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ABSTRACT

The contributions of micro-, nano-, and picoplankton to particle export were
estimated from measurements of size-fractionated particulate >**Th, organic carbon,
and phytoplankton indicator pigments obtained during five cruises between 2010 and
2012 along Line P in the subarctic northeast Pacific Ocean. Sinking fluxes of
particulate organic carbon (POC) and indicator pigments were calculated from ***Th—
38U disequilibria and, during two cruises, measured by sediment trap at Ocean Station
Papa. POC fluxes at 100 m ranged from 0.65 — 7.95 mmol m™ d”, similar in
magnitude to previous results at Line P. Microplankton pigments dominate indicator
pigment fluxes (averaging 69+19% of total pigment flux), while nanoplankton
pigments comprised the majority of pigment standing stocks (averaging 644+23% of
total pigment standing stock). Indicator pigment loss rates (the ratio of pigment export
flux to pigment standing stock) point to preferential export of larger microplankton
relative to smaller nano- and picoplankton. However, indicator pigments do not
quantitatively trace particle export resulting from zooplankton grazing, which may be
an important pathway for the export of small phytoplankton. These results have
important implications for understanding the magnitude and mechanisms controlling
the biological pump at Line P in particular, and more generally in oligotrophic gyres
and high-nutrient, low-chlorophyll regions where small phytoplankton represent a

major component of the autotrophic community.
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PREFACE
The thesis, “Estimates of micro-, nano-, and picoplankton contributions to
particle export in the northeast Pacific” was written in Manuscript format under the

guidelines of the University of Rhode Island.
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1. Introduction

Phytoplankton community structure exerts an important influence on the
strength and efficiency of the biological pump (Michaels and Silver, 1988, Boyd and
Newton, 1999, Thibault et al., 1999, Brew et al., 2009, Lomas and Moran, 2011).
Small nano- and picoplankton dominate the phytoplankton community in the
oligotrophic gyres and high-nutrient, low-chlorophyll (HNLC) oceanographic regions.
It has traditionally been thought that small phytoplankton represent a relatively small
fraction of the downward flux of particulate organic carbon (POC) relative to larger
phytoplankton, such as diatoms, which are generally thought to contribute
disproportionately to POC export (e.g., Michaels and Silver, 1988). Recent studies
have challenged this idea, suggesting that small phytoplankton contribute to POC
export in proportion to their contribution to biomass, possibly through aggregation and
incorporation into fecal pellets (Richardson and Jackson, 2007, Stukel and Landry,
2010, Lomas and Moran, 2011). A better understanding of the controls on the relative
importance of small phytoplankton in POC export is needed to refine our
understanding of the magnitude and mechanisms controlling the biological pump,
particularly as recent climate models predict an expansion of the oligotrophic gyres
where small cells dominate (Irwin et al., 2006, Polovina et al., 2008, Moran et al.,
2010).

Ocean Station Papa (OSP, 50°N, 145°W), the site of one of the longest-
running ocean time-series, is located in the northeast Pacific Ocean in one of three
major HNLC regions. Previous attempts to resolve the apparent paradox of low

phytoplankton biomass and high nitrate concentrations at OSP concluded that a



bottom—up control related to iron limitation is most important for large phytoplankton
(Muggli et al., 1996, Harrison, 2006, Marchetti et al., 2006), while microzooplankton
grazing exerts a strong top—down control on pico- and nanoplankton (Landry et al.,
1993, Harrison et al., 1999, Rivkin et al., 1999). Primary production at the stations
proximal to the coast on Line P (P4 & P12) is not iron-limited and diatom blooms are
typically observed in spring and late summer (Boyd and Harrison, 1999, Thibault et
al., 1999). At the offshore stations (including OSP) the phytoplankton community is
dominated by cells <5-pum and the seasonal variability of primary production is
relatively low (~25 mmol C m™ d”' in winter and ~67 mmol C m™ d”! in summer)
(Boyd and Harrison, 1999, Thibault et al., 1999, Choi et al., 2014). In contrast to the
low variability in primary production, POC export recorded by moored sediment traps
at OSP exhibits a stronger seasonal cycle with fluxes at 200 m depth ranging from
~0.4 mmol C m™ d”' in winter to ~2.4 mmol C m™ d”' in summer (Timothy et al.,
2013). The average annual sediment trap POC flux at OSP (1.4 + 1.1 mmol C m? d™)
is nearly five times lower than the annual net community production (ANCP) at OSP
(6.3 + 1.6 mmol C m™ d™), suggesting that the majority of organic carbon export is
due to active transport by zooplankton and/or DOC export (Timothy et al., 2013,
Emerson, 2014).

