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ABSTRACT 

Grading papers is a “tedious, repetitive, and time-consuming” undertaking, one 

that invites the sort of sympathies one might receive upon the “death of a pet” (Baker, 

2014, p. 36). Perhaps, though, the only thing more distasteful for an English professor 

than having to grade hundreds of essays each semester is having to hand the job over to 

the likes of a mindless software program. Automated Essay Evaluation (AEE), the 

process of scoring essays by computer, was developed in the 1960s but has mostly 

aroused suspicion and derogation from the composition community.  

The parable of the blindfolded villagers describing the same elephant from 

different parts of its body serves as an apt metaphor for how rhetorical choices screen in 

or screen out different facts about AEE. Each research camp reports on a different facet 

of AEE, but it is possible for these multiple realities to describe the same beast. 

This dissertation seeks to: (1) describe the rhetorical contours of arguments for 

and against AEE, both currently and historically, exposing their limitations and 

motivations; (2) explore through a small study how differential frames of data analysis 

affect interpretations of AEE’s utility, namely how error analysis adds an emphasis on 

individual students rather than student-aggregates; and (3) sketch ways that attention to 

errors is instructive in understanding the pitfalls of both human and machine scoring of 

essays. Because human scoring—despite its drawbacks—is still the superior method, I 

end by suggesting that AEE would be best used when the economic choice is between 

machine scoring and feedback, or no scoring and feedback at all. The context of online 

learning in globally disadvantaged populations is one such example.  
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1. INTRODUCTION 

Writing assessment used to measure writing quality, writing ability, placement, 

course outcomes, and even to grade and comment on student papers is that particular 

focus of researchers and scholars in the writing assessment community. Drawn from a 

variety of disciplines, including writing studies, English education, and psychometrics, 

the members of this community have much of importance to say and do in the current 

school and college environment, characterized by frequent high-stakes testing and 

attention to placement course outcomes. The writing assessment community is small but 

powerful as a result of the quality of its research and its influence over nationwide testing 

policies and programs. 

Perhaps the most potent disagreement dividing the writing assessment community 

at present is over software programs that score student essays, a practice known as 

automated essay evaluation (AEE). At one pole, AEE supporters claim that computers 

can rate papers accurately, helpfully, and efficiently. At the opposite pole, proponents of 

human raters argue that the machines are relatively useless and that human raters alone 

should be used.  

This study begins and ends with a position in between. It critiques various ways 

of framing the AEE debate, because AEE has become the elephant seen from many 

perspectives. Both overly strong arguments for AEE and their hasty dismissals present 

one-sided, rather than multifaceted cases for their claims. For instance, chapter 2 

investigates the way in which AEE has been framed by its founder Ellis Page as a version 

of a Turing test, a move to secure legitimacy by appealing to Alan Turing’s ethos. That 

chapter then looks at the way in which opponents of AEE have framed the practice as 
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impersonal, mechanical, and dehumanizing, a way of undermining legitimacy via the ad 

hominem (really an ad machinam) attack. Then, in reviewing literature on AEE, chapter 3 

casts the current day debate as one where proponents highlight reliability of machine 

scoring while opponents foreground validity. Far too often, the rhetorical positioning of 

various camps in the field obscures the fact that there are as many reasons to be open to 

AEE as there are to resist it. Chapter 4 takes a small empirical study and pushes the 

framing of the data analysis beyond the typical agreement measures often provided, to 

measures of distribution, correlations of score and essay length, and a version of error 

analysis that highlights failures in agreement as much as successes.  

 

Key Assumptions of Computer Scoring 

Underlying the claims for AEE, which are now dominant in certain areas of the 

field, is a series of complicated assumptions. These assumptions occupy three spaces in 

what is called the “communication triangle” of writer, reader, and text. One of the first 

assumptions underlying AEE involves the reader: that there are a set of traits in a text that 

teachers value and use to judge the quality of student writing. Diederich, French, and 

Carlton (1961) at the Educational Testing Service (ETS) came up with five factors 

through a study of 300 essays that they concluded mattered to teachers assessing writing. 

Although this study concluded that over half of variation in scores was due to 

error/random variation, trait analytical grading became dominant as a result of this study, 

solidifying the narrative that readers make scoring decisions based on textual analysis and 

not extraneous factors. 
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The second assumption, involving the texts themselves, that has made AEE 

possible is that these features of writing that were said to matter to teachers could be 

considered “intrinsic” qualities that could be approximated by a computer program 

representing these features through proxy measures or “proxes.”  Slotnick (1972) 

identified a number of computer proxes that were characteristic of six intrinsic factors in 

judging writing quality. The thought was that if the proxes lined up sufficiently with the 

intrinsic qualities, the computer could not only reliably assess writing, but do so validly 

as well. 

Building on these founding assumptions that there exist separable features that 

teachers use to judge essay quality, and these features can be captured by software, Page 

(1966) was able to demonstrate a correspondence in outcome between raters who 

followed this rubric in rating papers and machines that followed a similar rubric. 

Although Page was unable to achieve an interrater reliability much higher than .5, recent 

AEE proponents have demonstrated to their satisfaction that they can achieve an 

interrater reliability of .7 or .8, and in so doing, can equal the reliability of human raters.  

The third assumption of AEE involves writers: that these texts produced by 

students under test conditions are actually representative of a stable and universal 

construct of student writing ability across multiple genres. That is to say, scores along 

these generally short, timed essays are said to be meaningful indicators of a student’s 

writing ability. 

This tripartite storyline has been challenged by those who oppose AEE. That 

teachers’ judgments are in fact based on intrinsic analytic traits has been challenged by 

Broad (2003) and others. That proxes and trins are closely enough related so as to largely 
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reduce validity to reliability has been challenged by Condon (2013). That there is 

anything like a general writing ability tapped into by short timed impromptus rated by 

computers has also been taken up by critics (e.g., Perelman, 2012b). This has become a 

construct validity problem and it appears to be a serious one for AEE. However, AEE 

proponents can concede that impromptu tests may not measure a full writing construct 

while still maintaining that they have a place and time. 

Presenting empirical data comparing human and machine score performance has 

become the standard mode of responding to critiques. Researchers present measures such 

as human and machine test set means, test set standard deviations, percent agreement 

between raters, Pearson correlation of scores, and Cohen’s kappa coefficient. The point 

they seek to make is that no matter what the psychology of human scoring, and no matter 

what the computational basis of machine scoring, the scores match each other to a close 

enough extent. The process just seems to work. Questions of mechanism have, in the 

parlance of Latour (1999), become black-boxed. Automated approaches have continued 

on seemingly unruffled by the theoretical controversies. 

Indeed, AEE approaches continued to gain traction over the latter part of the 20th 

and first decade of the 21st centuries. At the time of this writing, scoring engines are used 

in the essay sections of standardized examinations including the TOEFL, the GMAT, and 

the GRE. Since many standardized tests are scored by two readers, automated engines 

often serve as the “second reader.” Based on publicly-available figures of 800,000 annual 

takers of the TOEFL exam, 700,000 GRE takers, and nearly 300,000 GMAT takers, it 

would seem that on the order of 1.8 million students a year come into contact with 

computer scoring, through these three examinations alone. With the PARCC and 
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SMARTER BALANCED consortia—the two major administrative bodies for the new 

Common Core curriculum—declaring their interest in automated scoring, millions of 

Kindergarten through twelfth-grade students also stand to come into contact with 

automated scoring.  

And, AEE has made advances in higher education. “Machine scoring,” wrote 

Patricia Ericsson and Richard Haswell, “no longer has a foot in the door of higher 

education. It’s sitting comfortably in the parlor” (2006, p. 4). In the college setting, AEE 

applications function as placement technologies in first-year composition as well as 

feedback-providing platforms. According to the College Board’s website, 1,500 

secondary and post-secondary institutions use ACCUPLACER, that company’s writing 

course placement application, covering 2.5 million students each year. Public reports 

indicate that at least the following institutions have adopted the Educational Testing 

Service’s online writing tool, Criterion® (which offers automated essay assessment and 

feedback) in the past five years alone: Fresno State University (2010), New Jersey 

Institute of Technology (2010), Jackson State University (2012), San Jose State 

University (2012), and the University of North Carolina-Wilmington’s Business School 

(2008). According to its website, Wilmington University (DE) uses Criterion as an 

admissions tool to the Doctor of Education program. Regent University (VA) reports a 

similar use of Criterion for admission into its Master’s programs. 

The Collegiate Learning Assessment (CLA+) is scored by a combination of 

Pearson’s Intelligent Essay Assessor (IEA) and human readers; each essay receives an 

automated and a human score. The earlier version of the CLA+, known as the CLA, is 

reported to be in use at over 700 institutions of higher education. 
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While proponents have relied on large-scare quantitative studies and detractors on 

qualitative evidence, what has been little attempted is a study that presents opportunities 

for both. It is exactly because AEE performs best when scores are aggregated and appears 

in the worst light when considering how it treats individual cases that these separate 

research paradigms have evolved. This project takes a “both-and” approach. 

In addition to studying statistical analyses indicating how the computer performs 

on average compared to human raters, I ask how a computer would score individual 

essays, since it is the individual student and her essay that is of importance to writing 

studies. My study points out that even under statistically solid testing conditions, there 

will be students who stand to have their essays wrongly scored by the automated system. 

To take a simple example, even if the exact agreement between a human and machine 

rater is .9, a very high ratio, ten of 100 students may have essays that have been mis-

scored. I say “may have” because without a second human rater, there is no way to know 

whether the human score or the machine score misses the mark. The fact is that in any 

system of approximation, there will be error. The question is how much error is 

acceptable. 

In building up to my case that not only statistical averages but individual cases 

matter for the AEE dialogue, and my attempt to sketch the implications of this view, I 

begin with a look at the early statistical arguments put forward by Ellis Page, the 

developer of the first AEE system. I use computational theory to explore the way in 

which the proposed commonalities between machine and human rating are based in 

aspirational metaphors as much as unequivocal evidence. 
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Foundational Moments of AEE 

In 1966, education researcher Ellis Page issued a bold proclamation. In an article 

entitled “The Imminence of Grading Essays by Computer,” he described a new computer 

program that was to save English teachers the tedium of grading student essays by hand. 

Page augured that “[W]e will soon be grading essays by computer, and this development 

will have astonishing impact on the educational world” (p. 238, emphasis his).  

Like mine, Page’s case for computer scoring of essays began with students—

specifically, secondary school students. While everyone should of course be assigned 

daily or weekly writing themes that receive thoughtful commentary from well-trained 

English teachers, what they often get is hasty comments from overburdened staff, on 

papers written at much less frequent intervals. The less-than halcyon situation in college 

English courses reproduces the traffic jam of the lower years. “The system is not fair to 

[English teachers],” Page concluded. “It rewards them no more than others, while 

requiring them to accept a staggering responsibility with neither the time nor equipment 

to meet it…English teachers are (after students) the most obvious victims” of this system 

(1966, p. 259). Computer scoring was, for Page, the solution to the time constraints that 

teachers faced during grading, given a system unwilling or unable to invest more 

resources into the teaching mission.  

Page’s discussion raises a concern that has only intensified since his writing: a 

concern that the “system”—roughly, the set of institutions in society and the laws that 

regulate them—is unfair to students and teachers of English in its denying of teachers the 

material resources necessary to do the job necessary for students to develop sufficient 

competence in writing. Ongoing systemic problems are certainly at the forefront of the 
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writing studies profession as a cursory glance through the National Council of Teachers 

of English (NCTE) position statement library reveals titles such as “Why Class Size 

Matters Today,” “Statement on the Status and Working Conditions of Contingent 

Faculty,” and “Resolution on Challenging Current Education Policy and Affirming 

Literacy Educators’ Expertise.” 

 If these were the motives for developing computer programs that graded essays—

improved learning outcomes, better working conditions and greater parity for writing 

teachers, and increasingly valid forms of assessment—they brook no controversy. But 

controversy was what Page expected and conceded that “for many of us, the idea at first 

seems utter nonsense,” in the opening paragraph of his (1966) essay. He went on to 

suggest that computerized scoring had additional applications in the field of 

psychometrics—educational measurement—because it would, he asserted provide a way 

of reliably and validly measuring essay quality.  

 Controversy was what Page did in fact get. By 2013, the NCTE itself had issued a 

position statement that said that “Yet when we consider what is lost because of machine 

scoring, the presumed savings turn into significant new costs -- to students, to our 

educational institutions, and to society” (para. 5). Implied in NCTE’s position statement 

is the assumption that students and faculty would not stand to benefit from the 

applications of this technology.  

 There is a paradoxical nature to this particular controversy in which the stated 

motivations for and against computer scoring of essays appear largely the same: helping 

students, tied to suspicions of an unjust system or global order that ultimately damages 
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vulnerable students and their also vulnerable teachers. The reasoning for automated 

evaluation is strikingly similar to the arguments against it. 

How did something proposed to benefit overworked teachers and their students 

years ago morph into a threat to these very actors? What, in fact, are the benefits or the 

costs of automated scoring on students? In the intervening years since Page’s germinal 

essay, automated scoring has been closely studied. Many have considered whether 

students stand to benefit or not from this technology. My project focuses on a particular 

operationalization of “benefit”: whether the scoring can be considered to be accurate in 

college settings, and what the implications are of scoring “errors.” I target my work 

toward the writing assessment community as another perspective for scholars and faculty 

called to advise their institutions of the benefits or harms of automated assessment. By 

calling attention to framing, this projects situates itself not as “the” response to AEE but 

as one of many perspectives adding up to a fuller conception. 

Before continuing, a few reflections on my own subject position.  As a graduate 

student in a field where less than half the new PhDs get tenure-track positions, anything 

threatening to further disrupt the fragile labor market could be perceived as undesirable. 

Whether automated scoring has actually or would result in job elimination is unknown. 

But teachers understandably cast wary eyes; administrators do not need much pretext to 

cut teaching sections or jobs. Is my position conflicted? If so, it is not the only one, given 

that many of the studies on computer scoring have been undertaken by software 

developers.  

In addition to my professional identity is my scholarly orientation: I was trained at 

the undergraduate level as a cognitive scientist, at the graduate level as a philosopher of 
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science, and then finally at the doctoral level as a compositionist. I am intellectually 

curious about automation, its limits, and its promise, distinct from any subliminal fears of 

its ascendance. I have chosen to frame the empirical piece of my study around the 

impacts of AEE for students because they are still, as they were for Page, the original 

victims of an educational regime insufficiently supportive of teachers and the human 

capital required to truly teach writing. 

Given my scholarly orientation, this study does not offer a Marxian or cultural 

critique of technology or of AEE; it does not offer a Foucaultian genealogy locating it in 

the history of the “examination”; nor does it otherwise focus much attention on the 

implications of AEE for the valid concerns that the NCTE has raised about societal 

impact. It may certainly be that our education industry has created and perpetuated 

automated essay evaluation for commercial gain—but doing justice to those questions 

would require economic data and more. Setting them aside should not be seen as an 

implied devaluing; indeed they call for serious and methodical inquiry beyond the scope 

of this paper. 

Where did automated scoring end up? By 2003 education researchers Gregory 

Cizek and Bethany Page felt comfortable enough with the state of the technology to 

respond to Page’s prophesy by writing that “automated scoring of extended responses to 

test items or prompts is a fait accompli” (p. 118). From an imminence to a fait accompli 

in 37 years: together, these quotations could be said to project a rhetoric of technological 

destiny for automated scoring, a master narrative framing technological innovation as 

inexorable, virtuous, and “profitable to mankind as a whole” as Lyotard (1986/2010) has 

said in describing the modernist project (p. 1467).  
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As to the origins of such technological progress, some might say that these 

technologies are, as Donna Haraway (1985/2010) pointedly wrote of the cyborg, “the 

illegitimate offspring of militarism and patriarchal capitalism, not to mention state 

socialism” (p. 2192). Haraway’s metaphor of the cyborg (a literal hybrid of human and 

machine) describes the fusing of the technological and the biological, and her ultimately 

balanced stance toward cyborg reality offers a lens for envisioning the unavoidable 

technology of automated essay evaluation. 

In a sharp response to the flowering of automated approaches, a group of college 

composition professors (including many members of the Conference on College 

Composition and Communication) circulated an online petition signed by 4,108 people as 

of March 2013, including K-12 teachers, college teachers, community representatives, 

and public intellectuals including linguist Noam Chomsky. The humanreaders.org 

petition called automated scoring “a major disservice to all involved,” going on to term 

automated scoring as “trivial,” “reductive,” “inaccurate,” “undiagnostic,” “unfair,” and 

“secretive, with testing companies blocking independent research into their products” 

(2013, para. 2). Here again we see a reference to corporate interests, underlining the 

suspicion articulated by Haraway that AEE is a creation of capitalism and the state 

apparatus that sustains it. 

This dissertation takes a degree of refuge in Haraway’s cyborg. For automated 

essay evaluation is itself a cyborg: as some AEE opponents may not have considered 

closely, its learning algorithms issue score predictions gleaned from training on 

thousands of similar human-scored essays. The human scores serve as the basis for the 

machine predictions. Machine scores are, thus, scores made in our own image, or at least 
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approximations of that image. Recognizing the complicities of the cyborg, Haraway 

seeks not necessarily to resolve dialectical thinking about technology, but rather to 

contend that it is politically necessary to hold multiple and contradictory viewpoints 

regarding posthumanism. After all, as she notes, “illegitimate offspring are often 

exceedingly unfaithful to their origins” (p. 2192). We must disentangle the genealogy of 

these technologies from their ultimate manifestation in society.  

In her exegesis, Haraway marks out two perspectives that the posthuman world 

could potentially be about, the first being “the final imposition of a grid of control on the 

planet, about the final abstraction embodied in a Star War apocalypse waged in the name 

of defense, about the final appropriations of women’s bodies in a masculinist orgy of 

war” (1985/2010, p. 2196). This might be akin to the suspicious postmodern perspective 

of Lyotard. 

But the second perspective, Haraway goes on to say, is that “a cyborg world 

might be about lived social and bodily realities in which people are not afraid of their 

joint kinship with animals and machines, not afraid of permanently partial identities and 

contradictory standpoints” (1985/2010, p. 2196). Haraway concludes that “the political 

struggle is to see from both perspectives at once” (p. 2196). I find the “both…at once” 

perspective useful because, as Haraway says, “single vision produces worse illusions that 

double vision or many-headed monsters” (p. 2196). What I take from this reflection is 

that staking out a position as an “advocate” or an “opponent” filters reality and constructs 

a rhetorical stance appropriate for that position—a Burkean terministic screen (1966). 

The filtered reality of the “advocate” position focuses, for instance, on the great 

reliability that AEE is said to have with human scorers; the filtered reality of the 
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“opponent” emphasizes the paucity of the writing prompts that could actually produce 

reliable scores. Both positions can actually be true at the same time—but this is an insight 

most easily arrived at by someone prepared to stand in both places.  

In exploring the question of automating the judgment of writing quality—in 

standing in both places—I find it useful to employ multiple disciplinary perspectives. I 

draw upon philosophy of science, rhetoric of science, educational assessment, 

composition studies, and to a lesser extent critical theory and ethics in undertaking this 

mixed-method study of AEE. I seek not to reduce the practices of humans writing to 

machines/machines writing to humans to one Harawayan binary perspective or another. It 

may certainly be useful to see the propagation of these practices as driven by the 

capitalist march of testing companies and the socialist insistence on a certain type of 

educational outcome. However it may be that the illegitimacy of cyborgs enables the 

technology to stretch past that telos. Instead, the ambit of my project is to see “both 

perspectives at once”—to frame a technology such as AEE first as the result of scientific 

discoveries that while ideologically bound are themselves worthy of further, and 

dispassionate, investigation, while simultaneously acknowledging that automation is both 

produced by and productive of consumer capitalism. In this monograph, I hope to cast 

automation as a phenomenon with no master narrative (or perhaps more accurately, with 

a multiplicity of such narratives) showing, for instance, how technologists worked 

alongside teachers to create the case for automated assessment even as physicists found 

themselves expounding quite similar prose to humanists in attempting to find something 

unique about mathematical reasoning that would position it beyond the full reach of 

machines.  
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As far as what is to follow: the next chapter (chapter 2) is an origins story. It 

locates the intellectual predecessors of automated essay evaluation in computability and 

computationalism—theories that arose with the origins of computer science. It is a story 

upon which Ellis Page draws to undergird his methodology for arguing the merits of 

computer scoring, and it sets up a method of evaluating computer scoring that has 

persisted until this day, its ubiquity only now beginning to be questioned. Page’s original 

argument, which has embedded itself into the entire AEE edifice, was that machine 

scoring was sufficiently human. He felt that in order to legitimate automated scoring, he 

had to give it a cyborg identity. This “cyborg” argument—the postulation that brains are 

in some sense computers or conversely, that computers are capable of intelligence—has 

traces through the way current AEE is represented as comparable to human grading 

practices. Drawing on the symbolic capital of Alan Turing, Page’s focus on mimicry has 

foreclosed other options for criteria that count as evidence of the “success” of automated 

scoring. This chapter is part rhetorical study and part philosophy of science. I have 

chosen to blend these genres while accepting the risk that the normative philosophical 

piece will undercut the descriptive rhetorical component. 

Chapter 3 presents a literature review of current assessment theory and research 

regarding automated scoring. One conclusion drawn in chapter 3 is that proponents and 

opponents are both right in a sense: AEE does score reliably in certain contexts; those 

contexts can be challenged for lacking validity. The framing is key to understanding why 

the two groups talk beyond each other.  

Following the literature review, chapter 4 presents the results of a pilot 

assessment study comparing the performance of the Criterion scoring engine and online 
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essay evaluation service (called e-rater) to trained human raters using a different rubric 

more specific to collegiate writing than those used typically. With this study I endeavor 

to illustrate how Replicable, Aggregable, and Data-supported (RAD) studies (Haswell, 

2003) on automated scoring may be designed that are possible to be carried out on 

smaller scales than the large-scale studies promulgated by industry researchers and 

institutions that have already adopted automated technologies. The study pilots a rubric 

derived from the Framework for Success in Postsecondary Writing, (O’Neill, Adler-

Kassner, Fleischer, & Hall, 2012). 

In sketching directions for future research, chapter 5 is a thought experiment 

about the nature of error: the ways in which people and machines are bound to err in 

distinct patterns. The unavoidable nature of error in natural language processing raises 

suspicions for scoring in general. The nature of machine error is cause for derision, but 

the relentless consistency of machine scoring opens a window to human fallibility. A 

cyborg future is one in which both parties must play to their strengths.  

As a segue into chapter 2, it would be useful to briefly orient the reader to how 

automated essay scoring may be defined and how the software typically operates. While 

precise definitions tend to escape their bounds, a heuristic definition will be offered here 

in order to motivate the forthcoming discussion. Further chapters will discuss AEE in 

much greater depth in terms of its underlying technologies and the research on its 

empirical characteristics. For now the following stipulative definition of AEE will be 
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used: automated essay evaluation represents the use of computer programs to evaluate 

writing.1  

Sometimes, the technology is referred to as “automated essay scoring” or 

“automated writing evaluation,” the first to emphasize the summative aspect of the 

practice, and the second to emphasize its broader applications. While I am sensitive to the 

fine-grained distinctions inherent in these varied wordings, I have chosen to use 

“automated writing evaluation,” following the terminology used in the most recent 

industry-produced volume on automated essay techniques, the Handbook of Automated 

Essay Evaluation (Shermis & Burstein, 2013). While names are not neutral signifiers, 

adopting the sanctioned nomenclature has the advantage of both inviting interrogation of 

that name as a rhetorical object while positioning me as a researcher working on a 

common theoretical construct.   

Essay evaluation engines are currently employed commercially for three major 

purposes: high-stakes test scoring, course placement, and providing real-time diagnostic 

and feedback advice to student writers (for further discussion, see chapter 3). While no 

scoring engine is the same, and while the architecture of scoring engines will be explored 

further in chapter 3, a general understanding will be useful here. What happens in most 

cases is that the systems are programmed to recognize basic features of text, such as 

whether a word is a noun, verb, or adjective (etc.), the beginning and ending of 

                                                           
1 This definition essentially follows Shermis, Burstein, and Bursky (2013): AEE is “the process of 
evaluating and scoring written prose via computer programs” (quoting Shermis & Burstein, 2003). Note 
that McAllister and White (2006) prefer the term “computer-assisted writing assessment,” to “automated 
essay evaluation,” maintaining that computer assessment is not fully automated because it depends on 
humans interacting with machines. However, automation is a key metaphor in the cyborg discourse, even 
automation that occurs in the kinds of mediated interactions McAllister and White refer to. “Automation” 
as I use it in the cyborg conversation departs slightly from its original sense of fully automatic and lies 
closer to the idea of an automaton, a lifeless entity imbued with human-like qualities. 
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paragraphs, an essay’s overall word count, and so forth. From this raw data the computer 

can make judgments as to whether a sentence contains a grammar or spelling error, its 

lexical complexity, how developed its paragraphs are, and so forth. Taking a set of pre-

scored essays, the software compares them along all the textual features it can measure, 

and creates a mathematical score prediction for each one. The score is based on a 

mathematical formula that works out how the features contribute to the essay’s human 

score. Comparing the predicted score to the pre-assigned score, the learning algorithm 

can train up, meaning adjust the relative importance of each feature in its formula, and try 

again to predict the score. Once the computer matches the human scores to a specified 

degree, it can apply its feature weightings to new essays, thereby “scoring” these. This 

framework of computer scoring agreeing with human scoring on average—the interrater 

reliability of the machines—has become the standard measure of effectiveness of 

computer scoring. In abstract terms, reliability is a suitable measure for this purpose, but 

many have charged that it comes at the expense of validity, as we will see in coming 

chapters. The next chapter traces the early attempts to establish reliability as the key 

measure for AEE. 

In the Educational Testing Service (ETS) engine called e-rater, scores are 

calculated as a “weighted average of the standardized feature values, followed by 

applying a linear transformation to achieve a desired scale” (Attali, 2007, p. 4). The 

algorithm is one of multiple regression manipulating predictor variables to best fit the 

training set.2 After textual features have been assigned weights based on estimated 

importance and then placed along the same scale, the algorithm sums the relative 

                                                           
2 Multiple regression is a mathematical technique that determines the relationship between several predictor 
variables (in this case, essay features) and an output variable (e.g., a score). 
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contributions and converts the resulting number to the best-fitting value on the 

assessment scale, often a 1-6 interval scale. 

Such textual features were originally classified into hypothetical “trins” (intrinsic 

variables of interest) and “proxes” (approximations, or correlates of intrinsic variables). 

A “trin” might be the aptness of word choice for a given situation, and a “prox” might be 

the proportion of uncommon words used. Proxes were thought to be those variables that 

correlated with trins but could be measured by computer (Page, 1966, p. 213). These 

notions will figure into subsequent chapters.  
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2. THE COMPUTATIONAL PARADIGM AS A GROUND FOR ESSAY 

EVALUATION:  A METATHEORY 

 

Key developers of AEE, situated against the backdrop of revolutions in computer 

science, sought legitimacy through certain ways of speaking and writing about 

automation. These ways of speaking and writing involved likening people to machines 

(by speaking about humans as if they were computational devices) and likening machines 

to humans (by speaking about computers as if they were sentient). These rhetorical 

moves intended to secure legitimacy also extended to tending to emphasize the statistical 

performance of AEE over its performance in individual cases. Because individual 

students and individual essays matter greatly in the field of writing studies, the 

backgrounding of individual score assignments and their implications, and the more 

general comparing of people to computers, tended to backfire in AEE’s quest for 

legitimacy.  

Echoing the position of many compositionists about AEE, Patricia Ericsson 

(2006) wrote that “if composition is about making meaning—for both the writer and the 

reader—then scoring machines are deadly” (p. 37). Machines embody an information 

theoretic approach to meaning, she further argued, concerning themselves with reduction 

and reproduction of messages rather than with human-like, let alone human, 

understanding.  

In building her case against both the use and the rhetoric of machines in the 

practice of scoring writing, Ericsson called “troublesome” the position of Thomas 

Landauer, an AEE software developer and a co-inventor of Latent Semantic Analysis, 

who in explaining automated scoring remarked that “the fundamental idea is to think of a 
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paragraph as an equation: its meaning equals a combination of the meanings of its words” 

(Ericsson, 2006, p. 29). Ericsson pointed out that posted on Landauer’s company’s 

website is the claim that its essay scoring engine contains “machine-learning technology 

that understands the meaning of text” (p. 28). Ericsson is concerned because creators of 

AEE often claim that machines understand meaning despite the obvious fact that they 

have, as she notes, “no understanding, no sense of the concepts and the ideas that underlie 

the words” (p. 32). Or, in the words of Bob Broad (2006), reading and writing involve 

“complex interpretations of cultural codes” (p. 228). Yet, “evaluation software doesn’t 

even begin or claim to assess these cultural and intellectual capabilities” (p. 228). 

Landauer’s dual claims move in opposing directions, the first implying a 

reduction of semantics to syntax (paragraphs are equations) and the second suggesting 

that these syntactic parsers can somehow grasp semantics (machines understanding 

meaning). A closer examination of the history of computer science suggests that this 

rhetorical slippage, the movement to skim off semantic features when talking about 

computer processing but add them back in when talking about computer output, has 

served different communicative functions. At the nascency of computer science, it was 

necessary to stretch the typical meaning of words in order to promote understanding and 

describe new problems: Alan Turing wrote of a machine that could “effectively 

remember,” “scan” and “writ[e] down” various symbols (1936, p. 231). Even the word 

“computer,” which now denotes mechanical processing, was borrowed by Turing from 

the now archaic usage to refer to humans performing mathematical calculations. On the 

other hand, his contemporary Claude Shannon (1948) framed messages as logical 

constructs represented in bytes of information in order to solve engineering problems 
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involved in preserving the physical properties of a message during transmission by 

telegraph (in Shannon’s day) or telephone.  

