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ABSTRACT

Vortex Induced Vibrations (VIV) are a critical problem in the offshore indus-

try, where interaction between flexible immersed marine structures and natural

currents result in large structural oscillations. These vibrations can result in fa-

tigue life reductions, increased factors of safety, risk of unplanned failure, reduction

in operational time, and may require costly mitigation strategies. Present meth-

ods of modeling VIV used largely in industry are limited to considering motion

restricted to the transverse direction relative to flow. Semi-empirical prediction

methods of VIV offer a good estimate for these vibrations, but expanding them

to include inline body motion would create a prohibitive increase in the number

of experiments required to properly characterise VIV, even at a single Reynolds

number. This thesis documents the research, development, and implementation

of a novel simulation method which combines VIV prediction with on demand

experiments to significantly reduce the experimental effort.

Previous semi-empirical prediction methods use large databases of hydrody-

namic force coefficients, obtained from forced motion experiments to predict VIV.

The new method developed in this thesis conducts experiments on-demand, us-

ing the Newton-Raphson method to select new experiment conditions, in order to

obtain a prediction using significantly fewer experiments. On-demand experimen-

tation with autonomous test runs in a fully integrated experimental tank inform

the simulation at each step in the iteration. The system is demonstrated to re-

produce observed free vibration VIV data for cases of data varying by Reynolds

number,and varying mass-damping parameters.

Results of the implementation of the system suggest a vast reduction in the

time required to characterize VIV at unfamiliar Reynolds numbers, with the output

verified in comparison to existing free vibration VIV data and prior forced motion



experiments done at limited Reynolds numbers. In doing so, the reduction in

time and complexity makes possible the desired future objective of adding in-line

oscillations to the prediction method, without the burden of an unwieldy number

of forced motion experiments to perform.
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CHAPTER 1

Introduction

Vortex Induced Vibrations (VIV) are self-limiting dynamic fluid-structure in-

teractions caused by forces due to vortex shedding. They are a canonical problem

in fluid dynamics, and experience broad applicability in engineering to the om-

nipresence of bluff bodies in engineering applications. When an object undergoes

VIV, it experiences vortex shedding as a result of flow across its bluff body profile.

If the shedding frequency approaches the natural frequency of the object, large

amplitude motions occur (Williamson and Govardhan, 2004) (Dahl, 2008). Struc-

tures from mooring cables to spar buoys experience these resulting large amplitude

motions can impact their fatigue life and the general operation of these structures.

1.1 Motivation for Research

VIV is a critical problem in industry (Williamson and Govardhan, 2004) for

the design of immersed structures. Offshore structures of the type which can

experience VIV include mooring cables, towed arrays, and drilling and production

risers. Due to their extreme length, they act similar to a string or tensioned beam.

These objects are typically bluff bodies in the direction of current flow, usually

cylinders, and flexible due to their length. These structures typically exhibit a

wide range of natural frequencies and structural mode shapes, and simultaneously

encounter complex sheared and directional currents.

Since VIV consist of interactions between a structure and surrounding fluid,

large-scale simulation of the phenomenon is extremely difficult. Many simplifying

assumptions must be made to produce models of VIV for predictive purposes. An

initial assumption is that the long, flexible structure may be modeled as a flexibly

mounted solid structure. This is acceptable if the assumption is made that the
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solid structure is a small element of the long flexible structure. In this case, essen-

tially treating the solid structure as a finite element of the long flexible structure,

reduction of the motion to a spring mass system is possible. Additional typical as-

sumptions for this case include assuming the body motion and forcing functions are

sinusoidal, assuming motion is restricted to be perpendicular to the flow direction

(hence called ’transverse’), and assuming the forcing function is a single frequency.

These assumptions may lead to order of magnitude inaccuracies in fatigue life esti-

mation from incorrect estimate of fatigue loading (Modarres-Sadeghi et al., 2010).

Traditionally these inaccuracies are compensated for by conservative design prac-

tices such as large factors of safety, but with expansion of the offshore industry

into new deepwater projects such as offshore wind farms, ocean thermal energy

converters (OTEC), and wave/tidal energy mooring systems, conservative engi-

neering practices prohibit cost-effective design. Within the limits of the motion

described with these simplifying assumptions, several excellent reviews are avail-

able (Sarpkaya, 2004), (Williamson and Govardhan, 2004), (Bearman, 1984).

The classic simplification for only transverse motion is normally referred to

as a 1-degree of freedom motion. VIV in the natural environment results in both

transverse and in-line motions, collectively causing a sort of figure eight shape to

the bod motion. Thus a more accurate representation of the phenomenon would

allow for movement along the in-line (with the fluid velocity field) axis as well

(Jauvtis and Williamson, 2004), (Dahl, 2008). Naturally, the successful simulation

of VIV with 2-degrees of freedom would be desirable to improve the VIV prediction

by accounting for forces more representative of those experienced by long, flexible

bodies.

Simulations of VIV through forced motion has been shown to reproduce VIV

for a 1-degree of freedom spring-mass system (Morse and Williamson, 2009), but
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these simulations are only valid at the Reynolds number for which experiments

were performed. Using traditional semi-empirical modelling methods for response

prediction based on a force coefficient database, it is impossible to perform the

number of experiments necessary to fully describe 2-degree of freedom VIV.

The objective of this research is to obtain a new algorithm for prediction of

motion in 1-degree of freedom VIV that is applicable across any Reynolds num-

bers for which experiments can be performed. Instead of using a Navier-Stokes

solver combined with a structural model, this method implements experiments to

determine the fluid forces that are then used in balancing the equation of motion

describing the system. The method to be developed is inherently general, allow-

ing for simulation at varying Reynolds numbers. Expansion to larger degrees of

freedom governing the motion of the body is anticipated in future work, but is not

covered within the scope of this thesis. The outcome of this proposal will be a

functional experimental system and methodology which will make future 2-degree

of freedom VIV modelling possible. This will be demonstrated by showing the

algorithm works for modelling the response of a 1-degree of freedom system.

The research undertaken for this thesis entailed development of a general

algorithm for combining on-demand experiments with the solution of the body

equations of motion to predict VIV for the case of a rigid cylinder segment. In

doing so, the proposed method achieves substantial reductions in the time and

experimental runs required for predicting one degree of freedom VIV motions. This

method requires between one and twenty experiments to achieve the prediction, in

comparison with Gopalkrishnan (Gopalkrishnan, 1993), requiring 306 exerpiemnts

for a sparse database and Morse and Williamson (Morse and Williamson, 2009),

requiring 5,680 for a dense database.

It is important to note that the objective of this thesis was to develop and

3



implement the algorithm. The data which was gathered has been observed before

and acts as a validation to the algorithm. This thesis therefore details the design,

construction, systems architecture, and programming of the 1-degree of freedom

forced motion research assembly, and includes validation of its ability to produce

correct results corresponding to a range of different inputs (Reynolds number,

nondimensional mass parameter) for various free vibration experiments which have

previously been conducted.

1.2 Chapter Overview

Chapter 2 provides background information on the phenomenon of VIV. It

reviews the literature that was used in this research and thesis, explains the fun-

damental requirements of VIV simulation, and explains the specific nature of VIV.

Included in the review is the dimensional analysis of the fundamental parame-

ters of the VIV phenomenon and of the simulation of VIV, and an explanation of

the critical nature of the nondimensional parameters governing VIV. This chapter

provides detail on thegeneral phenomenon of vortex shedding. A brief overview of

the relevance of the developed algorithm and system setup to further 2-degree of

freedom research will also be provided.

In Chapter 3, the methodology of the experimental system is explained in

detail. It describes the systems architecture and implementation of the simulation

method. The integration of the motion control, data acquisition and prediction are

explained. This chapter also explains the data processing techniques used in this

thesis. As the algorithm itself was the objective of the research, it is appropriate

to detail how the system was constructed to realise and test the algorithm. This

chapter will therefore detail the construction of the whole test apparatus, and the

synchronization of its components. The nature and construction of the physical

elements, mechatronic elements, and computational elements will be detailed and
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the integration of these elements as well. Challenges which were overcome to realise

successful operation of the system will be covered and explained.

For Chapter 4, validation of the system for purposes of simulating free vi-

bration experiments in VIV will be shown. These results demonstrate that the

system works correctly and successfully reproduces free vibration experiments. In

free vibration experiments, the phenomenon of VIV is directly observed, hence

reproducing such experiments is by definition the successful simulation of VIV.

Therefore, Chapter 4 discusses the simulation of free vibration experiments, the

functioning of the system, and the limitations of the system as discovered through

conduct of various simulations. Comparisons are made to a variety of datasets with

a range of Reynolds numbers and physical parameters governing the phenomenon

of VIV.

Finally, Chapter 5 contains conclusions and recommendations for future re-

search. These include a discussion of the results of system operation covered in

Chapter 4, as well as their implications for VIV research. The success of the system

in the context of future applicable to 2-Degree of Freedom systems in the future

is also discussed. Contributions to science by this thesis are clearly outlined based

on the results of this system implementation.
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CHAPTER 2

Background and Principles of VIV Simulation

2.1 Vortex Shedding

At its most fundamental, vortex shedding occurs behind a bluff body in a

current. At extremely low Reynolds numbers, vortices do not form, or form and

do not separate. At Reynolds numbers above Re = 40, vortex shedding begins

to occur, driven by small perturbations in the flow or on the surface of the body

(Blevins, cited in (Dahl, 2008)). This alternating shedding of vortices is referred

to as the ”Karman Vortex Street”, originally described by Von Karman in 1912

(cited in (Gopalkrishnan, 1993)). A negative pressure gradient upstream of the

body forces fluid to adhere to it; on the back of the body, the pressure gradient

switches signs and causes shear, which leads to separation and vortex shedding.

The frequency of shedding is dependent on flow speed and size of the object, and

is governed by the Strouhal number, defined as:

St =
fsd

U
(1)

The Strouhal number represents a constant of proportionality–for subcritical

Reynolds numbers–in the relationship of the cylinder diameter and the velocity

of the free stream with the frequency of vortex shedding (Gopalkrishnan, 1993).

It is generally held to be approximately St = 0.2 in all cases of interest, though

Bearman (Bearman, 1984) observed in the critical regime (Re > 2x105) Strouhal

numbers up to St = 0.46. Vortex shedding continues not merely at Reynolds

numbers immediately above Re = 40, but also well into the critical range, though

it is not always the classic regular shedding of the Karman Vortex Street, but

may also be irregular (Bearman, 1969); however, for most cases of interest regular
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vortex shedding is the dominant feature (Bearman, 1984). This research focuses

on the subcritical regime and generally on behaviour observed between 1x103< Re

< 5x104. Here, vortex shedding can be well understood to be heavily influenced

by the Reynolds number, but also parameters such as surface roughness and free

stream turbulence may influence the phenomenon (Bearman, 2011).

Though in general this problem is not at all limited to cylinders, the com-

monality of cylinders in engineering applications makes them the primary focus

of research into the phenomenon. In the case of VIV, vortex shedding remains

similar to that behind a stationary cylinder in flow, but interactions with the mo-

tion of the body can cause considerable differences to the case of a fixed body

(Bearman, 1984). For purposes of VIV research, the variability of vortex separa-

tion mentioned is particularly interesting. Vortex shedding on a fixed body occurs

according to the classic Karman street mode. In an oscillating body, however,

additional modes may occur (Williamson and Govardhan, 2004).

2.2 Vortex Induced Vibration

A principle difference between simple vortex shedding and Vortex Induced

Vibration is the freedom of the bluff body experiencing vortex shedding to freely

move, in at least one degree of freedom. As flow speed is increased, a condition is

reached where the frequency of vortex shedding fs becomes sufficiently close to the

natural frequency of the body fn so that pressures from the vortices being shed in a

non-regular fashion begin to drive motion. In short, when vortex shedding occurs

at a frequency close to the natural frequency of an elastically mounted or flexible

cylinder, large amplitude motions may occur. When the motion is constrained to

only move perpendicular to the direction of the current (transverse motion), these

motions may be up to 1.5 - 2.0 times the diameter of the body (Bearman, 1984).