This study builds upon prior investigations of phytoplankton community
composition and export production along Line P by examining the distributions of
organic carbon, phytoplankton indicator pigments, and >**Th in three particle size-
fractions. Sinking fluxes of POC and indicator pigments from the upper waters (~100

m) were calculated from the **Th—>**U disequilibrium and, during two cruises,



measured at OSP using free-floating sediment traps. A comparison of indicator
pigment fluxes with the respective standing stocks suggests that microplankton (20 —
200-um) make up a higher percentage of POC export than biomass, whereas pico- and
nano plankton (0.2 — 2-pm and 2 — 20-pum) make up a lower percentage of POC export

than biomass.

2. Methods
2.1 Study location

Sample collection was conducted at five stations along Line P (P4, P12, P16,
P20, and P26 (OSP)) during cruises aboard the CCGS John P. Tully in August 2010,
February 2011, June 2011, February 2012, and June 2012 (Fig. 1, Table 1). Line P is
located at the southern edge of the Alaskan Gyre, and the prevailing winds and surface
currents are west-east (Bograd et al., 1999). Because precipitation and continental
run-off exceed evaporation, a permanent halocline exists at ~100 m impeding deep
winter mixing. In addition, a seasonal thermocline forms at ~50 m in spring and
shoals to ~20 m in summer (Freeland et al., 1997, Thibault et al., 1999, Freeland,

2013, Timothy et al., 2013).

2.2 Net primary production by "*C incubation

Rates of net primary production (NPP) were determined following the
protocols outlined in Lomas et al. (2012). Samples were collected with Niskin
bottles from seven depths in the euphotic zone corresponding to 1, 5, 9, 17, 33, 55, and

100% of surface irradiance. Three ‘light’ bottles, a single ‘dark’ bottle, and a single



initial (T,) bottle were each spiked with ~10 uCi NaH'*CO;. A sub-sample to confirm
total added activity was removed from the Ty bottle at each light depth and
immediately added to an equal volume of B-phenylethylamine. Bottles were incubated
under simulated in situ conditions, using neutral density screening to mimic light
levels at the depth of sample collection, in an on-deck incubator for ~24 hours. After
incubation, 125 mL sub-samples from each light and dark bottle were filtered through
an Ahlstrom 151 (0.7-um nominal pore size) and a Whatman Track Etch 5-um filter
and rinsed with 10% HCI. Samples were counted on a Perkin Elmer TriCarb 2900LR
~48 h after the addition of 5 mL of Ultima Gold (Perkin Elmer, USA) scintillation

cocktail.

2.3 Water column ***Th

Total **Th (dissolved + particulate) analysis followed the procedures outlined
in Bauman et al. (2013). Briefly, samples (4 L) were collected by Niskin bottle at 12
depths (surface to ~500 m) and spiked with **°Th to monitor Th recovery. Samples
were then treated with 7-8 drops of concentrated NH4OH solution, followed by 25 pL
of 0.2 M KMnOy, and finally with 11.5 pL of 1.0 M MnCl, to form a MnO,
precipitate that quantitatively scavenges Th (Benitez-Nelson et al., 2001, Buesseler et
al., 2001, van der Loeff et al., 2006). After 1 hour, samples were vacuum filtered onto
25 mm glass microfiber filters (GM/F, 1-um nominal pore size) that were frozen for
later analysis in the shore-based laboratory. To prepare samples for counting, filters
were dried at 50°C for ~24 hours, mounted on acrylic planchets, and covered with

aluminum foil. To quantify 234Th, the beta emission of 2>*"Pa (Emax=2.19 MeV; t1n=



1.2 min) was counted using a RIS@ National Laboratory low-background beta
detector (Roskilde, Denmark). Each sample was counted four times over a period of
approximately six half-lives, with the first count made at least 10 days after collection
to allow for the decay of short-lived isotopes, and the final count used to quantify
background levels. Data were fit to the ***Th decay curve to calculate the decay-

corrected activity at the time of sample collection.

