temperature), with excitation at 295 nm. The appropriate 

blanks were subtracted in all cases. 

For determination of spectral maxima, we used the FCAT mode of the PFAST 

software, which fits the experimental spectra to log-normal components.
27 and 28

 The 

spectral maxima values for each point of the pH curve were plotted and analyzed 

according to
29

: 
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where Fa = (fA + SApH) and Fb = (fB + SBpH); fA and fB are the spectral maxima for the 

acidic and basic forms, respectively; SA and SB are the slopes of the acidic and basic 

baselines, respectively; and m is the cooperativity parameter. Fitting by nonlinear least 

squares analysis was carried out with Origin software. 

Circular dichroism 

Samples were prepared as in the fluorescence experiments, but the final molar 

lipid/peptide ratio was 300:1, with the final peptide concentration varying from 2 to 

5 μM. CD spectra were recorded in Jasco J-810 and MOS450 Biologic 

spectropolarimeters interfaced with a Peltier system. Spectra were recorded at 25 °C 

using 2- or  5-mm cuvettes, the scan rate was 50 nm/min, and 10–30 averaging steps 

were performed. Raw data were converted into mean residue ellipticity according to
30

: 
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[Θ]=Θ/(10lcN) 

where Θ is the measured ellipticity, l is the path length of the cell, c is the protein 

concentration, and N is the number of amino acids. 

For the study of membrane attachment, insertion, and its reversibility, the typical 

procedure was as follows: The samples were incubated with POPC vesicles at pH 8 

for 90 min, the spectra were recorded, the pH was lowered to 4.0, and the 

measurements were performed after 30 min. Finally, the pH of the sample was 

increased with sodium borate buffer (pH 10.2) to a final pH of 7.5. After 30 min, 

90 min, and 24 h, the spectra were recorded, and similar results were obtained in all 

cases. The degree of reversibility was established from the recovery of the signal at 

222 nm. The final buffer concentration for the different experiments was in the range 

of 3–15 mM. Appropriate blanks were subtracted in all cases. 

OCD measurements 

For OCD measurements, supported bilayers were prepared on quartz slides with 0.2-

mm-thick spacers  on one side and with a special polish for far-UV measurements 

(Starna). Slides were cleaned by sonication for 10 min in cuvette cleaner solution 

(Decon Contrad 70, 5% in water), 2-propanol, acetone, and 2-propanol, and rinsed 

with deionized water. Then the slides were immersed in a mixture of concentrated 

sulfuric acid and hydrogen peroxide (3:1) for 5–10 min to completely remove any 

remaining organic material from the slides. The slides were then thoroughly rinsed 

with and stored in deionized water (Milli-Q purified water kept at 25 °C). A POPC 

lipid monolayer was deposited on a quartz substrate by the Langmuir–Blodgett 
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method using a KSV mini-trough. For the Langmuir–Blodgett deposition, a cleaned 

slide was vertically immersed in the clean subphase (Milli-Q purified water kept at 

25 °C) of a Langmuir–Blodgett trough. A POPC lipid solution in chloroform was 

spread on the subphase, and chloroform was allowed to evaporate for about 30 min, 

followed by monolayer compression to 32 mN/m. The first layer was deposited by 

retrieving the slide from the subphase at a rate of 15 mm/min. The second layer of the 

bilayer was created by fusion. For this step, the monolayer on the slide was incubated 

with a solution of POPC vesicles (50 nm in diameter, obtained by extrusion) mixed 

with peptide solution at the required pH (0.5 mM POPC and 10 μM peptide). The 

fusion occurred for about 6 h under 100% humidity. Then, excess vesicles were 

carefully removed, and the slides were stacked to make a pile while filling up the 

spaces between them with a peptide solution (5 μM) at the required pH. The bilayers 

with the peptide solution were allowed to equilibrate for about 6 h. Measurements 

were taken in three steps during the process: when the monolayers were incubated 

with an excess of liposomes, soon after the spaces between the bilayers had been filled 

with the peptide solution and 6 h after the second measurement. Fourteen slides (28 

bilayers) were assembled, and the OCD spectrum was recorded on a MOS-450 

spectrometer at a sampling time of 2 s. 

Biotin translocation assay 

HABA dye (4′-hydroxyazobenzene-2-carboxylic acid) binds to avidin at a 1:1 

stoichiometry and absorbs at 510 nm only in the avidin-bound state. This interaction is 

strongly displaced by the binding of biotin to avidin, resulting in a quantitative 
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reduction in HABA absorbance. This property was used to probe the location of the C-

terminus of different peptides with regard to the liposome (inside or outside) (method 

modified from Nicol et al.
31

). The C-terminus of each of the peptide variants was 

labeled with biotin (see the text below). The rationale for the assay is that pH-driven 

insertion of the C-terminus would result in biotin translocation inside the liposome, 

causing shielding of the biotin from the medium outside the liposome, where a 

preformed HABA/avidin complex (Thermo Scientific) is added. If the biotin is inside 

the liposome, no change in absorbance is expected. On the other hand, if pHLIP lies at 

the exterior surface of the liposome, the C-terminal biotin would be accessible to the 

solution outside the liposome (as the biotin group is polar, it is expected not to be 

protected by the membrane) and would be able to bind to avidin and displace the 

HABA/avidin complex, with a consequent reduction in absorbance at 510 nm. 

Liposomes were prepared in 150 mM NaCl, and ionic strength was carefully 

maintained during all steps to avoid liposome osmotic shock. Biotin-labeled peptides 

were incubated in the presence of POPC at pH 8 for 2 h at room temperature (150:1 

lipid/peptide ratio). For studies of C-terminal translocation, acetate buffer was added 

to the samples, resulting in a final pH  of 4.3 prior to 1 h of incubation with the 

peptide. The HABA/avidin complex was added to the solution only after the final 

conditions had been established. The final peptide concentration for the measurement 

conditions was 3 μM. To determine the reversibility of the biotin translocation, we 

increased the pH by the addition of 10 mM sodium borate buffer (pH 10.2) to give a 

final pH of 7.4. Absorbance was measured after 1 h of incubation. For quantitation of 

the level of reversibility, the recovery of absorbance obtained for pHLIP labeled with 
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biotin at its C-terminus was taken as 100% reversibility, and that of pHLIP labeled at 

its N-terminus was taken as 0%. 

Peptides were labeled at the C-terminal Cys residues using the membrane-

impermeable compound maleimide–PEG2–biotin (Thermo Scientific), which has a 

long polar spacer arm of 29.1 Å to allow adequate biotin binding to avidin. The 

synthesis reaction was performed in 10 mM phosphate buffer (pH 7.5; overnight 

incubation at 4 °C). Reaction products were purified by HPLC, and the mass of the 

biotin-labeled peptides was checked by matrix-assisted laser desorption/ionization 

time-of-flight mass spectrometry. The octanol/water partition coefficient of 

maleimide–PEG2–biotin was determined experimentally by measuring the absorbance 

at 300 nm in the aqueous and octanol (previously preequilibrated with water) phases 

after 2 h of vortexing. A logP value of − 1.07 ± 0.02 was obtained. As this value does 

not take into account the chemical changes in the cross-linking reaction (formation of 

a thioether bond between the maleimide moiety and the Cys side chain), the QikProp 

3.0 software was employed to predict the logP value of the reacted form, resulting in a 

value of − 1.4, which is in the range of molecules that can be translocated by pHLIP.
21
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Table 1.  Sequence of the peptides. 
 

 
wta 

  

   AAEQNPIYWARYADWLFTTPLLLLDLALLVDADEGTCG 

D3ab DDDEDNPIYWARYADWLFTTPLLLLHGALLVDADECT 

D3b DDDEDNPIYWARYAHWLFTTPLLLLDGALLVDADECT 

D2c DDDEDNPIYWARYAHWLFTTPLLLLHGALLVDADECT 

D1c DDDEDNPIYWARYAHWLFTTPLLLLHGALLVNADECT 

D0c DDDEDNPIYWARYAHWLFTTPLLLLHGALLVNANECT 

                      14              25       31  33 

a 
The pHLIP sequence is referred to as wt.  

b 
The variant peptides are named by a D followed by the number of aspartic acid 

residues in the TM and C-terminal regions. Two different D3 peptides were studied, 

D3a and D3b, each with different transmembrane aspartic acid residues mutated. The 

acidic residues that are expected to interact with the hydrophobic core of the 

membrane at some stage of the insertion process (Asp 14, 25, 31 and 33, in red) were 

mutated to the polar residues marked in bold. The N-terminal Asp-tag and the 

Leu26Gly mutation are highlighted in italics. The transmembrane region of pHLIP 

was predicted, using the octanol scale
5
, to be located between residues Ile7 and Leu29 

(marked with inverted blue triangles). N- and C-terminus were not capped. 

c 
A version of D2-D0 without cysteine were employed  in experiments except of biotin 

translocation assay. 
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Table 2.  Parameters describing the studied peptides. 
 

  AUC
 a

  Fluorescence  Circular 

Dichroism 
              

  Sed. 

Coef. 

 Spectral maximum, nm  Area 

curve 

 MRE 218 nm 

              

  State  State  State  State 
              

  I  I II III  II III  I II III 
              

wt  0.80±0.17
b
  347.7±0.6 347.2±1.6 336.7±0.1  1.04 2.10  -7.4 -7.4 -16.3 

D3a  0.67±0.08  349.9±0.1 347.4±1.3 337.0±0.1  1.12 2.61  -7.6 -6.8 -15.4 

D3b  0.66±0.09  349.1±1.0 345.5±0.7 334.6±0.2  1.08 2.11  -5.3 -6.1 -16.4 

D2  0.84±0.16  348.2±0.1 344.9±1.4 336.5±0.7  1.09 1.53  -7.9 -9.3 -14.1 

D1  0.88±0.18  346.2±3.6 343.7±1.6 337.4±1.0  1.10 1.46  -7.0 -10.5 -15.6 

D0  0.75±0.20  347.2±1.0 341.0±0.6 338.0±0.9  1.71 1.21  -6.5 -13.5 -12.8 
              

a 
The sedimentation coefficient for the peak corresponding to the monomer is showed.  

b 
The averages and the standard deviations are provided.  

c  
The spectral maxima were calculated with PFAST (see Methods). 
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Figures 

 

 

 

 

 

Figure 1. Sedimentation velocity of the different peptide variants. Apparent 

sedimentation coefficient distribution derived from sedimentation velocity profiles of 

the peptides(7 µM)) in 5 mM phosphate buffer at pH 8. 
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Figure 2. Fluorescence spectra of peptides in buffer and with POPC vesicles. 

Emission spectra of each variant were recorded under the following conditions: buffer 

at pH 7.5 (black lines), POPC at neutral pH (blue lines), and POPC at pH 4 (red lines). 

The pH values for the different POPC samples at neutral pH were selected according 

to the midpoint and slope of the transitions shown in Figure 6: wt, pH 7.5; D3a, 

pH 7.5; D3b, pH 7.1; D2, pH 6.5; D1, pH 6.2; D0, pH 8. The peptide concentration 

was 1.5 μM, and the lipid concentration was 375 μM. Fluorescence intensity is given 

in arbitrary units (AU). 
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Figure 3. CD of peptides in buffer and with POPC vesicles. Far-UV CD spectra 

were recorded for all variants under different conditions: buffer at pH 7.5 (black lines), 

POPC at pH 7.4 (blue lines), and POPC at pH 4 (red lines). The reversibility of the 

insertion process was studied by raising the pH of the samples from pH 4 (broken blue 

line) to pH 7.4. Reversibility for D0 was not studied, as the ellipticity changes between 

the states at pH 7.5 and pH 4 were negligible. In all samples, the final peptide and 

lipid concentrations were 5 μM and 1.5 mM, respectively. 
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Figure 4. OCD spectra of D2, D1, and D0 measured on oriented POPC-supported 

bilayers at neutral (blue lines) and acidic (red lines) pH values. The OCD spectrum 

of D2 at pH 1.9 was also recorded (purple line). The experimental spectra are 

corrected for the lipid background.  
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Figure 5. Quantification of membrane insertion (biotin translocation) and 

reversibility. Data corresponding to the biotin translocation assay (open squares) and 

CD (black symbols) were plotted against the number of Asp residues in the TM and C-

terminal regions. (a) Degree of normalized biotin translocation (open squares). For 

data normalization, the translocation levels of wt pHLIP labeled with biotin at the C-

terminus and N-terminus were used as 100% and 0%, respectively. Results from D3a 

and D3b are not shown for the biotin translocation assay, as the biotin labeling for 

these peptides affected the interaction with lipids (data not shown). No adverse effects 

of labeling were observed for the rest of the peptides tested. Averages and standard 

deviations are shown. (b) The percent reversibility of the biotin translocation of the 

samples used in (a) is shown (open squares). For CD experiments (Fig. 3), the degree 

of reversibility was determined by monitoring the relative changes in ellipticity at 
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222 nm (black symbols). Averages and standard deviations are shown. Data 

corresponding to D3b appear as a triangle, while the rest of the CD data appear as 

circles. All data points were used for linear fitting (R
2
 = 0.95). 
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Figure 6. Fluorescence spectral maximum changes upon pH titration. The pH-

controlled transitions of the peptides in POPC were followed by monitoring the 

variations in the spectral maxima. The experimental data for the different peptides 

were fitted to Eq. (1) (black lines). Representative experiments are shown.  



41 

 

 

Figure 7. Parameters obtained from the fitting of fluorescence pH transitions. 

The pKa (a) and m parameter (b) values obtained from the fitting of the data in Figure 

6 to Eq. (1) are shown in black symbols. Data from the D3b variant are shown as 

triangles (to maintain the representation as in Fig. 5). The line corresponds to the 

fitting of all data points (R
2
 = 0.93). Averages and standard deviations are shown. 
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Supplementary information 

 

Roles of carboxyl groups in the transmembrane insertion of peptides. 

Francisco N. Barrera, Dhammika Weerakkody, Michael Anderson, Oleg A. Andreev, 

Yana K. Reshetnyak and Donald M. Engelman 

 

 

 

Figure S1. Fluorescence of D2 in presence of POPC at various pH values. 
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Figure S2. Leakage of encapsulated calcein. The release of calcein encapsulated in 

large unilamellar POPC liposomes was measured by following the fluorescence at 515 

nm in the presence of different concentrations of peptides. Little disruption by peptide 

interaction is seen. The level of 100% disruption of liposomes was determined by 

addition of 0.05% Triton X-100 
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Figure S3. Fluorescence of wt and D2 at low pHs. The usual range of pHs was 

extended to lower values to study the protonation state of His residues. D2 was 

employed as an example of peptide containing two His residues. Upper panels: 

Emission spectra in POPC liposomes at pH 2.2, 3.3 and 6.3. Lower panels: the 

fluorescence intensity and center of mass were calculated for the complete pH range 

studied for D2 and wt pHLIP. 
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Figure S4. Fluorescence studies of the reversibility of the membrane insertion 

for D2, D1 and D0. Spectra were measured of the peptides in the presence of POPC at 

pH 4.1 (red lines) and 7.8 (straight blue lines). The pH of the samples at pH 4.1 was 

increased back to 7.8 (dashed blue lines) to study reversibility. For D2, where 

acidification caused TM helix formation occurs, the two blue lines have a good 

overlap, suggesting a high degree of reversibility. For D1 and D0, a TM helix is not 

formed in a pH-dependent fashion, so the interpretation of the reversibility data is less 

straightforward. 
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Abstract 

 Solid tumors are inherently acidic, with more aggressive growth producing 

greater acidity. If the acidity could be targeted as a biomarker, it would provide a 

means to gauge the pace of tumor growth and degree of invasiveness as well as 

providing a basis for predicting responses to pH-dependent chemotherapies. We have 

developed a new 
64

Cu-pHLIP peptide for targeting, imaging and quantifying acidic 

tumors by positron emission tomography, and our findings reveal utility in assessing 

prostate tumors. The new pHLIP version limits indiscriminate healthy tissue binding, 

and we demonstrate its targeting of extracellular acidification in three different 

prostate cancer models, each with different vascularization and acid-extruding protein 

carbonic anhydrase IX (CAIX) expression. We then describe the tumor distribution of 

this radiotracer ex vivo, in association with blood perfusion and known biomarkers of 

acidity such as hypoxia, lactate dehydrogenase A and CAIX. We find that the new 

probe reveals metabolic variations between and within tumors, and discriminates 

between necrotic and living tumor areas.  
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Introduction 

 The rapid growth and division of tumor cells creates an enhanced need for 

glucose and other nutrients, which the cells take up at a high rate, overwhelming their 

mitochondrial capacity to use all of the glucose efficiently (1). The result is aerobic 

glycolysis, which elevates lactate and proton production: the “Warburg” effect (1, 2). 

Further, some tumors are starved for oxygen, resulting in even more glycolytic acid 

production (3, 4). Under the resulting low pH conditions, normal cells have a tendency 

to undergo p53-induced apoptosis (5, 6), whereas cancerous cells invoke alternative 

routes, manipulating ion fluxes with proton extruders and other transporters to afford 

continuous survival (7). Pumping the acidic components out of the cell maintains 

cytoplasmic pH and enhances the pH gradient (ΔpH) and the cellular exterior surfaces 

become more acidic than those of cells in normal tissues (8). The level of extracellular 

acidification, however, is variable, depending on (i) the reliance of the malignancy on 

glycolysis (9-12), a phenomenon resulting from the pleiotropic adaptation of cancer 

cells towards a glycolytic phenotype, (ii) the impact of variation in the distal vascular 

delivery of nutrients, and (iii) the state of hypoxia (13, 14). The low pH environment 

stimulates cell invasion, angiogenesis and finally, metastasis (15-17). 