While discursive moves like Turing’s and Shannon’s followed naturally from the 

need to stretch language to accommodate technological innovation, the rhetoric of the 

AEE movement can be seen as a strategic effort to align automated scoring with the 

computationalism movement, a scientific orientation that sought various forms of 

unification between minds and machines. In this chapter, I offer a partial historiography 

of the “computer metaphor” as it has been used to effect what Bazerman (1999) has 

called the “symbolic engineering” of the earliest automated essay scoring program, 

Project Essay Grade (PEG). The computer metaphor, the Church-Turing Thesis, and the 

“Turing test,” I suggest here, function both explicitly and implicitly as a rhetorical and 

conceptual ground of this early work in the field of automated essay evaluation. 

Furthermore, early work around AEE has emerged as both a reading and 

misreading of Alan Turing’s contributions to cognitive science via his study of 

computation. These readings and misreadings of the Church-Turing Thesis and the 

“Turing test” served as a context in which the computational blended with the mental 

and, one might speculate, explain some of the antipathy toward AEE among social 

constructivists. (It is not that AEE should be viewed apart from the material conditions 

that sustain it and the very real material implications of the possibility of replacing 

humans with machine labor in the classroom, but that the choice of Turing as a muse 

gave compositionists an intellectual point of resistance apart from what might be imputed 

as their personal interests.) 
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 The Computer Metaphor 

 One of the prevailing dogmas of the brain sciences—a commitment so ubiquitous 

that it often functions implicitly—is that the human mind is a type of computer. “The 

guiding idea of cognitive science,” reads one introductory textbook, “is that mental 

operations involve processing information, and hence that we can study how the mind 

works by studying how information is processed” (Bermúdez, 2010, p. 6). Reads another, 

“[M]any but not all cognitive scientists view thinking as a kind of computation and use 

computational metaphors to describe and explain how people solve problems and learn” 

(Thagard, 2002, pp. 3-4).  

The “computer metaphor” that cognitive science embraces is a trope that asserts, 

as computer scientist Matthias Scheutz (2002) puts it, that “the mind is to the brain as the 

program is to the hardware” (p. 7). The computer metaphor affixes computer science to 

the brain sciences, as Scheutz (2002) goes on to say: 

 

It is this computer metaphor that underwrites the rebirth of 

computationalism in the twentieth century, and the birth of what is 

nowadays known as cognitive science…: by viewing cognitive functions 

as computations, explanations of mental processes in terms of programs 

become scientifically justifiable without having to take neurological 

underpinnings into account—the ‘wetware brain’ is simply viewed as a 

computer on which the software ‘mind’ is running (or if not mind itself, 

then at least all the cognitive functions that constitute it). (pp. 8-9) 
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While this metaphor of mind as computer offers a number of interpretive schema, 

the claim Scheutz points to maintains that it is possible to talk about minds at multiple 

conceptual levels, with one of those levels involving some sort of transformation of input 

to output. (Just as it is possible to talk about computers as both electronic circuit devices 

and as weather forecasters or chess-players, a mind may be a collection of neurons, a 

contemplator of astrology, and a symbol manipulator.) 

The metaphor of brain as computer might further be considered a threshold 

concept—a new and surprising way of thinking about a concept that despite its novelty is 

nevertheless imperative to further progression in the discipline (Meyer & Land, 2003). 

Indeed, the computer metaphor seems to be contained within a set of disciplines studying 

the brain, placing it at odds with at least some versions of the kind of social constructivist 

(e.g., Vygotsky, 1978) doctrine that is held by many scholars in composition studies.  

Returning to the Ericsson/Landauer narrative and counternarrative, I propose that 

what troubles Ericsson, at least in part, involves the commitments of computationalism—

that mental processing is algorithmic, that computers running the right algorithms can 

“think”—and are part of a broader cognitive science discourse not limited to AEE but 

employed by it. Such discourse can be expected to strike social constructivists as 

incongruous, those who hold that meaning is irreducibly found in the social relations that 

agents have to one another. At least, this is one version of the tension between 

constructivist theories of knowledge and the computer metaphor. I will continue to refine 

these notions in what follows. While it would be beyond our scope to explore the full 

extent of the relationship between AEE and computational thinking, the rest of this 
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chapter aims to provide some sketches of how this has played out in the early stages of 

AEE; namely in Ellis Page’s use of Alan Turing’s work.  

 

Turing Computability: an Interpretation for Composition Studies 

Computationalism, underwritten by the computer metaphor, traces roots to 

theories of computability. The concept of computability emerged during the early 20th 

century (although its modern-day roots go as far back as Gottfried Leibniz). For our 

purposes, the critical point of origin lies in the pioneering work of mathematician Alan 

Turing and its radiation into the fields of computer science, cognitive science, linguistics, 

and philosophy.  

Turing’s seminal paper, “On Computable Numbers, with an Application to the 

Entscheidungsproblem” (1936) concerned itself with a particular problem in 

mathematics—the decision-problem—of whether there existed an “effective method” of 

determining whether any given formula belonging to a system of symbolic logic were 

provable in that system. An effective procedure, or systematic method, amounts roughly 

and informally to any method which can be carried out by a human computer through 

finite instructions, in a finite number of steps, requiring no insight, and which will 

definitely work if no errors are made (see discussion in Copeland, 2004, p. 42). This 

decision-problem interested Turing’s contemporary mathematician David Hilbert, among 

others, because the creation of a system of mathematical logic in which every 

mathematical proposition was decidable would have the surprising consequence that one 

could determine the truth of any mathematical proposition, once one had developed a 

system of expressing mathematical propositions in formal terms (Copeland, 2004, pp. 46-
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47). In other words, if the decision-problem could be solved, mathematical proofs could 

be more or less cranked out by a mechanical process.  

In a proof that is beyond the scope of this chapter, Turing showed that there could 

be no general process for proving any given formula in a system of mathematical logic. 

The Entscheidungsproblem had no solution. Intuition, combined with good old-fashioned 

toil and sweat, would have to do for discovering mathematical truths. Turing proved that 

not even the predicate calculus (which contains the logical building blocks of any formal 

system of arithmetic) is a decidable system—we cannot simply set a computer in motion 

to tell us whether Fermat’s last theorem is true (i.e., provable) and wait for the output. 

(As Copeland explained, if the predicate calculus is not decidable, then neither is 

arithmetic (2004, p. 52). This is what Turing’s proof showed. In contrast, the 

propositional calculus is decidable because one can construct a truth table revealing 

whether any statement is true in the system or not). 

Turing’s result may strike the reader as a technical discovery affecting only the 

field of number theory, but the process he used for arriving at his result has been 

generative in many fields and is a root of the “computer metaphor” spoken of at the 

outset of this chapter. Because of the specific way Turing’s proof is framed, he had to 

create an imaginary mechanical device that was capable of computing any real numbers 

that could be calculated by means of a rote procedure (Turing 1936, p. 230). Turing then 

showed that any mathematical calculation that could be performed by someone following 

a rote set of instructions could also be carried out by this device. 3 Turing’s proof that the 

“decision problem” had no solution employed the concept of a computing machine that 

                                                           
3 See rendering proposed by Copeland (2004): “Any systematic method can be carried out by the universal 

Turing machine” (p.41). 
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could compute anything that was the result of an effective procedure. Because Turing’s 

contemporary Alonzo Church had arrived at another method for showing the same result, 

Turing’s theoretical result became known as the Church-Turing Thesis.  

To get a better picture of this result, imagine a machine capable only of printing 

ones and zeros. A Turing machine instructed to count from ten to 20 (in binary code, say) 

could carry out these instructions by following a set of commands such as “if current 

state reads zero, erase it, print one and move one cell to the left.” (In today’s parlance, the 

set of commands becomes the program for the machine.) Note that a machine counting 

from ten to 20 by ones is actually an adding machine, so Turing’s machine can perform 

arithmetic by simply changing numbers from one to another. The kind of machine that 

Turing conceived of, a universal computing machine—now typically called a Universal 

Turing Machine—is achieved in abstract terms by encoding a program in numeric form 

(a “description number”) onto the tape that the computer uses to perform its computations 

and produce its output. Digital computers of today are examples of Universal Turing 

Machines, because they can carry out any mechanical set of instructions. 

In other words, and this is the important point for our purposes—the Church-

Turing Thesis connected systematicity with mechanization (see Copeland, 2004). If some 

process can be expressed via a formula with an effective procedure to carry it out, that 

process could be computed by a mechanized instrument. Even procedures that humans 

carry out “intuitively,” such as multiplying or dividing, can be broken down into steps 

that involve no mathematical knowledge whatsoever, but simply the writing and erasing 

of various symbols. The Turing machine transforms math into its own atomic steps of 

moving, printing, changing state, and erasing.  
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To say that a computer is “calculating,” then, is as much a metaphor as to say that 

a computer is “reading” or “writing.” Human “computers” were well-known to Turing, as 

they were fundamental to the war effort by performing numerical integration and other 

mathematical operations in order to compute missile trajectories and such. So Turing was 

concerning himself with human calculation, that symbolic, meaning-driven activity, and 

showing that if this activity was rotely specifiable in a certain way, a mechanical device 

could carry it out.  

Expanding this point, it seems to me that both opponents and proponents of AEE 

reductively mischaracterize it as a transformation of words into numbers. But computer 

technology does not represent a pitting of mathematical practices against literacy 

practices: it represents the transformation of computable meaning-making activities into 

mechanical action. It just so happens that mathematical calculations are the sort of 

meaning-making activities that easily lend themselves to the kind of algorithmic 

specificity required by computing devices. As Copeland (2004) writes, “if the Church-

Turing thesis is true, then talk about the existence or non-existence of systematic methods 

can be replaced throughout mathematics and logic by talk about the existence or non-

existence of Turing machine programmes” (p. 43). Seen through the lens of the Turing 

machine, AEE involves reducing one set of symbols found in natural language to a set of 

symbols found in computer science.  

In this way, the cyborg—the coders and the machines performing these 

transformations—is writing symbols, both literally and metaphorically. Haraway’s 

reflections are apt here, “[T]he silicon chip is a surface for writing; it is etched in 

molecular scales disturbed only by atomic noise, the ultimate interference for nuclear 
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scores” (p. 280). Inscribed on its surface are the electronic pathways that enable this other 

form of writing, the illumination of ones and zeros which, translated back up into various 

levels of code, equals an automated essay score or the sending and receiving of an email 

message.  

 

From Computability to Computationalism 

While the Church-Turing Thesis said that if something is a mathematical function 

calculable by “finite means” (Turing, 1936, p. 230) it can be instantiated mechanically, 

the commercialization of computers and the advance of computer programming invited 

innovators to broaden the class of phenomena that could be represented mathematically 

and thereby calculable by computer. Among other phenomena, brain activity came to be 

studied computationally. Indeed, even as Turing’s result showed that the decision-

problem was not provable and thus the field of mathematics could not be reduced to 

mechanical action alone, his Church-Turing Thesis paved the way for the proliferation of 

the “computer metaphor” of mind. This, as we will see, gave AEE founder Ellis Page a 

way to legitimate his new enterprise. And Turing himself seemed at times to advocate for 

the search for computational approaches to understanding. So let us now turn from 

computability to computationalism. 

In 1994, philosopher Patricia Churchland and biologist Terrence Sejnowski 

published the book The Computational Brain, in which they laid out an extended case for 

a computational approach to the brain called “computational neuroscience.” Churchland 

and Sejnowski argued not only that computational approaches can serve as a research 

tool in modeling “complex systems such as networks, ganglia, and brains” (p. 7), but also 
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that, more strongly, the brain itself is a form of computer, that “what is being modeled by 

a computer is itself a form of computer” (ibid).  

Churchland and Sejnowski’s premise was not unusual for mid- to late twentieth 

century thinking in cognitive science. Whether the mind was a computer, whether 

computers were themselves minds, and whether the “computer metaphor” was 

explanatory of cognition were debated contentiously during this time. In a famous 

counterargument that came to be known as the Chinese room thought experiment, 

philosopher John Searle (1980) argued that a computer responding to English questions 

was no different from an English speaker responding to questions written in Chinese by 

following a set of instructions written in English, indicating which characters to associate 

with which questions. (E.g., the Chinese room would have instructions such as, “if the 

questioner says, ‘ni haoma?’ respond with ‘wo henhao’.) Such a computer would not 

understand Chinese, nor would its actions explain how humans understand languages (pp. 

285-286). Again, the contested problem of meaning looms large in Searle’s objection. 

We can see that Churchland and Sejnowski’s position falls under the computer 

metaphor advanced earlier. On this doctrine, the brain is itself a computer, reflecting the 

odd realization that computers are themselves modeling a kind of computer, “albeit one 

quite unlike the serial, digital machines on which computer science cut its teeth” 

(Churchland & Sejnowski, 1994, p. 7). 

Turing’s biographer Jack Copeland has claimed that the assertion of the computer 

metaphor of mind as established doctrine, rather than as scientific hypothesis, rests on a 

confusion over the scope of the Church-Turing Thesis. Wrote Copeland: 
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[A]n error which, unfortunately, is common in modern writing on 

computability and the brain is to hold that Turing’s results somehow entail 

that the brain, and indeed any biological or physical system whatever, can 

be simulated by a Turing machine….The Church-Turing thesis does not 

entail that the brain (or the mind, or consciousness) can be modelled by a 

Turing machine program, not even in conjunction with the belief that the 

brain (or mind, etc.) is scientifically explicable, or exhibits a systematic 

pattern of responses to the environment, or is ‘rule-governed’ (etc.)….[I]t 

is an open question whether a completed neuroscience will employ 

functions that are not effectively calculable.” (2002, “Misunderstandings 

of the Thesis”) 

 

Copeland is saying that the Church-Turing thesis does not imply that any rule-

governed function whatsoever can be computed by a Universal Turing machine or its 

equivalent, a digital computer, because there is indeed a class of functions that are not 

computable. Piccinini (2007) has also argued that only a completed neuroscience will tell 

whether, and in which ways, mental states are Turing-computational, and therefore 

whether computational realism turns out to be true. Writes Piccinini: “CTT [i.e., the 

Church-Turing thesis] pertains to functions that are computable in the intuitive sense 

employed in mathematics. In order to show that something falls under CTT, it must first 

be shown that it is computable in that sense. CTT, per se, does nothing to establish that 

something is computable. Because of this, supposing that CTT entails computationalism 

is a fallacy” (2007, p. 99). Ordered pairs that are put together at random, for instance, 
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would be part of a noncomputable function as would functions that use continuous as 

opposed to discrete variables, Churchland & Sejnowski, 1994, p. 62; Piccinini, 2007, pp. 

100-104). Not all deterministic systems (ones in which the future states depend on 

present states) are algorithmically computable systems (Penrose, 1999, p. 220). 

The implications of uncritically assuming that brains instantiate computational 

states (committing the CTT fallacy) would be an appealing move for an AEE proponent, 

and indeed I explore this in the following sections. The implication would be this: if 

cognitive states turn out to be computable states, then the cognitive act of grading an 

essay is ultimately itself computable. Successfully automating essay scoring then 

becomes a question of specifying the right functions that articulate the cognitive act of 

grading so that the computer can replicate this act. Thus far, developers have presumed 

that the functions being computed by human graders have solely to do with analyzing the 

properties of the essay itself, an assumption that is of course deeply contested by 

compositionists who subscribe to the social theory of composing. Ellis Page, as I will try 

to show, incorporates assumptions about the computer metaphor as a rhetorical strategy. 

But the assumption that brains simple are computers is not the only stance that 

could be a potential driver for AEE. Piccinini (2007) goes on to distinguish processes or 

calculations that are truly Turing-computable from those that can be mimicked by 

computer algorithms. He points out that much of the attraction of computational 

approaches in the sciences is not that biological or physical systems are computational 

systems but that they can be simulated by computational systems even when these 

processes cannot be instantiated computationally. In the following passage, Piccinini 

observes the utility of simulation rather than replication: 
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The modern study of dynamical systems has exploded over the last half-

century, to a large extent, thanks to the advent of digital computers. This is 

because computers, by offering larger and larger amounts of memory and 

computation speed, allow scientists to develop methods of approximation 

for systems of equations that are not analytically solvable, so as to study 

their behavior based on those approximations. (2007, p. 105)  

 

As Piccinini goes on to observe, claiming that certain mental activities can be 

simulated or approximated by computer algorithms does not invoke a misreading of the 

Church-Turing thesis. Certainly computers can, and do, approximate many natural 

processes, such as the weather, without these processes being strictly Turing computable. 

Approximation is, then, an entirely different construct from computability.  

Formulated as an attempt to simulate human grading rather than Turing-replicate 

it, AEE is a more realistic endeavor. Fundamentally—and I take this to be accepted by 

AEE proponents and detractors alike although it is not much discussed in the literature—

in order to Turing-replicate human scoring, one would need a computational theory of 

reading, and more specifically, a computational theory of evaluation. Such theories of 

reading are developing, but they are not complete. These theories would not, however, 

only involve the kind of textual feature analysis that AEE can offer; instead, according to 

Mason, Tornatora, and Pluchino (2013), most models of reading assume that, at the 

abstract level, the representation involves the union of both the prior knowledge of the 

reader and new information from the text. “The common issue shared by all models is the 
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constructive role of the reader who activates her or his relevant background knowledge as 

she or he processes text information, and tries to integrate background knowledge with 

the new information to build a coherent representation of the text, that is, the situational 

model in Kintsch’s (1998) terms” (Sec. 1.1). So, if computational reading experts are to 

be believed, AEE cannot replicate human scoring until, at the very least, it can model or 

simulate the extratextual component of reading. 

I am sure that AEE proponents would grant that current AEE has not identified 

effective procedures that would enable a computer to replicate evaluating an essay. Yet, 

the history of AEE does in many senses still begin with the history of the computer, of 

Turing machines. The developers of AEE, particularly Ellis Page, called upon Turing and 

the vision of Turing-replication as a rhetorical maneuver to legitimate their emerging and 

surely shocking technology to prospective audiences. In so doing, I maintain, they 

committed the Church-Turing fallacy of assuming that any process that is systematic can 

be replicated mechanically. 

Charles Bazerman’s (1999) concept of “symbolic engineering” helps frame what 

the founders of AEE may have been doing as they sought to promote and legitimate a 

new technology. For Bazerman, symbolic engineering is the development of “symbols 

that will give presence, meaning, and value to a technological object or process within a 

discursive system” (p. 335). Bazerman contended that most technologies do not simply 

speak for themselves, are not simply themselves sufficient to constitute their acceptance 

into society. Most technologies need symbolic mediators that mobilize the heterogeneous 

values of different aspects of society. Bazerman’s concept of symbolic engineering is a 

lens to understand how Ellis Page and his co-founders sought to represent automated 
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scoring to various audiences did not simply function descriptively (i.e., to represent the 

state of the technology) but aspirationally, as attempts to further its material success.  

To outline the argument to be presented, I explore the ways in which Turing’s 

status in the early, promise-filled days of computing lends Page’s project the value that 

Bazerman describes as credibility (p. 338), which is important in introducing a 

technology into a public forum or, in Page’s case, to other educators. While in 

Bazerman’s extended example, Thomas Edison used himself to lend credibility to his 

endeavors, Turing was a figure so luminescent in the field of computing that it is entirely 

reasonable that Page would have turned to him to establish an ethos. Turing’s “Test” of 

intelligence is Page’s principal tool of symbolic engineering. A brief description of 

Turing’s proposal follows. 

 

Turing’s “Test”: The Imitation Game 

Alan Turing had originally concerned himself with mechanizing the computation 

of mathematical propositions, but perhaps his most popularly familiar contribution to the 

study of intelligence came in a later non-mathematical writing. As he put it in this 

seminal work, “Computing Machinery and Intelligence”: Can machines think? (Turing, 

1950).  

Turing’s essay describes a thought experiment he called the “imitation game,” 

wherein an interrogator would try to determine whether a mystery respondent (hidden 

behind a screen and printing out answers on a printer) were a person, or a computer. 

Turing stipulated that the object of the first respondent, the computer, was to cause the 

interrogator to guess wrong, thus responding as humanly as possible. The second role-
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player, the human, had the object of leading the interrogator in the right direction, in 

other words, also answering as humanly as possible (p. 434). Would the interrogator 

decide correctly between the two as frequently as he did if, say, he were trying to 

determine which of the two role-players were male and which were female? 

Because Turing was aware of the nascency of computer science, he took pains to 

explain to his readership the kind of mechanical device he had in mind that could play the 

imitation game, and to provide an explanation for its potential success. The machines in 

Turing’s example were digital computers, and as such, were able to carry out any 

operations that can be performed by a “human computer.”4 A human computer, he says, 

is someone charged with following “fixed rules” from which he or she is not allowed to 

deviate (a reformulation of Turing’s earlier statements on computability.) 

Turing predicted that in 50 years from the time of his 1950 writing, computers 

would be able to mimic human responders so accurately that in the imitation game, “an 

average interrogator will not have more than 70 percent chance of making the right 

identification after five minutes of questioning” (442). As Saygin, Cikekli and Akman 

(2000) note, Turing’s prediction failed: no machine had been able to pass the Turing test 

by the turn of the millennium. Another way of framing Turing’s prediction would be that 

                                                           
4 Turing describes a digital computer as having three parts: store, executive unit, and control. The store 

compares to what the human computer would use to execute instructions, including human memory, the 
pages of the instruction book, and a paper for calculations. The executive unit carries out the individual 
operations that make up any given calculation, and the control is constructed so that the calculations are 
carried out properly (p. 437). For instance, a number such as 6809430217 could be an instructional code for 
“add the number stored in 6809 to the number stored in 4302” where the number 17 stands for the 
instruction to “add” (p. 437). For those unfamiliar with the nomenclature of early digital computing, 
imagine that software programs constitute instructions, that the CPU carries out those instructions and that 
the memory is where the instructions and the calculations are stored. So again, the computer is working by 

rote. 
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the computer would be so good at mimicking the human that the interrogator would guess 

wrongly in at least three out of ten cases, making the Turing test a success. Conversely, 

the computer will be able to foil the human interrogator at least 30 percent of the time. As 

we will see, this idea of probabilistic mimicry factors into the original (and many current) 

justifications of AEE. 

Table 1 presents my rendition of a side-by-side comparison of three possible 

outcomes of ten imitation game trials: a computer that never fools the interrogator (A); a 

computer that fools the interrogator 30 percent of the time (B); and a computer that fools 

the interrogator half the time—an indistinguishable result (C). Turing’s prediction is 

conservative. He allows room for the computer to be distinguishable at least three out of 

ten times. His “game” is thus vulnerable to the rebuttal that it is not strong enough: in 

order for a machine to be considered intelligent, a guesser should have a record no better 

than chance. 

 

Conversation 

number 

Scenario A: 

Interrogator 

always 

guesses 

correctly 

Scenario B: 

Turing’s 

prediction 

Scenario C: 

Computer 

fools 

interrogator 

1   Correct Correct Correct 

2 Correct Correct Incorrect 

3 Correct Incorrect Correct 

4 Correct Correct Correct 

5 Correct Incorrect Incorrect 
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6 Correct Correct Correct 

7 Correct Correct Incorrect 

8 Correct Correct Correct 

9 Correct Correct Incorrect 

10 Correct Incorrect Incorrect 

 

Table 1. Imitation game outcomes. 

 

Let us take stock of two common objections to Turing’s postulation. The first 

objection is that language is not Turing-computable; therefore, there is no way that a 

machine could replicate human language even 30 percent of the time, let alone more 

frequently than that. Turing does consider this objection (as he considers many others) 

that humans are not bound by rules for every set of circumstances—natural language is 

not “computed” in the manner of mathematics—but his response seems to be that we 

cannot prove this is so. He writes, “the only way we know of for finding such laws is 

scientific observation, and we certainly know of no circumstances under which we could 

say, ‘We have searched enough. There are no such laws’” (p. 452). The implied warrant 

here is that without such laws, machines would not pass the Turing test; the test is not a 

test of approximation but of replication. 

Seemingly, for Turing it is an open question whether rules will be discovered for 

all or most aspects of human behavior; for as Piccinini (2007) writes: “[T]he consensus 

among Turing scholars is that in arguing for [the Church-Turing thesis], all that Turing 

was attempting to establish is that human computation processes are computable by 

[Turing machines]—he was not trying to establish that all mental processes are the 
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following of an effective procedure” (p. 109). In other words, if a process is an act of 

human computation it can be machine-replicated; the question becomes which human 

acts are acts of computation. And what Turing points out is that this objection pre-empts 

the response that natural language may have such rules even if such rules have not yet 

been uncovered. 

A second objection Turing calls the argument from consciousness. This is the 

argument that machines are not equivalent to brains because machines do not have 

thoughts and feelings. Turing quotes the early artificial intelligence skeptic and surgeon 

Geoffrey Jefferson to flesh out this objection: “Not until a machine can write a sonnet or 

compose a concerto because of thoughts and emotions felt, and not by the chance fall of 

symbols, could we agree that machine equals brain” (Jefferson, qtd. in Turing, 1950, p. 

445). 

 Turing answers this objection by reciting a version of what philosophers call the 

problem of other minds: we actually have no direct, experiential proof that other people 

think either, so for that matter, how can we know if anyone is conscious? Rather than 

accept such a solipsistic point of view, Turing points out that we ascribe thoughts and 

feelings to others, at least if we seem to be able to converse with them and they seem to 

be answering in viva voce, and asks essentially why the standard should not hold for 

machines as well. The problem of consciousness intersects most with the discourse 

surrounding AEE, and we will return to it anew in the following section.  

As we consider the viability, and the liability, of grounding a new technology in 

Alan Turing’s credibility and the legitimacy of his measure of machine intelligence, a 

disagreement in how to interpret Turing’s intentions needs to be raised. It seems that 
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Turing further held that the full Turing-computability of language was necessary for the 

test to be passed by a computer (given his reference to discovering laws of human 

behavior). Surely, this would seem to be an ambitious hope. It is plausible to think that a 

computer that was running an approximation of linguistic abilities might pass the test. 

Indeed, as Piccinini has noted, replication represents a higher standard than simulation or 

mimicry; a computer that could be detected by an interrogator with even 30 percent 

accuracy is probably not Turing-replicating human responses but simulating them, with 

limited accuracy. In turning to consider Ellis Page and his Project Essay Grade (PEG) 

software, one case see that his readings and misreadings of Turing represent a rhetorical 

attempt to symbolically engineer his technology.  

 

Is PEG an Approximator or a Replicator?  

In making the case for Project Essay Grade in his influential “The Imminence 

of…Grading Essays by Computer” (1966), Ellis Page employed the rhetorical strategy of 

arguing, both implicitly and explicitly, that PEG passes a Turing test. Implicitly, he did so 

by presenting his readers with a correlation matrix headlined by the question, “Which 

One is the Computer?” The matrix represented what he said was an agreement 

intercorrelation between five judges of 138 student essays, correlations which ranged 

from .44 to .61. One of the judges was Page’s software, rather than a person. “To display 

the ‘humanness’ of this achievement,” Page wrote of the matrix, “we performed an 

extremely conservative cross-validation” (p. 241). Each number in the matrix represents a 

measure of correlation between two of the judges’ scores (judges are listed as A-E).  
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Figure 1 reproduces the correlation matrix below, preserving Page’s title for 

rhetorical effect. The implication of the matrix is that the computer “judge” is 

indistinguishable from the human judges on the basis of the agreement statistics. Clearly 

some questions could be raised about the vagueness of Page’s description of a cross-

validation without specifying the statistical test used. For now, though, other rhetorical 

choices are of interest.5 

 

 

Figure 1. Intercorrelation matrix provided in Page (1966). 

 

                                                           
5 Indeed, it is not clear how Page’s contemporaries received his work. The only response to Page from his 
contemporaries that I have found is an article by Levy and Fritz (1972) entitled, “Status Report on 
Computer Grading of Essays.” There may have been other responses but what has primarily survived in the 
literature is Page’s work itself. 
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At the end of his discussion Page does not, after all, reveal which judge was the 

computer. The object of the exercise, then, could not have been to communicate any 

findings of the actual correlation between the human and the computer agreement. 

Instead, I would argue, his objective was to set up his readership in the position of 

interrogator, then showing how such readers could not distinguish a computer disguised 

as a human judge. In other words, Page set up a Turing test of his own, connecting the 

replication of interrater agreement correlations with passing the test. In so doing he 

connects AEE with a symbol of the then-exploding field of Artificial Intelligence. 

Furthermore, continuing a trope from Turing, Page predicted that the one way to 

eventually distinguish computer from human raters is that the former will actually 

correlate more highly with the human raters than the humans themselves will, due to the 

elimination of random error found in human rating (p. 242). Here, Page adopted another 

point that Turing made: the human reveals him- or herself by the propensity for making 

mistakes. “If the man were to try and pretend to be the machine,” Turing wrote, “he 

would clearly make a very poor showing. He would be given away at once by slowness 

and inaccuracy in arithmetic” (1950, p. 435). 

