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ABSTRACT 

 

This Thesis presents a prototype design for Sonobuoy Mobile Earthquake Recorder in 

Marine Areas by Independent Divers (Son-O-MERMAID), a floating instrument that acts as a 

freely drifting seismometer that captures acoustic signals caused by distant seismic activity.  

A first version of Son-O-MERMAID was built and deployed in October of 2012, but due to 

Hurricane Sandy the device was destroyed and data lost.  A major limitation of this device 

was the fact that acoustic data was collected and stored in a submerged computer at a depth 

of 2,000 feet and data was only accessible once the device was pulled out of the water at 

test completion.  A new prototype system, version 2 is described, constructed and 

successfully tested which provides additional features not offered by the previous version.  

These additional features consist of providing an effective algorithm to transfer acoustic data 

from the submerged computer to the surface in real time to be stored there for future 

analysis.  Additionally, a stratum one NTP server has been implemented with time 

synchronized to GPS so acoustic data can be time stamped.  Testing demonstrates that data 

is transferred in its entirety and in real time to the surface unit which will subsequently 

enable the transfer of data to a land-based station via IRIDIUM for real time analysis.  
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1 INTRODUCTION 

 

Son-O-MERMAID is a concept that evolved from MERMAID [1], a floating instrument 

that acts as a freely drifting seismometer equipped with a hydrophone that captures acoustic 

signals caused by distant seismic activity.  MERMAID is equipped with sensitive on-board 

acoustics, a battery life measured in months, and with the latest in seismic event detection 

and discrimination technology.  It floats at depth, but it surfaces upon event detection to 

acquire its GPS position and relay the seismic data via the IRIDIUM satellite constellation.  

MERMAID was developed by Guust Nolet, formerly from Princeton University and now at the 

University of Nice. 

 The Son-O-MERMAID instrument is a next generation drifting prototype, 

jointly developed at the University of Rhode Island (URI) by Harold Vincent and at Princeton 

University by Frederik Simons, that combines a surface buoy with instruments dangling from 

an untethered cable.  The surface unit enables the GPS and IRIDIUM capabilities to be always 

engaged.  The submerged portion of the device consists of a vertical array of three 

hydrophones and electronics located at a depth of ~750 meters.  The purpose for the vertical 

array of hydrophones is to separate non-propagating noise from seismic arrivals with 

removal of surface reverberations [2].  Figure 1-1 below, displays a complete view of Son-O-

MERMAID as envisioned by its inventors.   In 2012, a first version of a Son-O-MERMAID was 

built, and it had been designed to record acoustic data and store it in the submerged unit, 

keeping at the surface only the GPS and IRIDIUM communications modules to report its 

position and time to a land-based station.  Data could be analyzed only after the device is 

pulled out of the water at the conclusion of a planned test.  The greatest risks of this design 



2 
 

were: one, a wiring disconnect between the submerged and surface units due to a storm or 

other unpredicted event; two, to experience a data failure in the submerged unit with no 

means to be detected before the system is pulled out of the water at the conclusion of the 

test event.  
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Figure 1-1: Son-O-MERMAID as defined by Harold Vincent and Frederik Simons. 
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The objectives of this project are as follows: first, select the necessary hardware 

components based on cost and power efficiency for prototype implementation of Son-O-

MERMAID.  Second, design a telemetry algorithm that will reliably transfer the acoustic data 

from the submerged unit to a computer at the surface in real time which will additionally 

enable data transmission via IRIDIUM communications system to a land-based station for 

real time data analysis.  Third, synchronize the system time of the surface unit to a GPS 

receiver to provide data timestamp within one millisecond accuracy.  Four, design, build and 

test the prototype. 
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2 REVIEW OF LITERATURE 

 

2.1 THE NETWORK TIME PROTOCOL: FEATURES AND ALGORITHMS 

 

2.1.1 NETWORK TIME PROTOCOL DAEMON 

The ntpd program is an operating system daemon that synchronizes the system clock 

to remote NTP time servers or local reference clocks. It is a complete implementation of NTP 

version 4 defined by RFC-5905, but also retains compatibility with version 3 defined by RFC-

1305 and versions 1 and 2, defined by RFC-1059 and RFC-1119, respectively. The program 

can operate in any of several modes, including client/server, symmetric and broadcast 

modes, and with both symmetric-key and public key-cryptography [3]. Ordinarily, the ntpd 

program requires a configuration file which contains configuration commands described on 

the previous cited documentation. This is all described in detail in section 3.1.2.3.2 under the 

NTP update configuration file.  Clients can also discover remote servers and configure them 

automatically without previous configuration details. 

The ntpd program normally operates continuously while adjusting the system time 

and frequency; however, the user can control and decide how the ntpd should work by 

selecting the desired command line options.  The next section presents a full description of 

NTP, what it is and how it works.  

 

2.1.2 NETWORK TIME PROTOCOL (NTP) 

The Network Time Protocol (NTP) is an Internet protocol used to synchronize the 

clocks of computers to a time reference.  This standard protocol was developed by Professor 

David L. Mills at the University of Delaware.  Time synchronization across a network is very 



6 
 

important if communication programs are running on different computers. If the time is not 

synchronized, from the perspective of an external observer, switching between these 

systems would cause time to jump forward and back, a non-desirable effect.  As a 

consequence, isolated networks may run under their own wrong time, but effects will be 

visible as soon as a connection to the internet is established.  Using available technology with 

existing workstations and Internet paths, it has been demonstrated that computers can be 

reliably synchronized to better than a millisecond in LANs and better than a few tens of 

milliseconds in most places in the global Internet [4].  The majority if not all references used 

in this section are to professor Miller’s work; he created the NTP protocol two decades ago 

and today he continues his investigation to improve its performance. 

 

2.1.2.1 BASIC FEATURES OF NTP 

a. NTP needs a reference clock that defines the true time to operate.  All clocks in the 

network will be set towards that true time. 

b. NTP uses Universal Time Coordinated (UTC) as reference time. UTC is an official 

standard for the current time which evolved from the former Greenwich Mean Time 

(GMT). This time is independent from time zones and is based on a quantum 

resonance of a cesium atom, being more accurate than GMT which is based on mean 

solar time. 

c. NTP is a fault-tolerant protocol that will automatically select the best of several 

available time sources to synchronize to. Insane time sources will be detected and 

avoided.  
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d. NTP is highly scalable synchronization network where nodes exchange time 

information. The time information from one node to another form a hierarchical 

graph with reference clocks at the top. 

e. NTP selects the best candidates for its time out of many available sources. It uses a 

highly accurate protocol with a resolution of less than a nanosecond. 

f. When a network connection is temporarily unavailable, NTP uses measurements 

from the past to estimate current time. 

g. NTP works on most popular UNIX Operating Systems and Windows.  As of December 

of 2013 there are two versions of NTP available: version 3 is the official Internet 

standard and version 4 is the current development version with specification RFC 

5905, which describes NTP specifics and summarizes information useful for its 

implementation. In addition, some vendors of operating systems customize and 

deliver their own versions of NTP. For MERMAID NTP version 4 was used and its 

installation and configuration was customized to efficiently make it run on the 

Raspberry Pi and synchronize with a GPS receiver as its time source.   

 

2.1.2.2 NEW FEATURES OF NTP V4 
According to the NTP v4 release notes, the new features of version four as compared 

to version three are: 

a. Use of floating point arithmetic instead of fix-point (integer arithmetic). 

b. Redesigned clock discipline algorithm that improves accuracy, handling of network. 

jitter and polling intervals. 

c. Support for nanokernel kernel implementation that provides nanosecond precision. 

d. Public-Key cryptography known as autokey that avoids having common secret keys. 
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e. Automatic server discovery (manycast mode). 

f. Fast synchronization at startup and after network failures (burst mode). 

g. New and revised drivers for reference clocks. 

h. Support for new platforms and operating systems. 

 

2.1.2.3 HOW NTP WORKS 

NTP time synchronization services are widely available in the public Internet with 

several thousand servers distributed in most countries.  The NTP subnet operates with a 

hierarchy of levels where each level is assigned a number called the “stratum”.  Stratum 1 

(primary) servers are at the lowest level and directly synchronized to national time services 

via satellite, radio or telephone modem.  Stratum 2 (secondary) servers are at the next higher 

level synchronized to stratum 1 servers and so on. Clients, on the other hand, in order to 

provide the most accurate, reliable service, typically operate with several redundant servers 

over diverse network paths. 

 

2.1.2.4 NTP TIMESCALE AND DATA FORMANTS 

NTP clients and servers synchronize to the UTC timescale used by national 

laboratories and disseminated by radio, satellite and telephone modem; corrections for time 

zone of daylight savings are performed by the operating system. This time scale is 

determined by the rotation of the Earth about its axis, and since Earth rotation is gradually 

slowing down relative to International /atomic Time (TAI), in order to correct UTC with 

respect to TAI a leap second is inserted at intervals of about 18 months, as determined by 

the International Earth Rotation Services (IERS). There are three approaches to implementing 

a leap second in NTP.  The first approach is to increment the system clock during the leap 
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second and continue incrementing following the leap.  One problem with this approach is 

that conversion to UTC requires knowledge of all past leap seconds and epoch of insertion.  A 

second approach is to increment the system clock during the leap second and step the clock 

backward one second at the end of the leap second.  The problem is that the resulting 

timescale is discontinuous and a reading during the leap is repeated one second later.  The 

third approach is to freeze the clock during the leap second allowing the time to catch up at 

the end of the leap second; this is the approach taken by the NTP conventions.  Leap second 

warnings are disseminated by the national laboratories in the broadcast time-code format, 

and these warnings are propagated from the NTP primary servers via other servers to the 

clients by the NTP on-wire protocol. The leap second is implemented by the operating 

system kernel.  About every eighteen months the International Earth Rotation Service (IERS) 

issues a bulletin announcing the insertion of a leap second in the UTC timescale.  This 

normally happens at the end of the last day of June or December and even though this 

bulletin is available on the Internet at “www.iers.org”, advance notice of leap seconds is 

given in signals broadcast from national time and frequency stations, in GPS signals and in 

telephone modem services.  Many but not all reference clocks recognize these signals and 

many but not all drivers can decode the signals and set the leap bits in the time-code 

accordingly.  This means that many but not all primary servers can pass on these bits in the 

NTP packet heard to dependent secondary servers and clients.  Secondary servers will pass 

these bits to their dependents and so on throughout the NTP subnet.  When no means are 

available to determine the leap bits from a reference clock or downstratum server, a 

leapseconds file can be downloaded from “time.nist.gov” and installed.  If the precision time 

kernel support is available and enabled at the beginning of the day of the leap event, the 

leap bits are set by the Unix “ntp_adjtime ()” system call to arm the kernel for the leap at the 
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end of the day, then the kernel will automatically insert one second exactly at the time of the 

leap, after which the leap bits will be turned off.  If the kernel support is not available or 

disabled, the leap is implemented by setting the clock back one second using the Unix 

“settimeofday ()” system call, which will repeat the last second.  However setting the time 

backwards by one second does not actually set the system clock backwards, but effectively 

stalls the clock for one second. 

There are two time formats used by NTP, a 64-bit timestamp format and a 128-bit 

“datestamp” format.  The “datestamp” format is used internally, while the timestamp format 

is used in packet headers exchanged between clients and servers.  These time formats are 

shown in figure 2-1 below [5].The timestamp format spans 136 years, called an era.  The 

current NTP era began on 1 January 1900, and the next one will begin in 2036. 

 

Figure 2-1: NTP Data Formats   
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2.1.2.5 ARCHITECTURE AND ALGORITHMS 
 

 

Figure 2-2:  NTP Daemon Processes and Algorithms 

 

Figure 2-2 shows the overall organization of the NTP architecture as both a client of 

upstream lower stratum servers and as a server for downstream higher status clients.  The 

figure shows three servers as the remote synchronization source where each of these servers 

communicates with a pair of peer/poll processes.  Packets are exchanged between the client 

and server using the on-wire protocol described later in this document.  The poll process 

sends NTP packets at intervals ranging from 8 seconds to 36 hours, and these packets are 

managed in a way to maximize accuracy while minimizing network load.  The peer process 

receives NTP packets and performs the packet sanity test then it discards the packets that fail 

the test.  For the packets that succeed the test, the peer process runs the on-wire protocol 

that uses four raw timestamps: the origin timestamp T1 upon departure of the client 

request, the receive timestamp T2 upon arrival at the server, the transmit timestamp T3 

upon departure of the server replay, and the destination timestamp T4 upon arrival at the 

client. This timestamps are recorded by the “rawstats” option of the “filegen” command, and 

are used to calculate the clock offset and roundtrip delay samples: 
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Clock offset 

θ = [(T2 – T1) + (T3 – T4)] / 2, 

(T4 – T1) is the time elapsed on the client side between the emission of the request packet 

and the reception of the response packet. 

(T3 – T2) is the time the server waited before sending the answer.  

 

Roundtrip delay  

δ= (T4 – T1) – (T3 – T2). 

 The offset and delay statistics are processed by a set of mitigation algorithms, and 

the offset and delay samples most likely to produce accurate results are selected, and the 

servers that passed the sanity tests are declared selectable. Later, from the selectable 

population statistics are used by the “clock select algorithm” to determine a number of 

truechimers according to Byzantine agreement and correctness principles.  Another set of 

algorithms combine the survivor offsets, designate one of them as the system peer and 

produces the final offset used by the “Clock Discipline Algorithm” to adjust the system clock 

time and frequency.  The following section describes in more details the above mentioned 

algorithms. 

 The NTP software operates in each server and client as an independent process of 

daemon. The architecture of NTP daemon is illustrated in Figure 2-3.  At designated intervals, 

a client sends a request to each in a set of configured servers and expects a response at some 

later time.  The exchange results in four timestamps readings and these times are used by 
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the client to calculate the clock offset and roundtrip delay relative to each server separately.  

The clock filter algorithm discards offset “outlyers” associated with large delays, which can 

result in large errors. These clock offsets produced by the clock filter algorithm for each 

server separately are then processed by the intersection algorithm in order to detect and 

discard misbehaving servers called “falsetickers”.  The “truechimers” remaining are 

processed by the clustering algorithm to discard outlyers.  The survivors remaining are then 

weighted by synchronization distance and combined to produce the clock correction used to 

discipline the computer clock by the clock discipline algorithm.  This algorithm is described in 

more detail in the following section. 

 

Figure 2-3:  NTP ARCHITECTURE [6] 

 

2.1.2.5.1 CLOCK FILTER ALGORITHM 

The clock filter algorithm processes the offset and delay samples produced by the 

on-wire protocol for each peer process separately.  It uses a sliding window of eight samples 

and picks out the sample with the least expected error.  As the delay increases, the offset 

variation increases, so the best samples are those with the lowest delay. If the sample with 

lowest delay can be found, it would also have the least offset variation and would be the best 

candidate to synchronize the system clock. The clock filter algorithm works best when the 
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delays are statistically identical in the reciprocal directions between the server and client.  

When delays are not reciprocal, or where the transmission delays on the two directions are 

traffic dependent, this may not be the case.  A common case is downloading or uploading a 

large file using DSL links; typically the delays are significantly different resulting in large 

errors.  

In the clock filter algorithm the offset and delay samples from the on-wire protocol 

are inserted as the youngest stage of an eight-stage shift register, those discarding the oldest 

stage.  Each time an NTP packet is received from a source, a dispersion sample is initialized as 

the sum of the precisions of the server and client.  Precision is defined by the latency to read 

the system clock and varies from 1000 nanoseconds (ns) to 100 milliseconds (ms) in modern 

machines.  The dispersion sample is inserted in the shift register along with the associated 

offset and delay samples, and then the dispersion sample in each stage is increased at a fixed 

rate of 15 µs/s representing the worst case error due to skew between the server and client 

clock frequencies.  In each peer process the clock filter algorithm selects the stage with the 

smallest delay which generally represents the most accurate data. The peer jitter statistic is 

then computed as the root mean square (RMS) differences between the offset samples and 

the offset of the selected stage. The peer dispersion statistic is determined as a weighted 

sum of the dispersion samples in the shift register.  As samples enter the register, the peer 

dispersion drops from 16 s to 8 s, 4 s, 2 s, and so forth. 