Additional in-line directional motion will also occur if the body is free to move

7



in-line with the direction of the current (Williamson and Govardhan, 2004).

It is important to observe that VIV occurs for many object shapes. Though

this research limits itself to cylinders due to their universality in most common

applications (Bearman, 1984), any bluff body in flow can in principle experience

VIV. Furthermore, for the case of cylinders–typically in industrial settings–they

most usually experience VIV from being long and flexible. Cylinders used in VIV

research, however, are often rigid cylinders that are elastically mounted at both

ends in order to simplify the problem when studying the basic physics of the fluid-

structure interaction.

Vortex induced vibration does not have vortex shedding patterns limited to

the classic Karman street case. The complex interaction of body motion and vortex

shedding may produce a series of wake patterns, and the condition of lock-in, where

the cylinder’s oscillation frequency and the vortex shedding frequency match. In

addition to the classic Karman street mode, called the 2S mode and featuring

two single vortices per cycle, there may also be a 2P with two vortex pairs per

motion. This means that VIV sees a feedback loop between both vortex motion

and body motion (Williamson and Govardhan, 2004). The different vortex wake

modes affect the phasing of the force exerted on the cylinder.

Lock-in occurs when the fluid-structure dynamic reaches a final equilibrium

through the matching of effective impedances between the fluid and structure. The

mechanism stabilizes when the frequency of vortex shedding and natural frequency

are similar. The forces caused by vortex shedding can change the effective mass

of the system and force the system to be excited at an effective natural frequency,

the lock-in frequency. As a result, lock-in resonance is possible over a much wider

range than is typical in mechanical systems (Dahl, 2008).

When a body experiencing vortex shedding is free to oscillate, it may do
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so with relatively large amplitude motions in more than just the transverse di-

rection. As Bearman reviews, for a very long time, it was assumed that mo-

tion could be simplified to the 1-dimensional case (i.e., purely transverse motion)

(Bearman, 1984). This has been acceptable for scientifically studying the phe-

nomenon of VIV, but in engineering practice, observed vibrations are much more

complex, including not just in-line motion but even 3-dimensional vibrations of

slender structures. Furthermore, the in-line motion mentioned by Williamson and

Govardhan (Williamson and Govardhan, 2004) can reach 25% of the maximum

typical transverse motion (Dahl, 2008). This has been shown to have a substan-

tial impact on fatigue life through dramatically different hydrodynamic forcing,

making a more complete modeling effort of 2-degree of freedom VIV critical to

accurately predicting VIV and its impacts. The 1-degree of freedom case has been

amply studied, as briefly overviewed above. Though the system developed in this

thesis is for a 1-degree of freedom simulation, its purpose is to provide a proof of

concept that can be extended to higher dimensional systems.

2.3 Nondimensional Parameters of VIV

Both the nondimensional parameters required in solving for the motion of the

body and those used to characterise the force on the body shall be covered.

2.3.1 General Nondimensional Parameters

General parameters are those applicable to the phenomenon of VIV in general,

as opposed to strictly the case of the forced motion simulation. The first table com-

prises a list of variables, showing the symbol for the variable, its description, units,

base form in Buckingham PI theorem, and type. The type references whether, in

the typical case of VIV, the variable is controllable, fixed, or a value which is gen-

uinely variable rather than at the discretion of the experimenter. Likewise these
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are the values strictly for the fluid force. Influence of the components of the cylin-

der being analysed are handled separately. A certain number of nondimensional

parameters are required to correctly define the problem.

Sym-
bol

Parameter Description Units Base
Form

Type

f Frequency of oscillation 1/s 1/T Variable
fn Natural frequency of the cylinder 1/s 1/T Fixed
m Mass of the cylinder and any

associated apparatus
kg M Fixed

k Spring constant of the system kg/s2 M/T2 Fixed
b System damping kg/s M/T Fixed
D Diameter of the cylinder m M Controlled

Variable
L Immersed length of the cylinder m M Controlled

Variable
fs Frequency of vortex shedding 1/s 1/T Dependent

Variable
A Amplitude of body motion

(transverse)
m L Controlled

Variable
ρ Density of water kg/m3 M/L3 Controlled

Variable
µ Viscosity of water kg/(s*m)M/(T*L) Controlled

Variable
U Free stream velocity m/s L/T Controlled

Variable
F Transverse fluid force kg*m/s2 M*L/T2 Variable

Table 1: Variables in the fluid

Not all are strictly required, for example, the f* parameter stems from the

fact that f* may also be defined as f* = Vr
Vrn

, such that it is not an independent

non-dimensional parameter as it can be constructed from Vr and Vrn, but is uni-

versally used and very convenient, thus included. There are several names for

many of these parameters used in literature for each variable as noted. Finally, the

following dependent nondimensional parameters are of particular interest in suc-

cessfully deriving actual amplitude and frequency of motion from recorded force

data during the experiment process; their derivations are provided in Appendix D.
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Non-dimensional
group

Parameter Description Units

Vrn Nominal Reduced Velocity U/(fn
D)

Vr Reduced Velocity U/(f
D)

A* Nondimensional Amplitude A/D
St Strouhal Number (FsD)/U
f* Frequency ratio (nondimensional frequency) f/fn
ζ Damping ratio b

2
√
k∗m

U* Nominal Reduced Velocity / Nondimensional
velocity

U
fnD

λ* (Vr ) Nondimensional wavelength/Reduced Velocity U
fD

CL Coefficient of Lift F
0.5ρU2DL

Re Reynolds Number ρUD
µ

m* Mass ratio (nondimensional mass) 4m
πρD2L

Table 2: Variables in the fluid

CL =
F

0.5ρU2DL
(2)

CLa = CLcos(φ) (3)

CLv = CLsin(φ) (4)

Cm =
1

2π3

CLcos(φ)

A∗
(
U∗
f∗

)2 (5)

These equations represent the lift force magnitude nondimensionalized, and

the respective components of the lift coefficient thus defined. The Coefficient of lift

in phase with acceleration CLa and the coefficient of lift in phase with velocity CLv

characterise the added mass and added damping respective as described in equation

12. Look-up tables of these coefficients comprise the classic large database which
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can be used to solve the single degree of freedom spring-mass-dashpot system

equation in time.

These nondimensional parameters are then used to normalize equation 12,

giving equations 6 and 7 as per Khalak and Williamson (1999). These equations

govern the motion of the body based on the force input and are used in this thesis

to determine the solution of the body motion.

A∗ =
1

2π3

CLcos(φ)

Cm
(
U∗
f∗

)2 (6)

f∗ =

√
m ∗+Cm

m∗
(7)

2.4 Parameters affecting VIV
2.4.1 A review of select nondimensional parameters critical to VIV.

Tables 1 and 2 list the nondimensional parameters and how they relate to

the problem variables. The reduced velocity Vr serves as a comparison of the free-

stream velocity with respect to the transverse velocity of the cylinder. Many of the

other nondimensional parameters may have multiple values for a single value of Vr,

depending on the fluid-structure interaction, so that multiple stable motions are

possible at a given Vr. This has led to the use of U*, the nondimensional velocity

(based on fn rather than f) to plot nondimensional amplitude responses, but this is

undesirable as it can mask important information in VIV behaviour when plotted

(Khalak and Williamson, 1999).

The Coefficient of Added Mass, Coefficient of Lift, Nondimensional Ampli-

tude, and Nondimensional Frequency are functions Vr; they normalize the cylinder

motion and the forces exerted upon it, and are thus relatively straightforward. The

mass ratio, however, is a measure of the relative size of structural mass and the

12



mass displaced by the structure. In air the mass ratio is extremely large; in water

it is small, such that ocean structures typically have an m* = 3.0. ζ, the damping

ratio, is structural damping in respect to critical damping. It would be expected

that ζ = 0.05 for a typical marine structure. An extremely common parameter

in VIV research is m*ζ, the mass-damping parameter. It is generally accepted

that this parameter directly affects the amplitude response for the cylinder, and

that as it decreases, the cylinder will oscillate with larger amplitudes (Dahl, 2008),

(Govardhan and Williamson, 2006).

Reynolds number is based on cylinder diameter in ad-

dition to the requisite flow velocity. Multiple studies

(Morse and Williamson, 2009),(Govardhan and Williamson, 2006) have shown a

strong correlation between Reynolds number and the amplitude response and

forces of VIV, the correlation being positive. Due to the wide range of Reynolds

numbers at which structures may experience VIV, it must be noted that this

correlation is one of the factors driving a need for more research on Reynolds

number effects in VIV.

2.4.2 Prior VIV Research.

Khalak and Williamson (Khalak and Williamson, 1999) performed a series

of experiments at very low values of the mass-damping parameter. Khalak and

Williamson used a vertically mounted cylinder allowed to oscillate in a flow channel

in the transverse direction. Reynolds number was held relatively constant. These

experiments, very well documented, were the first to observe the ”collapse” of the

data when U* was normalized by f*, showing that f = fn is not always a reliable

assumption to be made in VIV. (Khalak and Williamson, 1999) reported results

arguing for the m*ζ mass-damping parameter being critical in influencing response.

This means that the maximum response is a function of the system mass and damp-
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ing. They also argued that its value further determined whether or not a hysteriesis

in the response would occur, though this is debated (Sarpkaya, 2004). For large

mass ratios the cylinder oscillation frequency will be close to the vortex shedding

frequency and the natural frequency of the body, but over a larger range of mass

and damping values this is not necessarily the case (Khalak and Williamson, 1999).

The Reynolds number clearly also plays some role in the response amplitude, and

Sarpkaya (Sarpkaya, 2004) has assessed that Khalak and Williamson have under-

estimated its role in determining the hysteriesis.

The aforementioned hysteriesis where the amplitude at the stable VIV case

may jump between two different values over an extremely small range of nondi-

mensional velocity (U*) has been well demonstrated, even if its cause has not been

and is still debated. It is not always present, and indeed in the results presented in

this thesis did not occur at very high m*ζ values, but not enough variation in m*ζ

for the simulations conducted in this thesis research were conducted to comment

further on this matter. It remains that the hysteriesis is a particular point of in-

terest in continuing VIV research. In fact, per (Morse and Williamson, 2009), this

effect can occur over exactly the same U* value, leading to a series of characteristic

branches of maximum amplitudes as shown in Fig.1.

Govardhan and Williamson (Govardhan and Williamson, 2006) report the col-

lapse of data in the classic ’Griffin’ plot if Reynolds number is taken into ac-

count as an extra parameter. Govardhan and Williamson illustrate the strong

dependence of lift forces in VIV on Reynolds Number, as does the work of Morse

and Williamson from (Morse and Williamson, 2008). Williamson and Govardhan

(Williamson and Govardhan, 2004) provides a review of VIV. It also provides a

summary of characterized wake vortex modes.

Smogeli, et al (Smogeli et al., 2003) developed a force feedback system for
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Figure 1: Results from Khalak and Williamson (Khalak and Williamson, 1999)
showing the characteristic hysterisis in nondimensional amplitude response
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simulating VIV. VIV could be modeled using a force feedback system where force

coefficients were calculated in real time, with the system responding to forces in

real time.

Vikestad (Vikestad et al., 1997) reported primarily on results of a combination

of VIV and a structural vibration input to the system (representing a hypothetical

mechanical vibration to complement that being delivered by the fluid-structure

interaction). They provided some initial control data for free vibration cases as

well. Both the data from Smogeli and Vikestad were gathered via a horizontally

suspended cylinder and the Reynolds number allowed to vary between any par-

ticular point of U* and A* in a data-set, unlike that of Khalak and Williamson

(Khalak and Williamson, 1999).