But Page’s invocation of Turing did not stop with oblique implications that the 

software has passed the Turing test—a formulation that, as I have argued above, 

potentially conflates simulation or approximation of human activity with a strict Turing 

computability. Page (1968) appealed to Turing directly to justify his presentation of the 

same data set presented in his first essay: “we feel that A.M. Turing, who recommended 

the ‘difference test’ as a good trial of the presumably intelligent machine, might well be 

pleased” (p. 217). And then, Page goes on to suggest the much stronger and extremely 
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surprising claim that automated essay grading is indeed an instantiation of a Turing 

computable process:  

 

From other articles in this issue it must be apparent that the computer is a 

natural agent in the analysis of language. When considered physically, 

after all, a student essay is, regardless of its subject matter or the standards 

of its evaluation, merely a set of recurrent symbols arranged in a linear 

string. And the computer is, of course, the symbol manipulator without 

peer, of superhuman speed and accuracy. Thus the problem of evaluating 

an essay may be regarded as the problem of transforming a string of input 

symbols into some appropriate string of output symbols. And such a string 

problem calls for a “Turing machine” which, by reading and acting upon 

just one symbol at a time, can achieve any arbitrary level of complex 

response which might be practically necessary. In such a model, the input 

string could consist of the sequence of letters in the student essay, and the 

output string could consist of a set of printed grades, or comments, or 

diagnostic profiles. (Page, 1968, p. 211) 

 

While it is accurate to say that a Turing machine would transform a string of 

symbols into another string of symbols, it cannot achieve any “arbitrary level of complex 

response” if that is to mean that the output string resulted from computing any function 

whatsoever. (That is why the Church-Turing thesis talks of computable functions, not 

simply any functions.)   
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But more pressingly, Page seems so eager to cast automated scoring as a 

computer innovation (“after all, a student essay is…merely a set of recurrent symbols”) in 

a way that prefigures Landauer’s paragraph-as-an-equation approach, that what is totally 

elided is the problem of choosing the right algorithm to be applied to that string. Here, 

Page’s conclusion seems to commit the Church-Turing fallacy. In saying that the 

“problem of evaluating an essay may be regarded as the problem of transforming a string 

of input symbols into [a] string output symbols,” he seems to presuppose that scoring is 

computational, that human graders carry out effective procedures (algorithms). The fact 

that multiple, trained, human graders can come up with different scores is evidence that 

such an algorithm, if it exists even in theory, is much more complicated than anything 

previously concocted. It is even hard to imagine what a computational approach to 

grading would mean.  

Page’s use of Turing, instead, could be read as an attempt to give PEG a meaning 

that arched toward the hope that computers could perform communicative tasks much 

like people do, the promise of passing a Turing test (C. Bazerman, personal 

communication, August 1, 2014). Page’s way of creating his Turing-style test served to 

mask the computer’s performance assigning individual scores and emphasize score 

averages, a theme that will be picked up and questioned in subsequent chapters. 

Jeremiah Dyehouse (2007) has explored this slippage from within another 

framework, and his work also points to the way in which Page’s rhetorical choices were 

efforts to symbolically engineer the technology. In an essay emphasizing the role of 

argument in stabilization of technology products (as a complement to Bazerman’s 

emphasis on discursive influence), Dyehouse showed how Page initially framed his work 
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as a “ratings simulation” in antithesis to the kind of “master analysis” of writing that a 

human could carry out based on intrinsic qualities. Still, Page suggested that someday 

computers may be able to reach the point of master analysis (Dyehouse, 2007, p. 123). 

Dyehouse’s rhetorical analyses demonstrated that Page was progressively able to 

characterize his work as a simulation with the idea of a master analysis eventually fading 

into the background as computational applications in various fields of knowledge 

production gained traction (p. 132). What Dyehouse’s analysis implies is that Turing 

computation—which implies the existence of a master analysis—was more of a rhetorical 

framing device than an actual commitment of Page’s. 

In their (1995) study, Page and Petersen summoned Turing again, in a response to 

what they call the “humanist” objection to AEE, which they deem to mean rejecting AEE 

out of hand because its lack of sentience prevents it from measuring in the way that 

people do. The humanist objection can be compared to Turing’s argument from 

consciousness, which placed sentience as a central marker of intelligence. Here are Page 

and Petersen:  

 

Some of the humanist objections hark back to the dawn of the computer 

revolution. It was asserted that certain choices require human knowledge 

and background wisdom, while the computer will do only what it is 

programmed to do. It will not understand or appreciate an essay, and so it 

cannot measure what a human judge measures. Its judgments should be 

rejected out of hand. 
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Such arguments were so common 40 years ago that Alan Turing devised a 

response in the form of his classic “difference game,” now widely known 

as the “Turing test.” Imagine that you have a person behind one door and a 

computer behind another and that you don't know which is which. You are 

allowed to slip notes under the door, read the printed responses, and try to 

determine which door hides the computer. If you are unable to find a 

relevant question that will reveal which is the machine, the computer wins 

the game. 

 

Suppose we play another version of this game. You have seven doors with 

human raters behind six of them and a computer behind the seventh. We 

pass essays under all seven doors and get back a score (or set of scores, if 

we're rating traits). We examine the scores and continue to pass essays and 

collect ratings. Can we tell which door hides the computer? When we 

study the results with 300 essays, we find -- lo and behold -- that we can 

easily identify the computer. It's the one that agrees best with the other 

judges! Where does this leave the humanist objections? (Page & Petersen, 

1995, Section 9, paras. 2, 3 & 4) 

 

For Page and Petersen, passing a Turing test amounts to overcoming the humanist 

objection, presumably because sentience would no longer be seen as necessary to 

perform a task like humans do. Notice, however, that a certain version of the humanist 

objection simply rules out difference tests tout court, because the salient matter is having 
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a mental life, not behaving as such. Turing notices this while Page does not; Turing says 

of the argument from consciousness that it “appears to be a denial of the validity of our 

test” (1950, p. 446), which is why he turns to the problem of other minds in response. 

The main point for our purposes is to notice the move to frame computer scoring as a 

version of a Turing test. 

In his (2003) essay, Page added the following emphatic closure to the paragraph 

immediately above: “PEG [Page’s software] has shown the world one solution to the 

Turing Test” (p. 52). Page’s modified reading of Turing’s test suggests that the computer 

is actually a better mimic of humans than humans are of each other. What Page and 

Petersen meant statistically in the case in question is that the computer “judge” did a 

better job of predicting the average score of six human judges reviewing a set of 300 

essays, than two of the human judges did in predicting the same average score (1995, 

Section 2). 

By the 1960s, Turing’s “test” had generated an appreciable amount of attention, 

and a number of philosophically-oriented replies had emerged, some fortifying his 

argument and others challenging it (for further discussion of replies to Turing, see 

Saygin, Cikekli & Akman, 2000). However, Page’s rhetorical appeal in his (1968) essay 

seemingly represents neither critique nor extension of Turing’s test but rhetorical use of 

ethos: an appeal to authority (e.g., proposing that Turing “might well be pleased”) at the 

same time as it represents an attempt to legitimate the litmus test that Page has set up for 

his cyborg reader. As Bazerman has noted, a technology must not only be able to 

“succeed materially…it must also succeed symbolically” (p. 335), which might be said to 
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mean that the technology has to make itself culturally acceptable not only functionally 

adequate.  

But, Page’s efforts to legitimize PEG point to the interconnection between the 

functional and the symbolic—what it meant to succeed materially as an essay grader was 

as much architected by Page through his use of the correlation matrix version of the 

Turing test as what it meant to gain acceptance of relevant discursive communities. He 

was arguing for the legitimacy of the test as well as the technology. The test of whether 

Page’s technology works—perhaps unlike in Bazerman’s extended example of Thomas 

Edison whose product’s functionality was universally manifest (by turning the thing on, 

so to speak) depends on the degree of acceptance of the particular measure of success to 

which the technology is subjected. In other words, in cases such as automated scoring, 

the meaning of the technology “working” depends on establishing the legitimacy of a 

certain test—Page, of course, turns to Turing to validate his version of the “difference 

test.” 

As additional evidence that Turing’s difference test methodology has been used to 

legitimate automated scoring, here is ETS researcher Yigal Attali (2013) writing in the 

Handbook of Automated Essay Evaluation: “most validation efforts of [AEE] have 

implicitly or explicitly tried to answer [the humanist] objection by showing that machine 

scores are indistinguishable from human scores….Page and Petersen (1995) even suggest 

a version of the Turing test…to emphasize the importance of score imitation for the 

acceptability of [AEE]” (Attali, 2013, p. 182). Unlike Page, Attali realizes that score 

similarity in itself does not adequately respond to the humanist objection if this objection 

is truly about sentience, but we will come to this matter later on. 
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The Turing test has remained an aspect of the symbolic engineering of AEE, right 

up to the 2012 Hewlett Foundation-sponsored competition for automated scoring 

vendors, which Hewlett program director Barbara Chow billed as “a single place that 

works as a Turing test. Our hope is to provide a neutral, impartial platform on which to 

make judgments of whether automated scoring can match human raters” (Edsurge, 2012). 

The promise here is not that computers be sentient intelligent beings, or care about the 

essays they grade, but that they have similar interrater agreement patterns as human 

raters.  

The symbolic appeal to Turing was, obviously, not without its baggage. The 

measure that Page chose to give meaning to his new technology, the Turing test, seems to 

alienate the composition community, those who would ultimately need to adopt it for it to 

gain material success. (Indistinguishability tests were not new with Turing; rather, they 

date at least to Descartes, and as many have pointed out, Turing’s test invokes a 

simplistic equivalence of output as its criterion.) Turing’s test effectively equated 

intelligence with the ability to mimic the linguistic structures and functioning of natural 

language to a certain degree of accuracy (guessing correctly only 70 percent of the time 

after five minutes of the imitation game). Failing to make sentience a condition of 

intelligence invites, as shown previously, the humanist objection. 

Also, Page’s formulation contains at least one notable and seemingly problematic 

departure from Turing’s. The departure is that in the case of automated scoring, the 

interrogator is only privy to the responses of the subjects, but is not privy to the 

questions. In Page’s setup, the interrogator only gets to see the scores themselves, not the 

actual essays that were scored. Page’s version makes only the percent agreement or 
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correlation visible. Without analyzing individual essay-score patterns, an interrogator 

would be much more likely to be fooled than if she could examine actual essays along 

with the scores.  

Exploring splits—those essays where the computer score diverges from the 

human score by more than one adjacent interval—is a possible way to differentiate 

human from machine scoring. Without looking at the level of the individual essay, we 

cannot conclude that the Turing test would have been passed; this would be like asking 

an interrogator to judge between human and computer respondent, without looking at the 

questions. 

Les Perelman has pursued this objection to good effect, recently by using an 

automated writer called the babel generator (2014, personal communication), which 

produces essays that humans would recognize as gibberish, but which nevertheless attain 

high scores from machine graders due to their ability to put together grammatically 

complex sentences with infrequently-used words (which the computer uses as a proxy for 

sophistication of prose). 6 The babel generator can be found at http://babel-

generator.herokuapp.com/. 

But one does not need the babel generator to expose the differential scoring 

practices of current automated technologies versus human technologies. In fact, the five 

paragraphs I have just written, beginning with “Quite possibly…,” and including the 

present paragraph were recently fed into a commercial automated scoring engine. The 

prompt they responded to asked students to consider whether liberal arts education is 

worthwhile. The four paragraphs above, even though they have no part in addressing the 

                                                           
6 Although the “Sokal affair” suggests that humans can be fooled by lofty prose, too (Scott, 1996). 
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question of the validity of liberal arts education, attained a score of five out of six possible 

points from the machine and developed its ideas “with reasons and examples that are 

appropriate” according to the automated feedback. Any person scoring the previous four 

paragraphs would have flagged the essay as off-topic and incomplete.  

So, providing sophisticated but meaningless or irrelevant prose will almost 

instantly point out which scorer is the machine. And pursuing this strategy is no less valid 

a strategy than the interrogator asking the machine to write a sonnet. “Count me out on 

this one. I never could write poetry,” Turing’s respondent replies (p. 434). Because 

machines are fooled by syntactic but meaningless prose, an interrogator could easily craft 

essays that would betray it. While computer scoring may fare well when scores are 

examined in the aggregate, a correlation matrix is not the only form of Turing test that 

could be designed; one that revealed scores and essays would be more faithful to the 

original conception and more relevant to the concerns of writing studies. 

What Page calls the humanist objection (or the argument from consciousness that 

Turing considers) rejects the very premise that passing a Turing test is enough to validate 

a technology. The humanist objection makes sentience a wedge between humans and 

machines, thereby rejecting the computer metaphor outright and embracing meaning and 

social interaction as irreducible aspects of reading and writing. In the final section of this 

chapter, we turn to the humanist objection once more. 

 

The Humanist Objection Revisited 

 The humanist objection has laid down tracks in multiple fields of inquiry, not only 

in the field of educational measurement. It was employed, ironically perhaps, in the very 
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field of mathematical logic—to the very question that Turing himself set about to answer: 

the Entscheidungsproblem. As Copeland (2004) noted, an opposite result for the 

decision-problem than the one Turing produced would have had a shuttering effect on the 

discipline. Wrote John von Neumann in 1927, “if undecidability were to fail then 

mathematics, in today’s sense, would cease to exist; its place would be taken by a 

completely mechanical rule, with the aid of which any man [sic] would be able to decide, 

of any given statement, whether the statement can be proven or not” (qtd. in Copeland 

2004, p. 53) As G. H. Hardy said, “if there were…a mechanical set of rules for the 

solution of all mathematical problems…our activities as mathematicians would come to 

an end” (qtd. in Copeland 2004, p. 53).  

Three-quarters of a century ago, therefore, one finds mathematicians taking pains 

to prove that mathematical theorems were not decidable through any kind of mechanical 

process. Turing, as noted, found an “in principle” argument for mathematics not being 

reducible to computer science. Mathematicians discuss the philosophical importance of 

Turing’s result to the present day. Roger Penrose articulated this sentiment in his 

influential book The Emperor’s New Mind (1999), when he discusses Hilbert and his 

“hope”: “for any string of symbols representing a mathematical proposition, say P, one 

should be able to prove either P or ~P,…if Hilbert’s hope could be realized, this would 

even enable us to dispense with worrying about what the propositions mean altogether!” 

(Penrose, 1999, p. 137). Continuing on, drawing heavily on the incompleteness proof of 

Gödel and Turing’s work on the decision-problem, Penrose wrote: 
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The point of view that one can dispense with the meanings of 

mathematical statements, regarding them as nothing but strings of symbols 

in some formal mathematical system, is the mathematical standpoint of 

formalism. Some people like this idea, whereby mathematics becomes a 

kind of ‘meaningless game.’ It is not an idea that appeals to me, however. 

It is indeed ‘meaning’—not blind algorithmic computation—that gives 

mathematics its substance. (p. 137) 

 

The privileging of meaning over formalism as integral to mathematical insight 

can be seen as one version of the humanist objection, one version of the argument that 

there is something special in how humans go about solving problems. Penrose noted the 

sense of curious justice in the fact that it was Turing’s proof that helped contribute to the 

downfall of Hilbert’s program: “There is perhaps some irony in the fact that this aspect of 

Turing’s own work may now indirectly provide us with a possible loophole to his own 

viewpoint concerning the nature of mental phenomena” (p. 46). Turing, who appeared to 

hold out the hope that the mental was computational, had already proven that 

mathematical proofs could not be produced through computation alone. 

While Page typically described the humanist objection without reference to any 

specific detractor, this objection has been raised forcefully by contemporary 

compositionists (as noted by Attali, 2013) and we can see that Patricia Ericsson’s remarks 

presented at the beginning of the chapter attack a formalist, textually-dependent 

interpretation of meaning. Further into her essay, Ericsson called upon a number of 

theorists from various disciplines who espoused some version of the social construction 
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of meaning to attack AEE. For instance, wrote Ericsson, “[T]he machine has no 

understanding, no sense of the concepts and ideas that underlie the words, no ability to 

bring to the words what Berthoff claims is important in discerning meaning—‘what we 

[humans] presuppose and analyze and conjecture and conclude’—all of this adding up to 

what a human sense of a text might mean (p. 43)” (Ericsson, 2006, p. 32).  

Later, Ericsson went on to say that, “Writing for an asocial machine that 

‘understands’ a text only as an equation of word + word + word strikes a death blow to 

the understanding of writing and composing as a meaning-making activity” (2003, p. 37). 

In Ericsson’s view, writing cannot be a process of creating shared understandings 

between reader and writer if the reader is just an automaton; writing has been removed 

from its social context and degraded into a “dumbed down version of writing and 

composition” (p. 37). 

Several of Ericsson’s contemporaries have advanced the humanist objection as 

well. Herrington and Moran (2012)’s version of the humanist argument called upon a 

position staked by Ed White that “writing for nobody is not writing at all” (1969, p. 167, 

qtd. in Herrington & Moran, 2012) to emphasize their contention that mechanical writing 

assignments and mechanical scoring algorithms have a dehumanizing effect on writers. 

“We can support the humanity of our students as writers by insisting on our own 

humanity as readers” (1969, p. 168, qtd. in Herrington & Moran, 2012). Herrington and 

Moran echo White in suggesting that writing to machines is writing for nobody; 

therefore, writing to machines is not writing at all. Writing to a machine “distorts the very 

nature of writing itself,” these authors say (Herrington & Moran, p. 15). Discussing 

ETS’s e-rater automated assessment engine, Les Perelman (2012a) wrote: “A closer 
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analysis of the metrics used for each of the five e-rater categories highlights the basic 

limitation of all Automated Essay Scoring. They do not understand meaning, and they are 

not sentient. They do not react to language; they merely count it” (p. 125).  

As I have tried to emphasize, the force of the humanist objection lies in pointing 

out the duplicity in claims that at once insist that machines can understand language and 

at the same time concede that they are just symbol manipulators. Passage of a Turing test 

was once used to make sense of this aporia, held out as a standard by which machines 

could be said to think. But as I have tried to show, whatever the merits of Turing’s test as 

a measure of intelligence, Page did not appear to set up a true Turing test and therefore 

AEE does not pass it. Passing the Turing test seems to be a higher bar than originally 

believed. 

So where does that leave us? It leaves us with a test for AEE’s legitimacy that is 

somewhat one-sided because it is statistical in nature and leaves aside examination of 

how the computer scores individual essays. Subsequent chapters will amplify and spell 

out this concern more closely by beginning to analyze what happens at the level of 

individual essays, when a set of essays is scored by humans and by a machine scorer. 

I suspect, unlike Ericsson but with Perelman, that the problem with machines not 

understanding meaning is more of a practical impediment than an a priori prohibition. If 

a machine could be built to simulate semantic processing, such a machine may be able to 

validly assess essays. While more advanced systems will evolve, most likely “the prose 

written on these platforms will not be amenable to grading by machine until several 

significant revolutions occur in both theoretical and applied linguistics, until there is a 

theoretical framework for semantics that will allow a computational implementation, 



55 

 

until machines understand meaning. Until then, all AES will be is reductive counting” 

(2012a, p. 129).7 

Until that day arrives, Page’s assertion, as part of the symbolic engineering of 

Project Essay Grade, that it or any other AEE system has passed a Turing test is not 

entirely accurate. Interrogating this claim calls attention to the fact that the standard of 

interrater reliability is not the only bar by which an AEE system ought to be measured, 

even in circumstances where statistical reliability is quite high. Instead, the writing 

studies community should also look at how computer scoring response to each essay, 

particularly where human and computer scores do not align, since it is the individual 

essay-writer who is of prime importance to the field. We should ask, and try to 

understand, whether automated approaches would handle certain essays better than 

others. The current frame of reference for AEE foregrounds the proportion of essays that 

the computer scores correctly (i.e., in agreement with human raters); what has been 

downplayed is the proportion of essays, even if small, that would be scored differently by 

computer. 

For now, I will simply remark on one commitment that Page’s objectors have in 

common with Turing: both foreground a social conception of intelligence, whether it be 

the social process of writing or Turing’s discursive “test” of intelligence. Writing, seen as 

an act of grasping and conveying meaning, is a useful and powerful one for many reasons 

and would seem to reflect Turing’s notion of intelligence as a discursive series of acts. 

 

The Legacy of Mimicry 

                                                           
7 On the view that I have advanced, the “computational implementation” of a framework for semantics that 

Perelman mentions could be possible on either a Turing-computable or a simulation system. 
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The bar for Project Essay Grade set by Page—passing a Turing test by mimicking 

scoring by the use of proxy variables, with the primary success criterion being statistical 

reliability—has minimized the importance of the existence of a host of other success 

criteria. It has also seemed to foreclose on other, more normatively defined, questions of 

how AEE ought to be used.   

The next chapter examines how Page’s statistical reliability approach has 

remained the primary criterion by which AEE is judged by those in the educational 

measurement field. Critics have countered by pointing toward shortcomings of AEE in 

terms of various forms of validity. The narrative and counter-narrative provided is one of 

what it means for AEE to properly score an essay. 

  



57 

 

 

3. REVIEW OF ASSESSMENT RESEARCH IN AUTOMATED ESSAY 

EVALUATION 

 

 

Overview of Chapter 

 

The previous chapter saw that AEE was technologically rooted in the computer 

science revolution, and symbolically rooted in Alan Turing’s indistinguishability test to 

base legitimacy on human-like patterns of response. But empirical, rather than 

conceptual, studies of AEE are its lifeblood, where much research has attempted to 

describe and measure their applications. There is quite a body of research on this 

technology; indeed, an EBSCO search reveals 101 articles containing the phrase 

“automated essay scoring” in the past 13 years alone. An annotated bibliography created 

by Haswell, Donnelly, Hester, O’Neill, and Schendel (2012) provides an “abridged” 

collection with 39 key sources (para. 3).  

Since it would be impossible to exhaustively review all of this research, this 

chapter will focus on key studies that lay the ground for a new study to be discussed in 

chapter 4. Along the way, we will see the way in which much of the research reproduced 

the central argument of Page, that interrater reliability is a form of Turing or 

indistinguishability test, and that passing such a test legitimizes AEE.  

We will also examine challenges to reliability as the appropriate 

indistinguishability test. Instead, opponents proposed, what ought to be the standard is 

some form of validity: AEE must be able to evaluate a construct of writing that has 

relevance or applicability to other writing situations, not simply the construct of writing 
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created when a software program attempts to reproduce ratings on a highly-managed 

standardized examination, assigned by people using a highly-constricted rubric. That 

argument often manifests as some form of humanist objection: humans can capture the 

full writing construct in their grading, the argument goes, and if AEE is to be legitimate, 

it ought to be able to capture that construct as well. It should score essays validly as well 

as reliably. This chapter uses this framing device to see the literature on AEE as a story 

about what it means for these systems to “get it right.” 

 

 Current Educational Climate: a Brief Note 

With open admissions still representing the entrance philosophy of the vast 

majority of U.S. colleges and universities, Mina Shaughnessy’s (1977) documentation of 

American college students’ struggles with academic writing applies to today’s students as 

well. In short, students need help becoming strong writers. The question of how much 

automation in educational service delivery is the “right” amount comes in the midst of a 

major sea change—that of the movement to online course delivery. Massive Open Online 

Courses, or MOOCs, for instance, reduce classroom contact dramatically and they also 

provide opportunities for synergy between automation and the virtual course presence 

typical of the MOOC model. The company responsible for Harvard and MIT’s open 

online courseware, EdX, announced that it would use automated scoring and has 

developed a tool named the Enhanced AI Scoring Engine (EASE) that is already in use 

by some of the Massively Open Online Courses (MOOCs) that it coordinates. Christian 

Schunn’s laboratory at the University of Pittsburgh has studied an online peer review 

platform called SWoRD and the data generated by the huge amounts of coursework it 

supports, with the hope of developing automated instructional capacity (Schunn, 2013). 
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(According to Schunn’s website, the platform distributes essays, stores evaluations, and 

even determines the accuracy of the evaluations through some unspecified form of bias 

identification.)  

Not surprisingly, computers score far more rapidly than people, and computer 

scoring has been deemed robust enough for computers to be employed in a number of 

standardized tests. The Graduate Management Admissions Test (GMAT) uses a software 

engine by Vantage Learning called IntelliMetric to score its Analytical Writing 

Assessment piece in combination with human raters; the Test of English as a Foreign 

Language (TOEFL) writing section is scored by one human rater and ETS’s e-rater 

engine as the second rater with a second human adjudicating if scores differ substantially 

or the essay is flagged as anomalous (Weigle, 2013, p. 91). The e-rater engine is also 

used to score the writing section of the Graduate Record Examination (GRE) in 

conjunction with a human rater.  

Not to be left behind, both the Partnership for Assessment of Readiness for 

College and Careers (PARCC) and SMarter Balanced, the two bodies funded by the U.S. 

Department of Education to develop the assessments for the new Common Core public 

education standards currently adopted by 46 states—have indicated interest in using 

automated scoring in the assessments they will develop, following a competition 

announced by the Hewlett Foundation to incentivize innovation in assessment 

technologies (U.S. Department of Education, 2012, p. 9).  

Although the Educational Testing Service did not provide an exact number of 

colleges and universities subscribing to its online, automated scoring platform Criterion, 

anecdotal reports from listservs, research documents, and elsewhere point toward a 
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growing presence of AEE at the college level. Institutions such as Fresno State 

University, the New Jersey Institute of Technology, Jackson State University, and San 

Jose State University employ AEE in some form. Outside of the essay scoring realm, 

automated reading and writing technology is routinely used in human resource 

departments to scan resumes and will soon be used by the Associated Press to “write” all 

of its finance reports (Colford, 2014). 

In sum, AEE technologies are continually being refined and deployed, over the 

protestations of many writing experts. Large-scale experimental designs testing the 

pedagogical impact of AEE in college settings would seem to be the best way to answer 

the question of whether these applications can improve writing. There are some such 

studies with mixed results, as will be described shortly. But tracing the evolution of AEE 

shows that the large scale experimental design was not the first method used to legitimize 

AEE; that distinction went to reliability-focused correlation analyses examining the 

scoring patterns between automated and human scoring.  

 

AEE Literature: Reliability Studies 

 

Generally speaking, the reliability of a test refers to the “consistency of scores 

across replications of a testing procedure” (American Educational Research Association, 

2014, p. 33), or in other words the degree to which scores remain the same as a test is re-

administered. In the case of essay assessment, rather than the test itself being re-

administered, the scoring process is reapplied to the same test samples, by a different 

rater. Reliability is then calculated as a function of the consistency of the two (or more) 

sets of scores. This is known as inter-rater reliability. 

Reliability is the traditional mode of measuring AEE, beginning with Page and 



61 

 

philosophically and historically rooted, as I have suggested, in Turing’s socio-linguistic 

formulation of a machine-human indistinguishability test. In the case of an AEE system, 

“reliability” has been taken to mean that the system produces scores that agree to a large 

and specifiable degree agree with human scores. Albeit a computational achievement, a 

Turing machine that could fool a human only 30 percent of the time would not be very 

reliable instrument, nor would an electronic scale that only agreed with a balance 30 

percent of the time. If a survey question is written so vaguely that you answer it one way 

the first time, and another way the next, it would not yield terribly valuable information 

about the subject of the survey. Reliability is one way of describing how accurate a 

particular measure is. 

As noted earlier, many early studies involved the application of AEE in “high 

stakes” or important testing situations (e.g., Attali, 2007; Cizek & Page, 2003; Klobucar 

et al., 2012; Shermis & Burstein, 2003; Shermis & Hamner, 2012). While AEE’s 

potential application is broad, this technology has been primarily studied for its ability to 

produce scores that agree with those assigned by human raters on standardized, timed 

examinations with short word counts (e.g., Page, 1966, 1968; Perelman, 2012, 2013; 

Shermis & Burstein, 2003; Shermis & Hamner, 2012). These studies tended to focus on 

whether scoring engines are reliable as far as yielding inter-rater agreement when 

measured directly and with statistical techniques designed to factor out chance and such. 

(The scores are often also said to achieve intra-rater reliability in the sense that the 

scoring algorithms will consistently assign the same score to the same essay once the 

machine is trained.) Several key studies are reviewed below. 

In a well-publicized and widely-cited recent study, Shermis and Hamner (2012) 
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reported agreement results for nine AES platforms, which were trained to score student 

responses along eight essay-writing prompts taken from six different high-stakes essay 

writing tests. The authors concluded that “by and large, the scoring engines did a good 

job of replicating the mean scores for all of the data sets”; most of the mean predictions 

were within .10 of the (human) resolved score (pp. 21-24). Quadratic weighted kappas 

(an agreement measure that statistically factors out the role of chance) ranged from .60 to 

.84 compared to human raters’ kappas of .61 to .85 (p. 24).  

Despite major press, the scope of Shermis and Hamner’s (2012) project was large, 

probably too large to warrant these authors’ sweeping conclusions about AEE. There 

were, for instance, major variations in the rubrics being used by each data set, their range, 

how resolved scores were calculated, the average essay length and standard deviation in 

number of words,  and more. Furthermore, the study did not discuss certain factors that 

may make score prediction easier or harder, besides the range of the scoring scales 

(obviously, raters using scales with fewer integers have a higher probability of agreement 

by chance). For instance, the distribution of scores along a rubric could potentially 

enhance or detract from score prediction accuracy—even if there are six score values on a 

rubric, if human scores tend toward the mean (do not make substantial use of the lowest 

and highest scores, for instance) computer predictability could be made easier. 

For these and other reasons, Shermis and Hamner’s conclusions have been 

challenged on multiple accounts by Perelman (2013), who noted, for instance, that the 

study did not include an ANOVA or regression analysis for the machines as a group to 

see if they performed differently from the human raters on the overall sample (p. 4). (No 

tests of statistical significance were reported at all, Perelman notes.) Perelman also noted 
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the “heterogenous mix” of essays that form the basis for the training and test sets, 

pointing out that four of the eight sets were source-based essay assignments whose 

rubrics emphasized reading comprehension, not actual writing. 

