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ABSTRACT 

For generations, humans dreamed about the ability to communicate and interact 

with machines through thought alone or to create devices that can peer into a person’s 

mind and thoughts. Researchers have developed new technologies to create brain 

computer interfaces (BCIs), communication systems that do not depend on the brain’s 

normal output pathways of peripheral nerves and muscles. The objective of the first 

part of this thesis is to develop a new BCI based on electroencephalography (EEG) to 

move a computer cursor over a short training period in real time.  The work 

motivations of this part are to increase: speed and accuracy, as in BCI settings, subject 

has a few seconds to make a selection with a relatively high accuracy. 

Recently, improvements have been developed to make EEG more accurate by 

increasing the spatial resolution. One such improvement is the application of the 

surface Laplacian to the EEG, the second spatial derivative. Tripolar concentric ring 

electrodes (TCREs) automatically perform the Laplacian on the surface potentials and 

provide better spatial selectivity and signal-to-noise ratio than conventional EEG that 

is recorded with conventional disc electrodes. Another important feature using TCRE 

is the capability to record the EEG and the TCRE EEG (tEEG) signals concurrently 

from the same location on the scalp for the same electrical activity coming from the 

brain. In this part we also demonstrate that tEEG signals can enable users to control a 

computer cursor rapidly in different directions with significantly higher accuracy 

during their first session of training for 1D and 2D cursor control.  

Output tracking control of non-minimum phase systems is a highly challenging 

problem encountered in many practical engineering applications. Classical inversion 



techniques provide exact output tracking but lead to internal instability, whereas 

modern inversion methods provide stable asymptotic tracking but produce large 

transient errors. Both methods provide an approximation of feedback control, which 

leads to non robust systems, very sensitive to noise, considerable tracking errors and a 

significant singularity problem.  Aiming at the problem of system inversion to the true 

system, the objective of the second part of this thesis is to develop a new method 

based on true inversion for minimum phase system and approximate inversion for 

non-minimum phase systems. The proposed algorithm is automatic and has minimal 

computational complexities which make it suitable for real-time control. 

The process to develop the proposed algorithm is partitioned into (1) minimum 

phase feedforward inverse filter, and (2) non-minimum phase inversion. In a minimum 

phase inversion, we consider the design of a feedforward controller to invert the 

response of a feedback loop that has stable zero locations. The complete control 

system consists of a feedforward controller cascaded with a closed-loop system. The 

outputs of the resulting inverse filter are delayed versions of the corresponding 

reference input signals, and delays are given by the vector relative degree of the 

closed-loop.  
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INTRODUCTION 

 

 

Brain activity produces electrical signals that can be detected from the scalp, from 

the cortical surface, or within the brain [1]. Brain–computer interfaces (BCIs) use 

these signals to communicate between the brain and the outside world. BCIs enable 

users to control devices with direct brain communication using 

electroencephalographic (EEG) activity recorded from electrodes placed on the scalp 

(noninvasive BCI) [1, 2] or with activity recorded from on or within the brain 

(invasive BCI) [3, 4]. The EEG is used to monitor brain electrical activity; however 

EEG signals have low signal to noise ratio (SNR), low spatial resolution, and are 

contaminated by various artifacts from other sources. These characteristics limit 

measuring the spatial distribution of brain electrical activity and thus necessitate 

significant preprocessing [1]. Recently, improvements have been developed to make 

EEG more accurate by increasing the spatial resolution. One such improvement is the 

application of the surface Laplacian to the EEG, the second spatial derivative. Tripolar 

concentric ring electrodes (TCREs) [6, 7] automatically perform the Laplacian on the 

surface potentials. Previously we have shown that TCRE (Laplacian EEG or tEEG) 

has significantly better spatial selectivity, SNR, localization, approximation of the 

analytical Laplacian, and mutual information than conventional EEG with disc 

electrodes [6, 7]. In manuscript 1, the signal from the outer ring of the TCRE was used 

as an emulation (eEEG) of EEG recorded using conventional disc electrodes. This 

allows to record EEG emulation from the exact same locations at the exact same time 



 

 

 

2

as the tEEG using a single recording system. Time domain neuronal signal synchrony 

was measured using cross-correlation suggesting the potential of eEEG as an 

emulation of EEG (r ≥ 0.99). 

An important concern in BCI research is to control the computer cursor. Cursor 

control requires the subject to learn how to adapt their brain signals by using different 

thought for different tasks [8]. Studies in recent years have shown that EEG-based 

BCI has great potential in achieving one-dimension cursor control [9-11]. However, 

these systems usually require long-term training in regulating brain signals and the 

performance in long-term use is often not robust [12]. For example, Wolpaw et al [1] 

performed over twenty sessions per subject, at a rate of two to four per week to 

develop high-accuracy cursor control (i.e., >90%) [1]. Slow training of subjects and 

low spatio-temporal resolution is still a serious problem [8]. In order to make future 

BCI convenient, the training time must be reduced without loss of accuracy. The 

objective of manuscript 2 was to compare the accuracy of online 1-Dimensional (1-D) 

(left-right) computer cursor control using two different types of electrodes, the 

traditional disc electrode (EEG) and a new tripolar concentric ring electrode (tEEG) 

[6, 7]. 

Compared with 1-D cursor control, multidimensional cursor control, such as 2-

Dimensional (2-D), provides a much wider range of applications. Most of the 

multidimensional cursor controls BCIs have been invasive [13]. On the other hand, the 

development of noninvasive EEG-based 2-D control BCI is delayed by the problem of 

noisy EEG and the time consumed for subject training. In manuscript 3 we conduct a 
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2-D (left, right, up and down) computer cursor control using the tEEG signal recorded 

from subjects performing just one training session.  

Although noninvasive EEG-based BCI have been studied increasingly over the 

recent decades, their performance is still limited. Thus, improving EEG-based BCI 

performance is still a challenge and the search for paradigms that can detect BCI 

commands with high temporal resolution is still active. Another noninvasive signal 

used in the area of BCI is called near infrared spectroscopy (NIRS) [5]. NIRS 

measures the concentration changes of oxygenated hemoglobins (HbO) and 

deoxygenated hemoglobins (HbR) in the superficial layers of the human cortex by 

means of distinct absorption spectra in the near-infrared range [5]. The advantages of 

NIRS are that it is impervious to the widely-spread environmental electrical noise and 

much less sensitive to EMG (muscle) artifacts than EEG [5]. NIRS measures 

oxygenated hemoglobin (Hb) and deoxygenated Hb concentrations. Blood Hb 

concentration changes have been clearly shown to be related to the presence and 

absence of the stimulation [5].  

The feasibility of using EEG-based motor imagery BCI and NIRS-based motor 

imagery BCI has been demonstrated in different studies. For example, in [14] they 

tried to detect motor imagery with online feedback in a NIRS-based motor imagery 

BCI system. Study [15] introduced a multimodal NIRS and EEG-based system and 

used NIRS as a predictor for EEG-based BCI performance. In studies [16] and [17], 

the process was based on the EEG signal to classify the motor imagery based BCI. In 

manuscript 3, the subjects were asked to use their motor imagery to think about 

moving their left hands, right hands, both feet or both hands during the appearance of 
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an arrow to the left, right, up, or down on the computer screen. The mean and the 

median of the recorded data were used as features to classify the recorded data from 

tEEG and NIRS into different tasks (left, right, up or down). Two different classifiers 

were used; the support vector machine (SVM) [18] and the k-nearest neighbor (kNN) 

[19].  

This research also considers the design of digital tracking control systems for 

minimum phase and non-minimum phase feedback control loops. For a minimum 

phase system the zeros of the closed-loop system are located inside the unit circle. In 

the other hand, a non-minimum phase system zeros are locate outside the unit circle.  

The complete control system consists of closed-loop control system cascaded with 

a feedforward inverse system called (FIF). The outputs are delayed versions of the 

corresponding reference input signals as discussed in manuscript 4. By accounting for 

delays, theoretically perfect tracking is achieved for minimum phase system. Note that 

the resulting delay is the relative degree of the closed-loop [20-22].  However, the 

total delay for a non-minimum phase system is a very challenging process due to the 

zero locations (zeros outside the unit circle), which require a number of delays larger 

than the relative degree to do approximate inversion. First, we calculate an exact 

inverse of the closed-loop system. At this point, the inverse calculated is not stable 

because the zeros located outside the unit circle becomes poles. Second, we 

approximate the inverse system by adding more delays until we reach stability. The 

total delay is the sum of the relative degree with the delay added to reach stability.  

Manuscript 5 discussed the tracking control of a fully-coupled Multi-Input Multi-

Output (MIMO) plant. We assumed that a 2-degree-of-freedom feedback control 
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system has been designed to get a stable closed-loop system having zero steady-state 

error to step inputs. Such a system has an inner feedback loop that stabilizes the plant. 

In order to have precision tracking for other types of inputs, some type of feedforward 

control is needed. The main contribution of this manuscript is an algorithm for 

calculating an inverse filter for the stabilized plant, which is an exact or approximate 

inverse for the closed-loop system. If the closed-loop system is minimum phase, the 

result is a decoupled system of delays. If the closed-loop system is non-minimum 

phase, the result is approximately a decoupled system of delays over a certain 

bandwidth. The calculation of the inverse filter and resulting tracking performance is 

demonstrated on an experimental belt-driven H-frame XY table, for which the system 

to be inverted is fully coupled and non-minimum phase. 

The most important advantage of EEG signal over other types of control systems, 

such as body-powered mechanical systems, is its hands-free control a user’s intention. 

Many real-world applications operated through EEG have been reported, including 

intelligent wheelchairs, video games, grasping control, television, robotic arm, virtual 

keyboards, or a neuro-prosthesis that enables the multidimensional movements of a 

paralyzed limb, etc. [23, 24]. In our future work we will develop an EEG control 

system to move and control a robotic arm using different mental (motor imagery) 

commands such as: Forward, Backward, Left, and Right. In general, the proposed 

EEG control systems to move the robot arm would depend on the subject’s mental 

imagery and can be divided into four stages, namely (1) data acquisition and 

preprocessing, (2) feature extraction, (3) classification and (4) controller. First, the 

EEG signal is recorded using a set of electrodes placed on the scalp. Once the data are 
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recorded, they are preprocessed and then the main characteristics of the recorded data 

called features will be extracted. In the preprocessing step, the signals will be 

segmented and filtered to reduce the noise artifacts. This step is important in order to 

enhance the relevant information embedded in the signals and improving signal 

quality without losing information. In the second stage, i.e. feature extraction stage, 

the raw signal obtained from the previous stage is converted into a feature vector. 

Feature extraction aims at describing the signals with a few relevant values called 

“features”.  The third stage is classification, in which categories are identified from the 

feature vector by employing pattern recognition techniques. This step can also be 

denoted as feature translation or translation algorithm. Finally, in the fourth stage, i.e. 

the controller, the categories obtained from the classification stage are translated into 

control commands to move the robot arm. 
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Abstract 

 

Conventional electroencephalography (EEG) with disc electrodes has major 

drawbacks including poor spatial resolution, selectivity and low signal-to-noise ratio 

that critically limit its use. Concentric ring electrodes are a promising alternative with 

potential to improve all of the aforementioned aspects significantly. In our previous 

work, the tripolar concentric ring electrode (TCRE) was successfully used in a wide 

range of applications demonstrating its superiority to conventional disc electrodes, in 

particular, in accuracy of Laplacian estimation (tEEG). For applications that may 

benefit from simultaneous recording of EEG and tEEG, in this paper we propose to 

use the signal from the outer ring of the TCRE as an emulation (eEEG) of EEG 

recorded using conventional disc electrodes. This will allow us to record EEG 

emulation from the exact same locations at the exact same time as the tEEG using a 

single recording system. Time domain neuronal signal synchrony was measured using 

cross-correlation in phantom and human experiments suggesting the potential of eEEG 

as an emulation of EEG (r ≥ 0.99). 

 

1.1 Introduction 

Electroencephalography (EEG) is an essential tool for brain and behavioral 

research and is used extensively in neuroscience, cognitive science, cognitive 

psychology and psychophysiology. EEG is also one of the mainstays of hospital 

diagnostic procedures and pre-surgical planning. Despite scalp EEG’s many 

advantages end users struggle with its poor spatial resolution, selectivity and low 
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signal-to-noise ratio, which are EEG’s biggest drawbacks and major hindrances in its 

effectiveness critically limiting the research discovery and diagnosis [1]-[3]. 

EEG’s poor spatial resolution is primarily due to (1) the blurring effects of the 

volume conductor with disc electrodes; and (2) EEG signals having reference 

electrode problems as idealized references are not available with EEG [2]. Interference 

on the reference electrode contaminates all other electrode signals [2]. The application 

of the surface Laplacian (the second spatial derivative of the potentials on the body 

surface) to EEG has been shown to alleviate the blurring effects enhancing the spatial 

resolution and selectivity [4]-[6], and reduce the reference problem.  

While several methods were proposed for estimation of the surface Laplacian 

through interpolation of potentials on a surface and then estimating the Laplacian from 

an array of disc electrodes [5]-[9], concentric ring electrodes (CRE) have shown more 

promise. The CREs can resolve the reference electrode problems since they act like 

closely spaced bipolar recordings [2]. Moreover, CREs are symmetrical alleviating 

electrode orientation problems [10]. They also act as spatial filters enhancing the high 

spatial frequencies [10], [11]. Finally, bipolar CREs, consisting of just two elements 

including a single ring and the central disc, improve the radial attenuation of the 

conventional disc electrode from 1/r3 to 1/r4 with higher numbers of poles having the 

potential to enhance radial attenuation even further [12]. 
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Tripolar CREs (TCRE), consisting of three elements including the outer ring, the 

middle ring, and the central disc (Figure 1.1, B), are distinctively different from 

conventional disc electrodes that have a single element (Figure 1.1, A). TCREs have 

been shown to estimate the surface Laplacian directly through the nine-point method, 

an extension of the five-point method used for bipolar CREs, significantly better than 

other electrode systems including bipolar and quasi-bipolar CREs [13], [14]. The 

Laplacian algorithm is two-dimensional and weights the middle ring and central disc 

signal difference sixteen times greater than the outer ring and central disc signal 

difference [13], [14]. Compared to EEG with conventional disc electrodes, Laplacian 

EEG using TCREs (tEEG) have been shown to have significantly better spatial 

selectivity (approximately 2.5 times higher), signal-to-noise ratio (approximately 3.7 

times higher), and mutual information (approximately 12 times lower) [15]. TCREs 

 
 

Figure 1.1 Conventional disc electrode (A) and tripolar concentric ring electrode 

(B) 
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also have very high common mode noise rejection providing automatic artifact 

attenuation, -100 dB one radius from the electrode [14]. Because of such unique 

capabilities TCREs have found numerous applications in a wide range of areas 

including brain-computer interface [16], seizure attenuation using transcranial focal 

stimulation applied via TCREs [17]-[20], seizure onset detection in animal models 

[21], [22] and, most recently, humans [23], etc. 