 Tumor acidosis could be a useful biomarker for selective drug delivery, 

targeting and delineation of malignancies. With the discovery of a membrane-inserting 

peptide (pHLIP) that preferentially binds to cell membranes at low pH, practical 

clinical imaging and delivery of therapeutic payloads may be possible (18-22). At 

normal pH, pHLIP binds as a largely unstructured peptide at a membrane surface, but 

at acidic pH it folds and inserts across the plasma membrane as an alpha helix (23). 
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We have previously demonstrated that pHLIP might be useful as a PET (Positron 

Emission Tomography) probe with 
64

Cu (t1/2~12.7 h) (24).  Tumor uptake in prostate 

cancer models was achieved, and related to a low extracellular pH (pHe), but 

shortcomings were apparent (24). The success of the probe as a marker of acidosis was 

found to have contrast and clearance complexities associated with the 

pharmacokinetics (PK) of pHLIP, warranting further development efforts. Targeting 

of fluorescent pHLIP variants were recently studied, and a range of potential 

properties was found, including altered kinetics of insertion (Scheme 1) (25). Here, we 

describe a much improved PET probe that was developed using three strategies: 

modification of the 1) peptide sequence, 2) radiometal and 3) chelate. We confirmed 

the lead radiotracer’s specificity for a low pH gradient by demonstrating an 

association between pHLIP-PET and pHe in different prostate cancer models, i) PC3-

wt, ii) the constitutively expressing carbonic anhydrase IX-transduced PC3 (PC3-

CAIX) and, iii) LNCaP cancer cells.  Lastly, we extended our study by offering a 

representative relationship of pHLIP with perfusion, tumor viability and pathways 

associated with acidity (i.e. lactate via the lactate dehydrogenase A (LDH-A) protein 

subunit, hypoxia and CAIX overexpression). The new probe gives useful contrast, 

reveals metabolic variations within tumors and discriminates between necrotic and 

living tumor areas. 

Scheme 1. pHLIP variants and their sequence  

Name Sequence 

pHLIP-WT ACEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT 

 Var1 ACEDQNPYWARYADWLFTTPLLLLDLALLVDG  

 Var2 ACEDQNPYWRAYADLFTPLTLLDLLALWDG 

 Var12 ACEDQNPWARYADLLFPTTLAW 

 Var13 ACEEQNPWARYAELLFPTTLAW 
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 Var10 ACEDQNPWARYADWLFPTTLLLLD  

 Var11 ACEEQNPWARYAEWLFPTTLLLLE 

Var7 ACEEQNPWARYLEWLFPTETLLLEL 

Var5 ACDDQNPWRAYLDLLFPTDTLLLDLLW 

K-WT (control) ACEQNPIYWARYAKWLFTTPLLLLKLALLVDADEGT 

 

 

Results  

Appropriate peptide sequence, radionuclide and chelating ligand modifications 

can significantly improve pHLIP-PET properties.  

In Vitro Studies. We made several modifications to reduce the non-specific binding of 

the PET probe to normal tissues in order to maximize contrast while maintaining 

tumor specificity.  Based on reports revealing that simple replacement of a 

radionuclide can significantly alter the PK characteristics of a PET probe (26-28), we 

labeled WT and truncated versions of pHLIP from Scheme 1 with 
68

Ga (t1/2 ~ 68 min) 

in lieu of 
64

Cu (t1/2 ~ 12.7 h).  Variants of pHLIP were conjugated with DOTA via a 

thioether linkage made via a nucleophilic reaction between the maleimide side chain 

of the macrocycle and the thiol functional group of a cysteine in pHLIP. 
68

Ga-

radiolabeling of these variants was facilitated via a microwave-assisted reaction at 90 

C for 1 min at pH~5.5. Assays performed in vitro were used to identify our lead 

pHLIP variant for studies in vivo. Measurements of the octanol/water partition 

coefficient (Log P) showed that, among the pHLIP variants tested, 
68

Ga-DOTA-WT is 

the most hydrophilic (Log P ~ -2.26 ± 0.04) while 
68

Ga-DOTA-Var7 is the most 

hydrophobic (Log P ~ -1.10 ± 0.05) (Table 1). Binding assays using PC3-wt prostate 

cancer cells in different pH-buffered environments (pH~ 6.3, 6.7, 7.0) showed that 

these peptides target cells at low pH. The binding activity of each radiolabeled pHLIP 

variant, expressed as “% Bound” normalized to the added amount of probe, is 
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displayed in Fig. 1. Variants WT and Var7 were selected as lead compounds for small 

animal PET imaging and biodistribution studies in vivo, due to their differential but 

favorable binding at low pH and significantly lower uptake at neutral pH, resulting in 

an improved dynamic range/contrast in the pH range of interest (pH 6 - 7.4). The 

control peptide, K-WT, showed a reverse trend, with enhanced binding at high pH. 

The lysine residues in K-WT are in their charged form at low pH, inhibiting 

membrane insertion, while in a more alkaline environment these lysine residues may 

be partially protonated, enhancing peptide-membrane interaction (29).  

 
68

Ga-DOTA-WT vs. 
68

Ga-DOTA-Var7. Encouraged by the results of our assays in 

vitro, we conducted in vivo experiments with subcutaneous (s.c.) PC3-wt prostate 

tumor xenografts. Serial PET images acquired (SI Fig. 1) at 1-4 h post-injection (p.i.) 

of 
68

Ga-DOTA-WT demonstrate non-specific tissue binding of the probe, resulting in 

poor contrast visualization of the tumors implanted on the shoulder.  Ex vivo tissue 

biodistribution analysis was conducted to measure the amount of probe bound to 

tumor and normal tissues at 1 h, 2 h, and 4 h p.i. to parallel the kinetics observed in the 

PET images. These data (SI Table 1) showed tumor uptake, expressed as % of 

injected dose per gram of tissue (%ID/g) at 1 h (1.87 ± 0.45 %ID/g), 2 h (2.36 ± 0.40 

%ID/g) and 4 h (2.86 ± 0.75 %ID/g), in good agreement with previously reported data 

using 
64

Cu, demonstrating probe affinity for the tumor (24). However, non-specific 

binding of 
68

Ga-DOTA-WT to normal tissues observed in the biodistribution results 

(Fig. 2A, SI Table 1) even at 4 h p.i. explains the poor contrast seen in the PET 

images (SI Fig. 1). For example, tumor-to-healthy tissue ratios versus muscle (2.02 ± 
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1.97), blood (0.43 ± 0.16), liver (0.40 ± 0.05) and kidneys (0.37 ± 0.16) at 4 h p.i. 

were poor, necessitating further improvement (Table 2). 

 The shorter 
68

Ga-DOTA-Var7 variant was examined in the same PC3-wt 

tumor model using similar methods of preparation.  Compared to the WT sequence, 

68
Ga-DOTA-Var7 exhibited significantly improved properties. From the tissue 

distribution (SI Table 2), the probe accumulation within the tumor progressed from 

2.47 ± 0.19 %ID/g at 1 h to finally, 5.60 ± 0.30 %ID/g at 4 h p.i. The acquired PET 

images further reflected the observed tissue distribution (SI Fig. 2).  

A direct comparative analysis between the two 
68

Ga-labeled probes 

demonstrated a higher tumor uptake with the shorter sequence compared to the parent 

WT. The blood residence at 4 h p.i. was similar; however, slightly increased non-

specific tissue binding was demonstrated by 
68

Ga-DOTA-Var7 (Fig. 2A). Compared 

to the WT peptide, the kidney uptake for Var7 was elevated, which can be rationalized 

as resulting from faster probe clearance.  Comparing tumor-to-background ratios of 

both radiotracers in Table 2, an overall increase in contrast with Var7 is seen.  Based 

on these observations, Var7 was chosen as the lead pHLIP variant for further 

preclinical evaluation. 

 

DOTA vs. NOTA. Even with shorter variants, the residence time of pHLIP appears 

longer than the physical half-life of 
68

Ga, so we reconsidered using 
64

Cu to better 

match the biological half-life of pHLIP. 
64

Cu radiolabeling of DOTA-Var7 was 

conducted using methods similar to that of 
68

Ga labeling. Ex vivo biodistribution 

results (SI Table 3) using PC3-wt tumor-bearing mice displayed tumor uptake at 1 h 

p.i. (1.19 ± 0.55 %ID/g), and significant retention after 24 h (1.64 ± 0.38 %ID/g, Fig. 
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2B). The blood residence activity improved with a final tumor-to-blood ratio of 2.63 ± 

0.57 at 24 h p.i. (Table 3).  Despite improvements made on the pHLIP backbone, 

concerns still remained with radiotracer retention in key organs. Hepatic uptake of the 

radiotracer displayed unremarkable retention over 24 h with 6.05 ± 1.36 %ID/g (Fig. 

2B-C), similar to the values reported for the 
64

Cu-DOTA-WT construct (4.88 ± 0.98 

%ID/g at 24 h) (24); this uptake is likely to be from random scavenging of radioactive 

metabolites, including de-metallated 
64

Cu in the liver (30, 31). The tracer distribution 

in the kidney revealed only nominal reduction, even after 24 h (19.6 ± 4.0 %ID/g), 

likely due to the renal acidic environment (pH~5), which is expected to cause binding 

of these pHLIP variants for a period of time (32), but possibly including other effects, 

since it could be improved (see below).   

 Our efforts to limit indiscriminate tissue accretion of pHLIP PET probes led us 

to seek improvements of the radiometal-chelate stability and the resistance to 

proteolytic degradation. Var7 was modified with the NOTA ligand. In addition, since 

previous reports described superior chelate affinity for 
64

Cu (33-35) and, in addition, 

we employed D-amino acids (named Var7(D) from now on), known for resistance to 

enzymatic proteolysis compared to L-peptidomimetics (36-38). Similar 
64

Cu 

radiolabeling conditions were employed as described above. In PC3-wt xenografts, no 

differences in tumor accretion were seen between 
64

Cu-NOTA-Var7(D) (Fig. 2B, SI 

Table 4) and the DOTA scaffold (Fig. 2B, SI Table 3). 

The design changes in 
64

Cu-NOTA-Var7(D) resulted in significant improvements of 

several properties. First, renal accumulation showed a greatly improved, exponential 

clearance from 13.27 ± 0.65 %ID/g (1 h) to 5.84 ± 0.89 %ID/g (4 h) and finally, 3.86 
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± 1.14 %ID/g (24 h). Second, a new route of clearance - via the intestinal organs - was 

found (SI Table 4).  Third, negligible hepatic radiotracer retention was seen at 24 h 

(0.88 ± 0.26 %ID/g, Fig. 2B). Finally, the significant clearance of 
64

Cu-NOTA-

Var7(D) from healthy tissues gave clear visualization of tumors as tumor-to-tissue 

contrasts (Table 3) progressed over 24 h, for example, against blood (0.81 ± 0.22), 

muscle (7.81 ± 0.88), liver (1.56 ± 0.40), small intestines (3.7 ± 1.0) and kidneys (0.39 

± 0.17).   

PET images using 
64

Cu-NOTA-Var7(D) acquired on mice implanted with 

bilateral s.c. PC3-wt (right shoulder) and LNCaP (left shoulder) xenografts exhibited 

promising PK properties (Fig. 2D, left) with progressive clearance of the tracer from 

the liver, muscle, gut and kidneys over 24 h, which were key problem areas with 

previous pHLIP PET probes. 

Biophysical characterization of 
64

Cu-NOTA-Var7(D), our lead compound. 

 We tested the new compound, 
64

Cu-NOTA-Var7(D), for solubility and for the 

pHLIP property of pH dependent insertion to form a transmembrane helix. 

Sedimentation velocity measurements show that Cu-NOTA-Var7(D) forms a dimer in 

aqueous solution at concentrations of 7-8 µM at high and neutral pHs, in contrast to 

more aggregated forms of other Cu-pHLIP constructs (see SI Table 5 and SI Fig. 3). 

The pH-dependent changes in circular dichroism (Fig. 3A) and tryptophan 

fluorescence signals (Fig. 3B) are similar to those observed for the peptide with no 

chelate and metal (25) indicating pH-dependent interaction of the pHLIP portion with 

the membrane. The apparent pKa of insertion was ~ 5.9 (Fig. 3C), which is slightly 

higher than for the peptide alone (5.5), probably due to the presence of the chelate. 
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The log P value of 
64

Cu-NOTA-Var7(D) was measured as -2.45 ± 0.13, revealing a 

significantly polar compound.  The properties of increased solubility and the elevation 

of the pK of insertion may contribute to its improved properties in vivo. 

Probe accumulation correlates with acidity. 

We wanted to explore disparities, if any, in the extacellular pH (pHe) of tumors 

with and without pHe regulators, particularly in tumors transduced to overexpress 

CAIX, a carbonic anhydrase elevated in tumor cells to cope with high CO2 production. 

Thus, CAIX-transduced PC3 (PC3-CAIX) prostate cancer cells were established via 

the transduction of PC3-wt cells with a newly developed retroviral vector SFG-CAIX-

IRES2-GFP. Via cell sorting, populations of GFP-expressing cells were collected (SI 

Fig. 4A) and Western blots confirmed higher CAIX expression in PC3-CAIX than in 

the wt cells under normal oxygen conditions (20 % O2) (SI Fig. 4B).  

The intrinsic acidity of the three prostate xenografts (PC3-wt, PC3-CAIX and 

LNCaP) was evaluated by measuring pHe and pHi (intracellular pH) via 
1
H-decoupled 

31
P-MRS using 3-APP (Fig. 4A). Each of the three tumor models exhibited a lower 

whole-tumor pHe (Fig. 4B) than its whole-tumor pHi (Fig. 4C), in concordance with 

previous studies (39-42). Of all the tumor models, LNCaP tumors had the highest pHi 

(7.28 ± 0.07) and pHe (7.07 ± 0.04) while the PC3-wt xenografts exhibited both the 

lowest pHi (6.94 ± 0.07) and pHe (6.93 ± 0.03). In contrast to the wt model, the 

CAIX-enhanced tumor implants displayed an alkaline-shifted pHi (7.26 ± 0.09, P = 

0.012) and pHe (7.07 ± 0.06, P = 0.035).  Analysis of the pH (pHi-pHe) of these 

tumors revealed similar proton fluxes in LNCaP (0.27 ± 0.10, P = 0.020) and PC3-



57 

 

CAIX (0.33 ± 0.13, P = 0.018), establishing greater extracellular acidification 

gradients in these two xenografts than in PC3-wt (-0.010 ± 0.055) (Fig. 4D). 

Uptake of 
64

Cu-NOTA-Var7(D) correlates inversely with pHe when data from 

all three tumor models are taken into account. Each mouse used for pH MRS 

measurements was also used for PET and biodistribution experiments, giving greater 

confidence in the correlations (for pairing details see SI Table 6). In the plot of pHe 

versus 
64

Cu-NOTA-Var7(D) uptake (PET imaging at 1 h p.i. and 24 h ex vivo tissue 

sampling radioactivity assays) taken from the distribution studies (Fig. 5A), 

incremental accumulation of the radiotracer is seen as the tumor acidity increases. By 

pooling all data points from all prostate xenografts (Fig. 5B), threshold limits can be 

established from the data, showing that a tumor pHe < 6.9 provides high probe 

localization (> 3.0 %ID/g), whereas a pHe range of 6.9 – 7.4 results in lower probe 

uptake (< 3.0 %ID/g). 

Ex vivo autoradiography demonstrates pHLIP accumulation in tumor regions 

associated with elevated metabolism 

Histological staining was used to examine viability and metabolic features of 

the tissues that stain or do not stain with the probe. Figures 6A-C shows the 

distribution of 
64

Cu-NOTA-Var7(D) (autoradiography), and correlative histologic 

markers pimonidazole (green, hypoxia), Hoechst 33342 (blue, vascular perfusion) and 

lactate dehydrogenase A (LDH-A, red) in representative PC3-CAIX (top row), LNCaP 

(middle row) and PC3-wt (bottom row) tumors. Histological stains (hematoxylin and 

eosin) were also conducted to determine tumor tissue viability (SI Fig. 5). In all 

tumors, the 
64

Cu-NOTA-Var7(D) distribution is heterogeneous, with increasing 
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accumulation seen in perinecrotic, hypoxic tumor regions. Binding of 
64

Cu-NOTA-

Var7(D) is also observed in the animal skin, an inherent acidic tissue, indicated by the 

red arrows on the tumor sections. Figures 6D-F contains re-binned scatterplots of the 

relative pixel intensity values of the images shown in Fig. 6A-C respectively. In all 

cases, the regions of highest 
64

Cu-NOTA-Var7(D) uptake corresponded with regions 

of highest pimonidazole and LDH-A staining, with the converse lowest 
64

Cu-NOTA-

Var7(D) corresponding to the regions of lowest LDH-A expression and pimonidazole 

uptake. There appeared to be no relationship between Hoechst 33342 staining intensity 

and 
64

Cu-NOTA-Var7(D) uptake. Thus, we find that probe uptake is correlated with 

hypoxia and LDH-A.  

Discussion 

By creating a useful probe for imaging tumor acidosis, we enable assessment 

of a universal trait associated with tumor invasiveness in most malignancies. We 

illustrated the improvements made toward better PK and dosimetric properties of 

pHLIP as a non-invasive PET radiotracer. More importantly, this probe was able to 

distinguish highly acidic tumors, with a direct association to tumor pHe. Furthermore, 

we extended our efforts to understanding the mechanism of uptake of this probe 

through autoradiographic and histologic studies of all three tumor models to provide 

insights on its target.  

Based on a set of observations with earlier pHLIP-based probes, we were able 

to design a new version that should prove useful in clinical applications. The Var7 

variant sequence of pHLIP proved to offer faster clearance and tumor delivery than the 

parent pHLIP; however, its prolonged residence in healthy tissue paired with the short 
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physical half-life of 
68

Ga was mismatched, and degradation of the peptide was 

suspected. To cope with these we synthesized the peptide from D-amino acids and 

revisited the use of 
64

Cu, which has a longer half-life to allow clearance of the probe 

from healthy tissue. The relatively poor chelating properties of DOTA for 
64

Cu had 

resulted in accumulation of unbound Cu in tissues (i.e. liver) (31), so we searched for 

a better chelation group, deciding on NOTA. This set of design choices gave us 
64

Cu-

NOTA-Var7(D). The superiority of NOTA to DOTA is clear in the comparisons of 

biodistribution, tumor-to-tissue contrast ratios and PET imaging (Fig. 2C-D, SI 

Tables 3-4).  A much lower uptake is seen in the liver, intestines, spleen and kidneys, 

resulting in improved contrast ratios between these tissues and the tumor. We now 

have a workable probe to develop for clinical use.  