Another objection that Perelman made had to do with the variables being 

compared. To calculate rater agreement, the two human ratings were compared with one 

another and an exact agreement percent attained for a sample (in a total of five essays, if 

two readers agreed on scores for four of these, the exact agreement would be .80). For the 

computer models, instead of figuring exact agreement with each of the human scores, the 

variable presented in Shermis and Hamner (2012) is exact agreement with respect to the 

“resolved score.” However, the resolved score provided in many of the samples was not 

the combination of the two human scores, as is standard practice. Instead, the resolved 

score was the higher of the two human scores in four of the eight samples, or simply the 

first reader’s score in one other sample. So while the humans are being compared to each 

other, the machines are being compared to higher of two scores on four of the eight 

samples. The ability to replicate scores by rounding up, Perelman argued, artificially 

inflates the machine agreement numbers.  

To make his point, Perelman appealed to classical test theory and its positing of a 

“true score” for each essay, which does not have to be an integer value. If a true score for 

a particular essay is a 2.8, say, the two human scores are likely to be 2-2, 2-3, 3-2, or 3-3. 

Any third rater (human or otherwise) who has narrowed the choice to a 2 or a 3 and who 

knows the resolved score is the higher of the two has a 75 percent chance of getting the 

score right by selecting the 3. Indeed, Perelman created a table that showed (pp. 6-7) that 

the scoring engines did better in replicating the resolved score when it was the higher of 
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the two scores than when it was the sum of these scores, as is the standard way of 

creating a resolved score. 

In another well-known recent study, Klobucar et al. (2012), studied 603 student 

essays at the New Jersey Institute of Technology, ultimately claiming that the Criterion 

engine is useful for rapid assessment to provide an “early warning system” (p.110) that 

identifies weak incoming students prior to course enrollment. The focus of this study was 

to assess whether Criterion was a reliable guide—whether its e-rater system accurately 

predicted course grades of the students who used it. The strongest correlation, the authors 

reported, was actually between human-scored holistic portfolio scores and final course 

grades (.43); the Criterion essay’s correlation with course grades was .29. 

In the past five years, the domination of large-scale studies by industry 

researchers has begun to fracture. Tsai Min-hsiu (2012) studied 923 AEE-scored essays 

from high school students in Taiwan and found that the human-human rater agreement in 

scoring the essays was much higher than human-machine agreement particularly in the 

highest and lowest-scored group of essays. (E.g., the Pearson correlation for the two 

human raters in the lowest, 1-point, group was .929 and the AEE system’s Pearson 

correlation with each human rater was .345 and .385 respectively, where the second AEE 

data point represents an alternative data set created by assigning a score of “1” to the 

essays that the AEE system rated unscorable instead of leaving them out of the sample). 

These results seem to directly contradict industry studies—although Shermis and Hamner 

(2012) concede that their study did not evaluate potential differential treatment of 

subgroups by the scoring methodology (p. 27).  A separate study of scoring reliability on 

a 600-word prompt (McCurry, 2010) showed that machine scoring reliability was lower 
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than human reliability when the writing prompt was more broad and open than the 

original kinds of prompts found in earlier studies. (Machines had been trained on 187 

human-scored essays and produced scores for 63 essays.)  McCurry found, for instances 

that the first software package only awarded scores between 5 and 8 of the nine-point 

scale, and the second package only awarded scores between 3 and 8. Standard deviations 

were smaller for the machines than the humans (.79 and 1.18 compared to 1.37). Using 

fewer points of the score range would be a way of increasing the probability of 

agreement. 

In more general terms, Perelman (2012a) has criticized some of the fundamental 

reliability findings, proposing that they are only effective for short essays and not 

relatively longer ones, a claim that McCurry (2010)’s research supports. I discuss this 

critique in more detail in chapter 4. Ericsson and Haswell (2006) have critiqued AEE on 

the grounds that most of the studies that show its effectiveness have been done with the 

collaboration of the AEE industry. These authors have also critiqued AEE from the 

vantage point of social constructivist pedagogy, contending that writing to non-sentient 

machines is not a form of writing at all, if writing is indeed a social interaction. This 

“humanist” objection has been discussed in chapter 1, where I have attempted to show 

how this objection fits into the larger context of conversations around artificial 

intelligence from realist and pragmatic philosophies. Herrington and Moran (2001; 2006) 

have shown that AEE seems unfit to evaluate certain forms of writing, such as essays not 

written in Standard American English. Still others (Condon, 2013; Perelman, 2012) have 

suggested that AEE algorithms only measure a partial set of the writing construct, 

privileging grammar and mechanics over higher-order concerns.  
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AEE Literature: Validity Studies 

The most “fundamental” consideration in designing and evaluation tests, 

according to the Standards for Educational and Psychological Testing (2014), is validity.  

In the educational measurement context, validity is the degree to which “evidence and 

theory support the interpretations of test scores for proposed uses of tests” (Standards for 

Educational and Psychological Testing, 2014, p. 11). As some have noted, reliability is a 

necessary condition for validity: if scores are inconsistent, it is hard to draw conclusions 

about how they should be used or what they stand for. On the other hand, reliability is not 

in itself sufficient for validity: measures may be reliable simply because they skim off the 

more complex qualities of a phenomenon, hence reducing their validity. (E.g., a multiple-

choice math test may exhibit high reliability but not test a student’s ability to find elegant 

solutions.)   

This relationship between reliability and validity is apparent for AEE as well. If 

AEE has in its favor reliability in terms of interrater agreement (although as mentioned 

above, this claim deserves greater scrutiny), the greater challenge is validity: many 

people question whether AEE scores, as consistent as they may be, are actually 

measuring any meaningful construct of writing. In particular, Condon (2013) has faulted 

the assessments for underrepresenting the writing construct in favor of features that AEE 

engines can score reliably through the proxes they employ. According to Perelman 

(2012a), “The term, construct validity, refers to an assessment instrument’s ability to 

measure a theorized scientific construct that cannot be directly measured, such as 

intelligence, creativity, critical thinking, or writing ability” (p. 121).  

Much of the validity literature for the present project comes from rhetoric and 
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composition scholars and consists of case study, single institution or single-classroom 

studies that seek to expose the limitations of grading essays by computer (e.g., Herrington 

& Moran, 2001; Maddox, 2006; Matzen & Sorensen, 2006). Herrington and Moran 

(2001) wrote various versions of essays to WritePlacer Plus and Intelligent Essay 

Assessor (the former is part of the College Board’s Accuplacer system and the latter is a 

feedback engine using latent semantic analysis). The researchers concluded that the 

scoring methodologies of these two programs were not presently capable of factoring in 

clichéd language, plagiarism, and other factors that matter in constructing an essay, but 

focused on measurable features such as essay length, vocabulary, and other simplistic 

measures of writing ability. Herrington and Moran’s main claim was that writing to a 

machine rather than to a person dramatically shifts the rhetorical situation away from one 

of creating meaning and impact. 

Writing in the Ericsson and Haswell (2006) anthology, Matzen and Sorensen 

described challenges in using ACT’s e-Write software for placement at Utah Valley State 

College, hoping to find an alternative to the current placement system utilizing multiple 

choice tests. They reported that the e-Write software had lower correlations with the other 

forms of placement tests than did the human readers’ scores and that, for instance, e-

Write would have placed only 4 of 298 students in the lower-level basic writing course, a 

result that experienced staff deemed too low by historical measures (p. 137). This was an 

experiment designed to measure validity through convergent evidence. Similarly 

pessimistic findings on e-Write were reported by Maddox (2006) in a study taking place 

at Jackson State Community College. 

Many industry collaborators have themselves agreed that scoring engines tend to 
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measure only a “subset” (Klobucar et al., 2012, p. 106) of good writing skills (see also 

Lim & Kahng, 2012, p. 42). Weigle (2013) investigated several forms of validity in 

AEE’s scoring of 386 English language learners at eight institutions, finding that machine 

scoring seems to support explanation and generalization forms of validity more than 

extrapolation, explanation and utility. 

Integrating the reliability and the validity evidence gives a mixed view of AEE. It 

indicates that some measures of reliability (such as aggregate interrater agreement) show 

computers to be as reliable as people. But examining the validity evidence shows serious 

doubt that the scores that automated software assigns have much bearing on writing in 

other contexts, such as college essays or college performance in writing classes.  

The reliability story and the validity story provide a distinctly different picture of 

the merits of AEE. If what it means for AEE to get scoring “right” is to approximate 

human scoring patterns in highly controlled circumstances, then computer score 

prediction does have merit. Ellis Page has been vindicated. But if what it means for AEE 

to get scoring right is to generate scores that provide insight into students’ writing ability, 

aptitude for a particular writing course, or likely outcome of a first-year composition 

program, then AEE has far to go. There is little reason to expect, 49 years after Ellis Page 

introduced Project Essay Grade, that AEE models can be used for these more general 

purposes. 

 What needs to be done is that we, like Haraway, entertain both perspectives at 

once. Although the reins driving AEE technology adoption may indeed be guided by the 

invisible hand of capitalism, AEE may still have underexplored merit. Co-opting AEE for 

formative rather than summative assessment could be one such avenue, as some suggest. 
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Formative/Classroom-Based Research  
 

Even as the legitimacy of AEE remains vigorously and acrimoniously contested, 

Whithaus (2013) noted in his Foreword to Handbook of Automated Essay Evaluation that 

the automated evaluation field is moving toward a wider range of applications than 

scoring: “the shift [from use of the term ‘automated essay scoring’ to ‘automated essay 

evaluation’] indicates that feedback, interaction, and an altogether wider range of 

possibilities for software is being envisioned…” (p. viii). In other words, AEE is not 

going away and is in fact pushing into other domains. “We expect,” wrote Shermis, 

Burstein, and Bursky (2013) in that same volume, “that there will be greater interest in 

automated essay evaluation when its use shifts from that of summative evaluation to a 

more formative role” (p. 10), meaning contexts where the computer program provides 

some sort of advice to the writer on how to improve writing rather than simply issuing a 

score. Current research in AEE is growing from studying reliability in standardized 

testing environments into studying AEE in longer essay assignments, in the classroom as 

a feedback application, and AEE as an assessment tool for placing incoming college 

students in ability-appropriate courses (e.g., Isaacs & Molloy, 2010; Matzen & Sorensen, 

2006; Klobucar et al., 2012).  

However, research on formative feedback engines has been mixed. Roscoe et al. 

(2011) studied the Writing-Pal automated tutoring system and did find that the revised 

essays received significantly higher scores than the original ones. However, Chen and 

Cheng (2008) studied a system of formative feedback called the MyAccess! system from 

IntelliMetric. They implemented the system in three classrooms of advanced English 

learners and followed up with surveys of students, concluding that, “overall, [its] use was 
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not perceived very positively by students in the three writing classes” (p. 107). Shermis, 

Burstein and Bliss (2004) followed 1072 high school students randomly assigned to work 

on Criterion writing prompts or control prompts in advance of a state assessment. No 

significant difference in performance on the assessment was found in the treatment versus 

control group.  

Hagerman (2011) tested Criterion by performing over 60 manipulations to two 

essays, a Criterion-supplied example and a researcher-written one, and submitting them 

to: a Criterion prompt, a scored instructor prompt, and the open-ended “check your 

writing” module.  The manipulations altered features thought to contribute to Criterion’s 

scoring algorithm. Hagerman, a computer scientist with experience as an ESL instructor, 

concluded that the “single greatest determiner of score is simply the total word count” (p. 

281). He further concluded that “the results do not support the claim by ETS researchers 

[in Burstein, 2009] that Criterion ‘embodies’ Process Writing except in the most 

superficial way” (p. 281). As Lim and Kahng report, Cheville (2012) found that Criterion 

may discourage “writers’ development and use of logic and imagination” (p. 44). 

 

AEE Enters the Classroom 

As indicated, AEE has been conceptualized by Page and others as a tool to 

generate reliable scores, in which aggregate score assignments appear to be on par with 

those of human raters. This dissertation offers additional framing language designed to 

offer insights into how this technology serves or does not serve students as individuals 

and learners. In what follows, that new framework will be narrowed even further to 

college students. 

A small study (described in the next chapter) will explore whether computer 
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scores align with how college instructors might score papers. The warrant for asking this 

question is that if computer scoring and feedback is to be useful to college writers, it 

would help if the software is able to assess essays in a way consistent with the kinds of 

grading and feedback students might expect from their instructors. Seeing how well AEE 

scores match up with trained instructors’ scores is a way of assessing this kind of validity.  

If scores do not align closely, this would suggest that AEE not be used as a 

general scoring mechanism. It may yet be valuable for students to write practice papers to 

automated assessment software in which they receive grammar and mechanics feedback, 

but AEE systems should in that case not promote nor leave the impression that its scores 

measure or correlate with anything more than the features that make up its feature set. 

Thus, for the essay scores generated by AEE to be relevant in higher education, 

according to my premise, they ought not only be reliable on what Deane et al. (2013) has 

called a “common rubric” that measures surface features and structure, but their scores 

ought to cohere with those along a rubric that operationalizes the features that college 

instructors tend to value, such as those in the Framework for Success. While Attali (2013) 

did report findings from some studies on the relationship of automated scores with 

independent measures of writing ability such as self-evaluations, far more work is needed 

to characterize the relationship between automated evaluation drawing on surface 

features, and rubrics suitable for the expectations for college writers. In order for the 

machines to be useful in college settings, they must be able to evaluate papers in ways 

similar to how teachers might evaluate them. This intuition needs to be operationalized, 

and I will discuss the operationalization in what follows. 

Some qualities thought to support the kind of writing tasks navigated in college 
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are those enumerated in the Framework for Success in Postsecondary Writing and the 

related Outcomes Statement. The Outcomes Statement is an attempt to characterize the 

“knowledge, practices, and attitudes” that it is hoped students will acquire through first-

year composition courses (CWPA, p. 1). These outcomes include rhetorical knowledge, 

critical thinking, writing processes, knowledge of conventions and ability to compose in 

multiple environments—although the last outcome has been removed in the 2014 version 

in the recognition that multimodal composing is implied in the four previous outcomes 

(O’Neill, Adler-Kassner, Fleischer, & Hall, 2012). (See Figure 2 for list and abbreviated 

descriptions of Outcomes.)  

 
 

 

Figure 2. List of Framework Outcomes (2014). 

 

CWPA Outcomes 

• Rhetorical knowledge – the ability to analyze and act on 

understandings of audiences, purposes, and contexts in 

creating and comprehending texts; 

• Critical thinking – the ability to analyze, synthesize, interpret, 

and evaluate ideas, information, situations, and texts; 

• Writing processes – multiple strategies to conceptualize, 

develop, and finalize projects;  

• Knowledge of conventions – the formal rules and informal 

guidelines that define genres, and in so doing, shape readers’ 

and writers’ perceptions of correctness or appropriateness 
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Perelman has asserted (2012a) that AEE would not be able to measure most of 

these abilities. He alleges that e-rater, and probably IntelliMetric and Intelligent Essay 

Assessor as well (although these software developers have been less transparent about 

their scoring methods) primarily count errors, words, and characters (p. 129). 

This is a good place to raise an issue that has been found in AEE scoring, which is 

that, as noted by Shermis et al. (2013), a correlation has been found between the length of 

an essay in number of words and its human-assigned score. After a certain range of 

lengths the correlation begins to recede (pp. 8-9) and some would put that threshold at 

about 1,000 words. Accordingly, the length-score association may well tail off for 

college-length essay assignments, which may range to 1,500 words for a typical first-year 

composition assignment. Furthermore, timed writing assignments produce essays of 

dramatically variant lengths (e.g., the same prompt may result in essay of 100 to 600 

words or in other words, a longest essay six times as large as the shortest one). In 

contrast, a typical range for a college essay might be that the longest sample is twice as 

long as the shortest (e.g., 5 pages to 2.5 pages). Assuming that scores are normally 

distributed, essay assignments where length is a more prominent, noticeable feature (the 

length multiple between shortest and highest is larger) would seem on the surface to stand 

a better chance of having a higher length/score correlation. 

To continue with this example, even if a length-quality association were found to 

hold in college writing, certainly it would not be because length alone is intrinsically 

valuable. Consequently, if a computer system were to provide meaningful feedback in 

addition to a score it could not do so by advising the student to just write a longer paper. 

To wit, as Burstein, Chodorow, and Leacock (2004) noted in a white paper introducing 
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ETS’s Criterion Online Writing service, “…[I]t is essential that students receive accurate 

feedback from the system with regard to errors, comments on undesirable style, and 

information about discourse elements and organization of the essay. If the feedback is to 

help students improve their writing skills, then it should be similar to what an instructor’s 

comments might be” (p. 4, italics mine). In formative feedback, score estimation by proxy 

variable is not sufficient unless the computer is able to capture the student’s performance 

like a teacher would, which would only be possible if the variables measured are identical 

to or closely-enough related to the variables that do matter to college instructors.  

Moreover, according to ETS researchers Chodorow and Burstein (2004), e-rater 

contains no “direct measure” of an essay’s length. The cited reason is that the “driving 

concept that underlies e-rater is that it needs to evaluate the same kinds of features that 

human readers do….Even though length measures can be shown to be highly correlated 

with human reader essay scores, length variables are not scoring guide criteria (Burstein 

& Chodorow, 1999, p. 69, cited in Chodorow & Burstein, 2004, p. 4). Chodorow and 

Burstein (2004) go on to remark that “Although some researchers have suggested adding 

explicit measures of length to improve correlations with human readers, the assessment 

community is generally concerned about the effect this would have on coachability” 

(2004, p. 4). But, the authors do acknowledge that several features of e-rater could serve 

as “proxies” for essay length in the models that the system builds (p. 11). 

Returning to the Framework and its Outcomes Statement, ETS researcher Deane 

(2013) also recognized that the kinds of values embedded in the Framework are not 

measured directly by e-rater, in contrast with the values found in more traditional holistic 

rubrics: 
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These systems are designed to be applied in the first instance to 

holistically scored, on-demand, timed assessments. In general, AES 

systems rely on features intended to measure many of the traits specified 

in holistic scoring rubrics, or in the Six-Trait model offered by Spandel 

(2005). The systems match much less well with criteria advanced in such 

contexts as the Framework for Success in Postsecondary Education 

(Council of Writing Program Administrators, National Council of 

Teachers of English, and the National Writing Project, 2011; O’Neill, 

Alder-Kassner, Fleischer, & Hall, 2012), which emphasizes rhetorical 

knowledge, critical thinking, and control of the writing process. In part 

this disjuncture is due to the contrast between models focused on “text 

quality,” measured in the end product, versus models focused on “writing 

skill,” which is an attribute of the writer, not the text. In part, it reflects 

differences in what kinds of features can readily be measured in the 

current state of natural language processing technology. (p. 12) 

 

As indicated above, current natural language processing technology does not 

readily measure the kinds of qualities captured in the Framework. In fact, all parties seem 

to agree that, as Deane et al. (2013) wrote, “as the articles collected in Shermis & 

Burstein (2003) indicate, AEE systems do not explicitly evaluate the validity of 

reasoning, the strength of evidence, or the accuracy of information. They rely instead on 

measures of such things as the structure and elaboration of student essays, the 
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sophistication of vocabulary, or the number of errors in grammar, usage, mechanics or 

style” (sect. 1). Ultimately, many would agree with Klobucar et al.’s conclusion that, 

“writing program administrators take it as a given that only the course instructor can 

witness robust construct representation and evaluate it by awarding a course grade” 

(2012, p. 79).  

Criterion’s feedback is a function of the traits it is able to measure. E-rater’s 

holistic score is calculated based on traits or features of writing, which as Quinlan et al. 

(2009) noted, blurs the traditional distinction in assessment between holistic and trait-

level scoring. Because it cannot comment on features it cannot score, Criterion’s ability 

to value essays comparably to how college instructors value them, and therefore to 

provide meaningful feedback, depends on how closely its scoring matches up with how 

instructors would score. (If it can’t measure what matters, it won’t instruct properly.)  

The study to be described in Chapter 4 poses questions about the inter-correlation 

between Criterion holistic scores and human scores along a rubric that prioritizes higher-

order skills such as those found in the Framework. As Paul Deane noted in both Deane et 

al. (2013) and Deane (2013), stronger writers tend to be able to master many of the 

components of good writing, whereas weaker ones may have multiple deficits. This 

“deep connection between skill in text production and the broader bundle of skills 

deployed by expert writers” may be accounted for by the theory of cognitive capacity, 

whereby writers who have achieved fluency in writing have more cognitive resources 

available to them to tackle higher-order dimensions of writing (Deane, 2013, pp. 17-18). 

Synthesizing the remarks made above, it turns out, Paul Deane has provided both 

a rationale for why AEE would not be able to evaluate essays on qualities embodied in 
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the Framework’s Outcomes Statement, but also a rationale for why AEE might be able to. 

While AEE does not directly measure aspects of writing such as quality of an argument, 

it might indirectly do so because of the cognitive relationship between higher and lower 

order features of writing. If AEE systems can exploit writers’ cognitive capacity they 

may be able to perform reasonably well on writing assignments judged with Outcomes 

qualities. An interesting research question, then, could be framed around the extent to 

which there is an overlap between common writing qualities and higher-order Outcomes 

sort of qualities. This is one motivation for the pilot study described in chapter 4. 

 

How AEE Works: Notes on Mechanism 

A functional understanding of automated scoring will help structure the 

discussion in chapter 4. I concentrate here on one of the most popular scoring engines, e-

rater from the Educational Testing Service, which is the scoring engine that was used in 

the study described in that chapter. 

While the features that e-rater uses change periodically, the current version of 

ETS’s e-rater engine (version 11.1) lists the high-level features of: 

 

• Grammar 

• Usage 

• Mechanics 

• Style 

• Organization 

• Development 

• Positive features 
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• Lexical complexity 

• Topic-specific vocabulary usage 

 
Each high-level feature is composed of microfeatures that e-rater measures and 

figures in to calculating the final scores, through a regression analysis. (A regression 

analysis is a way of predictively modeling a phenomenon by manipulating a set of 

variables.) See Figure 3 for the construct decomposition or a conceptual map of the 

features deployed in the latest version of e-rater, including the list of microfeatures that 

serve as variables in the regression model (reprinted with permission from Deane, 2013). 

As Deane (2013) noted (p. 14), high-level features are grouped into nine headings 

that correspond to commonly-used rubric categories in writing assessments. The six traits 

in the box on the right hand side are from the 6+1 rubric (Coe, Hanita, Nishioka, & 

Smiley, 2011). The 6+1 rubric grew out of assessment research that Paul Diederich and 

others conducted at ETS. In his (1996), Diederich conducted a factor analysis seeking to 

elicit the writing qualities driving expert grades in a sample of 300 freshmen essays. For 

his analysis, teacher comments were tabulated and grouped into the dimensions of ideas, 

mechanics, organization, wording and flavor (Diederich, 1996, p. 358).8 

 
  

                                                           
8 In a study of the comparative validities of four scoring systems, Winters (1980) found that the Diederich 
scale correlated mildly with both impressionistic and analytic scoring systems and was able to distinguish 
between high and low-performance writers, an indication of its predictive validity. 
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Figure 3. Construct decomposition for e-rater. 

 
 

The visual presentation of the construct decomposition is of course the result of 

rhetorical decisions, not simply computer engineering constraints. There was a decision 

to present e-rater’s high-level features as the same gestalt features that people would 
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employ to react to an essay. In other words, it presents an image of the computer as a 

reader, judging style or organization as a human would. In fact, though, as indicated by 

the blurring of the colors in each feature, corresponding to the key at the right, the 

microfeatures that the computer algorithm actually counts could be arranged in different 

ways; for instance, Article Errors under “Usage” is actually said to correspond both to 

Sentence Fluency and to Conventions. Even more, the high level features themselves do 

not presumably contribute to the score; rather, the microfeatures do. While “grammar” 

and “style” typically represent meaningful and causative categories for a human rater, 

they do not represent meaningful nor causative categories for e-rater, as it is only the 

microfeatures that contribute to a score.   

Like the appeals to Turing that Page made 49 years earlier, this kind of a visual 

and textual presentation of the scoring features is a part of the symbolic engineering of 

AEE technologies, emphasizing how the computer compares (favorably) to humans. 

Those opposing automated scoring have labored to present computers and people as 

antitheses, such that the sponsors of the petition against automated scoring have named 

their website “humanreaders.org,” to highlight the prima facie absurdity in the premise of 

machine reading. In contrast to the rhetorical message presented in the construct 

decomposition chart, the study of computationalism in the preceding chapters uncovered 

that computers are in this case simulating not replicating human scoring. 

As many have observed, the microfeatures that e-rater records do not always 

relate to features that readers themselves would take into account or, in some cases, even 

be able to identify. While human judges may certainly take spelling into account, and 

some of the grammatical microfeatures such as subject-verb agreement, they would never 
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precisely calculate an essay’s average word length or length of discourse elements such 

as paragraphs and factor those into their score. Most instructors have thought little about 

“good collocation density” yet manage to grade student papers. Now one might argue that 

such features may operate in the background as the linguistic correlates of what raters 

might squishily refer to as “good style.” But these relationships have yet to be 

identified—although C. Anson (personal communication, 2014) reports that in one study, 

a higher proportion of Latinate versus Anglo Saxon vocabulary resulted in perceptions of 

higher quality. What is obvious is that these e-rater microfeatures are not found among 

the formal characteristics of evaluation, not found on any rubric nor discussed in any 

scoring session. Chodorow and Burstein’s (2004) claim that computers evaluate features 

similar to what humans evaluate is not quite right: they simulate evaluating the features 

that humans evaluate—or at least are asked to evaluate via rubrics like 6+1. 

Indeed, the microfeatures in Deane’s analysis correspond to what Ellis Page 

would have called “proxes” or approximations of intrinsic variables of interest in 

measuring the quality of an essay (discussed here in chapters 1 and 2). The macro-

features correspond to intrinsic variables of interest or “trins.” Dyehouse (2007) suggests 

that knowledge had been so consolidated around the point that computers only simulate a 

true analysis of an essay such that by the 1990s it was not necessary to justify the use of 

proxes, because everyone knew that computers did not actually read as a human would. 

However, what Deane and predecessors at ETS seem to have been able to do is to fuse 

the master analysis and the ratings simulation in the visual representation. In this 

representation, the proxy measures at the microlevel contribute to the macrolevel master 

analysis.   
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In sum, as many have pointed out, automated scoring engines work with text in 

ways that are quite distinct from how readers work with text, manipulating different 

features. The scoring process is very much, then, a simulation rather than a replication of 

the human undertaking. And the visual representation as given in Figure 3 does not 

mimetically represent the computational calculus—the computer’s methodology—as 

much as it symbolically engineers that calculus so that it corresponds to the human 

methodology for scoring. 

This mode of similarity-building mirrors the standard measure of success in 

automated scoring that the computer scores should be able to predict the average of two 

human scores on a set of essays and that the computer scores attain similar levels of 

agreement as the two human raters (c.f. Deane, Williams, Weng, & Trapani, 2013). As 

pointed out in chapter 2, the idea that computers should be measured in terms of their 

ability to agree with or mimic human raters of course reflects Alan Turing’s (1950) 

proposal that machine intelligence can be measured by a computer’s ability to pattern its 

responses after a human respondent so effectively that it fools a referee (now called the 

“Turing test”). It also stems from the idea that there is no other agreed-upon “gold 

standard” for evaluating essays as there would be in, say, arithmetic performance where 

the answer to a straightforward multiplication problem such as 25 x 59 is arrived at 

through an agreed-upon method.  

The verdict that automated scoring is a “fait accompli” (Cizek & Page, 2003) is 

premature and obscures vigorously contested space. The jousting match has begun to 

settle in the statistical details and psychometric methodologies of the studies, as we saw 

above in the dissensus between Shermis & Hamner (2012) and Perelman (2013). A meta-
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analysis of scoring studies, with attention to methodological considerations such as how 

interrater agreement is calculated, would surely yield insight into the reliability of scoring 

engines and how that reliability is affected by choices in study design.  

The study carried out in this dissertation, described in the next chapter, 

demonstrates how a subtle shift in perspective from how closely machine and human 

scoring correlates on average, to where and how the scoring differs, illuminates the 

impact of high-stakes and machine scoring on students. In order to assess the potential 

value of e-rater for college writing, the next chapter explores what conclusions can be 

drawn about the relationship between its scoring approach and the approach of a 

presumptive college instructor. This can be done across a range of essay types: the 

default essays that e-rater has pre-adjusted scores for, and essays assigned by instructors. 

The study described in chapter 4 uses the first kind of essays.  

While some have pushed AEE to absurd extremes by feeding it meaningless but 

grammatical essays and showing that the programs do not recognize gibberish as such (as 

Les Perelman has done), or by feeding it essays written by famous novelists and showing 

that the machines do not recognize excellence (Wilson 2006), I am less interested in 

“stumping” the machines where we know they do poorly. I am interested in studying the 

machines where they would be likely to be used, such as by assigning them to score 

short-answer responses that might be used to place students in college courses or to 

quickly assess their general writing skills. In looking at score divergence my hope is to 

uncover some quantitative and qualitative insights into what automated scoring means for 

students. 

 

Why a Rubric? A Response to Skeptics 
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Not only has the writing assessment community disagreed over the best measures 

for the success of automated writing evaluation—whether statistically reliable scoring or 

valid assessments—many of its members reject the notion of reliability more broadly. 