Some current and future applications may require simultaneous recording of EEG 

using conventional disc electrodes and tEEG. For example, in [23] EEG and tEEG 

were recorded simultaneously from human patients with epilepsy to allow a direct 

comparison of seizure onset detection results for two sensor modalities. In [23] EEG 

and tEEG data were recorded by placing a set of TCREs directly behind the 

conventional disc electrodes that were in the standard 10-20 system locations but this 

approach has two disadvantages. First, EEG and tEEG are not being recorded at 

exactly the same locations. Second, this approach may require additional hardware as 

two recording systems may have to be used at the same time for EEG and tEEG data 

respectively (as was done in [23]) resulting in imperfect synchronization in time 

between EEG and tEEG. 

In this preliminary study, we propose to use the signal from the outer ring of 

TCRE as an emulation (eEEG) of EEG recorded using conventional disc electrodes. 

This will allow us to record eEEG from the exact same locations at the exact same 

time as the tEEG using a single recording system. Time domain neuronal signal 

synchrony was measured using cross-correlation in phantom and human experiments 

to assess the potential of eEEG as an emulation of EEG. Moreover, in the phantom 
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experiments, a shorted TCRE was also assessed as an alternative potential emulation 

of EEG. TCREs with diameter of 1.0 cm (Figure 1.1, B) were used in all of the 

experiments. 

 

1.2 Methods  

1.2.1 Phantom Experiments 

A diagram of the setup used for the phantom data collection is presented in Figure 

1.2. Three electrodes including the conventional disc electrode and two modified 

TCREs, one connected as the outer ring and the other one as shorted disc, were placed 

on a copper plate (Figure 1.2, A) covered by a 3mm layer of Ten20 EEG conductive 

paste (Figure 1.2, B) (Weaver and Company, Aurora, CO). The copper plate was made 

from a single sided copper cladded printed circuit board used as a cathode with a 

smaller round copper plate (Figure 1.2, C) used as an anode and located in such a way 

that the three electrodes under test were located across two perpendicular diameters of 

the anode circle at a constant distance of 2mm from it (Figure 1.2, D, E, and F). The 

cathode and anode were connected to a signal generator producing a sinusoidal wave 

with frequency of 30Hz and amplitude of 2.5V. Signals from three electrodes were 

digitized at 16-bit using a USB-2527 data acquisition card (Measurement Computing, 

Norton, MA) with sampling frequency of 1000Hz and duration of all the recordings 

equal to 30s. 
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We recorded a total of 10 series, each series consisting of 6 recordings 

corresponding to six possible combinations of positioning three electrodes at three 

different locations around the circular anode, to improve the statistical validity of the 

results. Using all possible positioning combinations at each series of recordings was 

meant to compensate for the variability due to location. For each series the order of 

recordings was randomized to balance out the potential effect of the temporal factor. 

Anode and cathode corrosion were cleaned after each series of recordings. 

 

1.2.2 Human Experiments  

The human data were collected from six healthy subjects (1-6, ages 24-40, one 

female). Baseline brain activity was recorded with the subjects seated in a chair and 

 
 

Figure 1.2 Diagram of the setup used for the phantom data collection including: 

copper cathode plate (A), layer of Ten20 EEG conductive paste (B), copper anode 

plate (C), and three electrode locations (D, E, and F). 
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asked to remain motionless during the recording process to reduce movement induced 

artifacts. Durations of individual recordings ranged from 110s to 550s for a total 

duration of 1730s for 6 subjects which, when subdivided into non-overlapping 

segments of 10s resulted in 173 segments total for this part of the study. The 

conventional disc electrode and a TCRE, recording both outer ring signal and 

Laplacian tEEG, were side-by-side at location P4 of the standard 10-20 system with 

reference and ground located on the right mastoid process. Skin-to-electrode 

impedances were maintained below 5kΩ. Signals from the TCRE were preamplified 

using a custom preamplifier with a gain of 6 after which both TCRE and conventional 

EEG signals were band pass filtered (0.1-100Hz) and digitized at 1200Hz using a 

gUSB amplifier with normalized unit gain (g.tec medical engineering GmbH, 

Schiedlberg, Austria).  

 

1.2.3 Signal Processing and Synchrony Measure 

All the signal processing was performed using Matlab (Mathworks, Natick, MA). 

Sixty 30s recording segments for the phantom data part of this study and 173 10s 

recording segments from 6 subjects for the human data part of this study were digitally 

filtered (zero-phase fifth-order Butterworth) with band pass of 1-100Hz and 60Hz 

notch filter active since this frequency range is the current clinical standard for EEG 

recording and, therefore, is the primary goal for EEG emulation. Next, cross-

correlation, a widely used linear measure of neuronal signal synchrony in the time 

domain was applied to all the respective pairs of signals from different electrode 

modalities [24]. For cross-correlation the signals were normalized to zero mean and 
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unit variance. We calculated both the correlation coefficient at lag zero as well as the 

maximum correlation coefficient value corresponding to the optimal lag to account for 

possible time delay between the acquired signals. 

 

1.2.4 Statistical Analysis 

For the phantom data, statistical tests were used to assess significance of difference 

between the two proposed EEG emulation options: eEEG via the TCRE outer ring and 

shorted TCRE signals. First, we calculated average cross-correlation coefficients for 

each of 10 series of recordings averaging together coefficients for 6 recordings that 

comprised each series. Next, we applied unpaired or “independent samples” tests to 

samples of series cross-correlation coefficients (n = 10) between EEG vs. eEEG and 

EEG vs. shorted TCRE signal respectively: parametric two-sample Student’s t-test 

(alternative hypothesis of sample means being not equal) and nonparametric Mann–

Whitney test (alternative hypothesis of sample medians being not equal) [25]. The 

Ryan–Joiner (similar to Shapiro–Wilk) normality test was used for all the samples 

compared [26]. A parametric test was used only when both samples to be compared 

were normally distributed. Otherwise, a nonparametric test was used. 

 

 

1.3 Results 

1.3.1 Phantom Data 

At lag zero the following cross-correlation coefficients (r) were obtained (average 

± standard deviation) for 10 series of recordings: for EEG vs. eEEG, r = 0.9744 ± 
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0.0121; for EEG vs. shorted TCRE signal, r = 0.9445 ± 0.0281. There was a 

statistically significant difference between the two (p = 0.009). 

Individual optimal lags varied between the recordings. Group average optimal lag 

was equal to one both for EEG vs. eEEG and for EEG vs. shorted TCRE signal. The 

maximum cross-correlation (rmax) corresponding to the unit optimal lag was higher 

than cross-correlation at lag zero (r) both for EEG vs. eEEG with rmax = 0.9841 ± 

0.012 (p = 0.045) and for EEG vs. shorted TCRE signal with rmax = 0.9766 ± 0.0195 

(p = 0.013). There was no statistically significant difference between the two 

maximum cross-correlations (p = 0.385). 

 

1.3.2 Human Data 

 

At lag zero the following cross-correlation coefficients were obtained (average ± 

standard deviation) for EEG vs. eEEG on data from 6 subjects r = 0.9905 ± 0.0065. At 

optimal lag the maximum cross-correlation coefficients were equal to the zero lag 

coefficients suggesting that there was no time delay between the acquired signals. 

 

1.4 Discussion 

Significance of difference between zero lag (r) and optimal lag cross-correlation 

(rmax) coefficients for both EEG vs. eEEG and EEG vs. shorted TCRE signal in 

phantom data suggests presence of a time delay between the acquired signals the 

source of which needs be determined. Difference between optimal lags for individual 

recordings suggests that this delay is variable so group optimal lag that was reported in 

this study provides a lower bound for the maximum correlation. For example, 

recalculating the maximum correlation allowing individual lags of up to one sample 



 

 

 

20

(that is, choosing either zero or unit lag for each recording) increases rmax both for 

EEG vs. eEEG with rmax = 0.9921 ± 0.012 and for EEG vs. shorted TCRE signal with 

rmax = 0.98 ± 0.032. Moreover, allowing optimal lags for individual recordings 

further increases the maximum correlation to rmax = 0.9981 ± 0.001 for EEG vs. 

eEEG and rmax = 0.9977 ± 0.001 for EEG vs. shorted TCRE signal. Taking into 

account these varying time delays between the acquired signals for the phantom data 

experiments, the results obtained on both phantom and human data confirm that 

signals from the outer ring of TCRE correlate well (r ≥ 0.99) with the conventional 

disc electrode signals suggesting the potential of eEEG as an emulation of EEG via 

conventional disc electrodes. This is an intuitive result since a conventional disc 

electrode is really a cup where there is an outer ring similar to the outer ring of the 

TCRE (Figure 1.1). 

The proposed EEG emulation alternative was to short all three recording surfaces 

of the TCRE. In the phantom experiments of this study the zero lag cross-correlation 

between the TCRE outer ring eEEG and conventional disc EEG was significantly 

higher (p = 0.009) than the corresponding cross-correlation for the shorted TCRE 

signal. This suggests that eEEG may be a closer approximation of disc electrode EEG 

than the signal from the shorted TCRE even though high maximum cross-correlation 

coefficients and lack of statistical significance between them suggests that both 

proposed EEG emulation options are valid. Another important consideration is that 

recording tEEG simultaneously with a shorted TCRE signal at the same location is 

difficult since constantly shorting and un-shorting of the three TCRE elements would 

require a complex multiplexer introducing additional switching noise. On the other 
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hand, recording eEEG in parallel with tEEG using a single system does not require 

additional hardware providing researchers and clinicians with the best of both worlds. 

This paper represents a first preliminary step toward emulating the conventional 

disc electrodes using concentric ring electrodes. Further investigation is needed for 

conclusive proof with short term directions of future work including determining the 

source of the varying time delay in the phantom data and conduction of a larger human 

data study. This study should include shorted TCRE (compared to just eEEG and EEG 

in the current preliminary study) as well as a larger subject population with longer data 

durations for individual subjects (compared to short recordings from six subjects in the 

current study). Assessing the effect of subject's movement and induced artifacts on 

synchrony between EEG and its emulations is another issue that was not addressed in 

the current study that includes just the baseline activity. Most importantly, more 

measures of neuronal signal synchrony need to be added to the currently used time 

domain linear cross-correlation. Linear spectral coherence may be used to assess the 

synchrony in the frequency domain both in specific frequency bands and averaged 

across the spectra. Moreover, nonlinear neuronal signal synchrony measures are 

available including mutual information, transfer entropy, Granger causality, and 

nonlinear interdependence as well as different indices of phase synchronization such 

as the mean phase coherence [27]. 
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Abstract 

Objective. Brain–computer interfaces (BCIs) based on electroencephalography 

(EEG) have been shown to accurately detect mental activities, but the acquisition of 

high levels of control require extensive user training. Furthermore, EEG has low 

signal-to-noise ratio and low spatial resolution. The objective of the present study was 

to compare the accuracy between two types of BCIs during the first recording session. 

EEG and tripolar concentric ring electrode (TCRE) EEG (tEEG) brain signals were 

recorded and used to control one-dimensional cursor movements.  

Approach. Eight human subjects were asked to imagine either ‘left’ or ‘right’ hand 

movement during one recording session to control the computer cursor using TCRE 

and disc electrodes.  

Main results. The obtained results show a significant improvement in accuracies 

using TCREs (44%–100%) compared to disc electrodes (30%–86%). 

 Significance. This study developed the first tEEG-based BCI system for real-time 

one-dimensional cursor movements and showed high accuracies with little training. 

 

 

2.1 Introduction 

Brain–computer interfaces (BCIs) are systems that detect changes in brain signals 

related to human intentions, typically translating intention into a control signal to 

communicate between the brain and the external world such as computer applications 

[1]. These new communication systems have the potential to substantially increase and 

improve the quality of life of people suffering from severe motor disabilities including 

paralysis, and provide a new way for able-bodied people to control computers or other 
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devices (e.g., robot arm, artificial limb or computer cursor). The most important 

clinical applications of BCI systems include brain-derived communication in 

paralyzed and locked-in patients [2, 3] and restoration of motor function in patients 

with spinal cord injuries [4]. 

BCIs enable users to control devices with direct brain communication using 

electroencephalographic (EEG) activity recorded from electrodes placed on the scalp 

(noninvasive BCI) [5, 6] or with activity recorded from on or within the brain 

(Invasive BCI) [7, 8]. The EEG is a noninvasive method to monitor brain electrical 

activity; however EEG signals have low signal to noise ratio (SNR), low spatial 

resolution, and are contaminated by various artifacts from other sources. These 

characteristics limit measuring the spatial distribution of brain electrical activity and 

thus necessitate significant preprocessing [6]. Invasive BCIs face substantial technical 

difficulties and clinical risks as they require that recording electrodes be implanted in 

or on the cortex and function well for long periods, with risks of infection and other 

damages [8]. 

Recently, improvements have been developed to make EEG more accurate by 

increasing the spatial resolution. One such improvement is the application of the 

surface Laplacian to the EEG, the second spatial derivative. Tripolar concentric ring 

electrodes (TCREs) (see figure 2.1(B)) automatically perform the Laplacian on the 

surface potentials. Previously we have shown that TCRE EEG (tEEG) has 

significantly better spatial selectivity, SNR, localization, approximation of the 

analytical Laplacian, and mutual information than conventional EEG with disc 
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electrodes [9, 10]. These findings suggest that tEEG may be beneficial for 

neurological disorders analysis like seizure detection [11, 18]. 

An important concern in BCI research is to control the computer cursor such as 

able-bodied persons do. Cursor control requires the subject to learn how to adapt their 

brain signals by using different thought patterns for different tasks [12]. Studies in 

recent years have shown that EEG-based BCI has great potential in achieving one-

dimension cursor control [13–15]. However, these systems usually require long-term 

training in regulating brain signals and the performance in long-term use is often not 

robust [16]. For example, Wolpaw et al [6] performed over twenty sessions per 

subject, at a rate of two to four per week to develop high-accuracy cursor control (i.e., 

>90%) [6]. Slow training of subjects and low spatio-temporal resolution is still a 

serious problem [12]. In order to make future BCI convenient, the training time must 

be reduced without loss of accuracy. 