When a source becomes unreachable, the poll process inserts a dummy infinity 

sample in the shift register for each poll sent, and after eight polls the register returns to its 

original state.  Once a sample is selected it remains selected until a newer sample with lower 

delay is available. This typically occurs when an older selected sample is discarded from the 
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shift register.  The result can be the loss of up to seven samples in the shift register. The 

output sample rate can never be less than one in eight input samples.  The clock discipline 

algorithm is designed to operate at this rate.  

 

2.1.2.5.2 CLOCK SELECT ALGORITHM 

The clock select algorithm determines from a set of sources which are correct 

(truechimers) and which are not (falsetickers) based on a set of formal correctness 

assertions.  To begin with, a number of sanity checks are performed to sift the selectable 

candidate from the source population. 

a. A stratum error occurs if the source had never been synchronized, or if the stratum of 

the source is below the floor option or not below the ceiling option of the “tos” 

command.  The default values for these options are 0 and 15, respectively.  It is 

important to note that 15 is a valid stratum for a server, but a server operating at that 

stratum cannot synchronize clients. 

b. A distance error occurs for a source if the root distance (also known as synchronization 

distance) of the source is not below the distance threshold “maxdist” option of the “tos” 

command.  The default value for this option is 1.5 seconds 

c. A loop error occurs if the source is synchronized to the client. This can occur if two peers 

are configured with each other in symmetric modes. 

d. An unreachable error occurs if the source is unreachable or if the server or peer 

command for the source includes the “noselect” option. 

Sources showing one or more of these errors are considered non-selectable.  On the 

other hand, only the selectable candidates are considered in the following algorithm: given 
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the measured offset θₒ and root distance λ, the correctness interval is defined as [θₒ - λ, θₒ + 

λ] of points where the true value of θ lies somewhere on the interval.  The problem now 

consists in determining from a set of correctness intervals which represent truechimers and 

which represent falsetickers and in search of this solution a new interval is defined: the 

intersection interval is the smallest interval containing points from the largest number of 

correctness intervals.  A candidate with a correctness interval that contains points in the 

intersection interval is a truechimer and the best offset estimate is the midpoint of its 

correctness interval. Furthermore, a candidate with a correctness interval that contains no 

points in the intersection interval is a “falseticker”. In summary, the midpoint sample 

produced by the clock filter algorithm is the maximum likelihood estimate and thus best 

represents the truechimer time. 

 

2.1.2.5.3 CLOCK CLUSTER ALGORITHM  

The Clock Closter algorithm processes the truechimers produced by the clock select 

algorithm to produce a list of survivors which are used by the mitigation algorithms to 

discipline the system clock. The cluster algorithm operates in a series of rounds; at each 

round the truechimer furthest from the offset centroid is pruned from the population. The 

rounds are continued until a specified termination condition is met.  First, the truechimer 

associations are saved on an unordered list with each candidate entry identified with index i 

(i = 1, .., n), where n is the number of candidates.  Let θ(i) be the offset and λ(i) be the root 

distance of the ith entry.  Recall that the root distance is equal to the root dispersion plus 

half the root delay.  For the ith candidate a statistic called the select jitter relative to the ith 

candidate is calculated as follows.  Let dᵢ(j) = |θ(j) – θ(i)| λ(i), where θ(i) is the peer offset of 

the ith entry and θ(j) is the peer offset of the jth entry, both produced by the clock filter 
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algorithm.  The metric used by the cluster algorithm is the select jitter φs(i) computed as the 

root mean square (RMS) of the dᵢ(j) as j ranges from 1 to n.  The objective at each round is to 

prune the entry with the largest metric until the termination condition is met.  The select 

jitter must be recomputed at each round, but the peer jitter does not change.  The 

termination condition has two parts.  First, if the number of survivors is not greater than the 

“minclock” threshold set by the “minclock” option on the “tos” command, the pruning 

process terminates.  The “minclock” defaults is 3, but can be changed to fit special 

conditions.  The second termination condition is more intricate.  Figure 2-4 below shows a 

round where a candidate of (a) is pruned to yield the candidates of (b). Let φmax be the 

maximum select jitter and φmin be the minimum peer jitter over all candidates.  In (a), 

candidate 1 has the highest select jitter, so φmax = φs(1).  Candidate 4 has the lowest peer 

jitter, so φmin = φʀ(4).  Since φmax > φmin, select jitter dominates peer jitter so the 

algorithm prunes candidate 1.  In (b), φmax = φs(3) and φmin = φʀ(4).  Since φmax < φmin, 

pruning additional candidates does not reduce select jitter, and the algorithm terminates 

with candidates 2, 3 and 4 as survivors. The survivor list is passed on to the mitigation 

algorithms, which combine the survivors, select a system peer, and compute the system 

statistics passed on to dependent clients. 
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Figure 2-4: Cluster Algorithm [7]  

 

2.1.2.5.4 CLOCK DISCIPLINE ALGORITHM (NTP V4) 

The Clock Discipline algorithm adjusts the computer clock time as determined by 

NTP, compensates for the intrinsic frequency error, and adjusts the poll interval and loop 

time constant dynamically in response to measured network jitter and oscillator stability.  

The algorithm functions as a hybrid of two different feedback control systems.  In a phase-

lock loop (PLL) design, the measured time errors are used to discipline a type-II feedback 

loop which controls the phase and frequency of the clock oscillator.  In the frequency-lock 

loop (FLL) design, the measured time and frequency errors are used separately to discipline 

type-I feedback loops, one controlling the phase and the other controlling the frequency. 

 The system processes polls the peer processes at intervals from a few 

seconds to over a day, depending on peer type.  When a new sample of offset, delay and 

dispersion is available in a peer process, a bit is set in its state variables.  The system process, 

upon noticing this bit, clears it and calls the clock selection, clustering and combining 

algorithms.  This algorithm adjusts the clock oscillator time and frequency with the aid of the 

clock adjust process, which runs at intervals of one second. 
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Figure 2-5:  Clock Discipline Algorithm 

 

The clock discipline algorithm is implemented as a feedback control loop shown in 

Figure 2-5. The variable θr represents the reference phase provided by NTP and θc the 

control phase produced by the variable-frequency oscillator (VFO), which controls the 

computer clock.  The phase detector produces a signal Vd that represents the instantaneous 

phase difference in between θr and θc.  The clock filter functions as a tapped delay line, with 

the output Vs taken at the sample selected by the algorithm.  The loop filter, with impulse 

response F(t) produces a correction Vc which controls the VFO frequency θc and thus its 

phase θc.  The characteristic behavior of this model, which is determined by F(t) and the 

various gain factors is studied many text books and summarized in [8].  

This redesigned clock discipline algorithm used in NTP v4 is implemented using two 

sub algorithms, one based on a linear, time-invariant PLL, and the other on a nonlinear, 

predictive FLL. Both predict a time correction x as a function of phase error θ, represented by 

Vs in Figure 2-6. 
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Figure 2-6: FLL/PLL Prediction Functions 

 

The PLL predicts a frequency adjustment yPLL as an integral of past time offsets, 

while the FLL predicts a frequency adjustment yFLL directly from the difference between the 

last time correction and the current one.  The two adjustments are combined and added to 

the current clock frequency y, as shown in figure 2-6.  Then the x and y are used by the clock 

adjust process to adjust the VCO frequency and close the feedback loop, as shown in Figure 

2-5.  A complete mathematical derivation of the clock discipline algorithm is described in [9]. 

 

2.1.2.5.5 NTP POLL PROCESS 

The poll process sends NTP packets at intervals determined by the clock discipline 

algorithm.  The process is designed to provide a sufficient update rate to maximize accuracy 

while minimizing network overhead.  This rate is determined by a poll (power of 2) exponent 

with a range between 3 (8 seconds) and 17 (36 hours). The minimum and maximum poll 

exponent within this range can be set using the “minpoll” and “maxpoll”  options of the 
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server command, with default of 2^6 (64 seconds) and 2^10 (1024 seconds) respectively in 

NTP v3.  However, in NTP v4 these values can be set to a minimum of 2^4 (16 seconds) and a 

maximum of 2^17 (131,072).  Within this range, the clock discipline algorithm automatically 

manages the poll interval based on current network jitter and oscillator wander.  The poll 

interval is managed by a heuristic algorithm developed over several years of experimentation 

and depends on an exponentially weighted average of clock offset differences, called clock 

jitter, and a jiggle counter. 

As an option of the server command, instead of a single packet, the poll process can 

send a burst of several packets at 2-s intervals. This is intended to reduce the time to 

synchronize the clock at initial startup (iburst) and /or to reduce the phase noise at the 

longer poll intervals (burst). For the iburst option 6 packets are sent in the burst, which is the 

number normally needed to synchronize the clock; for the burst option, the number of 

packets in the burst is determined by the difference between the current poll exponent and 

the minimum poll exponent as a power of 2.  For example, with the default minimum poll 

exponent of 6 (64 seconds) only one packet is sent for every poll, while the full number of 

eight packets is sent at poll exponents of 9 (512 seconds).  This will ensure that the average 

headway will never exceed the minimum headway.  In addition, when ibusrt or burst is 

enabled, the first packet of the burst is sent, but the remaining packets sent only when the 

reply to the first packet is received.  This means that, even if a server is unreachable, the 

network load is no more than at the minimum poll interval.  A key statistic to control the poll 

interval is the RMS error measured by the clustering algorithm which sifts the best subset of 

clocks from the current peer population.  This process is called “select dispersion” and 

expressed by “SEL”.  These samples square values are held in a shift register.  The system 
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dispersion “SYS” is then calculated from the RMS sum of “SEL” and the peer dispersion 

“PEER” of the selected peer.   

 

Where n = 4 samples chosen by experiment.  If |θ| > YSYS, Where Y = 5 is 

experimentally determined, the oscillator frequency is deviating too fast and the poll interval 

is reduced in stages to the minimum.  If the opposite case holds for some updates, the poll 

interval is slowly increased in steps to the maximum. Under typical operating conditions, the 

interval hovers close to the maximum, but on occasions, when the oscillator frequency 

wanders more than about 1 PPM, it quickly drops to lower values until the wander subsides.   

 

2.1.2.5.6 NTP CLOCK STATE MACHINE 

The NTP algorithms work well to sift good data under conditions of light to moderate 

network and server loads, but under conditions of extreme network congestion, operating 

system latencies, and oscillator wander, linear time-invariant systems (PLL) and predictive 

systems (FLL) may fail.  The results can be frequent time step changes and large time and 

frequency errors, and in order to work with large transients the clock discipline algorithm in 

NTP v4 is managed by the state machine shown below in figure 2-7. 
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Figure 2-7: Clock State Machine 

 

Initially, the machine is unsynchronized and in UNSET state, then if the minimum poll 

interval is 1,024 s or greater, the first update received sets the clock and transitions to HOLD 

state.  If the interval is less than 1,024 s these actions will not occur until several updates to 

allow the synchronization to be reduced below 1 s, and allow the algorithms to accumulate 

reliable error estimates. 

In HOLD state, sanity checks, spike detectors and tolerance clamps are disabled, and 

the clock discipline algorithm is forced to operate in FLL mode only to allow the fastest 

adaptation to the particular oscillator frequency.  The machine remains in this state for at 

least 5 updates.  After this and the nominal clock offset has decreased below 128 

milliseconds, the machine transitions to SYNC state and remains there pending unusual 

conditions. 
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In SYNC state, the sanity checks, spike detectors and tolerance clamps are operative.  

To protect against frequency spikes in FLL predictions at small update intervals, the 

frequency adjustments are clamped at 1 PPM, and to protect against runaway frequency 

offsets in FLL predictions at large update intervals, the frequency estimate is clamped at 500 

PPM, and finally, to protect against disruptions due to severe network congestion, frequency 

adjustments are disabled if system dispersion exceeds 128 milliseconds. 

 

2.2 THE GLOBAL POSITIONING SYSTEM DAEMON (GPSD)    

GPSD is a software program that monitors one or more GPS or AIS receivers attached 

to a host computer through serial or USB ports.  AIS (Automatic Identification System) is a 

device installed on some vessels and used to transmit their position, speed and course 

among other information. A gpsd program makes all data on the location/course/velocity of 

the sensors available to be queried on TCP port 2947 of the host computer. With gpsd, 

multiple time and location-aware client applications such as NTP can easily share access to 

these receivers without contention or loss of data.  

 

2.3 PULSE PER SECOND (PPS) 
PPS is an electrical signal that has a width of less than a second and a sharply rising or 

abruptly falling edge that accurately repeats once per second.  This signal is output by radio 

beacons, GPS receivers and other types of precision oscillators.   This signal can be used to 

discipline the local clock oscillator to a high degree of precision, typically to the order less 

than 10 s in time and 0,01 parts-per-million (PPM) in frequency.  The PPS signal can be 

connected via the data carrier detector (DCD) pin of a serial port or via the acknowledge 

(ACK) pin of a parallel port.  Both connections require operating system support.  It is 
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available in Linux, FreeBSD and Solaris.  Support is also available on an experimental basis for 

several other systems.  The PPS application program interface defined in RFC-2783 (PPSAPI) 

is the only PPS interface supported; older versions are no longer supported. 

 

2.4 SYNCHRONIZATION OF THE NTP SERVER WITH GPS AND PPS 

Our objective of this section is to have a Global Positioning System (GPS) receiver 

device driving a pulse-per-second (PPS) signal to the Network Time Protocol Daemon (NTPD) 

server for a highly accurate time reference server. This section will include two parts: the first 

one describes the devices, drivers and daemons necessary to establish the system time 

synchronization with the GPS receiver, and the second part which will be covered in the next 

chapter, will summarize the configuration steps and configuration files necessary to get the 

system up and running and synchronized to a GPS receiver with an accuracy that depends on 

the GPS receiver type. 

 

2.4.1 THE GPS DEVICE 

The author has found two ways to propagate the PPS signal to the ntpd server, each 

case presenting its own variants. However, the GPS receiver must be a device capable of 

sourcing two different types of data: the absolute data and time, and the 1-Hz clock signal 

(PPS).  The first one provides the complete information of the current date and time with 

poor accuracy since this information is sent over the data line of the serial port (TxD/pin 2) 

and encoded using some type of protocol, i.e. NMEA. The PPS on the other hand, provides a 

very accurate clock (1 µS in the GPS 18LVC receiver) but with no reference at all to the 

absolute time.  This signal is wired to the Data Carrier Detect (DCD) pin 1 of the serial port.  

PPS indicates with good precision when each out second begins, but it does not tell us which 
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second it is.  Due to this fact this timing information must be combined with the protocol 

messages sent by the GPS receiver to have both precision and a complete timestamp at the 

same time.  This GPS device must speak the NMEA protocol which sends out NMEA messages 

every second. 