In assessment, reliability of an instrument—the consistency of its scores across 

multiple dimensions—is a fundamental requirement. Why, then, asked Ed White, “does 

the Americanist on the assessment committee quote Ralph Waldo Emerson, ‘A foolish 

consistency is the hobgoblin of little minds?’” (White, 2012, p. 500). Here, White pointed 

out a certain “gulf” between the college composition and educational measurement 

communities about rigorous assessment (p. 499), concluding that it represents a conflict 

over values. In the arts, people naturally value disagreement (over Cassatt’s best painting 

or Woolf’s strongest essay, say) but in assessment, a researcher has to be able to show 

that a scoring instrument can be applied by different raters to produce similar results. If a 

student essay is both a work of art and a data point, the conflict commences. It is a 

conflict where, White insisted, espousing a pluralist position, “nobody is ‘wrong’ in this 

diversity of world views” (p. 501). 

Because my study utilizes an assessment methodology that presumes that 

reliability is an important indicator of the stability of the concepts of writing ability being 

measured, we should examine two versions of objections to assessments and rubrics. The 

objections I will consider fall under these categories: (1) appeals to critical theory or 

qualitative ideology to voice suspicions of quantitative assessment (e.g., Scott & 

Brannon, 2013; Broad, 2003, 2012) and (2) concerns about the application of global or 

unitary rubrics to local circumstances (e.g., Anson, Dannels, Flash, & Housley Gaffney, 

2012).  
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The existence of this contested ground of assessment was recently exemplified in 

an essay by Scott and Brannon (2013), who in their qualitative study and critique of their 

university’s writing program assessment sought to “remake the assessment scene, 

responding to Chris Gallagher’s call in CCC to take assessment out of the exclusive 

hands of administrators and the testing industry and to assert the agency of teachers and 

students who are ‘there’…” (p. 275). Here and elsewhere, assessment is critiqued as a 

tool imposed by those in power (administrators and industries) to silence dissent and 

solidify their privilege. In this view, assessment is a site of “struggle for the 

democratization of education.” The authors cast their critique as distinct from the 

classical divide between the educational measurement and college composition 

ideologies, because “while it has been well argued in writing assessment scholarship that 

assessment should take into account different value judgments about what constitutes 

‘good writing,’ how assessment relates to labor structure and practices in first-year 

writing programs has not been extensively explored” (Scott & Brannon, 2013, p. 275). To 

correct the record, these authors aim to provide a social critique of the material conditions 

underlying assessment. 

As White has implied, assessment critics often target the quantitative methods 

behind the practice. Quantitative assessment entails the development of common 

standards that ensure inter-rater reliability. Such standards, argued Scott and Brannon 

(2013), do not arise as the outcome of a harmonious consensus but misrepresent the 

messy reality behind which voices are effaced and which are heard, which in turn 

devolves around power relationships. The contingent faculty Scott and Brannon studied 

held different “chronotopes” of literacy from the higher-status tenure-line faculty, the 



86 

 

former attending more to formal characteristics of text, the latter inclined toward 

dissensus and heterogeneity. Moving toward a consensus could conceivably mean 

privileging one set of values over another. As these authors argued, “programmatic 

writing assessments that lack qualitative elements remain pervasive in no small part 

because these assessments align well with exploitive labor practices, shifting the focus 

toward measurable characteristics of texts and away from the terms of labor that 

produced them” (p. 275).  

Scott and Brannon’s concern follows a familiar trope in composition studies and 

other areas of the humanities, which sees the “scientific method” as aiding the material 

interests of the current social order. James Berlin’s (1987) study of current-traditional 

rhetoric located this tradition as embracing the idea that the scientific method could 

decide questions of value as well as clear-cut questions of science. Such a misplaced 

belief, Berlin argued, ended up reinforcing the status of the emerging college-bound 

meritocracy (p. 36-37). Without offering sustained speculation as to the cause, Haswell 

(2005) documented that the National Council of Teachers of English (NCTE) and 

Conference on College Composition and Communication (CCCC) increasingly de-

emphasized “RAD” (replicable, aggregable, data-supported) research over the past 20 

years.  

For Foucault (1975), the emergence of the natural sciences traces its origins to the 

investigatory practices characteristic of the Inquisition. The emergence of the human 

sciences originated from a related sort of practice of disciplinary analysis. Foucault held 

that disciplinary analysis never left the human sciences, but remained in the form of 

school psychology, testing, and so forth.  
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For, although it is true that, in becoming a technique for the empirical 

sciences, the investigation has detached itself from the inquisitorial 

procedure, in which it was historically rooted, the examination has 

remained extremely close to the disciplinary power that shaped it. It has 

always been and still is an intrinsic element of the disciplines. Of course it 

seems to have undergone a speculative purification by integrating itself 

with such sciences as psychology and psychiatry. And, in effect, its 

appearance in the form of tests, interviews, interrogations and 

consultations is apparently in order to rectify the mechanisms of 

discipline: educational psychology is supposed to correct the rigours of the 

school, just as the medicinal or psychiatric interview is supposed to rectify 

the effects of the discipline of work. (p. 308) 

 

A Foucaultian analysis of AEE would no doubt be fruitful: his characterization of 

the examination as a form of social control—a way to hierarchically observe and 

normatively judge—invites analysis with regard to automated (and non-automated) 

standardized testing. Narrating the history of AEE against a broader genealogy of 

computationalism would also be compelling. The idea that early field builders such as 

Page, relying on Turing and others, not only provided evidence for AEE but actually 

determined what counts as evidence (e.g., simulating human graders) fits well with the 

ways in which Foucault articulated the evolution of knowledge as created in the context 

of powerful interests and by power itself. That AEE is being pushed by well-funded 
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testing companies such as ETS, funded by influential foundations such as Hewlett, and 

adopted by the national common core standard-setting organizations PARCC and 

SMARTER-BALANCE only reinforces need for critical analyses of AEE. 

That said, Haraway’s mandate was to entertain both the fearful perspective about 

technological advance and the hopeful one. While the investigation may be connected 

with some form of authority, and while that authority may quite often be the kind of elite 

authority that troubles Berlin and Foucault (e.g., the state, the bourgeois meritocracy, 

global capital interests), it is quite a different thing entirely to argue that all instances of 

scientific investigation are necessarily servants of either state authority or global 

capitalism. (Possibly p does not entail necessarily p.) In other words, which 

power/knowledge relationships align is a contingent matter.  

 In the case of assessment, the consensus-building process of assessment may 

bring strange bedfellows into agreement with one another. Scott and Brannon (2013) did 

not describe, apparently, the process by which they developed two distinct rubrics to 

illustrate their point that different values yield different measures and ways in which 

student work “sort[s] out differently” (p. 290). (One of their rubrics favored formal 

qualities of writing and the other expressive qualities.) A plausible scenario might be that 

the administrators who called for the assessment would identify more closely with a 

formalist rubric, as it is certainly closer to what the layperson may understand to be 

“good writing.” But this would align the administrators with the contingent faculty, rather 

than the (higher-status) tenure-line faculty. Not that such an ideological alignment would 

necessarily (or even likely) improve the material conditions of contingent faculty, but that 
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assessment methodologies, including those of consensus-building—do not always align 

to support some sort of master authority. 

 In fact, the essay assessment project I describe in chapter 4 seeks precisely to 

study the relationship between a “received” and formalist rubric (the rubric that guides 

the performance of e-rater, with the features presented earlier in Figure 3) for measuring 

writing in standardized settings and a dissenting rubric that derives from values heralded 

within the composition community. While participating instructors in a study such as the 

one to be described try to develop a common understanding of a specific rubric through 

norming sessions and the like, which sometimes does involve acquiescence to a 

presumed authority, there are times in this norming process when dissensus results in the 

opposite outcome. For instance, a score on a norming essay may be altered after input 

from the dissenting instructors. Either way, the norming process in my study will lead to 

the development of a common understanding of a rubric other than one comprising the 

formalist features favored by AEE and the testing industry, and troubling to 

compositionists. So again, while we can accept Scott and Brannon’s observation that 

consensus-building is sometimes a messy struggle that involves power at the micro-level 

(a point to which I and probably many other assessment committee members can attest) 

we can cleave that point from the broader worry that such consensus-building as a part of 

the scientific method necessarily serves the societally powerful at the macro-level. A 

more nuanced understanding of power should be put in place. 

Another objector to rubric-based assessment, Bob Broad (2003), also held that 

assessment methods impose an unnatural (and unscientific) sense of agreement, leaving 

out generous amounts of disagreement over what matters in assessing writing. Broad 
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(2003) wrote that ETS researchers, among the founders of modern writing assessment, 

Paul Diederich, John French, and Sydell Carlton, “traded in the rhetorical truth 

confronting them (that readers value texts differently) in exchange for the grail of high 

inter-rater agreement” (p. 8). Broad alleged that their use of factor analysis and other 

techniques to reach common scoring criteria, laboring under the experimental paradigm, 

only took on the “appearance” of objective truth by “turning away from the messy facts 

at hand” (p. 7). For Broad, the move to cull—and then impose—common scoring criteria 

simply was poor science. 

Consequently, in his own research on assessment practices at a public research 

university, Broad developed a qualitative form of inquiry he called “dynamic criteria 

mapping,” which avails itself of the research methods of “constructivist” grounded theory 

to analyze observational notes, transcripts, and program documents to develop a map of 

an institution’s “terrain of rhetorical values” (p. 24). The end result of Broad’s inquiry 

was not a rubric but a conceptual map that positioned 46 textual criteria, 22 contextual 

criteria and 21 other factors that Broad assorted in a conceptual grouping with one 

another, represented in a visual map (p. 21). 

For Broad, rubrics are an impediment to knowledge; they are “traditionally the 

main obstacle to telling the full and true story of how writing is valued” (p. 122). As one 

of the pitfalls of rubrics, Broad cites that they generally omit contextual factors of 

scoring—features such as program expectations, student background, and so forth. 

“Rarely do scoring guides venture into the realm of evaluative context when investigating 

or reporting on how rhetorical judgments are made,” he writes (p. 73).  
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Rubrics may not, as Broad suspects, capture all of what is harbored in the minds 

of diverse groups of raters. And the values they do capture may be those of whatever 

power structure is in operation, as Scott and Brannon imply. However, the purpose of the 

present study is not to create an ecumenical rubric that either (a) gives a comprehensive 

picture of the rhetorical values of any given body of readers, or (b) fully represents the 

construct of writing, which is, after all, an abstract and contested concept. (After the mid-

twentieth century fall of conceptual analysis in philosophy of language, many scholars 

would agree that precisely defining a concept such as “good writing” or “happiness” is an 

incoherent endeavor, anyway.) Instead, the purpose of my study is to examine the 

performance of a rubric encoded in an automated software program, against the 

performance of a rubric that could be said to represent at least some of the shared values 

of the composition community, and to explore the framing of such an examination itself. 

Because the goals of the study differ from the kinds of assessment projects that trouble 

writers like Broad and Scott and Brannon, the use of a rubric (rather than dynamic criteria 

map or critical inquiry) is appropriate here. 

An additional point about the importance of supporting this kind of replicable 

inquiry, using a specific rubric, is stated by Haswell (2005), who mourns the 

disappearance of RAD inquiry in the field: 

  

Even now, the profession’s immune system—its ability to deflect outside 

criticism with solid and ever-strengthening data—is on shaky pins. It lacks 

a “systematically produced knowledge” (Carr & Kemmis, 1986, p. 8) to 

defend its central practices from outside attack, lacks a coherent body of 
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testable knowledge connected to class size, computer pedagogy, group 

work, part-time teaching, interdisciplinary instruction, 1st-year sequenced 

syllabi, and the list can go on. And in part, it does not have the body of 

facts because its most prominent professional organizations, NCTE and 

CCCC, do not valorize or support the apparatus needed to drive RAD 

research. (p. 219) 

 

Much of the RAD inquiry into the merits of automated essay scoring is being 

done by testing companies. Adopting a discrete rubric is needed in order to address the 

discourse communities already studying AEE. 

A more philosophical objection to assessment, which can only be mentioned here, 

derives what I am going to call the psychology of evaluation. It contends that it may not 

be psychologically possible to shunt aside differential preferences just by enough 

norming on a rubric, because each person’s evaluation depends on his or her individual 

conceptual map. Perspectives from cognitive science suggest that evaluators construct a 

reading of a student text based on contextual and textual cues. Kintsch (1998) proposed 

the “situational model” referred to in Mason et al. (2013) in their study of fourth grade 

readers, which subsequently came known as the construction-integration (CI) model that 

proposes that meaning is not simply extracted from text, but constructed through a 

process that activates a reader’s memory and those aspects of memory that represent that 

concept. As a very simple example, the meaning of the word “tree” may activate my 

recall of concepts such as pine trees, palm trees, or climbing a tree, and that recall is 

fairly stable for each individual but not fixed, as slightly different memories can be 
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activated each time. Comprehension is first constructed through visual processing of a 

text and then integrated as context effects and prior knowledge become activated.  

As Schwegler (1991) noted, those who evaluate writing are of course themselves 

readers, who are likewise engaged in a multi-stage cognitive process in which the mind 

“arrives at an initial estimate of the text’s purposes and design” before attempting “to 

build a coherent mental representation of a text’s meaning” (p. 215). Since these 

representations involve preexisting memories and other mental states, not only textual 

features, reading is an individually-determined process; ultimately, so is grading. This 

concern about the validity of rubric evaluation is going to be postponed until chapter 5, 

which examines construct-irrelevant variance in human scoring. 

 

Which Rubric? 

Because the study described in chapter 4 studies the validity of e-rater as a model 

scoring engine, the choice of a rubric against which to measure e-rater’s performance 

matters greatly. One question is whether general rubrics are acceptable, or whether only 

those created for particular assessment contexts should be used. 

Many have wrangled over the relative merits of global or general versus local 

rubrics. Moxley (2013) wrote about the value of a general rubric at the University of 

South Florida, which has used the same rubric to assess over 100,000 student essays since 

2011. Moxley views the organizing effect that rubrics have on readers, in the sense of 

enabling them to achieve some version of consensus, as positive. Moxley described the 

scoring guide as a “community” rubric used across the writing curriculum at the 

University of South Florida. It is an analytic rubric, used from 2011-2013, that includes 

the five attributes of Focus (Basics and Critical Thinking), Evidence (Critical Thinking), 
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Organization (Basics and Critical Thinking), Style (Basics and Critical Thinking), and 

Format (Basics). Basics and Critical Thinking refer to two separate traits by which essays 

were evaluated. Perhaps more consciously sensitive to the variability of the writing task 

at hand, Pagano, Bernhardt, Reynolds, Williams and McCurrie (2008) described an inter-

institutional rubric that consisted of Task Responsiveness, Engagement with Text(s), 

Development, Organization, and Control of Language.  

However, as Moxley himself noted, several key reviewers in the area of 

assessment have disdained the use of general rubrics to evaluate multiple genres of 

writing, in favor of locally constructed rubrics (e.g., Anson, Dannels, Flash, and Housley 

Gaffney, 2012). As those authors concluded, “generic, all-purpose criteria for evaluating 

writing and oral communication fail to reflect the linguistic, rhetorical, relational, and 

contextual characteristics of specific kinds of writing or speaking that we find in higher 

education” (Anson, Dannels, Flash & Housley Gaffney, 2012, “Going Local” para. 1). 

Because composition studies tends to favor locally-constructed rubrics, it not 

surprising to those within composition studies that the Framework Outcomes Statement 

has not been crafted into a globally-used, standardized rubric. Indeed, the Outcomes 

Statement language specifies that its focus is upon results and not “standards” or levels of 

achievement (p. 1). One might think that if these measures are put forth as outcomes that 

college writing values, these outcomes would have been turned into a measurement tool 

by which college writing could be assessed. But since it has not, any project making use 

of the Framework outcomes will not have the advantage of having a rubric that has been 

shown to produce reliable scores. Any writing evaluation study based on this Framework 

stands to be as much a study of the Framework as the essays themselves. The next 
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chapter describes the adaptation of Framework skills into a holistic rubric used in order to 

evaluate a set of student-written timed impromptu essays. 

 

Use of a Cross-Correlation Methodology 

The method of applying different rubrics or scoring valuations to the same prompt 

or writing assignment has been employed by, among others, Follman and Anderson 

(1967), Winters (1980), and Deane, Williams, Weng, and Trapani (2013). Winters, noting 

the shifting meanings of socially constructed concepts such as writing competence, 

observed that “the method selected for judging writing samples ipso facto defines ‘good 

writing.’” (1980, p. 1). The choices made in creating and applying an assessment create a 

construction of what makes good paper. While such constructions may indeed be derived 

from communal understandings of writing, they are certainly not fixed across 

communities (and perhaps not within them either), let alone do these constructions serve 

as representations of Platonic ideals. And most importantly, as Winters noted, such 

constructions construct writers themselves in quite material ways, because “decisions 

about writing competence derived from one scoring system may not lead to the same 

decisions about an examinee when another scoring system is used” (1980, p.1). Winters, 

then, set about studying the comparative reliabilities and validities of four distinct scoring 

systems—to understand how the systems corresponded to one another and how they 

would have sorted writers into pre-established criterion groups.  

As Winters (1980) pointed out, Follman and Anderson (1967) had previously 

performed a cross-validation of five scoring systems and found that four of the five 

systems they examined intercorrelated highly (Follman & Anderson, 1967, p. 198). Their 

study had ten “themes” or essays evaluated along five scoring systems by five raters 
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assigned to each system. Correlations between three of the five scales ranged from .935 

to .99. Winters (1980) also found high intercorrelations (Pearson r) between three of the 

four scoring systems in her study, ranging from .79 to .86 (p. 26). Interestingly, Follman 

and Anderson found that the Diederich Expository Scale (DES), or what was then called 

the Diederich Rating Scale, failed to inter-correlate as highly as the other rating systems 

they used (correlations ranged from .59 to .61), whereas in Winters’ study, the DES 

performed as well as the other scales, correlating at .82 and .86 with the other two scales 

that successfully predicted the criterion groups (1980, p. 10-11).  

One important lesson learned from these earlier studies—particularly from what 

happened to the Diederich scale, is that the degree of correlation of any given scale is 

going to be relative to the set of scales under consideration.  One of the findings in the 

AEE literature, noted earlier in this chapter, is that many automated systems can perform 

to a certain standard of reliability when raters are using the sort of scale that measures 

mechanical and organizational qualities of writing. Indeed, Deane et al. (2013) spoke of a 

“division of labor between human and automated scoring” because “current-generation 

AEE engines provide direct evidence only with respect to some aspects of writing skill, 

typically involving features that measure such things as basic essay structure, vocabulary, 

style, grammar, usage, mechanics, and spelling” (sect. 2). On the issue of addressing 

higher order writing features such as rhetorical skill and argumentative quality, Deane et 

al. (2013) the articles in Automated Essay Scoring: A Cross-Disciplinary Perspective 

(Shermis & Burstein, 2003) to claim that “AES systems do not explicitly evaluate the 

validity of reasoning, the strength of evidence, or the accuracy of information. They rely 

instead on measures of such things as the structure and elaboration of student essays, the 
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sophistication of vocabulary, or the number of errors in grammar, usage, mechanics or 

style” (sect. 1). 

Deane et al. (2013)’s philosophy that AEE represents one branch of a “division of 

labor” of scoring, rather than a scoring system that alone captures all or most of the 

relevant features of the writing construct, might be considered an emerging view of the 

AEE community. Indeed, as seen in the first chapter of this dissertation, Ellis Page 

considered AEE a replacement for human scoring, not a complement to it. A closer 

examination of Deane et al. (2013)’s methodology and results will serve to guide the 

hypotheses formed in the present study. 

Deane et al. (2013) applied the cross-correlation methodology of using multiple 

rating systems over the same set of essays, to study e-rater’s sensitivity to genre-specific 

writing skills. The purpose of the study was to measure how automated scoring would 

perform in a “writing from sources” assignment typical of the Race to the Top 

Assessments, a task which seeks to measure not only general writing qualities but 

strength of argumentation and accuracy of explanation—aspects of what might be called 

an argumentative genre. In 2009 and 2011, a convenience sample of 2,606 and 3,667 

students, respectively, took either one or two CBAL (Cognitively-Based Assessments of, 

for, and as Learning) test forms each. Raters scored essays along a common rubric as 

well as rubrics specific to the test genres, and e-rater models were built to predict scores 

on the common rubric. 

Then, to assess validity, Deane et al. compared (among other measures) 

correlations between the e-rater models and human scores along the genre-specific 

rubrics. In both datasets, the researchers found evidence to support the hypothesis that 
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different traits were being measured by human raters scoring along the common and 

genre-specific rubrics, which was then reflected in the correlations between e-rater, 

trained on the common rubric, and the genre-specific scores. In the 2009 administration, 

human rater correlations between common and genre-specific rubrics ranged from .75 to 

.86, and in the 2011 administration, human rater correlations ranged from .62 to .79. E-

rater correlations ranged from .68 to .80 in 2009 and .61 to .78 in 2011. Deane et al. 

conclude that “the .64 cross-rubric correlation [between human raters along the genre and 

common rubrics] that we see in the 2011 Mango Street administration is small enough to 

support the conclusion that the human raters were responding to different traits” (Validity 

Evidence section, para. 5).  

Deane et al.’s study incorporated the kind of predictive validity argument that the 

present research seeks to explore further. According to Deane et al., if e-rater captures 

the writing construct represented by the common writing rubric, it can be expected to 

stand in similar relationships to related measures of writing quality. For these authors, the 

common and genre-specific rubrics measure “different but related aspects of the same 

performance” and thus e-rater ought to be able to replicate the “moderate to strong 

correlations” that would be expected between the human ratings on each rubric (Data 

Analysis section, Validity Evidence subsection).  

The present study can be considered a validation study in the vein of Deane et al. 

(2013)’s study, because it seeks to measure the strength of association of e-rater’s 

evaluation of common writing qualities with a rubric measuring higher-order skills. The 

present study, like others before it, incorporates multiple rubrics, as modeled in the 

Winters (1980) and Follman and Anderson (1967) studies described above. However, 
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instead of positioning the study as one that would evaluate the comparative validities of 

several different rubrics, it follows Deane et al. in assuming that what is in question is not 

the validity of the rubrics; these are implied to have been validated in some way or 

another (although validation of the rubrics is not explicitly discussed in that paper). 

Rather, like Deane et al., my study explores the degree of relationship between the 

construct captured by e-rater and other conceptions of the writing construct more 

commonly demanded from the college writing environment. Deane et al. wrote that “such 

predictive relations are not the only source of evidence, but are nonetheless critical in 

building a validity argument” (Data Analysis section, Validity Evidence subsection). 

Unlike these ETS authors, however, the objective of my study is not to build a validity 

argument for automated scoring in general, nor for e-rater in particular. It is, rather, to 

independently study the validity of e-rater, as both a summative and a formative agent 

for college writing.  

Computer raters, in this conception, are hybrids: they function as raters, but also 

as internalized rating systems. If e-rater were treated as a human rater, the question 

would not arise as to whether a human rater could rate along two rubrics—researchers 

would simply train the person on one, and then on the next, rubric (as in the method 

described in Winters, 1980) and to the extent that a satisfactory level of interrater 

agreement were obtained, the rater would be considered trained on that particular rubric. 

But because e-rater is only able to directly measure a subset of writing qualities, and by 

virtue of its software limitations cannot simply be trained on all rubrics deemed 

appropriate for an assessment context, the proposal to compare its scoring to human 

scores on other rubrics makes sense.  
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Critiques of Timed Diagnostics 

 

Since the study described in the next chapter cross-correlates scores on an essay 

administered under timed conditions, the final matter to be reviewed is the legitimacy of 

studying timed writing tests at all. Perelman (2012b) has argued that timed impromptu 

tests meet the definition of “bullshit” according to philosopher Harry Frankfurt’s (2004) 

conceptual analysis. For Frankfurt, “bullshit” referred to discourse that is not concerned 

with the truth or falsity of a matter, but with effecting a particular outcome. By design, 

timed impromptus ask students to write on topics about which they have little knowledge 

(Perelman, 2012b, p. 430) and do not have the ability to research in the moment. 

Frankfurt, quoted in Perelman (2012b) notes that “bullshit is unavoidable whenever 

circumstances require someone to talk without knowing what he is talking about” (p. 

430). Timed impromptus contrast with most college assignments, which revolve around 

the premise that students learn best when provided with rich material to read, discuss, and 

respond to over a matter of days or weeks. Impromptu writing without knowledge of a 

topic, contends Perelman, is unlike college writing in this fundamental way. 

Relatedly, in a review of the Writing Assessment Program at Washington State 

University, Condon and Kelly-Riley (2004) uncovered an inverse relationship between 

assessments of critical thinking in timed essays and assessments of writing ability in 

these essays. These authors attribute that inverse correlation to the structural inadequacy 

of the timed exam, suggesting that the limitation of time, as well as potentially the “fact 

that students are long trained by various educational assessments in their K-12 schooling 

to consider timed writing in various reductive ways,” serve to undercut the practice of 

inquiry (p. 67). 
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But if we accept Perelman (2012b)’s and Condon and Kelly-Riley (2004)’s 

objections to the adequacy of a timed impromptu to capture college writing and thinking 

skills, it is reasonable to wonder whether timed impromptus should actually be scored 

along college-based rubrics at all. Is the entire idea of evaluating timed impromptus for 

rhetorical competence, critical thinking, or argumentative skill quite meaningless? 

Quite possibly, yes. A literature search of the correlation between the SAT essay 

portion and a student’s college GPA only yields a claim from the College Board that 

essay scores have a “positive” relationship with first year GPA and first year English 

GPA (Shaw & Kobrin, 2012, p. 9). Providing an imprecise term such as “positive” rather 

than a specific correlation coefficient could imply that the relationship is in fact rather 

weak. Certainly, the process movement in pedagogy holds that the ability to research a 

subject and have time to write, read, and revise one’s writing would be expected to 

produce a more nuanced writing performance, and probably a performance with a greater 

likelihood of creating knowledge, than a timed essay. So from the perspective of 

producing a response that yields knowledge and rhetorical effectiveness, the critical essay 

is superior—justifying its honored place in the composition classroom. 

However, while Perelman’s conceptual case and Condon and Kelly-Riley’s 

empirical findings have merit, neither case indicates that there are no statistically 

significant differences in critical thinking, or in rhetorical effectiveness, among writers of 

timed essays. Maybe timed essays are indicative of some skill (however questionably 

related that skill may be to critical thinking). For instance, although students writing a 

timed impromptu will not be able to cite sourced data (aside from whatever the writer 

knows from memory) they will be able to produce narrative arguments drawing on their 
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own personal experiences to support the positions they take. Writing subjects will have to 

create reasons to support their positions—they will have to engage in acts of invention to 

examine subjects, construct or find lines of arguments, and identify materials to develop 

texts (c.f. Lauer, 2004). An author may present an appeal to intuition, or an argument 

from first principles. My study imagines that some students may be more able to produce 

more highly-skilled results from their process of invention than others. Therefore, the 

rubric created for this scoring session and the instructions given to the readers 

acknowledged that evidentiary support would not come from cited sources but could take 

the form of personal narrative (see next chapter). Thus, a compelling narrative may count 

as supporting evidence, and as evidence of critical thinking.  

But on the other hand, if the scoring process yields categorically low scores 

indicating lack of proficiency, this would point to evidence that critical thinking and 

rhetorical skills do not manifest themselves readily in timed essays. As long as the study 

can find anchor essays that represent each score on the scoring scale, the distribution is 

free to be skewed toward the right, meaning that the concentration of scores are on the 

lower end. 

To summarize: the present study is sympathetic to Perelman and other critics of 

timed essays as poor yardsticks for college writing success. At the end of the day, timed 

impromptus can only build the plausibility for any particular position taken by the author; 

they cannot ground that plausibility in an established discourse or in settled fact because 

of the restriction on sourcing. They are at odds with much of what the process movement 

is about. The kind of inventive process a student undergoes in a timed setting does not 

replicate that which is undergone during the course of a semester. But they are here, 



103 

 

especially in the form of placement essays for incoming first-year college students. They 

are a part of the essay libraries of automated systems hoping to proliferate. For these 

reasons alone, it is important to examine their validity. 

 

Conclusion 

For Ellis Page, what it meant to get the scoring “right” meant to agree with human 

scorers as often as they agreed with each other. It was irrelevant (indeed, expected) that 

computers would use different mechanisms, different proxy variables, to generate scores, 

than human readers. Since then, companies such as ETS have taken strides to improve 

both human agreement percentages and machine-human agreement. The move toward 

greater reliability has coincided with what the composition community has decried as 

highly invalid, artificial testing circumstances. (I have not tried to propose causal links 

between the increasingly asphyxiating standardization and greater reliability; however the 

conjunction between the increased reliability and increased standardization is notable.) 

While the discourse around AEE remains polarized around what it means to get 

the scoring “right”—whether validity should be sacrificed upon reliability’s altar, so to 

speak—two questions come to mind for composition studies. The first is whether AEE 

can capture, indirectly through exploiting cognitive capacity, college writing ability. The 

second is whether the reigning analytic paradigm of the Pearson correlation and related 

indicators of agreement is the best or only way to characterize what happens when 

computers score essays. 

