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Molecular and genomic techniques are fundamentally
changing our view of life in the ocean. This is partic-

ularly true for marine microbes, organisms of less than
~100–150�m that include viruses and prokaryotes as well as
single- and multi-celled eukaryotes (Figure 1; Stahl and
Tiedje 2002). Photosynthetic microbes synthesize most of
the organic matter in the sea, heterotrophic microbes
degrade it, and microbial activity regulates the ocean redox
state, nutrient cycling, and trace gases relevant to global cli-
mate, for example CO2, dimethylsulfide (DMS), and nitrous
oxide (N2O). Thus, the ecology and biogeochemistry of the

sea is governed at a basic level by the activity of microbes.
Microbial environmental genomics is a rapidly expanding

field that uses nucleotide- and nucleic acid-based analyses of
pure cultures and mixed natural microbial assemblages to
investigate the diversity and function of microorganisms
(Table 1). As is common for a new field in an exploratory
phase, discoveries are occurring at a fast pace, challenging
traditional paradigms and conceptual models. Examples
from the ocean include a previously unknown group of uni-
cellular prokaryotes that can fix nitrogen, a key biogeochem-
ical process (Zehr et al. 2001), and the widespread presence
of a novel and unexpected metabolic pathway, proteo-
rhodopsin-based phototrophy (Béjà et al. 2000, 2001).
Ocean scientists are also exploiting a vast and still growing
gene sequencing capacity, a by-product of the Human
Genome Project, and full genomes of key marine microbes
are appearing at an unprecedented rate (Rocap et al. 2003;
Palenik et al. 2003). Novel techniques are now available for
sequencing the “meta-genome” of entire naturally occurring
microbial communities (Venter et al. 2004).

Some general and intriguing trends are emerging.
Individual species appear to have both unexpected physio-
logical capabilities and limitations; in many cases, classically
identified microbial “species” may be misnomers, lumping
together genetically divergent organisms that occupy differ-
ent oceanic niches and habitats. Furthermore, we now rec-
ognize that the smallest oceanic microbes – formerly
thought to be heterotrophic bacteria reliant on pre-formed
organic matter – include Prochlorococcus and Synechococcus
(photoautotrophic picoplankton; Chisholm et al. 1988), the
two most abundant “plants” on Earth. Members of the
Archaea domain (Delong 1992; Fuhrman et al. 1992) make
up a substantial fraction of mid- and deep-water microbes
(Karner et al. 2001) and may be chemolithoautotrophic
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From genes to ecosystems: the ocean’s new
frontier 

Scott C Doney1, Mark R Abbott2, John J Cullen3, David M Karl4, and Lewis Rothstein5

The application of new molecular and genomic techniques to the ocean is driving a scientific revolution in
marine microbiology. Discoveries range from previously unknown groups of organisms and novel metabolic
pathways to a deeper appreciation of the fundamental genetic and functional diversity of oceanic microbes.
The “oceanic genotype” represents only the potential biological capacity and sets an upper constraint on pos-
sible pathways and ecosystem rates. The realized structure and functioning of marine ecosystems, the
“oceanic phenotype”, reflects the complex interactions of individuals and populations with their physical
and chemical environment and with each other. A comprehensive exploitation of the wealth of new genomic
data therefore requires a close synergy with interdisciplinary ocean research. Incorporating the information
from environmental genomics, targeted process studies, and ocean observing systems into numerical models
will improve predictions of the ocean’s response to environmental perturbations. Integrating information
from genes, populations, and ecosystems is the next great challenge for oceanography. 
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In a nutshell:
• Ocean microbes play critical roles in ecosystem dynamics, bio-

geochemical cycles, and climate systems
• Marine environmental genomics provides a wealth of new

information on the functional diversity, physiology, and eco-
logical potential of microbes

• Interpretation of the genomic data requires a rich oceano-
graphic context from ocean observing systems, process studies,
and numerical models

• The integration of marine genomics, population and commu-
nity ecology, and biogeochemistry will lead to a new generation
of more realistic oceanographic simulations, including
improved climate change projections
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(Table 2). The genomic data helping to elucidate key bio-
geochemical cycles also indicate that microorganisms are
often able to conduct only a single specific step in a path-
way. The overall transformations therefore require close

coordination of microbial assem-
blages or consortia.