 

2.4.2 NTPD REFERENCE CLOCKS 

The NTPD server supports several types of drivers, these drivers are low level 

callback functions that are registered within the NTPD core and implement the access to 

several types of local clocks such as GPSs.  Each driver is identified by a pseudo-IP address 

identifier and listed in the NTP configuration file located at “/etc/ntp.conf”.  There are two 

drivers involved within the GPS/NTP time synchronization: 127.127.20.x: NMEA Reference 

Clock driver and 127.127.28.x: SHM (shared memory) driver.  The NMEA reference clock 

driver expects a GPS device sending out NMEA messages to a system via a serial port named 

“/dev/gpsX” and the PPS signal wired through the DCD pin and accessible from a 

“/dev/gpsppsX” device.  Figure 2-8 below shows the wiring of the GPS receiver to interface 

with the serial port.    
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Wire DB9 female serial USB Function 

Red - Red +5 Volt power 

Black (thick) - Black Power ground 

Black (thin) 5 - Signal ground 

Black (loose in cable) - - not used 

Yellow 1 - PPS pulse 

White 2 - TxD from GPS 

Green 3 - RxD to GPS 

Shield - Shield Shield 

Figure 2-8:  Garmin GPS 18x LVC to RS232 and USB wiring 

 

The “/dev/gpsX” appears in the system as a link to the “/dev/ttyS0” serial device, and 

the “/dev/gpsppsX” appears as a link to the “/dev/pps0” device which is provided by the 

kernel PPS API.  The API collects and distributes a precision kernel clock information from/to 

userlands programs and supports the DCD pin connected to a 8250 UART. The DCD pin is 

sensed using a new serial line discipline named PPS, which is an extension of the TTY line 

discipline.  This sensing occurs as an interrupt time, so it provides a very precise time 

stamping of the DCD events.  This PPS API, also known as LinuxPPS is available as a module 

on Linux kernel version 2.6.34 or later.  For Linux systems with kernel older than 2.6.34 

LinuxPPS is not yet available and a patch must be applied.  In order for the NTPD to 

synchronize the system clock with the GPS receiver and using the pps signal for precision 

timing the following two lines must be added to the “/etc/ntp.conf” file: 
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Server 127.127.20.0 mode 1 minpoll 4 prefer 

Fudge 127.127.20.0 flag3 1 flag2 0 time1 0.0 

Where 

Mode = 1, means that only the GPMRC messages of the NMEA protocol will be analyzed. 

Flag3 = 1, tells ntpd to use the PPS line discipline of the kernel 

Flag2 = 0, tells the driver to use the rising edge of the DCD signal to indicate the start of each 

second. 

time1 time: Specifies the PPS time offset calibration factor, in seconds and fraction, with 

default 0.0 

To activate the PPS line discipline on the serial port connected to the GPS, it is 

necessary to run the “ldattach” utility, which is part of the “util-linux-ng” package v2.14 and 

up and will run in the background to keep the serial port open and the discipline active.  

Ldattach was provided with the Linux distribution used in our test, however for any system 

where this tool is not provided it will be necessary to build the tool from its sources which 

can be found by referring to kernel.org (http://www.kernel.org/pub/linux/utils/util-linux-ng/) 

for the source code and your distro provider for an updated util-linux package. 

 

2.4.3 SHM REFERENCE CLOCK 

The Shared Memory (SHM) driver accepts delayed timing information from a System-

V IPC (Inter Process Communication) shared memory and this timing information is observed 

in the ntpd logs. The timing information is written there by some process; this process would 

http://www.kernel.org/pub/linux/utils/util-linux-ng/
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read the information from the GPS and write it to the shared memory so that ntpd can 

process it.  One user space utility that performs this task is gpsd, which is a general-purpose 

daemon designed to talk to most types of GPS modules and according to the texts it is also 

capable of processing the PPS signals and sending timing information to ntpd via a shared 

memory device.  Gpsd feeds two devices to ntpd, one with the absolute timestamp parsed 

from the NMEA messages, and another feeding the PPS. Ntpd sees both devices as two 

different SHM devices so the “ntp.conf” file must include these lines: 

Server 127.127.28.0 minpoll 4 

fudge 127.127.28.0 refid GPS 

Server 127.127.28.1 minpoll 4 prefer 

Server 127.127.28.1 refid PPS 

Where  

Refid is just a string that specifies the driver reference identifier. 
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3 METHODOLOGY 

 

In our approach to build this new Son-O-MERMAID prototype, Figure 1-1 was 

modified, as described in Figure 3-1 below.  Building Son-O-MERMAID could be divided in 

two major components: one component is the mechanical part which includes building the 

instrumentation housing, array assembly and suspension cable.  This task is out of scope of 

this work and has been finalized. The other component consists on the hardware integration 

and processing which constitute the focus of the author’s work.   

 

Figure 3-1:  Architecture of Son-O-MERMAID 

 

3.1 Son-O-MERMAID SYSTEM DESIGN 

Figure 3-1 describes a high level architecture of Son-O-Mermaid on the right, and a 

test bed for development of the telemetry algorithms on the left.  As this figure shows, Son-

O-MERMAID can be divided in three subcomponents: First, a surface component which 



31 
 

receives and stores the acoustic data sent from the submerged unit for further analysis.  This 

unit runs a very accurate system time synchronized to a GPS receiver and used to time stamp 

the acoustic data.  Second a submerged component immersed at a depth of ~750 meters 

which collects, digitize and samples acoustic data.  Third, the interface that connects the 

submerged and surface components, which in this figure consists in the data lines. 

 

3.1.1 THE SUBMERGED COMPONENT 

The submerged component includes the following parts: a three-hydrophone array, 

an analog to digital converter (ADC), a central processing unit (CPU) and one RS-485 adapter.  

All these parts with the exception of the hydrophones are placed inside a pressure vessel.  

Figure 3-2 shows this component and a description and integration of its parts follows. 

 

Figure 3-2: Submerged component as deployed in 2012, on the first implementation 
of Son-O-MERMAID 

 

3.1.1.1 3-HYDROPHONE ARRAY 

The hydrophones arranged in this array are manufactured by High Tech Inc. and their 

technical specifications are listed in Table 1 in the Appendix, section A.2.  This 3-hydrophone 
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array was built at the Equipment Development Laboratory (EDL) at URI’s Narragansett Bay 

Campus by Catherine Cipolla and Gary Savoie, whose combined scientific instrument design 

and fabrication experience exceeds some 50 years.  The array is displayed in Figure 3-2 above 

and Figure 3-3 below.  This array is expected to be used in the next deployment of Son-O-

MERMAID (version 2). 

 

Figure 3-3:  Hydrophone array for Son-O-MERMAID. 

 

During the prototype design of Son-O-Mermaid version 2 rather than using the array, 

the majority of the time the array’s acoustic data were simulated by a function generator as 

shown in figures 3-4a and 3-4b below.  The wave form from the function generator was split 

into three channels to simulate the three inputs from the array into the ADC board.  At the 

ADC board, the analog data were digitized and read in by the Phidget SBC in the submerged 

unit.  The data were then sent to the surface unit as a complete file or as sample by sample 

depending on the approach selected, as it will be described later.  

 

Figure 3-4a: Graphic description of array and telemetry simulation 

 

Submerged component Surface component 
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Figure 3-4b:  Test bed development of Son-O-Mermaid with Array Simulation. 

 

 

3.1.1.2   HYDROPHONES AND ADC INTERFACE BOARD 

During the development of prototype version 1, a circuit board was designed and 

used as the interface between the hydrophone array and the ADC board.  This interface 

board receives power from the source (battery) and distributes it to the hydrophones.  In 

addition, it functions as a bridge to canalize the acoustic data from the hydrophones through 

three different channels, one per hydrophone, and drives this data as input to the ADC.  This 

circuit interface board is shown on Figure 3-5a and 3-5b below.  Figure 3-5b depicts the 

internal wiring of the board shown in figure 3.5a. 

Function generator Oscilloscope  

ADC 

Phidget board 2, 

receiving board 

(surface) 

RS-485 adapter 2,000 ft CAT5 cable 

ssh connection to both phidgets 

boards to monitor data 

Phidget board 1, 

sender board 

(submerged) 
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Figure 3-5a:  Hydrophones & ADC Interface board 

 

 

Figure 3-5b:  Hydrophones & ADC Interface circuit. 

 

Hydrophones power 
Connections 

Hydrophones 

Data lines 

Battery Power 

Source 
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3.1.1.3   ANALOG TO DIGITAL CONVERTER (ADC)  

The USB-7202 ADC board was used to perform the analog to digital conversion in the 

Son-O-MERMAID prototype.  This board receives analog data from the hydrophones and 

digitizes it and is programmed to sample it at a rate of 100 Hz.  This acoustic data is then 

pulled by the Phidget board 100 samples each second and sent to the upper unit. The chosen 

ADC board operates by implementing the DAQFlex framework, which consists of combining a 

driver with a message-based command protocol.  The DAQFlex framework consists of a 

software API, DAQFlex device driver, and a DAQ device message engine.  A DAQFlex program 

sends DAQFlex messages to the driver.  The driver sends the encapsulated messages to the 

data acquisition device.  The device interprets the message using the message engine, and 

sets its corresponding attributes using the DAQ engine. The data acquisition device then 

returns the requested data to the DAQFlex driver, which returns the data in an array 

(ScanData) to the program.  The DAQFlex framework is described in Figure 3-6 below and is 

implemented in the data acquisition script that runs in the submerged component described 

in sections 3.2.3 and 3.3 below. 

 

 

Figure 3-6:  DAQFlex Framework 
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To use the DAQFlex framework under a Linux platform which was the approach 

taken, the following software requirements needed to be met: Linux 32-bit Operating 

System, Linux kernel 2.4 or later, Mono Framework 2.0 or later and the “libusb” user-mode 

driver version 1.0.0.0.  This software was installed in the computer running in the submerged 

component.  

Since Mono is an open source, cross-platform implementation of C# and CLR that is 

compatible with Microsoft.NET, and “IronPython” is also an open source implementation of 

the Python programming language integrated with the .NET Framework.  This gave us an 

additional option of using IronPython to program the ADC. Both C# and IronPython were 

tested and both worked when reading digitized acoustic data into the submerged unit; 

however, to transmit the acoustic data from the lower unit to the upper one via the serial 

port, only the IronPython approach was tested with a hope that a ready to use module 

(pyserial) would make things simple.  We sustained our decision of using IronPython but our 

hope for simplicity wasn’t met as it will be explained later.  Figure 3-7 shows the ADC 

described in this section and Table 2 in Appendix, section A.2 documents technical 

specifications of the board. 

The DAQFlex permits the programming of DAQ devices such as the USB-7202 ADC by 

using a simple message-based interface.  Installing the universal library is described in the 

Phidget configuration section, and the DAQFlex’s command selection used in this prototype 

is coded into the “mermaid_rec.py” script used to set up the acquisition board to sample the 

hydrophone data at a rate of 100Hz.  This sampled data is then sent via RS-485 to the upper 

unit.  The “mermaid_rec.py” script is located in Appendix, section A.1.3.1. 
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Figure 3-7:  USB-7202 16-bit Analog to Digital Converter 

 

 

 

3.1.1.4 USB TO RS-485 ADAPTER (Model: xs885) 

The USB to RS-485/RS-422 converter shown below, automatically senses if RS-485 or 

RS-422 is connected to the serial interface. This is a plug and play device and all that is 

needed is to connect the wires.  Power for the converter is provided by the USB port. This 

adapter uses the FT232 serial processor chip from FTDI and does not require any extra driver 

to be installed in the Linux system.   It works by default and the overall features are provided 

in Table 6 in the Appendix, section A.2.  Two configurations were tested on the device: RS-

422 and RS-485 and both proved to work; however, RS-485 was used for two reasons: it uses 

three wires as opposed to 5, and secondly, data only flow in one direction (half duplex) from 

the submerged component to the surface, as opposed to full duplex which unnecessarily 

would result in greater expense in terms of power usage.  Figure 3-8 below displays this 

device. 
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Figure 3-8: USB to RS-485/RS-422 converter 

 

 

3.1.1.5 THE CENTRAL PROCESSING UNIT (CPU) 
The CPU in the lower unit is a computer expected to receive digitized acoustic data 

from the ADC board sampled at a rate of 100 Hz.  This data is then sent via RS-485 to the 

upper unit where it will be stored and manipulated later.  It is required that this computer 

includes at least two USB ports, one to connect to the ADC board and the other to host the 

RS-485 adapter.  It must run on Linux Operating System and the unit must be low in power 

consumption.  In an attempt to select the most power efficient unit available in the market 

two boards were tested: the first computer tested was the “Fit PC2i” and the second was the 

“Phidget SBC2”.  The fit PC2i is a miniature (10 x 11 x 2.5 cm) full featured computer running 

Linux mint, with an Intel Atom 1.6GHz CPU and up to 2GB RAM that draws 8 to 10 Watts of 

power.  More detailed product specifications are provided in the Appendix, section A.2.3.  

The Fit PC2i was the first CPU used while developing the submerged component.  It fulfilled 

two of the three basic requirements: it has two USB ports and run on Linux OS; however, it 

has a high power consumption.  As a full operating computer it had too many unnecessary 

features and a high power consumption and, hence this CPU, wasn’t an optimal solution for 

Son-O-MERMAID.  The second computer tested was the Phidget SBC2 version 1072_0.  This is 
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a single board computer (SBC) running Debian 6.0 with 64 MiB SDRAM, 512 MiB Flash and 6 

USB 2.0 full speed ports.  This unit was a better fit for Son-O-MERMAID.   It supported the 

two USB ports required, runs Linux OS, and it was much more power efficient than the Fit 

PC2i.  This computer also offers more features than necessary, but is a much better fit than 

the Fit PC2i due to the lower power consumption.  This was the best choice available that 

matched our design criteria at the time.  By the time the Son-O-MERMAID prototype was 

designed and tested, the Phidget SBC2 board had been discontinued and replaced by the 

Phidget SBC3 (1073) board.  More detailed product specifications are provided in Table 4 in 

the Appendix, section A.2.  In our search for a power efficient computer, the PC-104 products 

were also researched and a possible option using two PC-104 boards, a CPU and an ADC, was 

identified; however, the cost and power consumption offered by the Phidget board were 

lower.  Figure 3-9 shows the Phidget SBC2 board. 

 

 

Figure 3-9: Phidget sbc2 version 1072_0 

 

 

3.1.1.6 CONFIGURATION OF THE SUBMERGED COMPONENT 

Figure 3-10 below depicts the hardware configuration of the submerged component.  

The interface board gets power from the battery source and distributes to the rest of the 

equipment.  The hydrophones connect to the interface board and receive power from it, and 
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in return acoustic data is canalized from the hydrophones to the interface board.  This 

acoustic data is then received by the ADC board where it gets digitized and sampled at a rate 

of 100 Hz.  The data is then collected by the Phidget SBC2 board to be stored into files or to 

be sent to the upper unit via RS-485 based on the algorithm selected.  This unit was tested 

during a pre-launch event prior to deployment of first prototype of Son-O-Mermaid in 2012.  

The results of this test are provided in Figure 3-11. 

 

Figure 3-10: Configuration of Son-O-MERMAID submerged component 
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Figure 3-11:  Data collected at pre-launch test of Son-O-Mermaid prototype one in 
October,  2012. 

 

3.1.1.6.1 PHIDGET SBC2 SOFTWARE CONFIGURATION 

The system comes with factory default settings.  After the first boot it is necessary to 

run a series of configuration steps to enable the basic features on the board.  All the 

configuration instructions are found online in the Phidget’s User Guide page [10].  The basic 

configuration steps entailed in updating the applications software in the board by installing 

“ssh” to be able to work remotely with the device, and installing Mono.  The Mono 

application is necessary to run “ironPython”, the language selected to communicate with the 

Analog to Digital Converter board.  Most of the testing for Son-O-MERAID was conducted in 

the laboratory by simulating the hydrophones acoustics.   To verify correct operation of the 

submerged unit the development test bed was set up as described in Figure 3-12 below and 

the following sequence of events were performed: a triangular wave was injected by the 

function generator into the ADC board, the ADC digitized and sampled the data which was 
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then read in by the Phidget SBC and saved into one-minute files, the data stored at the 

Phidget computer were then plotted to verify that the signal going into the system was equal 

to the received signal output.  The results of these events are shown in Figures 3-13 to 3-15 

below.   

 

Figure 3-12:  Son-O-MERMAID submerged unit simulation 

 

 

Figure 3-13:  A triangular wave sampled by the ADC board, and stored in the 
submerged unit into one-minute files. 

Submerged unit 
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Figure 3-14:  Zooming into Figure 3-13 to verify a triangular wave was received.   