Our results differ in some respects from those reported earlier.  In our hands, 

comparison of two of the tumor models (LNCaP and PC3 wt) in the right shoulder of 

athymic nude mice, the pHe showed a trend opposite to that observed by Vavere et al. 

(24).  They also used LNCaP and PC3 but for tumors implanted in the flanks of 

athymic nu/nu mice and for tumor volumes > 500 mm
3
, so the observed differences 

may potentially be due to the smaller tumor size (< 400 mm
3
) used in our study and 

the differences in tumor location (shoulder vs flank). Our goal was to use tumors with 

only moderate necrosis for best comparison with tumors seen in the clinic, hence our 

choice of small to medium-sized tumors. Further, we used 
1
H decoupled 

31
P MRS, 

which may influence the average chemical shift of 3-APP, since without 
1
H 

decoupling the signal shape and width is not only determined by T2 relaxation and the 

pHe tissue distribution, but also by the multiplet structure of 3-APP (43). We did not 
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find a significant relationship between tumor size and pHe for tumors < 400 mm
3 

(SI 

Table 6), which is consistent with the data by Raghunand et al. where tumoral pH was 

observed to decrease over a tumor size range of ~ 200 – 1500 mm
3
 (42), while not 

significantly decreasing in smaller tumors (< 400 mm
3
). Although decreases of mean 

tumor pHe and pHi with increasing tumor size have been observed in rodent tumors 

when measured over a large tumor size range (40, 42), in human tumors both 

decreasing pH with increasing tumor size and a lack of such a relationship have been 

reported (44).  

In retrospect, we find that the outcomes of measuring pH as an average do not 

give a true representation of tumor acidity, as evidenced by the broad pH distributions 

observed from 
31

P MRS. Instead, details of pH variation within a tumor may be key, 

even at the cellular level. Variations in the spatial distribution of pHe have been 

reported such that gradients exist at the interface of the cellular membrane and cytosol 

(45, 46), prompting us to examine the differences between cytosolic and extracellular 

pH, and to derive the net proton flux (although we still needed to use average values). 

We observed that the transduced PC3-CAIX and the LNCaP implants had greater 

extracellular pH gradients (∆pH) than the wild type (PC3-wt) model; however, the 

measured pHe values of the two models followed an opposite trend from the ∆pH 

values. We rationalize that these contrasting measurements may be due to the vast 

heterogeneity in tumor homeostasis and development, governed by an intricate mesh 

of metabolic pathways including rate of glycolytic metabolism, expression of acid 

extruding protein, and diverse buffering capacities and O2 concentrations in the blood 

vessel network, to name a few  (44, 47, 48). Despite these uncertainties, we observed a 
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correlation of targeting with absolute pHe, where at a pHe < 6.9, higher tumor 

accumulation of the radiotracer was observed, with > 3 %ID/g. However, at pHe > 

6.9, measuring and imaging tumor acidity using this probe is poorly resolved. We 

postulate that this may be an effect of the insertion pKa of the full construct (pKa ~ 

5.9).  

The development and use of pHLIP variants with a higher and lower pKs of 

insertion across cellular membranes, combined with favorable thermodynamics and 

kinetics properties, would allow measurement of a wider dynamic range of potential 

extracellular pH probed by pHLIP-technology. Also, pHLIP variants tuned over a pKa 

range could expand the applicability of minimally invasive pH measurements to 

applications beyond cancer. Thus, pHLIP-based acidosis imaging probes may offer a 

relative read-out of distributions of pHe, which may in turn allow clinical analysis of 

tumor invasiveness and regionalization. As we move forward, associating pHLIP 

tumor uptake with tumor acidosis using a regional pHe map is deemed more 

appropriate; these studies are currently underway.   

Autoradiography and histology performed on excised tumor sections revealed a 

heterogeneous distribution of 
64

Cu-NOTA-Var7(D) within the tumors, again 

emphasizing the need to avoid gross averaging of pH measurements to solely correlate 

the target/s of our probe with markers related to acidity. We used pimonidazole (a 

hypoxia tracer) and LDH-A (involved in the interconversion of pyruvate and lactate) 

as markers for comparison with the pHLIP distribution, in the absence of a direct 

histological marker of low pHe. 
64

Cu-NOTA-Var7(D) localization appears 

preferentially in perinecrotic regions (SI Fig. 5) that display high uptake of the 
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hypoxia marker pimonidazole, but shows no clear relationship to the vascular 

perfusion marker Hoechst 33342 (Fig. 6). The LDH-A-mediated conversion of 

pyruvate to lactate is postulated to be one of the principal sources of tumor acidity (49, 

50); elevated LDH-A would be expected to result in concomitant elevated pHLIP 

binding.  

LDH-A expression, while previously been shown to be hypoxia-regulated (via the 

HIF-1 transcription factor), has not yet been individually validated as a marker of low 

pHe (51). However, for these studies we took elevated expression of LDH-A as a 

stable marker of regional lactic acidosis, which is not susceptible to perfusion-

mediated fluctuations in extracellular microenvironment (52). The predicted cellular 

half-life of LDH-A is tissue-type dependent, but is generally in the order of several 

days (53), which is appropriate to our experimental protocols. 

 

 The expression of CAIX, which could also be taken to indicate regions of lowered 

pHe, is similarly regulated by HIF-1, and has a similar cellular half-life to LDH-A 

(54). While arguably inversely related to lowered pHe, both LDH-A and CAIX 

expression cannot be assumed to linearly relate to absolute pHe. Taken together with 

the induced, constitutive CAIX expression in the PC3-CAIX model and the very low 

observed CAIX expression in the LNCaP model, these facts render CAIX expression 

an unsuitable marker for low pHe or pO2 in our study. For these reasons, we also 

included pimonidazole binding in our analysis. Unlike LDH-A expression, there is no 

reported protein biomarker dependence of pimonidazole uptake, and its affinity is 

primarily dependent on low pO2, making pimonidazole a general marker of a hypoxic 
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tumor microenvironment (55). Our data demonstrate that, in the tumor models used in 

this study, LDH-A expression and pimonidazole binding have similar but discordant 

spatial distributions, in good agreement with previous reports that lactic acidosis and 

hypoxia are not always interdependent (10, 46, 48). It is likely that tumor regions of 

poor vascularity and low pO2 will also possess excess extracellular H
+
 ions due to 

anaerobic glucose metabolism and local lactic acidosis. While we observed a trend 

towards increasing 
64

Cu-NOTA-Var7(D) uptake with increasing pimonidazole uptake, 

the relationship appears to be non-linear (Fig. 6C-D). This may in part be due to the 

effect of pHe on absolute pimonidazole uptake, although this is likely to be a minor 

effect over the pHe ranges measured in this study (56). 

By finding a probe that marks the acidosis inherent in tumor metabolism, we have 

defined a new clinical potential for marking tumors and measuring their aggressive 

characteristics. Defining a probe with usable imaging properties could allow it to be 

used to follow the progression of a tumor and to monitor the effects of therapy.  

Methods 

Additional details of materials, methods and equipment used are found in the provided 

supplemental information. 

Synthesis, purification and characterization of DOTA- and NOTA-conjugates of 

pHLIP. Variants of pHLIP were synthesized and purchased from C.S. Bio Co. Inc. 

(Menlo Park, CA). Peptides were derivatized with either maleimido-monoamide-

DOTA (Macrocyclics, Inc., Dallas, TX) or p-SCN-Bn-NOTA (Macrocyclics, Inc., 

Dallas, TX).  
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Radiolabeling and purification with 
68

GaCl3 and 
64

CuCl2. Radiolabeling of pHLIP-

DOTA or -NOTA with 
68

Ga or 
64

Cu was conducted via a microwave-assisted reaction 

at 90 °C at 1 min. in 0.5 M ammonium acetate, pH ~ 5.5. Unbound radiometal was 

removed via a C18 solid phase extraction cartridge (Grace, Deerfield, Il). The pure 

labeled peptide was eluted with 0.5% 2 M HCl in ethanol. Radiochemical purities of > 

95% were ensured before administering to animals. 

Cell Culture and Growth. All tissue culture manipulations were conducted under a 

laminar flow hood using aseptic technique. LNCaP prostate cancer cells were grown 

as adherent monolayers in RPMI 1640 (GE Healthcare, Austria) containing 2 mM 

glutamine, 10 mM HEPES, 1 mM sodium pyruvate, 4.5 g/L glucose, and 1.5 g/L 

sodium bicarbonate. PC3-CAIX and PC3-wt cells were cultured in RPMI 1640 

containing 2 mM L-glutamine. All media were supplemented with 10% fetal calf 

serum, 100 units/mL penicillin and 100 µg/mL streptomycin. Cells were grown in a 

5% CO2 

and 0.53 mM EDTA in Hank’s Buffered Salt Solution (HBSS) with no calcium or 

magnesium present.  

In vitro cell binding. PC3-wt cells were incubated with different 
68

Ga-labeled pHLIP-

DOTA variants for 1 h at 37 °C at different pH ranging ~ 6.3 - 7.0. The cells were then 

washed twice with the same media used for incubation to remove unbound activity 

and the retained activity was counted using a Wizard
2
 2480 gamma counter (Perkin 

Elmer). 

pH-dependence. The pH-dependent partitioning of the peptides into lipid bilayers 

using POPC liposomes was investigated by measuring the shift of the intrinsic 
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fluorescence spectral maximum of the peptide as the pH is lowered from pH 8 to 2, as 

previously described (25). The spectra were analyzed by decomposition algorithms 

using an on-line PFAST toolkit (Protein Fluorescence and Structural Toolkit: 

http://pfast.phys.uri.edu/) to obtain spectral maxima (max). Finally, the positions of 

the fluorescence spectral maxima (max) of the single component solutions were 

plotted versus pH and the Henderson–Hasselbalch equation was used to fit the data: 

𝜆𝑚𝑎𝑥 = 𝜆𝑚𝑎𝑥
2 +

(𝜆𝑚𝑎𝑥
1 − 𝜆𝑚𝑎𝑥

2 )

1 + 10(𝑝𝐻−𝑝𝐾𝑎)
 

where 1
max and 2

max are the beginning and end of the transition, and the pKa is the 

midpoint of the transition.  

Steady-state fluorescence and circular dichroism measurements. Tryptophan 

fluorescence and circular dichroism (CD) measurements were carried out on a PC1 

ISS spectrofluorometer (ISS, Inc.) and a MOS-450 spectrometer (Biologic, Inc.), 

respectively, at 25 ºC,  as previously reported (25). 

Partition coefficient. The log P values (n=3) were determined for each labeled 

peptide by measuring the amount of activity from equal volume of samples obtained 

from the octanol and 1×PBS (pH~7) layers.  

Cell transduction. Stable clones of PC3-CAIX were developed by transducing PC3-

wt cell with SFG-CAIX-IRES2-GFP. PC3-wt cells at ~50% confluence were 

incubated with virus-containing medium for 12 hours in the presence of polybrene (8 

mg/ml; Sigma, St.Louis, MO, USA) as previously described (57). Cells were sorted 

several times using a fluorescence-activated cell sorter (FACS; BD Bioscience, CA, 

USA) (SI Fig. 4A) with Western blot experiments confirming CAIX expression (SI 

Fig. 4B).  



66 

 

Animal models. All animals were treated according to the guidelines set by the 

Institutional Animal Care and Use Committee. Tumors were induced in male, athymic 

nu/nu mice (Taconic Farms, Inc., Hudson, NY or Harlan Laboratories, Indianapolis, 

IN) on the shoulder by subcutaneous injection of 3×10
6
 million cells of either PC3-wt, 

PC3-CAIX or LNCaP cells in a 200 µL suspension of 1:1 media:Matrigel Basement 

Membrane Matrix (BD Sciences, Bedford, MA). Mice were utilized once volumes 

reached 150-300 mm
3

. 

In vivo animal PET imaging and biodistribution. Imaging experiments were 

accomplished with a microPET Focus 120 or R4 scanner (Concorde Microsystems). 

Mice (n=3-5) were administered with 
68

Ga/
64

Cu-radiolabeled pHLIP variants (200-300 

Ci, 15-25 g) in 100-200 L 0.9% saline formulations via lateral tail vein injections. 

PET whole body acquisitions were recorded on mice at 1-24 h p.i., while anesthetized 

with 1.5-2.0% isofluorane (Baxter Healthcare) in air. The images were analyzed using 

ASIPro VM
TM

 software (Concorde Microsystems). Regions-of-interest (ROI) were 

drawn and plotted vs. time.  

Biodistribution studies were performed on male athymic nu/nu mice bearing 

separate subcutaneous prostate xenografts (n=3-5). 
68

Ga- or 
64

Cu-radiolabeled pHLIP 

variants (20-50 Ci, 1-2 g) in 100 L 0.9 % saline were administered intravenously 

on the lateral vein. At a predetermined timepoint (1-24 h), the mice were euthanized 

by asphyxiation with CO2. Blood was collected immediately via cardiac puncture 

while the tumor along with chosen organs was harvested. The radioactivity bound to 

each organ was counted using a gamma counter. The percentage of tracer uptake 

expressed as % injected dose per gram (%ID/g) was calculated as the activity bound to 
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the tissue per organ weight per actual injected dose and decay-corrected to the time of 

counting. 

For studies demonstrating correlation of extracellular acidification and pHLIP-

PET, pH, PET imaging and biodistribution measurements were conducted on the same 

tumors.  On the same mice, 
64

Cu-NOTA-Var7(D) was administered intravenously 

post-MRS. PET images were acquired at 1-24 h p.i. with the mice subsequently 

euthanized after the last scan for ex vivo tissue analysis. Pairing of tumors is detailed 

in SI Table 6. 

In Vivo pH Measurements by 
1
H-decoupled 

31
P Magnetic Resonance 

Spectroscopy (MRS).  The MR experiments were performed on a horizontal-bore 7T 

MR spectrometer (Bruker, Germany) using a home-built
 1

H /
 31

P MR coil assembly. 

Prior to the MR measurements, a tail vein catheter was inserted, facilitating the 

administration of 3-APP via a home-built catheter line assembly during the MR 

experiment. For the duration of the MR experiment, the mice were kept anesthetized 

with < 2% isoflurane in 100% oxygen and the core temperature was maintained at 34-

37°C. A bolus of 480 mg/kg 3-APP was injected i.v. via the tail vein catheter directly 

before the acquisition of a 
1
H-decoupled 

31
P MR single pulse spectrum averaged over 

17 min 4 s,  acquired using a 60° excitation pulse, 2 s relaxation delay, 10 kHz spectral 

width, 2048 points, and 512 averages. Directly following the first acquisition, a 2
nd

 

bolus of 480 mg/kg 3-APP was injected i.v. and a 2
nd

 
1
H-decoupled 

31
P MR spectrum 

acquired. For each tumor, the free induction decays (FIDs) of the two 
31

P MR spectra 

were added up, resulting in a 34 min 8 s MR spectrum, and an exponential line 

broadening of 20 Hz applied. The resulting FIDs were Fourier transformed, phase 
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corrected, and the α-NDP/α-NTP signal calibrated to -10.05 ppm (Fig. 4A). The MR 

spectra were fitted in the time domain, using the software package XsOsNMR (kindly 

provided by Dr. Dikoma Shungu and Xiaoling Mao) and the intracellular and 

extracellular pH (pHi, pHe) calculated from the chemical shifts of inorganic phosphate 

(Pi) and 3-aminopropylphosphonate (3-APP) respectively, described previously (43). 

The inorganic phosphate signal, Pi represents primarily intracellular pH (pHi) (58, 59). 

The chemical shifts δ of Pi and 3-APP relative to α-NTP at -10.05 ppm, δ(Pi) and δ(3-

APP) respectively, are related to pHi and pHe by their respective Henderson-

Hasselbach equations and calculated as follows:  

pHi = 6.85 + log10
𝛿(Pi) − 0.58

3.14 − 𝛿(Pi)
 

pHe = 6.91 + log10
𝛿(3-APP) − 21.10

24.32 − 𝛿(3-APP)
 

pH values were reported as the mean ± standard error of the mean (SEM).  

Autoradiography and fluorescence microscopy. Animals were intravenously 

administered 80 mg/kg pimonidazole hydrochloride (Hypoxyprobe-1, NPI, 

Burlington, MA) in a final injection volume of 200 μL 1 h before sacrifice. Hoechst 

33342 trihydrochloride (Sigma; 1mg in 100 μL of physiologic saline) was injected 5 

min before euthanizing. Following sacrifice, tumors were excised and embedded in 

OCT mounting medium (Optimal Cutting Temperature (OCT), Sakura Finetek, CA), 

frozen on dry ice, and cut in several 10 µm sections throughout the tumor. Digital 

autoradiography (DAR) was performed by placing tissue sections in a film cassette 

against a phosphor imaging plate (Fujifilm BAS-MS2325) for an appropriate exposure 

period at -20 ºC. Phosphor imaging plates were read at a pixel resolution of 25 μm × 



69 

 

25 μm in-plane resolution  using a Typhoon FLA 7000IP (General Electric, USA) 

phosphor imager.  Following autoradiographic exposure, the same or sequential 

sections were then used for fluorescence and H&E staining and microscopy.  

Immunofluorescence staining for pimonidazole was carried out as previously 

described (54), the major difference being the use of a rabbit polyclonal anti-

pimonidazole primary antibody (NPI). Secondary detection was carried out using goat 

anti-rabbit Alexa-488 (Invitrogen, Grand Island, NY) (1:100 in blocking buffer). 