Many of the microbes in the
ocean have not been cultured and
their physiology and ecological roles
remain somewhat ill defined. Yet
the complexity of the ocean genome
suggests that its ecosystems are
even more diverse than previously
thought, with a deeper genetic
reservoir, or potential. And the
expression of the ocean genome
involves an intricate dynamic of
biological responses to environmen-
tal forcing and interspecies interac-
tions that is yet to be resolved. This
raises troublesome issues about our
ability to predict the future behavior
of such a system under, for example,
climate warming. 

Rather than compromising existing
approaches to describing ocean ecol-
ogy, the new genomic data will serve
as a basis for developing and testing
specific hypotheses. Questions of par-
ticular relevance involve the inter-
play between microbial genomics,
environmental variability, commu-
nity structure, and biogeochemical
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Figure 1. Oceanic photosynthetic microorganisms: (a) prokaryotic
Synechococcus cell, a key oceanic picoplankton species, especially
in nutrient poor subtropical gyres, and one of the most abundant
organisms on the planet; (b) colony of cyanobacteria Tricho-
desmium (scale of image ~4mm), a nitrogen fixing species
common in warm, well-stratified subtropical environments; (c)
eukaryotic, open-ocean centric diatom Thalassiosira, an organism
that forms silica shells and a contributor to the vertical export of
organic carbon from the surface ocean.
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Table 1. Selected nucleotide- and nucleic acid-based methods, arranged by
date of first use, present in the marine microbial ecologist’s toolbox (see
Cooksey 1998; Paul 2001; DeLong 2004) 

Period Indices/parameters Ecological information

1960s • ATP and DNA concentrations • Total microbial biomass

1970s • Nucleic acid staining – • Total cell enumeration
epifluorescence microscopy

• Incorporation of radioisotopic • Total nucleic acid production,
labeled precursors into RNA growth rates 
and DNA

1980s • rRNA sequence analysis • Phylogeny and biodiversity
• FISH with rRNA-targeted probes • Enumeration of specific microbial

groups in mixed assemblages

1990s • PCR for cultivation-independent • Detection of specific microbial 
amplification of target genes groups or metabolic function in

mixed assemblages
• q-PCR of target genes or mRNA • Quantitative assessment of specific

copy number organisms, gene content, or expression
in mixed assemblages

• BAC library construction • Cultivation-independent detection of 
gene content and arrangement in mixed 
assemblages

• Whole genome sequencing • Determination of complete genotype

2000s • DNA microarrays (chips) of • Rapid and comprehensive characteriza-
multiple (up to 104) probes on tion of community structure, gene
solid surface for simultaneous expression, and ecosystem function
hybridization of target genes

Abbreviations: ATP = adenosine-5’-triphosphate, DNA = deoxyribonucleic acid, RNA = ribonucleic acid, FISH = fluo-
rescence in situ hybridization, mRNA = messenger RNA, PCR = polymerase chain reaction, rRNA = ribosomal RNA
PCR, q-PCR = quantitative PCR, BAC = bacterial artificial chromosome.
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cycling. Addressing these issues will
be both a critical challenge and an
excellent opportunity for oceanogra-
phy over the next decade. However,
fully exploiting the wealth of new
genomic data will require a close syn-
ergy with rapidly developing interdis-
ciplinary ocean research approaches
that provide an overall framework.
Here we emphasize the melding of
genomic, process study, and observing
system data with a new generation of
numerical ecological models.