Gharib (Gharib, 1999) conducted a series of free vibration experiments across

low ζ values and a wide range of m* values. Gharib, like Khalak and Williamson,

used a vertically mounted cylinder and held Reynolds number constant.

Morse and Williamson (Morse and Williamson, 2009) reported on results

showing that forced-motion experiments could perfectly VIV, through the meth-

ods described earlier. The forced motion experiments performed by Morse and

Williamson (Morse and Williamson, 2009) provide a high resolution measurement

of CLV and Cm as functions of A* and Vr. Fig.2 shows a sample contour plot of

CLV from Morse and Williamson.

The 5680 experiments performed to produce Fig.2 represent a parameter res-

olution of 70, where A* and Vr were varied with 70 different values, allowing for

extremely fine resolution of the experiments. Not all of these experiments are

performed in a region where free vibration VIV will occur, hence not all of these

experiments are necessary if one wants to use them to predict VIV. This high-

lights the necessity for a different approach to solving this problem if extended to
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Figure 2: Chart of CLV as a function of A* and Vr as reproduced from Morse and
Williamson (Morse and Williamson, 2009), at Re=12000
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2-degree of freedom systems.

For 2-degree of freedom systems the number of parameters governing the

body motion increases from 2 to 4 (not including Reynolds number), thus the pa-

rameter resolution must be increased to the fourth power, yielding approximately

24,000,000 experiments if the relative accuracy of the system used by Morse and

Williamson is maintained. Nonetheless, the Morse and Williamson experiments

served to validate the method of using forced rigid cylinder motions to simulate

VIV perfectly. It is not, strictly speaking, necessary for that parameter resolution

to be used in all VIV research. Their effort was simply required to demonstrate

that the forced motion method was indeed accurate. Only a single experiment,

with a single Vr and a single A*, is actually necessary to obtain the correct solu-

tion for VIV–if we knew where it was, which we do not, thus requiring a very large

number of experiments, with sufficient parameter resolution to verify that those

experiments were correct; only then a mathematical simulation of VIV could be

solved using these data.

2.5 Introduction to VIV Simulation

Methods used for VIV simulation are varied, but may be essentially char-

acterised into two branches. These branches comprise direct numerical simula-

tion, such as a full Navier-Stokes solver, and semi-empirical methods. Present

semi-empirical methods include developing a large database of force coefficients by

running experiments and then solving for the motion of the body. Examples of

forced motion databases include Gopalkrishnan (Gopalkrishnan, 1993) and Morse

and Williamson (Morse and Williamson, 2009), additional examples are cited in

Hover, et. al. (Hover and Triantafyllou, 1998). Semi-empirical codes used in

industry for predicting the motion of long slender structures include SHEAR7,

VIVA, (Mukundan and Triantafyllou, 2010) and VIVANA (Chaplin et al., 2005)
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All of these programmes use some form of experimentally derived force coefficients

to predict VIV, however each code is limited in its ability to incorporate high

degrees of body motion without the need for additional force information from

experiments.

One problem with all of these programmes is the need to generate a massive

force coefficient database before solving for the body motion. This is typically

accomplished through forced motion experiments. For predicting VIV with these

programmes a slender body representing the structure is first assumed. It is pre-

sumed that slender body theory is valid, such that the fluid force can be represented

by the equivalent two dimensional force at any particular cross section of the three

dimensional body. The force on a cross-section of the body can then be represented

as that of a single rigid cylinder undergoing a particular motion. An additional

simplification assumes 1-degree of freedom motion for the cylinder, such that the

body only moves perpendicular to the current. This is justified on the grounds

that most observed motion from VIV occurs in the transverse direction. With the

number of simplifications thus proposed, it then becomes possible to establish the

database of hydrodynamic coefficients by varying two parameters, here called A*

and Vr. Forced motion experiments may then be performed, varying A* and Vr

to measure the desired forces.

2.5.1 Simulation with forced motion of a rigid cylinder

The forcing function for the body’s motion is determined by conducting an

experiment of forced sinusoidal motion of a rigid cylinder through a free stream,

measuring the forces exerted on the body. This allows creation of the database for

a variety of amplitudes and frequencies which can then be used to solve for VIV

of a cylinder with given structural properties. The simplest form of this solution

method comes from considering a one degree of freedom spring mass system. The
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Figure 3: A schematic of the spring-mass system for VIV, where m is mass, b is
the coefficient of damping, k is the spring constant, and F fluid forcing function.

equation is given as per Fig. 3.

We can assume phase-shifted harmonic forcing and harmonic motion, based

on observations of 1-degree of freedom systems undergoing VIV. This allows for

the expansion of the forcing term, F:

y = Asin(ωt) (8)

F = Lsin(ωt+ ϕ) (9)

F = Lcos(ϕ)sin(ωwt) + Lsin(ϕ)cos(ωt) (10)

This result is composed of two terms, one in phase with acceleration and one in

phase with velocity respectively. If we assume the force in phase with acceleration

behaves as an added mass ma and the force in phase with velocity behaves as an

added damping ba, then we have:

F = −may”− bay′ (11)

(m+ma)y” + (b+ ba)y
′ + ky = 0 (12)

If the magnitude of the forces are known as a function of frequency and am-

plitude the equations may then be solved iteratively to find the amplitude and

frequency of vibration, the forces, of course, being derived from the force motion

experiment described above, and ma and ba become:
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ma =
Cmρπd

2l

4
(13)

ba =
CLvρdU

2l

2A ∗
√

k
m+ma

(14)

As opposed to a typical forced single degree of freedom system, the form of the

hydrodynamic force, F, is such that the equation can be written as a free vibration

with modified mass and damping. There are other differences, furthermore. The

most important of these, which must be carefully observed, is that ma and ba

are functions of the amplitude and frequency of oscillation. Thus, the problem is

nonlinear, even if it can be represented as a linear equation for a single set of values

of ma and ba, it cannot actually be solved as a simple linear equation. It is for this

reason that experimentation to build up a large database of force coefficients is

the present standard practice in forced motion simulation for VIV. The equation

of motion must therefore be solved iteratively since ma and ba will change as a

function of the motion. The force database provides a simple way to transition

between values of ma and ba for given cylinder motions.

2.5.2 Limitations of the Forced Motion Simulation

As the added mass and damping are functions of the amplitude and frequency

of oscillation, it is thus necessary to solve this equation interatively. Rather than

being able to analytically solve for the solution of the equation, at each change

in amplitude/frequency in the solution of the equation there must be input from

data derived from experimentation.

Per Morse and Williamson (Morse and Williamson, 2009), a given database

is furthermore only applicable at the Reynolds number for which it was gathered.

Morse and Williamson (Morse and Williamson, 2009) predicted the for the perfect
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prediction of Vortex Induced Vibration of a 1 degree of freedom spring mass sys-

tem at a single Reynolds number with equivalent mathematical conditions in the

simulation as to the desired real-world or free vibration experimental case, however

they showed that there can be significant differences in observed fluid forces, even

for moderately different Reynolds numbers.
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CHAPTER 3

Methodology and Implementation

The developed algorithm which forms the thesis objective and the constructed

experimental apparatus to achieve this objective are descibed in the following

chapter.

3.1 System Conceptualization

The system consists of the algorithm, administered through a control program

and the physical plant. Collectively the program and the physical plant implement

the algorithm. The program itself consists of a series of sub-programs. Each of

the sub-programs performs a specific function. Programs were written to establish

communication between components of the physical plant, that processed these

resultant data, performed calculations with these data, and finally used data to

make predictions. Likewise the physical plant components were physically wired

and integrated for commands to be executed and data recorded.

In this system, the algorithm implements a semi-empirical simulation, the

general concept of which is described in Chapter 2, and which herein is an adaptive

and predictive algorithm. The predictive algorithm uses an iterative process to

determine new experiments to supplement the solution of the body equation of

motion, rather than performing a pre-defined experimental set a priori.

The development of the semi-empirical simulation algorithm detailed herein

takes advantage of a forced motion that mimics VIV while force coefficients are

recorded from the measured force output of this motion, being no different in

that respect than the process described in Chapter 2.3. The difference is that in

traditional methods CLv and Cm are determined a priori by conducting a large

series of experiments varying A* and Vr to produce a database of fluid force coeffi-
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cients. The solution may then be obtained iteratively by integrating the equation

of motion over one half cycle and updating the fluid force based on the current

motion parameters, or by converging on the CLV value corresponding to the ap-

propriate structural damping. In the system developed here, experiments are only

performed as necessary to determine whether a solution has been obtained. In

order to achieve this for the equation of motion (equation 2), one must determine

a balance between the fluid force and the structural forces. In the case of VIV,

we know that the amplitude of motion is limited by fluid damping. A steady

limit cycle is reached when the fluid force in phase with velocity perfectly cancels

the structural damping forces, leading to an effective resonant situation (the only

remaining forces are the cylinder inertia, added mass, and spring restoring force).

The equations of motion and forcing functions are non-dimensionalized for

generality. As the solution is then nondimensional it is fully scalable as long as

all nondimensional parameters are matched. This is not trivial, however, as the

fluid force terms CLv and Cm are known to be functions of Reynolds number

(Morse and Williamson, 2009).

3.2 Algorithm Structure and Implementation

A flow chart of the developed algorithm is shown in Fig. 4

Requirements for the successful implementation of this algorithm included the

automated communications between the algorithm and its controlling script, the

PMC that directly controls the motors, and the force sensors which provide input

to cue the next experiment. Using a search heuristic algorithm that can select new

amplitude and frequency values for an on-demand experiment based on analysis

of the force and position data from the prior experiment, the process takes data

from the prior experimental run, analyzes it, and based on these data selects the

new values for the next experiment.
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Figure 4: Flow chart for prediction algorithm
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Matlab was used as the integration mechanism of the system components. A

series of matlab functions were written to integrate the system components–both

the physical plant and the sub-functions required for executing specific tasks in

the algorithm–into the algorithm and to execute the algorithm itself. The iterative

process itself is simply a loop directing repeated execution of the algorithm until

terminal conditions are achieved. Each step in the iterative process brings the

result closer to the stable solution, a solution whose amplitude is neither growing

nor decaying over time. This is achieved by varying Vr and A* simultaneously.

Each iteration entails a guess of these two values, being changed simultaneously,

though not independently. After each calculation is performed, a new experiment

is conducted if the stable solution has not been obtained.

The developed algorithm is completely autonomous, requiring only the input

conditions to begin searching for a solution. Fig.9 shows the specific functions

developed to implement the algorithm. These functions are described in Section

3.5.

3.3 Physical System Components

As the algorithm requires experimental inputs, a test rig is required to generate

those inputs. This section details the physical components of the test rig, their

installation and their function. The primary components of the system are shown

in Fig.5.

Fig.6 shows the specific components of the test rig used in this thesis.

A water tank is used for conducting the forced motion experiments. The tank

is located within the Sheets Ocean Engineering Building on the URI Bay Campus

and has a total length of 3.5 meters and a useable length of 2.6 meters, with a

useable depth of 0.68 meters (A). This carriage is attached with four free running

wheels and four interior wheels on the sides of the tank which allow directed motion
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Figure 5: Image showing the experimental tank and carriage with a demonstration
rig mounted.