 

 

 

Figure 3-15:  Zooming into the figure 3-14 to verify that the three inputs (channels) 
are received. 
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3.1.2 PART 2 –SURFACE COMPONENT 

The computer used in the surface component must fulfill as a minimum the 

following requirements:  

a. Linux operating system 

b. data receiving and storing capability 

c. support IRIDIUM communication capability 

d. networking capability (needed for remote monitoring and for Internet access during 

development) 

e. A minimum of 2 USB ports (one used for the USB/RS-485 connection and one for USB 

flash drive for storage during development). 

f. serial port for GPS time synchronization 

The first five requirements listed above did not represent any impediment in 

searching the open market for a Single Board Computer (SBC) that could support them.  An 

SBC is a computer built on a single circuit board with microprocessor, memory, input/output 

and peripheral connections.  At the time of this research there where many SBC products 

available in the market that could fulfill these requirements.   Examples of these SBCs are: 

PC/104 form factor boards, Phidget SBC2, and Raspberry Pi.  All of these boards are 

advertised as low power consumers; however in modern computers, USB is displacing RS-232 

from most of its peripheral interface roles, so finding an SBC that supports the serial port 

communications in conjunction with low power consumption was the decisive factor. 

 

3.1.2.1 SINGLE BOARD COMPUTER (SBC) SELECTION AND GPS TIME    

SYNCHRONIZATION OF Son-O-MERMAID SURFACE COMPONENT 

Temporal accuracy is part of the foundation of any signal processing data analysis.  

Every computer motherboard, with some exceptions, includes an internal clock that 
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continues to run on battery even when the computer is switched off.  On any operating 

system that is installed this clock is the default time source.  Unfortunately, motherboard 

clocks are anything but accurate and may drift by as much as several seconds or minutes in a 

day.  An efficient solution to this problem is to synchronize the computer to one or more 

reliable time sources.  The most common way to accomplish this is synchronizing the 

computer time to a few of the many available Network Time Protocol (NTP) servers available 

in the Internet, but problems will occur if the Internet link becomes unavailable for any 

significant length of time.  A second and more reliable option is to use a local time source 

such as radio receivers for time signals, which are inexpensive but not too accurate, and 

atomic clocks which are extremely accurate, but complex and expensive.  None of these two 

options are suitable for Son-O-MERMAID.  The first one is unsuitable because this system will 

be deployed to the open ocean where no Internet connection will be available.  The second 

one is unsuitable because radio receivers would not provide the desired accuracy and are not 

feasible for the open ocean either.  Furthermore an atomic clock is out of the scope of a 

simple and low cost system.   A third option was to use a GPS receiver with pulse-per-second 

(PPS) output.  These receivers are inexpensive, relatively simple, yet capable of providing 

near microsecond accuracy.  This was, by far, the best option for Son-O-MERMAID. 

Based on its connection type, two types of GPS receivers could have been used: one 

that connects via the USB port, or another that connects via the serial port.  USB cannot 

transfer a PULSE which will translate in poor time accuracy, while the serial port can process 

pulses with handshake inputs via the Universal Asynchronous Receiver/Transmitter (UART).  

For this reason, the approach followed on Son-O-MERDAID was to use a GPS receiver that 

connects to the computer via serial port.  
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3.1.2.1.1 SYNCHRONIZATION OF A COMPUTER’S TIME TO A GPS RECEIVER –A 

PROOF-OF-CONCEPT 
As a proof-of-concept and to learn how to synchronize a computer’s time to a GPS 

receiver a Garmin 18x LVC GPS receiver shown in Figure 3-16 below and a Desktop computer 

(PC) Running Linux “Debian 7.0” were used.  As this figure shows, the wires from the GPS 

receiver (TX, RX, Ground and PPS signals) were split and welded to a DB9 female serial 

connector, and the power wire was attached to the power line of a USB connector which 

drove 5 Volts from USB port of the PC to power the GPS receiver.      

 

Wire DB9 female serial USB Function 

Red - Red +5 Volt power 

Black (thick) - Black Power ground 

Black (thin) 5 - Signal ground 

Black (loose in cable) - - not used 

Yellow 1 - PPS pulse 

White 2 - TxD from GPS 

Green 3 - RxD to GPS 

Shield - Shield Shield 

Figure 3-16:  Wiring of a Garmin 18x LVC GPS 

The process of synchronizing the computer’s time to a GPS receiver will be described 

in details in section 3.1.2.3, synchronization of Raspberry Pi Model B to Adafruit Ultimate 
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GPS Breakout board rev 3. However, as a proof-of-concept, a general approach to 

synchronize a computer’s time to a GPS receiver is summarized below:  

a. Customize the hardware as described in figure 3-16 above. 

b. If current Linux kernel is older than version 2.6.34 it must be recompiled to add PPS 

support.  This can be enabled under “Device Drivers” section while running “xconfig” 

during the Linux kernel recompilation process. 

c. Install “pps-tools” package. 

 cd /usr/src 

 apt-get install git-core 

 git clone git://www.linuxpps.org/git/pps-tools  pps-tools 

 cd /usr/include 

 cp /usr/src/pps-tools /timepps.h  timepps.h 

 cd /usr/src/pps-tools 

 make 

d. Test “pps” by running the following commands: 

 modprobe 8250 

 ldattach 18 /dev/ttyS0 

 ./ppstest /dev/pps0 [should see some output scrolling down on the screen] 

e. Install “gpsd” (gps daemon). 

 Apt-get install gpsd [latest version available will get installed] 

f. Install ntp. 

 Apt-get install ntp [latest version available will get installed]  

g. Modify configuration of gpsd. 



48 
 

 Run command: “dpkg-reconfigure gpsd”  [with no quotes] 

 Change flags to: 

i. START_DAEMON = true 

ii. GPSD_OPTIONS= -n 

iii. DEVICES= /dev/ttyS0 

iv. USBAUTO=true 

h. Modify “/etc/modules” by adding to the end of the file:  

 pps_ldisc 

 pps_core 

i. Edit “/etc/ntp.conf” file to add PPS support.  This file is shown in section 3.1.2.3.2, 

Synchronization of NTP server with GPSD and PPS.   

 

3.1.2.1.2 COMPUTER SELECTION FOR THE SURFACE UNIT 

The configuration steps shown above successfully demonstrated the synchronization 

of a computer’s time to a GPS receiver.  The next step was to find an SBC to replace the PC 

used in the above configuration to be used in the surface unit.  The different computer 

models investigated are described below: 

a. Phidget SBC2 

 This SBC board used in the submerged component was not an option for the 

surface component of Son-O-MERMAID since it does not provide the required serial port. 

 

 

b. fitPC2i 
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This is a miniature fan less PC based on Atom CPU.   It is not exactly an SBC but is 

extremely small and it had been used on previous tests during the Son-O-MERMAID 

development.  Since we had a few units on hand it was worthwhile attempting to 

synchronize its system time to the GPS receiver.  This computer is advertised providing 

serial support (Full UART).  After testing, it was verified that absolute date and time was 

received, however the 1-Hz clock signal (PPS) was not received.  Further investigation 

revealed that this computer does not support serial port pin 1, Data Carrier Detect (DCD). 

This is the pin where the PPS signal is expected.  This was confirmed by e-mailing the 

manufacturer of this product (CompuLab).  For reference to RS-232 DB9 pin-out, see 

figure 3-16 above. 

 

c. Raspberry Pi model B  

The Raspberry Pi was the system chosen to handle the computations of Son-O-

MERMAID at the surface.  These computations include receiving and storing acoustic 

data for later processing, synchronization of system time to a GPS receiver for time 

accuracy, and supporting IRIDIUM communications for the transmission of data to a 

land-based station.  The Raspberry Pi is a credit card-sized computer powered by 

the Broadcom BCM2835 system-on-a-chip (SoC). This SoC includes a 32-bit ARM1176JZFS 

processor, clocked at 700MHz, and a Videocore IV GPU.  This board fulfils the 

requirements listed for the computer to be used on the surface component of Son-O-

MERMAID.  Table 5 in the Appendix, section A.2 lists additional Raspberry Pi 

specifications and figure 3-17 below provides a full view of this SBC. 
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Figure 3-17:  Raspberry Pi model B 

 

3.1.2.2 SELECTION OF A GPS RECEIVER TO BE USED AS TIME SOURCE FOR GPS TIME 

SYNCHRONIZATION 

 

a. Garmin 18x LVC GPS 

The GPS 18X shown in figure 3-18 below includes an embedded receiver and 

antenna. It tracks multiple satellites at a time while providing fast time-to-first-fix, and 

precise navigating updates once per second.  The GPS 18X interfaces to a serial port.  The 

unit accepts TIA-232-F (RS232) level inputs and transmit voltage levels that swing from 

ground to the positive supply voltage TIA-232-F (RS232) polarity. It implements reverse 

polarity protection.  When tested on a desktop PC with a fully working serial port, this GPS 

unit worked as expected providing the NMEA serial data and the 1 PPS signal updates each 

second.  However, it would not work on the Raspberry Pi without adding a circuit to modify 

the output voltage.  By design, the Raspberry Pi can only handle voltages on the 0V – 3.3V 

RCA Video 

out 

Audio out 

2 USB ports 

Ethernet port 

HDMI out Broadcom 700 MHz Chip 

MicroUSB power 

port 

SD card slot 

GPIO pins 

http://www.buyraspberrypi.com.au/wp-content/uploads/2012/11/Raspberry-Pi-version-3.png
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range on the UART signals connected to the GPIO pins.  The output signals of the Garmin 18x 

LVC GPS were measured and the following values obtained: 

- TX signal = -5.4V, and carries the coarse data (date, time and position information)  

- PPS signal = 5.0V 

Both of these values were out of processing range of the Raspberry.  The Raspberry Pi cannot 

process negative voltage and anything greater than 3.5V would fry the device.  A circuit could 

have been designed but instead it was decided to search for a GPS receiver available in the 

market and compatible with the Raspberry Pi that provided the signal with the required 

voltage.  

 

Figure 3-18: Garmin 18x LVC GPS with USB and RS232 connector 

 

b. Garmin 19x HVS GPS 

 Another GPS receiver tested was the Garmin 19x HVS GPS.  This model works fine 

with a PC where a serial port is fully implemented but would not work on the raspberry Pi 

without adding circuitry to modify the minimum output voltage of the GPS.  When measured 

in the lab the following voltage values were observed:  

- Coarse data (date, time and position) = 1.9V. 
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- PPS = 3.0V. 

As these values suggest, the PPS signal was received, however the coarse data was 

never observed on the Raspberry Pi.  Apparently the 1.9 V measured on the coarse data 

would have been interpreted as low (zero) and it never went high (one).  The minimum 

voltage of a high (one) signal on the GPIO pins of the Raspberry Pi must be 2.3V.  The Garmin 

19x HVS GPS is shown on Figure 3-19 below. 

 

Figure 3-19:  Garmin 19x HVS GPS 

 

c. Adafruit Ultimate GPS Breakout board rev 3   

The Adafruit Ultimate GPS Breakout board rev 3 was chosen as the GPS receiver for 

Son-O-MERMAID time synchronization.  This board was designed specifically to accomplish 

this task, namely, to synchronize a Raspberry Pi system time. This GPS receiver is 

manufactured by the Adafruit Industries and its technical specifications are found in Table 7 

in the Appendix, section A.2.  Figure 3-20 shows this GPS. 

https://www.google.com/shopping/product/17433040186730248018?sclient=psy-ab&q=garmin+gps+19x+lvc+picture&oq=garmin+gps+19x+lvc+picture&pbx=1&bav=on.2,or.r_qf.&bvm=bv.68445247,d.cWc,pv.xjs.s.en_US.hKiVy-E3KVo.O&biw=1366&bih=682&tch=1&ech=1&psi=aw6TU7D7L46gsQSbjYCIAg.1402146512904.9&ei=Gw-TU_6wOKLisASesIHIDg&ved=0CFQQqSswAQ
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Figure 3-20:  Ultimate GPS Breakout Version 3 

 

3.1.2.3 TIME SYNCHRONIZATION OF RASPBERRY PI MODEL B TO ADAFRUIT ULTIMATE 

GPS BREAKOUT BOARD Rev 3 

Two approaches were followed to synchronize the system time of the Raspberry Pi 

to the GPS receiver: the first one uses NTP and kernel drivers, and the second one uses NTP 

and GPSD applications.   Below is a list of the items necessary to build from scratch a 

Raspberry Pi system with time synchronized to Adafruit Ultimate GPS Breakout board rev 3, 

and a description of the two synchronization approaches is described in detail below.   

Parts list to build a Raspberry Pi system synchronized to GPS 

a. Raspberry Pi Type B. 

b. Adafruit Ultimate GPS Breakout v3:  a GPS unit with 1PPS output.  The GPIO pins on a 

Raspberry Pi are only 3.3 volts tolerant with no over-voltage protection which means 

that a bad connection could fry a pin or worse the device. 

c. wires: five female/male jumpers. 

d. Ethernet Cable: Needed to configure the raspberry pi, once the device is configured 

Ethernet connection is not needed. 
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e. SD Card: Needed for loading the distribution (Operating System) and storing data if 

desired. 

f. power adapter: the power adapter terminates to a micro USB cable that provides current 

rating of 850 mA and 5 volts input. 

g. breadboard: used to wire the connections between the Raspberry Pi and the GPS 

receiver unit. 

h. Raspberry Pi box:  an enclosure that offers protection to the Raspberry Pi. 

i. two different distributions were tested: “Occidentalis” and “Raspbian”. The Occidentalis 

distribution was used in the synchronization of NTP using kernel drivers, and the 

Raspbian distribution, on the other hand, was used in the synchronization of the NTP 

server with GPSD and PPS.  These two distributions are described below in approach one 

and two respectively. 

 

3.1.2.3.1 APPROACH ONE: SYNCHRONIZATION OF NTP USING KERNEL DRIVERS 

Build steps: 

A. Creating an SD card with the Operating System: 

a. Find a Windows OS computer with SD card drive. 

b. Download “Occidentalis”, a fork of Raspbian, an OS image for the SD card and 

follow instructions to install [11]. 

c. Unzip the contents of the Zip archive to a .IMG file. 

d. Download the SD card writer program: “Win32DiskImager” from the following 

site: “http://sourceforge.net/projects/win32diskimager/” or google a different 

site on the web. 

http://sourceforge.net/projects/win32diskimager/
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e. Use the Disk Imager to write the OS image to the SD card. 

f. Plug in the SD card to the Raspberry Pi, add peripherals: monitor, mouse, 

keyboard and Ethernet connection and apply power.   

 

B. Initial Setup 

The first time the Raspberry Pi boots up it automatically runs a tool called “raspi-

config”.  This tool starts before the windowing system and so we have to use the 

cursor keys and return key to navigate the menu system.  The following are the 

options to select: 

a. Expand rootfs:  by default, the Raspberry Pi only uses as much of the SD card as 

the operating system requires.  To fix this so that all the space on the SD card can 

be used, use the up / down arrow keys to select “expand_rootfs” menu option 

and hit return.  Click return again at the confirmation window 

b. Overscan:  this option refers to using the whole screen or monitor.  Hit enter to 

access the overscan option and select “Disable” then hit enter. 

c. Configure_keyboard:  select this option and press enter, then select the default 

option “Generic 105-key (Intl) PC.  You will also need to select the keyboard 

layout: select “Others”, then “English (US)”.  When asked about “modifier keys” 

choose the default option, then choose “No compose key”, the default next 

option. 

d. Change_password: select “change_pass”  and hit enter.  After a confirmation 

screen, you will be prompted to choose a new UNIX user password.  Used 

“urioce” as password, obviously anything can be used as password. 
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e. Change_locale: select “change_locale” and using the space bar key de-select the 

default selected option, then select “en_US.UTF-8”.  The next dialogue window 

will ask you to choose a default locale; select again “en_US.UTF-8”.   

f. Change_timezone to use UTC time:  set the time zone to “Etc”, then select “UTC. 

g. Select ssh: select the option to enable ssh server.  Ignore the remaining options 

and reboot. Once the device boots completely if necessary log in as (user: pi, 

password: urioce). 