� The rise of marine
environmental genomics

High throughput sequencing of
environmental DNA and RNA
allows us to test directly many con-
cepts about microbial ecology and the underlying mecha-
nisms of biogeochemical processes. The use of molecular
tools to study ribosomal RNA (rRNA) sequences of
uncultured microbes in the late 1980s and early 1990s
unveiled a huge diversity of prokaryotes in ocean ecosys-
tems (DeLong et al. 1989; Giovannoni et al. 1990; Pace
1996, 1997). Using bacterial artificial chromosomes
(BACs), DeLong and colleagues went on to create and
sequence a library of relatively large DNA fragments that
included the genes coding for the rRNA from �-pro-
teobacteria. In an example of the serendipity involved in
environmental genomics, linked to one of the rRNA
genes was a proteorhodopsin gene, later shown to be a
light-driven proton pump, an energy system previously
unknown within the bacterial domain (Béjà et al. 2000,
2001). If these organisms do indeed use proteorhodopsin
for photoorganoheterotrophy (ie a metabolic process that
gains energy from the sun and carbon from organic mat-
ter), their presence fundamentally alters our perception
of how carbon is processed within the surface waters of
the ocean (Karl 2002a; Table 2). Effectively, the subsidy
of light energy supplements the more traditional het-
erotrophic lifestyle, resulting in a more efficient and pos-
sibly more competitive microbe (especially under condi-
tions of organic C limitation).

The proteorhodopsin discovery is a sobering reminder
of how little we actually know about the fundamental
oceanic genotype. This situation is improving. Several
marine phytoplankton genomes have been sequenced by
the US Department of Energy Joint Genome Institute
http://www.jgi.doe.gov/) and the French GENOSCOPE
project (http://www.genoscope.cns.fr/) and are available
to the scientific community, including Synechococcus and
Trichodesmium, several strains of Prochlorococcus, and a
diatom, Thalassiosira pseudonana. Plans are underway to
produce genomes for other important marine organisms,
including the coccolithophore Emiliania huxleyii and the

unicellular nitrogen fixer Crocosphaera. A recent initia-
tive funded by the Gordon and Betty Moore Foundation
may soon sequence another 100–150 selected marine
microbial organisms (see Marine Microbiology Initiative,
http://www.moore.org/).

Even this limited number of available genomic
sequences is offering up surprises. Two distinct ecotypes of
Prochlorococcus, the most abundant photosynthetic
organism in the ocean, differ dramatically in their genetic
material, having in common only about one half of the
total number of genes (Figure 2; Rocap et al. 2003).
Corresponding metabolic differences (eg in light–growth
relationships and nitrogen-assimilation capacity) are
striking. They support the niche differentiation of the
two strains, one that grows in sunlit surface waters and
the other deeper in the water-column, in a subsurface
chlorophyll maximum often found near 100m depth in
the subtropics. Equally remarkable, neither ecotype
appears able to grow directly on nitrate, the primary fuel
of new production (and carbon export) in the sea,
according to the current paradigm (Dugdale and Goering
1967). These results contribute to a more complex view
of oceanic new production that also includes substantial
inputs from in situ nitrogen fixation (Karl et al. 2001).

� Future genomic research directions

On a somewhat different tack, researchers from the
Institute for Biological Energy Alternatives (http://
www.bioenergyalts.org/) have embarked on the ambitious
project of sequencing the entire marine microbial
genome. Using a “shotgun” sequencing technique, this
group conducted a pilot study of genomic diversity in the
upper ocean microbial community from the Sargasso Sea
(Venter et al. 2004). The results are stunning; sampling
about 2000 liters of seawater, they report the discovery of
more than one million new genes, about 70 000 of which
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Table 2. Microbial metabolic processes  

Term Energy source e- Donor C source

Photolithoautotroph Light H2O, H2S, H2 CO2

Photolithoheterotroph Light H2O, H2S, H2 Org-C
Photoorganoautotroph Light Org-C CO2