Figure 6: A selected set of views of the experimental apparatus under construction.
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along the length of the tank (B). The carriage path is not perfectly straight due

to deflection of the tank walls when the tank is full of water, but at less than a

cumulative 9mm of ’bowing’ between both sides of the tank, the level of introduced

error to the straightness of the course is minimal. The carriage itself has three

motors mounted (C). Two of the motors form a fine control X-Y axis, allowing

linear motion in the X-Y directions. The final motor is the Z-axis rotational

motor (D) which directly drives rotation of the mounted force sensor and test

rig (a cylinder at – (E)). The Z-axis is not used for forced motion testing in the

present study, however it is used for aligning the force sensor.The final component

is the six-axis force transducer that the cylinder is mounted upon (F), a necessary

requirement for recording all loads experienced by the test cylinder.

The six-axis force transducer is a Gamma sensor from ATI Industries and

can record forces in the +/-130 N (newton) range in three axes: X, Y, and Z. It

can also record three torques to a maximum of +/- 10 N-m (newton-meters). In

both cases the force sensor is extremely sensitive to damage, though in principle

failure will only occur at forces and torques greater than these figures by an order

of magnitude. This safety margin allows forces to be recorded right up to the

limit permissable within the accurate recording range of the force sensor, and

the selection of test cylinders for the experimental apparatus was made with the

objective of generating forces as close as possible to the upper range of the force

sensor.

A four point mounting piece connects the test cylinder to the force trans-

ducer. This mounting piece is engineered as a quick-change interface so that dif-

ferent cylinders can be switched between a test series to allow for the new series

to accommodate a different Reynolds number. Cylinders are positioned with a

smooth plexiglass bottom cap within the desirable range indicated in Morse et. al.
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Figure 7: The force sensor being tested during installation with its output shown
on the screen behind.

(Morse et al., 2008).

In addition to the issues that required the design of the special mounting piece,

interference was discovered to be a serious problem with the force transducer during

the testing phases and some early unrelated uses of the experimental system. As

a solution, the DAQ system was isolated from the circuits providing power to the

servo motors to eliminate the source of interference: noise passing through the

building ground. To completely solve the interference problem, the installation of

nylon machine screws for mounting the force transudcer through a rubber isolation

pad guaranteed that the DAQ and force transducer were appropriately electrically

isolated from the servo motors’ power supply.

The Parker electronic motors are controlled via a Delta Tau UMAC Turbo

PMAC robocontroller, which interfaces with the motors via Xenus drives. This

Delta Tau robocontroller interfaces with a Lenovo desktop to control the function

of the motors and allow for download of motion programmes which are then ex-

29



Figure 8: SolidWorks models of the quick-change mount attached to the force
transducer and the test piece interface mount for a 1.5-inch outer diameter VIV
test cylinder.

ecuted by the Delta Tau robocontroller. The force sensor’s orientation is homed

by using the Z-axis motor. This is done by use of a laser position limit sensor,

which activates to lock the motor in place when the sensor is correctly aligned by

interruption of the laser beam with a metal rod inserted into the side of the force

sensor mounting piece.

3.4 System Control Components

The control components of the system comprise the mechatronics of the test

rig and systems for recording, processing, and transferring data. The table below

lists the Matlab Functions for use in this thesis. Section 3.4 generally describes

how these functions interface with the experimental system hardware and section

3.5 describes how these functions operate as software in the implementation of the

prediction algorithm.

Subsequently, it is necessary to outline a second table explaining the hard-

ware/software components of the system, so that they are available for reference

for a detailed explanation of the functions.

The interface between Matlab, as the base software controlling implementation
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Matlab
Function

Intended Purpose

Central
Control
Function

Overarching control of all functions and integration routines

Offset
Correction

Purpose: to zero the force measurements.

PMAC
working

programme

Writes PMAC motion files

Download
programme

Primary communication with Delta Tau Robocontroller for
sending and execution of motion programmes, motor reset, and

jog commands.
Gather
Data

Secondary communication with Robocontroller for retrieving
recorded position-actual data from the motors during the

motion sequence
Coefficient

Finder
Collates, filters, and processes data to obtain force coefficients

based on the previously commanded motion.
Selection
Analyzer

Runs the simulation of the cylinder in a free stream using the
Newton Method to determine the variables for the next

iteration of the system

Table 3: List of Matlab Functions in Simulation System

of the algorithm, Labview, used for data acquisition, and the PMAC programming

language of the Delta Tau Robocontroller, is described in the following section.

Matlab is used for central control of the algorithm. Delta Tau uses the PMAC

motion-control language, a proprietary version of a machine tool programming

language, to execute motions powered by electric motors according to pre-written

programmes referred to as ”motion files”. A function was developed in Matlab

called the ”PMAC working programme” to generate a motion file based on the

following input parameters: Amplitude, frequency, and flow speed (velocity). Am-

plitude and frequency are dimensionalized from A* and f* respectively. The flow

speed is set as an initial system parameter to obtain a constant Reynolds number

for a set of experiments.

The motion file, when uploaded to the controller, generates a sinsusoidal
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Compo-
nent

Name

Function Interfaces

Delta
Tau

UMAC
Robocon-

troller

Execution of Motion Programmes,
recording position data, system timing

cues.

LabView DAQ 2,
Motorcontrollers,

Positioning sensors,
control computer.

Xenus
Drives/Parker
Motors

Drives translate digital commands into
analog control impulses for the motors;
they were pre-integrated with motors.

Robocontroller

LabView
DAQ 1

This DAQ collects the force sensor data,
and must be electrically isolated from

sources of interference.

Force sensor, control
computer, LabView

software.
LabView
DAQ 2

Receives timing impulse from
Robocontroller. Had to be separated from

DAQ 1 for interference minimization.

Robocontroller,
LabView software.

LabView
Software

LabView is a visual bloc based
programming language; a written
programme records the force data.

DAQ 1, DAQ 2,
writes to text files.

Matlab Contains central control function, functions
for writing motion programmes, sending
commands to Robocontroller, obtaining

force data, processing data.

All.

Table 4: Separate System Components

motion in the Y axis and a steady forward velocity with ramping accelera-

tion/deceleration at the beginning and end of the test run. To upload the motion

file to the controller through Matlab, the Gather Data function developed by M.L.

Norg of Norg Consulting, dated to 2011, was modified (Norg, 2011). This function

uses either a serial cable interface or an ActiveX COM interface to communicate

between Matlab and the Delta Tau UMAC Robocontroller. These Matlab func-

tions were also adapted and modified for data gathering from the controller in

order to log the motor position. The function takes hexadecimal data through a

serial transmission from the controller and translates it into ASCII format. An

ActiveX COM interface was successfully implemented for communicating with the
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Delta Tau UMAC. This interface allows for the passing of command calls from

Matlab directly to the Robocontroller, including uploading the motion programs

to the Robocontroller and calling them for execution.

Data acquisition of the force sensor is controlled by a VI in LabView. LabView

is run in Matlab by executing a DOS command inside of the central control function

in Matlab, and arranging the default settings for the vi which records the force

sensor data to automatically turn on at program start. A similar command is

used to stop the VI when not recording data. Data recording is triggered by a

software switch included in the motion programme, which triggers a digital switch

recorded by the DAQ 2 within the VI. This allows for rough alignment of the force

and position data acquisition. Due to timing inconsistencies with the DAQ system

and controller, further time alignment of the force and position measurements is

performed in the data processing routines by measuring the carriage position and

carriage velocity independently. Collected data is written to a text file which is

then read into matlab and saved as a matlab database file (mat file).

Motion programs are written inside of Matlab, and sent to the Delta Tau

UMAC Robocontroller, and then ordered to be executed. There is limited feedback,

however, with no functionality to indicate to matlab when the motion program has

finished executing in the Delta Tau, so trial runs had to be done and stop-timers to

hold execution of the programme implemented to give enough time for all portions

of the programme to execute in successfully before proceeding to the next portion.

This could have been done using switches in the motion program, however, the

present method only adds a few minutes to each iteration and this wait time is

necessary to allow the tank water to settle anyway.
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Figure 9: Flow chart showing Matlab Functions

3.5 System Functions

An outline of the programmes developed for implementation of the prediction

algorithm are given in table 5, and their interaction with system components is

covered in table 6. Details of the programmes are explained in the following section.

These functions serve to integrate the physical system components and non-matlab

programmes. Collectively they are the algorithm.

3.5.1 Central Control Function

The flow chart demonstrates how the matlab functions in which the algorithm

is implemented relate to the basic concept of the algorithm in the abstract. The
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Central Control Function serves to control all aspects of the system operation. A

while loop is used to control iterations of the system, with the loop continuing

to iterate until the convergence criteria has been met. The convergence criteria

is an output from the Selection Analyzer program and a description of different

convergence criteria used is given in that section.

The Central Control Function receives the initial conditions for the simulation,

the initial conditions for the test rig (describing its present configuration for the set

of runs to be conducted), and the initial A* and Vr values for the first experiment

that commences each iteration. These values are tabulated in a header file called

VIV Prediction Wrapper. This is a simple matlab script intended to be edited

to reflect changing simulation parameters and changing test rig configurations. It

accepts the variables, and sends them to the Central Control function, calling the

function so that it begins to execute. The table shows only the variables used in

the current iteration, other variables can be commented out or used, depending on

available data for the simulation.

After being called by the VIV prediction wrapper, the Central Control func-

tion takes the inputs, performs basic calculations from them to provide appropriate

variables to the other functions, and then passes the output variables from other

functions, and data arrays from function to function, calling the functions at the

appropriate times, and writes data to database files.

3.5.2 Offset Correction function

The Offset Correction functionrecords force data to zero the force sensors.

It is derived from the Download programme function. It relies on the method

demonstrated by Norg (Norg, 2011) for using an ActiveX COM interface between

matlab and the Delta Tau UMAC Robocontroller. In the case of the Offset Correc-

tion function, it simply activates the motors and sends the appropriate M-variable
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Variable Description
testcyl mass Mass of Test cylinder

test-
cyl conn mass

Mass of test cylinder connector

force conn mass Mass of connector to join force transducer to test cylinder
connector

diameter Diameter of experimental test cylinder
L Submerged length of experimental test cylinder

sampling f Sampling frequency for LabView DAQ board (force
measurements)

kine-
matic viscosity test

Viscosity of experimental test fluid, m2

s

AMP Initial non-dimensional amplitude guess for solution
zeta mstar Structural damping coefficient times mass coefficient for

simulated cylinder
dia Diameter of simulated cylinder

density Density of fluid

kine-
matic viscosity sim

Viscosity of simulated fluid, m2

s

ustar U*. Nominal reduced velocity for simulated cylinder during
the current iteration sequence.

folder name Folder you save data to (must be created by user).
u Velocity of current run.
Vr Vr for cylinder, initial guess.

Table 5: Options for the VIV Prediction Wrapper

command to begin logging data in LabView, which is turned on and off before

utilization of this function to properly record the data, from within the Central

Control Function. The function turns the motors on, holds them on, and then

turns them off after enough data has been logged by the force transducer via the

DAQ VI to apply the offset correction. Data is logged to a text file and then saved

in the central control function.

3.5.3 PMAC Working Programme function

This function uses modified, pre-existing programmes to write an ASCII file

with a PMAC motion program or multiple PMAC motion program which may
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then be uploaded to the motion controller. This program uses inputs defining

the motion of the cylinder–dimensionalized amplitude, dimensionalized frequency,

and carriage tow velocity, and writes a set of Position-Velocity-Time intercepts to

define the desired motion of the test cylinder. Each discrete time PVT block has

a set time at which the motor should reach that position, and velocity at that

position and time; and a set time and position at the end of the move, as well

as velocity the motor is to possess at the end of the move. However, the velocity

within the move is not fixed, the motorcontrollers calculating their own required

velocity, which may vary, to meet the end constraints when leaving that block

and passing into the next. The motor controller ensures that the contraints are

met, with the result being a sufficient digital approximation of a sinusoid with

high positional accuracy. The number of discrete points defining the motion is a

programmable variable. The motion is harmonic as in the following equations:

y = Acos(ωt) (15)

vy = −Aωsin(ωt) (16)

Where A is the dimensionalized amplitude, ω = 2πf , and f is the dimen-

sionalized frequency. The carriage velocity is programmed based on a trapezoidal

function. Three cycles of motion in y are performed before moving the carriage to

minimize transients in the force measurements.