2.4 Water column POC, Chl a, and indicator pigments

Water samples for POC, Chl a, and phytoplankton indicator pigments were
collected from the same depths in the photic zone as for NPP samples. Suspended
POC was measured on 1 L seawater samples filtered onto pre-combusted Ahlstrom
151 filters and frozen at -20°C until analysis. Samples were dried at 60°C in a drying
over, fumed in a desiccator containing concentrated hydrochloric acid for 24 h to
remove inorganic carbonates, and dried again at 60°C. Samples were then analyzed
on an EA-440 Analyzer (Exeter Analytical, Inc., Chelmsford, MA) (Pike and Moran,
1997). Chl a samples were analyzed using the methods outlined in Lomas et al.,
(2012). Separate samples (~0.2 L) were filtered onto Ahlstrom 151 and 5-pm
Whatman Track Etch polycarbonate filters and frozen at -20°C until analysis.
Samples were then extracted in 5 mL of 90% acetone for 24 h at -20°C and analyzed
using a calibrated TD-700 fluorometer.

Indicator pigment samples were collected on separate Ahlstrom 151 filters and
stored at -80°C until analysis by high-performance liquid chromatography (HPLC) at

the Bermuda Institute of Ocean Sciences in the Bermuda Atlantic Time-series Study



Laboratory (Knap et al., 1997). Fucoxanthin (FUCO), peridinin (PER), 19°-
hexanoyloxyfucoxanthin (HEX), 19’-butanoyloxyfucoxanthin (BUT), alloxanthin
(ALLO), total chlorophyll » (TChl b), and zeaxanthin (ZEA) were analyzed as
indicator pigments based on their correspondence to particular phytoplankton
taxonomic groups. Indicator proportion factors (PFs) were calculated to further
analyze the size-distribution of the phytoplankton community (Hooker et al., 2005,
Lomas and Moran, 2011). The sum of FUCO and PER concentrations was used to
determine the microplankton proportion factor (mPF), while the sum of HEX, BUT,
ALLO, and TChl b was used to determine the nanoplankton proportion factor (nPF),
and ZEA was used to determine the picoplankton proportion factor (pPF) (Hooker et
al., 2005, Lomas and Moran, 2011). Hooker et al. (2005) included TChl b in pPF, but
because Prochlorococcus 1s not found in the study region, it was assumed in this study
that any Chl b would be found in cells (e.g., chlorophytes and euglenophytes) in the

nanoplankton size-class.

2.5 In situ pump sampling

Large-volume in situ pumps (Challenger Oceanic Systems and Services, UK
and McLane Scientific, Falmouth, MA) were deployed for approximately four hours at
depths of 30, 50, 100, 150, and 200 m. Each pump sampled 100 — 1000 liters to
collect size-fractionated particles, with seawater passing sequentially through 53-pm,
10-um, and 1-pum Nitex screens. Particles were resuspended by ultrasonication in 0.7-
um prefiltered seawater and filtered onto separate pre-combusted GF/F filters for

parallel analysis. Indicator pigment samples were stored at -80°C until analysis by



high-performance liquid chromatography (HPLC) at the Bermuda Institute of Ocean
Sciences in the Bermuda Atlantic Time-series Study Laboratory (Knap et al., 1997).
Filters for analysis of POC and ***Th were frozen at -20°C until analysis. A sub-
sample (~30% by weight) was cut with acetone-cleaned stainless steel scissors from
each Z**Th filter for POC analysis, and these sub-samples were dried and fumed with
concentrated HCI as described above. POC was then measured using a CE 440 CHN
Elemental Analyzer (Exeter Analytical, Inc., Chelmsford, MA). The **Th filter
subsample was dried at 60°C in a drying oven and counted on a RIS beta detector as

noted above.