Photoorganoheterotroph Light Org-C Org-C
Chemolithoautotroph Chemical H2S, S2O3

-2, NH4
+/NO2

-, H2, CO2

red-Fe/Mn
Chemolithoheterotroph Chemical H2S, S2O2

-2, NH4
+/NO2

-, H2, Org-C
red-Fe/Mn

Chemoorganoautotroph Chemical Org-C CO2

Chemoorganoheterotroph Chemical Org-C Org-C
Mixotroph1 Light/Chemical Red inorganic/ Org-C CO2/Org-C

1Multiple possible use patterns of mixed energy sources, e- donors and C-sources

Oceanic prokaryotic microorganisms use a diverse spectrum of metabolic processes to derive the energy and
organic C required to support life, ranging from “pure” oxygenic photosynthesis (photolithoautotrophy) to classic
heterotrophy (chemoorganoheterotrophy); recent work suggests that some of the intermediate pathways, such as
photoorganoautotrophy and photoorganoheterotrophy, as well as mixotrophy, may play a much larger role in ocean
ecology than previously thought
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are characterized as “novel” and include a wide range of
potential biogeochemical pathways. They also report the
discovery of more than a thousand new gene-based
“species”. Falkowski and de Vargas (2004) highlight the
importance of this work for marine microbial ecology and
evolutionary biology, emphasizing the merits of taking
the Venter et al. (2004) strategy into a global oceano-
graphic context. 

A critical facet of environmental genomics is that
sequencing DNA, either in a culture or field sample, is
just the beginning. The next step involves identifying
actual genes and determining the function of the coded
protein. This is often done by comparison with other
known genes, although in many cases there are no direct
analogues in the databases, which are populated predom-
inantly by terrestrial and human pathogenic microorgan-

isms. Sorting through the tens to hundreds
of millions of nucleotide arrangements
from organism and environmental shotgun
sequencing is a major computational task,
as is the science – or art – of deciphering
the resulting information. The next step is
to assess the expression and regulation
mechanisms of this genomic potential by
sampling messenger RNA (mRNA) in
cells across a range of environmental con-
ditions. Finally, proteomic analyses (the
study of expressed gene products) are
needed to quantify the activity of the
resulting proteins and enzymes in situ; only
then can we directly connect the genomics
to the biological rates that govern biogeo-
chemistry. Progress is greatly hindered by
our inability to grow many of the target
microbe species in culture, and by other
less tangible issues, including the lack of a
larger number of scientists with the
required cross-disciplinary training.

The rapidly growing database of marine
microbial DNA sequences allows the
application of cutting-edge technology
from molecular biology, such as DNA
micro- and macroarrays, to oceanography
(Gibson 2002). The arrays consist of up to
10 000 unique DNA probes robotically
spotted onto a small glass slide. The probes
could correspond, for example, to all of the
genes from a single organism or to different
variants of a single enzyme across a wide
range of microbes. Genetic material from
an environmental sample will hybridize
with specific probes on the array only if
there is a close sequence match; this pro-
vides a tool for simultaneously determining
the presence or absence of an entire suite
of genes (using DNA) or the expression of
those genes (using mRNA). Currently,

several groups are developing whole or partial genome
arrays for marine organisms and geochemically important
functional genes such as those involved in nitrogen fixa-
tion, carbon uptake, metal uptake, or other metabolic
processes. 

� Ocean physics, nutrients, and ecosystem
dynamics

The past two decades have also seen a virtual explosion
in open-ocean biological and biogeochemical research
(Fasham et al. 2003). New insights provide a consistent
mechanistic picture of the large-scale controls for surface
ocean biomass, productivity, and community structure, as
well as an essential framework for interpreting and under-
standing emerging genomic data. The basic picture is
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Figure 2. Circular representation of the Prochlorococcus genomes (Rocap et al.
2003) for two ecotypes, (a) MED4 and (b) MIT 9313. While grouped into the
same species, the two organisms contain strikingly different genetic material, which
may reflect adaptation to different environmental habitats. For both genomes, the
outermost circles (1 and 2) display the predicted protein coding regions on the plus
and minus strands, respectively (color coding to the right shows putative
metabolic/regulatory role). The next two circles indicate genes not present in the
other Prochlorococcus genome on the plus (circle 3) and minus (circle 4)
strands. (Adapted from Supp. Figures 1 and 2 from Rocap et al. 2003.)
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similar to that outlined more than half a century ago (eg
Sverdrup et al. 1942), but with substantial refinement. 