The objective of this research project was to compare the accuracy of one-

dimensional (‘left’–‘right’) cursor control between EEG and tEEG. A secondary 

objective was to determine if high accuracies could be accomplished using only a 

single training session. We demonstrate that tEEG signals can enable users to learn 

how to control a one-dimensional computer cursor rapidly and accurately during their 

first session with significantly higher accuracy when compared to the EEG signals. 

The rest of the paper is structured as follows: section 2 presents a general 

description of the dataset used in this work and the procedure employed is explained 

in detail. Section 3 presents the obtained results with a general discussion. Finally, 

some conclusions with future work are offered.  
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2.2 Methodology  

2.2.1 Laplacian Electroencephalography (tEEG) 

The scalp surface Laplacian is an alternative method for presenting EEG data with 

higher spatial resolution. It has been shown that the surface Laplacian is proportional 

to the cortical potentials and improves the high spatial frequency components of the 

brain activity near the electrode [19]. To obtain the Laplacian, we take a new approach 

by using unique sensors and instrumentation for recording the signal [9, 20]. The 

unique sensor configuration which measures the Laplacian potential directly is the 

TCRE (Figure 2.1, panel B) [9, 10]. Two differential signals from each electrode were 

combined algorithmically for a tEEG derivation of the signal as reported previously in 

 

Figure 2.1 (A) Schematic illustration of the electrode montage. The EEG signal 

is recorded from the outer ring of the TCRE electrodes. EEG and tEEG signals 

were recorded from the same location concurrently. (B) Schematic of TCRE 

electrode. 
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[9]. Briefly, the algorithm is two-dimensional and weights the middle ring and central 

disc difference sixteen times greater than the outer ring and central disc difference, 

16∗(middle–disc) – (outer–disc), where disc is the central disc, middle is the middle 

ring, and outer is the outer ring of the TCRE. The outer ring was used as the disc 

electrode (Figure 2.1, panel B). In our previous work [22] we have shown that the 

outer ring signal has a 0.99 correlation to disc electrode signals. All the signal 

processing was performed using MATLAB (Mathworks, Natick, MA, USA). 

 

 

2.2.2 Data Recording  

The brain signals were gathered from eight healthy subjects (1–8, ages 24–40, two 

female). The subjects were naive to neuro-feedback training and their task was to use 

their thoughts to move a cursor, in the form of a ball, from the center of a computer 

screen to a target. The target was a pink rectangle which appeared in the ‘left’ or the 

‘right’ of the periphery of the screen. The cursor width was 10% of the screen width. 

Figure 2.2 shows a screenshot of the real-time application. 

 

 
 

Figure 2.2 Screenshot of the real-time application for cursor control. The ball is the 

cursor and the rectangle is the target. (A) Before the ball hit the target and (B) when 

the ball hit the target, the color of the target turned yellow. 
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During BCI operation, subjects were seated in a chair, facing a computer screen 

which was placed about 1.5 min front of the subject. The subjects were asked to 

remain motionless during the recording process to reduce the introduction of artifacts. 

The BCI2000 [16] software application was used to acquire and process in real-time 

signals recorded from eight scalp surface electrodes (C3, C1, Cz, C2, C4, FC1, FCz, 

FC2) according to the international 10–20 system, with reference and ground from the 

right mastoid process (see Figure 2.1 panel A). Skin-to-electrode impedances were 

maintained below 5 kΩ. Signals from all the channels were first pre-amplified with a 

gain of 6, then amplified, filtered (0.1–100 Hz) and digitized (sampling frequency was 

256 Hz) with a gUSB amplifier (g.tec GmgH, Schiedlberg, Austria). For a direct 

comparison between EEG and tEEG cursor accuracy TCREs were placed once and 

used for both experiments. The subjects were unaware as to whether EEG or tEEG 

was used for BCI. 

 

 

 
Figure 2.3 Procedure of one-dimensional computer cursor control. 
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2.3 Procedure  

In this paper, for achieving one-dimension cursor control two stages were used: (1) 

features identification during an offline analysis, and (2) online one-dimensional BCI 

cursor control (real-time one-dimensional cursor control). The two stages are 

described in the following section (see Figure 2.3). 

 

2.3.1 Offline Analysis for features identification 

The offline analysis was performed to determine which components and features 

of the signal the user could most easily modulate for BCI control. First we determined 

which EEG and tEEG features (i.e., signal amplitudes at particular frequency bands 

and particular electrode locations) were correlated with a particular motor imagery 

task, and might thus be the basis for BCI experiments. 

To measure and characterize responses to motor imagery, each subject had to 

imagine ‘left’ and ‘right’ hand movements, following a fixed repetitive time scheme of 

an arrow pointing ‘left’ or ‘right’ for 2 s, and to rest while the screen was blank for 1 s. 

The appearance of the arrow was random and each ‘left’ or ‘right’ task was repeated 

ten times. Moreover, the data were collected just for one session (to assure that the 

subject was a first-time BCI user). The session consisted of five runs, and each run 

consisted of 20 trials for 100 trials total. 

For these analyses, we converted the time-series EEG and tEEG data into the 

frequency domain, with 2 Hz wide bins from 0 to 140 Hz, using an autoregressive 

model of order 20 (BCI200 function) to produce a set of frequency spectra for each 

location and for each task and rest. We then calculated the statistical difference for the 
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distribution of frequency magnitude at each electrode location and frequency (i.e., 

values of r2, which indicated what fraction of the signal variance at that location and 

frequency was due to the condition of task and rest). This procedure was performed to 

identify features that could be modulated by the subject using imagined tasks. 

Electrodes for each subject were identified for a selected frequency band that 

exhibited a high correlation with the imagined right hand movement task (i.e. the 

largest value of r2) for both EEG and tEEG signals (see Table 2.1). From the feature 

plot (Figure 2.4) it is observed that the largest r2 value in the selected frequency band 

appeared in the C3, C1, and FC1 electrodes located on the left motor cortex (Figure 

2.1). Furthermore, we selected up to three electrodes, from the frequency bands that 

we monitored. An electrode was selected if the r2 value was dark red (r2 > 0.09). The 

amplitudes of these features (frequency band and electrode location) were used by the 

subject to move the cursor to the ‘right’ toward the target on the screen during the 

online procedure. During rest the cursor moved to the ‘left’. 
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Figure 2.4 Example of an analysis comparing between tEEG and EEG signals for 

the ‘right’ hand imaginary and rest. (A) Values of r2 for all the electrodes locations 

and frequencies for both tEEG and EEG signals. Normalized power from channel 

C1 for: (B) tEEG and (C) EEG. The corresponding r2 spectrum measures the 

amplitude variation for (D) tEEG (E) and EEG for electrode C1. 
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Figure 2.4 shows an example analysis calculated for one subject performing 

imagined ‘right’ hand movement and rest. The top panel (A) shows the values of r2 for 

each electrode location and frequency bin for both EEG (top half) and tEEG (bottom 

half) signals. It can be seen that some signals at particular locations and frequencies 

exhibit a difference between the task and rest such as location C1, which was used for 

the remainder of Figure 2.4. Panel B shows the average tEEG frequency spectra for 

‘right’ hand movement and rest whereas Panel C shows the same for EEG. Panel D 

shows the r2 values for tEEG and Panel E for the EEG. This same process was 

followed for each subject during a no-feedback session and the features (i.e., electrode 

locations and frequency band) that had the highest values of r2 were determined for 

each subject. 

 

 

Table 2.1 The average rates of online experimental results for each subject using 

both EEG and tEEG signals and their corresponding electrode locations and 

frequency bands for ‘right’ hand imaginary task. 
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2.3.2 Online Testing 

The order of the EEG or tEEG closed-loop control was randomized without the 

subject knowing which they were performing. The closed-loop BCI experiments, the 

real time testing, were performed with the subject receiving online feedback. The 

feedback consisted of one-dimensional cursor imaginary movement controlled by the 

EEG or tEEG features. Moreover, the subjects received feedback that was proportional 

to the extracted features identified in the methods of section 3.1. To translate the 

extracted features into a set of signals that moved the cursor toward the target during 

the online feedback, the amplitudes of an identified frequency band were summed 

linearly for the identified electrodes [23]. The weights were chosen so that the cursor 

moved to the ‘right’ with task performance and to the ‘left’ during rest. The weights 

were selected manually to set this configuration. Initially, we performed a trial task for 

each subject using EEG and an initial weight value of (1). We monitored the speed of 

the ball and adjusted the weight so that the cursor moved from the center to the target 

within 2 s for each subject. The same weights determined for the EEG were also used 

for the tEEG. The EEG and tEEG features were integrated over time to yield the 

current cursor position. 

The subject’s goal was to move the cursor horizontally so that it hit the appropriate 

(i.e., ‘left’ or ‘right’) target. Data were collected from each subject for 10 runs, each 

run comprised 20 trials. The runs were separated with short breaks. The random ‘left’ 

or ‘right’ target appeared 2 s prior to the cursor (a ball) which appeared in the center of 

the screen. The trial ended 1 s after a hit, miss, or abort with a total run duration of 

approximately 8 s. The feedback duration was 2 s with a maximum duration of 4 s. 
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One session comprised ten runs for approximately 2.7 min per run and approximately 

27 min for a session. Data were collected for only one session from each subject. The 

cursor was visible and controllable throughout the whole run. Once the cursor hit the 

target, the color changed from pink to green to show the successful performance. 

Since there were two possible outcomes in each trial, the expected probability in the 

absence of any control was 0.5. 

 

 

 
 

Figure 2.5 Average accuracy for tripolar concentric ring electrode (TCRE) 

(continuous line) and disc electrode (dashed line). The bar values are mean ± 

SD (standard deviation). 
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2.4 Results and Discussion 

In this study, we report the first tEEG-based BCI system for one-dimensional real-

time cursor movements. Furthermore, we emphasize that the system requires only one 

training session of an offline analysis for features identification (~27 min) and online 

testing (~27 min) resulting in proficient operation. The procedure for achieving one-

dimensional cursor control had two stages. In the first stage, the data were collected 

from naıve subjects and analyzed using an offline process to determine which features 

could be used for BCI control. In the second stage, the subjects attempted to control of 

the computer cursor. 

During offline analysis, the signal amplitudes related to the electrodes location and 

frequency bands with the most significant task (i.e., the highest values of r2) were 

identified as features to be used to control cursor movement in the subsequent online 

BCI experiments. The r2 is a measure of how relevant a signal is to the presented 

target [21]. An analysis example comparing tEEG and EEG signals for the right-hand 

imaginary and rest is shown in Figure 2.4. The analysis of r2 (Figure 2.4 panel D and 

panel E) demonstrate that the relevant signal is focused in the mu and beta frequency 

bands. Moreover, Figure 2.4 panel B and C shows that the normalized power of these 

frequency bands decreased during task execution. 

In the online analysis, the subjects controlled a cursor (moving the cursor to the 

left or right edge of the screen to hit the target) with their EEG or tEEG signals. The 

obtained accuracies are comparable to other noninvasive and invasive BCI studies 

aimed at one-dimensional cursor control [6, 8, 17 and 21]. For examples in [6], human 

subjects try to control at first a one-dimensional movement and then moved to a two 
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dimensional movement using a noninvasive BCI. The tasks were performed from 2–4 

times a week with a 92% hit rate achieved. In [17], the subjects controlled a cursor in 

one dimensional direction by imagined movements. All data of each subject were 

recorded on the same day without subject training. The average accuracy of all 

subjects obtained online in the feedback application was 90.5%. 

Over short training periods (~27 min), all eight users achieved significant control 

of the computer cursor. Figure 2.5 shows the average group accuracy during online 

cursor control obtained from each user for the period of ten runs. The average rates of 

online experimental results for each subject using both disc and tripolar electrodes are 

shown in Table 2.1. The maximum hit rate reached 86% using EEG (Subject 4) and 

reached 100% using tEEG (Subjects 3 and 6). The overall average hit rate and 

standard deviation for EEG and tEEG was 59.1% ± 7.13 and 70.2% ± 8.13, 

respectively (Figure 2.5). One-way analysis of variance (ANOVA) with blocking 

factor levels corresponding to eight human subjects was used to confirm that there was 

a significant difference in the mean BCI hit rate between data corresponding to 

conventional disc EEG and tripolar concentric ring Laplacian tEEG (p < 0.0001). 

These results show that there is a significant difference in accuracy of the tEEG to disc 

EEG for new users in real-time one-dimensional cursor control. 

Comparing the obtained results from EEG and tEEG signals, the cursor control 

accuracy using tEEG, on average, was significantly higher than for the disc EEG. 

When moving the cursor in one dimension, two of the eight subjects were able to hit 

100% of the targets within one session (~27 min) using tEEG. We believe that this 

increased accuracy in a shortened time will help users train on the BCI quicker. 
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We always used the features that provided the highest r2 for each electrode type. 

Many times the electrode locations used for EEG and tEEG overlapped and sometimes 

the frequency bands also overlapped. Although, the performance of tEEG over EEG 

may be partially due to different selection of features, we believe this improvement is 

also due to tEEG having higher spatial resolution, lower mutual information, and 

better SNR than EEG which provides more specific features. 

 

2.5 Conclusion  

In this paper, we have shown a significant improvement in accuracy for one-

dimensional BCI real-time center out cursor control using tEEG compared to EEG in 

humans after minimal training. The obtained results indicate that tEEG-based BCI 

could provide one-dimensional control that is more accurate with shorter training time 

requirements than EEG-based BCI. All eight subjects demonstrated reliable control 

achieving an average of 70.2% using tEEG-based BCI and an average of 59.1% using 

EEG-based BCI after only one offline training session. As a result, the average 

improvement of the tEEG-based BCI over the EEG-based BCI was more than 15%. 

Using TCREs allowed us to collect the tEEG and EEG data from the same locations at 

the same time for comparison.  