Images were acquired as previously described (60). Lactate dehydrogenase A (LDH-

A) staining was carried out using a rabbit polyclonal anti-LDH-A antibody (Novus 

Biologicals, NBP1-48336, 1:50), and secondary detection with goat anti-rabbit Alexa-

568 (Invitrogen). Whole tumor montage images were obtained by acquiring multiple 

fields at 40× magnification, followed by alignment using MicroSuite Biological Suite 

(version 2.7, Olympus USA). 

Pixel re-binning and scatterplot generation 

Pixel re-binning was done using an adaptation of the methods described in (61) and 

(62). Briefly, registered image sets were re-sampled to 50×50×10 μm
3
 pixel size, each 

image converted to an 8-bit grayscale image, and pixel values with their corresponding 

image location recorded. The data from the DAR image was designated as 

independent and the fluorescence image data as dependent. Data were then sorted in 

ascending order of the independent variable while maintaining the association between 

independent and dependent values. The data set was then split into deciles, each 

containing the same number of data points, i.e. the 10% of the data points lowest in 

terms of the independent variable, then the next lowest 10%, etc.  
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Statistical Analysis 

Data values were expressed as the mean ± S.D. unless otherwise stated. Statistical 

analysis was performed using GraphPad Prism version 5.03 software using student’s t-

test. A P value of < 0.05 is considered statistically significant.  
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Tables 

 

 

Table 1. Partition coefficients (mean ± S.D.) of 
68

Ga-labeled pHLIP-DOTA variants 

show different lipophilic characteristics.  
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Table 2. Tumor-to-tissue contrast ratios obtained for the 

68
Ga labeled WT and Var7 variants at 4 h p.i. 

Tissue  
68

Ga-DOTA-WT 
68

Ga-DOTA-Var7 

Blood 0.43 ± 0.16 0.69 ± 0.18 

Liver 0.40 ± 0.05 0.61 ± 0.15 

Kidney 0.37 ± 0.16 0.02 ± 0.01 

Muscle 2.02 ± 1.97 3.17 ± 0.91 

Bone 0.25 ± 0.13 0.57 ± 0.41 

 

Table 2. Tumor-to-tissue contrast ratios (mean ± S.D., [rel. u.]) obtained for the 
68

Ga 

labeled WT and Var7 variants at 4 h p.i.  
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Table 3. Tumor-to-tissue contrast ratios obtained for 
64

Cu-

Var7 with either DOTA or NOTA as ligands. 

Tissue  
64

Cu-DOTA-Var7 
64

Cu-NOTA-Var7(D) 

Blood 2.63 ± 0.57 0.81 ± 0.22 

Liver 0.28 ± 0.08 1.56 ± 0.40 

Kidney 0.08 ± 0.01 0.39 ± 0.17 

Muscle 7.81 ± 1.78 7.81 ± 0.88 

Bone 1.94 ± 0.41 6.04 ± 2.34 

 

Table 3. Tumor-to-tissue contrast ratios (mean ± S.D. [rel. u.]) obtained for 
64

Cu-Var7 

with either DOTA or NOTA as ligands at 24 h p.i.  
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Figures 

 

 

 

Figure 1. 
68

Ga-DOTA-labeled pHLIP variants. In vitro binding studies (n=3) 

display higher binding of 
68

Ga-DOTA-WT and 
68

Ga-DOTA-Var7 variants as the pH 

of the incubation medium is decreased. Note that the opposite was observed with the 

control peptide, K-WT.  
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Figure 2. In vivo pharmacokinetic optimization studies in prostate tumor 

xenografts. Tissue distribution analysis of 
68

Ga-DOTA-labeled WT and Var7 

demonstrate superiority of the latter in terms of tumor uptake at 4 h p.i. in PC3-wt 

tumor implants (A); in the same tumor model, the distribution of 
64

Cu-NOTA-Var7(D) 

displays faster clearance and less non-specific binding of the NOTA scaffold, 

particularly in hepatobiliary (L=liver), intestinal (I=intestines) and renal (K=kidneys) 

tissues, in contrast to 
64

Cu-DOTA-Var7. However, tumor uptake of both probes was 

comparable at 24 h p.i. (B); acquired PET images (C, D) from 1-24 h were consistent 

with the biodistribution data (A, B) for both LNCaP and PC3-wt xenografts. The PET 

images clearly demonstrate the advantages of 
64

Cu-NOTA-Var7(D) compared to 
64

Cu-

DOTA-Var7, due to more rapid clearance from hepatobiliary and intestinal tissues.  
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Figure 3. pH-dependent interaction of Cu-NOTA-Var7(D) with the lipid 

membrane bilayer. Cold Cu-NOTA-Var7(D) was studied for the presence of the 

three basic states of pHLIP; state I is the peptide in solution at pH 8; state II is the 

peptide in the presence of POPC liposomes at pH 8; state III is the folding and 

insertion of the peptide with POPC liposomes from pH 8 to 3.6. The states were 

monitored by changes of the steady-state circular dichroism (the spectra D-version of 

the peptide were multiplied by -1) (A) and tryptophan fluorescence spectroscopy at λex 

= 295 nm (B). Changes in the intrinsic fluorescence of the construct were monitored 

as a function of pH as a result of the peptide’s insertion wherein a pKa ~ 5.9 was 

obtained (C). The values obtained from the results of analyzed spectral data are given 

in SI Table 5. 
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Figure 4. In vivo pHe measurements. Representative 
1
H-decoupled 

31
P MR spectrum 

of a PC3-CAIX tumor after 3-APP injection. Signal assignments are: 3-

aminopropylphosphonate (3-APP), phosphoethanolamine (PE), phosphocholine (PC), 

inorganic phosphate (Pi), phosphocreatine (PCr), nucleoside di- and triphosphates 

(NDP/NTPs) (A); pHe measurements among three prostate tumor models show PC3-

wt as the most acidic (6.93 ± 0.03, P = 0.035) compared to the PC3-CAIX (7.07 ± 

0.06) and LNCaP (7.07 ± 0.04) xenografts (B); The intracellular acidity of PC3-wt 

(6.94 ± 0.07, P = 0.012) is higher than the other prostate implants (C); positive proton 

fluxes, corresponding to a respective extracellular to intracellular pH gradient, are 

observed for PC3-CAIX (0.33 ± 0.13, n=5, P = 0.018) and LNCaP (0.27 ± 0.10, n=5, 

P = 0.020) tumors, but not for PC3-wt tumors (-0.010 ± 0.055, n=5) (D). 
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Figure 5. Tumor uptake of pHLIP-PET shows a direct association with 

extracellular acidity. An increasing trend of 
64

Cu-NOTA-Var7(D) uptake was 

displayed as the pHe of the PC3-wt tumor model decreases (A); A plot of the pHe 

against tumor uptake (%ID/g, 24 h p.i.) of the radiotracer for data pooled from all 

three tumor models demonstrate a notable threshold where higher probe accretion 

(>3%ID/g) correlates to a very acidic extracellular space with pHe < 6.9 (B).  
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Figure 6. Histology and autoradiography. 
64

Cu-NOTA-Var7(D) autoradiography 

(24 h p.i.) and correlative histology from 10 μm adjacent sections obtained from 

representative PC3-CAIX (A), LNCaP (B), and PC3-WT (C) tumors. The 

distributions of 
64

Cu-NOTA-Var7(D)  (white), pimonidazole (hypoxia, green) Hoechst 

33342 (perfusion, blue), and expression of LDH-A (red) are shown (Bar = 2 mm). 

White arrows indicate examples of discordance between pimonidazole uptake and 

LDH-A expression. Red arrows indicate accumulation of 
64

Cu-NOTA-Var7(D) on the 

skin. Re-binned pixel-by-pixel scatterplots, derived from the PC3-CAIX, LNCaP and 

PC3-wt sections shown in A-C respectively, show the relationship between 

autoradiographic counts and the staining intensity of the markers pimonidazole, LDH-

A and Hoechst 33342 (D-F). 
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Supplementary Information 

 

Materials and Methods 

All chemicals were obtained from Sigma Aldrich (St. Louis, MO), unless stated 

otherwise. Removal of trace metals from ultrapure water (>18.2 MΩ·cm at 25 ºC, 

Milli-Q, Millipore, Billerica, MA) was performed by soaking overnight in Chelex 100 

resin (Bio-Rad Laboratories, Hercules, CA) at a ratio of 5 g per 100 ml. Radioactivity 

doses were measured with a Capintec CRC-55tR Dose Calibrator (Capintec, Ramsey, 

NJ). Samples with radioactivity were scanned on a calibrated Perkin Elmer (Waltham, 

MA) Automatic Wizard
2
 gamma counter which was set to decay correct at the start of 

the assay. 
68

Ga
/64

Cu-radiolabeling reactions were monitored by using silica-gel 

impregnated glass-fiber instant thin-layer chromatography (ITLC-SG) paper (Pall 

Corp., East Hills, NY) and analyzed on a radio-ITLC plate reader (Bioscan System 

200 Imaging Scanner) coupled to a Bioscan Autochanger 1000 (Bioscan Inc., 

Washington, DC), using Win-Scan Radio-TLC software v3.0.  

Liposome preparation. Large unilamellar vesicles (LUVs) were prepared by 

extrusion: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC, Avanti Polar 

Lipids, Inc.) dissolved in chloroform was de-solvated on a rotary evaporator and dried 

under vacuum for several hours. The phospholipid film was then rehydrated in 10 mM 

phosphate buffer pH 8.0, vortexed until the lipid layer was completely dissolved in 

buffer, and repeatedly extruded through membranes with 50 nm pore sizes to obtain 

LUVs.  

Analytical ultra-centrifugation measurements. Sedimentation velocity 

measurements were carried out on a Beckman XL-I ultra-centrifuge with a Beckman 
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XL-A absorbance meter under temperature control. The states of Cu-NOTA-pHLIP 

constructs at 8 µM in 10 mM phosphate buffer (pH 8) were investigated. Loaded 

sample cells were placed inside the centrifuge for at least 3 hours before starting the 

experiment to allow the temperature to be equilibrated to 20 
o
C and the vacuum to 

reach 50 μm Hg. Measurements were made at 42K RPM following the peptide by 

absorbance at 280 nm for each cell every minute for approximately 20 hours. This 

resulted in acquiring at least 200 data points for each set of sample. The resulting data 

were then analyzed using SEDFIT software (NIH, Bethesda, MD). The buffer 

viscosity and density values were calculated with SEDNTERP (Biomolecular 

Interaction Technologies Center at the University of New Hampshire), and were set as 

0.01005 and 0.99967 respectively. Values for the partial specific volume and F-ratio 

were 0.73 and 0.95, respectively. The distribution of sedimentation coefficients 

obtained for each construct was analyzed using Gaussian fitting functions.  

Generation of SFG-CAIX-IRES2-GFP vector. All DNA manipulations were 

performed using restriction enzymes, T4 DNA ligase, and buffers according to 

standard procedures and manufacturer's instructions (New England BioLabs, CA, 

USA). The retroviral vector SFG-FLuc-IRES2-GFP (1) was used to generate a new 

retroviral vector SFG-CAIX-IRES2-GFP. To construct the SFG-CAIX-IRES2-GFP 

vector, the gene of full length CAIX cDNA was amplified from pCMV6-ENTRY 

plasmid with human CAIX (carbonic anhydrase IX)  cDNA (NM_001216) linked with 

two tags Myc-DKK (# RC204839, OriGene Tech, MD, USA). Amplification of the 

CAIX gene was performed by PCR using one primer for the 5’ end of cDNA that 

incorporated the SgfI restriction site 5’- GCGATCGCCATGGCTCCCCTGTGCC-3’ 
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and a 2
nd

 primer 5’-GGAAGATCTTTAAACCTTATCGT-3’, bearing the BglII 

restriction site. The resulting PCR product was used for SgfI/BglI ligation into the 

SFG-FLuc-IRES2-GFP backbone to obtain the final plasmid SFG-CAIX-IRES2-GFP 

where the CAIX gene was separated from the GFP by an IRES element. SFG-CAIX-

IRES2-GFP retroviral plasmid was transfected into a GPG293 producer cell line using 

LipofectAMINE 2000 (Invitrogen, CA), as described previously (2).  The retrovirus-

containing medium was collected over four consecutive days and stored at -80°C.  

Western blotting. Cell preparations were extracted using Mammalian Protein 

Extraction Reagent (Pierce, Rockford, IL, USA). Protein concentrations were 

determined by Bio-Rad protein assay (Bio-Rad, Hercules, CA, USA). The proteins in 

equivalent amounts (10-40 µg/well) were separated by electrophoresis in a NuPAGE 

gradient 4-12% bis-Tris Gel (Invitrogen, Carlsbad, CA, USA) and were immuno-

blotted with anti-CAIX antibody (Epitomics Inc., CA,  USA) at a 1:1000 dilution, 

anti-DKK and anti-Myc antibodies (OriGene Tech, MD, USA) at 1:1000 dilution, and 

anti-ß-actin antibodies (Abcam Inc., Cambridge, MA, USA) at a 1:5000 dilution. 

Immune complexes were detected by horseradish-peroxidase labeled antibodies and 

enhanced chemiluminescence reagent (Amersham, Buckinghamshire, UK).  

MRS 

The MR experiments were performed on mice using a horizontal-bore 7T MR 

spectrometer (Bruker, Germany), employing a home-built
 1

H /
 31

P MR coil assembly. 

Prior to the MR measurements, a tail vein catheter was inserted, facilitating the 

administration of 3-APP via a home-built catheter line assembly during the MR 

experiment. For the duration of the MR experiment, the mice were kept anesthetized 
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with < 2% isoflurane in 100% oxygen and the core temperature was maintained at 34-

37°C. The breathing rate, monitored using a pressure sensor, was kept at 50-80 

breath/min by adjusting the isoflurane level. The rodent core temperature was 

maintained at 34-37°C using an MR-compatible, small rodent Heater System. After 

tuning and matching of the 
1
H and 

31
P MR coils, the water line width across the tumor 

was optimized to 35-80 Hz full-width-half-maximum using field map-based 

shimming. Two baseline 
1
H-decoupled 

31
P MR single pulse spectra, averaged over 17 

min 4 s, each were acquired using a 60° excitation pulse, 2 s relaxation delay, 10 kHz 

spectral width, 2048 points, and 512 averages. Following these, a bolus of 480 mg/kg 

3-APP was injected i.v. via the tail vein catheter directly before the acquisition of 

another 
1
H-decoupled 

31
P MR spectrum; directly following the first post-APP 

acquisition, a 2
nd

 bolus of 480 mg/kg 3-APP was injected i.v. and a 2
nd

 
1
H-decoupled 

31
P MR spectrum acquired. For each tumor, the free induction decays (FIDs) of the 

two 
31

P MR spectra, before and after 3-APP injection respectively, were added up, 

resulting in a 34 min 8 s MR spectrum for each, and an exponential line broadening of 

20 Hz applied. The resulting FIDs were Fourier transformed, phase corrected, and the 

α-NDP/α-NTP signal calibrated to -10.05 ppm (Fig. 4A). The MR spectra were fitted 

in the time domain, using the software package XsOsNMR (kindly provided by Dr. 

Dikoma Shungu and Xiaoling Mao) and the intracellular and extracellular pH (pHi, 

pHe) calculated from the chemical shifts of inorganic phosphate (Pi) and 3-

aminopropylphosphonate (3-APP) respectively, as described in detail previously (3). 

As the inorganic phosphate signal in tumors is predominantly comprised of 

intracellular Pi, due to the densely-packed cells, the pH calculated from its chemical 
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shift represents primarily intracellular pH (pHi) (4, 5). The chemical shifts δ of Pi and 

3-APP relative to α-NTP at -10.05 ppm, δ(Pi) and δ(3-APP) respectively, are related to 

pHi and pHe by their respective Henderson-Hasselbalch equations and calculated as 

follows:  

pHi = 6.85 + log10
𝛿(Pi) − 0.58

3.14 − 𝛿(Pi)
 

pHe = 6.91 + log10
𝛿(3-APP) − 21.10

24.32 − 𝛿(3-APP)
 

pH values were reported as the mean ± standard error of the mean (SEM).  
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Supplementary Tables 

 

 

  

SI Table 1. Tissue uptake (mean %ID/g ± S.D.) of 
68

Ga-DOTA-WT administered via 

lateral tail vein in male, athymic nu/nu mice bearing PC3-wt prostate cancer 

xenografts. 

Tissue 
1 h 

 
2 h 

 
4 h 

 
n=4 

 
n=4 

 
n=4 

 
Blood 13.78 ± 2.56 

 
10.55 ± 2.07 

 
6.94 ± 1.51 

 
PC3 tumor 1.87 ± 0.45 

 
2.36 ± 0.40 

 
2.86 ± 0.75 

 
Heart 3.99 ± 1.28 

 
3.26 ± 0.73 

 
2.63 ± 0.62 

 
Lungs 6.67 ± 1.60 

 
4.83 ± 0.26 

 
3.17 ± 1.16 

 
Liver 7.21 ± 2.43 

 
5.22 ± 0.68 

 
5.79 ± 1.91 

 
Spleen 2.87 ± 0.53 

 
2.28 ± 1.26 

 
4.36 ± 1.78 

 
Stomach 0.60 ± 0.20 

 
0.66 ± 0.24 

 
0.80 ± 0.31 

 
Small 

intestines 
1.29 ± 0.55 

 
1.36 ± 0.13 

 
1.50 ± 0.46 

 

Large 

intestines 
0.37 ± 0.09 

 
0.29 ± 0.08 

 
0.66 ± 0.31 

 

Kidney 6.38 ± 2.39 
 

7.60 ± 2.00 
 

8.15 ± 1.98 
 

Muscle 0.76 ± 0.33 
 

0.67 ± 0.29 
 

1.67 ± 1.55 
 

Bone 2.09 ± 0.97 
 

4.67 ± 3.37 
 

5.31 ± 4.49 
 

Brain 0.34 ± 0.17 
 

0.30 ± 0.12 
 

0.55 ± 0.11 
 

 

Contrast calculated as Tumor to Organ Ratio [rel. u.] 