The regional and seasonal distribution of phytoplank-
ton (Figure 3) is determined primarily by the supply of
subsurface nutrients (eg nitrate, phosphate, silicate) and
the depth of turbulent vertical mixing, which alters the
average light field seen by cells. Supported by upwelling
and deep seasonal convection, phytoplankton blooms
occur in the temperate and subpolar latitudes and in east-
ern boundary coastal upwelling zones. These ecosystems
are dominated by larger eukaryotic autotrophic cells such
as diatoms (Margalef 1978), mesozooplankton grazers (eg
copepods), and high organic matter export (30–50% of
gross primary production) (Legendre and LeFevre 1989;
Kiørboe 1993). Export is important because it governs
the large-scale biogeochemistry of the ocean and the net
sequestration of CO2 in the ocean interior away from the
atmosphere for decades to centuries.

The well-stratified subtropical oceans are characterized
by downwelling, low biomass, and generally low nutrient
concentrations, at most a few nanomoles (10-9 moles) of
inorganic nitrogen and/or phosphorus per liter in surface
waters. Despite this condition, primary productivity is
relatively high, driven by a tight coupling between pro-
duction by small prokaryotic autotrophs such as
Prochlorococcus and Synechococcus, grazing by microzoo-
plankton, and microbial consumption and respiration of
detrital organic matter. These ecosystems tend to export
only a small fraction (about 5%) of primary productivity
as sinking particles or via the downward mixing of dis-
solved organic matter. Specialized organisms such as the

cyanobacteria Trichodesmium, Richelia intracellularis (a
symbiont of Hemialus and Rhizosolenia diatoms), and
newly discovered unicellular prokaryotes contribute to
high nitrogen fixation rates, elevated productivity, and
export in some subtropical areas (Karl 2002b). Nitrogen
fixation is an iron-intensive enzymatic process and thus
may be tied to atmospheric inputs through dust deposi-
tion from desert source regions. 

The Southern Ocean, equatorial Pacific, and eastern
sub-polar North Pacific are anomalies; they have inter-
mediate biomass and productivity levels and high levels
of unused surface inorganic nitrogen and phosphorus. A
critical discovery is that these areas are iron limited
(Martin 1990; Boyd et al. 2000). Ocean productivity and
community structure therefore reflect a variety of factors
that vary from region to region – physical supply of sub-
surface macronutrients and iron, atmospheric iron inputs,
and the regeneration and partitioning of iron between
pools, which may be much more complicated than for
nitrogen or phosphorus (Fung et al. 2000). The distinct
major ocean biomes should be targeted for comparative
microbial genomic analysis.

� Towards better marine ecosystem models

Marine ecological modeling has a long history, dating
back to the 1940s (Steele 1974), but has undergone an
exciting renaissance over the past decade (Doney 1999).
Numerical models are essentially tools for scaling the
interactions of specific processes to the level of a whole
ecosystem, or for predicting how an ecosystem will evolve
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Figure 3. Global map of annual average surface ocean chlorophyll, a measure of photosynthetic (autotrophic) biomass, derived from the
SeaWiFS satellite ocean color sensor. The satellite data clearly illustrate the large-scale spatial patterns of ocean biomes driven by ocean mixing,
light limitation, subsurface nutrient and iron fluxes, and atmospheric iron inputs. The ocean color scale is approximately logarithmic, with more
than two orders of magnitude of change from the low biomass/low nutrient subtropical gyres (blue) to coastal upwelling regimes (yellow/orange).
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in the presence of natural and human perturbations. The
basic structure of many of the models consists of a simple
conceptual food web with separate compartments for
nutrients, phytoplankton, zooplankton, and detritus (col-
lectively termed NPZD) (Figure 4; Fasham et al. 1990).
Models in this class track the water-column concentra-
tions and flows of nitrogen, phosphorus, or other ele-
ments through the trophic level compartments, but typi-
cally do not resolve individual organisms. Model
functions for grazing and the limitation of primary pro-
ductivity by nutrients and light are based on results from
laboratory experiments and field bottle incubations. 