 

C. Free up the UART so that the NMEA “serial” data can be read on the Raspberry Pi 

a. Edit “/boot/cmdline.txt”, along with “/etc/inittab” : 

$ sudo nano /boot/cmdline.txt 

# Remove these in cmdline.txt: 

# “console=ttyAMA0,115200” 

# and “kgdboc=ttyAMA0,115200”. 

# So it should looks like this:  

dwc_otg.lpm_enable=0 console=tty1 root=/dev/mmcblk0p2 rootfstype=ext4 

elevator=deadline rootwait 

 

b. Edit “etc/inittab” and comment out the last line in this file 

$ sudo nano /etc/inittab 

#Spawn a getty on Raspberry Pi serial line 

#T0:23:respawn:/sbin/getty -L ttyAMA0 115200 vt100 

  

c. Power off the Raspberry Pi by running: 
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$ sudo poweroff    

 When only the PWR LED remains lit and the screen goes black, remove the 

power connector.  

D.  Wire the Raspberry Pi (RPI) to the GPS receiver (depicted on Figure 3-21 below) 

GPS  RPI 

----------------------------------- 

RX  TXD (pin 8) 

TX  RXD (pin 10) 

PPS  GPIO #23 (pin 16) [different from approach two] 

GND  GND (ping 6) 

VIN  5V0 (pin 2)  

 

NOTE: If the GPS receiver is being used indoor, make sure the antenna is placed outside the 

building and wired to the GPS receiver. 

 

Figure 3-21:  Wiring of GPS antenna (left) to a Raspberry Pi for GPS time 
synchronization  
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E. Switching the Kernel.  Download a precompiled kernel and modules by following the 

steps below: 

a. Download a precompiled kernel and modules: 

$ sudo apt-get install git 

$ git clone https://github.com/davidk/ adafruit-raspberrypi-linux-pps.git 

 

b. Back up and copy the kernel image: 

$ cd adafruit-raspberrypi-linux-pps 

$ sudo mv /boot/kernel.img  /boot/kernel.img.orig 

$ sudo cp kernel.img  /boot 

 

c. Move the modules over: 

$ sudo mv modules/*  /lib/modules 

 

d. Add the pps-gpio module to /etc/modules 

# Run this command in a sub-shell so appending works (quotes are part of 

the command) 

$ sudo sh -c "echo 'pps-gpio' >> /etc/modules"  

 

F. Automatically Making Links In “/etc/udev”.  By default, our setup isn’t usable by the NTP 

server since it expects data to be present at specific locations. By adding a few rules to 

udev, we can automatically make symbolic links (aliases, shortcuts, etc) from our NMEA 

serial and 1PPS data, to a place where NTP can read and interpret it.  Without these rules 

https://github.com/davidk/
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the NTP driver would get no data to process.  These rules are added by typing the text 

that appears in Figure 3-22 below. 

 

 

Figure 3-22: Adding rules to “udev” so NTP driver would process the correct data. 

 

 

G. Installing and Configuring NTP.  The repository version of NTP does not pick up on 1PPS 

so we need to modify the default install process.  This step will take about 45 minutes 

since we are recompiling from scratch and using special flags or options.  To accomplish 

this, type the text shown in Figure 3-23 below. 

 

 

Figure 3-23: Step by step instructions to install NTP version 4.2.7p319 with specific 
set of flags.  
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H. Edit the “/etc/initd/ntp” file to change the DAEMON line: 

$ sudo nano /etc/init.d/ntp 

DAEMON=/usr/bin/ntpd 

#DAEMON=/usr/sbin/ntpd 

 

I. Edit the “/etc/ntp.conf” file to include the following two lines:  

server 127.127.20.0 mode 17 minpoll 3 iburst true prefer 

fudge 127.127.20.0 flag1 1 time2 0.496 

 

DONE!  The process of synchronizing the system time of a Raspberry Pi with a GPS receiver is 

complete.  Reboot the RPI. 

 

 

3.1.2.3.2 APPROACH TWO: SYNCHRONIZATION OF NTP WERVER WITH GPSD 

AND PPS   

 

Building Steps 

A. Repeat steps (a) to (f) from section (A) in approach one above to create SD card with 

Operating System with one exception: on step (b) download the “2012-09-18-wheezy-

raspbian.zip” Operating System image for the SD card from link [12].  Additionally update 

the OS by running the following commands: 

a. Sudo apt-get update  

b. Sudo apt-get dist-upgrade 

c. Sudo reboot 

 

B. Repeat steps (B) from approach one above. 

C. Repeat steps (B) from approach one above. 
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D. Wire the Raspberry Pi (RPI) to the GPS receiver (depicted on Figure 3-21 above) 

GPS  RPI  

----------------------------------- 

RX  TXD (pin 8) 
TX  RXD (pin 10) 
PPS  GPIO #24 (pin 18) 
GND  GND (ping 6) 
VIN  5V0 (pin 2) 
 

E. Configuring PPS for improved precision 

a. At the terminal prompt $ type without the quotes: “uname –a”. This command 

will provide the current kernel version of your system similar to the following 

output: “Linux raspberrypi 3.6.27+  #250 PREEMPT Thu Oct 18 19:03:02 BST 2013 

armv61 GNU/Linux”.  Record this system information as it will be used to easily 

differentiate between this kernel and the new kernel and modules that will get 

installed for PPS support. 

 

b. On a different system, other than the Raspberry Pi download the kernel image 

called: “kernel-pps-gpio24.zip” which could be searched on google.com or 

downloaded from the following link: 

https://docs.google.com/file/d/0BznvtPCGqrd3ZElKZHEtUDRpUEU/edit?usp=driv

e_web&urp=http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html&pli=1. 

 

c. On the same system used on previous step download the kernel modules to 

enable PPS support. The folder is named: “3.2.27-pps-g965b922-dirty.zip” and 

can be found at the following link: 

https://docs.google.com/file/d/0BznvtPCGqrd3VTZ2TmxFTktYM0E/edit?usp=driv

e_web.  In order to properly download all the modules contained in this folder it 

https://docs.google.com/file/d/0BznvtPCGqrd3ZElKZHEtUDRpUEU/edit?usp=drive_web&urp=http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html&pli=1
https://docs.google.com/file/d/0BznvtPCGqrd3ZElKZHEtUDRpUEU/edit?usp=drive_web&urp=http://www.satsignal.eu/ntp/Raspberry-Pi-NTP.html&pli=1
https://docs.google.com/file/d/0BznvtPCGqrd3VTZ2TmxFTktYM0E/edit?usp=drive_web
https://docs.google.com/file/d/0BznvtPCGqrd3VTZ2TmxFTktYM0E/edit?usp=drive_web
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is necessary to click on “File” and then scroll down to “Download”.  Kernel and 

modules come down as zip files and were extracted on the system used for 

download and then placed on a USB flash drive. 

 

d. Plug the USB flash drive containing the kernel image and modules to the 

Raspberry Pi”. 

 

e. On the Raspberry Pi create a new folder or directory on a desired location called 

“pps” by executing the command: “mkdir pps”. 

 

f. Type: “cd pps” to change directory to the directory created on previous step.  

 

g. Copy the two directories (kernel-pps-gpio24 and 3.2.27-pps-g965b922-dirty) 

from the USB flash drive into this “pps” directory. 

 

h. In the pps/kernel-pps-gpio24 directory there is a file “kernel-pps-gpio24.img. 

This file must be renamed and moved to the “/boot/” directory, but before we 

do that a safety copy of the original kernel image should be secured.  To 

accomplish this task this two actions must be taken:  

i. “sudo mv /boot/kernel.img   /boot/kernel.img.orig” 

ii. “sudo cp kernel-pps-gpio24.img   /boot/kernel.img 

 

i. Move the module files into the area where the new kernel expects to find them.  

We need to see in the “/lib” directory a structure similar to the one below:  

 /lib/modules/3.2.27+ 
 /lib/modules/3.2.27+/kernel 
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 /lib/modules/3.2.27+/modules.* 
 
 /lib/modules/3.2.27-cutdown+ 
 /lib/modules/3.2.27-cutdown+/kernel 
 /lib/modules/3.2.27-cutdown+/modules.* 
 
 /lib/modules/3.2.27-pps-g965b922-dirty 
 /lib/modules/3.2.27-pps-g965b922-dirty/kernel/ 
 /lib/modules/3.2.27-pps-g965b922-dirty/modules.* 
  
 

j. In the unzipped 3.2.27-pps-g965b922-dirty directory we find both the kernel 

directory and the modules files, so assuming we are now in the pps directory we 

need to move the required files to the “/lib/modules” directory, and add the pps-

gpio module to the module list:  

i. “sudo mv  3.2.27-pps-g965b922-dirty  /lib/modules/3.2.27-pps-

g965b922-dirty” 

ii. Edit the “/etc/modules” file and add “pps-gpio”, without the quotes at 

the end of the file 

iii. “sudo reboot”.  Verify the changed kernel name at the next login 

iv. “uname –a”. Verify the command output matches the line below: 

“Linux raspberrypi 3.2.27- pps-g965b922-dirty  31  

PREEMPT Sat Sep 22 16:30:50 EDT 2012 armv61 GNU/Linux” 

 

F. Installing Additional Resources 

a. Installing pps-tools 

b. Installing GPSD: 

i. sudo apt-get install gpsd gpsd-clients python-gps 

ii. sudo gpsd /dev/ttyAMA0 -n -F /var/run/gpsd.sock 
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c. Installing and verifying PPS is working by running the following commands: 

i. “uname –a” gives output: “Linux raspberrypi 3.2.27-pps-g965b922-dirty 

#1 PREEMPT Sat Sep 22 16:30:50 EDT 2012 armv6l GNU/Linux” 

ii. “dmesg | grep pps” gives entries similar to the following: 

Linux version 3.2.27-pps-g965b922-dirty 

pps pps0 

pps_ldisc 

pps pps0: source “/dev/ttyAMA0” added 

iii. Sudo aptitude install pps-tools  # may take some time 

 

d. Installing NTP 

The version of NTP supplied with the Raspberry Pi Linux does not 

support PPS, therefore it is necessary to re- install NTP from scratch: 

o On raspberry Pi create a directory called ntp: “mkdir ntp” 

o cd  ntp 

o sudo apt-get install libcap-dev 

o # Get the desired tarball, current or development: 

o wget http://archive.ntp.org/ntp4/ntp-4.2.6p5.tar.gz          # release 

o wget http://archive.ntp.org/ntp4/ntp-dev/ntp-dev-4.2.7p397.tar.gz   

# development 

o tar xvfz ntp-dev-4.2.7p397.tar.gz 

o cd ntp-dev-4.2.7p397 

o ./configure --enable-linuxcaps # takes about 15 minutes. 

o make # takes about 20 minutes 

o sudo make install # puts ntp in /usr/local/bin/ntp; takes about 30-60 

seconds. 

o Stop and re-start NTP:  

 sudo /etc/init.d/ntp stop 

 sudo /etc/init.d/ntp start 

o Updating the NTP configuration file 

http://archive.ntp.org/ntp4/ntp-4.2.6p5.tar.gz
http://archive.ntp.org/ntp4/ntp-dev/ntp-dev-4.2.7p397.tar.gz
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To get NTP to use the PPS data which is now available to it, we need to add 

another “refclock” (server) line to the ntp.conf file.  The server we use is a 

type 22 server called the ATOM refclock.  It needs a fudge line with flag3 set 

to 1 to use the kernel-mode PPS data, and we can give it a reference ID of 

"PPS".  We also changed the reference ID of the serial data to "GPS".  Note 

that with a type 22 clock one must have another server marked as "prefer".  

The text below show an updated NTP file: 

# /etc/ntp.conf, configuration for ntpd; see ntp.conf(5) for help 
 
# Drift file to remember clock rate across restarts 
driftfile /var/lib/ntp/ntp.drift 
 
# coarse time ref-clock 
server 127.127.28.0  minpoll 4 maxpoll 4 
 
fudge 127.127.28.0 time1 +0.350 refid GPS  stratum 15 
# time1 time: Specifies the PPS time offset calibration factor, in seconds and 
# fraction, with default 0.0. 
 
 
# Kernel-mode PPS ref-clock for the precise seconds 
server 127.127.22.0 minpoll 4 maxpoll 4 
fudge 127.127.22.0  flag3 1  refid PPS 
 
# Flag3=1 tells ntp to use the PPS line discipline of the kernel 
# refid string: Specifies the driver reference identifier, an ASCII string from  
# one to four characters, with default GPS.  
  
 
# LAN servers 
server 192.168.0.3  minpoll 5 maxpoll 5 iburst prefer 
server 192.168.0.2  minpoll 5 maxpoll 5 iburst 
server 192.168.0.7  minpoll 5 maxpoll 5 iburst 
 
 

Configuration is Complete!  
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3.1.2.3.3 VERIFY PERFORMANCE OF TIME SYNCHRONIZATION OPERATIONS 

 

a. Checking the Time on the Raspberry Pi 

Once the RPI is backed up, one must wait for the GPS to lock. If we are testing the 

RPI indoor, we need to place the GPS antenna outside the building with clear view of the sky, 

when the GPS is locked to a sufficient number of satellites the GPS will blink intermittently.  If 

the GPS unit was turned up for the first time or was turned on after being down for a while, 

one must wait about 20 minutes for the time synchronization to start taking place.  The 

Raspberry Pi does not have a hardware clock and by default, when the RPI is turned down, it 

stores its current time before it turns off.   When the device is turned back on with no 

internet connection available its system clock will be set to the time that was last saved on 

the RPI before it was turned off.  However if the RPI is turned on while connected to the 

internet it will read the current time provided by the network server during the boot process 

and set its system time to it instead of the last saved on.  

Verify that the RPI is connected to the internet, open a terminal and type: “sudo ntpq  

–p” and something similar to the output displayed in Figure 3-24 should appear. 

 

 

Figure 3-24: Partial output of the “ntpq –p” command to monitor NTP time 
synchronization status. 
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b. System Operation with No Internet connectivity 

Both implementations, approaches one and two were fine and the system time was 

synchronized to the GPS receiver as expected when the Raspberry Pi was connected to the 

Internet.   

Once the connection to the Internet was removed, the configuration described on 

approach one, synchronization of NTP using kernel drivers, continued receiving GPS time 

updates and the system maintained its synchronization.  However, the configuration 

described on approach two, Synchronization of NTP server with GPSD and PPS, did not work.  

It was assumed that GPS receiver was still sending data to the Raspberry Pi, but the 

configuration of NTP drivers and GPS daemon depended on Internet connectivity and would 

not work without it.  It was verified that when the Internet connection was removed from 

the board, the PPS signal and coarse data (date, time and position) did not show as being 

received on the Raspberry Pi. 

Based on these results, the configuration of approach two proved to be inefficient 

and ineffective for our design specification of Son-O-MERMAID (expected to be deployed to 

the open ocean with no internet connection).  Recall from chapter 2 that by design, this was 

the way NTP was meant to work: to synchronize the clock of computers in a network to a 

reference time via Internet.  The configuration on approach one, on the other hand, was 

tested to be effective and compliant with our device requirements, and was used in the final 

implementation of Son-O-MERMAID. 

 

c. Performance comparison between GPS receiver and Internet Time servers 
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The following illustrates the output of the “ntpq –p” command collected after the 

Raspberry Pi has been running for 12 minutes.  The output shows the performance of four 

network time servers and a GPS receiver.  A comparison between each of the time sources 

can be established by inspecting the output.   

 

 

 

Figure 3-25: Output of the “ntpq –p” command to monitor NTP time synchronization 
status. 

 

In summary, the output above indicates that the current time source used to 

synchronize the system time of Raspberry Pi is the GPS and that the Pulse Per Second is also 

used.  It also indicates that the second and fifth peers in the “remote” column are included in 

the trustable peer list.  Peer number 4th (-mail.honeycomb) on the other hand has been 

discarded by the cluster algorithm.  A complete description of the output follows below:  

GPS is the source 
selected. 