Tumor/Blood 0.12 ± 0.02 
 

0.23 ± 0.02 
 

0.43 ± 0.16 
 

Tumor/Liver 0.27 ± 0.02 
 

0.45 ± 0.03 
 

0.40 ± 0.05 
 

Tumor/Kidney 0.30 ± 0.05 
 

0.32 ± 0.05 
 

0.37 ± 0.16 
 

Tumor/Muscle 2.14 ± 0.40 
 

3.92 ± 1.26 
 

2.02 ± 1.97 
 

Tumor/Bone 1.09 ± 0.67 
 

0.80 ± 0.63 
 

0.25 ± 0.13 
 



91 

 

SI Table 2. Tissue uptake (mean %ID/g ± S.D.) of 
68

Ga-DOTA-Var7 

administered via lateral tail vein in male, athymic nu/nu mice bearing PC3-wt 

prostate cancer xenografts. 

Tissue 
1 h 

 
2 h 

 
4 h 

 
n=4 

 
n=5 

 
n=4 

 
Blood 4.54 ± 0.69 

 
6.49 ± 1.62 

 
7.46 ± 2.80 

 
PC3 tumor 2.47 ± 0.19 

 
4.37 ± 1.46 

 
5.60 ± 0.30 

 
Heart 2.15 ± 0.38 

 
3.13 ± 0.36 

 
2.89 ± 1.10 

 
Lungs 4.18 ± 0.67 

 
5.07 ± 0.86 

 
5.26 ± 0.52 

 
Liver 4.01 ± 0.37 

 
4.39 ± 0.53 

 
8.30 ± 2.14 

 
Spleen 4.12 ± 0.68 

 
5.29 ± 0.30 

 
9.26 ± 1.52 

 
Stomach 1.46 ± 0.33 

 
2.35 ± 0.57 

 
3.05 ± 0.94 

 
Small 

intestines 
2.53 ± 0.29 

 
2.86 ± 0.17 

 
5.38 ± 2.02 

 

Large 

intestines 
1.21 ± 0.17 

 
1.56 ± 0.45 

 
7.73 ± 1.06 

 

Kidney 103.54 ± 13.23 
 

134.40 ± 32.79 
 

332.24 ± 118.92 
 

Muscle 1.00 ± 0.16 
 

2.03 ± 0.46 
 

5.16 ± 7.34 
 

Bone 6.62 ± 1.87 
 

14.39 ± 1.95 
 

13.33 ± 9.87 
 

Brain 0.52 ± 0.11 
 

0.79 ± 0.16 
 

0.55 ± 0.32 
 

 

Contrast calculated as Tumor to Organ Ratio [rel. u.]  

Tumor/Blood 0.55 ± 0.05 
 

0.72 ± 0.30 
 

0.69 ± 0.18 
 

Tumor/Liver 0.62 ± 0.04 
 

0.87 ± 0.47 
 

0.61 ± 0.15 
 

Tumor/Kidney 0.020 ± 0.002 
 

0.03 ± 0.01 
 

0.020 ± 0.006 
 

Tumor/Muscle 2.51 ± 0.25 
 

2.28 ± 0.75 
 

3.17 ± 0.91 
 

Tumor/Bone 0.39 ± 0.09 
 

0.39 ± 0.14 
 

0.57 ± 0.41 
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SI Table 3. Tissue uptake (mean %ID/g ± S.D.) of 
64

Cu-DOTA-Var7 

administered via lateral tail vein in male, athymic nu/nu mice bearing PC3-wt 

prostate cancer xenografts. 

Tissue 
1 h 

 
4 h 

 
24 h 

 
n=5 

 
n=5 

 
n=5 

 
Blood 1.89 ± 0.70 

 
0.68 ± 0.05 

 
0.63 ± 0.13 

 
PC3 tumor 1.19 ± 0.55 

 
1.45 ± 0.19 

 
1.64 ± 0.38 

 
Heart 0.95 ± 0.28 

 
0.71 ± 0.08 

 
0.86 ± 0.17 

 
Lungs 1.33 ± 0.35 

 
1.16 ± 0.34 

 
1.61 ± 0.28 

 
Liver 5.03 ± 1.33 

 
4.83 ± 0.90 

 
6.05 ± 1.36 

 
Spleen 1.08 ± 0.59 

 
1.05 ± 0.36 

 
1.95 ± 0.27 

 
Stomach 0.67 ± 0.34 

 
0.95 ± 0.45 

 
0.72 ± 0.26 

 
Small 

intestines 
1.72 ± 0.82 

 
1.46 ± 0.14 

 
1.29 ± 0.20 

 

Large 

intestines 
0.56 ± 0.21 

 
2.17 ± 0.70 

 
2.38 ± 0.69 

 

Kidney 27.98 ± 8.62 
 

32.24 ± 7.90 
 

19.59 ± 3.99 
 

Muscle 0.26 ± 0.05 
 

0.15 ± 0.02 
 

0.21 ± 0.02 
 

Bone 0.88 ± 0.38 
 

1.02 ± 0.50 
 

0.87 ± 0.23 
 

Brain 0.07 ± 0.03 
 

0.11 ± 0.04 
 

0.10 ± 0.05 
 

 

Contrast calculated as Tumor to Organ Ratio [rel. u.] 

Tumor/Blood 0.63 ± 0.16 
 

2.15 ± 0.27 
 

2.63 ± 0.57 
 

Tumor/Liver 0.24 ± 0.08 
 

0.31 ± 0.04 
 

0.28 ± 0.08 
 

Tumor/Kidney 0.05 ± 0.02 
 

0.05 ± 0.01 
 

0.08 ± 0.01 
 

Tumor/Muscle 4.59 ± 1.58 
 

10.24 ± 2.46 
 

7.81 ± 1.78 
 

Tumor/Bone 1.44 ± 0.59 
 

1.18 ± 0.19 
 

1.94 ± 0.41 
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SI Table 4. Tissue uptake (mean %ID/g ± S.D.) of 
64

Cu-NOTA-Var7(D) 

administered via lateral tail vein in male, athymic nu/nu mice bearing PC3-wt 

prostate cancer xenografts. 

Tissue 
1 h 

 
4 h 

 
24 h 

 
n=5 

 
n=5 

 
n=5 

 
Blood 2.81 ± 0.76 

 
2.14 ± 0.76 

 
1.67 ± 0.21 

 
PC3 tumor 1.62 ± 0.24 

 
1.07 ± 0.33 

 
1.36 ± 0.43 

 
Heart 0.95 ± 0.13 

 
0.84 ± 0.31 

 
0.79 ± 0.10 

 
Lungs 2.55 ± 0.51 

 
1.33 ± 0.75 

 
1.02 ± 0.25 

 
Liver 2.25 ± 0.67 

 
2.07 ± 0.89 

 
0.88 ± 0.26 

 
Spleen 0.75 ± 0.11 

 
0.41 ± 0.14 

 
0.38 ± 0.23 

 
Stomach 0.52 ± 0.27 

 
0.69 ± 0.44 

 
0.28 ± 0.09 

 
Small 

intestines 
22.78 ± 16.42 

 
1.16 ± 0.30 

 
0.37 ± 0.06 

 

Large 

intestines 
15.37 ± 5.76 

 
27.64 ± 3.50 

 
0.53 ± 0.11 

 

Kidney 13.27 ± 0.65 
 

5.84 ± 0.89 
 

3.86 ± 1.14 
 

Bone 0.55 ± 0.18 
 

0.20 ± 0.09 
 

0.20 ± 0.04 
 

Muscle 0.72 ± 0.55 
 

0.34 ± 0.27 
 

0.27 ± 0.17 
 

 

Contrast calculated as Tumor to Organ Ratio [rel. u.] 

Tumor/Blood 0.60 ± 0.09 
 

0.43 ± 0.17 
 

0.81 ± 0.22 
 

Tumor/Liver 0.75 ± 0.15 
 

0.46 ± 0.20 
 

1.56 ± 0.40 
 

Tumor/Kidney 0.11 ± 0.01 
 

0.13 ± 0.04 
 

0.39 ± 0.17 
 

Tumor/Muscle 3.13 ± 0.79 
 

4.25 ± 0.64 
 

7.81 ± 0.88 
 

Tumor/Bone 3.05 ± 1.41 
 

0.36 ± 2.99 
 

6.04 ± 2.34 
 

Tumor/Sm. 

Intestines 
0.14 ± 0.15 

 
0.94 ± 0.69 

 
3.71 ± 1.04 
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SI Table 5. The apparent pK (pKa) of pHLIP peptide insertion into membrane, the 

sedimentation coefficients (Sed. Coeff.) and calculated molecular masses of the 

peptides in solution at pH 8.0, and the spectral parameters of peptides in the states 

I, II and III are presented. The spectral parameters were obtained from the analysis 

of the fluorescence and CD spectra: the maximum position of the fluorescence 

spectrum m, S – the normalized area under the spectra (normalized with respect to 

the area under the spectrum of pHLIP in state I); 225 x 10
3
, deg cm

2
 dmol

-1
 – the 

molar ellipticity at 225 nm.  

 
pK

a 

Sed. Coef. / Mass / 

Mol. weight (kDa) 

State I State II State III 

m / S / 225 x10
3
 

Var7
 5.9 1.04/7.03/3.58 348 /1.0/-

3.18 

345/1.39/-

3.05 

337/2.62/-

5.03 

Var5 5.5 1.16/7.31/3.73 352/1.0/-

2.44 

347/1.64/-

2.88 

339/1.79/-

7.16 

WT --* 1.52/14.30/4.68 340/1.0/-

6.80 

340/1.21/-

6.19 

340/3.38/-

7.23 

* The pKa was not calculated for WT, since there is no shift of the position of 

maximum of fluorescence spectra between states I, II and III. 
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SI Table 6.  Table detailing the values obtained from the independent in vivo MR, 

in vivo PET, and ex vivo experiments performed and the corresponding pairing as 

used in the figures. Tumors used for autoradiography and immunohistochemistry 

(green highlight) were not used for biodistribution studies. Abbreviations: BL pHi – 

intracellular pH before 3-APP injection, pHi – intracellular pH after 3-APP 

injection, pHe – extracellular pH determined from 3-APP signal, ΔpHi = BL pHi-

pHi, ΔpH = pHi-pHe, T – tumor, T/M – tumor to muscle ratio. Data in red depict 

experiments with missing values, and were not included in the analyses. 

Tumor In Vivo MRS In Vivo PET 

Ex Vivo 

Biodistribution 

Type Size BL pHi pHi pHe ΔpHi ΔpH 1 h 4 h 24 h T T/M 

PC-3 

wt - RS 248 7.12 7.11 6.99 0.00 0.12 2.12 1.99 1.61 1.20 5.29 

 

185 

     

1.26 1.54 1.58 1.25 2.49 

 

104 7.02 6.92 6.94 0.09 -0.02 1.82 1.67 1.39 2.14 7.90 

 

254 6.78 6.85 6.83 -0.07 0.02 0.86 0.85 0.79 0.84 7.02 

 

95 7.299 

         PC-3-

CA-IX 

- RS 189 7.25 7.12 7.01 0.13 0.11 

     

 

209 7.47 7.35 7.00 0.12 0.35 3.26 2.02 1.56 1.37 5.64 

 

151 7.29 7.78 6.95 -0.49 0.83 2.77 2.09 1.72 1.62 8.22 

 

169 7.35 7.44 

 

-0.08 

 

0.80 0.89 0.80 0.90 3.71 

 

168 7.12 7.12 7.04 0.00 0.08 2.19 2.27 2.09 IHC IHC 

 

156 7.02 7.23 7.07 -0.21 0.16 1.75 1.78 1.30 1.10 6.90 

 

271 7.03 6.95 7.31 0.08 -0.36 1.73 1.65 1.30 0.97 6.01 

 

161 6.96 7.07 6.84 -0.10 0.22 0.72 0.80 0.85 0.89 5.41 

 

157 6.72 6.72 6.86 0.00 0.00 2.64 2.40 1.27 3.08 12.52 

 

160 6.89 6.85 6.87 0.04 -0.02 4.36 2.13 5.06 6.66 12.73 

LNCaP 

- RS 287 7.15 7.23 7.18 -0.08 0.05 4.43 6.19 5.14 1.79 2.70 

 

344 7.32 7.40 7.12 -0.09 0.28 2.27 2.40 2.42 1.41 9.74 

 

314 7.43 7.26 

 

0.18 

      

 

338 7.08 7.05 

 

0.03 

 

1.94 2.40 2.27 1.92 16.24 

 

128 7.30 7.60 6.95 -0.30 0.65 3.10 3.72 2.74 IHC IHC 

 

113 7.34 7.27 7.04 0.07 0.23 1.84 0.66 0.45 0.29 0.10 

 

167 7.24 7.17 7.05 0.07 0.12 1.63 1.06 0.81 0.23 0.03 
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Supplementary Figures 

 

 

 
SI Fig. 1 Serial PET images of a representative PC3-wt prostate tumor obtained after 1 

h, 2 h and 4 h post injection of 
68

Ga-DOTA-WT, demonstrating non-specific binding 

of the pHLIP variant to healthy tissue (e.g. liver, kidney). The white circle delineates 

the subcutaneous shoulder tumor. 
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SI Fig. 2 Serial PET images with 

68
Ga-DOTA-Var7 in PC3-wt prostate models 

acquired after 1-4 h p.i., demonstrating poor tumor-to-background contrast. The white 

circle delineates the subcutaneous shoulder tumor. 
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SI Fig. 3 pH-dependent interactions of Cu-NOTA-Var5 and Cu-NOTA-WT with a 

lipid membrane bilayer. The constructs were studied for the presence of the three basic 

states of pHLIP; state I is the peptide in solution at pH 8; state II is the peptide in the 

presence of POPC liposomes at pH 8; state III is the folding and insertion of the 

peptide with POPC liposomes from pH 8 to 3.6. The states were monitored by changes 

of the steady-state circular dichroism (A, D) and tryptophan fluorescence at λ
ex

 = 295 

nm (B, E) spectroscopy for Cu-NOTA-Var5 (A, B) and Cu-NOTA-WT (D, E), 

respectively. Changes in the intrinsic fluorescence of the Cu-NOTA-Var5 were 

monitored as a function of pH as a result of the peptide’s insertion wherein a pKa ~ 

5.5 was obtained (C). The oligomeric states of Cu-NOTA-Var5 (Var5), Cu-NOTA-

Var7(D) (Var7) and Cu-NOTA-WT (WT) were investigated by analytical 

ultracentrifugation, the obtained sedimentation coefficients for all constructs in buffer 

at pH 8 are shown in F. The spectral data were analyzed and resulting values are given 

in SI Table 5.  
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SI Fig. 4 CAIX transduction in PC3-wt cells. PC3-wt cells were transduced with the 

SFG-CAIX-IRES-GFP vector and sorted several times to select the populations of 

GFP-expressing cells (A). Higher levels of CAIX expression in sorted cells (PC3-

CAIX) than in PC3-wt cells was confirmed by Western blotting of PC3-wt and CAIX-

transduced PC3 cells (B).  
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SI Fig. 5 

64
Cu-NOTA-Var7(D) autoradiography (24 h p.i.) and correlative histology 

from 10 μm adjacent sections obtained from representative PC3-CAIX (A), LNCaP 

(B), and PC3-WT (C) tumors. Comparison of 
64

Cu-NOTA-Var7(D) distribution 

versus H&E staining of a sequential 10 µm section adjacent to the one used for 

autoradiographic evaluation. Areas containing skin and regions of tumor necrosis are 

clearly visible. Bar = 2 mm. 
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Abstract  

Small angle x-ray scattering studies showed membrane thinning by 18% induced by 

insertion of short-pHLIP (truncated version of pH Low Insertion Peptide) into bilayer. 

Thinning allows to reduce stress on membrane associated with negative hydrophobic 

mismatch. Also we observed 12% of membrane thinning when long-pHLIP partitions 

into outer leaflet of bilayer at high pH adopting coil conformations. The long-pHLIP 

at high pH creates an asymmetric inclusion in the bilayer, which results in increase of 

tension leading to the bilayer thinning. The tension and thinning is released when 

long-pHLIP inserts into bilayer as a transmembrane helix at low pH. 

  



104 

 

Introduction 

Membrane-associated folding is accompanied by the insertion of a polypeptide into 

the heterogeneous environment of a lipid bilayer of membrane. The stability of folded 

structures in a membrane is determined by the match between the thickness of the 

bilayer and the hydrophobic length of the transmembrane (TM) segments (1-4). 

Hydrophobic mismatch results in significant energetic penalties, which can lead to 

structural perturbations in a polypeptide, alteration in a polypeptide’s mobility and/or 

membrane thickness changes (5-7). 

 

Here we have performed a comparative investigation of long and short pHLIPs (pH 

Low Insertion Peptides) interactions with the lipid bilayer of a membrane. Long-

pHLIPs are well investigated water-soluble membrane polypeptides, which insert into 

a lipid bilayer and form a stable TM alpha-helix as a result of a drop in pH (8-11). The 

insertion of the peptides of pHLIP family is employed for the targeting of acidic 

diseased tissue including tumors and intracellular delivery of polar cell-impermeable 

cargo molecules across membrane (8, 12-15).  

 

Truncated versions of pHLIPs (short-pHLIP), if inserted into membrane, should create 

negative hydrophobic mismatch. We used several spectroscopic assays to prove that 

short-pHLIP’s interaction with a lipid bilayer at low pH leads to the membrane 

inserted state of the peptide. Small angle x-ray scattering (SAXS) experiments 

performed on long and short peptides allowed us to demonstrate the thinning of a lipid 

bilayer of membrane as a result of short-pHLIP’s insertion into the bilayer. The 
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experimental design was based on the comparison between interactions with 

membranes of well-characterized long-pHLIPs and truncated short-pHLIP.   

 

Methods and Materials 

The detailed information about all methods could be found in Supporting Information. 