3.5.4 Download Program function

This function sends commands to the Robocontroller directing it to download

the motion programs file written by the PMAC Working Programme function,

activates the motors, and commands the Robocontroller to execute the motion

programme. The Download program function includes a jog command to return
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the carriage to the rest position at the 0-point end of the tank and motor resets

in addition to the execution of a series of programs for homing, followed by the

actual motion programme.

3.5.5 Gather Data function

Gathering data is the last of the basic coordination and command functions.

Based on the modified program from Norg (Norg, 2011), it takes hexadecimal

actual position data gathered from the motors by the Delta Tau Robocontroller,

parses it, and translates it into U/X/Y/Z (as required) positions based on motor

counts. These data are reproduced in column format with a separate time column.

It should be noted that the sampling frequency of the position may vary based on

the number of channels to be gathered and the available memory in the controller

gathering buffer. The Data Gather function will determine the sampling frequency

used based on the controller settings. These data are passed into the central control

function and written for record into the database.

Gathered data measures the actual rather than commanded position. A sam-

ple plot of the output is provided in Fig.10.

3.5.6 Coefficient Finder

A critical part of the system methodology is how the force coefficients are

calculated. Two types of data are measured to solve for the force coefficients:

Position data, and force data. The position data include the actual position,

velocity and acceleration of the cylinder as opposed to the commanded kinematics.

Force data include all forces and moments exerted on the cylinder. In order to

isolate the hydrodynamic forces exerted on the cylinder, the inertia of the test

cylinder must be removed from force measurements. This is done by measuring

the mass of the test cylinder and the acceleration of the cylinder to determine
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Figure 10: Actual position data, showing retrieved Gather Data
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the cylinder’s inertia. This inertia is subtracted from the total force measured

in the direction of motion, leaving only the hydrodynamic force. Then velocity

and aceleration are determined by taking the derivatives of position. The force

primarily used in these experiments is the lift force, or force perpendicular to the

current. The force and position signals are trimmed to only include data when the

cylinder was in forward motion after any initial transients have died out.

The Coefficient Finder takes both the position data (converted from hexadec-

imal to ASCII data files) and the force data (recorded by LabView into ASCII

data files), trims and filters the data, aligns the data in time, and calculates force

coefficients for the particular commanded motion. The force sensor data is cali-

brated using a six-axis calibration matrix supplied by the force sensor vendor. The

calibration matrix was verified by applying known loads to the test cylinder and

measuring the resulting voltage outputs from the sensor. It was found that the

cantilever setup of the test cylinder results in a natural frequency of about 7hz,

which can be observed in the force signals. This frequency is sufficiently above the

expected measured force frequencies, such that it can be removed through filtering

without appreciably degrading the force signal. Fig.11 shows the data as read into

the function for aligning the force and position output:

Fig.12 shows the filtering process:

Fluid force and motion frequency are compared using FFT analysis. Assuming

the fluid force is a phase-shifted sinusoid with phase φ , φ is calculated based on the

relative phase difference between the position and lift force FFT, used to compute

CLv and CLa in Equations 3 and 4. The magnitude of CL may then be found

through Trapezoidal numerical integration of the power spectral density. This

provides the variance of CL, CL var, such that the magnitude of CLis found as:
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Figure 11: Green lines indicate change in position from the position and force
datasets. Since these must be occurring at the same points in time, the two
sets can have their positions (in iterations of data collection, i.e. sample points)
correlated and normalized.

Figure 12: Filtering Process, quality of signal improvement.
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Figure 13: Raw force data from the six-axis force transducer as plotted upon its
input to the Coefficient Finder.

CL =
√
CLvar ·

√
2 (17)

Using Equations 4 and 3, the calculation of CLvand CLa is simply based on

CLand φ . The added mass coefficient, CM is then determined from Equation 18:

Cm = −(ClaV
2
r)

2π3A∗
(18)

The resulting force coefficients are then passed on to the selection analyzer.

A plot of CL relative to the inertia of the system is provided in Fig.14.
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Figure 14: CL plotted in blue and inertia plotted in red as a function of time

3.5.7 Selection Analyzer

The Selection Analyzer function uses a Newton-Raphson method which takes

in the measured fluid force coefficients and determines the next best guess for

Vrand A* based on equations 6 and 7. The Newton Function in this case takes

the form:

Vr new = Vr old −
G
dG
dVr

(19)

Where G, determined by rearranging equations 6 and 7, and dG
dVr

are defined

as:

G =
Vr
U∗
−
(

1

1− αVr

)− 1
2

(20)

dG

dVr
=

1

U∗
+

α

2
√

1− αVr
(21)

And α is a constant for each iteration that is a function of CLv. α can change

with each iteration since it is dependent on A* and Vr through CLA and CLv. This
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Newton-Raphson method determines a new value for Vr with each iteration, but

does not determine how A* should change with each iteration.

α =
2CLaζ

CLvU∗
(22)

Rearranging equation 5 and taking CL in phase with velocity, one can deter-

mine the expected value of CLv if A* and Vr are correct (which may or may not

be true for a given iteration).

CLvexpected =
4ζπ3m ∗ A∗
U ∗ Vrnew

(23)

Convergence of the algorithm would then require that the measured value of

CLv approaches CLvexpected , such that ∆CLv is driven to zero:

∆CLv = CLv − CLvexpected (24)

As ∆CLv will be nonzero if the algorithm has not converged, a new value of

A* may be determined as a function of ∆CLv. The calculation for the new value of

A* may then be made as the current value for A* is multipled times the resultant

of 1 + ∆CLv. As a practical matter, however, the process runs into a problem, in

that CLv may be greater than unity, leading to negative values of A*. To address

this, based on the size of CLv a constant is used to reduce the size of the amplitude

change to avoid the function commanding negative amplitudes. The equation for

A* with the constant rendered as g, is shown in equation 25. The value of g varies

from 1
2.1667

to 1
6.5

based on the maximum value of CLv for Re = 12000 from Morse

and Williamson (2009). The values g may be varied as a function of the current

calculated value of CLv.

A∗new = A ∗ (1 + (g∆CLv)) (25)
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The remaining portion of the Selection Analyzer defines the convergence cri-

teria. Two separate methods were used for the convergence criteria. The first

of these consisted of a calculation using equation 25 and arbitrarily defining

convergence as an approach of the calculated new A* value to a difference not

greater than 4% of the maximum attainable A* value in Morse and Williamson

(Morse and Williamson, 2009), circa A* = 1.6, from the prior value of A*. This

cumbersome and arbitrary method was replaced by a less arbitrary method based

on CLv.

This method requires the difference between CLv and CLvexpected , to be ∆Clv<

0.2. This choice represents values of < 4% error in the converged value for the

amplitude. This error is inherent in the current system due to limitations on

the signal to noise ratio of the force sensor. Improved resolution of the force

sensor or a reduction to the test cylinder inertia, or an increase in the test flow

speed, may allow for this criteria to be reduced in the future. However, because

convergence can be expected only at positive values, Clv> -0.1 is also set. This

is because a convergence at a negative Clv is a true error (there is no possible

way for convergence to a stable case of VIV to occur at negative values of Clv)

and should be more strictly limited than at positive values where the multiple

overlapping branches mean multiple convergences at a single value of Vr. The

Analyzer function returns a successful output and value that terminates the while

loop if the convergence criteria are successfully reached. If not, the new Vr and A*

are used as the basis for the variable inputs in writing a new motion programme

for the next iteration of the while loop in the Central Control Function, and the

loop continues while the Newton Function progresses toward a stable solution of

the simulation.
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CHAPTER 4

Results and Analysis

Results obtained from the developed algorithm are compared to docu-

mented free vibration experiments. Chosen experiments for comparison include

Khalak and Williamson (Khalak and Williamson, 1999), Gharib (Gharib, 1999),

Vikestad (Vikestad et al., 1997), and Smogeli (Smogeli et al., 2003). Khalak and

Williamson and Gharib shared multiple features. They both used vertical cylin-

ders, and had Reynolds numbers from 10,000 - 25,000; in its present configuration

the test rig is limited to an Re = 5500 - 16500. The Khalak and Williamson

(Khalak and Williamson, 1999) dataset used m* = 2.4 and ζ= 0.0058, and the

dataset from Gharib (Gharib, 1999) had m* = 28, ζ=0.0070, allowing for dra-

matically different m* to be simulated in the present study. The Khalak and

Williamson experiments were for a fixed Reynolds number and the Gharib exper-

iments were for a variable Reynolds number. In both cases there was no attempt

to match the Reynolds number exactly, which has led to some error, however

Reynolds numbers were similar.

In the cases of Vikestad (Vikestad et al., 1997) and Smogeli

(Smogeli et al., 2003) datasets involved variable Reynolds numbers, includ-

ing Reynolds number values of up to Re = 40000. Additionally, both systems

used horizontally suspended cylinders for their free vibration experiments,

as opposed to vertically mounted cylinders as in Khalak and Williamson

(Khalak and Williamson, 1999), Gharib (Gharib, 1999), and the present simula-

tion system. The particular dataset was chosen from Smogeli (Smogeli et al., 2003)

for conditions m* = 4.0, ζ=0.0094, and from Vikestad (Vikestad et al., 1997) for

m* = 1.277 and ζ=0.00147.
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Generally, the objective in all runs was to reproduce the basic shape of the

data as closely as possible. A range of U* values were selected as inputs to the

algorithm, with the spacing of values varying from U* = 0.05 - 0.5; this allowed an

increase in number of points around the anticipated hysterisis on the expectation

that these locations would require an increased number of data points to properly

determine the amplitude.

The algorithm was run with the objective of producing at least 20 data points

for comparison with each data set from the literature, for approximately 80 points.

Each point entailed between one (for several cases where the initial points guessed

were close enough to the convergence criteria) to eighteen test runs being con-

ducted. Convergence was highly dependent on the magnitude of Clv and was more

difficult to obtain in regions with low Clv values. In all, the system produced good

results for approximately forty full system iteration loops, completely reproducing

the experimental data from two cases, each of a different prior study. Two other

more dissimilar systems attempted did not yield good results, and the reasons for

these outcomes are also discussed.

4.1 Validation of experimental setup

To validate the experimental setup, single forced motion experiments were

performed and the resulting hydrodynamic force coefficients were compared with

equivalent experiments from Morse and Williamson (Morse and Williamson, 2009)

and Gopalkrishnan (Gopalkrishnan, 1993). This was done by commanding a sin-

gle experiment without the full loop, and comparing the values of CM and CLv

which resulted from the experiment with data from prior forced motion stud-

ies. Once a few initial results yielded correct outcomes, a total of twenty-five

more comparisons were performed. These points were compared with Morse and

Williamson (Morse and Williamson, 2009) at Re = 12000 and Re = 4000. The
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second source was a thesis by R. Gopalkrishnan (Gopalkrishnan, 1993) which also

contained forced motion data for these coefficients at Re = 1300. Some error ex-

ists due to slight differences in Reynolds numbers, so a comparison ∆Cm< 0.2 and

∆CLv< 0.2 was deemed sufficient to verify correct free measurements.

Good comparisons exist for CLv, with all of the cases tested producing rea-

sonable results. A complete table is reproduced in Appendix A; a select subset

is shown in Table 4.1. These values were compared to manually plotted points

on the Morse and Williamson (Morse and Williamson, 2009) and Gopalkrishnan

(Gopalkrishnan, 1993) graphs and verified to be within the ∆CLv< 0.2 limit for

error in comparison to the CLvvalue for the given value of A*.

actual A* CLv

0.2 0.233
0.4 0.0463
0.6 -0.2
0.8 -0.538
1 -1.08

Table 6: Selected CLv test values at Vr= 6.76.