Our future studies will focus on two-dimensional cursor control to determine the 

hit accuracies for tEEG and EEG signals. 
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Abstract 

 

 

 Electroencephalogram (EEG) based brain–computer interface, (EEG-based 

BCI), has attracted much attention since it provides a new communication channel 

between the human brain and the computer. Recent studies have demonstrated that 

near-infrared spectroscopy (NIRS) is a promising neuroimaging modality for BCIs. In 

the present study, we evaluated the performances of a variety of imagery mental task 

combinations which are right, left, up and down using: Laplacian tripolar EEG (tEEG) 

and NIRS based BCIs. To this end, we recorded the tEEG signal and the event-related 

hemodynamic responses from nine participants while performing these imagery tasks. 

Classification accuracies were then estimated comparing these four mental tasks with 

rest using two different classifiers, the support vector machine (SVM) and the k-

nearest neighbor (k-NN) algorithm. 

 

3.1 Introduction 

 

A brain–computer interface (BCI) translates electrical signals detected from the 

brain to control an output device which can help those suffering from neuromuscular 

impairments to interact and communicate with their surrounding environment [1]. 

BCIs can be invasive or non-invasive. Invasive BCIs read the user’s intent from 

neuronal action using electrodes embedded on or directly within the brain. Non-

invasive BCIs derive the user’s intent from neuronal action recorded from the scalp. 

Many noninvasive methods have been developed to examine brain activity, for 

example Electroencephalography (EEG) [2-4], Laplacian tripolar EEG (tEEG) [14], 
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magnetoencephalography (MEG) [5], functional magnetic resonance imaging (fMRI) 

[6, 7] and near-infrared spectroscopy (NIRS) [8-10]. 

EEG is the measurement and recording of the brain electrical activity using 

sensors arrayed across the scalp. Surface EEG has many advantages. For example, it is 

non-invasive, has a good temporal resolution and available at low cost. However, EEG 

has low signal-to-noise ratio and low spatial resolution that does not allow an accurate 

localization [11]. Recently, improvements have been applied to EEG recording 

techniques making it more accurate by increasing the spatial resolution. One such 

improvement is the application of the surface Laplacian to the EEG [12, 13]. The 

tripolar concentric ring electrodes (TCREs), (see Figure 3.3 panel B) were used to 

record the tEEG. It has been shown that tEEG has significantly better spatial 

resolution and better signal-to-noise ratio than EEG recorded using the traditional disc 

electrodes [12, 13]. In our previous work [22], we found a significant improvement in 

detection of single event imagined movements with tEEG compared to EEG. Recently 

we found a significant improvement in real-time 1D cursor control accuracy using 

tEEG compared to EEG [14].  

Near-infrared spectroscopy (NIRS) is a non-invasive optical imaging technique 

used to acquire brain signals by transmitting near-infrared (650 nm – 950 nm 

wavelengths) electromagnetic radiation through the skull and comparing the intensities 

of the returning and incident light. During mental activity, an increase in the blood 

flow to pre-defined regions of the brain is observed, e.g., motor cortex during motor 

imagery tasks [15, 16]. The increase in blood flow causes changes to the regional 

concentrations of oxygenated and deoxygenated hemoglobin [8]. Near-infrared 
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spectroscopy provides researchers with a variety of advantages such as flexibility of 

use, good spatial and temporal resolution, localized information, affordability and high 

sensitivity in detecting small substance concentration [11]. Moreover, NIRS is much 

less sensitive to EMG artifacts than EEG. It has also been shown that NIRS has some 

disadvantages such as slow operation due to the inherent latency of the hemodynamic 

response and weak signal due to hair on the head which may introduce artifacts. Coyle 

et al. 2004 [8] were one of the first to explore the feasibility of NIRS for a BCI 

system. Recently, NIRS-based brain-computer interfaces were introduced for 

discriminating motor tasks imagery by different studies [8, 9, 19-21]. 

The goal of our study was to investigate the potential of classifying different 

imagery tasks using tEEG and NIRS based BCI. The imagery tasks were, left-hand 

motor imagery, right-hand motor imagery, both hands-motor imagery and both-feet 

motor imagery. During offline analysis, the extracted mean and the median values of 

tEEG and NIRS signals during task were used as input to two different classifiers, the 

support vector machine (SVM) [27] and k-nearest neighbor (k-NN) [28]. The block 

diagram describing the procedure of data acquisition and the control command process 

is shown in Figure 3.1. In this study we will also discuss online classification towards 

developing a tEEG–based BCI. 
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3.2 Materials and Procedures 

 

3.2.1 Subjects and Experimental Paradigm 

 

Nine healthy subjects (20 to 36 years old) voluntarily participated in this study. All 

subjects signed a University of Rhode Island Institutional Review Board approved 

informed consent. None of the subjects had a previous neurological history or other 

severe diseases that might influence the experimental results. The experimental 

procedure was explained in detail to each subject before the experiment. The 

experiment was performed in a reduced noise room. Subjects were seated in a chair, 

facing a computer screen which was placed about 1.5 m in front of them. The subjects 

were asked to remain motionless during the recording process to reduce the 

introduction of artifacts. 
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Figure 3.1 Block diagram showing the signal acquisition and the control 

command process for using brain signals recorded by tEEG and NIRS during 

motor imagery. 
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To measure and characterize responses to motor imagery, the subject was asked to 

imagine each of the following selected tasks: ‘left hand movement (LI)’, ‘right hand 

movements (RI)’ or ‘both hand movement (BHI)’ or ‘both feet movement (BFI)’, 

without performing any real motion, for a fixed time duration during which an arrow 

was pointing left, right, up or down, respectively, for 10 s, and to rest while the screen 

was blank for 10 s. Figure 3.2 shows the overall experimental paradigm used in this 

study. Each run was created with an initial period of 10 s to set up a baseline Rest 

value. Following this baseline Rest period, the subject performed motor task imagery 

for a period of 10 s.  The next 10 s were considered a rest period; the screen was left 

blank and the subject was asked to relax without any concentration or motion. This 

pattern was repeated 20 times for each run for a total of 200 trials (10 runs). However, 

because of very large noise interference and some subject’s unexpected movement 

(artifacts), a few trials were omitted from the processed data after visual inspection. 

 

 

 

Rest 

(10 sec) (10 sec) 

Imagery Task 

Time    

 
 

Figure 3.2 Experimental protocols for motor imagery for tEEG and NIRS 

signals. A black arrow is displayed on the computer screen as one of the four 

tasks: left, right, up or down to specify the direction for each trial. 
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3.2.2 Data Acquisition 

 

Simultaneous measurements of the brain activities related to mental imagery tasks 

were performed from tEEG and NIRS recorded data. 

Eight surface TCREs were placed on scalp locations: C3, C1, Cz, C2, C4, FC1, 

FCz, FC2 according to the international 10–20 system [23]; reference and ground were 

placed on the right mastoid process (see Figure 3.3). Skin-to-electrode impedances 

were maintained below 5 kΩ. Signals from all the channels were first pre-amplified 

(gain = 6) then filtered using a band pass filter (0.1–70 Hz) and digitized (sampling 

frequency was 256 Hz) with a gUSB amplifier (g.tec GmgH, Schiedlberg, Austria). 

The BCI2000 [24] software application was used to acquire and process signals in 

real-time. 

To record the NIRS data, the NIRS-System (NIR_Scout, NIRX Medical 

Technologies, USA) was used in this experiment with wavelength of 760 and 850 nm. 

Figure 3.3 shows the optode configuration used in this study. The illuminator source 

and detector optodes were placed on the scalp.  A total of 8 sources and 8 detectors 

form a combinational pair of 20 optical path channels that were used in the 

experiment. The detector optodes were placed at a fixed distance of 3 cm from the 

illuminator optodes. These optodes were placed on the left and right hemisphere 

around the C3 and C4 area. The sampling frequency used for the acquisition of NIRS 

signals was 7.812Hz. 
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3.2.3 Signal Processing 

Further analysis of the NIRS and tEEG offline data were performed as follows. 

The session was constructed from 10 runs, each run was formed from 20 trials, and the 

length of each trial was 20 s representing one of the four tasks: (LI), (RI), (BHI), (BFI) 

and rest that were recorded using both NIRS and tEEG data.  

The recorded NIRS signals were converted into oxygenated hemoglobin (HbO2) 

and deoxygenated hemoglobin (Hb) concentration using the modified Beer-Lambert 

law [25]. In order to remove the high frequency noise due to respiration and heartbeat, 

the signals were low-pass filtered using a 3rd-order Butterworth filter of cut-off   

 
 

 

Figure 3.3 tEEG electrodes and NIRS optodes locations. (A) Eight tripolar 

concentric ring electrodes (TCREs) were used to record the tEEG signal and 20 

NIRS channel locations using eight illuminator sources and eight detectors for 

NIRS. (B) Schematic of tripolar concentric ring electrode (TCRE). 
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frequency 0.2Hz.  In this study, the averaged oxygenated hemoglobin (HBO) signal 

for each task over each run was considered for classification.  The nirsLAB (v2014.05 

by NITRC) was used to preprocess the NIRS measurements. A total of 200 segments 

of 10 s were associated for each task.  

The same process was performed for tEEG data. Each run was decomposed into 

segments of 10 s corresponding to each task (left, right, up and down) and rest. The 

average of these tasks over each run was calculated. Thus, for each subject there are a 

total of 80 segments of 10 s corresponding to each of the four tasks and for rest for the 

8 electrodes used to record the tEEG signals. The tEEG segments were filtered using 

an 8th order low pass Butterworth filter with 30 Hz cut-off frequency. 

 

3.2.4 Motor Imagery Detection based on tEEG and NIRS System 

The aim of BCI is to translate the brain activities into commands for a special 

device such as computer. To achieve this goal, classification algorithms can be used. 

In this paper, an offline classification of the tEEG and NIRS signals recorded during 

motor task imagery were performed. The classification accuracy depends on both the 

features and the classification algorithm used. These two steps are highlighted in this 

section. 

 

3.2.4.1 Feature Extraction 

As already mentioned in the above section, the duration of each task is 10 s. To 

improve the classification accuracy, the window sizes (1s, 2s, 3s 4s and 5s) were 

tested for feature extraction. One second sliding Hamming window was adopted since 
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it gives the best accuracy among all the tested window sizes from both tEEG and 

NIRS.  Then the signal mean and the signal median (MAD) for each one second 

segment were computed. For the dataset:  )(),...,2(),1( NxxxX = , the MAD is defined 

as the median of the absolute deviations from the data’s median [26]: 

                                  |))((| XmedianXmedianMAD −=                               (3.1) 

Therefore, for each 10 s segment, there were 10 two dimensional data points for mean 

and median values of windowed segments. For NIRS data the feature vector was 

calculated from 200 segments of 10 s each for each task (20 channels for 10 runs). For 

tEEG data, the feature vector was calculated from 80 segments of 10 s each for each 

task (8 electrodes for 10 runs). 

 

3.2.4.2 Classification 

The classification was performed using two different classifiers, the support vector 

machine (SVM) [27] classifier and the k-nearest neighbor (k-NN) [28] classifier.  

 3.2.4.2.1 Support Vector Machine (SVM)  

 

The SVM classifier developed by V. Vapnik [27] has shown to perform well in 

real world problems, including BCI. The idea of SVM is to separate the data nRx ∈  

into two classes by finding a weight vector nRw∈  and an offset Rb ∈  of a 

hyperplane H : 

                                       
{ }

)(

1,1:

bxwsignx

nRH

+×→
−→

                                         (3.2) 

The classification is done by constructing an n-dimensional hyper-plane that optimally 
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separates the data into two categories by maximizing the distance from the decision 

boundary to the nearest data-points (called support vectors) in the training data. In this 

study, we generate non-linear decision boundaries using Gaussian radial basis function 

(RBF) kernel [29]. This kernel was selected due to the highest classification results 

obtained were better when compared to other SVM kernels (linear, quadratic, 

polynomial) that were tested. 

 

3.2.4.2.2 k-Nearest Neighbor (k-NN)  

k-NN is a non-parametric and nonlinear classifier suitable for n-dimensional, 

multi-modal problems [28]. The k-NN approach has recently been recognized as a 

very important algorithm, due to its high classification accuracy in problems with 

unknown and abnormal distributions [28]. The k-NN classification finds a group of k 

objects in the training set that are closest to the test object, and assigns a label on the 

predominance of a particular class in this neighborhood [28]. Using the k-NN 

classifier, three important components must be identified:  a set of labeled objects, a 

distance or similarity metric to compute distance between objects, and the value of k, 

the number of nearest neighbors. In this paper, the linear distance measure was 

selected and the number of nearest neighbor k was set to be one, which provided 

highest detection accuracy when compared to other values of k (k=2, 3, 4,..). 

 

3.2.4.3 Data Training and Performance Measurement  

The classification is based on two separate sets of training and testing data 

containing the extracted feature from each task. In this study, we performed a ten-fold 
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cross-validation to determine the classification accuracy. In ten-fold cross validation, 

the data set is split into 10 equal sub-set partitions. In each iteration, one of the 10 

subsets is used for testing whereas the other 9 subsets are used for training the dataset. 

The total data were randomly split into ten subsets. The whole procedure is repeated 

ten times. The final result is the average of all 10 repetitions. One important advantage 

of the cross-validation technique is the avoidance of the over-fitting problem [32].  

In order to evaluate the performance of the proposed algorithm for imagery task 

classification, accuracy was calculated as follows [30]: 

                             
FNFPTNTP

TNTP
(Acc)Accuracy 

+++
+=                                   (3.3)          

where TP, TN, FN, and FP represent the numbers of true positive, true negative, false 

negative, and false positive, respectively.  