System synchronized to GPS with 

2 microseconds accuracy. 
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Columns Definition: 

remote: peers speficified in the ntp.conf file. 

* = current time source. 

o = source selected, Pulse Per Second (PPS) used. 

+ = source selected, included in final set. 

- = source discarded by cluster algorithm. 

 

refid: remote source’s synchronization source. 

 

st (stratum): stratum level of the source. 

GPS NMEA: stratum 0. 

GPS clock transmission: stratus 1. 

Other sources: stratum 2, 3 and 4. 

 

t: types available 

l = local (such as a GPS). 

u = unicast (most common). 

 

when: number of seconds passed since last response. 

poll: polling interval, in seconds, for source. 
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reach: indicates success/failure to reach source; 377 all attempts successful. 

delay: indicates the roundtrip time, in milliseconds, to receive a reply. 

offset: indicates the time difference, in milliseconds, between the client server and source. 

Jitter: indicates the difference, in milliseconds, between two samples. 

 

Additional tests were performed to verify performance accuracy of the Raspberry Pi 

time synchronization: 

With Internet Connection: 

o Let system run for couple of hours and verified the delta between GPS source and 

Raspberry Pi decreases with time as system synchronizes.  The delta value is greater 

at the beginning when the system boots but the offset value decreases as the NTP 

server starts synchronizing the system time to a time source. 

Without Internet Connection:  

o Removed Internet connection keeping GPS connection only. 

o Changed system date a month behind, a day behind, hours behind, and reboot after 

each change.   

o Verified after each change that date and time updated correctly to current GPS 

provided values after each reboot within about 3 seconds. 
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3.1.3 INTERFACE BETWEEN PART 1 AND PART 2 

The only parts of this interface that we were concerned with were the wires needed 

for data transmission.  For test bed testing of our prototype, a 2,000 feet CAT5 Ethernet 

cable was used.  Out of the 8 wires available in this cable, only 3 were needed to carry the 

data via RS-485 (D+, D- and GRD).  

 

3.2  PROTOCOLS AND MEDIA FOR DATA TRANSMISSION IMPLEMENTATION 

 

3.2.1 10BASE-T (Twisted Pair Ethernet) 

10Base-T is the IEEE 802.3 clause 21 standard for 10 megabits per second (Mbps) 

baseband Ethernet over twisted pair cables terminated with RJ-45, with a maximum length 

of 100 meters per segment.  We knew we were limited to a maximum of 100 meters from 

the start; however we also knew this limitation applied to a standard network in which 

several computers may be connected and exposed to network congestions, and where a fast 

data transmission (10 Mbps) is expected by definition.  In Son-O-MERMAID only two 

computers are connected, a baud rate of 38400 bps is sufficient, and data traffic flows in one 

direction only.  Hence no network congestion is anticipated. 

To verify whether 10Base-T was an option for Son-O-MERMAID the following 

operations were performed: 

a. Connected two computers at both ends of a 1000-feet twisted pair Ethernet cable 

(CAT5). 

 

b. Ran the “ping” command to see if both computers could reach each other over the 

network.  The following connection settings were modified: 
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a. Adjusted the time-out to be the double of the default value.  Default is 1 

second. 

b. Minimized the size of the ping packet down to 16 bytes.  The default is 32. 

 

Without a few exceptions this approach failed.  A few times the ping commands 

were successful in getting a reply from the other computer connected at the other end of the 

cable, but the majority of the trials failed.  The same approach was tested with 2000-feet of 

CAT5 cable, but as was expected based on previous results, this also failed.   

As a result, 10Base-T Ethernet cannot be used in Son-O-MERMAID for data transfer 

between the lower and upper units. 

  

3.2.2 100BASE-FX ETHERNET OVER FIBER 

100Base-FX is the IEEE 802.3 clause 24 & 26 standard, a version of Fast Ethernet over 

optical fiber.  It uses a 1300 nm near-infrared (NIR) light wavelength transmitted via two 

strands of optical fiber, one for receive (RX) and the other for transmit (TX).   The maximum 

length is 412 meters for half duplex and 2,000 meters for full duplex connections over multi-

mode optical fiber. 

In order to test this approach the following operations were performed: 

a. Networked two Data Converters model AT-MC101XL via multimode fiber optic cable. 

b. Connected each Data Converter to a computer via CAT5 Ethernet cable. 

c. Executed the “ping” command and both computers successfully reached each other over 

the network. 
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As a result, 100Base-FX Ethernet over Fiber could potentially be used in Son-O-

MERMAID for data transfer between the lower and upper units.  However, no further test 

was performed with this approach and it was judged not desired for Son-O-MERMAID for 

two reasons: first, it adds two Data Converters into the system which brings up the cost of 

the system but more importantly adds power consumption (8.64 Kilo Watts hours (KWh) to 

the system in one month.  This is a significant increase in power consumption.  Second, the 

cost of the system will increase dramatically by adding fiber optic cable, approximately 

$15,000 for the cable and termination at both ends.  The cable will also need a special coat 

for protection in the ocean environment.  For these reasons, this approach was discarded. 

 

3.2.3 RS-485 PROTOCOL –A SUCCESSFUL AND FINAL APPROACH 

The basics of the RS-485 standard indicate that devices can communicate half-duplex 

on a single pair of wires, plus a ground wire at distances up to 1200 meters which fulfils the 

Son-O-MERMAID data transfer requirement.  To implement this approach two USB to RS-485 

converters were acquired.  These adapters are powered by the USB port and work reliably 

with the FT232RL processor chip from FTDI, so it is fully compatible with Linux.  To test this 

approach the following operations were performed: 

 

a. Wired two “USB to RS-485” converters using three straight connections: D+, D- and GRD 

on one converter to its corresponding ones on the other converter at the other end of 

the cable.  Three wires of a 2,000 feet CAT5 Ethernet cable were used for this test, and 

the wiring is depicted in Appendix, section A.3.1. 
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b. Plugged the two “USB to RS-485” converters to the USB port of two computes placed at 

both ends of the cable and executed a basic Python code to successfully send data across 

the serial ports.  Details are provided section 3.3.  Figure 3-26 displays the hardware 

configuration of this approach. 

 

Figure 3-26:  Two SBC boards connected via “USB to RS-485” converters at both ends 
of a 2,000 feet long CAT5 Ethernet cable. 

 

 

3.3 DATA TELEMETRY 

Two approaches were tested for data transmission from the submerged unit to the 

one on the surface.  The first approach was sending complete files, and the second one was a 

sample by sample transmission.  Figure 3-27 below, shows a test bed set up for both 

approaches.   
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Figure 3-27: Test bed set up for telemetry approaches development 

 

3.3.1 APPROACH ONE: COMPLETE FILE TRANSMISSION ALGORITHM 

This algorithm was tested on two Phidget SBC boards running as the sending and 

receiving units respectively as Figure 3-26 shows above.  This algorithm consists of collecting 

acoustic samples and storing them in one-minute files in the lower unit.  Each time one file is 

completed and closed it gets sent to the surface unit via RS-485 and stored there for future 

analysis.  

To accomplish this task, a solution was found on the “lrzsz” protocol, a cosmetically 

modified zmodem/ymodem/xmodem package built from the public domain version of Chuck 

Forsberg’s rzsz package.   These programs use error correcting protocols ({z,x,y}modem) to 

send (sz, sx, sb) and receive (rz, rx, rb) files over a serial port from a variety of programs 

running under various operating systems. 

In summary to accomplish this file transfer two processes are needed: the “send” 

process running in the submerged unit, and the “receive” process that runs on the surface 

unit, and the following steps were necessary: 

 
1. Install “lrzsz” application on both Phidget SBC boards for submerged and for surface 

units: 

- Connect to the Internet.  

- Open terminal and type: apt-get install lrzsz 

  

2. Set baud rate on both units: 

Submerged component Surface component 
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- On terminal type: stty  –F  /dev/ttyUSB0  115200 

 

3. On the “sending” unit run the following shell command: 

- On terminal type:  sz  -vv -b  fileName.bin  >  /dev/ttyUSB0  <  /dev/ttyUSB0  

 

4. On the “receiving” unit run the following shell command:   

- On terminal type: rz  -vv  </dev/ttyUSB0  >  /dev/ttyUSB0 

 

To have this file transmission process running automatically at system boot, two 

scripts were implemented on each unit to send and receive data files respectively.  The 

scripts running in the sending unit are: “sendZ.py” and “sz.sh”, while “recZ.py” and “rz.sh” 

run in the receiving unit.  These scripts can be located in the Appendix, section A.1.2. 

Once this algorithm was implemented it was realized that these data were not time-

stamped and therefore no meaningful analysis could have been performed on it. The Phidget 

SBC2 board does not provide a reliable time either, in case the file creation time was to be 

used for some reference.  Therefore, a different algorithm needed to be designed as the next 

section describes. 

To verify that no data drop occurred on file transmission and that the flow and 

reception of data by the SBC board wasn’t interrupted by the file opening, saving and closing 

operations three tests were run: first, 2 consecutive one-minute files were appended and 

plotted using Matlab to verify continuity of data at the boundary of the files.  Second, a 

similar test was run appending and plotting two-minute files; and third, the same test was 

run with five-minute files.  The results were successful for every test.  Figure 3-28 – 3-30 

below show the results for the first test. 
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Figure 3-28:  Three channels of data contained on each data file 

 

 

 

Figure 3-29:  Two one-minute files concatenated to demonstrate data continuity 
between files.  
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Figure 3-30:  Zooming into Figure 3-29 shows no data between files boundary. 

 

 

3.3.2 APPROACH TWO: SAMPLE BY SAMPLE TRANSMISSION ALGORITHM 

This algorithm consists on the submerged SBC collecting acoustic data samples and 

sending one second of data at a time to the surface unit where data is saved into one-minute 

files for further analysis.  No data is saved on the submerged unit at any time; a variable is 

used as a place holder to momentarily hold one second of data.  This data is then sent to the 

upper unit and the task repeats over and over until the system runs out of power.  This task 

is also described by the sending algorithm flowchart shown below.  The “ironPython” code 

which performs this task runs on the lower unit computer and is found in the Appendix, 

section A.1.3.    
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Since the surface component has synchronized its system time with a GPS receiver, a 

time stamp is applied to each data file.  The time stamp is applied in the following way: first 

we considered the transmission time of each data sample from the lower to the upper unit 

as negligible since data travels at speed of light a distance of 2,000 feet.  Second, the file 

creation time is used to timestamp the first data sample on a file, and third a time vector was 

built to timestamp each data sample on each file in reference to file creation time.  This 

sample by sample transmission approach was adopted in the final implementation of the 

Son-O-MERMAID prototype being described. This data telemetry solution implemented in 

this prototype design is described in the flowcharts below summarized in two parts: the 

sending algorithm which runs in the lower unit implemented in “ironPython” programming 

language, and the receiving algorithm which runs in the upper unit and is implemented in C 

programming.  The code for both algorithms is included in the Appendix, section A.1.3. 



80 
 

 

Figure 3-31: Sending Algorithm Flowchart 

Sending Algorithm Flowchart 

(running in the submerged 

unit) 
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Figure 3-32: Receiving Algorithm Flowchart 

Receiving Algorithm Flowchart 

(running in the surface unit) 
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3.4 POWER CONSUMPTION OF Son-O-MERMAID AND STORAGE SPACE 

REQUIRED 

 

3.4.1 POWER CONSUMPTION BY THE SUBMERGED UNIT 

Once the Son-O-MERMAID prototype is complete, the next planned event is to 

deploy the prototype in the open ocean for one month test.  For that reason, the estimated 

power consumed in a month was measured.  The hydrophones used in this design can 

operate from 10V to 36V and its output is independent of the input, and the Phidget SBC 

board can operate from 6V to 15V.  In order to measure power consumption of the 

submerged component, all the hardware (Circuit interface board, Acquisition board (A/D), 

Hydrophones and SBC Phidget board) were connected to the power/data interface board and 

measured the input power being drawn from the source.  Power consumption was measured 

in two ways: first, a voltage regulator was used within the circuit interface board; and 

secondly, the voltage regulator was removed.  The results are as follow: 

 

Power used by all electronics in the submerged unit (voltage regulator was used 

within the circuit interface board) 

15.1 V input ; 220 mA  3.322 W 

3.322 W * 24 Hrs = 79.728  Wh/day 

79.728 * 30 = 2391.84 Wh or 2.39184 KWh (30 days)   

 

Power used by all electronics in the submerged unit (no voltage regulator within the 

circuit interface board)  

15.1 V input ; 170 mA  2.567 W 

2.567 W * 24 Hrs = 61.608  Wh/day 

61.608  * 30 = 1848.24 Wh or 1.84824 KWh (30 days)   
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3.4.2 POWER CONSUMPTION BY THE SURFACE UNIT 

The power consumed by all electronics (Raspberry Pi, USB/RS-485 and Ultimate GPS 

Breakout board) in the surface unit when the device operates in normal conditions is as 

follows: 

5V input; 400mA  2 Watts (W) 

2W * 24 hrs = 48 Wh/day 

48Wh/day * 30 days = 1,440Wh or 1.44KWh (one month) 

 

 

3.4.3 STORAGE SPACE NEEDED 

 

3.4.3.1 COMPLETE FILE TRANMISSION 

Since this approach used binary data (.bin) format at a sampling frequency of 100 Hz 

and we are using a 16-bit ADC, the necessary space for storage was computed in the 

following way:  

  

[16 bits  2 bytes * (100 samples/sec)*(3600/1 hr)*(24 hrs/day)* 30 days ] 

720,000 bytes/hr   (703.125 KB) / hr 

17,280,000 bytes/day  (16.5 MB) / day 

518,400,000 bytes/month  506,250 MB / month (~0.5 GB) / channel 

       (~1.5 GB) / 3 channels)  

 

In Summary, 2 GB flash drive is sufficient for 30 days of storage with this approach.   

 

 



84 
 

3.4.3.2 SAMPLE BY SAMPLE TRANSMISSION 

 

This approach uses ASCII data (.txt) format at a sampling frequency of 100 Hz and we 

are using a 16-bit ADC.   To measure the storage space needed for this approach the size of a 

one-minute file was used as reference: 

[One minute file = 126 KB]   

126 * 60  minutes = 7560 KB/hr  

7560 * 24 hrs  = 181440 KB/day   177.2 MB/day  

181440 * 30 days = 5443200 KB/month  5315.625 MB (~5.2 GB) / 3 channels / 

month 

        

In Summary, 6 GB flash drive is sufficient for 30 days of storage with this approach.   
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4 FINDINGS 

 

4.1 HARDWARE REQUIRED FOR BUILDING Son-O-MERMAID PROTOTYPE 

 

4.1.1 SUBMERGED COMPONENT 

The submerged component is the part of Son-O-MERMAID that collects the acoustic 

data.  It reads acoustic data from a 3-hydrophone array, then digitizes and samples the data, 

and sends it to the surface component via RS-485 for storage and further analysis.  Figure 3-

10 describes this component which includes the following items: power/data interface 

board, 3-hydrophone array, Analog to Digital Converter, Single Board Computer and a 

USB/RS-485 converter.  The specification characteristics of these items, with the exception of 

the power/data interface board, can be found in the Appendix, tables A-1, A-2, A-4 and A-6 

respectively.  This component is configured in the following way:  

- An interface board receives power from a local power source (battery) located within the 

pressure vessel with the rest of the submerged components and distributes power to the 

3-hydrophone array, the Analog to Digital Converter and the Single Board Computer. 

 

- The Analog to Digital Converter receives acoustic data from hydrophones via the data 

lines of the power/data interface board, it digitizes and samples the data and sends 100 

samples at a time to the SBC board via USB connection. 

 

- The SBC reads in data samples from ADC, 100 samples at a time and writes them to serial 

port to send to surface component. 
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- The USB/RS-485 converter connects to the SBC via USB port and carries out the data 

between submerged and surface components. 