Many efforts are underway to enhance the realism and
sophistication of the classical NPZD framework.
Modifications include the specific treatment of het-
erotrophic bacteria, the addition of multiple limiting
nutrients (eg N, P, Si) and trace metals (eg iron), and the
incorporation of multiple subgroups of different size phy-
toplankton, zooplankton, and detritus. Particle size can
vary by several orders of magnitude in the ocean and is
critical because it governs vertical sinking velocities. Two
different approaches are being pursued to include so-
called size-structure in models: desegregation of the boxes
into distinct size classes (Moloney and Field 1991), and
continuous size distributions and allometric relationships
that mimic the shift to larger cells and detritus particles
under higher biomass and/or productivity levels
(Armstrong 2003). A related trend is the simulation of
distinct “geochemical functional groups” that alter ocean
biogeochemical distributions in unique ways (Moore et al.
2002). Specific examples are diatoms that produce bio-
genic silica, calcifiers such as coccolithophores (Iglesias-

Rodriguez et al. 2002), and nitrogen-fixing bacteria.
At the other extreme, individual-based models are

growing more computationally feasible, allowing
researchers to quantify the interactions of thousands to
millions of discrete organisms. Numerical methods
include both microfluidic (Siegel 1998) and cellular
automata approaches. Although current simulations can
only be conducted over relatively small time and space
scales (days and centimeters), the results can be used to
provide a mechanistic basis for developing model func-
tions of biological processes (eg grazing) for use in larger
scale models (akin to turbulence modeling in physical
oceanography).

All of these modern numerical models have a number of
limitations. Many of the key processes in the simulations
are difficult (if not impossible) to directly measure.
Examples include phytoplankton mortality rates (which
can come from viral infection and, perhaps, programmed
cell death) and the ultimate controls on the abundance of
higher trophic levels. Model parameters for these
processes are often adjusted so that overall model perfor-
mance is improved, but in the end this is a rather unsatis-
fying exercise. Second, the models aggregate a tremendous
amount of ecological information and complexity into a
small number of bulk compartments. Although the recent
move to a dozen or so compartments is a far cry from rep-
resentation of the full diversity of the ocean, even that
level of complexity often exceeds our ability to constrain
model parameters or validate model behavior, given our
current observation base (Denman 2003). There are, to
put it simply, too many “free parameters”, and a reasonable
result can be obtained for the wrong reasons.
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Figure 4. (a) Schematic of a simple marine ecosystem model with separate compartments for nutrients, phytoplankton, zooplankton,
detritus (collectively NPZD), and chlorophyll. (b) Depth-versus-time comparison of observed and simulated chlorophyll con-
centrations from a 1-D version of the model applied to a multi-year record from the Bermuda Atlantic Time-series Study (BATS) site
in the Sargasso Sea. Deep convection in the winter brings nutrients to the surface, generating a winter/spring phytoplankton bloom.
During the summer, biological export drives surface nutrients and chlorophyll to very low levels. A subsurface, deep chlorophyll
maximum forms where light from above and nutrients from below are both available.
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Ideally, the predictive skill of models is assessed by com-
parisons against oceanographic data, such as time series,
process studies, and regional distributions of the state
variables. More advanced techniques attempt to improve
upon the predictive skill of the “forward model” equa-
tions by formally incorporating select observations within
the model equations. Data assimilation, a numerical
approach adapted from weather prediction, creates a
hybrid model/observational dataset that is consistent
(within some error bounds) with both the observations
and a set of ecological/physical model equations.
However, ocean biological data are often sparse, noisy,
and incomplete, making model evaluation difficult.