The study I undertook—described in the next chapter—compares e-rater’s 

performance in scoring a sample of 108 student essays (written to a Criterion prompt) to 

human scoring using a rubric inspired by the Framework Outcomes Statement. Data 
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analysis shifts adds a further analytic frame to the typical agreement metrics: an error 

analysis mode that begins to pull apart the monolithic character of presenting only 

aggregate data of agreement. 
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4. COMPARING RUBRICS: A CROSS-CORRELATION STUDY OF 

CRITERION® 

 

Introduction 

As the preceding literature review saw, the ascension of reliability (and 

correlation as its marker) to measure the legitimacy of AEE followed, logically and 

genealogically if not etiologically, from the symbolic engineering of AEE as systems 

whose communicative outputs should match that of humans.9  

Woven into this litmus test was the assumption that mechanisms for getting to 

these outputs were irrelevant, as long as the outputs matched. As we saw, critics charged 

that not only does that matching occur only in contrived and specific circumstances, but 

that these circumstances fail to create ways of measuring writing skills validly—of 

representing a robust writing construct.  

These positions are not mutually exclusive, and in fact often travel together as the 

operationalizations demanded by reliability may decrease the contexts of its validity. 

Timed impromptus enjoy a number of these characteristics: highly general prompts 

thought to increase fairness by reducing the importance of specific content knowledge 

(such as the maligned “is failure necessary for success?” prompt); timed conditions 

leading to relatively larger variance in response length that can serve legitimately or not 

as generative of ratings assignment; scoring rubrics restricted to formal characteristics 

rather than messier but important concepts such as “voice” or “quality of argument”; and 

raters financially incentivized to reach score consensus. Such reliability-enhancing 

                                                           
9 (I say, “logically and genealogically if not etiologically” to acknowledge the prevalence of statistical 

correlation as a measure of legitimacy in many other domains where no “gold standard” exists. I do not 
mean to deny other historical inputs for this method’s ascension.) 
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features create challenges for validity claims. 

The present study replicates a typical context in which computer scoring might be 

employed: to rapidly assess first-year students. Two adaptations to the typical scoring 

paradigm have been made. First, in the scoring dimension, humans scored the essays on a 

Framework-derived rubric rather than a common rubric. Understanding how closely 

Criterion’s scoring captures higher order features of writing, such as those demanded of 

students in typical college settings, is an important step in assessing the mechanism by 

which automated systems may (or may not) improve student writing or be used to place 

students in appropriate writing courses. Second, on the analysis dimension, a frame of 

student impact was used alongside typical agreement measures to evaluate the software. 

If institutions want automated placement or evaluation to serve all students, a proposition 

to which most administrators will assent, attention must be given to human-machine 

score disparities, not only statistical agreements and correlations.  

Note that this study examines the Criterion system’s ability to model scores 

derived from human raters who are evaluating papers based on a rubric that measures 

Framework Outcomes Statement skills, as these represent skills that college teachers find 

important, at least according to an influential representative body, the Council of Writing 

Program Administrators (CWPA). While this research will not directly answer the 

question of whether students’ Criterion feedback would iteratively improve writing, it 

would help shed light on the strength of the connection between the traits Criterion 

evaluates and those valued in the composition classroom. Some instructors report that 

simply the act of receiving instant feedback motivates students to submit more drafts, 

thereby improving outcomes regardless of construct validity (A. Klobucar, personal 
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communication, June 20, 2013; K. Morin, personal communication, October 11, 2013). 

 
 

 Research Hypotheses 

Despite the majority of AEE trials having been done with standardized testing 

essays, some automated software applications have been marketed for K-12 and college 

classrooms. Take the Educational Testing Service’s Criterion system, for instance. 

Criterion is an interactive technology that scores essays using ETS’s e-rater scoring 

system, provides feedback to students, and enables web correspondence between teachers 

and students. Students can upload an essay to the system, click “submit” and be directed 

to a screen that gives an instantaneous score of 1-6, together with both default bullet 

points and the ability to click to different screens with more detailed analysis of 

organization & development, mechanics, grammar, usage, and style. As an illustration, 

the default feedback for a score of 4 is provided below in Figure 4. 

 

Figure 4. Screen capture of Criterion feedback page. 
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Bob Broad (2006) described opening his mailbox in 2003 to find a postcard from 

ETS, which he inferred had been sent to everyone on the National Council of Teachers of 

English mailing list, inviting him to learn more about the Criterion Online Writing 

Evaluation service. “How long does it take you to evaluate an essay?” the postcard asked. 

“Instantly…,” it replied, if one uses Criterion (p. 223). In another study, Lim and Kahng 

(2012) reported that Criterion rated 5.8 million scripts in 2010. 

The present research study will fill gaps in the knowledge about the role that 

writing evaluation software can play in college composition programs, where “higher 

order” writing skills such as critical thinking and rhetorical understanding often take 

precedence over grammar, mechanics and other features that are more readily assessed 

through software. Since the extent to which current AEE models can capture the college 

writing construct or constructs in the naturalized environments of classroom teaching or 

program-wide assessment is poorly understood, this study takes up the validity of AEE in 

college classrooms.  

As implied, this project focuses on one particular software application because of 

its relative popularity and availability: the Criterion Online Writing Evaluation service by 

the Educational Testing Service (ETS). Criterion’s online service, about which more is 

available here http://www.ets.org/criterion, is a subscription-based online instructional 

tool somewhat like a simplified course management system that lets teachers create 

assignments that students can view and complete, that lets students see instructor 

feedback, and that contains a writers handbook. Differently from a course management 

system, though, Criterion contains the e-rater scoring engine.  

With e-rater comes a writing topic library with more than 400 essay prompts that 
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can be selected as writing assignments, for which the scoring engine will provide a score 

along with default contextualizing remarks. As a second option, instructors who want to 

use Criterion’s scoring functionality can create their own prompts to be scored by e-

rater. Such “scored instructor topics” are supposed to be written according to guidelines 

provided by the web service. Like the default prompts, the scored instructor topics come 

with a 1,000-word limitation. Criterion’s NLP software analyzes the prompt for purposes 

of providing relevant feedback and has a limit of 1,000 words for generation of holistic 

scoring. As a third scoring option, the system can be set to the “text edit” mode where 

essays longer than 1,000 words can receive diagnostic feedback but no score. (The 

system will generate an “advisory” when an essay is longer than 1,000 words. According 

to the online site, essays longer than that stand a chance of receiving an “unreliably high 

automated score” (https://criterion.ets.org/content/Advisory%20Table%2008-17-13.htm). 

(The ETS team itself, by virtue of their responses to my inquiry, would seem to support 

the finding that AEE’s reliability is higher for essays under 1,000 words. One 

correspondent from ETS asked about my “motivation to investigate machine scores for 

responses greater than 1000 words, given that the tool/machine is best de[s]igned to 

evaluate essay type responses for timed tests?” (C. Ramenini, personal communication). 

Recently, Criterion added a fourth assignment type related to Common Core standards, 

but the version tested here did not present that option. 

Three research questions follow from the three available scoring modes:  

 

1. How does the Criterion e-rater scoring compare to human-assigned scores using 

a college-appropriate rubric on prompts from its database? 
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2. How does e-rater’s scoring compare with human-assigned scores using a college-

appropriate rubric, for “scored instructor topics”? 

3. How does e-rater’s scoring compare with human-assigned scores using a college-

appropriate rubric, for longer (>1000 words) essays? 

 

Due to constraints of time and funding, only research question 1, the scoring of 

answers to the Criterion prompt, has been completed to date and will be reported upon 

here. The other two questions have not been investigated as of the present time.  

To operationally gauge the comparison, both measures of agreement and 

measures of distributional difference will be used. In the first category are: absolute 

agreement, adjacent agreement, Pearson correlation, Cronbach’s alpha, and quadratic 

weighted kappa. In the second category are mean, standard deviation, and variance. All 

are standard measures in the field of educational assessment (Shermis & Hamner, 2012). 

The tests are further described in the “Data Analysis” section of this chapter. 

What hypothesis might be generated for a cross-correlation study of research 

question 1? Given the literature discussed in chapter 3, including Congdon and Kelly-

Riley (2004)’s finding that critical thinking was inversely related to writing ability in the 

tests administered by Washington State University, we might expect that the human 

readers, following the same scoring rubric, would score more similarly than they would 

to e-rater, with its immutable, pre-calibrated weights of formal features or “common” 

features of writing. In other words, we would expect more consistency from the scorers 

of the same rubric than we would between different rubrics. Here is one way to formulate 

this hypothesis: 
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H1:  When humans score essays on a college-centered rubric—the Framework 

characteristics described herein—as opposed to standard AEE criteria, a 

significantly lower human-machine reliability will be observed than 

typically reported values (~.85 correlation as reported in Deane et al, 

2013). (Scores will show low or, at best, moderate relationships per the 

statistical tests mentioned above.) 

 

A finding of H1 would imply that computer scoring is less appropriate to the 

college classroom than hoped for, at least under circumstances where instructors and 

assessors wish to measure writing qualities such as rhetorical effectiveness or critical 

thinking. 

If it turns out that the agreement measures and the distributional data and other 

measures of inter-rater reliability are not significantly different between the humans and 

e-rater, one implication would be that computer scoring could have limited application in 

the college classroom. Even though Criterion does not directly measure higher-order 

traits, an argument might be made that the scores themselves could be useful for students 

wishing to get a sense of how their essay might fare when graded by the instructor (or for 

teachers wishing to give students ballpark ideas of their work). Administrators could use 

Criterion for placement. It would suggest that whatever construct AEE captures is closely 

related to other writing constructs. Here is the null hypothesis: 

H0:  Machine-human reliability using e-rater will not differ significantly from 

human reliability using the Framework rubric. 
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One challenge of the present research design, though, is that a result in favor of 

H0 could be explained by several rationales, some supporting and some undercutting the 

argument that AEE scoring is valuable in college. The theory of cognitive capacity 

presented in chapter 3 predicts that stronger writers will have stronger across-the-board 

skills, while weaker writers will display weaker skills across the board, so that even 

rubrics that measure divergent aspects of the writing construct would still correlate highly 

with each other. Under this rationale, we might expect there to be little difference 

between e-rater scores on the common rubric and human scores on Framework 

characteristics for the same essay, since writers who have more control over surface 

features will be able to devote more effort to solving higher-order demands, whereas 

writers with less control will experience the reverse.   

Thus, if H0 is found, the theory of cognitive capacity may be implicated. If H0 

were to be borne out, however, it would be useful to have some initial evidence to 

discriminate among the various other rationales that might explain it. Understanding 

whether instructors can reliably score higher-order skills, whether timed impromptus 

facilitate the use of such skills, and whether these skills are coupled with lower order 

skills would contribute to a number of prominent debates in the field. Here are some 

other rationales that might explain a finding of H0: 

 

(a) Readers score based on surface quality regardless of rubric. Perhaps college 

instructors cannot identify rhetorical knowledge or critical thinking as naturally as we 

might think they would be able to; thus, teachers and the computer software will 
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agree on writing quality because what is being evaluated in both cases are primarily 

surface features of writing. 

 

(b) Surface features are linked to overall quality. Even if instructors may indeed be 

trained to reliably identify rhetorical knowledge and critical thinking in student 

essays, perhaps the constraints of the timed impromptu dictate that surface features 

such as essay length will nevertheless legitimately explain the lion’s share of the 

score variance.  

 

Based on the findings in the literature about the importance of this variable (see 

chapter 3), this study will track overall essay length in number of words as an 

independent variable. If divergences are seen between human and machine score 

correlations with overall word count, it may be tentatively concluded that human raters 

are able to review even timed impromptu essays for a richer feature set than computers 

do currently. This finding will be elaborated on in the “Results” section. 

 

Methods: Data Collection 

Beginning in January 2014, 168 students were recruited from 13 sections of two 

different first-year writing courses. The students consented to forward to the researchers 

several sets of essays written during the semester running from January-May 2014 (the 

precise number of essays each student forwarded depended upon the instructor’s 

assignment sequence; essay that did not have a primarily argumentative focus were not 

used, for example.) The selected sections were located in two universities in New 



114 

 

England and comprised a convenience sample based on my own acquaintance with 

instructors and writing coordinators in those two institutions. 

The two institutions serving as recruitment sites were Southern Connecticut State 

University (SCSU) (n=118; nine sections) and the University of Rhode Island (URI) 

(n=50; four sections). The first institution, SCSU, is a comprehensive university whose 

11,000 students come predominantly from Connecticut, and which is part of the 

Connecticut State Colleges and Universities consortium. The second institution, URI, is a 

land-grant public research university of 16,000 students. Both institutions have first-year 

writing programs that reach the overwhelming majority of the student population. The 

participating students were enrolled in either a course at SCSU called ENG 112—Writing 

Arguments or a course at URI called WRT 104—Writing to Inform and Explain. The 

SCSU course is required of all students attending; the URI course is not required itself 

but is a popular option to fulfill required general education studies in writing. I was able 

to recruit five instructors at SCSU and two instructors at URI, each of whom permitted 

me to recruit students from their sections. (The timing of IRB approvals from both 

institutions facilitated my recruiting more classrooms at SCSU than at URI.) 

The methodological value of incorporating more than one institution into the 

study is, first, that a multi-institution method can be expected to enhance reliability of the 

essay scoring, since no sections were scored exclusively by raters from their originating 

institutions, minimizing institution-dependent effects of raters (for further discussion of 

multi-institution studies in composition, see the website for The Citation Project at 

cite.citationproject.net). Second, the multi-institution design stood to produce a richer set 

of responses, given the distinctive student populations at the two schools. 
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In terms of the writing prompt assigned: Criterion has a library of 400-plus essay 

topics that teachers can assign students, on which e-rater has been trained to generate 

scores. In other words, e-rater comes with pre-weighted feature sets for the prompt based 

on previous training (as opposed to training up specifically on sets of essays provided by 

end users).  Consonant with what we know about where automated scoring works best, 

ETS literature provides suggested response times and states that scoring is generally 

better in the timed environment. The topics are staged at different “levels” from fourth 

grade up to a level called “college level II.” The prompt selected for this study is given in 

Figure 5: 

 

 

 

 

 

 

 

 

 

 

 

This prompt appeared in Criterion’s college—level I (first year) library of 

prompts. Besides its surface appropriateness for the population sampled in this study, it 

was chosen out of my anecdotal knowledge that the value of education is a common 

Liberal Arts Education (Persuasive) 

In the ancient world, the term “liberal arts” referred to the 

education appropriate for free people (as opposed to slaves). In 

modern American higher education, the term is used to describe 

an education that focuses on general, rather than vocational, 

knowledge. Proponents believe that a liberal arts education is 

valuable because it prepares students for life by teaching them 

how to think. Opponents contend that the study of topics 

unrelated to one's professional path is a waste of time. Is a 

liberal arts education worthwhile? Develop your position by 

using evidence from your own experiences, observations or 

reading. 

Figure 5. Criterion prompt used in study. 
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discursive theme in first-year composition; thus, an assignment about liberal arts 

education might be more amenable for teachers to fold into their curricula than other 

prompts. In the end, this intuition proved somewhat true, as two of the seven participating 

instructors stated to researchers spontaneously that this impromptu fit in thematically 

with their course content. 

Per the ethics of researching student populations, students’ participation was 

optional and instructors were not aware of which students took part, nor could they 

incentivize participation. Also, because of the practical need to work within participating 

instructors’ existing curricula and syllabi, instructors were offered the option of assigning 

the Criterion liberal arts prompt as (1) in-class writing assignment via paper and pen, (2) 

an in-class assignment via computer, or (3) a homework assignment via computer. Those 

assigning the work as homework asked students to allot only 45 minutes for completing 

the assignment. Since the assignment was not tied in with course credit or course grades, 

there is no reason to believe students would have spent more than the recommended time 

on the essays, but the time-to-completion was not officially tracked. 

With the exception of two of the 13 sections, all students completed the 

impromptu assignment within 30 days of the start of the spring semester (by 2/10/14 for 

the semester beginning on 1/13/14 for students at Southern Connecticut State University, 

and by 1/29/14 for the semester beginning on 1/22/14 for the students at the University of 

Rhode Island). Students in the two outlying sections, at URI, completed their essays 

within 60 days of the start of the semester. All participating students signed consent 

forms. Participants were assigned unique identification numbers and all personally 

identifying information was removed from essays. 
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 Of the total 168 students signing informed consent documents at the outset, 106 

students ultimately provided responses to the Criterion prompt. The 106 Criterion essays 

are the only set that has been scored at the time of this writing. All 106 essays were 

included in the sample plus two additional essays described below for a total of 108. 

While there exists the possibility of a selection effect in terms of which students returned 

essays and which did not, this effect would not compromise the study, whose goal is 

simply to compare machine and instructor scoring on a set of essays, not to draw 

conclusions from that sample to the larger populations at URI or SCSU. Therefore, self-

selection was not a concern for this particular project, as it might be for another 

assessment about student learning that involved sample collection. 

Because of the probability that essay word count (i.e., length) is related to the 

quality of a timed essay, this study experimentally manipulated the length of several 

professionally-written essays in order to test whether raters would be able to discriminate 

among essays that were short but well-developed (SD), long and well-developed (LD), 

short and under-developed (SU), and long but under-developed (LU). (The notions of 

“short” and “long” were left untheorized except to mean shorter and longer than the 

sample mean length.) If raters can conclude that shorter essays can still have developed 

themes and sophisticated rhetorical moves, and that longer essays can lack these features, 

we have evidence that essay length and quality do not have to be inextricably linked. The 

rationale for using a professionally-written piece by a noted scholar was simply that its 

relative competence as a piece of academic writing when placed alongside the student-

written, timed essays had face validity. 
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Originally, three essays were to be manipulated: a 2,127 word essay written by 

Nannerl O. Keohane for the Chronicle of Higher Education, another essay by Bart 

Giamatti while he was the president of Yale University and a final piece by Robert Geer, 

the dean of SUNY-Albany’s college of engineering. The challenge for the manipulation, 

however, was the difficulty in operationalizing the concepts of “developed” and “under-

developed.” The modifications needed to be inconspicuous enough so as not to tip off 

readers. Would repeating sentences be an acceptable method of creating versions that are 

long but under-developed? If that tactic were found to be too obvious, what about 

modifying words in the repeated versions? If so, how much content should then be 

modified? And if modifications are extensive, would at some point the modification not 

help to rhetorically “develop” the essay? In future trials, work needs to be done to tie the 

manipulations to better-defined rubric qualities. 

Ultimately, the Geer essay was the only one of the three manipulated essays to be 

used as part of the study. The Keohane and Giamatti essays were so long relative to the 

students’ papers that cutting them sufficiently in order to create the SD and SU versions 

became a challenge. The Geer essay, however, was short enough that an even-shorter 

version was still comprehensible. I created a version of this essay that was significantly 

shorter than the mean word count of the student essays (m = 353 words) to represent the 

SD version and one that was longer, but achieved its length through repetitive phrasing 

rather than the addition of evidence or novelty to represent the LU version. The word 

counts of the manipulated essays were 274 and 382 words, respectively. If the teachers 

were able to take into account higher-order values during their scoring, they should have 
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scored the shorter but developed essay higher or as high as the longer but not more 

developed essay. 

 

Methods: Data Preparation 

Essays from the five sections that were hand-written were transcribed into 

typewritten form. Efforts were made to preserve the original structural and mechanical 

elements of the essays, including placement of paragraphs, spelling, punctuation, 

capitalization, and so forth. The reasoning for the decision to have instructors score 

typewritten transcriptions rather than original versions was to preserve parity between the 

form graded by machine and the form graded by instructors—both would receive the 

printed version of each essay. Again, in an assessment that compared students to one 

another, or classrooms to one another, the existence of multiple test forms would threaten 

validity because the typed essays would have enjoyed the advantage of spelling and 

grammar checks not to mention easier editing than the paper form administrations. 

Although evidence conflicts as to whether typed or handwritten examinations enjoy any 

sort of scoring advantage (Mogey, Paterson, Burk & Purcell, 2010), transcribing the 

paper administrations eliminated this possibility. (Note that transcriptions preserved 

original spellings and punctuations.) However, the purpose of this study was not a 

comparison of subsets of essays; it was a comparison of scoring procedures, so the 

variation in administrations was not germane. The only distinction between the essays 

that the people read and those scored by e-rater was that some students added titles to 

their essays, which the human readers would have seen, and Criterion would not have. 

The user interface instructs users to leave off titular content because titles may, at the risk 
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of anthropomorphizing, confuse the scoring algorithm. 

In preparation for scoring, the essays were assigned to the five participating raters 

using a random number generator. Randomization was done to ensure that no rater would 

receive an unequal proportion of essays from any one classroom and there was no 

systematic pairing of raters (see Winters, 1980). No rater read essays from her own 

classroom, and this was ensured during the assignment phase. 

To ensure consistency of scoring, a training set of nine student essays was 

assembled from the student sample; the training set comprised six canonical 1-6 score 

essays (not in that order) and three samples that represented borderline 3/4 splits. (Scores 

were based on the scoring model developed for this exercise, described later in this 

section.) The training recommended by Perelman (personal communication, May 13, 

2014) was to use 12 essays taken from the sample set (consisting of canonical, or 

definitive, 1-6 scores in the first packet, followed by a second packet with a high-scoring 

shorter essay, low-scoring ESL essay, and borderline 3/4 split, then a second borderline 

3/4 split, low-scoring longer essay, and high-scoring ESL essay in the third packet). This 

training only utilized nine essays because after scanning approximately 50% of  the 

sample, it was determined that the sample size was too small to yield canonical examples 

of ESL papers, high-scoring short, or low-scoring long papers. Canonical papers must 

have as clearly discernable relevant attributes as possible and this was not found. Even 

finding canonical “1” and “6” scoring essays was also a challenge given simple 

probabilities. If the 106 essays were normally distributed, with a mean, say, of 3.5 and 

SD of 1, then 95 percent of the data would fall between 1.5 and 5.5, meaning that only 

five or six essays would be 1s or 6s. On the other hand, we could expect a good 
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proportion of 3s and 4s, making a closer look at the “upper half-lower half” border line 

important. 

In a second minor deviation from standard scoring practice, reader scores on the 

training set were included in the overall dataset of scores. (Readers had already been 

assigned to all essays before the training set was developed and scores on the training set 

from the assigned raters were taken for the dataset.) Typically the training set is of course 

not included in the overall dataset that is then analyzed statistically, since reliability 

should only be calculated once the raters are trained. However, in this case, working with 

as large a dataset as possible was appropriate for a pilot study where the scores had no 

impact on students or institutions and would outweigh any concerns that including 

training essays could lower inter-rater reliability.  

Developing the scoring guide. A thorough literature review did not reveal any 

published studies on rubrics that had been derived from Framework outcomes, so it was 

not possible to examine any existing reliability or validation data concerning this kind of 

rubric. Yet, as Schwegler (2014) has noted, the Framework outcomes provide “a set of 

traits that instructors look for in compositions” (R. Schwegler, personal communication, 

May 23, 2014) much in the same way that the Diederich scale of features provided this 

set of traits in Diederich’s factor analysis of what secondary school teachers look for. 

Because of the shortage of reported studies on using the Framework for 

assessment, this project began developing the scoring rubric to be used in the study by 

building upon a pre-existing portfolio-scoring rubric developed by the University of 

Rhode Island (URI)’s Department of Writing & Rhetoric for scoring 100-level end-of-

semester portfolios, and based on the Framework. That rubric is shown in Table 2, below. 
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Reliability figures for that rubric were not readily available and it is also a rubric using 

only three score values (1-3), so there would be no immediately obvious basis for 

drawing conclusions about the 6-point rubric developed for this study, at least from 

simple agreement numbers.  

Swain and Le Mahieu (2012) describe the process of using one rubric as the 

starting point for developing another rubric. A modified version of this process was 

followed in building the rubric used in this project. I consulted with Robert Schwegler, a 

faculty member involved in developing the original URI portfolio rubric, and with other 

experts including Chris Anson and Les Perelman. The guiding principle adopted from the 

URI rubric was that under the attribute of “rhetorical knowledge,” the purpose should be 

clear, the voice ought to contribute to fulfilling the author’s purpose, and the implied 

audience should be appropriate. In the case of the timed impromptu essays collected for 

this study, these criteria were interpreted to mean that the essay argued a position, that it 

was written in prose typical of academic writing (this feature was not further defined, but 

seemed to be something that reviewers understood intuitively), and that the voice or 

personality of the essay seemed to be working in concert with the purpose. (An essay 

written with a noticeably colloquial voice, for instance, may work against the purpose of 

arguing a position for an academic audience.) 

For the attribute of critical thinking from the Framework Outcomes Statement 

shown in chapter 3, which was not explicitly employed in the URI rubric, the rubric here 

developed indicated that a strong essay would have provided strong and even insightful 

supporting data/evidence for the writer’s position. Condon and Kelly-Riley (2004) 

described a six point, seven dimension analytic scale used to measure critical thinking at 
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Washington State University. The scale was claimed to yield reliability coefficients of .8 

and higher (p. 60). The scale included measures such as identifying the problem at issue, 

the student’s and other’s perspectives, identifying key assumptions, assessing supporting 

evidence, considering the influence of context on the issue, and assessing implications 

(pp. 71-72). In order to incorporate some of these ideas into a holistic rubric, I chose to 

focus on presenting the author’s position and providing strong supporting evidence. 

Expecting impromptu-writing students to explore the problem, context, and key 

assumptions seemed to be beyond the expectations of even strong papers. 

In terms of conventions and craft, the rubric created for this study followed the 

URI rubric in using the litmus test of whether errors impede meaning. Doing so 

eliminated the mindset of “counting” mistakes that can otherwise infect scoring 

initiatives. The qualities of “reflective introduction” and “understanding of genres” were 

removed from the new rubric as they were not relevant to the essay assignment. 

 

 EXEMPLARY PROFICIENT UNACCEPTABLE 

Reflective 

Introduction 

The reflective introduction 

demonstrates the writer’s 

insights and thoughtfulness 

about his or her learning in this 

course and/or makes 

connections across projects 

and/or to other courses.  The 

introduction offers a variety of 

support for claims about what 

the writer has learned, including 

evidence from the working folder 

or previous drafts.  The writer 

addresses in detail why entries 

were chosen and/or how they 

were revised for the portfolio.  

The writer uses terms from the 

course content or materials 

comfortably or expertly (i.e., 

genre, audience, revision).  The 

introduction successfully 

prepares readers for the rest of 

The reflective introduction 

demonstrates some 

thoughtfulness about the 

writer’s learning in the course; 

it offers support for claims 

about what the writer has 

learned and may make at least 

one connection to other 

learning. The writer addresses 

why entries were chosen or 

how they were revised for the 

portfolio.  The writer uses 

terms from the course 

content or materials 

competently (i.e., genre, 

audience, revision).  The 

introduction competently 

prepares readers for the rest 

of the portfolio. 

The reflective introduction 

offers only one or two 

examples of the writer’s 

learning or makes broad, 

unsupported, or generic claims 

about the class.  The writer 

addresses only briefly why 

entries were chosen or how 

they were revised for the 

portfolio.  The writer does not 

use terms from the course 

content or materials, or uses 

the terms in unusual contexts.  

The introduction appears 

disconnected from the rest of 

the portfolio. 
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the portfolio.  

Rhetorical 

Knowledge 

The writer has made apt 

decisions for each entry in terms 

of audience, purpose, and voice.  

The target audience for each 

piece is appropriate or 

consistent; in every entry, the 

purpose is clearly stated and 

fulfilled, and the voice in each 

case contributes to fulfilling the 

purpose. 

The writer has made apt 

decisions in terms of 

audience, purpose, and voice 

with only one or two lapses.  

The target audience for each 

piece is generally appropriate 

or consistent; the purpose is 

stated and fulfilled, and the 

voice contributes to fulfilling 

the purpose. 

The writer has not made apt 

decisions in terms of audience, 

purpose, and voice, or there 

are several lapses.  The target 

audience for more than one 

piece is inappropriate or 

inconsistent; the purpose is 

difficult to determine or 

sometimes unfulfilled; the 

voice may or may match up to 

the purpose. 

Understanding 

of Genres  

Each of the three project entries 

illustrates a command of the 

intended genre and/or fulfills the 

criteria for the original 

assignment.  For each genre 

represented, the writer has 

explicitly and implicitly 

demonstrated the features of the 

genre and has used those 

features to good effect (e.g., in 

analyzing a text, the writer has 

used evidence from the text 

effectively to achieve the goals of 

the piece). 

Of the three project entries, at 

least one is very successful in 

illustrating a command of the 

intended genre or the criteria 

for the assignment; the other 

two entries may be on target 

but less polished. The features 

of each genre are present but 

are not manipulated to the 

best effect (e.g., in analyzing a 

text, the writer has tried using 

evidence from the text to 

achieve the goals of the piece 

but with mixed success). 

Only one of the three project 

entries illustrates a command 

of the intended genre, or the 

criteria for the original 

assignment are fulfilled in only 

one entry.  The writer has 

misunderstood or 

misrepresented key features of 

two of the three assigned 

genres. 

Conventions & 

Craft 

The reader has no questions 

about sources or documentation; 

there are minimal errors in 

usage, grammar, punctuation, or 

mechanics—none that impede 

meaning. 

The reader may have one or 

two questions about sources 

or documentation; there are a 

few errors in usage, grammar, 

punctuation, or mechanics 

that may impede meaning. 

The reader has a number of 

questions about sources or 

documentation; there are a 

number of errors in usage, 

grammar, punctuation, or 

mechanics that impede 

meaning. 

Table 2. Example of URI rubric for portfolios based on Framework. 

 

Based on the URI rubric presented above, the following scoring guide was created for 

this study (Figure 6): 

 

Scoring Rubric for College Writing Based in Framework Criteria 

The rubric reflects the degree to which essays: are written toward an academic audience, convey and 

fulfill the purpose of the assignment, demonstrate critical thinking, and contain minimal surface errors.  