All peptides were synthesized and purified at W.M. KECK Biotechnology center at 

Yale. The peptides were dissolved either directly in buffer or 3 M urea and then 

centrifuge to remove large aggregates or passed through G-10 column to remove urea, 

respectively. Concentrations of the peptides were calculated spectrophotometrically by 

measuring absorbance at 280 nm. Large unilamellar and multilamellar vesicles were 

prepared by extrusion. Lipids were dissolved in chloroform, desolvated in a rotary 

evaporator and dried under high vacuum followed by rehydration and extrusion.  

 

Steady-state fluorescence and circular dichroism (CD) signals were measured for the 

peptides in absence and presence of POPC liposomes at pH 8.0 and 4.0. The 

quenching of tryptophan fluorescence of the peptides by acrylamide or 10-

doxylnonadecane (10DN) was performed in the presence of POPC liposomes without 

and with 10% of the lipids replaced by 10DN at pH 8.0 and pH 4.0. Acrylamide was 

added to the samples containing POPC liposomes without 10DN. The peptide 

concentration in all samples was kept constant. Asymmetrically NBD-labeled POPC 

liposomes (labeled at inner leaflet) were incubated with the peptides and FRET from 

tryptophan residues to NBD at inner leaflet of the bilayer was monitored.  
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Synchrotron SAXS measurements were carried out at beamline ID02 of the ESRF in 

Grenoble, France (16). The measured two dimensional SAXS patterns were 

normalized to an absolute intensity scale using the standard procedure and azimuthally 

averaged to obtain the intensity profile as a function of q. The background buffer was 

also measured and subtracted from each averaged sample intensity profile before 

fitting the data.  

 

Results 

The main focus of our research is an investigation of interactions with lipid bilayer of 

membrane of short-pHLIP peptide, which is a truncated version of full-length pHLIPs 

(long-pHLIPs). Our experimental strategy is a comparison between membrane 

interactions of short-pHLIP and well-characterized long-pHLIPs.  

Short-pHLIP:  AEQNPIYWARYADLLFPTTLAW 

Long-pHLIP:  AEQNPIYWARYADWLFTTPLLLLDLALLVDADET 

Long-pHLIP*:  AEDQNPYWRAYADLFTPLTLLDLLALWDG 

In the dual quenching and FRET spectroscopic assays we used long-pHLIP* peptide 

(with truncated flanking sequence), which has Trp residues located at the beginning 

and end of TM part, as in a short-pHLIP. We demonstrated previously truncated long 

pHLIP adopts TM helical orientation in membrane at low pH similar to a full-length 

long-pHLIP (11). We also attempted to investigate single-Trp mutants of short and 

long pHLIPs with the goal of simplifying the interpretation of spectroscopic data. 

However we found that some single-Trp mutants of short peptide did not exhibit pH-

dependent properties and most probably do not insert into membrane (further 
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investigation is needed). Therefore, here we present results obtained with long and 

short pHLIPs containing both tryptophan residues.  

 

Previously we demonstrated that long-pHLIPs insert into the lipid bilayer of 

membranes and form TM helices in a result of a drop in pH, and we used fluorescence 

and circular dichroism (CD) spectroscopic methods to monitor transitions (8-11). Here 

we show that short-pHLIP also exhibits very similar pH-dependent changes of CD 

signal, increase of tryptophan fluorescence and short wavelengths shift of the 

spectrum (Figure 1). Two negative peaks around 208-210 and 222-225 nm observed 

on CD spectra at low pH (Figure 1b, red line) are indicative of helical structure 

appearance. However, the overall strength of the CD signal was less than half 

compared to the signal of long pHLIPs (8), and the first minimum (at 208-210 nm) has 

higher amplitude compared to the second one at 222-225 nm. The CD signal could be 

attributed to the presence of a mixture of -helical structures and random coil 

conformations or formation of a 310 helix. Usually, the overall strength of the CD 

signal for 310 helix is lower than for -helix. Additionally its ratio of 222/208 nm < 1 

(it is in the range of 0.3-0.4) compared to the same ratio for an -helix (17). 

 

 To establish location of tryptophan residues (thus pHLIPs) within a lipid bilayer of 

membrane a dual quenching assay was employed (18). Effective quenching of Trp 

fluorescence by acrylamide occurs when tryptophan residues are exposed to polar 

parts of the outer or inner leaflets of a bilayer. At the same time tryptophan residues 

located in the middle of a membrane could be effectively quenched by another 
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quencher of tryptophan fluorescence, 10DN. We performed dual-quenching assay at 

pH 8.0 and pH 4.0 for short and long pHLIPs both containing Trp residues at the 

beginning and end of the expected TM region of the peptides (Figure 2). At pH 8.0 

short-pHLIP just barely partitions into the bilayer and therefore tryptophan 

fluorescence is quenched by acrylamide very well (Figure 2a and Table 1). Long-

pHLIP* being more hydrophobic, is located much deeper into the bilayer, which 

correlates well with our previous data (11, 19). Lowering the pH reduces quenching of 

Trp fluorescence by acrylamide (from 79.1 to 48.1% for short-pHLIP and from 44.1 to 

31.1% for long-pHLIP) and increases quenching by 10DN (from 12.3 to 34.7% for 

short-pHLIP and from 32.7 to 44.6% for long-pHLIP) (see Figure 2 and Table 1). The 

overall trend of short-pHLIP’s partition into bilayer at low pH is similar to long-

pHLIP’s. However, Trp residues in short-pHLIP are more exposed to acrylamide 

compared to Trp residues of long-pHLIP. According to our published data the 

truncated peptides have a lower affinity to the bilayer compared to long pHLIPs (8), 

thus higher amount of short-peptides could be found in solution, which will lead to the 

enhanced quenching by acrylamide.  

 

The dual-quenching assay provides information about degree of partitioning of Trp 

residues into bilayer. However it does not allow distinguishing between the inner or 

outer leaflets location of acrylamide-accessible Trp residues. To further investigate 

location of tryptophan residues in membrane we also performed NBD-FRET assay 

(20, 21). First, symmetrically-labeled (with NBD dye) POPC liposomes were 

prepared. Then, membrane-impermeable dithionite was used to chemically modify and 
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quench the fluorescence of NBD in outer leaflet of the bilayer, followed by the 

removal of dithionite by gel filtration. As a result, asymmetrically-labeled liposomes 

with NBD at the inner leaflet were obtained. The absence of potential flip-flopping of 

lipids was accessed by absence of quenching of NBD fluorescence by addition of 

dithionite. FRET was monitored from the tryptophan residues of peptides to NBD. 

Energy transfer occurs when both fluorophores (Trp and NBD) are in a close 

proximity to each other (the Förster distance for Trp-NBD donor-acceptor pair is 

about 10 Å (22)). Thus, when tryptophan residues are located in the outer leaflet of the 

bilayer, there is no any significant energy transfer to NBD at the inner leaflet. This is 

the situation that was observed at pH 8.0 for both peptides, but was less pronounced 

for long-pHLIP, which partitions deeper into the membrane. At the same time, at low 

pH the FRET signal was comparable for both peptides (Figure 3b, d, red lines). We 

observed that the NBD fluorescence signal increased by 11.7 and 12.9 times for short-

pHLIP and long-pHLIP, respectively, in the presence of POPC at low pH compared to 

the baseline. It indicates that Trp residues (located at the C-terminus) in long and short 

pHLIPs both are in close proximity to the headgroups of inner leaflet of bilayer. Thus, 

we can conclude that short-pHLIP inserts into lipid bilayer of membrane and spans 

bilayer similar to long-pHLIP. 

 

When a short peptide is inserted into a membrane, as it is well known, a hydrophobic 

mismatch is created. We already mentioned about the possibility of presence of some 

elements of 310 helical structures in short-pHLIP at low pH in membrane. 310 is a 

stretched helix, where each residue increases the length of the helix by 2 Å in contrast 
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to 1.5 Å as in an -helix. Thus, the presence of 310 helical structures would help to 

reduce the mismatch. At the same time, the lipid bilayer might change thickness to 

match to the peptide length. To investigate potential changes, which might occur in the 

lipid bilayer when polypeptides interact with it, we carried out SAXS measurements 

on POPC liposomes in the absence and presence of long and short pHLIPs at high and 

low pHs. We used small (about 80 nm in diameter) and larger (about 120 nm in 

diameter) POPC liposomes. From the SAXS data, only the bilayer form factor was 

analyzed and the full vesicle scattering function was not included in the model.   

 

The main features of the bilayer form factor of POPC liposomes in the presence of 

short-pHLIP at pH 8 (blue lines, Figure 4a, b) were very similar to that of original 

liposomes (black lines on Figure 4). At low pH, the maximum of the bilayer form 

factor of POPC liposomes in the presence of short-pHLIP (red lines Figure 4a, b) was 

shifted and became broader, indicating that the insertion of the peptide into the 

membrane caused a change in the bilayer structure. In contrast to the changes 

associated with short-pHLIP interaction with bilayer, the most significant changes of 

the bilayer form factor of liposomes was observed when long-pHLIP partitions into 

bilayer as an asymmetric inclusion at pH 8 (blue lines, Figure 4c, d). At low pH, when 

long-pHLIP inserts into membrane as a TM helix, the changes of the bilayer form 

factor was minimal compared to the form factor of liposomes in absence of the 

peptide.  
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Since, multilamelar features were observed for 120-nm liposomes (Figure 4b, d), only 

the data obtained with 80-nm liposomes was used for further analysis (fitting) to 

minimize the number of variable parameters. We employed a Gaussian model to 

describe electron density profiles [Eq. (1)]. The fitting was performed for the ED 

profiles obtained in different experiments with different concentrations of peptides and 

lipids. The representative fits are shown in Figure 5a-e. Table 2 summarizes the mean 

and standard deviation of the parameters calculated from the Gaussian fitting of SAXS 

data obtained in different experiments. The fitting of the data for short peptide in the 

presence of POPC at pH 8 proved to be the most problematic (the highest discrepancy 

between the fitting curves and experimental data). This is most likely due to the 

presence of free peptides, which was expected since truncated peptides have a lower 

binding affinity to the bilayer at pH 8 (8). The bilayer thickness for liposomes alone 

was set as 100%. The thinning of bilayer of liposomes calculated for different 

experiments were averaged and presented in Figure 5f. The electron density profile for 

POPC liposomes in the absence and presence of peptides are shown in Figure 5g, h. 

We observed an increase of electron density in the outer leaflet and in the middle of 

the bilayer and about 12% of bilayer thinning for POPC liposomes in the presence of 

long peptide at pH 8.0, when it partitions into the membrane in the form of random 

coil. At low pH, when long-pHLIP forms TM helix, the thinning is released. The 

short-peptide does not partition as deep into membrane as long-pHLIP and has a lower 

affinity to the bilayer at high pHs, thus the thinning is about twice less (7 %). The 

strongest thinning of the membrane by about 18% is observed in the case of short 

peptide insertion into bilayer at low pH. The significant membrane thinning at low pH 
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can indicate on insertion of short-pHLIP into bilayer. We can conclude that membrane 

thinning occurs to reduce a hydrophobic mismatch and an overall energy of the 

system. 

Analysis of SAXS data 

The scattered intensity can be expressed as I(q)F(q)
2
 (23), where F(q) is the size 

averaged scattering form factor of vesicles, which is the Fourier transform of the 

bilayer electron density profile. By describing the electron density (ED) profile along 

the normal of the phospholipid bilayer of outer leaflet headgroups, hydrocarbon tails 

and inner leaflet headgroups as a sum of Gaussian functions (23-27): 

 

𝜌(𝑧) = ∑ 𝜌𝑘 ∙ 𝑒𝑥𝑝 [−
(𝑧−𝑧𝑘)

2

2𝜎𝑘
2 ]𝑛

𝑘=1         

 (1) 

 

 we can obtain the following expression for the scattered intensity: 

 

𝐼(𝑞) ∝ 〈𝐹(𝑞)2〉 =

𝑞−2∑ (𝑅0 + 𝑧𝑘)(𝑅0 + 𝑧𝑘′)𝜌𝑘𝑘,𝑘′ 𝜌𝑘′𝜎𝑘𝜎𝑘′ ∙ 𝑒𝑥𝑝 (
−𝑞2(𝜎𝑘

2+𝜎
𝑘′
2 )

2
) cos(𝑞(𝑧𝑘 − 𝑧𝑘′))   

           (2) 

 

where k, zk and k are the relative weight, position and width of the k-th Gauss 

function, respectively. For the bilayer k = 1 represents inner headgroups, k = 2 

represents hydrocarbon tails, and k = 3 represents outer headgroups. We assume that 
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the center of the bilayer coincides with the center of the hydrocarbon tail, which 

means z2 will be close to zero. The ED of liposomes in absence and presence of 

peptides was fitted by the sum of exponential functions. Fitting was performed using 

Origin 9.0. The best fit was defined as the one with the smallest 
2
. 

 

Discussion 

Previously we established that at the low lipid:peptide ratios we used in this study, the 

peptide is adsorbed to 50-60 lipids on average and an additional 50–60 lipids are 

perturbed. In contrast, a peptide in the transmembrane state III is estimated to affect 

only ~22 lipids, roughly one layer around the helix (10). Also we showed that long-

pHLIP interacting with the biological membranes of human red blood cells (RBCs) at 

neutral pH induces appearance of spicules on the surface of the majority of cells (no 

leakage of hemoglobin by RBCs was observed) (28). The formation of spicules when 

the peptide is bound to the membrane was interpreted as the consequence of extra area 

occupied by pHLIP on the outer leaflet of the lipid bilayer. At pH 6, i.e., when a 

higher population of the peptides inserted into the membrane, the number of spikes is 

greatly reduced. A related observation was obtained from lipid fluidity measurements 

by the fluorescence anisotropy of TMA-DPH incorporated into the bilayer of 

membrane (19). The results of SAXS measurements indicate a 12% and 7% thinning 

of the lipid bilayer when long-pHLIP or short-pHLIP occupy the outer leaflet of 

bilayer at high pH, respectively, compared to the same liposomes with no peptide. Our 

results are also in agreement with the data obtained by Huang and co-authors 

indicating that amphipathic peptides, which adopt helical conformation at the surface 
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of bilayer, induce membrane thinning (29, 30). When a peptide is adsorbed into the 

surface of a bilayer, it pushes the lipid headgroups aside. Since the total volume of the 

chains is constant, this causes the membrane to thin. Thus, polypeptide that is 

adsorbed by a bilayer even in coil conformations, like in the case of pHLIPs, induces 

some membrane tension and stress, which leads to the membrane thinning. The 

interaction of short pHLIP with a membrane causes the membrane thinning to a lesser 

extent, since the affinity of truncated pHLIPs to lipid bilayer at pH 8.0 is lower (8), 

and according to the results of dual quenching and NBD-FRET assays short-pHLIP 

does not partition into a bilayer as deep as long-pHLIP. Our previous kinetics studies 

demonstrated the formation of a helical intermediate on the surface of a membrane 

during the folding and insertion of the long-pHLIP across the membrane (11). We 

suspect that the membrane thinning may reach a maximum value, when long-pHLIP 

transforms from coil configurations to the helical membrane-surface orientations. The 

transition from the helical membrane-surface conformations to the stable TM could be 

driven by the release of membrane tension and the restoration of the original 

membrane thickness. We propose to carry out kinetic SAXS measurements to monitor 

changes in the lipid bilayer of the membrane during pHLIP insertion and folding into 

the membrane. 

 

When long-pHLIP inserts into a membrane at low pH, the thickness of bilayer is 

restored. However, at low pH in the presence of short peptide the membrane thins by 

about 18% of its original size. Low pH induces protonation of Asp/Glu residues and 

promotes propagation of the short-pHLIP into the bilayer. Our data indicates that the 
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peptide spans the bilayer. Since the peptide has a truncated TM part, its insertion into a 

membrane is expected to lead to a negative hydrophobic mismatch. As it was 

proposed early, there are number of ways a system might reduce negative energy of 

hydrophobic mismatch, such as the thinning of lipids, aggregation of peptides and 

stretching from the alpha-helical to 310-helical conformations. The ideal alpha-helix 

has a periodicity of 3.6 residues per turn, encloses 13 atoms in a ring by formation of 

an i, i + 4 C=O:::H-N hydrogen bonds, making it a 3.613-helix. The 310-helix is a more 

tightly wound less stable helix, stabilized by i, i + 3 C=O:::H-N hydrogen bonds. 

However, there is no disallowed region between the alpha-helical and the 310-helical 

conformations in the Ramachandran plot, and therefore transitions between helices can 

easily occur (44). Furthermore, the hydrophobic environment of protein interiors or 

lipid membranes could stabilize the 310-helix (45). There is a high probability to 

observe 310-helical segments as N- and C-terminal capping of an alpha-helix. The 

mixture of helical structures in a membrane and their transition from one to another 

was demonstrated to be important for biological function (31-34). Our data does not 

point to the aggregation of the peptide in membrane; however we cannot exclude that 

as a possibility. We can confirm the thinning of a bilayer as measured in SAXS 

experiments and the formation of a stretched 310 helix or most probably mixture of 

alpha- and 310-helices with 310 components at the beginning and end of alpha-helix. 
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Tables 

Table 1. The percentage of quenching of Trp fluorescence of long-pHLIP and short-

pHLIP in the presence of POPC liposomes at pH 8.0 and pH 4.0, by acrylamide and 

10DN incorporated into liposomes. The data are calculated from the spectra shown on 

Figure 2. 

 

 pH 8.0 pH 4.0 

Acrylamide 10-DN Acrylamide 10-DN 

Short-pHLIP 79.1% 12.3% 48.1% 34.7% 

Long-pHLIP* 44.1% 32.7% 31.1% 44.6% 
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Table 2. The mean and St.D. of the parameters calculated from the Gaussian fitting of 

several SAXS data obtained in different experiments. The mean and st.d. are shown in 

the Table. k, zk and k are the relative weight, position and width of the k-th Gauss 

function, respectively. For the bilayer k = 1 represents inner headgroups, k = 2 

represents hydrocarbon tails, and k = 3 represents outer headgroups. We assume that 

the center of the bilayer coincides with the center of the hydrocarbon tail, which 

means z2  0±0.5 nm. The R
2
 varied in the range of 0.980 to 0.999 for all fits. The last 

row contains values of lipid bilayer thickness, d, calculated from the difference 

between z1 and z3. 