 

3.2.4.4 Online tEEG Control of Cursor Movement 

In this part, we conducted an online experiment involving all 9 subjects. The 

subjects performed one session of feedback training to perform a two dimensional 

cursor control using their motor imagery. The tEEG recording methods and processing 

in BCI2000 were the same as in the offline analysis. The signal was recorded from the 

same 8 locations (C3, C1, Cz, C2, C4, FC1, FCz, FC2) using the TCREs according to 

the international 10-20 system. 
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The subject was asked to move a computer cursor from the center of the screen 

and hit a target that appeared in one of four locations of the screen: up, down, right, or 

left. Subjects imagined moving their right hand to move the cursor to the right, their 

left hand to go left, both hands for up, and both feet for down. The trial sequence used 

for two-dimensional cursor movement is shown in Figure 3.4-A. The target appeared 

in one of the four possible locations on the sides of the screen. Then a cursor, in the 

form of small ball, appeared at the center of the screen. The ball was free to move in 

two dimensions and is controlled by the subject’s mental imagery recorded by tEEG or 

NIRS. When the ball reached the target, the target changed color. After that, the screen 

 

  

 

   

Target locations A green target 

appears randomly 

on the screen 

The cursor appears 

in the center and 

moves 

If the cursor hit the 

target, the color of 

the target turns 

pink 

The trial is 

completed and the 

screen turns blank 

A 

 
 

B                                                      C                                       D 

0 10 20 30 40 50 60 70

C3

C1

Cz

C2

C4

Fc1

Fcz

 

Frequency (Hz)

 

C
h

a
n

n
e

l

0

0.02

0.04

0.06

0.08

0.1

0.12

C3  C1  Cz  C2  C4  

Fc1 Fcz Fc2 

 

 

0.02

0.04

0.06

0.08

0.1

0.12

 
 

Figure 3.4 (A) the sequence of event for a trial from the appearance of a target to the 

end of a trial. (B) Values of r2  between imagined left movement and rest for Subject 

1, (C) Topographical properties of subject 1, (D)Topography mapping of oxygenated 

hemoglobin (HbO2) for subject 1. 
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went blank and then the next trial began. If the subject failed to hit the target within 10 

s, the target disappeared and the trial was considered as a failed trial. Each of the nine 

subjects has one session of five runs (20 trials per run) to performs the two 

dimensional cursor control.    

The tEEG features used for online control of cursor movement are the amplitudes 

at particular frequency bands at certain electrode locations that have larger amplitude 

changes corresponding to the related task. These amplitudes were computed by 

calculating the coefficient of determination r 2 [31]. The values of r2 show how much 

control the subject had over each particular frequency and electrode location for the 

corresponding task. Figure 3.4-B shows an example of r2 values of subject 1 for left 

versus rest task.  

 

 

3.3 Results and Discussion 

 

The objective of this study was to detect four different imagery tasks using two 

different modes of BCI: (1) Laplacian EEG (tEEG) based BCI and (2) NIRS signal 

based BCI. The proposed method has successfully demonstrated the capability of 

distinguishing the four imagery tasks, left, right, up and down using tEEG and NIRS 

based BCI. The results of the four imagery task classification using the averaged tEEG 

and the averaged NIRS data are shown in Table 3.1 and Table 3.2, respectively. Due 

to individual differences the classification accuracies varied by subjects. However, 

some of the subjects reached high accuracy. The individual offline classification 

accuracies ranged from 64.10% to 99.97% using the tEEG signals and from 57.12% to 

87.26% using the NIRS signals.   
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Table 3.1 Offline classification accuracies, four different offline control 

commands were performed from each of the 9 subjects: left vs. rest, right vs. 

rest, up vs. rest and down vs. rest using the averaged tEEG signal.  

 

 

 

 

Left Vs. Rest 

(%) 

Right Vs. Rest 

(%) 

Up Vs. Rest 

(%) 

Down Vs. Rest 

(%) 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

1 87.32 71.88 72.22 77.78 77.78 72.22 81.48 70.37 

2 75.93 81.48 85.19 79.63 75.93 76.63 71.13 81.76 

3 72.22 70.32 72.03 76.99 75.87 71.36 80.12 79.32 

4 79.58 75.45 84.79 81.08 81.48 83.33 64.81 72.22 

5 79.63 75.93 74.07 75.93 83.33 70.37 80.35 80.23 

6 80.63 75.01 75.93 74.07 82.65 82.63 74.10 79.51 

7 78.22 75.03 83.53 82.98 84.84 75.33 86.48 80.29 

8 93.14 99.97 94.31 94.22 88.34 92.44 92.59 98.37 

9 64.10 66.25 72.22 66.67 67.36 67.69 67.33 66.56 
Average 78.97 76.81 79.36 78.81 79.73 76.88 78.88 78.73 

 

 

 

Table 3.2 Offline classification accuracies, four different offline control 

commands were performed from each of the 9 subjects: left vs. rest, right vs. 

rest, up vs. rest and down vs. rest using the averaged NIRS signal.  

 

 

 

Left Vs. Rest 

(%) 

Right Vs. Rest 

(%) 

Up Vs. Rest 

(%) 

Down Vs. Rest 

(%) 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

1 80.22 84.56 86.15 80.66 86.85 75.88 88.23 84.21 

2 73.33 72.28 72.36 73.12 66.98 70.89 68.41 67.69 

3 71.27 68.98 68.74 70.22 73.56 72.87 77.33 74.26 

4 80.25 79.85 81.20 76.66 64.02 62.64 70.55 57.12 

5 64.02 60.62 64.65 60.42 64.31 57.48 63.79 60.54 

6 89.11 87.22 89.63 86.54 90.52 89.36 91.84 90.69 

7 86.52 82.99 84.64 79.71 91.62 87.54 92.05 87.63 

8 68.42 67.34 66.44 60.54 68.21 66.55 69.75 67.22 

9 87.26 84.55 85.32 83.47 81.65 84.26 81.74 80.95 
Average 77.82 76.48 77.68 74.59 76.41 74.16 77.74 74.47 
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Table 3.3 Offline classification accuracies, four different offline control 

commands were performed from each of the 9 subjects: left vs. rest, right vs. 

rest, up vs. rest and down vs. rest using the single events tEEG signal.  

 

 

 

 

Left Vs. Rest 

(%) 

Right Vs. Rest 

(%) 

Up Vs. Rest 

(%) 

Down Vs. Rest 

(%) 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

1 61.57 63.66 56.82 56.82 62.5 63.64 60.42 62.88 

2 57.58 63.45 66.48 62.69 65.85 65.53 58.35 61.95 

3 68.18 70.08 70.84 73.93 72.17 68.15 67.8 61.36 

4 67.98 68.93 67.15 69.49 64.02 66.67 62.88 68.75 

5 60.23 66.67 58.33 61.74 58.14 66.67 61.45 68.86 

6 57.66 59.85 60.8 57.77 63.79 58.41 62.52 59.35 

7 68.75 70.27 65.72 70.83 66.67 73.3 66.67 70.64 

8 78.36 92.27 73.32 88.79 84.49 90.25 75.21 90.02 

9 55.65 57.23 50.65 54.33 62.12 65.88 58.92 55.33 
Average 63.99 68.04 63.34 66.26 66.63 68.72 63.80 66.57 

 

 

 

Table 3.4 Offline classification accuracies, four different offline control 

commands were performed from each of the 9 subjects: left vs. rest, right vs. 

rest, up vs. rest and down vs. rest using the single events NIRS signal.  

 

 

 

Left Vs. Rest 

(%) 

Right Vs. Rest 

(%) 

Up Vs. Rest 

(%) 

Down Vs. Rest 

(%) 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

 

SVM 

 

k-NN 

1 50.22 51.78 54.44 50.12 61.75 60.98 54.55 57.85 

2 58.42 63.85 60.52 59.78 59.66 54.48 56.71 55.32 

3 61.85 59.85 69.58 66.45 69.86 66.21 58.75 59.48 

4 57.85 60.12 62.33 61.79 59.85 54.82 57.23 55.64 

5 55.25 59.4 57.56 52.93 60.12 58.24 55.23 57.55 

6 50.45 51.23 58.26 55.46 60.24 57.55 52.28 54.88 

7 66.85 61.92 58.76 54.1 50.21 57.84 60.87 59.76 

8 76.28 77.85 69.78 72.15 73.49 69.76 79.23 77.44 

9 80.55 78.54 60.32 62.75 61.79 66.75 69.46 64.85 
Average 61.96 62.72 61.28 59.50 61.88 60.73 60.47 60.30 
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The proposed method has successfully demonstrated the capability of distinguishing 

the four imagery tasks, left, right, up and down using tEEG and NIRS based BCI.   

Considering the two types of classifiers used, k-NN and SVM, it was observed that 

both classifiers were successfully classifying the four tasks using tEEG and NIRS 

signals. Comparing the accuracies of the four tasks from Tables 3.1 and 3.2 we can 

observe that the subjects reached different accuracies for the same task using tEEG 

and NIRS. For example subject 8 had an accuracy of 99.97% controlling the left task 

using tEEG while using the NIRS signal the same subject only reached an accuracy of 

67.34%. Subject 9 reached 89.11% controlling the left task from rest using the NIRS 

signal and reached just 80.63% using the tEEG signal. 

The single event for tEEG and NIRS were also tested. The individual offline 

classification accuracies ranged from 50.65% to 92.27% using the tEEG signals and 

from 50.12% to 80.55% using the NIRS signals.  Table 3.3 and Table 3.4 show the 

single events accuracies for tEEG and NIRS, respectively. Comparing the single event 

results to the average, it is clear that the accuracies are improved after averaging the 

data. 

The average accuracies of k-NN and SVM classifiers for each task using the 

averaged tEEG and NIRS signals were shown in Figures 3.5 and 3.6, respectively. 

Most of the 9 subjects had experimental classification accuracies near 80% when 

using the tEEG signals. Moreover one subject, subject 8, reached 99% using the tEEG 

signal. The average accuracies of k-NN and SVM classifiers for each task during 

single events of tEEG and NIRS signals were shown in Figures 3.7 and 3.8, 

respectively. The paired t-test between the averaged accuracies from tEEG signals 
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shown in Figure 3.5 and the averaged accuracies from the NIRS signals shown in 

Figure 3.6 are significantly different (p= 0.0047) with tEEG having higher accuracies 

than NIRS. Furthermore, the paired t-test between the averaged single event 

accuracies from tEEG signals shown in Figure 3.7 and the averaged single event 

accuracies from the NIRS signals shown in Figure 3.8 are also significantly different 

(p= 0.0080). Figure 3.9 shows that the results are still significantly different after 

Bonferroni t-test correction.  

In this study the subjects performed one session in the online target acquisition 

phase. The subjects were trained to move a cursor with their tEEG signals to hit 

targets that appeared randomly one at a time, left, right, top, or bottom. The subjects 

were given 10 initial runs which were used for offline analysis. Figure 3.4-B shows 

the values of r2 corresponding to imagined left hand movement versus rest for subject 

1 from the offline analysis. The pink ellipse shape shows that the subject used 10-

12Hz amplitude to move the computer cursor to the target that appeared in the left side 

of the screen. Figure 3.4-C shows the scalp topographies of subject 1. Finally, figure 

3.4-D shows the topography mapping of oxygenated hemoglobin (HbO2) for subject 1 

with the energy clearly focused on the right motor cortex area. The online accuracies 

for 2D computer cursor control were around 50% for most of the subjects. We believe 

that the performance of the subjects would gradually be improved by increasing the 

training time.  
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       Figure 3.5 The average accuracy of k-NN and SVM of each offline task for each 

subject using the averaged tEEG signals. 

 

 

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Left Vs. Rest

Right Vs. Rest

Up Vs. Rest

Down Vs. Rest

Subject 8Subject 7Subject 6Subject 5Subject 4Subject 3Subject 2Subject 1 Subject 9

A
c
c
u

ra
c
y
 (

%
)

 
 

    Figure 3.6 The average accuracy of k-NN and SVM of each offline task for each 

subject using the averaged NIRS signals. 
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       Figure 3.7 The average accuracy of k-NN and SVM of each offline task for each 

subject using the single event tEEG signals. 
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    Figure 3.8 The average accuracy of k-NN and SVM of each offline task for each 

subject using the single event NIRS signals. 
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As seen in Table 3.5, comparing our results to other studies using either tEEG or 

NIRS, the results from our proposed method achieved an improvement comparable to 

that of the others. The maximum accuracies achieved using the average tEEG signals 

and the averaged NIRS signals are 99.97% and 87.26%, respectively.  However, the 

maximum accuracies achieved using single event tEEG signals and the single event 

NIRS signals are 92.27% and 80.55%, respectively. In the study of Sitaram et al. [18] 

the NIRS signal was used to accomplish motor imagery tasks. Sitaram et al. [18] used 

an SVM classifier to classify the left-hand imagery data from right-hand imagery data 

with a maximum accuracy of 75.62%. In the studies of Al Zoubi et al. [30] and Lei et 

 

 Table 3.5 Performance comparison 

 
Reference Sitaram 

et al. 

[18] 

Al Zoubi 

et al. [30] 

Lei et al. 

[17] 
Besio et al. [22] The proposed method 

Modality NIRS EEG EEG EEG, tEEG tEEG, NIRS 

Number of 

Subjects 
5 3 3 12 9 

Mental Tasks 

Motor 

imagery 

(Left 

hand, 

Right 

hand) 

Motor 

imagery 

(Left 

hand, 

Right 

hand, 

Foot , 

Tongue) 

Motor 

imagery 

(Left 

hand, 

Right 

hand, 

Foot , 

Tongue) 

Motor imagery 

(Left hand, 

Right hand) 

Motor imagery (Left 

hand, Right hand, Both 

hands, Both feet) 

Period of 

training and 

testing 

80 trials 

Same day 

(240 

trials) 

Same 

day (360 

trials) 

(160-200 trials) Same day (200 trials) 

Average/Single 

event data 

Single 

event  

Single 

event 

Single 

event 
Single event 

Averaged and single 

event 

Max 

Accuracy (%) 
75.62 93.89 68.08 

73.34 

(EEG) 

84.23 

(tEEG) 

99.97 

    

(averaged 

tEEG) 

87.26 

 (averaged 

NIRS) 

92.27 

(Single 

event 

tEEG) 

80.55 

(Single 

event 

NIRS) 
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al [17], the process was based on the EEG signal; the data sets were recorded in the 

same day. Al Zoubi et al. used the dataset IIIa from the BCI III competition (6 runs 

with 40 trials each), the maximum accuracy reached from the tree subjects after a 

single event classification was 93.89%.  In the previous work of Besio et al. [22], 

single event left/right hand motor imagery for EEG and tEEG signals were acquired 

and classified. The maximum accuracy from all the subjects was 84.23% for tEEG 

signal and 73.34% for the EEG signal. Their results also showed that TCREs (tEEG 

signal) generated significantly higher classification accuracy than disc electrodes 

(EEG signal). 

One positive outcome of this study is that only one session for each subject was 

needed to accurately classify the four imagery tasks. Moreover, a simple set of 

features was used, the mean and the median, therefore it is expected that the 

processing could be performed in near real-time.  
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Figure 3.9 The average accuracies for all subjects from Figures 3.5 and 3.6 

for averaged data and Figures 3.7 and 3.8 for single events data. Values are 

SDmean ± , *: P < 0.01. 
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Further research will be performed in the future by combining tEEG-NIRS 

features to evaluate the classification accuracy with a combined set of features. 