Impromptu essay prompts do not present “settled” debates. Lacking sources, writers may rely more on 

personal narrative and/or anecdotal evidence to support their position, rather than on “hard” data. Essays 

may likewise contain reasoning from first principles or appeals to intuition. Paper-and-pen writers will not 
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have had the advantage of spell checkers. Still, if well-constructed, strong essays should be able to offer 

compelling reasons for their position that contribute to an overall impression of rhetorical competence and 

effectiveness. Strong essays should be written in an academic voice and should be relatively free of major 

surface errors. 

 

 

 

P 

R 

O 

F 

I 

C 

I 

E 

N 

T 

6 

Exemplary 

Essay’s target audience is consistently appropriate; the 

purpose is clearly stated and fulfilled, and the voice 

contributes to fulfilling the purpose. Essay presents author’s 

position and provides strong, even insightful supporting 

data/evidence. There are minimal errors in usage, grammar, 

punctuation, or mechanics—none that impede meaning.  

5 

Good 

Essay’s target audience is generally appropriate; the purpose 

is stated and fulfilled, and the voice contributes to fulfilling the 

purpose with minimal lapses. Essay presents author’s position 

and provides strong supporting data/evidence. There are only 

minimal errors in usage, grammar, punctuation, or mechanics 

that impede meaning. 

4 

Acceptable 

Essay’s target audience is often appropriate; the purpose is 

stated and fulfilled but not as clearly as in 5-ranked essays, 

and the voice contributes to fulfilling the purpose most of the 

time. Essay presents author’s position and provides some 

degree of supporting data/evidence. There may be a few 

errors in usage, grammar, punctuation, or mechanics that 

impede meaning. 

 

N 

O 

T 

 

P 

R 

O 

F 

I 

C 

I 

E 

N 

T 

3 

Developing 

Essay’s target audience is not always clear or appropriate; the 

purpose is not clearly stated and fulfilled, and the voice may 

not contribute to fulfilling the purpose. Essay may not fully 

present author’s position and may have limited supporting 

data/evidence. There are noticeable errors in usage, grammar, 

punctuation, or mechanics that impede meaning. 

2 

Emerging 

Essay’s target audience is generally not appropriate; the 

purpose is not clearly stated and fulfilled, and the voice does 

not contribute to fulfilling the purpose. Author’s position is 

unclear and essay does not offer strong supporting 

data/evidence. There are significant errors in usage, grammar, 

punctuation, or mechanics that impede meaning. 

1 

Needs 

Improvement  

Essay’s target audience is not appropriate and/or discernible; 

there is a lack of coherence in the essay’s purpose and/or 

voice. Essay presents no clear position and lacks supporting 

data/evidence. There are substantial errors in usage, 

grammar, punctuation, or mechanics that impede meaning. 

Figure 6. Rubric for Essay Reading Session 

 

Methods: Data Scoring  

On May 23, 2014, the rating session was held, with five raters participating. The 

seven instructors from SCSU and URI who agreed to invite their classes to participate in 
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the study were invited to serve as readers in the scoring session at the end of the semester. 

Ultimately, five were able to participate. Each rater was one of the instructors whose 

students took part in the study, and both SCSU and URI were represented by raters.  

Following Winters (1980), a random assignment of essays to readers ensured that 

there was no systematic pairing of readers to each other, nor of readers to essays from 

any particular course section. All essays were read once then redistributed for second 

readings. Essays were coded according to institution, course number, instructor, and 

student. No instructor was permitted to score essays from his or her own course sections, 

per the informed consent agreement (Appendix 1). 

Each of five participating raters rated approximately 22 essays in each of two 

separate rounds, the first round taking place in the morning and representing first reads of 

all 108 essays (106 student essays plus the one manipulated essay in SD and LU forms); 

the second taking place in the afternoon and representing second reads of the essays. This 

meant that all papers were read and scored twice in total. Scores were recorded directly 

on each printed copy of the essay; two copies were printed so as to avoid second readers 

inadvertently noticing what rating the first readers had assigned a paper. After scoring 

came to a close, each rater was given a $100 Visa gift certificate consistent with URI 

policy on incentive payments. 

 

Methods: Data Analysis   

Recall that the set of essays that were collected and scored at the present time 

consisted of student essays written on a topic selected from Criterion’s database, on the 

value of liberal arts education. The second set of essays collected (but not scored yet) 



127 

 

were responses to instructor-developed topics that are generally fewer than 1,000 words.  

For the condition tested in this study, Criterion holistic scores for each essay were 

cross-correlated with holistic scores produced by the college instructors trained in the 

scoring of a rubric based on the Framework for Success (see Figure 2 in chapter 3). Many 

institutions besides URI draw explicitly or implicitly on the Framework, so using that 

rubric for all of the essays in the study would not be unfounded. Originally, the research 

design had incorporated a dual-rubric method, scoring the essays along the 6+1 rubric 

described in chapter 3, as well as a Framework rubric. However, with limited available 

funding, only one scoring session, using the Framework-derived rubric, was possible.  

 As mentioned, the essays were scored by human readers in May 2014. Scores 

were recorded into Excel over the summer of 2014. Splits—ratings that differed by more 

than one score value between readers—(n=24) were resolved by me over a roughly 24-

hour period in August 2014. The split adjudication process was simply to review the 

rubric and re-score the 24 essays along that rubric. A Resolved Score (RS) for each essay 

was then generated. In the case of agreement or adjacent agreement (scores within one 

value between readers (e.g., a 2 and a 3) between the two readers, the RS was the average 

score. Following common practice, in the case of splits the RS was equal to the score 

assigned it when I resolved the splits. The rationale for not simply averaging split scores 

is that two raters’ agreement is thought to further confirm a score than would simply one 

rater. If two raters do not agree, that suggests little confidence in one or the other of the 

scores (or both) so the essay should be re-scored.  

Essays were then cut and pasted into ETS’s online Criterion system during the 

fall of 2014, and each received a score. Four essays were returned as unscorable because 
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they were over 1,000 words. Data analysis was done using SPSS. Of interest are the 

mean, median, and modal score for each reader, as well as the standard deviation (a 

measure of how dispersed the scores are) and the shape of the distribution of scores 

(kurtosis and skewness). Descriptive statistics for Reader 1, Reader 2, the Resolved 

Score, and Criterion scores are as follows: 

Reader 1   Reader 2   

Mean 3.46 Mean 3.7 

Standard Error 0.11 Standard Error 0.12 

Median 4 Median 4 

Mode 4 Mode 4 

Standard Deviation 1.18 Standard Deviation 1.22 

Sample Variance 1.39 Sample Variance 1.5 

Kurtosis -0.5 Kurtosis -0.3 

Skewness 0 Skewness 0.06 

Range 5 Range 5 

Minimum 1 Minimum 1 

Maximum 6 Maximum 6 

Sum 374 Sum 400 

Count 108 Count 108 

Confidence Level(95.0%) 0.22 Confidence Level(95.0%) 0.23 

Resolved Score Criterion 

Mean 3.44 Mean 3.62 

Standard Error 0.11 Standard Error 0.09 

Median 3.5 Median 4 

Mode 3.5 Mode 3 

Standard Deviation 1.13 Standard Deviation 0.91 

Sample Variance 1.28 Sample Variance 0.82 

Kurtosis -0.4 Kurtosis 0.18 

Skewness 0.04 Skewness 0.21 

Range 5 Range 5 

Minimum 1 Minimum 1 

Maximum 6 Maximum 6 

Sum 372 Sum 376 

Count 108 Count 104 
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Confidence Level(95.0%) 0.22 Confidence Level(95.0%) 0.18 

 

Table 3. Descriptive statistics by reader type. 

  

Mean scores ranged from 3.44 (RS) to 3.7 (R2). The median score for R1, R2, and 

Crit was 4 and for RS it was 3.5 (recall that RS is the average of R1 and R2 in the case of 

exact or adjacent agreement; otherwise, it is the adjudicated score). Modal scores were 4 

for R1 and R2, 3.5 for RS and 3 for Crit. Some of the other statistical properties will be 

covered in the section, “Distributional differences.” 

Agreement Measures 

A correlation is a statistical technique that provides a sense of how closely two 

variables are associated (Tabachnick & Fidell, 2013, p. 56). It is considered a measure of 

consistency. The Pearson product-moment correlation coefficient (represented as r) is the 

most commonly-used measure of correlation (Tabachnick & Fidell, 2013). A Pearson 

correlation ranges from +1 to -1. A correlation of 0 means that the variables are not 

associated at all, while a correlation of +1 means that they are strongly associated in a 

positive direction (as one increases in value, so does the other or as one decreases, so 

does the other), and a correlation of -1 means that the two variables are strongly inversely 

related (as one increases, the other decreases).  

A correlation matrix (Table 4) shows the r values for the six possible 

combinations of variables: R1 with R2, R1 with RS, R1 with Crit, R2 with Crit, R2 with 

RS, RS with Crit (listed as R1R2, R1RS, R2RS, R1Crit, R2Crit, and RSCrit, 

respectively). The R1RS and R2RS correlations were the highest (.795 and .739) because 
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the resolved score was generally the average between the two reader scores (except for 

splits). The third-highest correlation was that between Criterion and the Resolved Score 

(.637). We would expect that the association between Criterion and the Resolved Score 

would fall in the moderate range, and indeed it does, because Criterion has of course 

been trained on a common rubric, and the readers were trained on the rubric 

incorporating Framework Outcomes Statement qualities. 

Correlations 

 R1 R2 RS Crit 

R1 

Pearson Correlation 1 .497** .795** .589** 

Sig. (2-tailed)  .000 .000 .000 

N 108 108 108 104 

R2 

Pearson Correlation .497** 1 .739** .577** 

Sig. (2-tailed) .000  .000 .000 

N 108 108 108 104 

RS 

Pearson Correlation .795** .739** 1 .637** 

Sig. (2-tailed) .000 .000  .000 

N 108 108 108 104 

Crit 

Pearson Correlation .589** .577** .637** 1 

Sig. (2-tailed) .000 .000 .000  

N 104 104 104 104 

**. Correlation is significant at the 0.01 level (2-tailed). 

Table 4. Correlation Matrix. 

 

Perhaps the most unexpected finding was only a moderate, rather than a strong, 

correlation between the two human readers (.497). Operational standards at ETS require 

correlations above .70 (Deane, et al., 2013) and indeed the Shermis and Hamner (2012) 

study of multiple data sets featured human correlations in this range. While the training 

session here did not officially compare ratings, personal impressions were that raters 

agreed with and internalized the rubric. Moreover, because scores are not associated with 
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student performance, the scores are instructive for the purposes of studying efforts to 

apply a Framework rubric to timed essay questions.  

While correlation will give a sense of how two datasets move together, it is 

possible for two arrays to be perfectly correlated but not agree on any of the data points 

(say one rater is uniformly more severe than another), so a sense of overall agreement is 

also needed—a measure of consensus. Exact agreement for R1R2 was 33 essays, or 30.55 

percent. Exact+Adjacent agreement for R1R2 was 84 essays, or 77.78 percent. Virtually 

all of the human ratings (97.22 percent or 105 of the 108 ratings) were within two points 

suggesting some consistency of scores. Again while these numbers are not ideal in a 

high-stakes situation, they are not unheard of in other contexts. Leydens and Olds (2012) 

report on a study where 22% of the sample was adjudicated because scores were not in 

exact or adjacent agreement (p. 251), which would place agreement at 78%. Yet 

agreement alone is an inadequate measure since it does not account for agreement by 

chance.   

Cohen’s kappa is used for assessing inter-rater reliability when the measure is 

categorical in nature and provides a mathematical formula for discounting for the 

probability of agreement merely by chance. Weighted kappa is less punitive to 

disagreements that are closer together on the scale than those that are farther apart, which 

is useful because the interval data from essay scoring is thought to have some 

“underlying trait” that increases along with the scale, making weighted kappa a helpful 

measure (Shermis & Hamner, 2012, pp. 23-24). Quadratic weighting—a standard 

measure for interrater reliability in educational assessment—uses weights proportional to 

the square of the distance apart. The quadratic weighting has the effect of being more 
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generous to closer-together responses that either unweighted or linear weights. Kappa 

ranges from 0 to 1, with higher numbers indicating greater agreement. The quadratic 

weighted kappa coefficient for R1R2 was .4867. The coefficient for R1Crit was .5621 

and the coefficient for R2Crit was .548. 

Cronbach’s alpha for R1R2 was .664. Cronbach’s alpha is another measure of the 

consistency (internal) of a set of tests measuring the same construct. It can be used to 

measure interrater reliability (Stemler, 2004). Cronbach’s alpha was not used on the 

Criterion set, because this coefficient decreases in accuracy when faced with missing 

data, and there were four unscorable essays in Criterion. 

While I will not attempt more than a speculation as to the lower human inter-rater 

reliability than generally accepted for high-stakes scoring, several rationales may be 

offered: (1) the operationalization of Framework features such as rhetorical knowledge 

and critical thinking provided by our rubric was unsatisfactory; features were not clearly 

defined enough and as a result, readers could be expected to differ on their interpretation. 

Or (2), readers simply needed more training on the rubric. This hypothesis could be tested 

by rescoring the essays with new readers who had been trained more extensively on the 

rubric.  

However, there is the possibility that the problem is due to construct-irrelevant 

variance rather than a problem with rubric interpretation or definition, because the second 

reads were done simultaneously, and directly after readers broke for lunch. It is possible 

that there was a rater severity drift after the break, which might explain the higher sample 

mean for the second reads (3.70 compared to 3.46). Increased severity before—and 

leniency after—a meal was found in a study of parole board hearings (Danziger, Levav, 
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& Avnaim-Pesso, 2011). Supporting this potential explanation of leniency, six splits were 

adjudicated in favor of the R1 score; three were adjudicated in favor of the R2 score; 11 

were adjudicated as the middle score between the R1 and R2 scores; and four were 

assigned lower scores than either R1 or R2 originally assigned. Interestingly, all three 

scores adjudicated in favor of R2 were situations where the R2 score was actually lower 

than the R1 score for that essay. In other words, none of the adjudications favored the 

higher R2 assignment, suggesting that the R2 scores may have been relatively lenient. 

Only two scores were resolved in favor of the higher score anyway. However, if all 

readers were consistently more lenient after lunch, Pearson r would not necessarily be 

affected, so it may be the case that some raters’ leniency increased while others did not. 

More tests of rater consistency may be indicated here.  

 Regardless of these limitations, given the correlation of .64 between the Resolved 

Score and Criterion, the study lends limited support to the expectation that machine 

scoring on a common rubric will be moderately but not strongly correlated with scoring 

along a rubric more focused on higher-order features of writing such as the focus, quality 

of evidence, and writerly voice. (Recall from chapter 3 that Deane et al. (2013) found 

correlations of .61 to .80 between the e-rater model trained on a common writing rubric, 

and three writing prompts where humans used a genre-specific rubric to score the essays.) 

The results also do suggest that one cannot expect Criterion—which has been trained to 

predict scores on generic feature sets—to score essays as a college instructor might. 

However, more training is needed for the human instructors so that they will be 

able to score essays more reliably along the Framework criteria. Until such time, these 

findings must be interpreted with caution. But because R1 and R2 did not correlate as 
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closely as RS and Criterion, hypothesis H1 could not be confirmed from this study. 

Recall that H1 was framed as a comparative: the scores within the humans’ rubric were 

hypothesized to correlate more closely than the scores across rubrics. 

 

Covariance with Essay Length 

 While H1 predicted different inter-rater reliability levels between humans and 

machines but found similarity, the opposite trend was found in looking beyond reliability: 

differences have been found where similarities might have been expected. Further 

analyses were done to explore these findings. The first of this “difference” concerns the 

correlation between essay length and score that has been observed elsewhere in 

automated scoring studies. That trend was evident in this study as well: Table 5 depicts 

the correlations between overall word count and essay score as a function of reader. 

Criterion had the highest correlation, almost double that of the lowest correlation, Reader 

2. The correlation of .539 of human Resolved Score and essay length equals a shared 

variance (r2) of 29 percent (.539 * .539 = .29). Shared variance can be interpreted as the 

percent of one feature attributable to another. 

 

R1Length 0.458 

R2Length 0.424 

RSLength 0.539 

CritLength 0.836 
 

Table 5. Score-Length correlations by reader. 

 

Reprinting the figure from Perelman (2012a) (Figure 7), the finding of a shared 

variance of 29% fits exactly with the trend that he uncovered: the length/score correlation 
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is stronger the less time a student has to write an essay. (Perelman’s chart ranges from 

20- minute standardized assessments to placement examinations at MIT allowing three 

days for completion). The essay I assigned had a 45-minute time limit, which places it 

between the blue (25 minute) bars and the red (one hour) bars. As the arrow denotes, the 

shared variance of 29 percent clocks in between of those observed measurements.  

 

Figure 7. Reprinted from Perelman (2012a) with orange arrow depicting present study results. 

 

 That the RS shared variance appears to fall along the same trend line that 

Perelman has discovered is somewhat unexpected, in the sense that essay readers in this 

study were provided ample time to score essays, with the hope that they would not 

default to visual cues such as length in making their assessments, and were provided 

training essays in which the canonical “6”-scoring essay was shorter than the average 



136 

 

essay in terms of number of words. This training attempted to invite readers to jettison 

any preconceived notions they had about scoring these off-the-cuff assignments, without 

on the other hand biasing results by explicitly instructing readers to ignore length as a 

factor. It happened that at least one participating instructor had scored standardized tests 

for a testing company in the past, and so the message that form ought to be subordinate to 

content was a meaningful one since it did not hold true in her previous scoring 

experience.  

Consequently, the resulting moderate correlation of length and score lends limited 

support to the idea that the length-score association is not solely an artifact of using a 

standardized rubric or of other limitations of scoring standardized examinations. In other 

words, the association of length and score is more likely attributable to the moderate 

likelihood that longer essays are indeed better-developed than shorter ones, especially 

when time constraints will produce a larger range of lengths. See below, Table 6.  

Descriptive Statistics: Essay Length 

Mean 352.86111 

Standard Error 14.676973 

Median 315 

Mode 271 

Standard Deviation 152.52758 

Sample Variance 23264.663 

Range 935 

Minimum 78 

Maximum 1013 

Count 108 

Largest(1) 1013 

Smallest(1) 78 

  

 

Table 6. Descriptive statistics for variable of Overall Word Count. 
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As the table shows, the range of essay length was 935 words (from 78 to 1013 

words). So, the longest essay in our study was nearly 13 times longer than the shortest 

essay. Essay assignments with longer time limits are unlikely to produce essays with this 

large a multiple between shortest and longest, because slower writers will be able to 

“catch up” with faster ones to reach what is either specified or understood to be a 

reasonably apportioned response (one would not expect see, for instance, a range of 3 to 

39 pages for even a 72-hour placement exam). If we want to test the hypothesis that the 

length-score association is explained by the inverse relation between word count variance 

and time allotted (length varies less with longer writing duration), we would need to have 

multiple essay sets such as the ones in Perelman’s study. We would then obtain Pearson r 

coefficients for length-score on each set, as well as measures of variance such as range 

and standard deviation. Then, we would plot the Pearson r coefficients against these 

measures of variance to see whether the essay sets where length varied the most were 

also the ones where length mattered the most. Unfortunately, this is outside the scope of 

the current study. 

Moving from the RS length-score correlation to e-rater, the shared variance 

between score and essay length for the Criterion scores was much higher than the human 

reported variance, at 70 percent (.836 * .836). A higher shared variance does not 

necessarily mean that the computer was explicitly counting words, however. Indeed, 

Chodorow & Burstein (2004) noted that e-rater does not contain a direct measure of 

essay length in its feature set, an assertion corroborated by the Construct Decomposition 

chart provided in chapter 3 as Figure 3. But it does mean that essays that are longer have 

a strong tendency to be scored more highly by Criterion—this association is stronger, in 
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fact, than any of the observed relationships between length and human score reported by 

Perelman (2012a) and reprinted above. As the current research shows, essay length is not 

itself causative of high score, since the associations found were significantly lower. 

While Perelman and others seem to suggest that any essay condition where length 

is the overwhelming factor in essay quality is illegitimate, one might respond that longer 

essays are, quite often, simply better—presumably because they constitute more 

developed responses. Indeed, as I have said some contribution of essay length to score is 

probably logical—a five-word essay, a 50-word essay and a 500-word essay are going to 

represent quite different rhetorical performances. However, this study demonstrates that 

essay length need not be as strongly connected with score as automated scoring might 

indicate. Again, Criterion’s feature weights were set during prior calibration sessions 

with human-scored essays, so the implication of the present project is that there are 

different ways to score even timed impromptu essays such that length is not the 

overwhelming feature taken into consideration. The limitation of this study is, of course, 

that once the parameters of scoring are loosened up, reliability decreases. 

 

Distributional Differences 

Beside the discrepancy of length-score correlation, the second notable distinction 

is the distribution of score frequencies between the human and machine scoring. As seen 

in Figure 8, the superimposed score distributions for e-rater look graphically quite 

distinct from those of the human readers. (Figure 9 shows the individual histograms.) 

Specifically, Criterion assigned the fewest number of 1s, 2s, and 6s, but the most number 

of 3s of all the scorers. The number of 4s and 5s assigned by e-rater fell within the range 
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observed in the human rater assignments. Exactly 80 Criterion scores were either 3s or 

4s, as the figure indicates—more than three quarters of the sample. 

Note that, as discussed earlier, RS is the average of R1 and R2 except in the case 

of splits, where RS takes on the value of the adjudicated score. So RS can be a half-score 

value. Half scores such as 1.5 or 2.5 were included in the bin for the lesser of the score 

values. Because of the way resolved scores were assigned, the unique histogram for RS 

does not appear normally distributed or at least appears skewed—there are more 1s than 

1.5s, more 2s than 2.5s or 3s, and more 5.5s than 5s. One would expect more whole 

numbers than fractions, because the 24 adjudicated scores were assigned a whole number, 

but the explanation for the larger number of 2s than 3s remains to be seen. Possibly, the 

adjudications had the effect of lowering the scores. One explanation is that, as mentioned, 

the 24 adjudicated scores were lower than the R2 scores. Analysis of the adjudicated 

score distribution could add clarification. 
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Figure 8. Frequency distribution by score value 
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crit 

 

Figure 9. Score frequency distribution by reader (R1, R2, RS, and Crit, respectively). 

 

So, even though our previous measures of consensus (agreement) and consistency 

indicate that RS and Crit move together more closely than R1 and R2, when frequency 

distributions are considered, the three human sets of ratings have greater standard 

deviations, are more widely distributed and make more use of 1 and 6 scores than does 

Criterion, whose SD was less than one, and whose distribution tended toward the mean. 

The discrepancy helps to underscore the somewhat arbitrary nature of the Turing test that 

Ellis Page reified—a test involving correlation matrices like the one in Figure 1 from the 

first chapter. One interpretation of this graph is that fewer essays warranted very low or 

very high scores on the common rubric than on the college rubric that the instructors 

used. This interpretation, then, suggests that the common rubric is not as useful for 

predicting or serving as a basis for grading college essays, because a smaller range of 

mechanical properties can still generate diversity in rhetorical impact.  
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 Probing further along the lines of distributions brings us to the third notable 

discrepancy between human and machine scoring: score variance. Criterion’s scores 

were more mean-concentrated than either human’s and the Resolved Score. The 

following graphic (Figure 10) shows the standard deviation and sample variance for each 

rater. The variance is equal to the average of the squared difference of each score from 

the mean score. The standard deviation is thought of as the square root of the variance 

and is expressed in the same units of measurement as the values. Both are measures of 

dispersion or the spread of values around the mean. All human distributions had positive 

skew; e-rater’s was negative. The computer distribution had higher kurtosis indicating 

what we see, that the central values are more likely (see Table 3).  

 

 

Figure 10. Standard deviations and sample variances for all readers. 

 

Of course, it might be argued that the differences in descriptive statistical 

measures are due to the separate rubrics used—the fact that humans used the Framework 
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rubric and e-rater the common rubric. The most conservative interpretation for the 

smaller SD for Criterion would be that it shows a slight inverse relationship between 

Framework qualities and common qualities. That interpretation would suggest that 

Criterion performs worse in matching Framework characteristics for papers that are 

worse than average (judging them more favorably) and better than average (judging them 

more poorly). 

However, McCurry (2010) also found lower standard deviations and evidence of a 

central tendency bias in automated scoring as compared to human scoring on a 

standardized test in Australia, so this finding is not unique to the current dataset. Recall 

from chapter 3 that standard deviations were .79 and 1.18 for the two software packages 

on the nine-point scale compared to 1.37 for the human readers. In McCurry (2010)’s 

study, machines were directly trained on a subset of scores for that test administration, 

effectively eliminating the possibility that the central tendency finding reflected 

underlying differences in the construct being evaluated.  

There is evidence that Criterion’s central tendency is indeed a bias or a construct-

irrelevant finding. It is, in fact, thought to be due to the nature of the linear regression 

algorithm that Criterion uses, not due to the fact that, say, the essays read were more 

homogenous in terms of mechanical errors than in their higher-level qualities. However, 

in the Shermis and Hamner (2012) study described in chapter 3, the e-rater scoring 

engine did not appear to yield standard deviations drastically different from the resolved 

score values of the essay sets studied. For the essay set most like the present set, which 

used a 1-6 scale, the SD of the resolved score was .77; for e-rater, it was .79.  
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Even if the central tendency were not an artifact of the regression calculation as 

Shermis and Hamner (2012)’s data might suggest, there is another possible construct-

irrelevant explanation, based in the personal incentives for readers themselves to 

maximize agreement. Maximizing agreement implies avoiding the range extremes. 

Assume two raters are trying to maximize exact agreement. Each rater has a 1 in 6 

probability of assigning exactly the same score as the other reader, solely by chance. This 

can be seen by considering that there are 62 possible outcomes of the two score 

assignments. Six of these possible outcomes, or 6/36, will be agreements (both ones, both 

twos, both threes, etc.). 

However, if readers are trying to maximize adjacent rather than exact agreement, 

as they do in many assessments, then the situation changes. For the numbers at the end of 

the scale are only adjacent to the sole number next to them, whereas the numbers in the 

middle are adjacent to two other values. This can be represented diagrammatically in the 

illustration below: 

1    2    3    4    5    6 

1    2    3    4    5    6 

Selecting a 2, 3, 4, or 5 puts a reader in adjacent connection with three values, or 

fully half of the 6-point rubric. Selecting a 1 or a 6 puts the reader in connection with 

only two values or 1/3 of the rubric.  Many readers who are under pressure to maximize 

adjacent agreement—rather than simply to evaluate the particular essay with respect to 

the features of the rubric given—are going to realize that they have a 50% chance of 

getting to adjacency just by leaving out 1 and 6 values for any ratings that they assign.  

(Of course, actual scoring regimes may have protections built in against this plan; for 
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instance, the CLA (Collegiate Learning Assessment) consists of three analytic, 1-6 scales. 

Instead of requiring raters to only achieve adjacent agreement with target scores, the CLA 

requires two adjacent ratings and one exact rating per essay read. The requirement of 

exact agreement for the one rating means that raters who “play to the center,” as it were, 

stand to fail trials where the scores are straight 1s or straight 6s. A central tendency bias 

has been well documented in the literature, particularly when raters know they are being 

monitored and strive to “play it safe” (Leckie & Baird, 2011). 

The intuition that scores will be distributed normally, somewhere near the center 

score value (somewhere between 3 and 4), also explains how human scores patterns can 

become quite centered around the ratings of central tendency. If a human is choosing 

between a 2 score and a 3 score, just a basic knowledge of expected probability would 

portray the 3 as more likely. To quantify this, assume that the mean score of a sample of 

essays is 3.0 and the standard deviation is 1. According to the empirical rule for normally 

distributed data, 68% of the responses will be between 2.0 and 4.0, so based on prior 

probability alone a reader can assume a greater likelihood of attaining the desired 

agreement by assigning a score within one point of the expected mean. In the case of the 

present study, 35/108 of the R1 ratings were 4 as were 39 of the R2 ratings—32 and 36 

percent respectively. A reader assuming all six ratings (1-6) to be equiprobable would 

assign a one-in-six or 16.67% prior probability for each rating, but a reader aware of the 

typical modal rating would realize that any given essay has a roughly 1/3 chance of being 

a 4 than anything else. Once training sets become mean centered, automated models can 

take on this characteristic. Whether humans are motivated by probability distributions is 

unknown; however, personal experience suggests it is quite possible. 
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One might ask about the interaction between length and mean-centeredness. If e-

rater is strongly length-associated, and the essay length values are not highly dispersed, 

could a narrowly-concentrated length distribution explain the concentrated spread of the 

machine scores? In fact, the 250-300 word essay was the most frequently-appearing one 

(see Figure 11). The next chart (Figure 12) graphs each of the 30 essays and the scores 

assigned to them by each reader. Every essay except one received either a 3 or a 4 from 

Criterion whereas R1 ratings ranged from 2-5 and R2 ratings ranged from 2-6. That is to 

say, the human readers discerned greater variability in quality among essays of roughly 

the same length.  

 

 

Essay Length 

 
Figure 11. Distribution of essay length in number of words. 

 

As further indication that a highly concentrated length distribution was not fully 

explanatory of Criterion’s concentrated score distribution, Figure 13 shows average essay 
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length for each of the six possible ratings, for each reader. It is not simply that there were 

too many average-length essays; Criterion tended to award 1s and 6s to essays at only the 

extremes of the word count range. The steeper slope of the Criterion scores provides 

evidence that Criterion used the entire rubric less frequently than human raters even for 

essays that were relatively shorter or longer. In other words, one had to write an 

extremely long paper to earn a 6 from Criterion or an extremely short paper to earn a 1. 