 

 POPC Long + POPC, 

pH 8.0 

Long + POPC, 

pH 4.0 

Short + POPC, 

pH 8.0 

Short + 

POPC, pH 

4.0 

z1 2.14±0.14 1.80±0.02 2.09±0.01 1.75±0.21 1.69±0.01 

z2 0.24±0.26 -0.17±0.33 0.15±0.50 -0.44±0.51 -0.31±0.27 

z3 -2.23±0.16 -2.03±0.04 -2.14±0.06 -2.30±0.28 -1.89±0.02 

1 2.68±0.29 3.00±0.00 3.10±0.13 3.75±0.21 2.90±0.14 

2 -2.00±0.00 -2.00±0.00 -2.00±0.00 -2.23±0.39 -2.00±0.00 

3 2.63±0.46 2.80±0.01 2.92±0.45 2.84±0.27 2.70±0.14 

1 0.232±0.104 0.315±0.092 0.196±0.085 0.202±0.047 0.577±0.043 
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2 0.326±0.007 0.501±0.156 0.377±0.122 0.434±0.136 0.900±0.141 

3 0.114±0.028 0.107±0.004 0.191±0.129 0.112±0.053 0.316±0.042 

d 4.37±0.03 3.83±0.04 4.23±0.04 4.05±0.07 3.58±0.01 
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Figures 

 
   

Figure 1. Three states of short-pHLIP. The states were monitored by changes of 

tryptophan fluorescence (a) and CD (b). The state I (black lines) represents peptide in 

solution at pH 8.0. The state II (blue lines) is a peptide in a solution in the presence of 

POPC liposomes at pH 8.0. The state III (red line) is a peptide in a solution in the 

presence of POPC liposomes at pH 4.0. 
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Figure 2. Dual-quenching assay. The tryptophan fluorescence of short-pHLIP (a, b) 

and long-pHLIP (c, d) in the presence of POPC liposomes at pH 8.0 (blue lines) and 

pH 4.0 (red lines) are shown. The emission of tryptophan residues of the peptides in 

the presence of POPC liposomes at both pHs is quenching by 10DN (magenta lines) or 

acrylamide (green lines). The amount of quenching is given in Table 1. 
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Figure 3. NBD-FRET assay. The tryptophan fluorescence of short-pHLIP (a, b) and 

long-pHLIP (c, d) in three states are shown. We used asymmetrically-labeled (by 

NBD) POPC liposomes to record spectra of peptides in the states II and III. Energy 

transfer from tryptophan residues to NBD dye at the inner leaflet of bilayer was 

monitored (b, d). The numbers on panels b and d indicate the increase of NBD 

fluorescence in states III and II compared to the baseline (black lines).  
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Figure 4. SAXS intensities obtained from the POPC liposomes (80 nm (a, d) and 

120 nm (b, d) in diameter) alone (black lines), the peptides at pH 8.0 (cyan lines) and 

pH 4.0 (magenta lines), the peptide in the presence of POPC liposomes at pH 8.0 (blue 

lines) and pH 4.0 (red lines) are shown. These are the representative data showing 

only the bilayer form factor.  
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Figure 5. Fittings of SAXS data. The averaged buffer background was subtracted 

from each intensity profiles of liposomes in the absence and presence of long and 

short peptides. The fitting was performed using Gaussian electron density model of 

lipid bilayer for POPC liposomes (80 nm in diameter) in the absence and presence of 

peptides at different pHs (a-e). The averaged fit parameters are given in the Table 2. 

The representative data are shown. The mean and st.d. for the percentages of bilayer 

thinning for long- and short-pHLIPs in the presence of POPC at pHs 8.0 and 4.0 are 

shown on panel f. The electron density profiles of bilayer of POPC liposomes in the 
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absence and presence of long-pHLIP (g) and short-pHLIP (h) at pHs 8.0 and 4.0 are 

presented. 
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Abstract 

  

It is important to measure pH at the surface of cells in diseased tissue with accuracy 

and precision, since acidity is associated with the development of various pathological 

states including tumors, ischemic stroke and acidity has the lowest pH at cell surface.  

We have introduced a novel approach of extracellular pH measurements at the surface 

of cells, which is based on the use of a pH-sensitive fluorescent dye SNARF 

conjugated to a pH Low Insertion Peptide (WT-pHLIP), which targets plasma 

membranes of cells in acidic diseased tissue. Our experimental set up includes two 

different approaches, one is based on acquisition of fluorescent spectra, and other one 

is based on recording of images via two emission filters. By using appropriate 

calibration curves obtained on liposomes and tumor spheroids in the presence of 2-

deoxyglucose, both approaches give the same values of surface pH. The developed 

tool was validated on cancer cells grown in tumor spheroids, in mice and excised 

tumors ex vivo. We establish that highly metastatic cancer cells have lower pH at their 

surface compared to non-metastatic cells. Our approach was sensitive enough to detect 

pH changes in vitro and in vivo induced by glucose, which leads to the enhancement 

of cancer cells metabolism and acidification of the extracellular space. The introduced 

tool could be developed for clinical application of surface pH measurements in biopsy 

samples. It might provide important clinical information about tumor stage and 

invasiveness, and can guide in the choice of treatment approach. 

  



132 

 

Introduction 

Acidity is associated with development of various pathological states such as tumors, 

ischemic stroke, neurotrauma, epileptic seizure, inflammation, infection, wounds and 

others(1-3). Thus, it becomes increasingly important to be able to measure pH with 

accuracy, precision, and high spatiotemporal resolution in experimental systems of 

cell culture, animal models and in human beings.  

 

The pH electrodes are used for accurate pH measurements in solution. As such 

microelectrodes were the first method used to probe pH in living tissue. However they 

are highly destructive to the tissue and are weighted to the extracellular pH(4, 5). Later 

on noninvasive pH measurement methods were developed that could measure either 

the pHi, intracellular pH, pHe, extracellular pH, or both. PET has been used for 

measuring tissue pH using radiolabeled dimethadione, which distributes in 

intracellular and extracellular space according to the pH gradient across membranes 

(6). Unfortunately, dimethadione’s distribution depends on the transmembrane pH 

gradient and the fractional volumes of intra- and extracellular space, both of which are 

unknown. In vivo MRS and MRI have been used to monitor metabolic and physiologic 

processes employing endogenous and exogenous nuclear MR–active compounds (7). 

MRS methods are generally based on a difference in chemical shifts between pH-

dependent and -independent resonances. Several isotopes have been evaluated to 

determine tissue pH with MRS. 
31

P-MRS provides a robust technique for 

simultaneously measuring pHi from the chemical shift of endogenous inorganic 

phosphate and pHe from the chemical shift of exogenous indicators, such as 3-
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aminopropyl phosphonate (8). Tumor pH was also measured using hyperpolarized 
13

C 

bicarbonate (9, 10). One of the limitations of dynamic nuclear hyperpolarization is that 

the hyperpolarized nuclear spin signal decreases rapidly according to spin-lattice 

relaxation, T1. Therefore, measurements must be completed within 1–2 min after 

injection. Another approach using MRI relies on perturbing the relaxivity of water via 

pH-dependent relaxation agents such as tetraphosphonate, gadolinium-DOTA-

4AmP52 (7, 11). 

 

The described above studies showed that tumor pHe is heterogeneous and acidic. 

However, these methods are still limited in spatial resolution and cannot measure pH 

on a cellular level. Only optical methods can provide cellular resolution. Fluorescence 

imaging was employed to study pH at the surface of cultured cancer cells and monitor 

behavior of individual fluorescent cancer cells in the heterogeneous 

microenvironments of tumors (12-16). For pH-imaging mostly pH-sensitive dyes, 

fluorescence intensity of which is changed in a response of pH, are used. However, 

accurate calibration for the probe concentration is needed. pH-sensitive and pH-

insensitive fluorophores were used to functionalize the bacteriophage particles with 

many copies of these dyes and perform in vivo imaging  (15). However, the 

bacteriophages particles are taken by endocytosis, thus reporting pH primarily in 

endosomes. Fluorescence lifetime imaging is based on measurements of a 

fluorophore’s excited state lifetime, which changes in accordance with pH alterations. 

However, lifetime measurements are more complicated, especially for the 

measurements in the nano sec range, which is a typical lifetime of most of organic 
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dyes (including pH-sensitive ones). One of the approaches is to use long-lived (micro 

seconds) metal-chelate complexes (they mostly exhibit phosphorescence signal). 

However, most of them have short wavelength of excitation (<450 nm), which has low 

tissue penetration (17, 18). Despite the fact that optical imaging can provide single-

cell resolution in vivo, in order to measure pH on the surface of individual cell the pH-

sensitive probe needs to be located close to the plasma membrane. In most cases, the 

pH-sensitive agents were small molecules distributed in entire organ/tissue and blood 

(where pH is normal) and washed out from the body very quickly. In case of use of 

nanocarries (nanoparticles or bacteriophage particles), cells internalize them readily 

via endocytotic pathway, thus pH could be reported predominately in endosomes. The 

use of antibody or receptor targeting peptides/molecules could also lead to their 

internalization. The lipids or fatty acids conjugated with pH-sensitive probes (13, 19) 

could be used for pH measurements on cellular level, but they are not selective to cells 

in disease site, they will incorporate into any cellular membrane, and can readily 

undergo flipping and participate in lipid exchange, thus making problematic 

identification of their exact location, especially in in vivo experiments.  

 

We propose a novel approach of pH measurements at the surface of cells, which is 

based on use of a pH-sensitive fluorescent dye SNARF conjugated to a pH Low 

Insertion Peptide (pHLIP). Peptides of pHLIP family insert into the lipid bilayer of a 

membrane in a pH-dependent manner exposing N-terminus to the extracellular space 

and translocating C-terminus across membrane into cytoplasm (20-23). The molecular 

mechanism of pHLIP action is based on protonation of Asp/Glu residues, which 
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enhance peptide hydrophobicity and promotes membrane-associate folding and 

formation of transmembrane helix (24, 25). pHLIP labeled with optical, PET or 

SPECT probes target acidic diseased tissue and are considered to be novel acidity 

markers (26-33). A novel tool for mapping pH at the extracellular surface of cell, we 

introduced here, might open an opportunity to contribute in understanding of diseases 

progression and development of approaches of pH-based image-guided interventions. 

 

Materials and Methods 

Peptide Synthesis and Conjugation with Fluorescent Dyes  

A pHLIP peptide with a single Lys residue at the N-terminus (the N-terminus is 

acytilated): Ac-AKEQNPIYWARYADWLFTTPLLLLDLALLVDADEGT was 

synthesized and purified by reverse phase chromatography by CS Bio. SNARF-1 

carboxylic acid, acetate, succinimidyl ester (Life Technologies) was conjugated to 

pHLIP at a ratio of 2:1 in 60% DMF (dimethylformamide), 30% 0.1 M PBS pH 9.0 

and 10% pH 9.5 0.1 M sodium bicarbonate buffer for a final pH of 9.0. SNARF-1 was 

converted to its fluorescent form after conjugation by raising the conjugation 

solution’s volume by 50% with methanol and raising the solution pH to 14 with 2 M 

potassium hydroxide for 1 hour. The reaction progress was monitored by reverse 

phase (Zorbax SB-C18 columns, 9.4 × 250 mm 5 μm, Agilent Technology) high-

performance liquid chromatography (HPLC) using a gradient of 25−75% acetonitrile 

and water containing 0.05% of trifluoroacetic acid. The concentration of each labeled 

peptide in buffer was determined by SNARF-1 absorption at 548 nm, ε548=27,000 M
-1

 



136 

 

cm
−1

. The purity and characterization of the constructs was performed by analytical 

HPLC and SELDI-TOF mass spectrometry. 

 

Phosphate Buffered Solutions 

Phosphate buffered solutions were created by mixing 0.5 M dibasic and mon-basic 

solutions (J.T. Baker) to obtain desired pH in the range of 5.5 to 8.0. The final PBS 

solutions (experimental PBS) used in experiments contained 10 mM of phosphate, 150 

mM NaCl (J.T. Baker), 0.2 mM MgCl2 (Sigma) and 0.2 mM CaCl2 (Sigma) were 

added. The pH of the final solution was measured with a microelectrode pH meter 

(Thermo Scientific). Buffer solutions 

 were sterilized by passing them through a 200 µm filter.  

 

Liposome preparation  

Large unilamellar vesicles were prepared by extrusion. 2.5 mg POPC (1-palmitoyl-2-

oleoyl-snglycero-3-phosphocholine, Avanti Polar Lipids, Inc.) lipids were dissolved in 

0.5 mL chloroform and desolvated on a rotary evaporator and dried under high 

vacuum for 3 hours. The phospholipid film was then rehydrated in pH 7.4 

experimental PBS, vortexed for 5 minutes, and repeatedly extruded through a 

membrane with a 50 nm pore sizes.  

 

Cell lines 

Human cervical adenocarcinoma HeLa, human melanoma M4A4, human melanoma 

NM2C5 and mouse breast cancer 4T1 cell lines were purchased from the American 
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Tissue and Culture Collection (ATCC). All lines were propagated in DMEM 

(Dulbecco's Modified Eagle Medium) containing 4.5 g/L D-glucose and 40 mg/L 

sodium pyruvate supplemented with 10% FBS (fetal bovine serum) (Gibco), 

ciprofloxacin-HCl (10 µg/mL) (from Cellgro, Voigt Global Distribution) in a 

humidified atmosphere of 5% CO2 at 37°C.  

 

Tumor Spheroids 

150 µL of 1% agarose (Sigma) in x1 strength PBS pH 7.4 (Gibco) was pipetted into 

each well of a 48 well flat bottom tissue culture plate (Celltreat). After the agarose gel 

had sufficiently settled (~1 hour), 200 µL of DMEM supplemented with 10% FBS, 

ciprofloxacin-HCl was then added to each well. The covered tray was then left in a 

humidified atmosphere at 37˚C, 5% CO2 for 24 hours. Next a suctioned glass Pasteur 

pipette was used to remove excess media from the agarose layer. Then 200 µL of the 

same DMEM with 10,000 HeLa, NM2C5 or M4A4 cells were seeded into each well 

and kept in a humidified atmosphere of 5% CO2 at 37°C for 3-4 days. In case of 

matrigel (Corning) use, it was dissolved on ice in DMEM at a concentration of 2.5% 

(would be diluted till 2% once added to well) and then heated to 37˚C before 

combining with cells to be seeded.  

 

Tumor Mouse Models  

All animal studies were conducted according to the animal protocol AN04-12-011 

approved by the Institutional Animal Care and Use Committee at the University of 

Rhode Island, in compliance with the principles and procedures outlined by NIH for 
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the Care and Use of Animals. Subcutaneous tumors were established by injection of 

HeLa, M4A4, NM2C5 and 4T1 cells (8 × 105 cells/0.1 mL/flank) in the right flank of 

adult female athymic nude mice (for implanting of human cancer cell lines: HeLa, 

M4A4 and NM2C5) and adult female BALB/c mice (for implanting of murine cancer 

cell line, 4T1). Mice were about 20−22 g and were obtained from Harlan Laboratories.  

 

Imaging Tumor Spheroids 

The spheroids of a given cell line were incubated with 5 µM of SNARF-pHLIP into 

50 µL of pH 6.3 experimental PBS buffer either with 25 mM D-glucose (glucose) or 

50 mM 2-deoxyglucose (2DG) in an open Eppendorf in a humidified atmosphere of 

5% CO2 at 37°C for 30 minutes. The spheroids were then washed 3 times with 1 mL 

of experimental PBS of a pH that was desired for the observation. The spheroids were 

then placed into an open Eppendorf with 1 mL of same PBS followed by washing with 

PBS containing either 25 mM glucose or 50 mM 2DG for 15 minutes. The spheroids 

were transferred to a single well of a glass bottom 96 well cell tray and fluorescence 

signal was obtained onto an inverted epi-fluorescent microscope (Olympus IX71) 

using 20x objective. Both spectra and images of the SNARF-pHLIP from tumor 

spheroids were obtained using the same excitation filter of FF01-531/40-25 (Semrock) 

with transmittance at 531 ± 20 nm. The fluorescence spectra from tumor spheroids 

were recorded by an Solis software (Andor) after emission from the sample was 

passing through a long pass emission filter of BCP01-568R-25 (Semrock)with 

transmittance at 580 nm and higher and an shamrock SR-303i-B spectrograph (Andor) 

with a diffraction grating of 300 l/mm blaze 500 nm, 400 µm entrance slit and a 
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Newton
EM

 EMCCD (Andor) camera thermoelectrically cooled to -60˚C. Spectra were 

taken every several minutes until 3 in a row were identical. After spectra recording, 

the fluorescent images were acquired using Qcapture software by a Retiga-SRV CCD 

(Qimaging) with two emission filters FF01-580/14-25 (Semrock) and FF01-640/14-25 

(Semrock) with transmittance at 580 ± 10 nm and 640 ± 10 nm, respectively.  

 

Trypan Blue Assay 

Trypan blue solution (Sigma) at concentration of 0.67 M in experimental PBS of pH 

7.0 was added to a HeLa spheroid, which was incubated with SNARF-pHLIP as 

described above, in a glass bottom collagen coated cell dish (MatTek). The 

fluorescence spectra and images before and immediately after addition of Trypan Blue 

were taken as described above with 20x objective.  

 

In vivo Imaging of Tumors  

When tumor reached 5-8 mm in diameter, mouse was subjected to a starvation (no 

food) for 24 hours before a single tail vein injection of 4 nmol (100 μL of 40 μM) of 

SNARF-pHLIP in PBS was performed. At 4 hours after construct administration, the 

skin was removed from tumor site under ketamine/xylazine anesthesia and mouse 

tumor was placed onto a 24 x 60 mm NO 1 thickness glass slide and imaged on 

fluorescent microscope using objective with 20x magnification as described above. 