Moreover, it is recommended to test the method on subjects with significant motor 

impairment.   

 

3.4 Conclusion  

 

The present study addresses the usefulness of tEEG and NIRS based BCI for 

imagery task classification.  The tripolar EEG and NIRS signals corresponding to left-

hand motor imagery, right-hand motor imagery, both-hand motor imagery and both-

feet motor imagery were acquired simultaneously from nine healthy subjects. The 

signal mean and signal median calculated during one second duration sliding time 

windows were used as the inputs to two different classifiers, SVM and k-NN, to 

evaluate the performance of the proposed method. The results demonstrated there was 

a significant difference in accuracy of 2D motor imagery with tEEG compared to 

NIRS-based BCI.  

.  
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Abstract 

This paper presents the design of a digital tracking control system for minimum 

phase plants, which results in a plant output that is a pure delay of the reference input. 

The tracking system consists of a feedback control system, which could be either a 

proportional integral derivative (PID) or state feedback with additional dynamics, and 

a feedforward inverse system. The inverse system can be designed using the zero 

phase error tracking control, which is denoted by ZPETC or by a state-space 

feedforward inverse filter, which we denote by FIF. The FIF equations are derived 

and, unlike ZPETC, can be evaluated even for a system with zeros inside the unit 

circle, located on the negative real axis, close to -1 and at z = 1. In both simulations 

and hardware experiments with a DC motor, the best tracking performance was 

achieved using a state feedback control with FIF. The proposed design procedure is 

simple and easy to implement. 

 

4.1 Introduction  

The objective of tracking control is to obtain a small path-following error for a 

given reference input or desired path. e.g., automated arc welding (certain trajectory) 

and servo turning table (uncertain trajectory). One way to achieve this is to design a 

stable feedback control system and then calculate a feedforward controller consisting 

of the inverse of this closed-loop system.  

Early work on system inversion was done by Massey et al. [1] who stated the 

necessary and sufficient conditions for the existence of a feedforward linear inverse 

system. Vito et al. [2] has addressed the problem of designing a feedforward block of a 
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two degree of freedom controller for a discrete single input single output linear system 

with model uncertainty [3]. Fabrizio et al. [4] proposed a solution for the synthesis of a 

feedforward control action for a fractional control synthesis; this research has received 

a great attention from academia and industry because of the need to meet more 

stringent tracking system requirement.  

Two types of architectures for inversion exist: plant inversion and closed-loop 

inversion. When the closed-loop system is non-minimum phase (i.e. has zeros outside 

the unit circle), the inverse system will be unstable. There are several partial solutions 

to this problem: the zero phase error tracking controller (ZPETC) [5, 6, 7, 8], the zero 

magnitude error tracking controller (ZMETC) [9, 10, 11], non-causal inverse [12, 13], 

the Truncated Series Approximation scheme (TSA) [14] and the non-causal Taylor 

series approximation [15]. 

ZPTEC was proposed in [8] and developed in [16, 17]. This algorithm is 

considered as one of the most successful feedforward controller designs and has 

attracted the attention of many researchers as an effective and simple method for 

approximately inverting non-minimum phase systems (e.g. [18, 19]). Using ZPETC, 

the poles that arise from inverting non-minimum phase zeros are approximated using 

stable poles and an appropriate gain factor; hence, the cascade of ZPETC and a given 

closed-loop system is approximately a pure delay. The use of an inverse system such 

as ZPETC allows the tracking system to follow time-varying reference inputs with 

small error. However, ZPETC has some shortcomings, such as gain errors and its 

inability to handle systems with a zero inside the unit circle, located on the negative 

real axis, close to -1 and at z = 1. This has motivated additional research [20-22]. 
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Many applications related to this work, electro-hydraulic actuator [23, 24], NC  

machine tools [25], industrial motion control [26], ZPETC Path-Tracking gain-

scheduling design and real-time multi-task flight simulation for the automatic 

transition of tilt-rotor aircraft [27], method for precise time synchronization based on 

FPGA [28] and so forth…   

In this paper, we consider the above limitations of ZPTEC algorithm, and we 

introduce a state-space algorithm for computing the inverse of a given closed loop 

control system. We advocate the use of a feedforward system that inverts the closed-

loop system model rather than the plant model.  The reason is that the plant model is 

inaccurate while the modeling errors for the closed-loop system are reduced by the 

effects of feedback. The cascade of the inverse system, which we call the feedforward 

inverse filter (FIF), and the given closed-loop system, is a pure delay. Thus, the plant 

output will be an exact, delayed replica of the reference input. The proposed approach 

for computing the FIF works even when the plant has zeros arbitrarily close to the unit 

circle. Two inversion methods, ZPETC and FIF, will be used with two different 

closed-loop control systems: a proportional integral derivative (PID) controller and a 

standard state-space tracking system. The best results, in both simulations and 

hardware experiment, are obtained by combining FIF with the standard state-space 

tracking system. 

The remainder of this paper is organized as follows; Section II introduces a 

standard PID controller, a standard state-space tracking system, as well as the 

algorithm for computing the FIF. Section III presents simulation and experimental 
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results, with a motor positioning system. Section IV contains conclusions and 

recommendations for future work. 

 

4.2 Digital Closed-Loop system design  

Consider an nth -order single-input, single-output plant with state-space model: 

                                             
)()(

)()()(

tCxty

tButAxtx

=
+=&

                                           (4.1) 

with nnRA ×∈ , 1×∈ nRB  and nRC ×∈ 1 , where u(t) is the input of the system, y(t) the 

output and x(t) the state vector. In order to design a digital closed-loop control system 

for this plant, a discrete-time zero-order hold (ZOH) equivalent model that includes 

the effects of the D/A converter as well as the A/D converter sampling y(t) and x(t), is 

needed. The D/A and A/D converters operate with a sampling interval T seconds. The 

ZOH equivalent model is given by: 

                                             
][][

][][]1[

kCxky

kukxkx

=
Γ+Φ=+

                                 (4.2) 

with:                              
ATe=Φ         and           ∫=Γ

T

A Bde
0

ττ
                       (4.3) 

4.2.1 PID controller system 

A standard digital PID (proportional integral derivative) closed-loop system is 

shown in Figure 4.1. The digital PID equation is obtained using numerical integration 

of a continuous time PID equation, which shown below using Laplace transforms. 
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Notice that the derivative term is combined with a low-pass filter 
Ns

N

+
 to limit its 

gain at high frequencies: 
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where N is the filter coefficient. The derivative term can be written in the form shown 

below:                                                     
)(

1
1

sE

s

NKD

+                                          (4.5) 

A discrete time approximation to (4.4) and (4.5) is obtained by replacing 1/s in the 

integral term by its backward Euler approximation 
1−z

Tz
, and replacing 1/s in (4.5) by 

its forward Euler approximation 
1−z

T
, where T is the sampling interval. The result is 

the following Z-transform equation: 

 

 
 

              Figure 4.1 Closed-loop PID controller 
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Letting 1x be the state variable for the integral term and 2x  be the state variable for 

the derivative term, the following state-space model for the digital PID controller is 

obtained: 
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where,                      
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[ ]11=PC ,       PIDP KTKNKD ++=  

The overall closed-loop system from ][kw to ][ky  in Figure 4.1 is described by the 

following state-space model: 
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where,         
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D [ ]0CCc =                     (4.10) 

 

4.2.2 Digital state-feedback tracking system 

In order to design a state-space feedback control system in which ][ky  tracks a 

class of reference inputs ][kw  with zero steady-state error one must use additional 

dynamics (see Figure 4.2). 
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                                          ][][]1[ kekxkx aaa Γ+Φ=+                                      (4.11) 

Where the eigenvalues of aΦ  include the poles of the z-transform of ][kw  [15]. For 

the class of step inputs, only one eigenvalue is required at z = 1, which gives digital 

integral control. That is, for step input tracking, the additional dynamics are given by 

[29]:        

                                                          1=Φ a   ,   1=Γa                                             (4.12) 

 This tracking system will have zero steady-state error to a step input. Perfect 

tracking (with delay) may be achieved for a reference input ][kr  that is not a step 

signal by using an inverse system, FIF or ZPETC, between ][kr  and ][kw , as shown 

in Section III. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to compute the ( n×1 ) state-feedback gain vector L1 and the integrator 

gain 2l , a design model consisting of the cascade of the plant followed by the 

additional dynamics is needed. This design model is given by [29, 30]: 

 
 

             Figure 4.2 A standard state-space tracking system 
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Given a desired vector of n+1 closed-loop poles, call it zpoles, a )1(1 +× n  gain vector 

L  is computed (e.g. using the MATLAB place command) to obtain: 

                                                 zpolesLeig =Γ−Φ )(                                    (4.14) 

Then L1 consists of the first n elements of L  and 2l is the last element of L . The 

overall closed-loop system from ][kw to ][ky  in Figure 4.2 is described by the 

following state-space model: 
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In order to achieve perfect tracking for a suitably band limited reference input; the 

inverse of the system ),,( ccc CΓΦ  must be computed. A state-space method, called 

feedforward inverse filter (FIF) is described next. 

 

4.2.3 Feedforward inverse filter 

This subsection shows how to find a state-space model ),,( , ffff DCΓΦ , called a 

feedforwad inverse filter (FIF), such that the cascade of the FIF and ),,( ccc CΓΦ  is a 

pure delay of d samples, where d is the relative degree of ),,( ccc CΓΦ  . The relative 
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degree of a system is the number of poles minus the number of zeros. Recall that 

),,( ccc CΓΦ is a model for the system from ][kw to ][ky in Figure 4.2. The transfer 

function of this system is: 

                                                
)(

)(
)()( 1

za

zb
zICzH ccc =ΓΦ−= −

                       (4.17) 

 

 

 

 

 

 

 

 

 

Let the degree of the numerator polynomial be called m, and the degree of the 

denominator polynomial a(z) be called n. A formal geometric series expansion for the 

matrix inverse in Equation (4.17) is: 

                                   
1111 )()( −−−− Φ−=Φ− cc zIzzI                              (4.18)   

                               ...][ 2211 +Φ+Φ+= −−−
cc zzIz  

Substituting Equation (4.18) into equation (4.17) yields: 

 

             cccc zzICz
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zb Γ+Φ+Φ+= −−− ...][
)(

)( 2211   ∑
∞

=
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1

1

k

k

c

k

cc zC                       (4.19) 

Dividing an mth  degree polynomial b(z) by an nth degree polynomial a(z) yields a 

series in inverse powers of z with coefficients denoted by kα . The first non-zero term 

in the series is the nmz −  term: 

 
 

             Figure 4.3 A closed-loop system in cascade with an FIF. 
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Comparing Equation (4.20) with equation (4.19) it can be seen that: 

     01 =ΓΦ −
c

k

ccC ,   1,...,2,1 −−= mnk   and            01 ≠ΓΦ −
c

d

ccC ,  mnd −=  

where d is the relative degree of the system, the number of poles minus the number of 

zeros. Once the FIF is calculated, it can be used in the overall system shown in Figure 

4.3 to achieve perfect tracking with delay; that is, ][][ dkrky −= . The FIF is derived 

by considering shifts of the outputs for the system shown in Equation (4.15), for 

example: 

                  ]1[]1[ +=+ kxCky cc    ][][ kwCkxC ccccc Γ+Φ=            (4.21)                  

If the relative degree of ),,( ccc CΓΦ  is 1, then 0≠ΓccC . In general, the relative 

degree d is the smallest integer for which the coefficient of ][kw  is non-zero in the 

equation for ]1[ +ky . Assume that d > 1 so that 0=ΓccC then Equation (4.15) and 

equation (4.21) may be used to compute ]2[ +ky : 

                    ]1[]2[ +Φ=+ kxCky ccc  ][][2 kwCkxC cccccc ΓΦ+Φ=            (4.22) 

 

If 2≥d  then  0=ΓΦ cccC    and ]3[ +ky  can be computed. This process is continued 

to get the following formula for ][ dky + . 

                                 ][][][ 1 kwCkxCdky c

d

ccc

d

cc ΓΦ+Φ=+ −                                (4.23) 

The relative degree, d, is the smallest integer for which c

d

ccC ΓΦ −1 is non-zero. Thus 

Equation (4.23) may be solved for ][kw as follows:       ][][][ dkyDkxCkw fcf ++=  

where,       d

ccc

d

ccf CCC ΦΓΦ−= −− 11 )(  , 11 )( −− ΓΦ= c

d

ccf CD                                    (4.24) 
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The expression for ][kw in Equation (4.24) is substituted into the state-update equation 

in Equation (4.15) to obtain: 

    

 

 

 

 

 

 

 

 

 

 

][][]1[ dkykxkx fcfc +Γ+Φ=+      where,    fccf CΓ+Φ=Φ ,   fcf DΓ=Γ        (4.25) 

are a state-space model for a system whose input is ][ dky +  and output is ][kw . From 

Equation (4.15) we know that if ][kw is the input to ),,( ccc CΓΦ the resulting output is 

][ky . Thus, if ][ dky +  is the input to the cascade of ),,,( ffff DCΓΦ and 

),,( ccc CΓΦ , the output will be ][ky . Equivalently, if a reference input ][kr is given to 

the cascade system, the output will be ][ dky − . Thus, the system shown in Figure 4.3 

will achieve perfect tracking with a delay. A summary of the design equations for the 

FIF is given in Table 4.1. 

Note that in order to achieve perfect tracking the magnitude of the frequency 

response of the FIF must be the reciprocal of the magnitude of the frequency response 

 

 

Table 4.1 The design equations for feedforward inverse filter 
 

 

 

1.Given ),,( cCcc ΓΦ find the smallest integer d for which 

c
d
ccC Γ

−
Φ

1  is non-zero. 

2.Compute the following: 
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fDcf

d
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c
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Γ+Φ=Φ
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Γ
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3.The FIF is the state-space model ),,,( fDfCff ΓΦ  which, when 

cascade with ),,( cCcc ΓΦ  is equivalent to a pure delay of d 

samples. 
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of ),,( ccc CΓΦ . A particular shaped reference input, shown in the next section, is used 

in this paper.  