Good comparisons (∆Cm ≤ 0.2) exist for Cm except for 6 cases out of 25. Two

different identifiable problematic regions occurred with the Cm data points. The

first was for A* = 0.8 - 1.0, Vr= 10. At these two points Cm was of the correct

sign but approximately twice the expected magnitude. The second was for the

case of A* = 0.2-0.6, Vr= 3.39-3.95. In this region Cm possessed the correct sign

but the magnitude was off by a margin greater than that considered acceptable, a

∆Cm ∼ 0.4 for all four of the points in question, in each case being greater than

the expected result, and never less than the expected result. For the first set of

points at a very high reduced velocity (Vr˜10), it is likely that the wake won’t even

synchronize for the given region, making comparisons and results dubious, though

this could not be tested without a large number of cycles or visualisation of the
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wake during the test. For the low reduced velocity (Vr˜3.3-3.95), the discrepancies

occur for high frequency motions with low amplitudes. In these conditions the

inertia will be large, while the fluid force may be relatively small. This might just

be an inherent error in the test rig which would only be alleviated with a lighter

cylinder, more sensitive force sensor, or better modeling of the inertia force. Since

the values do not affect convergence in a measurable way, the Cm errors could be

regarded as acceptable for the objectives of this system.

4.2 Initial simulation attempts

Vikestad (Vikestad et al., 1997) and Smogeli (Smogeli et al., 2003) comprise

the cases reviewed herein. In both cases the datasets involved variable Reynolds

numbers, including Reynolds number values of up to Re = 40000, and hori-

zontally instead of vertically suspended cylinders as in Khalak and Williamson

(Khalak and Williamson, 1999), Gharib (Gharib, 1999), and the present simula-

tion system. These datasets encountered problems which require discussion.
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4.2.1 Comparison with Smogeli.

Figure 15: The results of an attempt to reproduce the Smogeli data, overlaid in
red triangles from the original plot and re-projected to scale.

The results from Smogeli (Smogeli et al., 2003) were only partially repro-

duced, as shown in Fig.15. For the middle range of Vr response amplitudes are

comparable, however at high Vr the simulation overpredicts the response. At low

Vr, the simulation was unable to derive a response, hence comparisons cannot be

made; the simulation also did not capture the high amplitude response at Vr= 6.

This problem is most likely related to Reynolds number discrepencies or correlation

length.

4.2.2 Comparison with Vikestad.

In the case of Vikestad (Vikestad et al., 1997), the shape of the response curve

is captured by the simulation, however the A* curve looks to be shifted, almost

by a constant value. Fig.16 shows the measured response from Vikested compared

with the simulation from the present study.

Knowing that A* is a function of Reynolds number per Govardhan and
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Figure 16: Vikestad actual data versus Vikestad reproduction.

Williamson (Govardhan and Williamson, 2006), an approximation to correct for

Reynolds number is applied to account for the continuous variation in Reynolds

number in the actual Vikestad results. The approximation improves the compar-

ison, however, a large discrepency still exists, such that the argument that the

varying Reynolds number across the range of Vr actually caused the different A*

values cannot be sustained.

The results are clearly improved by showing closer normalized A* values across

the range of Vr, but does not yield comparable values for A*. For further compari-

son, however, both the original Vikestad data and the reproduction attempted were

plotted across the Morse and Williamson (Morse and Williamson, 2009) forced mo-

tion results for Re = 12000, with the original Vikestad (Vikestad et al., 1997) data

being normalized to a fixed Re = 16500, in the inverse of how Fig.17 was modified

to account for the changing Reynolds number in this original data. Thus, the plot

shows how the Vikestad experiments should appear if run at a constant Reynolds

number.
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Figure 17: Vikestad reproduction attempt modified by approximation from Go-
vardhan and Williamson (Govardhan and Williamson, 2006).

From these results it can be clearly seen that the convergence of Vikestad

et. al. occurs in a range where according to Morse and Williamson

(Morse and Williamson, 2009) it cannot., whereas values for the reproduction at-

tempt show convergence within an allowable range of error for CLv, bearing in

mind that these results were conducted with the first and less precise convergence

criteria. It must noted, however, that this graph is only completely applicable at

Re = 12000, so successful convergence by Vikestad (Vikestad et al., 1997) is still

probable; this outcome however demonstrates that precise matching of Reynolds

number may be necessary for truly accurate results.

4.3 Comparison with Khalak and Williamson.

A good comparison was made with the free vibration experiments of Khalak

and Williamson (Khalak and Williamson, 1999). These automated experiments
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Figure 19: Reproduction points plotted over Khalak and Williamson
(Khalak and Williamson, 1999) original chart.

used convergence criteria based on the final change in A* between two specific

iterations of the loop being less than 4% of the expected maximum value for that

set of runs. This value was selected on account that the system resolution would

make additional precision in A* physically impossible. The expected maximum

being the observed maximal A* value for the dataset being reproduced. At this

point the system would conclude that convergence had been achieved. Two kinds

of data were gathered. Firstly, the A* versus Vr data were compared by plotting

against Khalak and Williamson’s results. The attempt was made to most perfectly

reproduce the m* = 2.4 case. Secondly, the CLv data were gathered and a mean

difference in CLv is provided.

Fig.19 shows Nondimensional Amplitude, A* as a function of Vr, compared

with the experiments of Khalak and Williamson:

Convergence between the Khalak and Williamson values and the attempt to

reproduce them proved to be extremely good despite some issues with convergence,
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where it was possible for the algorithm to choose a negative A* value. This problem

with convergence was later addressed during experiments compared with Gharib

(Gharib, 1999), where the convergence criteria was modified to be based on CLv,

as described in section 3.5. This excellent convergence of results can be seen in

Fig.19.

The simulation does not capture the full curve of Khalak and Williamson, due

to the sparsity of simulation points, but the simulation does show clustered points

at the low Vr, low A* branch, the upper branch, and the high Vr, lower branch.

Some discrepencies exist at high Vr where the limited cycles of the simulation may

not result in a perfectly synchronized wake. Nonetheless, three distinct branches

are clearly shown and the maximum and typical amplitudes correspond extremely

well.

For these data it should also be considered that an earlier and less effective

convergence criteria was used. Despite allowing greater inaccuracy, the system at

this stage was still very capable of reproducing these free vibration data points.

Improvement of the convergence criteria shows significant improvement in com-

parisons.

Fig.20 is a convergence plot for these data. Each specific dataset shows lines

connecting each point in the iteration, illustrating the convergence process as the

system iterates through a series of experiments and converges on the correct an-

swer. A very interesting trend in these data displays itself. At high values of Vr,

large changes in Vr occur as the system attempts to converge. In the middle Vr

values corresponding with the 2P wake, extremely large amplitude changes but

small changes in Vr are observed as the system trends toward convergence. For

the complicated wake region at low Vr values, both patterns of convergence occur.

Finally, Clv values were also tabulated for the results of each converged point.
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Full tables of these values with the corresponding A* and Vr are provided in

Appendix B for Khalak and Williamson (Khalak and Williamson, 1999). Using

these data and the U* values which were chosen for each dataset and constant

for all iterations, a Clv expected for converging at that A* and was also calculated

and tabulated. This value essentially reproduces the values calculated as part of

the improved convergence process used in section 4.4 for the Gharib data. This

fact allows for the quality of convergences under the old and improved convergence

criteria to be compared.

With these values in hand, it was possible to calculate the error (the difference

between Clv and Clv expected) for each point. A mean error value of 0.1493 was

calculuated in Clv for the Khalak and Williamson (Khalak and Williamson, 1999)

reproduction, which is within the acceptable range for Clv variation used in proofing

the system. Likewise, the standard deviation was calculated as 0.1834, again inside

of the acceptable range during system proofing.

The new convergence criteria decided on for the Gharib dataset is that de-

tailed in Chapter 3.5.7. That makes these figures very important, because the

convergence criteria decided upon for improving the system and implemented per

3.5.7 for the Gharib (Gharib, 1999) reproduction was a ∆Clv< 0.2; this shows that

although some individual points of the Khalak and Williamson data were outside

of this improved convergence criterion, the mean and standard deviation of these

data were within it.

4.4 Comparison with Gharib (1999).

Gharib’s data (Gharib, 1999) were reproduced using the refined convergence

criteria described in 5.3. They are based on a much higher m* value of m* = 28

instead the m* = 2.4 of Khalak and Williamson (Khalak and Williamson, 1999),

but these experiments also used a low ζ value of ζ = 0.007. Despite the fact
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that m* > 20 is normally associated with experiments in air, these experiments

were conducted in water by Gharib. One result of this difference in m*, however,

is that the same hysterisis is not expected in these data, and indeed, only two

branches were observed in both Gharib’s free vibration experiments as well as in

the simulations from the present study.

The higher m* value results in a fundamentally different response per Khalak

and Williamson (Khalak and Williamson, 1999), who originally used their results

reproduced in 4.3 to argue that the response amplitude was primarily dependent

on m*. Gharib’s dataset thus provides a very different response to simulate, using

the same algorithm.

Gharib, unlike Khalak and Williamson varies u, velocity, in his free vibra-

tion response experiments. This provides an addition challenge for the simulation

system, as in the simulation each set of runs is conducted at constant velocity in

the forced motion to provide force coefficients for the simulation. Since Gharib’s

results have a different Re for each data point it is difficult to match Reynolds

number. Instead, the simulation is run with constant Reynolds number close to

the values in Gharib’s experiments.

The results were found to be extremely good in matching the free vibration

case from Gharib, and the same data format is followed below, with the amplitude

response as a function of Vr shown in Fig.21.

These data are not precisely as good as the reproduction of Khalak and

Williamson in matching the full range of data for Vr, with the range of the initial

branch shifted toward lower Vr values. Generally, however, the same maximum

values, positions of data-points, and range of values and trends remain compara-

ble throughout both sets of data. Differences in Re did not appear to significantly

affect the prediction method in this case. Fig.22 shows the plot of convergence
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Figure 21: A* vs. Vr for the case of Gharib (Gharib, 1999) and the reproduction
of Gharib’s data using the forced motion simulation system.

paths overlaid with Gharib’s data.

These data show the expected pattern over a more compressed range of con-

vergence trajectories with little change in Vr across comparable Vr values to those

for Khalak and Williamson (Khalak and Williamson, 1999) Fig.20, but without

the switch to large changes in Vr toward higher Vr convergence points, likely be-

cause of the compressed range of these data. The results still show more noticeable

changes in Vr in the area of lower Vr values for convergence, similar to Khalak and

Williamson. Broadly this can be seen as a damped response for the convergence.

Finally, the same error calculations were made for the Gharib comparison

as for the Khalak and Williamson case. It is important to note that of the 20

points compared, one of these points was converged upon using the old convergence

criteria. The other 19 used the updated and improved convergence criteria. For

the entire dataset, the result was a mean error of ∆Clv= 0.1360, and a standard

deviation of 0.1032, both significant improvements over the convergence criteria
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used for Khalak and Williamson. With the single point excluded using the old

convergence criteria, the remaining 19 points show a ∆Clv= 0.1206 and a standard

deviation of 0.0791. Based on these calculations and observations of these results

it is likely that the convergence criteria could be successfully tightened in the

future to ∆Clv< 0.15 and Clv> -0.05. The full tables of these data are available in

Appendix C.