 

4.1.2 SURFACE COMPONENT 

The surface component is the part of Son-O-MERMAID that receives the acoustic 

data from the submerged component and stores it for further analysis.   This component 

includes the following items: Raspberry Pi Model B, Adafruit Ultimate GPS Breakout board 

rev 3 and USB/RS-485 converter.   The specification characteristics of these items can be 

found in the Appendix, tables A-5, A-7 and A-6 respectively.  This component is configured in 

the following way: 

- The GPS receiver connects to the Raspberry Pi via the GPIO pings in the following way: 

 

GPS  RPI 

----------------------------------- 

RX   TXD (pin 8) 

TX   RXD (pin 10) 

PPS  GPIO #23 (pin 16)  

GND  GND (ping 6) 

VIN  5V0 (pin 2)  

 

- The USB/RS-485 converter connects to the Raspberry Pi via USB port and carries out the 

data between submerged and surface components. 

 

4.1.3 WIRING BETWEEN SUBMERGED AND SURFACE COMPONENTS 

During prototype development and testing, 3 out of 8 wires from a 2,000 feet CAT5 

Ethernet cable were used to carry the data between the submerged and surface 

components.  These wires were: D+, D- and GRD, which were connected to pin one, pin 2 and 
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pin 5 respectively in the RS-485 adapter.  Wiring details are described in the Appendix, 

section A.3.1. 

 

4.2 SOFTWARE SOLUTION FOR DATA TELEMETRY OF Son-O-MERMAID 

RS-485 Protocol was used to reliably transmit data between submerged and surface 

components.  Two algorithms were developed and verified successfully: complete file 

transfer and sample by sample transmission.  As discussed in section 3.3.2, the sample by 

sample transfer algorithm was proved to be the final telemetry approach for this Son-O-

MERMAID prototype.   

 

4.3 GPS TIME AND DATA SYNCHRONIZATION ACROSS SEVERAL Son-O-

MERMAID SYSTEMS 

Per design requirement, Son-O-Mermaid must be able to synchronize its time to a 

GPS receiver, but it also must be able to synchronize within one millisecond to multiple Son-

O-Mermaid systems and to monitoring seismic stations on land.  To verify this requirement, 

the deployment of two Son-O-Mermaid systems was simulated as depicted by Figure 4-1 

below. 

 

Figure 4-1: Test setup of a simulation of two Son-O-Mermaid systems. 
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It was expected that data from both systems would overlap since the same input was 

injected into both systems and the time in both systems was synchronized to a GPS receiver.  

The test; however, resulted in a failure due to the inability to synchronize the two Son-O-

Mermaid systems within one millisecond accuracy.  A time offset was observed between 

systems as shown in Figure 4-2 below. 

 

Figure 4-2: Simulation of two Son-O-Mermaid systems both with time synchronized 
to GPS. 

  

The reason for the failure on synchronizing two or more systems with acceptable 

precision is unknown.  More investigation must be conducted to find the root of the problem 

and resolve the issue.  It is suspected that the reason for the failure is due to the use of 

several oscillators/clocks (3) in each system: one in the ADC board, one in the submerged 

computer and one at the surface, all oscillating at different speeds: 100 Hz, 400 MHz and 
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700MHz respectively; however, this is just an assumption and more investigation is necessary 

to verify the root cause of the problem. 
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5 CONCLUSION 

 

The overall objective of this investigation was to build a prototype of a data 

acquisition and telemetry system for the Son-O-MERMAID, a floating instrument that acts as 

a freely drifting seismometer that captures acoustic signals caused by distant seismic activity.  

Prior to the start of this investigation project, some development work had been performed 

and an unfinished prototype had been fielded without success.  As a result of this preliminary 

development work, two hardware components were carried over and used during this 

research: the hydrophone array and the ADC board.  Specification details for these 

equipment are found in the Appendix, tables A-1 and A-2 respectively.  The remaining 

hardware for this prototype was selected based on results obtained during testing where 

cost and power consumption played a major role.  The result of this effort is a system that 

collects acoustic signals at a depth of 2,000 feet, digitizes the data and sends it via RS-485 to 

a surface computer where it gets stored for further analysis.  This surface computer runs a 

very accurate time system that is synchronized to a GPS receiver and provides data 

timestamp. 

This Son-O-MERMAID prototype is a proof-of-concept, and there are a plethora of 

directions in which future development could proceed.  One of the requirements for this 

prototype was to provide data timestamp within one millisecond of accuracy.  This was 

necessary in order to synchronize multiple Son-O-Mermaid systems in support of data 

analysis. This requirement failed and data timestamp was accomplished but with an 

inconsistent accuracy greater milliseconds.  The cause for the failure in data timestamp 

accuracy is still unknown, but it is believed that part of the problem consists of having three 

different oscillators/clocks in each system: one in the ADC board, one in the submerged 
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computer and one in the surface computer, all oscillating at different speeds: 100 Hz, 400 

MHz and 700 MHz respectively.   

For future recommendations, it is suggested an investigation be conducted to find 

the root cause of the poor timestamp accuracy.  One possible test is to connect an 

oscilloscope to the data line on each Son-O-Mermaid system to observe and compare the 

arrival times of data at different points in the system such as: reception of message from the 

surface unit into the submerged unit which instructs to start sampling data, the arrival of 

data samples from the ADC into the Phidget SBC at the submerged unit, and the arrival of 

data samples from Phidget SBC into the Raspberry Pi at the surface unit.  This test will 

provide insights as to where the time synchronization starts degrading.  Another 

recommendation is to eliminate the computer in the submerged unit and connect to the 

interface power/data board directly from the surface computer.  This will require sending 

power from the surface to the submerged component and performing changes to the proven 

telemetry algorithms.  The advantage of this approach is the reduction of power 

consumption and possibly improvement of timestamp accuracy by taking one oscillator/clock 

out of the system.   Finally, for future enhancement to the prototype the following questions 

will need to be addressed after data is stored in the surface unit: how will data analysis be 

conducted, how long should data be stored for, and how much and how frequent should 

data be transmitted via IRIDIUM.  The answers to these questions will also imply 

modifications to the telemetry algorithms implemented in this prototype.  As a side note, it is 

worth mentioning that the IRIDIUM communications system was developed as a module on 

the first Son-O-Mermaid prototype and will be adopted on this new prototype. 
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APPENDIX 

 

A.1  SOFTWARE IMPLEMENTATION OF Son-O-MERMAID 

 

A.1.1 STORING ACOUSTIC DATA INTO ONE-NIMUTE FILES 

 

File Name: USBDAQ4 

#! /usr/bin/ipy 

 

###################################################################### 

# PREREQUISITS:                     

# In order for this script to operate correctly, it must be placed                                                           

# in a folder along with the following files:                                                                      

# a) DAQFlex.dll (DAQFlex API file, version 3.1.0 from Measurement                         

#   Computing).                                                                                                                  

# b) DAQFlex.dll (XML configuration file)                                                                     

# #################################################################### 

# The following script sets the Analog to Digital Converter (ADC)                               

# board to collect digitized data at a rate of 100 Hz on three                                          

# channels (channels 3, 4 and 5).                                                                                     

# A variable is declared to hold 100 samples (one second) of data                                

# within the ADC board, then this data is read in and get stored into                            

# one-minute files in the Phidget SBC board in the submerged unit of #  

# Son-O-MERMAID.                                                      

###################################################################### 
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import os 

import struct 

import clr 

clr.AddReferenceToFile('DAQFlex.dll') 

from MeasurementComputing.DAQFlex import * 

from time import gmtime, strftime 

i = 0 

j = 0 

LoopAround = True 

deviceNumber = 0 

deviceNames = DaqDeviceManager.GetDeviceNames(DeviceNameFormat.NameAndSerno) 

print deviceNames 

deviceName  = deviceNames[deviceNumber]  

################################################### 

device = DaqDeviceManager.CreateDevice(deviceName) 

device.SendMessage("AISCAN:XFRMODE=BLOCKIO") # set transfer mode 

           # for analog input scan data 

device.SendMessage("AISCAN:LOWCHAN=3") # lowest channel used 

device.SendMessage("AISCAN:HIGHCHAN=5") # highest channel used 

device.SendMessage("AISCAN:CAL=ENABLE") # enable calibration 

device.SendMessage("AISCAN:SCALE=DISABLE") 

device.SendMessage("AISCAN:RATE=100") # set the A/D data rate per  

# channel for all channels 

#device.SendMessage("AI{0}:RANGE=BIP5V") 

#device.SendMessage("AI{1}:RANGE=BIP5V") 

#device.SendMessage("AI{2}:RANGE=BIP5V") 
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device.SendMessage("AI{3}:RANGE=BIP5V") # set analog input range 

device.SendMessage("AI{4}:RANGE=BIP5V") 

device.SendMessage("AI{5}:RANGE=BIP5V") 

#device.SendMessage("AI{6}:RANGE=BIP5V") 

#device.SendMessage("AI{7}:RANGE=BIP5V") 

 

#response = device.SendMessage("AI{0}:RANGE=BIP5V") 

#value = response.ToValue() 

 

Time = int(float(strftime("%S", gmtime()))) 

if Time == 0: 

    OldTime = 59 

else: 

    OldTime = Time - 1 

 

N = 1 

while os.path.isfile("/media/usb0/testFolder/ipydata" + N.ToString() + ".bin") == True: 

    N = N+1 

file = open("/media/usb0/testFolder/ipydata" + N.ToString() + ".bin", "wb") 

format = "H" 

device.SendMessage("AISCAN:SAMPLES=0") 

device.SendMessage("AISCAN:START") 

while 1: 

    scanData = device.ReadScanData(100, 0) 

    for i in range (0,100): 
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        for j in range(0,3): 

            ScanData = int(scanData[j,i]) 

            if ScanData > 65535: 

                ScanData = 65535 

            elif ScanData < 0: 

                ScanData = 0 

            data = struct.pack(format, ScanData)#scanData[j,i]) 

            #file.write(scanData[j,i].ToString("F03") + " ") 

            file.write(data) 

        #file.write('\n') 

    if int(float(strftime("%S", gmtime()))) == OldTime and LoopAround == True: 

 LoopAround == False 

        file.close() 

        N = N+1 

        file = open("/media/usb0/testFolder/ipydata" + N.ToString() + ".bin", "wb") 

    if int(float(strftime("%S", gmtime()))) == Time and LoopAround == False: 

        LoopAround = True 

file.close() 

device.SendMessage("AISCAN:STOP") 

DaqDeviceManager.ReleaseDevice(device) 

  

 

A.1.2 TRANSMITTER AND RECEIVER CODE FOR COMPLETE FILE TRANSFER 

A.1.2.1  DATA SENDING 

Two scripts are used to send data: “sendZ.py” and sz.sh. 
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A.1.2.1.1 File name: sendZ.py 

# File name: sendZ.py 

# This script searches for file names in the directory below: 

#"/media/usb0/testFolder" in the sequence 1 through n. 

# Once a file name is found (example: “file2.bin”) it sends 

# the previous one (example: “file1.bin”). 

############################################# 

#!/usr/bin/python 

#import serial 

import datetime 

import os 

import sys 

from time import sleep 

now = datetime.datetime.now() 

#**** calling system's commands (lrzsz) within python ********* 

N = 2 

 

while True: 

 appendString = ("ipydata" + str(N) + ".bin") 

 # Searching for a "ipydata#.bin" file in  

 #"/home/don/Desktop/out_files" directory 

 if os.path.isfile("/media/usb0/testFolder/" + appendString) == True: 

  print("found " + appendString + " file") 
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  f_send = ("ipydata" + str(N-1) + ".bin")  

  print ("Sending file: " + "ipydata" + str(N-1) + ".bin")  

  #**** calling system's commands (lrzsz) within python ********* 

  

  cmd = './sz.sh '+ f_send 

  os.system(cmd) 

  N = N+1 

  sleep(5) 

 else: 

  print(appendString + " file does not exist yet") 

  sleep (10)  

 

 

A.1.2.1.2 File name: sz.sh 

#!/bin/bash 

# This script initiates a connection with zmodem to send files 

cd /media/usb0/testFolder/ 

stty -F /dev/ttyUSB0 115200 

#sz -vv -b ipydata1.txt > /dev/ttyUSB0 < /dev/ttyUSB0 

sz -vv -b $1 > /dev/ttyUSB0 < /dev/ttyUSB0 

 

 

A.1.2.2  DATA RECEIVING 

Two scripts are used to receive data: “recZ.py” and rz.sh.  

 

A.1.2.2.1 File name: recZ.py 
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# this script receives files serially by lrzsz -ZMODEM 

import os  

import sys 

while True: 

 cmd = './rz.sh' 

 os.system(cmd) 

 

A.1.2.2.2  File name: rz.sh 

#!/bin/bash 

# This script opens a receive connection with zmodem to receive files 

# It is intended to open connection without interruption 

cd /media/usb0/junk/ 

stty -F /dev/ttyUSB0 115200 

rz -vv -b -O < /dev/ttyUSB0 > /dev/ttyUSB0 

 

 

A.1.3 SAMPLE BY SAMPLE TRANSFER 

A.1.3.1  THE SENDER CODE (Implemented in “ironPython”) 

 

 #File name: mermaid_send.py  

# This script runs in the submerged (phidget Single Board Computer) component of  

# MERMAID and performs the following tasks: 

 

# 1) Performs board settings on the ADC board and waits for order from the surface 

# unit to start sampling data at the indicated time. 
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# 2) Receives order from surface component and pass it to the ADC board so it knows  

# when to start collecting acoustic data samples. 

# 3) Receives samples of acoustic digitized data from the ADC board (100 samples at  

# a time) and transmit them via RS-485 to the surface component. 

 

#!/usr/bin/ipy 

import clr 

clr.AddReferenceToFile('DAQFlex.dll') 

from MeasurementComputing.DAQFlex import * 

from time import gmtime, strftime, sleep 

import os 

import datetime 

# 

print ("sleep for 30 seconds to allow time to get USB/Serial adapter ready" + '\n') 

print ("This is needed when this script starts at boot when this script" + '\n') 

print ("is added to the rc.local file" + '\n') 

sleep (30) 

# IronPython port settings 

clr.AddReference('System') 

from System import * 

serialPort=IO.Ports.SerialPort('/dev/ttyUSB0') 

serialPort.BaudRate = 38400 

serialPort.DataBits = 8 

serialPort.Open() 

# 
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# DAQFlex Analog to Digital Converter (ADC) initialization 

deviceNumber = 0 

deviceNames = DaqDeviceManager.GetDeviceNames(DeviceNameFormat.NameAndSerno) 

print deviceNames 

deviceName  = deviceNames[deviceNumber]  

################################################### 

device = DaqDeviceManager.CreateDevice(deviceName) 

device.SendMessage("AISCAN:XFRMODE=BLOCKIO") 

device.SendMessage("AISCAN:LOWCHAN=3") 

device.SendMessage("AISCAN:HIGHCHAN=5") 

device.SendMessage("AISCAN:CAL=ENABLE") 

device.SendMessage("AISCAN:SCALE=ENABLE") #enabled for TXT. files 

      #disabled for BIN. files 

# ADC set to 100Hz 

device.SendMessage("AISCAN:RATE=100") 

 

# Channels 3, 4, and 5 set to read acoustic data from hydrophones 

device.SendMessage("AI{3}:RANGE=BIP5V") 

device.SendMessage("AI{4}:RANGE=BIP5V") 

device.SendMessage("AI{5}:RANGE=BIP5V") 

 

# placed following two lines here, before serial signal is receive 

# to compare time accuracy 

# Read serial signal from unit at surface to start sending acoustic samples 

readSerial = "" 

while (len(readSerial) == 0): 
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 readSerial = serialPort.ReadLine() 

 if (len(readSerial) > 0): 

  print("Okay to read acoustic data" + '\n')  

 

# Start collecting acoustic data samples in the DAQFlex's buffer 

device.SendMessage("AISCAN:SAMPLES=0") 

device.SendMessage("AISCAN:START") 

# 

# Read DAQFlex's buffer and send 100 samples each time via RS-485 to surface unit 

while 1: 

     dataHolder = "" # variable to hold 100 samples (one second) 

     scanData = device.ReadScanData(100, 0) 

     for i in range (0,100): 

         for j in range(0,3): 

   dataHolder = dataHolder + (scanData[j,i].ToString("F03") + " ") 

  dataHolder = (dataHolder + ",") 

     serialPort.WriteLine ((dataHolder)+ '\n')  #writes 100 samples to serial port 

 

     print("size of line written to serial port:" + len(dataHolder).ToString()+ '\t')  

     print("TIME: " + datetime.datetime.now().time().isoformat()+ '\n') 

# 

serialPort.Close() 

device.SendMessage("AISCAN:STOP")  

DaqDeviceManager.ReleaseDevice(device) 
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A.1.3.2  THE RECEIVER CODE (Implemented in C) 

#File name: mermaid_rec.c 

/* File name: mermaid_rec.c 

* This script runs in the surface component of MERMAID and 

* performs the following tasks: 

* 1) Sends a signal via the RS-485 line to the ADC board 

*    to order when to begin sampling acoustic data. 