2.6 Sediment trap sampling

Surface-tethered particle interceptor traps (PITS) with cylindrical tubes (KC-
Denmark, Silkeborg, Denmark) were deployed for ~3 days at station P26 during the
June 2011 and June 2012 cruises to collect particles at the depths of 30, 50, 100, 150,
and 200 m. Due to limited wire-time and other cruise constraints it was not possible to
deploy sediment traps at any other stations sampled as part of this study. The trap
design and sampling procedure is described in Baumann et al. (2012). Four tubes (72
mm diameter, 450 mm length) were used at each depth, and tubes were filled with
non-poisoned, 0.4-um filtered brine (S = ~85 %o) prior to deployment. Upon recovery
trap brines were combined, particles were re-suspended and filtered onto pre-
combusted GF/F filters, and swimmers were removed. Filters were stored frozen and

later analyzed for POC, ***Th, and indicator pigments as described above.



3. Results
3.1 Hydrography and NPP

Depth sections of temperature and density anomaly (sigma-t) were generated
using results from all CTD casts for a given cruise to improve horizontal data
resolution (Fig. 2). The seasonal change in water temperature is largely confined to
the upper ~100 m. Surface temperatures in August 2010 were ~14°C, while during
the February cruises, surface temperatures were slightly cooler offshore (~6°C) than
inshore (~8°C). During the June cruises, inshore temperatures were warmer (~10 —
12°C) while offshore temperatures remained relatively cool (~8°C). Density anomaly
did not vary greatly between cruises below ~100 m. During the winter, a pool of less
dense water (density of 1023 — 1025 kg m™) was observed toward the coast (east of
~126°W). During the June cruises, this pool was observed extending west to ~130°W
and during August 2010, it extended out to OSP (145°W). These data follow the
expected seasonal pattern of a well-mixed water column in winter and increasing
stratification moving from spring to summer.

Total NPP and >5-pum size-fractionated NPP values were trapezoidally
integrated over the euphotic zone (Table 2). A maximum total NPP of 91.9 mmol m™
d"!' was measured at station P26 during June 2011, whereas the lowest value of 12.4
mmol m™ d”' was measured at station P26 during February 2012. These values agree
to within a factor of two with the seasonal averages reported by Boyd and Harrison
(1999). A maximum >5-um NPP of 39.6 mmol m™ d”' was at station P4 during June
2012 and a minimum of 2.2 mmol m™ d”' was measured at station P12 in February

2012.



3.2 Small- and large-volume POC concentrations

Suspended POC concentrations from Niskin bottle samples collected in the
photic zone range from 1.1 — 7.1 umol L. POC concentrations were generally lowest
at the base of the photic zone, though decreasing concentrations with depth were not
observed at all stations (Table Al). The highest suspended POC concentrations were
measured at station P4 during all cruises. POC concentrations were also measured in
three size-fractions of particles collected with large-volume in situ pumps (Table A2).
Concentrations of each size-fraction tended to decrease with depth and were typically
less than 0.5 pmol L™ at all depths. One exception was at station P26 during February
2011 when POC concentrations at 30 m were between 1.8 and 2.9 pmol L™ for all
size-fractions.

The concentrations of POC collected using small-volume and large-volume
methods often do not agree for samples collected at the same location and depth
(Gardner, 1977, Moran et al., 1999, Liu et al., 2005, Liu et al., 2009). As reported in
these previous studies, POC concentrations measured by large-volume in situ pumps
(summed for all size-fractions) are significantly (ANOVA, p < 0.05) less than small-
volume POC measurements from the same station and similar depth (Fig. 3a).
Explanations put forth to account for this discrepancy include DOC adsorption to
filters, pressure effects on particle retention in pump samples, the collection of
zooplankton by Niskin bottles but not pumps, and particle washout from pump filters
(Moran et al., 1999, Liu et al., 2005, Liu et al., 2009). In this study, the smallest

pump size-fraction was collected using a 1-pm Nitex screen, not a GF/F, resulting in
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the pumps missing the portion of the POC on particles between 0.7- and 1-pum, which
may further contribute to the difference observed between the two methods. Lomas
and Moran (2011) reported that sonication of in situ pump samples to resuspend
particles from the Nitex screens had no significant effect on measured POC

concentrations.