Despite many deficiencies, current state of the art mod-
els do a surprisingly credible job of capturing the seasonal
cycle and large-scale spatial patterns for bulk ecological
measures (eg surface chlorophyll, primary productivity,
nutrients and inorganic carbon, export flux, and so on).
Comparisons of models and measurements demonstrate
the importance, for example, of including phytoplankton
iron limitation and an active iron cycle (Moore et al.
2002). In turn, model predictions for the time/space vari-
ations of different plankton groups are broadly consistent
with the available, but admittedly rather limited, taxo-
nomic field data. Historical data document significant
shifts in ecosystem rates and function on interannual to
decadal scales (Karl et al. 2001), offering a window on the
ecological responses to climate perturbations; some simu-
lations match qualitatively observed biological variability
driven by climate modes such as the El Niño–Southern
Oscillation. Although these tests of model skill are neces-
sary, they are not sufficient, especially as the planet
moves into new climate regimes.

� Bridging genomics and numerical ecosystem
simulations

How do we reconcile ecosystem modeling with the wealth
of new environmental genomic data? The current genera-
tion of NPZD and expanded functional group methods can
probably only take us so far. For the most part, current
model structures do not allow for direct, straightforward
comparisons with genomic data, except at the most basic
level of aggregated biogeochemical rates (eg primary pro-
duction, nitrogen fixation, or calcification) and the pres-
ence or absence of major taxonomic groups. Efforts are
underway to relate simulated phytoplankton nutrient limi-
tation patterns to the expression of specific genes associated
with nutrient stress (eg active transport proteins, or
enzymes for alternative metabolic pathways). One can
envision similar approaches for other particular metabolic
processes. 

But few, if any, of the current models represent cellular
biochemistry at the required level of detail, and they do not
incorporate the variety of recently discovered metabolic
pathways. In fact, many aspects of environmental genomic
information have no direct analogues within existing mod-

els, for example the presence of unexpressed genes. Many of
the most exciting genomic findings are linked to the enor-
mous genetic diversity in the sea. This diversity captured
within even the most sophisticated models will probably
remain, for the foreseeable future, many orders of magni-
tude lower than that of real ocean ecosystems.

New conceptual models and paradigms will be required.
One promising avenue is to back away from the goal of pre-
dicting the temporal evolution of species or compartments
and simply to simulate the key ecological functions that are
present within the system and their responses to internal
and external perturbations. Such an approach would be
based on determining the environmental factors that regu-
late specific functions, analogous to genetic regulation; that
is, models would start with a simulated ocean genotype, one
much richer than presently resolved, and then predict,
under a range of conditions, the expression of a simulated
phenotype, which could then be compared with genomic
data. Climate variability and climate change provide an
interesting challenge in this regard, because of their scale
and persistence: how resilient will ecosystems be, and how
will they adapt, to such large-scale environmental changes?

A genotype–phenotype model is particularly attractive
when studying certain groups such as heterotropic bacte-
ria, where bulk measures such as standing stock are less
useful because only a subset of the organisms may be
active at any particular time, or for minor niche species,
whose ecological importance is based on their biogeo-
chemical function (eg nitrogen fixation or trace gas pro-
duction). Rules-based metabolic models being developed
following concepts of non-equilibrium thermodynamics
(Vallino 2003) offer a starting point that can be aug-
mented by emerging theoretical and empirical arguments
for how evolutionary and ecological pressures shape
ecosystems. But designing credible models for pelagic
ecosystems and then coupling those into ocean circula-
tion simulations present some major challenges. 

From modeling and large-scale ecosystem perspectives,
how much it matters which specific organisms, or assem-
blages of organisms, are carrying out the biogeochemical
transformations remains unresolved. Put another way, the
ocean phenotype almost certainly depends to some extent
on how the genotype is dispersed among different species
and individuals within species. The genotype–phenotype
approach to ecological modeling will therefore have to
include, either implicitly or explicitly, treatment for the
ecological effects of competition and interactions between
individual organisms. This provides a potentially important
bridge between genomic-based modeling and high-resolu-
tion, individual-based models.