4.5 Observations

Based on these data as reported above, it is argued that the system results may

be trusted for all cases involving vertical cylinders, regardless of m*, for low but

varied ζ values, and for fixed or variable Reynolds number across a dataset. The

cause of the system difficulties for horizontal cylinders and the possible relationship

between the difficulties and that condition is unknown, though possibly due to

the experimental setup, the way data is reported, and/or higher Re, and will be

discussed more in Chapter 5.

Convergence improved between Khalak and Williamson

(Khalak and Williamson, 1999) and Gharib (Gharib, 1999) due to the im-

plementation of the convergence criteria described in 3.5.7. One of the main

improvements in convergence ability between the two datasets is simply that for

Gharib, negative values of Clv were restricted to Clv> -0.1 since convergence can

never occur for negative Clvvalues, so a convergence at a negative Clv is a true

error and should be much more strictly limited than at positive values where

the multiple overlapping branches mean multiple convergences at a single value

of Vr. However, since the mean error in Clv reduces from 0.1493 to 0.1206, the

improvement clearly goes much beyond simply solving the negative value problem.

Based on the improvement in mean error, as well as the elimination of con-

vergence for outliers (∆Clv> 0.2), the Newton-Raphson method is observed to be
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successful as implemented in this algorithm. Several U* values were repeatedly

tested for convergence, with different initial amplitude guesses. In one case, the

use of a higher A* than the expected value saw convergence after three iterations,

and a lower A* saw convergence after seven iterations, but both correctly con-

verged to values within the margin of error (∆Clv< 0.2). A similar pattern was

observed for many points at different U* values, where a variety of initial guesses

ranging from A* = 0.2 to A* = 1.3 were tried over the course of the dataset for

similar but different U* values. In these cases, the worst convergence performance

was at low expected (and obtained) A* values, with the number of iterations being

as high as 12 for cases of U* < 5.5, typically associated with low Vr and low A*

values. In the case of high A* values the number of runs was more typically 3 - 5,

but if the initial guess for A* was lower rather than higher than the value of con-

vergence, the results tended toward 7 - 8 iterations to convergence. From literature

(surveying the bibliography), this method has not been previously attempted to

the knowledge of the author and represents a novel form of solving for convergence

in VIV simulation.

Fig.23 shows the runs (iterations) to convergence for the reproduction of Kha-

lak and Williamson (Khalak and Williamson, 1999), inclusive of multiple data-

points at the same value of U*. The mean number of runs to convergence was

5.7. Since the spatial area over which these iterations commenced varied (A* was

not a constant guess, but could be very close to the expected outcome or very

far, as could Vr, to intentionally test the system flexibility), this number is not

generally applicable over the range of simulation data. Fig.23 illustrates that runs

to convergence is not correlated with reduced velocity.

An interesting consequence of adopting the improved Newton-Raphson solver

method for driving iterations is that the mean number of runs reduced, to only
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3.9. However, this figure is of marginal value, though worth observing. These data

for Gharib (Gharib, 1999) are provided in Fig.24.
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CHAPTER 5

Conclusions and Recommendations

Problems caused by VIV are numerous and varied, presenting themselves

throughout a wide range of engineering applications. Both problematic drilling

risers for petroleum extraction and sustainable offshore wind towers experience

VIV. Future extraction from manganese nodules conceivably shall also rely on

systems of risers and slurry pipelines, for example.

These engineered systems require a level of precision in design which does not

presently exist. Conservatism in design cannot work for ocean renewable energy

to become competitive with traditional fossil fuels, while oil and gas exploration

in deepwater cannot afford catastrophic failures under operation. To bring costs

down, equipment and material must be precisely engineered and minimised. Doing

this requires an ability to conduct detailed study on VIV as an important com-

ponent of this process. This requires a truly adequate model of VIV, including

2-degree of freedom simulations which properly reflect the hydrodynamic forces

observed in nature.

This work has been undertaken to acheive the kind of reduction in effort

and complexity of research needed to improve VIV modeling in applications. The

objective throughout this process has been to achieve a system which can provide

on-demand simulation of VIV across a wide range of parameters. It has also

been to make that system one which will ultimately see the same level of on-

demand research applied to more accurate 2-degree of freedom and continuous

system simulations which may be used to fine-tune fatigue design of immersed

structures. The long term savings to be yielded from this improved understanding

of VIV as a phenomenon and a hazard to immersed structures will only serve to
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benefit and empower the development of offshore resources.

5.1 Principal Contributions of the Thesis
5.1.1 Development of the Algorithm.

The algorithm for semi-empirical simulation demonstrated in these results

serves as the leading contribution. Unlike previous semi-empirical systems rely-

ing on massive pre-defined databases, this system will find a stable solution for

simulating VIV, with significantly less experimental effort.

It also dispenses with the need to make inferences from data which may widely

vary. A given cylinder with m* and ζ values which do not match precisely those

of prior experimental data may not yield similar results, or those prior results may

not be applicable to the particular case under study. With a very short outlay of

time and no outlay of further resources, that specific unique cylinder may now be

precisely simulated. Demonstration of the 1-degree of freedom case offers a simple

expansion to unusual variations. Marginal changes in code would be required to the

existing system to account for non-cylindrical structures or cylinders with damping

devices. A mounting piece for a cylinder at an angle could easily be provided for

the experimental rig and experiments run on such cases. Even with extremely wide

differences between the test piece and the piece being simulated, the system has

demonstrated reliable results and can be robustly used to simulate even very large

cylinders as long as the Reynolds number constraints are met.

5.1.2 Simulation of 1-degree of freedom results.

Reliable reproduction of A*, U* points both as raw data and when normalized

by f* into A*, Vr data have been demonstrated. These data reproduce curves

from both Khalak and Williamson (Khalak and Williamson, 1999) and M. Gharib

(Gharib, 1999), across order of magnitude differences in normalized mass (m*)

values and damping ratio (ζ), resulting in a system that can operate across a
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large range of the mass-damping parameter (m*ζ). A Reynolds number range of

approximately 10,000 - 16,500 was also demonstrated across these experiments.

Results included both fixed Reynolds number curves (Khalak and Williamson)

and variable Reynolds number curves (Gharib) within the above range, including

points from Gharib up to a Re = 25,000. The number of experimental runs for any

single datapoint was consistently less than 18. This demonstrates that the system

can reproduce 1-degree of freedom free vibration data at a substantial reduction in

effort compared to the 70 experiment resolution for similar performance required

in Morse and Williamson (Morse and Williamson, 2009).

5.1.3 On Demand Simulation

Validation of the system of on-demand VIV simulation has been demonstrated.

With the success of the algorithm, the concept of using on-demand experiments

directly combined and executed simultaneously with an iterative solver has been

shown to be feasible. This outcome demonstrates the value of further develop-

ment of the on-demand method for 2-degree of freedom and continuous system

simulations.

5.1.4 Newton-Raphson Method

Likewise of interest is the successful use of the Newton Function itself. As

observed in Chapter 3.5.7, this has not been previously demonstrated as a method

for iterative solving in VIV simulation research. Therefore the method of solving for

the model of body motion through iterations of the Newton Function, both simple

and elegant, is completely new. It is an unexpected benefit of the project that it

has been demonstrated by the improved convergence criteria implementation to

work better than the traditional method of solving for the change in amplitude

over time, and should be of interest and use in future experimental efforts.
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5.2 Future Recommendations
5.2.1 Sparse Database

One future desire is that the prediction algorithm itself must be inherently

capable of ’learning’; it should not repeat experiments that have been previously

conducted, and should be able to obtain a solution simply from established data

if required to converge on a solution for which it already has data. This function-

ality will be critical if developing this method for continuous systems with larger

numbers of variables. Therefore, improvements to the data storage and imple-

mentation of an additional function which can do database search and retrieval is

highly desirable.

5.2.2 2-degree of freedom implementation

This research entailed development of a general algorithm for combining on-

demand experiments with the solution of the body equations of motion to predict

VIV for the case of a rigid cylinder segment. Since the algorithm is general,

increasing the degrees of freedom increases the number of parameters the solution

must converge upon, yet needs only trivial programming changes in principle. The

system has been necessarily designed to allow this expansion.

2-degree of freedom simulation will likely require an improved method for

convergence and simulation. For example, in addition to the Newton Function,

a Kriging analysis of the data from prior runs may be necessary to inform the

selection of the next set of A* and Vr parameters. Kriging would allow for the

virtual geography of the XY plane in terms of its likelihood of containing the

desired values for the stable solution versus those values already obtained through

prior trials. This would allow for the area of the coordinates defining a possible

region of convergence to be substantially reduced and allow the Newton Function

iterator to focus on a narrow range for the final series of test runs which would
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guarantee rapid convergence.

5.2.3 Testing of VIV suppression devices

In another opportunity, the existing system could easily accomodate any ver-

tical cylinder with streamers, fairings, strakes or other VIV suppression devices.

These fittings, normally used in reducing VIV oscillations on risers (Dahl, 2008),

remain a subject of considerable design effort. On-demand VIV simulation could

provide rapid and accurate comparison of an extremely large number of fittings

with reproducable baselines. In doing so, more effective fittings could be isolated

from a large range of design decisions. This would also potentially allow the de-

velopment of broad rules or equations governing the design of the best fittings for

a particular flow condition.

5.2.4 Continuous system simulations

As a further expansion on the 2-degree of freedom simulations that the algo-

rithm’s demonstration make possible to approach, full continuous system simula-

tions could ultimately be implemented. This would require an overarching pro-

gramme to implement combination of a series of runs representing different flow

conditions at a series of discrete points along a riser. The system could on-demand

call for additional experiments to refine the interaction of each section of the riser

being separately simulated as 2-degree of freedom system until the entire riser is

functioning iteratively as a continuous system.

5.2.5 Horizontal cylinder case

In principle, the use of a vertical or horizontal cylinder should not matter

for the purposes of VIV research. There is no demonstrated phenomenon which

would cause differences in the force coefficients between these cases. With all

nondimensional parameters properly matched, one would only expect that the
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vertical cylinder test rig could provide coefficients which would allow the simula-

tion system to properly simulate these cylinders. That is not the case, however.

In the specific situation of the Smogeli data (Smogeli et al., 2003), the use of a

force-feedback mechanism to pseudosimulate free vibration VIV could cause error,

but the Smogeli, et. al. data is in good agreement with several other VIV studies.

This possibility does not exist for Vikestad (Vikestad et al., 1997) who had a gen-

uine free vibration case. Therefore, uncertainty into the cause of this inability to

reproduce data from Smogeli and Vikestad remain.