 

4.3 Simulation and experimental results 

To illustrate the performances of the PID and the ADD control systems, with or 

without an inverse filter obtained from ZPETC or FIF, we considered the control of a 

single DC motor with encoder feedback. The motor is a Pitman DC-brush geared type 

motor with an incremental optical encoder (model GM9236C534-R2) and a gear ratio 

of 5.9:1. A 12 bit D/A converter, a pulse with modulator (PWM) servo amplifier 

(Model A12 from Advanced Motion Controls) and a data acquisition board (PCI-

DAS-1002) are used for data conversion (A/D and D/A). The sampling interval is set 

to be 1 ms. In the following, we demonstrate the tracking control performance using 

the FIF algorithm with additional dynamics and compare it to PID controller, PID with 

FIF and ZPETC with FIF algorithms. 

 

4.3.1 Open-Loop modeling process 

A mathematical model for the first order motor system with velocity as the output 

signal was obtained from measured step response data for the actual motor system. 

Step inputs of different amplitudes were sent to the motor and the motor velocity was 

obtained by differentiating the measured angular position signal. Four different input 

voltage values (1V, 2V, 3V and 4V) were used and the resulting models were 

averaged to obtain the final model. This model gives numerical values for the motor 

parameters, shown in Table 4.2. 
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In Table 4.2, we also included a coulomb friction torque estimate for this system, 

where the friction torque is given by Equation (4.26). 

                                                 cf wsignBw ττ )(+=                         (4.26) 

The non-linear friction was included in the simulation results that follow, and is 

present in the hardware system. However, only the linear system model, which 

ignored the Coulomb friction, was used to design the control systems. This linear 

system model, using the numbers in Table 4.2 is a state-space model as shown in 

Equation (4.1) with: 

 

          








−
=

2931.840

10
A ,   







=
0482.772

0
B ,         [ ]01=C                            (4.27)                                                     

with: T=0.001s, the resulting ZOH equivalent: 

                                         






=Φ
9192.00

001.01
,     







=Γ
7404.0

0004.0
                                (4.28) 

For model verification, we apply a sine wave to the hardware to obtain the 

experimental frequency response as shown in Figure 4.4. 

   Table 4.2 Experimentally derived motor parameters  

 

 Variable Values 

Viscous Friction Β  0.0094 Nms 

Coulomb Torque 
cτ  0.0324 Nm 

Inertia J 1.12e-4 Kgm2 

Motor Constants 
tK  23e-3 Nm/A 

eK  23e-3 s/red 

R 0.71 Ω  
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4.3.2 Closed-Loop tracking systems 

After obtaining a model for the plant, the next step is to design a stable closed-loop 

system. We consider two different control systems, PID and ADD, shown in Figure 

4.1 and Figure 4.2, respectively. These systems were designed to achieve a settling 

time of about Ts= 0:06s with adequate stability margins. For ADD, three desired 

closed-loop poles must be selected, and the L1 and 2l gains calculated. The closed-loop 

poles were chosen to be the roots of a normalized 1-second settling time 3rd order 

Bessel polynomial, scaled to achieve the desired settling time, and mapped into the z-

plane. The normalized roots are [29]: 

                                            ]7845.39668.3,0093.5[3 is ±−−=                                (4.29) 

Then the desired discrete time poles used in (4.14) are: 

 
 

 

Figure 4.4 Frequency responses of experimental system and its model. 
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)( 3

Ts

Ts

ezpoles =                                          (4.30) 

 

The resulting gains are L1== [215.5012 0.7064], and 7779.192 =l  

An experimental frequency response of the closed-loop ADD system is shown in 

Figure 4.5. The plant model used to generate Figure 4.5 is the same plant model used 

in Figure 4.4. However, the modeling error in Figure 4.5 is much less than that in 

Figure 4.4. That is, the model for the closed-loop system is much more accurate than 

the model for the plant itself. This is the motivation for using the FIF to invert the 

closed-loop system rather than the plant. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 4.5 Frequency responses of experimental closed-loop ADD 

system and its model. 
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For the PID controller, the gains were adjusted by trial and error to obtain closed-

loop poles close to those given by Equation (4.30). The resulting gains: 30=PK , 

01.0=IK , 3.0=DK , 100=N . The coefficient N (see Equation (4.4)) is chosen to 

give a bandwidth of about 16Hz for the low-pass filter, which was found to adequately 

limit the derivative noise in the hardware system. 

 

The poles and zeros of the closed-loop PID and ADD systems and the 

corresponding stability margins are shown in Table 4.3. 

 

4.3.3 Shaped input 

When an inverse system such as ZPETC or FIF is used in conjunction with a 

closed-loop control system such as PID or ADD, the reference must be suitably band 

limited to prevent the inverse system from generating an excessively large output that 

would saturate the input to the hardware plant. In this paper, we calculate a shaped 

input signal by starting with the following sinusoidal acceleration signal, with 

amplitude A 2/ srad  and period D seconds: 

 

Table 4.3 Zeros, Relative degree, Gain margin and Phase margin of the 

PID and ADD controllers’ closed-loop 

 

 PID Controller ADD Controller 

Closed-Loop zeros  -0.9723;0.95; 0.9999 -0.9723 

Closed-Loop poles 0.9224+0.2003i 

0.9224-0.2003i 

0.9519; 0.9999 

0.9342+0.0590i 

0.9342-0.0590i 

0.9199 

Relative Degree (d) 1 2 

Gain Margin 15.44 dB 23.93 dB 

Phase Margin 31 degrees 69 degrees 
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                                      )/2sin()( DtAta ×= π                                    (4.31) 

This equation may be integrated twice to obtain velocity and position signals, 

respectively. The constants of integration are chosen to make the initial values of 

velocity and position both zero. The resulting position signal is: 

                                 ))/2sin(
2

(
2

)( Dt
D

t
AD

tr ×−= π
ππ                             (4.32) 

In order to obtain a position of 1 radian at t = D seconds, the following 

relationship between A and D must be satisfied: 

                                                    2

2

D
A

π=                                                  (4.33) 

The reference input )(tw  is the concatenation of )(tr  at different times. 
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20),(
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)(  

where, H is the amplitude of )(tr . 

 

In what follows, we show results for 4D = 0:2 seconds. Figure 6 shows the 

simulated and experimental output for the PID controller without any inverse system. 

There is a significant phase lag for the PID controller and similarly for the ADD 

controller. However, the phase lag is eliminated from both controllers by using an 

inverse system, as shown next. 
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4.3.4 Inverse systems 

In principal, either ZPETC or FIF could be used to obtain the inverse system for 

the PID or ADD control systems. However, as shown previously in Table 4.3, the PID 

control system has a pole-zero cancelation at z = 0.9999. If the PID system is given to 

the ZPETC as is, the ZPETC algorithm fails due to the zero location at z = 0.9999. In 

order to use ZPETC for the PID system one would have to give it the reduced-order 

model obtained by cancelling the pole and zero near 1. The FIF algorithm works with 

the given PID system as is. Note, that when the ADD has a zero at z = -0.9723, the 

ZPETC algorithm fails when a zero is located inside the unit circle, laying on the 

negative real axis and close to -1. As mentioned before, this behavior is documented in 

[1] and was confirmed in our study. For this reason the zero located at z = -0.9723, 

after inversion, will be considered as non stable pole. However, the FIF work as is. 

In order to see the need for the FIF, the closed-loop PID system is used by itself to 

track a reference input that has two start-stop segments in the positive direction 

followed by two start-stop segments in the negative direction. The reference input has 

95% of its energy in the frequency range from 0 to 5.5 Hz. The tracking results are 

shown in Figure 4.6, and it is clear that the closed-loop system has significant phase 

lag. Similar results are obtained with the ADD closed-loop system. The FIF may be 

used with either the PID or ADD closed-loop systems to eliminate the phase lag. 

Figure 4.7 and Figure 4.9 show the tracking results with the PID+FIF and ADD+FIF 

control system. Figure 4.8 shows Tracking performance of closed-loop ADD with 

ZPETC. Figure 4.10 shows the tracking errors for the PID system, as well as for the 

PID+FIF, ADD+ZPETC and ADD+FIF systems. It can be seen that the FIF with 
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either the PID or ADD closed-loop systems provides nearly perfect tracking of the 

reference input. Now suppose the reference input were scaled to a shorter duration, 

thus increasing its frequency content. Could the hardware system track this faster 

reference input? An answer to this question is found in Figure 4.11, which shows the 

plant-input voltages for the various tracking systems with the original reference input. 

The peak plant-input is about 6 volts, and the hardware has a 10-volt limit. Thus, the 

reference input used is within a factor of two of the tracking capability of the 

hardware. 

Due to nonlinearities in the hardware system (e.g. nonlinear friction), the response 

to a reference input is not exactly repeatable. For this reason, we use a periodic 

reference input consisting of ten periods with a total duration of 2 second. The average 

squared error over the ten periods was computed as follows: 

                                                                   10/])([

2

0

2

∫= dtteE                                        (4.34) 

The maximum absolute value of the error over the 2 second duration was also 

recorded. The values of these error measures for the various tracking systems are 

shown in Table 4.4. 

 

 

 

 

 

 

 

 

 

 

Table 4.4 Tracking errors for periodic shaped input 

 

 PID PID+FIF ADD+ZPETC  ADD+FIF 

E (rad2) 0.0930 0.0030 2.429e-5 1.9196e-5 

Max|E (rad)| 0.0372 0.0076 0.0011 0.0009 
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4.4 Conclusion 

 

A digital tracking control system for minimum-phase plants is presented in this 

paper. This controller is developed to reduce the phase lag caused by the feedback 

controller during the tracking control. The control system consists of two parts: a 

feedback control loop and a feedforward inverse system. For the feedback loop we 

used either a standard PID loop or a state-space tracking system with additional 

dynamics, which we denote by ADD. For the feedforward system we used either the 

ZPETC filter or a feedforward inverse filter, which we denote FIF. The FIF is 

calculated using the state-space formula shown in Table 4.1.  

 The main result in this paper is the state-space formula for the FIF. Because the 

FIF is outside of the feedback loop, it does not affect the stability of the closed-loop 

system or its robustness to modeling errors or disturbances. These depend only on the 

feedback loop. In this paper, the standard state-space and PID feedback loops both had 

good stability robustness as indicated by the gain and phase margins shown in Table 

4.3.  

As with any inverse method, one must question the robustness of the tracking error 

with respect to plant modeling errors. There will be errors in the model of any physical 

system, as shown for example in Figure 4.4. However, the model for the closed-loop 

system will be a much more accurate representation of the actual hardware due to the 

effect of feedback. For example, compare Figure 4.5 with Figure 4.4. The model of the 

closed-loop system in Figure 4.5 matches the hardware measurements almost exactly 

up to 100 rad/sec or about 16 Hz. The FIF for this system would be expected to 

provide nearly perfect tracking of any shape input whose frequency content was below 
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16 Hz. This precision-tracking bandwidth is much greater than could be obtained by 

feedback alone, and is needed for advanced motion-control applications.   

In both simulations and experimental results with a DC motor system, the best 

tracking performance was achieved by ADD+FIF in reducing phase and gain error. 

Although, this paper considers only single-input, single-output systems, the FIF 

formulas in Table 4.1 are valid for minimum phase multi-input, multi-output systems. 

For minimum phase systems, the cascade connections of FIF with a feedback control 

loop is a pure time delay of d samples, where d is the relative degree of the plant. It 

remains for future work to develop formulas for FIF for a non-minimum phase plant. 

In this case it is not possible to achieve an overall system that is a pure time delay, and 

the goal will be to achieve an approximate time delay over as large a bandwidth as 

possible. 
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Figure 4.10 Experimental tracking error 

for the PID with FIF, ADD, ZPETC and 

ADD with FIF system. 

 

Figure 4.7 Tracking performance of 

closed-loop PID with FIF. 

Figure 4.6 Tracking performance of 

closed-loop PID system. 
Figure 4.9 Tracking performance of 

closed-loop  ADD with FIF. 

 

Figure 4.8 Tracking performance of 

closed-loop ADD with ZPETC. 
Figure 4.11 Experimental plant input 

voltages for PID, PID with FIF, ADD 

with ZPETC and ADD with FIF system. 
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Abstract 

 

The problem considered is tracking control of a fully-coupled Multi-Input Multi-

Output (MIMO) plant. We assume that a 2-degree-of-freedom feedback control 

system has been designed to get a stable closed-loop system having zero steady-state 

error to step inputs. Such a system has an inner feedback loop that stabilizes the plant. 

In order to have precision tracking for other types of inputs, some type of feedforward 

control is needed. The main contribution of this paper is an algorithm for calculating 

an inverse filter for the stabilized plant, which is an exact or approximate inverse for 

the closed-loop system. If the closed-loop system is minimum phase, the result is a 

decoupled system of delays. If the closed-loop system is non-minimum phase, the 

result is approximately a decoupled system of delays over a certain bandwidth. The 

calculation of the inverse filter and resulting tracking performance is demonstrated on 

an experimental belt-driven H-frame XY table, for which the system to be inverted is 

fully coupled and non-minimum phase. 

 

5.1 Introduction 

Feedforward filters from the reference signal to the plant input have been used to 

improve the performance of Single-Input Single-Output (SISO) tracking systems for 

many years. Typically, the feedforward filter is the inverse of the plant model. If the 

plant model is non-minimum phase the inverse model will be unstable, and some type 

of approximation is necessary. When the tracking system is implemented in discrete-

time, non-minimum phase systems can be approximately inverted with some delay. 
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Methods for using feedforward filters in MIMO tracking systems are less well 

developed, especially for non-minimum phase systems. One recent contribution for 

MIMO systems is [1]. Instead of using one feedforward inverse system, two FIR 

blocks are used in a novel feedforward architecture. The resulting control system 

provides theoretically perfect tracking with delay. However, the development in [1] 

relies on the MIMO plant not being fully coupled in the sense that the method works 

only for plants having lower triangular transfer function matrices. 

In this paper, we consider fully coupled MIMO systems and use a standard 

architecture in which there is a single feedforward filter from the reference signal to 

the plant input. We present a new method for approximately inverting a non-minimum 

phase stable MIMO system. The method may be used for plants that are not stable, 

provided a 2 degree-of-freedom control system is used which has an inner stabilizing 

feedback loop around the plant. There is a standard state-space tracking system 

architecture that has this required characteristic. The feedforward filter designed by 

the proposed approach approximately inverts the stable combination of the plant and 

inner feedback loop.  