* 2) Receives samples of acoustic digitized data from the lower 

*    unit (100 samples, XXX bytes at a time. 

* 3) Stores acoustic samples into one-minute file.  File size 

*    can be changed by changing the number of iterations in 

*    loop (line #)  

* Read and write from/to multiple binary files in a directory  

*/ 

 

#include <stdio.h> 

#include <string.h> 

#include <unistd.h> 

#include <fcntl.h> 

#include <errno.h> 

#include <termios.h> 

#include <stdarg.h> 

#include <stdlib.h> 

#include <time.h> 

/* baud rate defined in <asm/termbits.h>, which is included by <termios.h> */ 



103 
 

#define BAUDRATE B38400 

#define MODEMDEVICE "/dev/ttyUSB0" 

#define _POSIX_SOURCE 1 /* POSIX compliant source */ 

#define FALSE 0 

#define TRUE 1 

/****************************************************/ 

main () 

{ 

 printf("sleeping 2 minutes to allow time to phidget to be ready\n"); 

 sleep(120); 

 int fd, c, res; 

 struct termios oldtio, newtio; 

 char buf [3110];  //changed from 255 

 char ofile[3110]; //changed from 255 

 

 /* Settings to send signal via RS-485 to the Analog to Digital  

    Converter (DAQFlex) board to start collecting samples to be  

    transmitted via RS-485 to the surface SBC (Raspberry pi */ 

 time_t nowtime; 

 struct tm *ptr_time; 

 char buffer[10]; 

 int seconds = 11; 

 

 /* open modem device for reading and writing */ 

 fd = open(MODEMDEVICE, O_RDWR | O_NOCTTY ); 
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 if (fd < 0) {perror (MODEMDEVICE); exit(-1);} 

   

 tcgetattr(fd, &oldtio); /* save current serial port settings */ 

 bzero (&newtio, sizeof(newtio)); /* clear struct for new port settings */ 

 

 /* set baud rate (38400), 8biit, no parity, 1 stop bit */ 

 newtio.c_cflag = BAUDRATE | CS8 | CLOCAL | CREAD; 

 

 /* Raw input */ 

 newtio.c_oflag = 0; 

 

 /* ICANON : enable canonical input 

  * disable all echo functionality, and don't send signals to calling program */ 

 newtio.c_lflag = ICANON; 

 

 /* initializing control characters  

  * default found at /usr/include/asm/termbits.h */ 

 newtio.c_cc[VINTR] = 0;  /* Ctrl-c */ 

 newtio.c_cc[VQUIT] = 0;  /* Ctrl-\ */ 

 newtio.c_cc[VERASE] = 0;  /* del */ 

 newtio.c_cc[VKILL] = 0;  /* @ */ 

 newtio.c_cc[VEOF] = 4;  /* Ctrl-d */ 

 newtio.c_cc[VTIME] = 0;  /* inter-character timer unused */ 

 newtio.c_cc[VMIN] = 1;  /* blocking read until 1 character arrives */ 

 newtio.c_cc[VSWTC] = 0;  /* '\0' */ 
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 newtio.c_cc[VSTART] = 0;  /* Ctrl-q */ 

 newtio.c_cc[VSTOP] = 0;  /* Ctrl-s */ 

 newtio.c_cc[VSUSP] = 0;  /* Ctrl-z */ 

 newtio.c_cc[VEOL] = 0;  /* '\0' */ 

 newtio.c_cc[VREPRINT] = 0;  /* Ctrl-r */ 

 newtio.c_cc[VDISCARD] = 0;  /* Ctrl-u */ 

 newtio.c_cc[VWERASE] = 0;  /* Ctrl-w */ 

 newtio.c_cc[VLNEXT] = 0;  /* Ctrl-v */ 

 newtio.c_cc[VEOL2] = 0;  /* '\0' */ 

  

 /* clean modem line and activate the settings for the port */ 

 tcflush(fd, TCIFLUSH); 

 tcsetattr(fd, TCSANOW,&newtio); 

 

 /* Waits for the star of a new minute with "00" 

           seconds to send signal to DAQFlex to start sampling */ 

        while (seconds!=00) { 

         time(&nowtime); 

                ptr_time = localtime(&nowtime); 

                strftime(buffer, 10, "%S", ptr_time); 

                seconds = atoi(buffer); 

                printf("%d\n", seconds); 

        }//end while 

 

        /* Sending "S"; a character to wake up the DAQDFlex ADC board 
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           which will start reading data samples to be sent via RS-485? 

           to the surface unit (Raspberry pi)*/ 

         res = write(fd, "S\n", 10);              

         printf("Sent signal to DAQFlex\n"); 

 

 /* terminal settings done, now handle input 

  * Infinite loop. Uses a counter called "sample" to iterate twice per second; 

  * 120 iterations equals ONE minute file. The counter can be incremented as  

  * desired to get a file of a desired size.  */ 

 

 int fileCtr = 1; 

 while (1) { 

  /* Opening the files to store acoustic data samples */ 

  sprintf(ofile, "/home/pi/Desktop/piTest/systemAtest2/out_file%d.txt", 

fileCtr++); 

  FILE *fpOut = fopen(ofile, "w"); 

  if (!fpOut) { 

   printf("unable to open: %s\n", ofile); 

  } 

  int sample = 0; 

  while (sample < 120) { 

   res = read(fd, buf, 3110); 

   printf("number of bytes read: %d\n", res); 

 

     // (res-1) to avoid printing '\n' character 
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// which produces an empty line  
                                                                                                  

                           int n = fwrite(buf, 1, (res-1), fpOut);           
      printf("number of bytes written: %d\n", n); 

                           if (n != (res-1)) { 

                           printf("output write mismatch (%d versus %d)\n", n, res); 

                           } else { 

                                   fflush(fpOut); 

                           } 

   sample = sample + 1; 

   if (sample == 120) { 

    printf("End of file reached\n"); 

    fclose (fpOut); 

   }//end if 

  } 

 } 

 /* restore the old port settings */ 

 tcsetattr(fd, TCSANOW, &oldtio);  

}// end main 

 

 

A.1.4 NTP CONFIGURATION FILE 

“/etc/ntp.conf” 

$ sudo nano /etc/ntp.conf 

# http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver20.html explains 

# these settings slightly modified, but credit to: 

# Paul Kennedy @ (http://www.raspberrypi.org/phpBB3/viewtopic. 



108 
 

server 127.127.20.0 mode 17 minpoll 3 iburst true prefer 

fudge 127.127.20.0 flag1 1 time2 0.496 

 

# For a general setup with an Internet connected Raspberry Pi, leaving these uncommented 

# is generally considered good practice, but were commented out in Son-O-MERMAID since  

# there were not needed: 

#server 0.debian.pool.ntp.org iburst 

#server 1.debian.pool.ntp.org iburst 

#server 2.debian.pool.ntp.org iburst 

#server 3.debian.pool.ntp.org iburst 

#################### End of NTP File   ############################# 

 

What do the bits in the server line above do?  

- 127.127.20.0: Specifies the GPS_NMEA driver. 

- mode 17: This sets the line speed (bit 4, dec: 16) to 9600 bps. Additionally, $GPRMC 

is processed (bit 0, dec: 1). We get a total sum of 17 when adding the decimal parts 

together (hence “mode 17”). 

- minpoll: Minimum polling interval for NTP messages in a power of 2.  Here, 3 = 8 

seconds. 

- iburst: If a server is unreachable, send a burst of eight packets instead of one. 

- true: Let the server survive NTP’s algorithmic weeding. 

- prefer: If we have a choice among good hosts (post-determination, etc), use this one 

for syncing. 

 

What do the bits in the fudge line above do?  

- The fudge options are driver dependent. 

- 127.127.20.0: Specify the GPS_NMEA driver. 



109 
 

- flag1 1: Activate PPS API, and process the PPS signals we get. 

- time2: Compensate slightly for transmission delays. Instructions for tuning this are 

located # on the “driver home page” on the site:  

(http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver20.html).  Specifically, 

look for 7 # (bit) / 128 (decimal) in the mode section.  This web site also presents a 

complete explanation of the flags used.  

 

 

A.2 HARDWARE TECHNICAL SPECIFICATION TABLES 

 

Table 1: Hydrophones Specifications 

Sensitivity with preamp Max -165 dB re: 1V μPa (562 V/Bar) 
Min  -240 dB re: 1V μPa (0.1 V/Bar) 

Frequency Response 2 Hz to 30 KHz 

Equivalent Input Self Noise RMS from 1 Hz to 1000 Hz: 
78 dB re: 1 μPa 
0.08 μBar 

Spectral 54 dB re: 1 μPa/ √Hz @ 10Hz 
42 dB re: 1 μPa/ √Hz @ 100Hz 
42 dB re: 1 μPa/ √Hz @ 1000Hz 

Maximum Operating Depth 10,000 feet (3,048 meters) 

Size  2.50 “ length X 0.75” dia. 

 

 

Table 2: ADC specifications 

  Analog Input characteristics 

A/D converter type 16-bit A/D converter 

Number of channels 8 single-ended 

Input configuration Individual A/D per channel 

Sampling method Simultaneous 

Max input voltage ±15 V max (IN to GRD) 

Input impedance 100 MΩ  

Input ranges ±10V, ±5V, ±2V, ±1V 

http://www.eecis.udel.edu/~mills/ntp/html/drivers/driver20.html


110 
 

Sampling rate 0.6 S/s to 50 kS/s, software selectable.  

Son-O-MERMAID used 100Hz 

Throughput Scan to system memory [(100 kS/s) / (# 

of channels); max of 50 kS/s for any 

channel] 

Digital Input / Output 

Configuration Independently configured for input or 

output 

Output high voltage 3.8 V min 

Output low voltage 0.7 V max 

Counter 

Counter type Event counter 

Input type TTL, rising edge triggered 

Resolution 32 bits 

Input frequency 1 MHz max 

Pulse width 500 ns min 

MEMORY 

Data FIFO 32,768 samples, 65,536 bytes 

EEPROM 1,024 bytes 

POWER 

Supply current Up to 500 mA 

Input power to board from USB source 5 V 

Output current  350 mA max (total amount of current 

that can be sourced from the +5V input 

power and digital outputs. 

ENVIRONMENTAL 

Operating temperature range 0 °C to 70 °C 

Storage temperature range -40 °C to 70 °C 

Humidity 0% to 90% non-condensing 

 

 

Table 3:  Fit PC2i specifications 

Feature Specification 

CPU Intel Atom Z530 

CPU speed 1.6GHz 

Memory 1GB / 2GB DDR2-533 on board 

Networking 2 x 1000 BaseT Ethernet 

Operating System Linux Mint 

Power 12V single supply, 8-15V tolerant 

Power consumption 6W at low CPU load, 8W at full CPU load 

Operating temperature 0° to + 45°C with hard disk, 0° to + 70°C with SSD 

Serial RS-232 Full UART 

Price per unit £250 



111 
 

 

Table 4: Phidget SBC2 product specifications 

Feature Specification 

CPU Samsung S3C2440 

CPU speed 400 MHz 

NAND Memory Size 512 MiB 

SDRAM Size 64 MiB 

Boot time 30 s 

Networking 10/100Base-T Ethernet 

Operating System Debian Linux 

Supply Voltage min/max 6  /  15 V DC  

Available External Current 500 mA 

Operating Temperature min/max 0°C / 70 °C 

Power Consumption Base (w/ Ethernet) 1.2 W 

Number of Digital Inputs 8 

Digital Input Update Rate 125 samples/s 

Price per unit $150.00 

 

 

Table 5: Raspberry Pi Model B specifications 

Chip Broadcom BCM2835 SoC full HD multimedia applications 

processor 

CPU 700 MHz Low Power ARM1176JZ-F Applications Processor 

GPU Dual Core VideoCore IV® 

Multimedia Co-Processor 

Memory 512MB SDRAM 

Ethernet onboard 10/100 Ethernet RJ45 jack 

USB 2.0 Dual USB Connector (2 ports) 

Video Output HDMI (rev 1.3 & 1.4) Composite RCA (PAL and NTSC) 

Audio Output 3.5mm jack, HDMI 

Onboard 

Storage 

SD, MMC, SDIO card slot 

Operating 

System 

Linux 

Dimensions 8.6cm x 5.4cm x 1.7cm  
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Table 6: USB to RS-485 Adapter specifications 

Feature Specification 

Communication 

supported 

RS-485 and RS-422 capabilities 

 

Processor FTDI FT232RL 

Baud rate 300-921.600bps, auto detection 

Power Port powered from USB 

Output voltage Output voltage: 3.60VCD (between D+ and GND) 

Data bits 7, 8 

Stop bits 1, 2 

Buffer size 128/385 bytes 

Serial signals RS-422: TX-, TX+, RX-, RX+, GND (full duplex) 

RS-485: D-, D+, GND (half duplex) 

Flow control Automatic. No IRQ conflicts, no IRQs, IO or DMA required 

Current draw Less than 100mA 

Operating humidity 5% to 95% - No condensation 

Operating Temp -40°C to 85 °C 

Operating System Operating System supported: Linux, Windows and Mac  

 

 

Table 7: Ultimate GPS Breakout version 3 features 

Satellites: 22 tracking, 66 searching 

Patch Antenna Size: 15mm x 15mm x 4mm 

Update rate: 1 to 10 Hz 

Position Accuracy: 1.8 meters 

Velocity Accuracy: 0.1 meters/s 

Warm/cold start: 34 seconds 

Acquisition sensitivity: -145 dBm 

Tracking sensitivity: -165 dBm 

Maximum Altitude for MTK3329: 18,000 meters 

Maximum Altitude for MTK3339: no limit 

Maximum Velocity: 515m/s 

Vin range: 3.0-5.5VDC 

MTK3329 Operating current: 48mA tracking, 37 mA current draw during 

navigation 

MTK3339 Operating current: 25mA tracking, 20 mA current draw during 

navigation 

Output: NMEA 0183, 9600 baud default 

DGPS/WAAS/EGNOS supported 

FCC E911 compliance and AGPS support (Offline mode : EPO valid up to 

14 days ) 

Up to 210 PRN channels 

Jammer detection and reduction 
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Multi-path detection and compensation 

Breakout board details: 

Weight (not including coin cell or holder): 8.5g 

Dimensions (not including coin cell or holder): 23mm x 35mm x 8mm / 0.9" 

x 1.35" x 0.3" 

Includes headers and a CR1220 coin cell holder (soldering required.) 
 

 

 

A.3 MISCELLANEOUS 

Table 8: RS-485 Wiring 

Screw Terminal RS-485 (1) RS-485 (2) Screw Terminal 

1 D+ D+ 1 

2 D- D- 2 

3 Not used Not used 3 

4 Not used Not used 4 

5 GRD GRD 5 
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