Experiments could be continued to see if any change in the system would allow

it to simulate horizontal cylinders. Additional horizontal cylinder free vibration

experiments could be located and reproduction of their results attempted to see if

the trend continues or the results of Vikestad and Smogeli ultimately appear to be

outliers. In the long run it could be possible that a proper understanding of some

difference between horizontal and vertical cylinder alignments could be discovered,

or else errors in the system corrected and the accuracy of the simulation system

further improved.
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APPENDIX A

Force Coefficients and Charts used for Comparison

In this Appendix, the first table contains values of Clv and Cm produced by

single-iteration test runs of the experimental apparatus used in this thesis at a

given A* and Vr that correspond with selected values from Morse and Williamson

and Gopalkrishnan’s forced motion experiments at the same A* and Vr.

actual A* C m C m C m C m C m
0.2 -0.486 -1.182 2.59 1.67 1.63
0.4 -0.686 -0.498 2.311 1.98 1.745
0.6 -0.55 -0.45 2.078 1.995 1.785
0.8 -1.05 -0.41 1.755 1.8614 1.7719
1 -1.29 -0.4 1.138 1.4029 1.6453

guess 1/Vr 0.1 0.149253731 0.2 0.25 0.303030303
actual 1/Vr 0.085 0.148 0.211 0.2529 0.2951

actual A* C lv C lv C lv C lv C lv
0.2 -0.085 0.233 -0.814 -0.193 -0.316
0.4 -0.16 0.0463 -0.791 -1.06 -1.5216
0.6 -0.37 -0.2 -0.752 -1.151 -2.5067
0.8 -0.52 -0.538 -0.356 -1.8827 -3.6275
1 -0.815 -1.08 -1.289 -3.0689 -3.7889

guess 1/Vr 0.1 0.149253731 0.2 0.25 0.303030303
actual 1/Vr 0.085 0.148 0.211 0.2529 0.2951

Table A.1: System Proofing Clv/Cm result data used in reference points obtained
from graphs reproduced below and shown in figure A.2.
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actual A* C m C m C m C m C m
0.2 -0.65 -0.7 2.5 1.45 1.4
0.4 -0.58 -0.42 2.35 1.5 1.4
0.6 -0.55 -0.42 1.95 1.65 1.5
0.8 -0.59 -0.45 1.65 1.75 1.55
1 -0.55 -0.49 1.6 1.5 1.45

actual 1/Vr 0.085 0.148 0.211 0.2529 0.2951

actual A* C lv C lv C lv C lv C lv
0.2 -0.075 0.2 -0.75 -0.175 -0.25
0.4 -0.11 0.14 -1.1 -1.1 -1.3
0.6 -0.3 -0.09 -0.1.1 -1.1 -2.5
0.8 -0.45 -0.42 -0.3 -2.0 -2.7
1 -0.6 -0.9 -1.05 -3.0 -3.5

actual 1/Vr 0.085 0.148 0.211 0.2529 0.2951

Table A.2: System Proofing Clv/Cm comparison data acquired from figures below.

Figure A.1: Cm from Gopalkrishnan for forced motion proofing reference.
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Figure A.2: Clv from Gopalkrishnan for forced motion proofing reference.
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Figure A.3: Cm from Morse and Williamson (2009) for forced motion proofing
reference.

Figure A.4: Clv from Morse and Williamson (2009) referenced for forced motion
proofing.
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APPENDIX B

Tabular Clv Data, Khalak and Williamson (1999)

Vr A* Clv Clv expected Difference

6.4511 0.54088 -0.17344 0.053753 0.22719
6.9505 0.60266 0.054416 0.051619 0.0027973
7.3718 0.49898 0.050071 0.03761 0.012461
7.8539 0.48572 -0.0051598 0.032215 0.037375
9.0279 0.0042822 0.036262 0.00049416 0.035768
4.4063 0.16992 -0.2096 0.035712 0.24531
4.4055 0.52234 -0.029989 0.10402 0.13401
4.982 0.73933 0.10052 0.12369 0.023167
4.9484 0.78823 0.16508 0.13016 0.034928
5.0873 0.42294 -0.32771 0.066626 0.39434
5.7342 0.76207 0.055564 0.1007 0.045133
5.1228 0.78513 0.2916 0.12165 0.16995
5.0174 0.87658 0.2566 0.13608 0.12051
8.4102 0.4408 -0.76531 0.025696 0.79101
8.8142 0.2783 0.12752 0.014619 0.1129
9.2735 0.22836 -0.14132 0.010802 0.15212
9.5161 0.11627 0.20197 0.0050916 0.19688
10.04 0.083169 -0.21551 0.0032877 0.2188
3.504 0.19557 0.065681 0.066452 0.00077045
4.0105 0.19534 0.080574 0.050744 0.02983

Table B.1: Tabular Clv and Clv expected data for Khalak and Williamson, using
change in A* convergence criteria.
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APPENDIX C

Tabular Clv Data, Gharib (1999)

Vr A* Clv Clv expected Difference
4.8154 0.041384 -0.041851 0.043981 0.085832
5.0108 0.024237 -0.40484 0.023516 0.42836
5.5564 0.0633 0.16727 0.050351 0.11692
5.7793 0.63255 0.31749 0.47512 0.15762
5.7052 0.53461 0.39536 0.39962 0.0042598
6.2826 0.52667 0.34553 0.35135 0.005821
5.9379 0.5899 0.21417 0.40932 0.19515
5.2865 0.097073 -0.027366 0.085023 0.11239
6.0226 0.5818 0.21853 0.39139 0.17286
6.1065 0.58182 0.12682 0.37969 0.25287
7.6048 0.42664 0.10252 0.21996 0.11744
6.3749 0.48569 0.23927 0.29397 0.054706
6.3752 0.43155 0.31915 0.25711 0.06204
6.4689 0.48355 0.05455 0.27955 0.225
6.6688 0.33551 0.033722 0.18118 0.14746
7.1049 0.42456 0.060907 0.20751 0.14661
7.4784 0.29453 -0.072059 0.12765 0.19971
7.347 0.43602 -0.0097296 0.19899 0.20872
8.0299 0.14455 0.052651 0.0547 0.0020486
8.1794 0.026654 0.034324 0.0096019 0.024722

Table C.1: Tabular Clv and Clv expected data for Gharib (1999) using Newton-
Raphson Method except for Row 2
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APPENDIX D

Derivations of the Nondimensional amplitude and frequency defining
the 1-degree of freedom VIV case

D.1 Explanation of the Derivation

This part of the appendix contains a series of derivations related to the basic

equations of body motion for the 1-degree of freedom spring-mass-damper case of

VIV. The derivation makes usual assumptions of an inviscid and incompressible

fluid and a 2-dimensional flow case. It serves to reduce the dimensionalized case

of the equations of body motion based on the 1-degree of freedom spring mass

damper into the nondimensional coefficients that are used to define the motion for

this simulation and the related forced motion experiments, the final resolved A*

and f* used throughout the thesis that originate with the basic spring-mass-damper

system.

D.2 Variable Definitions

Contained in the table ”Derivation Variable Definitions” are the descriptions

of the variables used within these derivations. Contained in the table ”Nondi-

mensional Coefficients in the Derivation” are descriptions of the nondimensional

coefficients solved for or that components of the equations in the derivations are

reduced to over the course of working them.
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Variable Definition
m mass
b coefficient of damping
k spring constant
y transverse (normal to flow) position
f frequency
F force
ω angular velocity
φ phase angle

ma equivalent mass from forcing term
ba equivalent damping from forcing term
D Diameter of Cylinder
L Length of Cylinder
U Characteristic directional flow speed
D Diameter of Cylinder
ρ Density of water
fn System natural frequency.

Table D.1: Derivation Variable Definitions

Nondimensional
Coefficient

Definition

A* Nondimensional Amplitude
f* Frequency ratio (nondimensional frequency)
ζ Damping ratio

U* Nominal Reduced Velocity / Nondimensional
velocity

CL Coefficient of Lift
CM Coefficient of Added Mass
m* Mass ratio (nondimensional mass)

Table D.2: Nondimensional Coefficients in the Derivation

D.3 Derivation
D.3.1 Initial Derivation of ma and ba

The first component of the derivation is for ma and ba, the effective added

mass and the effective added damping. These terms are based on the principle of

rewriting the basic equation of motion my”+by’+ky=F in terms which eliminate

the existing of the forcing function by creating an equivalent mass and equivalent
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damping which represent the applied force to the body. This makes the iterative

solution of the problem undertaken in this thesis possible from a mathematical

perspective by permitting the nondimensionalisation of the problem, when the

co-dependence of ma and ba necessitate it in the first place.

my′′ + by′ + ky = F

y(t) = yo cos(2πft)

y′(t) = −yo2πf sin(2πft)

y′′(t) = −yo4π2f 2 cos(2πft)

The first component comprises the decomposition of the forcing term in relation

to the first, second and third derivatives of the position of the cylinder undgoing

VIV. It establishes the component relationships required for the derivation of

ma,ba.

my′′ + by′ + ky = F

F (t) = Fo sin(ωt+ φ)⇒

F = Fo cos(ωt+ φ)

= Fo cosφ cos(ωt)− Fo sinφ sin(ωt)⇒

my′′ + by′ + ky = Fo cosφ cos(ωt)− Fo sinφ sin(ωt)⇒

my′′ + by′ + ky = may
′′ − bay′ ⇒

(m+ma)y” + (b+ ba)y
′ + ky = 0

The second component decomposes the forcing term into ma, ba, accounting for

the different phase angles of the acceleration and velocity dependent force terms.
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The nature of these phase angles results from the derivatives of position into

velocity and acceleration as demonstrated above.

D.3.2 Derivation for A*

This is the component of the derivation for A*. Since A* and f* are dependent

upon each other, the derivation is not resolvable independently of f*, however, it

is presented separately for convenient since the problem involves characterising

the equation by simultaneous solution for both A* and f*.

my′′ + by′ + ky = Fo cos(ωt+ φ)

my′′

0.5ρU2DL
+

by′

0.5ρU2DL
+

ky

0.5ρU2DL
=
Fo cos(ωt+ φ)

0.5ρU2DL

CL =
Fo

0.5ρU2DL

my′′

0.5ρU2DL
+

by′

0.5ρU2DL
+

ky

0.5ρU2DL
= CL cos(ωt+ φ)

With CL now incorporated, giving us the basic coefficient of lift, establishment of

the full equation can begin, starting by listing additional components required.

For fn =

√
k
m

2π
,U∗ = 2Uπ√

k
m
D

And, b = 4πζmfn; k = 4π2fnm

my′′

0.5ρU2DL
+

4πζmfny
′

0.5ρU2DL
+

4π2fnmy

0.5ρU2DL
= CL cos(2πft+ φ)

0.5ρU2LCL cos(2πft+ φ) =
Fo4π

2f 2m cos(ωt)

D
− Fomω

2 cos(ωt)

D
− Fo4ωπζmfn sin(ωt)

D
⇒

Fo
D

=
0.5CLρU

2L cos(φ)cos(ωt)− 0.5CLρU
2L sin(φ) sin(ωt)

(4π2f 2
nm−mω2) cos(ωt)− 4πζmfn sin(ωt)ω

Whereas for F = Fo, cos → 0;
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Finally, having defined Fo, and incorporating additional definitions of U* and f*

based on equivalencies to the first set of definitions, we may now fully write the

equation for A* in nondimensional form.

Fo
D

=
0.5CLρU

2L sin(φ) sin(ωt)

4πζmfn sin(ωt)ω

Fo
D

=
0.5CLρU

2L sin(φ)

4πζmfnω

Then, as m* is defined as m∗ = 4m
πρD2L

,

Fo
D

=
CLU

2 sin(φ)

2π2ζm ∗ fnD2ω

Defining U∗ = u
fnD

; f∗ = f
fn

,

Fo
D

=
CL sin(φ)U ∗2 f
2π2m ∗ ζ f ∗ ω

2π

2π
=⇒

Fo
D

=
CL sin(φ)U∗2

4π3m ∗ f ∗ ζ
= A∗

D.3.3 Derivation for f*

And for f*, the problem is rearranged and solved in nondimensional terms of f*,

again based on the co-dependency of f* and A* that is fundamental to the

iterative process reflected in this problem (and based on the fact that both ma

and ba are codependent upon each other).
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Fo
D

(4π2f 2
nm− 4mπ2f 2) = CLρU

2L cos(φ)⇒

f 2
n − f 2 =

0.5CL cos(φ)ρU2L

4A ∗ π2m
⇒

1− f 2

fn
=

0.5CL cos(φ)ρU2L

4A ∗ π2mfn

As Cm = 1
2π3

CL cos(φ)
A∗ (U∗

f∗ )2,

−f 2

f 2
n

=
π

4
Cm(

ρLD2

m
)− 1⇒

−f 2

f 2
n

= Cm(
1

m∗
)− 1⇒

f

fn
=

√
1− Cm

m∗
⇒

f∗ =

√
1− Cm

m∗

Thus the co-dependent nature of A* and f* requiring the iterative solution is

demonstrated, and the final useful arrangement of A* and f* shown.
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