The outline of the paper is as follows. Section II reviews the development of a 

standard 2 degree-of freedom feedback (DoF) control system. Section III deals with 

MIMO system inversion. For stable non-minimum phase systems, an approximation is 

made leading to an approximate inverse system which is stable. Section IV provides 

simulation and experimental results on tracking control using the proposed method for 

a belt-driven H-frame XY positioning system. Conclusions are given in Section V. 
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5.2  2-DOF Tracking System 

In order to use the MIMO inversion algorithm derived in Section III, it is first 

necessary to design a feedback control system to achieve a desired bandwidth with 

good stability robustness. As this is not a trivial task, we review in this section a 

specific methodology for obtaining a 2-degree of freedom (DoF) feedback control 

system.  

Consider an nth-order linear, m-input, p-output plant with state-space model: 

                                                      

Cxy

BuAxx

=
+=

⋅
                                                  (5.1) 

For digital control with sampling interval T seconds we calculate the zero-order hold 

(ZOH) equivalent plant model 

                                                      
][][

][]1[

kCxky

kuxkx

=
Γ+Φ=+

                                          (5.2) 

where  

                                            ATe=Φ       and ∫=Γ
T

BdATe

0

τ                                  (5.3) 

In order to design a control system in which y[k] tracks a class of reference signals 

r[k] with zero steady-state error, we must use additional dynamics (see Figure 5.1): 

                                              ][][]1[ keakaxakax Γ+Φ=+                                     (5.4) 

where the eigenvalues of aΦ  are the poles of the z-transform of r[k] [2,3]. For 

tracking step signals an eigenvalue at z = 1 is required, which gives digital integral 

control. For a MIMO tracking system, the additional dynamics pole(s) must be 

replicated up to the number of plant outputs. For example, to track step signals for a 
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plant with p outputs the additional dynamics are given by a parallel combination of p 

digital integrators: 

                                                pIa =Φ ,      pIa =Γ                                              (5.5) 

A digital state-feedback tracking system is shown in Figure 5.1. In order to compute 

the nm ×  state-feedback gain matrix K1 and the integrator gain matrix K2, a design 

model consisting of the cascade of the plant followed by the additional dynamics is 

needed [3]. This design model is given by: 

                                          








ΦΓ
=Φ

aCa

A
d

0
,    







Γ
=Γ

0
d                                    (5.6) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Given a desired set of n +1 closed-loop poles, call it zpoles, a )( pnm +× gain vector 

Kd is computed to obtain 

                                                 .)( zpolesdKddeig =Γ−Φ                                      (5.7) 

Then K1 consists of the first n columns of Kd and K2 consists of the last p columns of 

Kd. In principle, any pole placement algorithm could be used to calculate Kd to achieve 

(5.7). For a multiple-input plant, however, there are an infinite number of matrices Kd 

that satisfy (5.7). We recommend a recently developed robust pole-placement 

 
             

Figure 5.1 A digital State-Space tracking system. 
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algorithm [4], which uses a parameterization of the set of Kd matrices to find the one 

which maximizes the input-multiplicative stability robustness bound (see [5] for a 

definition of this bound). 

5.3 Stable MIMO System Inversion 

The system shown in Figure 5.1 is a 2 DoF control system having an inner 

feedback loop around the plant. The model for the system from v[k] to y[k] will be 

called the modified plant, and is given as follows: 

                                                  
][][

][][]1[

kCxky

kvkxckx

=
Γ+Φ=+

                                 (5.8) 

where  

                                                                1Kc Γ−Φ=Φ                                           (5.9) 

This modified plant is stable due to the feedback through K1. The transmission zeros 

of the modified plant might all be inside the unit circle (minimum phase) or some may 

be outside the unit circle (non-minimum phase). In this subsection we derive a state-

space algorithm for inverting a minimum phase system. The following subsection 

deals with approximately inverting a stable non-minimum phase system. By inverting 

the modified plant we obtain a feedforward filter that may be used with the control 

system shown in Figure 5.1 to obtain a precision tracking system. 

In order to derive the inverse model for the modified plant 

(5.8), consider advances of the plant output. Let r be the smallest integer for which 

Γ−Φ 1r
cC  is a nonzero matrix. Then it can be shown that 

                                     ][1][]1[ kvr
cCkxr

cCky Γ−Φ+Φ=+                                    (5.10) 
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We assume that the matrix multiplying v[k] is invertible. In some cases it may be 

necessary to use a different number of advances on each of the plant outputs to get an 

invertible matrix. The procedure described below may be extended to this case but the 

details are ommited due to lack of space.  

Define     

                                                 1)1( −Γ−Φ= r
cCfD                                                (5.11) 

The (5.10) may be rearranged to obtain 

                                    ].[][][ rkyfDkxr
cCfDkv ++Φ−=                                    (5.12) 

This equation may be substituted into the first equation of (5.8) to obtain 

                                      
][][][

][][]1[

rkyfDkcxfCkv

rkyfkxfkx

++=

+Γ+Φ=+
                                       (5.13) 

where Df is given by (5.12) and 

                                                      

Γ=Γ

Γ+Φ=Φ

Φ−=

fDf

fCcf

r
cCfDfC

                                             (5.14) 

Equation (5.13) shows that the system ( fDfCff ,,,ΓΦ ), which will be called the 

inverse modified plant (IMP), produces the signal v[k] from the advanced plant output 

y[k+r], which inverts the modified plant in (5.8) with a delay of r samples. That is, the 

cascade of the IMP (5.13) and the modified plant (5.8) is a pure delay of r samples on 

each output signal. Thus, the IMP may be used as a feedforward filter in the system in 

Figure 5.1 to obtain theoretically perfect tracking with a delay of r samples. 

The preceding development is useful only if the IMP is stable. The poles of the 

IMP will include the transmission zeros of the modified plant. If the plant itself is non-
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minimum phase, some of the poles of the IMP will be outside the unit circle. Even if 

the continuous-time plant is minimum phase, some of the eigenvalues of the IMP may 

be outside the unit circle due to the presence of “sampling zeros.” Whatever the cause 

of unstable eigenvalues of the IMP, additional calculations are needed to obtain a 

stable approximate inverse for the modified plant, as shown next. 

 

5.3.1 Approximate Inverse for Stable Nonminimum Phase System 

Consider adding s more advances to the r advances shown in (5.10). The result is, 

with d = r + s, 

                           ∑
=

+−−Φ+Φ=+
s

i

ikvid
cCkxd

cCdky

0

].[1][][                          (5.15) 

Assume that we are interested in tracking relatively low frequency signals so that v[k] 

will not change much from sample to sample. We can then make the approximation 

that                     sikvikv ,...,1],[][ =≈+                                                                 (5.16) 

Substituting this into (5.15) yields 

                                           ][1][][ kv
f

Dkcxd
cCdky −+Φ≈+                                   (5.17) 

Where 

                                               

1

0

1
−














∑
=

Γ−−Φ=
s

i

id
cCfD                                        (5.18) 

Using the same procedure as before (i.e. solving (5.17) for v[k] and substituting into 

(5.8)) we obtain an approximate inverse modified plant ( fDfCff ,,,ΓΦ ) with Df 

given by (5.18) and 
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Γ=Γ

Γ+Φ=Φ

Φ−=

fDf

fCcf

r
cCfDfC

                                                    (5.19) 

The cascade of this IMP with the modified plant will not be a pure delay due to the 

approximation in (5.16). The frequency range over which the IMP provides an 

accurate inversion must be evaluated on a case by case basis. However, for sufficiently 

large d, the IMP will be stable. This is due to the fact that the modified plant is stable, 

which implies that the eigenvalues of cΦ  are inside the unit circle. The IMP matrix is 

fCccf Γ+Φ=Φ  and the entries of d
ccCfDfC Φ−=  can be made arbitrarily 

small by increasing d. Thus, the eigenvalues of fΦ  will move towards the 

eigenvalues of cΦ  and become stable for sufficiently large d. The value of d is chosen 

to be the smallest integer greater than r for which the resulting fΦ  has all its 

eigenvalues inside the unit circle. A precision tracking system is obtained by inserting 

a feedforward IMP into Figure 5.1 and accounting for the delay of d samples. The 

result is shown in Figure 5.2. 

 
 

Figure 5.2 A Digital tracking system with inverse Modified Plant (IMP) filter 
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5.4 Simulation and Experimental Results 

In this section we carry out the design and implementation of a tracking control 

system for an H-Frame XY positioning system. This system consists of two stationary 

motors, eight pulleys, and a single drive belt, as shown in Figure 5.3. A detailed 

description of the derivation of an 8th-order state space model is given in [6]. That 

paper gives the (A, B, C) plant model, and also describes some nonlinear friction in 

the hardware system. The design methodology and simulation results in this paper do 

not incorporate the nonlinear friction. It is, of course, present in the hardware results 

shown in the following subsection. The inputs, outputs, and state variables for this 

plant are: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

         Figure 5.3 An H-frame XY positioning system 
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The inputs are the voltages to the two motor power amplifiers, and the tracked 

outputs are the x and y positions of the cart. In order to calculate the gain matrix Kd = 

[K1 K2 ] by a pole-placement algorithm, desired closed-loop poles must be selected. 

This choice is influenced by the locations of the poles and zeros of the continuous-

time plant [4,7]. This plant has no finite transmission zeros, and has the following 

poles: 

                                 .0,0,44,16,24922,3920 −−±−±− jj                                 (5.20) 

Using the rules given in [4] four of the closed-loop poles are selected by keeping the 

imaginary parts of the complex plant poles and replacing their real parts with a value 

determined by the desired settling time, call it TS seconds. The value that gives the 

desired damping is s1/Ts, where s1 is the first order normalized Bessel pole, shown in 

Table 5.1. For initial simulation results we choose the desired settling time to be  

                                                                                   

                                                  sec1.0=sT                                                     (5.21) 
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and the sampling interval was chosen to be T = 0:001 seconds. The design model 

shown in (5.6) includes the additional dynamics, which are two integrators, giving a 

10th order design model. With four of the poles chosen by adding damping to the 

complex plant poles, the remaining six closed-loop poles are chosen to be s6/Ts (see 

Table 5.1). With this selection of closed-loop poles, the algorithm described in [4] was 

used to calculate the gain matrices K1 and K2. The input multiplicative stability 

robustness bound for the resulting tracking system was 71.0=δ . If the gain matrices 

are calculated using Matlab’s place command, the stability robustness bound is 0.36. 

The robustness bound for state feedback gains computed via an optimal control linear-

quadratic regulator (LQR) formulation is guaranteed to be at least 0.5 [5]. The place 

command gives much less robustness than LQR for this plant, but the new formulation 

[V] gives robustness that is competitive with LQR with the ease of a pole-placement 

design. With the gain matrices K1 and K2 calculated, the modified plant (5.8) is 

formed. The poles and zeros of the modified plant are: 

Table 5.1 Normalized Bessel poles for 1st through 6th order systems 

with 1-second settling time (from [2]). To get a settling time of Ts 

seconds, divide all poles by Ts. 

 

Variable Pole Locations 

s1 6200.4−  

s2 3400.20530.4 j±−  

s3 7845.39668.3,0093.5 j±−−  

s4 6553.15281.5,0723.50156.4 j±−±−  

s5 0813.39268.5,3142.61104.4,4480.6 jj ±−±−−  

s6 4540.11205.7,4018.42613.6,5300.72169.4 jjj ±−±−±−  
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.11.0,10.0,98.0,99.0,73.9,69.9:

07.093.0,08.089.0,2495.0,32.093.0:

−−−−−−
±±±±−

zeros

jjjpoles
 

This modified plant can be inverted exactly with a delay of r = 1 sample. However, the 

two zeros outside the unit circle will be unstable poles of the exact inverse model. 

Furthermore, an exact inverse would have poles at the locations of the zeros of the 

modified plant on the negative real axis, resulting in a highly oscillatory output signal 

from the inverse model. Using the procedure described in Section IIB, it is found that 

only one additional delay, s = 1, is needed to make the IMP stable. With d = r + s = 2 

delays, the poles and zeros of the IMP are: 

07.093.0,08.089.0,24.095.0,32.093.0:

.0,0,15.0,1434.0,57.025.0,54.027.0:

±±±±−
±−±−

jzeros

jjpoles
 

As expected, the zeros of the IMP are the poles of the modified plant. However, 

looking at the poles of the IMP, it is not clear how they are approximating the unstable 

and negative-real axis zeros of the modified plant. Nevertheless, the IMP produces an 

inverse of the plant that is a very good approximation from 0 to about 80 Hz. This 

might be expected because only one additional delay was need, and with s = 1, the 

approximation in (5.16) will be very good. Figure 5.4 shows a simulation result in 

which the reference trajectory causes the cart to move along a square whose sides have 

length 2.5 cm. The x and y positions of the cart are equal to the reference trajectories, 

which have been delayed by two samples. This plot shows that the IMP provides 

theoretically perfect tracking for this reference signal. The same reference signal was 

used with the hardware H-frame system and the results are shown in Figure 5.5. In the 

hardware system, the tracking errors were smaller than m4105 −× . 
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Figure 5.4 Simulated x and y reference and achieved trajectories for 

tracking system shown in Figure 5.2. 

 

 

 
 

Figure 5.5 Experimental x and y reference (red) and achieved (blue) 

trajectories for the H-frame system using the tracking system shown in 

Figure 5.2. The tracking errors are less than m4105 −× . 
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In order to show the effect of the IMP on the tracking performance, the IMP was 

disconnected and the tracking system of Figure 5.2 was implemented on the hardware 

system. The results are shown in Figure 5.6. There is significant delay and distortion 

in the cart trajectory. These are effectively removed by the IMP, as seen in the 

previous figure. 

 

 

 

 

 
 

Figure 5.6 Experimental x and y reference (red) and achieved (blue) 

trajectories for the H-frame system using the tracking system shown in Figure 

5.2 without the Inverse Modified Plant filter. 
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5.5 Conclusion 

A method of obtaining an approximate inverse of a non-minimum phase MIMO 

system was presented and confirmed with simulations and experimental results. The 

example used a relatively low frequency reference signal. In the hardware system, 

attempts at higher speed trajectories resulting in chattering, which is thought to be 

caused by the nonlinear friction that is present. The proposed control techniques used 

in this paper are for linear systems. A friction-compensation scheme such as shown in 

[8] might be used to make the hardware system behave more like a linear system, 

allowing higher tracking speeds. 
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