The SNARF-pHLIP fluorescent spectra and images were taken from various areas of 

tumor before and after an intra-peritoneal injection of 125 mg of glucose (125 mg in 

220 µL of PBS pH 7.4). After in vivo imaging animal was euthanized by cervical 
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dislocation and tumor was excised, cut in half and fluorescence spectra and images 

were acquired immediately as described above. 

 

Ex vivo Imaging of Tumors 

When tumor reached 5-8 mm in diameter mouse was euthanized and tumor was 

excised. The tumor was cut into slices and placed into 150 µL, 1 µM solution of 

SNARF-pHLIP experimental PBS of pH 6.3 with either no glucose or 25 mM glucose. 

The slices were left to incubate with SNARF-pHLIP for 1 hour and washed 3 times 

with 150 µL of experimental PBS of pH7.4 with 15 minutes between washings. Then 

slices were placed into glass bottom dish and imaged on an inverted epi-fluorescent 

microscope with 20x objective. Spectra and images were acquired in the same manner 

as described above.   

 

SNARF-pHLIP Liposome Calibration 

300 µL of 1 µM SNARF-pHLIP and 200 µM of POPC liposomes were mixed into pH 

7.4 experimental PBS and left to incubate over night at 4˚C. The pH was adjusted by 

adding 0.5 M hydrochloric acid or 2 M of potassium hydroxide and final pH of the 

solution was measured with a microelectrode pH meter (Thermo Scientific). The 

solution was placed into a glass bottom collagen coated cell dish (MatTek) and imaged 

on a fluorescent microscope with an objective of 20x magnification. Images and 

spectra were taken in a similar manner as described above. 

 

Spectra and Image Analysis 
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The fluorescent spectra and images of SNARF were analyzed by our programs. The 

spectra were analyzed with a Mathematica program (Version 10, Wolfram), and 

images were analyzed using Matlab program (Mathworks) both introduced by us. The 

description of the program is provided in the Result section. All graphs were 

constructed using Origin Lab (Version 9.1, Origin Lab Corporation). The p-level 

values were computed based on the two-tailed test. 

 

Results 

Various pathological states are associated with extracellular acidity. There is a proton 

gradient, which decays with the distance from a cell in acidic areas. Thus, the lowest 

values of pH are expected to be at the surface of cells. We have developed a novel tool 

for pH measurement at the surface of cells and validated it in vitro on liposomes, 

different cancer cell lines grown in tumor spheroids, in vivo in mice and ex vivo on 

tumor and muscle tissue samples. Among cancer cell lines we selected highly 

metastatic human cervical adenocarcinoma HeLa, and two human melanoma cell 

lines, M4A4 and NM2C5, derived from the same origin, MDA-MB-435, where M4A4 

is a highly metastatic, while NM2C5 is non-metastatic(34, 35). 

 

Our approach to measure pH at the surface of cells is based on use of WT-pHLIP, 

which inserts into a cellular membrane and forms a transmembrane helix translocating 

the C-terminal end into the cytoplasm and exposing the N-terminal end to the 

extracellular space. Additionally the pHLIP has multiple protonatable residuesat the 

membrane-inserting C-terminal end, which are deprotonated in the cytoplasm and 
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serve as additional anchoring point for the peptide in membrane. Thus, once WT-

pHLIP is inserted into a plasma membrane, the rate of its exit from membrane is very 

low even when extracellular pH is raised. This opens up an opportunity to treat cells 

with WT-pHLIP at low pH and then raise pH of media for measurments.  The 

acetylated N-terminus of the peptide contains a single Lys residue, which was 

conjugated with a SNARF-1 dye and this dye was subsequently converted to its 

fluorescent form by chemical activation. The product was purified and characterized 

and used in all experiments.  

 

Our choice of ratiometric pH-indicator, SNARF, was dictated by the fact that pH 

values could be established independent of the dye’s concentration, which was used 

previously to measure pH in vivo (16). SNARF also has other desirable characteristics 

such as high excitation and emission wavelengths, two fairly fluorescent peaks and it 

runs in a single excitation dual emission configuration. The SNARF-pHLIP was 

excited by the xenon lamp attached to the inverted epi-fluorescent microscope in the 

range of 531 ± 20 nm as selected by an excitation filter. The emission was detected by 

two different set ups: i) fluorescence was passed via emission cut off filter for the 

detection of light at wavelengths from 580 nm and higher. The spectrograph connected 

to the microscope allowed to record entire fluorescence spectra from 500 to 800 nm  

simultaneously (Figure 1A). Our program in Mathematica performs a smoothing of 

spectra and establishes the emission maximums of the SNARF-pHLIP and their ratio 

𝐹595±1−𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑

𝐹645±1−𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑
. While recording of spectra is very useful, it does require special 

instrumentation. For that reason it is more practical to acquire images. Thus, another 
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approach we developed is based on acquisition of two fluorescent images via two 

emission filters 580 ± 7 nm and 640 ± 10 nm (Figure 1B, C). We designed program in 

Matlab, called Cell Fluorescence Analysis (CFA), for image analysis. First, it aligns 

580 nm and 640 nm emission images on a pixel by pixel basis. The CFA program is 

based on the identification of the position of individual cells by looking for high 

contrast around cell edges. It uses a threshold value for the size of a cell to exclude 

any signal coming from objects smaller in size than a cell. Next, pixel-by-pixel 

background subtraction is processed, followed by thecalculation of an average 

intensity within a cell and 580/640 nm ratio values.  

 

The main idea of our approach is to measure pH at the surface of cells. To prove that 

SNARF is indeed located in the extracellular space we imaged cells in HeLa tumor 

spheroids before (Figure 2A) and immediately after (Figure 2B) treatment with 

membrane-impermeable Trypan Blue, which is capable of quenching of emission of 

fluorophores in the range of 500-600 nm (36). The fluorescence of the SNARF-pHLIP 

in this region was completely quenched indicating that SNARF is located in the 

extracellular space. The spectra of the SNARF-pHLIP before and after addition of 

Trypan Blue are shown on Figure 2C (the emission at 680 nm is associated with 

Trypan Blue). The bright field images of cells indicated that the vast majority of cells 

were viable. 

 

A critical step is the identification of calibration curves to transfer 595/645 ratio values 

into pH values. The ratio of emission at 595 nm to 645 nm was calculated from the 
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fluorescence spectra of the SNARF-pHLIP treated with POPC liposomes at various 

pHs, which were recorded under microscope. The ratios were used to establish a 

calibration curve, since pH in bulk of the solution, at the surface of liposomes, where 

most of the SNARF-pHLIP is located, and even inside a liposome are equilibrated 

quickly (25, 37). We could not exclude the possibility that the SNARF signal and thus, 

calibration curve, might be different when the SNARF-pHLIP is located at the surface 

of real cells, which would not be unexpected given that nigericin calibrated 

intracellular SNARF curves differ from that of SNARF in solution(38)Therefore, we 

used 3 cell lines, HeLa, M4A4 or NM2C5, treated with the SNARF-pHLIP to record 

the spectra at various pHs. However, to establish the calibration, pH at the surface of 

cancer cells needs to be equilibrated with bulk extracellular pH, which could be 

achieved by preventing pumping of protons into extracellular space. This situation can 

be achieved by incubating tumor spheroids before imaging with 50 mM of non-

metabolizable analog of glucose, 2-deoxyglucose (2DG). Treatment of cancer cells 

with 2DG inhibits fermentative metabolism and hence the proton production and 

proton flux, as confirmed previously using the Seahorse extracellular flux analyzer 

(39). Indeed, all 3 cell lines demonstrated the same ratio of the fluorescence at 

595/645 nm, which coincides with the ratios obtained on liposomes (Figure 3A). We 

used the obtained liposome data to introduce a calibration curve, since pH at the 

surface of liposomes and cells treated with 2DG is the same as pH of the bulk solution, 

which could be controlled. The linear fitting was performed to establish the calibration 

curve: 
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𝑝𝐻𝑠
𝑠𝑝𝑒𝑐𝑡𝑟𝑎 = (8.459 ± 0.031) − (1.223 ± 0.024) ∙ 𝑅𝑎𝑡𝑖𝑜595/645

𝑠𝑝𝑒𝑐𝑡𝑟𝑎 

 (1) 

Since fluorescent images are obtained at different experimental settings and processed 

by different mathematical algorithm, we established separate calibrations curve 

(Figure 3B): 

𝑝𝐻𝑠
𝑖𝑚𝑎𝑔𝑒𝑠 = (8.221 ± 0.035) − (1.191 ± 0.030) ∙ 𝑅𝑎𝑡𝑖𝑜580/640

𝑖𝑚𝑎𝑔𝑒𝑠 

 (2) 

Thus, equations (1) and (2) will be used for the processing of fluorescence ratios 

obtained from spectra and images, respectively. The developed tool was applied to 

establish pH at the surface of metastatic (HeLa and M4A4) and non-metastatic 

(NM2C5) cancer cells grown in tumor spheroids in presence of 50 mM glucose, which 

enhances and promotes cellular metabolism (Figure 3C). It is important to outline that 

the pH at the surface of metastatic cancer cells does not increase more than value of 

7.0 even when the pH of bulk solution is around 7.9. Non-metastatic cancer cells are 

less acidic compared to metastatic, especially in the range of normal pH values. With a 

decrease of pH we observed equilibration of cell-surface pHs and bulk pH of media. 

When the pH of media is less than 6.4, the pH at the surface of cancer cells in average 

did not decrease accordingly and did not dip below 6.35. The images were analyzed 

by the CFA program, which establishes the pH of the most bright cells. This data was 

correlated well with the results obtained by spectra analysis.  
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The advantage of our approach is in its applicability for pH measurements in vivo, 

since pHLIP can target acidic diseased tissue and tether imaging agents, including 

fluorescent, to the surface of cells (27). To validate this approach in vivo, we grew 

metastatic, HeLa and M4A4, and less metastatic, NM2C5 tumors in mice. When the 

tumors reached about 5-8 mm in diameter, the mouse was placed in condition of 

starvation for 24 hours in order to reduce flux of glucose to cancer cells from blood 

and increase pH in the tumor as much as possible, followed by single IV injection of 

the SNARF-pHLIP construct. At 4 hours post-injection, the mouse was anesthetized 

and the skin was removed from the tumor site. Fluorescent spectra and images were 

recorded from the tumor surface (the image is shown in Figure 4A). Then, the mouse 

obtained a single IP injection of solution of glucose. It was shown previously that the 

average extracellular pH decreases after glucose administration and reaches a 

minimum level 0.3 pH units below the initial value (40). We observed spectra changes 

after 40 minutes post-injection of glucose (Figure 4B), no further spectral changes 

occurred after 40 minutes, which indicated acidification of tumor as monitored by our 

approach. Finally, the animal was euthanized, tumor was excised, cut in half and 

fluorescence was recorded from the center of the tumor. Figure 4C represents the 

mean of the surface pHs in tumor surface before and after glucose injection and in the 

center of the tumor. HeLa tumors are the most acidic even after 24h starvation period. 

The mean values of surface pH in the center of HeLa, M4A4 and NM2C5 tumors are 

6.51±0.22, 6.68±0.41 and 6.94±0.29, respectively with some HeLa tumors having pH 

as low as pH 6.1. M4A4 and NM2C5 tumors had similar pH before glucose injection, 

while pH was reduced more significantly in metastatic M4A4 tumor compared to non-
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metastatic NM2C5 tumors after glucose injection. Finally, we performed analysis of 

tumor tissues excised from mice and immediately treated with the SNARF-pHLIP ex 

vivo for 1 hour followed extensive washing and imaging SNARF fluorescence at 580 

nm and 640 nm. Treatment was performed in PBS of pH7.4 in absence and presence 

of glucose. Glucose in solution promotes cellular metabolism selectively in glycolytic, 

highly metastatic cancer cells and enhances acidity near their surfaces. Thus, pHLIP 

preferentially inserts into plasma membrane of cells with low pH at the surface, such 

as cancer cells. At the same time, glucose does not affect significantly non-glycolytic 

cells in healthy tissue, which has normal surface pH(41).  In Figure 4D we 

demonstrate the mean values of the surface pHs in highly metastatic human HeLa and 

murine 4T1 mammary tumor samples before and after treatment with glucose. The 

surface pHs dropped on 0.2 and 0.6 pH units from pH 6.7±0.3 to pH 6.5±0.4 and from 

pH 6.8±0.2 to pH 6.2±0.2 in HeLa and 4T1 tumor samples, respectively. 

 

Discussion 

Hypoxic conditions induce in a cell switch from the oxidative-phosphorylative 

mechanism of energy production to the glycolytic mechanism. In addition, malignant 

cancers have an elevated glucose uptake even under normal oxygen conditions, known 

as “aerobic glycolysis” or the Warburg effect (42-44). Glycolysis results in much 

higher level of the production of H
+
 and lactic acid, the byproducts, which are readily 

pumped across a plasma membrane into the extracellular space and accumulate there, 

in poor-perfused regions such as solid tumor and ischemic stroke (45-47). Another 

contributor to extracellular acidity is associated with the expression of the carbonic 
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anhydrase enzymes on the tumor cell surface, which catalyze the extracellular trapping 

of acid by hydrating cell-generated CO2 into HCO3
−
 and H

+
 (48, 49). All these 

mechanisms contribute towards an acidic extracellular milieu favoring diseases 

development and progressions. The extracellular pH of solid tumors plays one of the 

essential roles in almost all steps of metastasis: more acidic tumors became highly 

aggressive and metastatic (50). It was shown that the pH near the cell surface is the 

lowest and acidity decays with distance from a cell (13). Thus, the pH at the surface of 

a cell should reflect the best the stage of pathology development.  The tool we 

introduced allow the measurement of pH at the surface of cells in acidic diseased 

tissue. The method was validated on metastatic and non-metastatic cancer cells grown 

in tumor spheroids and in vivo in mice. The approached is sensitive enough to detect 

differences in a pH at the surface of non-metastatic (less acidic) and metastatic tumors, 

and monitor enhancement of acidity and alteration of pH in vivo by injection of 

glucose. The mean values of pH at the surface of cancer cells in the center of highly 

metastatic (HeLa and M4A4) tumors were found to be 6.5-6.7. While pH at the 

surface of cancer cells in non-metastatic tumors (NM2C5) was pH 6.9.  The obtained 

values are about 0.2-0.4 pH units lower than pH values of the bulk extracellular space 

measured by 
31

P MRS in various mice and rat tumor models, which were varied from 

pH 6.7 to pH 7.0 (the normal tissue pH was established to be 7.3-7.4) (51).  

 

We demonstrated that pH at the surface of cancer cells, especially metastatic cells, 

could be 0.6-0.8 pH units lower even when bulk pH is normal. It might open up an 

opportunity for clinical applications of the developed tool for the measurements of 
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pHs in biopsy samples. We validated our approach on mice tumor tissue samples. We 

established that treatment of tumors with the SNARF-pHLIP in normal pH buffer of 

7.4 in presence of glucose can reduce surface pHs on 0.6 pH unit till about pH 6.2 

values. Next, we propose to validate our approach on human samples of breast and 

bladder tumors obtained after surgery and correlate surface pHs with stage of tumor 

development and appearance of specific markers predictive of cancer invasiveness. If 

successful, it will introduce a new simple and fast clinical test, which can take about 

30-40 min of biopsy sample treatment with the SNARF-pHLIP, quick washing step, 

imaging and data processing. After the procedure, the sample will undergo standard 

HE staining and histopathalogical analysis. The proposed method potentially might 

provide important clinical information about tumor stage and invasiveness, and can 

guide in the choice of treatment approach. 
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Figure 1. SNARF-pHLIP spectra and images. Emission spectra of the SNARF-

pHLIP treated with liposomes at different pHs were recorded under inverted epi-

fluorescent microscope connected to spectrograph (A). Fluorescent images of HeLa 

tumor spheroids treated with the SNARF-pHLIP at pH6.6 were acquired using 580 ± 

10 nm (B) and 640 ± 10 nm (C) emission filters. Colors are artificial. 
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Figure 2. Trypan Blue assay. The SNARF-pHLIP image of HeLa tumor spheroids 

before (A) and immediately after (B) addition of 0.67 M of Trypan Blue acquired via 

580 ± 10 nm emission filter. The spectra of the SNARF-pHLIP treated with HeLa 

tumor spheroids before and after treatment with Trypan Blue are shown in panel C.  
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Figure 3. Calibration curves and pH at the surface of cancer cells in tumor 

spheroids. Calibration curve obtained by linear fitting of 595/645 fluorescence ratios 

of the SNARF-pHLIP treated with liposomes and HeLa, M4A4 and NM2C5 tumor 

spheroids in presence of 50 mM of 2DG at different pH of media (A). Calibration 

curve obtained by linear fitting of fluorescent images ratios at 580 and 640 nm of the 

SNARF-pHLIP treated with liposomes in presence of 50 mM of 2DG at different pH 

of media (B). The values of surface pHs obtained from HeLa, M4A4 and NM2C5 

cells grown in tumor spheroids and treated with the SNARF-pHLIP in PBS of 

different pH containing 50 mM of glucose calculated from spectra and images (C). 
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Figure 4. pH at the surface of cancer cells measured in vivo and ex vivo on 

tumors. The fluorescent image of HeLa tumor in live mice (skin is removed from 

tumor site).  The SNARF-pHLIP was given as a single tail vein injection (A). Changes 

of the SNARF-pHLIP fluorescence spectra in HeLa tumor recorded on live animal 

before and after IP injection of 125 mg glucose (B). The mean values of the surface 

pHs in tumor of live animal before and after injection of glucose and in the middle of 

the excised tumor after glucose injection (in vivo measurements) (C). The mean values 

of the surface pHs in HeLa and 4T1 tumors excised from animal and treated with the 

SNARF-pHLIP before and after incubation with glucose (ex vivo measurements) (D). 
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