� Genomics, oceanography, and climate change 

Oceanic biology is an important component of the global
climate system, but many of the feedbacks between marine
biogeochemistry and climate are only poorly understood.
The inorganic carbon inventory of the sea is about fifty
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times larger than the amount of atmospheric CO2, a critical
greenhouse gas. Ice-core records reflect large variations in
atmospheric CO2 concentrations (about 25%) over
glacial–interglacial cycles, and the ocean is the most proba-
ble culprit for such oscillations (Sigman and Boyle 2000).
At present, the ocean absorbs about a third of the CO2

released by fossil fuel combustion, primarily through physi-
cal circulation, thereby slowing potential greenhouse
warming (Sarmiento and Gruber 2002). There are also sig-
nificant (biological) marine sources of N2O, also a green-
house gas and a key compound in stratospheric ozone
chemistry, methane (CH4), and DMS, which can alter
cloud and radiation feedbacks (Charlson et al. 1987).
Climate model projections suggest that the surface ocean
will warm and therefore become more stratified over the
next several centuries, due to human-induced climate
change. Preliminary ecosystem model simulations predict
large changes in regional productivity and marine commu-

nity structure (Boyd and Doney 2002). However, the
impacts on ocean biogeochemistry and carbon uptake, not
to mention fisheries and ecosystem health, are not yet clear.

At some level, the oceanic genome encapsulates a com-
plete blueprint of potential biological function, and
should help to provide answers for such questions as how
marine biogeochemistry will respond to global warming.
The actual ecological dynamics, however, are determined
by the interactions of these genomic capabilities with
substrate availability, environmental cues and con-
straints, other organisms, and physical processes such as
sinking and advection. That is, we should be able to work
our way up from genes to organisms to ecosystems, using
first principles. Because of the daunting complexity of the
scaling problem, however, such a reductionist approach is
not likely to be the most productive path. Rather, a more
holistic, multi-pronged attack on the problem is called
for, one where the genomic research complements and
leverages efforts on a range of scales.

In particular, we need to continue and expand mea-
surements of biomass, chemical tracers, and in situ bio-
logical rates, as these are the state variables which
describe ecological dynamics. The ocean biogeochemical
community has recently completed work on just such a
research strategy, Ocean Carbon and Climate Change
(Doney et al. 2004), which is a natural and welcome
home for future ocean genomic work. Traditional ship-
board sampling will be augmented by satellite remote
sensing, which now routinely monitors the biological
and physical state of the surface ocean (McClain et al.
1998), and in situ sensors, which can measure a wide
range of environmental properties in near real time from
fixed moorings, submarine cable networks, and
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Figure 5. Elements of an interdisciplinary ocean observing system
include: (a) commercial and research ship-based surveys and time-
series; (b) moorings and coastal and regional cabled networks (eg
ORION http://www.orion.org); and (c) autonomous drifters,
floats and gliders, and aircraft and satellite remote sensing (see
Figure 4; Doney et al. 2004).
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autonomous platforms (Figure 5; Dickey 2003). Figure 6
highlights a bio-optical example of this interdisciplinary
synergy (Bissett et al. 2001). Combined with advanced
numerical models, these observations provide fundamen-
tal, quantitative constraints on the ocean budgets and
cycling of biogeochemical tracers and the flow of energy
that is essential for interpreting and understanding
genomic data.

Venter et al. (2004) highlight the value of doing more
sequencing work, especially since costs will come down.
This is certainly an opportunity that the ocean science
community must pursue, and a major field effort is
now underway as part of a new research initiative fun-
ded by the Gordon and Betty Moore Foundation.
However, it is very important to emphasize that the
value of sequencing is greatly enhanced when accompa-
nied by thorough oceanographic and biochemical sam-
pling, and modeling to test developing and evolving
hypotheses. Only then can the community properly
place ocean genomic complexity within the context of
larger scale processes.
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