 

 

Figure 12. Scores by reader for essays between 250-300 words. 
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Figure 13. Average essay length per score, by reader 

 

 

To synthesize the study findings and their relevance: consensus and consistency 

measures suggest that Criterion with its common rubric is just as good at matching reader 

scores as the readers themselves were, in their first pass at using the Framework-derived 

rubric. But in terms of distributional differences, what seems to be happening is Criterion 

assigns more mean-centered scores, and this action helps account for the stronger 

correlations with both readers. Criterion tended to “split the difference” when readers 

disagreed. In keeping with the ratio for the overall sample, Criterion assigned scores of 3 

or 4 to 75 percent of the split scores (18 of 24 splits). Criterion’s scoring also more 

closely aligns with overall word count.  
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Thus far, the analysis has covered measures of agreement, correspondence of 

score and essay length, and distributional differences such as mean and variance. What 

was discovered was that Criterion and the human raters performed similarly in terms of 

agreement measures. On the other hand, human scores were less strongly-associated with 

length in the human judges than Criterion scores, and Criterion scores were more closely 

distributed around the mean. These findings support the “framing” argument made at the 

outset of this monograph: AEE’s success is relative to the analysis tools used to describe 

it. 

Error analysis is yet another tool to frame discourse about AEE, and it can help 

reveal what might happen to individual students, or to the group of students whose essays 

did not happen to be assigned exact or adjacent scores by the two readings. A full error 

analysis lies outside the scope of this chapter; however, the approach will be sketched out 

here. Assume, that e-rater were to agree with human raters 90% of the time. That is a 

high but not unheard-of exact agreement rate. It still means that ten of every 100 students 

stand to have their papers mis-scored, at least if the computer is the only rater. Simply 

talking of disagreement rather than agreement foregrounds those students whose essays 

stand to be mistakenly handled unless further adjudication were done. 

In the case of this study, human raters are the only ones scoring directly on the 

Framework genre-specific rubric. So their scores have to be held as the standard, even if 

they are not perfectly reliable. The human raters achieved exact/adjacent agreement in 84 

of the cases. In other words, if R1 assigned a 4, R2 assigned a 5 and e-rater assigned a 3 

the resolved score would be a 4.5 and e-rater would be more than a point away from the 

RS. If both readers assigned the same score and e-rater differed by one point, it might 
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reasonably be considered an error as well because it is a point away from the true score. 

(See discussions of classical test theory in chapters 3 and 5.) In those 84 non-adjudicated 

cases, Criterion’s e-rater scored one point or more lower than the resolved, non-

adjudicated score in 12 cases, or 11% of the sample. (The above example would be such 

a case.) The e-rater engine scored one or more point higher than the resolved score in ten 

or 9.2% of the cases. So, leaving aside the split score cases that had to be adjudicated, 

having e-rater score the non-adjudicated essays by itself would result in an error rate of 

about 20%. A reasonable conclusion would be that 12 writers would be scored too low 

and, if this were in placement conditions, possibly would be placed in the incorrect 

course. In five cases, e-rater was off from the RS by more than one point, or six percent 

of the sample.  

It is true that this study is limited by lower-than-ideal human reliability and 

required 24 adjudications. One could also argue that this just means that essays should 

always be double-scored. I would support this conclusion. I focus on the accuracy of 

machine scoring because institutions considering machines for automated placement or 

rapid assessment may not think they have to institute double-scoring, despite these 

findings and despite even what best practices might be recommended by ETS and other 

software developers themselves. Recall that common core administrators had hoped to 

use AEE alone in scoring essays. 

A framework of error reporting exposes the importance of rhetorical framing to 

assessments of AEE competence. Within a genre-specific rubric, human scores are 

fundamental and AEE is restricted in its ability to capture scores along this rubric. 
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Institutions considering using computers for placement without human raters working 

alongside them stand to mis-score significant percentages of writers.  

Moreover, the differences in score distributions together with the analysis of error 

point toward starkly different approaches that humans and machines have in faced with 

the task of scoring an essay. Human readers, at least when not constricted by monitoring 

nor a formalistic rubric, use the extremes of the scoring range more often, and are 

unwilling to let word count play an unduly important role in determining score. 

Machines, at least in the case of e-rater, cluster their scores more closely around the 

mean and seem to see overall word count as an indicator of quality. 

On the other hand, as seen in chapter 3, Criterion’s developers have stated an 

intention to have the system evaluate only the “same kinds of features” as humans 

evaluate.  This statement is apparently inaccurate, because we know that e-rater does not 

evaluate Framework characteristics. Even a human evaluating “development” and a 

machine evaluating “development” are evaluating different features of writing: humans 

are evaluating the way in which the author elaborates ideas and the computers are 

evaluating the length of discourse elements. 

More fundamentally, the current study sheds light on other differences inherent in 

the scoring process: not only do people and software evaluate different features of 

writing, people appear to use the rubric more fully and take length less seriously as a 

determinant of score. In this study’s case, the algorithm appeared able to exploit central 

tendency to promote higher correlations with both readers. 

What happens when e-rater and a human rater disagree—which score do we 

“trust”? Because it appears that AEE may be exploiting heuristics such as essay length to 
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generate its scores, we should apparently not default to the automated software. To study 

these issues further, an error analysis could be performed on the essay corpus, a 

qualitative review of each essay and how it was scored, with the hope that certain patterns 

of rater behavior could be ascertained. Such an analysis is outside the scope of the present 

study but certainly would be useful. 
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5. FUTURE DIRECTIONS: ETHICAL AND CRITICAL CONTEXTS 

  

The preceding chapters have pressed toward the following point: AEE’s utility is 

relative to the contexts selected—to the writing prompts chosen, the scoring rubrics used, 

and the statistical measures applied to the scores generated. When, in addition to 

statistical patterns, individual cases are considered in evaluating AEE systems, they begin 

to look quite different from the human raters they have been patterned after. When a 

rubric is used that is based on the Framework for Success and its Outcomes Statement, 

computer scoring is likely to mis-handle a significant amount of cases—about 20 percent 

of the sample, although it does manage to achieve agreement levels similar to the humans 

in the study. 

In this final chapter, I raise broader questions about both machine and human 

abilities to score essays, even in the context of “common rubrics” that seem to achieve 

high machine and human reliability. Even when a common rubric of chapter of formal 

writing qualities is employed, use of computer scoring can be problematic. But again, 

human scoring has been shown to be subject to biases as well. Employing a thought 

experiment using error analysis (introduced in chapter 4 as a complementary measure of 

AEE performance) helps flesh out this suspicion. I end, however, on something of a 

positive tone about the use of computer essay evaluation in global contexts where human 

pedagogical intervention is sparse.  

Let us look first at computer scoring challenges. We have established that scoring 

essays is not, at this point, an activity with a computational implementation. To review, 

computation may be framed as the process of expressing a problem such that it can be 
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calculated by an effective procedure. It is an attempt to describe a problem in step-by-

step terms that require no insight or guesswork, with the intent of mechanizing the 

problem so that it is solvable by machine. In a certain sense, computation is a matter of 

representation. In an ideal case of representation, a given problem will have a Turing-

computable resolution, which is what happens (says the Church-Turing Thesis) to a 

certain class of problems specifiable in a certain way. When a problem is Turing-

computable, the identical problem is represented and performed mechanically (e.g., 

finding the square root of all numbers between 1 and 25). 

To take a biologically-related example of a computational explanation, let us look 

at the case of vision. In the 1970s and 80s, David Marr (1982) led an effort to understand 

biological vision systems computationally. His computational theory of vision sought to 

explain observed biological data (an example of a biologically-sensitive version of 

computationalism). In Marr (1982), there are three primary levels of analysis of 

biological systems: the computational, the algorithmic, and the implementation. Marr’s 

insight was to seek to describe high-level behavior in terms of the computation that the 

system was tasked with. For vision, the eye has to tackle the problem of transforming 

two-dimensional images of light impinging on the retina into representations of three-

dimensional objects. To make stereoscopic vision possible—i.e., three-dimensional 

vision derived from two receptors located in proximity (e.g., human eyes)—the brain 

takes account of the disparity in the visual images it receives from each eye and uses that 

to predict how far away an object is. The problem for a vision system is to select a 

location on one of the images that can then be identified from the other image so that 

depth can be computed. After describing the high-level computation to be performed, 
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Marr and Poggio (1979) proposed a five-step algorithm that would account for how 

stereoscopic vision overcomes the above problem. Here again, Marr and Poggio’s 

emphasis was on determining the steps that the system uses in order to accomplish the 

given task, rather than on accomplishing that task without regard to what algorithm might 

best fit experimental findings about the system being studied. In this work, visual 

processing is reduced to computations.  

But when a problem is not easily represented by an unassailably computational set 

of procedures, which of course has been the case for most problems involving natural 

languages and communication, the original problem has to be replaced by a different 

problem before it can then be represented by a set of rules and coded into software. When 

Ellis Page proposed his set of proxy features, he essentially replaced a set of linguistic 

qualities that humans recognize (apt word choice, quality of ideas, mechanics, etc…) 

with a set of qualities that could be coded into machine language, such as length of essay 

in words, number of paragraphs, number of common words, and so on (1968, p. 216). He 

replaced the problem of grading an essay with a problem of counting various syntactical 

features in the essay, and then predicting scores based on that feature set. 

Under these circumstances, where the original task or behavior is not itself being 

expressed in computational terms but rather a new one is being charted, the relationship 

between the original task and its new redescription needs to be justified. It might help to 

discuss examples of how this validation occurs. One approach is to simply admit that the 

new model has limitations as far as its ability to replicate the domain in question. When 

the system in question is the brain—such as in cognitive science or computational 

neuroscience—relevant properties of brains can be theoretically represented by 
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computational models. For instance, in Kintsch’s (1998) networked representation of 

knowledge, each node is thought to be a proposition; the propositions are more or less 

closely associated with one another (represented by distance in the visual depiction). The 

drawback to this model is that there is no way, admits Kintsch, to code into the network 

the relevant associations, since those are acquired by “liv[ing] a normal human life” (p. 

417). So we have a representation that has certain limits. But still, the model attempts to 

model human knowledge construction by providing a possible mechanism—a plausibility 

case—for how it might be implemented. 

Kintsch (1998)’s approach is what Ellis Page (1968) would have called “process” 

simulation because it works by attempting to emulate the processes by which knowledge 

is represented in the brain. Its opposite is “product” simulation, or one of modeling 

outcomes only (say, performing to a certain standard on a recall test). Page stated that 

product simulation was the only possible method for representing human activity; writing 

that “all computer simulation of human behavior appears to be product simulation rather 

than process simulation” (p. 214, italics his). Despite his assertion, however, Page also 

tended to speak as if natural language were actually Turing-computable (as shown in 

chapter 2 of this monograph) which would imply process simulation at the very least. 

And in fact, Turing himself seemed to equivocate on whether the Turing test, which is 

after all a behavioral assessment, required Turing-computability or not. But what Page 

meant to accomplish in this particular passage was to convey that it was not possible to 

directly model the values that influenced the decisions humans made about essay 

quality—just the outcomes of those decisions, i.e., the ratings. 
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Today, however, it would seem that process simulation, such as what Kintsch 

(1998) described, is quite useful in the cognitive sciences. Page’s claim—simulations can 

only reproduce outputs, not processes—had roots in the kind of Skinnerian behaviorism 

that was seen as outdated and replaced by a focus on internal states by scholars such as 

computational linguist Noam Chomsky, who first critiqued Skinner in 1959, as Yarden 

Katz has noted (2012, para. 3). “The emphasis [of the Chomskian approach],” Katz 

wrote, “is on the internal structure of the system that enables it to perform a task, rather 

than on external association between past behavior of the system and the environment” 

(2012, para. 6). 

Current automated evaluation software continues, however to follow in the Page’s 

“product” simulation mode as developers, often explicitly, do not consider the processes 

by which humans read and form judgments about essays. Such a behaviorist approach to 

computer simulation theorizes that what matters is that the computer attain the correct 

outputs for the case in point, regardless of what computational process it uses to get there. 

While this approach might seem dated, especially as it traces to Page and B. F. Skinner 

before him, it is in fact re-emergent. As Katz (2012) went on to note, a neo-behaviorism 

version of AI research has emerged taking advantage of huge computational power to 

approach problems with statistical techniques over huge amounts of data, discussion of 

which is outside the scope of this chapter but which is covered accessibly in Katz (2012). 

So, to take stock of the argument: computationally replicating scoring is simply 

out of reach at this stage, and may be out of reach permanently. Given this, there is a 

debate in the field of computer science over what forms of simulation are preferable, ones 

that seek to model and explain internal processes of systems, or ones that seek only to 
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reproduce their outputs. It appears that AEE software seeks to reproduce outputs only. 

All of the computer programs that currently score essays are doing so by what Page 

(1968) calls “product simulation.” None of them are either computationally replicating 

human scoring practices or even attempting to simulate those practices. Instead, they are 

scoring by proxy measures—none of them are actually measuring the features of the 

rubric that humans are measuring, even when computers are using the common rubric 

that was originally described by Diederich and taken up by ETS. (The concept of proxy 

variables was introduced in chapter 1 of this monograph and described further in chapter 

2.)  

 If computers are product-simulating, this helps account for why AEE systems 

make mistakes quite different from those of their human counterparts: the mechanisms, 

speaking at the algorithmic level, not simply the level of physical hardware, driving 

human and machine raters are quite divergent. People and computers do quite different 

things when they are rating.  

When pairing a process, such as essay scoring, that is not computational and 

requires fair amounts of human judgement—in other words, people who are not 

following an algorithm but rather a heuristic guide such as a rubric—with computers that 

are following algorithms designed to human judgement, there is likely to be error. Here I 

advance a partial argument that such error would be introduced in a common rubric 

situation, not only in the college-specific rubric studied in chapter 4. Examining parts-of-

speech tagging helps further explicate this concern, because even at lower levels of 

analysis, natural language processing (NLP) seems to be the kind of system not 

composed of Turing-computable rules.  
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According to Manning (2011) humans tasked with annotating the parts of speech 

on any given corpus achieve about 97% agreement on parts of speech tagging tasks, and 

machines can match that accuracy as well. A parts-of-speech tagger is learning algorithm, 

not unlike essay rating software, that analyzes a pre-tagged corpora of text, using 

probability metrics to predict the parts of speech correctly, and then applies its weighted 

algorithm to new text. But when Manning (2011) analyzed the errors that each made, he 

found that some of the human errors appeared to be cases of carelessness or inattention to 

tags that should have been unambiguous whereas the machines, while “quite good, 

regularly make egregious errors” (p. 2). For instance, a speech tagger unfamiliar with the 

word “substandard” tagged it as a noun rather than an adjective (p. 6). In other cases, 

Manning found that there was no clear cut choice for assigning a tag. What becomes clear 

through a foray into parts-of-speech tagging is that not even at the pre-syntactic level 

does the problem of accuracy resolve itself. Whether simulating score production or the 

process of score generation, error will arise; machines and humans will err differently. 

This evidence of error in even the lowest stages of natural language processing is 

the proverbial tip of the iceberg in suggesting that natural language presents problems for 

computer simulations at various levels of linguistic analysis. As a result, computers will 

make mistakes that people would find silly—whether awarding high marks to long essays 

full of gibberish or making bizarre parts-of-speech misclassifications. So it is not just that 

computer scoring cannot capture the construct of a genre-specific rubric such as the 

Framework rubric. Even along the common rubric, computer simulations will err. 

Here, then, is the problem I referred to at the outset of this chapter: if computer 

scoring is flawed in this sort of definable way, even at high levels of interrater agreement, 
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mistakes are bound to happen. In any scoring session, we might expect a percentage, 

even small, of the sort of “egregious” scoring errors that Manning (2011) calls out. Such 

scoring errors are precisely what Les Perelman has identified with his babel generator 

(introduced in chapter 2). These errors, however, will not be obvious simply by looking 

at a series of scores. The errors could only be identified by an examination of each essay, 

similar to the process initiated in chapter 4 here and what Manning (2011) did in his error 

analysis. But an analysis of essays and their nature involves independently assessing 

essays, in other words, determining where they fall on the score continuum. In other 

words, if we are worried about the kinds of mistakes that Manning (2011) identified but 

at the level of overall quality judgement we would have to review each essay and 

essentially decide whether the computer were correct about the score, or not. We would 

have to score the essay, that is to say. Therefore, computer scoring does not alone serve 

as a legitimate method of scoring. 

On the other hand, computer scoring might be part of a legitimate system of 

scoring, by serving as the second or “read behind” reader set to check whether human 

scores are on target. The next section works on a more precise understanding of what it 

means for human scores to be “on target” and for computer scoring to check for that. 

Here is the intuitive argument: if it were possible to derive a human “error” rate, as well 

as a rate at which the computer could be clearly off the mark as described above, having 

both score essays would reduce error. Assume, just for the sake of argument, that there 

were such thing as both a human error rate and a machine error rate. Divergent scores 

would call attention to a mistake on either side and signal an adjudication. Assume just 

for the sake of the Gedanken experiment that both error rates are .3. That is to say, each 
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makes a mistake on three of 100 essays. The probability that both will err on the same 

essay is .03 x .03 = .0009. The probability that both would err on the same essay by 

assigning it the same score, meaning that the error would go unnoticed, is .0009 x (6/36) 

= .00015. In other words, there is less than a one in ten thousand chance that the 

computer and the person will erroneously issue the same score—an undetectable mistake. 

In principle, at least, there is a case for computers to score alongside people, calling 

attention to errant scoring. 

But some might argue that the notion of a human error rate is equivocal. This 

issue will not be fully resolved here, but can at least be briefly addressed. 

 

Human Error in Assessment 

Something the educational measurement, writing assessment, and AEE 

developers will agree on is that human raters may legitimately disagree as to their 

judgments of essay quality. Essay assessment has no “gold standard” for measuring 

performance in the way that a shooting competition or a road race might have. In those 

more defined contexts, what counts as a bullseye or a sub five-minute mile is clearly 

delimited. But as Shermis and Hamner (2012) noted, “Trained human raters, as with 

subject-matter or writing experts, can read the same paper and assign the same or 

different scores for different reasons” (p. 19). The idea here is that even expert readers 

may disagree, without one or the other being obviously wrong. For that reason, deriving a 

definition of human rater error is a puzzle. Two raters could disagree and still assign valid 

scores. 

The more serious problem, however, is that human raters can not only 

legitimately disagree, but can fall victim to rater biases as well. This presents an 
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epistemological problem: there is no a priori way to tell whether discrepant scores are the 

result of legitimate disagreement—or of bias—just by looking at them. While a certain 

percentage of computer scores may be clearly erroneous as discussed above, human 

mistakes are likely to be more subtle. As we discussed in the preceding section, having 

multiple raters reduces the chances that both are in error, particularly when they arrive at 

the same score, but does not eliminate the problem entirely. 

Classical test theory, according to some, holds any discrepant scoring as error. 

Weigle (1998), citing Linacre (1989), wrote that “true-score [i.e., classical test] 

approaches to the problem of rater variation see such variation as undesirable error 

variance, which must be eliminated or reduced as much as possible…” (Weigle, 1998, p. 

264). That is to say, classical test theory would have all human discrepancies classified as 

error. True score theory is, thus, a realist doctrine, in that there is a fact of the matter 

concerning an essay score relative to a rubric, and each rating represents an 

approximation of that score (the observed value plus error). 

But Les Perelman (2013) offered a slightly distinct interpretation of classical test 

theory, suggesting a role for adjacency as non-errant scoring, because “adjacent 

agreement in the correct direction between two readers (e. g. one rater gives an essay a 

score of 3 and the second rater gives the essay a score of 4) will more closely 

approximate a True Score of 3.4 than two scores of 3” (2013, p. 6). For Perelman, 

adjacent agreement is assumed to contribute to accuracy. Assigning more than one rater, 

the common practice, makes sense on this model because multiple ratings will, according 

to the theory, approximate the limit of the true score. Assigning more than one rater also 

reduces the probability that both scores will be due to human rater bias. 
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Deriving a theory of human error will depend on the philosophy of measurement 

adopted. As noted, Weigle (1998), for instance, documented the true score approach that 

sees rater variation as merely undesirable error (p. 264); the Rasch model that advocates 

training raters to be self-consistent rather than in agreement with each other (p. 264); and 

a third empirically-driven approach that asks whether rater training can actually create 

inter-rater consistency or rather simply creates self-consistency among raters. A common 

thread in these differing views is that raters will inevitably disagree. Sometimes 

disagreement is problematic; other times it is acceptable.  

We might further say that human scores are not in error if they result from raters 

who agree, to borrow Weigle’s language, “on a definition of the construct being 

measured in an essay examination” (1998, p. 281). In these and only these cases, then, let 

us consider scores to be in reasonable agreement or disagreement with one another. The 

term “reasonable” is inspired by a related idea honed in political philosophy, where 

idealizations are often made that involve individual citizens possessing certain attitudes 

and capacities. For example, political philosopher John Rawls wrote that societies should 

be characterized by “reasonable pluralism” (Rawls & Kelly, 2001, p. 3). Roughly 

speaking, for Rawls, a reasonable sort of pluralism is predicated upon citizens’ honoring 

what are agreed to be fair terms of cooperation with one another. While one citizen 

practices Wicca and another Hinduism, say, their pluralist religious views are reasonable 

when they agree to honor each other’s religious holidays at their workplace. 

Reasonability carries with it a “moral sensibility” (Rawls & Kelly, 2001, p. 7). 

Reasonable agreement or disagreement means that the scores were arrived at by a 

considered comparison of the rubric to the essay at hand. 



165 

 

A reasonable (and non-errant) score discrepancy exists in the rating context when 

trained raters reasonably disagree over a particular essay, if both arrived at their ratings 

through an earnest effort to deploy the values of the relevant rubric to that particular 

performance, and if both ratings could be justified by the raters by appeal to the rubric. 

What qualifies psychologically as an “earnest” effort by a rater to apply a rubric to an 

essay leaves some room for interpretation at this stage.  

Human raters sometimes do fail the reasonability test. Threats to validity include 

construct irrelevant sources of variation such as severity drift, halo, and central tendency 

(Leckie & Baird, 2011, p. 399-401). Some of these reliability threats are addressed 

through norming and training, but findings differ as to whether they persist nevertheless. 

Disagreement would not be reasonable if, for instance, one reader got tired and marked 

every essay a “5” because that reader would not be able to offer justifiable reasons for 

applying the score to the essay. Nor would disagreement be reasonable if one reader 

decides that what is meant by critical thinking was writing the most flowery sentences 

possible while the other applied more typical criteria of, say, degree to which author 

provides supporting arguments. To be sure, our notion of reasonableness is loosely 

defined, but at least intuitively plausible.  

The preceding analysis helps us answer the question from the prior section. Recall 

that earlier we expressed the worry based on an analysis of parts-of-speech tagging, that 

computers had the potential to make egregious errors even when tying their scores to a 

common rubric. We saw that Les Perelman’s babel generator reveals the way a computer 

scoring engine can be fooled by long essays with long, grammatically-correct sentences 

with unusual vocabularies. Say further that we can derive a percentage of human scores 
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that would also be in error (i.e., not based in reasonable disagreement). Deriving an 

average human error rate might involve the percentage of instances of either non-adjacent 

agreement or adjacent agreement that was determined not to be reasonable because one 

of the conditions above did not hold. Assuming that we could derive a predicted human 

error rate from past experience, computer scoring over a common rubric could help detect 

errors by a human rater: the probability that an undetectable error would occur (by both 

assigning the same score) would be the human error rate multiplied by the computer error 

rate multiplied by 1/6. (An example was given earlier.) 

Because people make mistakes, and even double-scored essays can mask errors 

that people make, Lottridge, Schulz and Mitzel (2013) advanced the proposal that AEE 

be used in a read-behind fashion, to monitor the kinds of human bias effects that have 

been categorized as “drift.” Given that drift can be hard to verify statistically and rule out 

underlying differences in the essays presented over time and other variables, the authors 

trained a computer model on a sample of scores and used that system to identify non-

adjacency with human reads and flag those for adjudication. While there is still no 

guarantee that the computer scores are more accurate than the human scores in cases of 

non-adjacency, it is certainly possible that problematic human scores could be flagged 

and adjudicated through this process. And as indicated, having more than one reader 

increases the probability of error detection. 

This analysis of when computers and people may be said to err with respect to 

rating essays is not meant to be an exhaustive catalog. As Manning (2011) described in 

his error analysis, there are many other types of errors, including those where the correct 

answer is in fact ambiguous. I suspect that ambiguity may be the largest problem for 
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essay scoring, because there is no way to know a priori what the correct score of any 

given essay should be. The only way to determine the score is to score the essay. 

Adjudications over discrepant scores are themselves not guaranteed to be free of 

construct-irrelevant variance. 

 
 

Computer Essay Evaluation and Global Poverty 

 

While current automated techniques lack the justification to score essays with no 

human back-up, there may be roles for formative feedback in the broader composition 

landscape. The following section sketches—in broad, impressionistic strokes—possible 

roles for AEE software, including in developing parts of the world where computer 

technology is easier to come by than English educators. 

One such role originates, actually, in a social critique of AEE. There is a concern 

articulated by Perelman (personal communication, 2014) and other critics of automated 

essay evaluation in the college setting, including Herrington and Moran (2001) that 

amounts to a social critique. As the latter authors observed, the problems of large classes 

and high student/faculty ratios will not disappear if AEE is brought in to solve the 

challenge of scoring multitudes of essays. Rather, it will serve to insure “that these 

problems will remain and become structural and permanent” (p. 496).  Elite institutions 

will better be able to afford robust composition programs with the human interaction that 

we know is important to building better writers, whereas poorer institutions may turn to 

automation and the divide grow larger.  

The specter of computer scoring exacerbating the digital divide—actually, a 

reverse digital divide where lower status institutions over-rely on technology—points 
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toward potential challenges of using even better software than that currently available. 

Even a next-generation system that had more valid scoring and feedback capability would 

not be able to provide the social interaction that many feel drives writing improvement. 

One might build a case for a normative right to be evaluated by a being with the ability to 

empathize, or at least, the right to make choice.  

On the other hand, it is not unthinkable that the tremulous beginner may prefer 

being evaluated by a “dumb” machine incapable of ridicule or disdain, than by a crusty 

grammarian with red pen in hand. Writing to a computer that might be able to provide 

grammatical or other limited help could conceivably boost students who are reluctant to 

turn in drafts to teachers. As anyone who has Google-searched a sensitive subject knows, 

computer-mediated discourse has the advantage of assuring the searcher’s anonymity, at 

least, vis-à-vis the search engine. In fact, research showed that Edward Snowden’s leaks 

resulted in a decrease in searches of topics the NSA might find offensive (Mathews & 

Tucker, 2014), suggesting that indeed it is worry about the humans that might be 

intercepting our searches, not the search engines themselves, who necessitate our 

subterfuge.  

And while human grading may be preferable to AEE, the globally disadvantaged 

may not have that choice: they may be choosing between technology-mediated education 

or little to no education at all. Far from increasing economic divides, automated 

evaluation could be seen as just another technology reducing the education gap, of a 

piece with online learning platforms such as the well-known Khan Academy, which 

provides online tutorials and exercises in a variety of subjects. Those not having regular 

access to teachers could benefit from interactive writing technology. So while AEE may 
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indicate lower-end educational opportunity, it may be the only opportunity available to 

some. 

A final point not to be forgotten is that humans and machines are often pitted in 

the discourse about automated scoring and evaluation as if the two are locked in a zero-

sum game: as if more machines equals fewer people in the classroom. While this may be 

a legitimate material fear of those against computer pedagogies of all kinds, it does not 

have to be the overshadowing reality all the time. Machines should supplement human 

teaching, not replace it. 

 

The Machine/Human Interface 

 

Haraway (1985/2010) wrote that technology is imbricated in power, musing that 

“writing, power, and technology are old partners in Western stories of the origin of 

civilization,” (p. 280). She also suggested, a bit offhandedly, that it might be those 

technology workers themselves alongside others (those “unnatural Cyborg women 

making chips in Asia and spiral dancing in Santa Rita jail” (p. 281)) whose hybridized 

identities will bring about productive discourse. 

Compare what Haraway suggests to the dialectical approach of White and 

McAllister (2006), who suggest that, “rather than trying to tell the history of computer-

assisted writing assessment as a tale of good and evil—where good and evil could be 

played interchangeably by computers and humans—we prefer to tell the history more 

dialectically, that is, as a history of interested complicities” (p. 11). For White and 

McAllister, the plurality of positions one might stake out about automated scoring are 

each justifiable in some way. 
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What will happen with AEE? It is not the star wars apocalypse. If my research has 

shown anything, it has shown that people, and the computers they invented, learn and act 

in distinct ways. We ought to exploit the benefits of each. Our future calls for a 

hybridized reality; it calls for one in which people and technologies continue their cyborg 

work together. Computers, as powerful as they are in sheer computing speed and 

accuracy, reveal some stark limits in the domain of natural language. These performance 

limits are, of course, ever-changing in the shifting sands of innovation. Alan Turing and 

Ellis Page were too optimistic about the computability of language. But the opposite 

mistake would be to declare computationalism irrelevant to communication. Finding 

ways to exploit the value added by machines is not to devalue humans; indeed, if done 

well it can elevate the least advantaged of all. 
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