3.3 Particulate **Th and POC/*Th ratios

Size-fractionated particulate ***Th activities in samples collected by in situ
pump generally decrease with depth, and are typically less than 0.1 dpm L™ (Table
A2). As with in situ pump POC concentrations, station P26 during February 2011 is
an exception, with values exceeding 0.1 dpm L™ for all size fractions at 30 m and
throughout most of the water column for the 1 — 10-um fraction. Size-fractionated
POC/**Th ratios (Fig. 4, Table A2) are less than ~6 pmol dpm™ for all size-classes at
most stations, with higher values measured at stations P4 and P12 in February 2012
and P4 in June 2012. POC/**Th ratios tend to decrease or remain constant with depth,
with one exception at station P12 during February 2012 where the maximum
POC/**Th was at 100 m for all size fractions. Also, the POC/**Th ratio does not vary
greatly between size-fractions (Fig. 4) as was observed in Speicher et al. (2006) and
Brew et al. (2009).

The accuracy of >**Th as a tracer of POC export depends on the assumption
that 2**Th and POC are sinking on the same particles, and therefore sinking at the
same rate (Moran et al., 2003, Smith et al., 2006, Speicher et al., 2006, Burd et al.,

2007, Brew et al., 2009). A high degree of correlation between the size-fractionated
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distributions of Z**Th and POC (Fig. 4) along Line P provides evidence in support of
this assumption. All correlations were statistically significant (p < 0.05) and imply a
strong coupling between particulate **Th and POC for all cruises. In addition, the
clustering of data for the different size-fractions of particles (Fig. 4) indicates that in
February 2012 the 10 — 53-um size class contained the highest percentage of POC and
particulate **Th, while the >53-pum size class contained the lowest percentage. In
June 2012, the 1 — 10-um size class had the lowest percentage of POC and particulate
#3*Th while both the 10 — 53-um and the >53-pum fractions contained higher

percentages (Fig. 4).

3.4 Small-volume Chl a and indicator pigments

Concentrations of total Chl @ and >5-pm Chl a measured by fluorometer
(Table A1) were trapezoidally integrated over the photic zone to determine respective
standing stocks. During August 2010, the >5-pum fraction accounted for >30% of the
Chl a at all stations, with a maximum of 50% at station P26. During the other four
cruises, the >5-pum size-fraction generally accounted for <30% of the total Chl a,
except at station P26 in February 2012 and station P4 in June 2012. Previous studies
have reported that larger cells are more abundant at stations closer to the coast (Boyd
and Harrison, 1999), though this was not always apparent. The highest >5-um
percentage of Chl @ was measured at station P26 during August 2010, June 2011, and
February 2012. Phytoplankton indicator pigments and Chl a concentrations in
samples from the euphotic zone samples were also measured by HPLC (Table A1).

HPLC and fluorescence Chl a concentrations generally agreed to within a factor of
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two, and the correlation between the two measurements was statistically significant (p
<0.05) (Fig. A1). The correlation between the sum of the indicator pigment
concentrations and the Chl a concentration was statistically significant (p < 0.05) and
roughly 1:1, suggesting that the indicator pigments examined in this analysis
accounted for most of the phytoplankton biomass (Fig. A2). Furthermore, the
correlation between the >5-um fraction of Chl a and mPF is statistically significant (p
< 0.05), suggesting that this PF is a reasonable representation of that size-fraction of
the phytoplankton community. Profiles of indicator pigment concentrations were
trapezoidally integrated over the photic zone to quantify standing stocks (Table 3).
FUCO was the most abundant microplankton pigment, and HEX was the most
abundant nanoplankton pigment at most stations. Indicator pigment PFs (Table A3,
Fig. 5) reveal that the phytoplankton community was typically dominated by
nanoplankton, although at P4, and to a lesser extent at P20 in June 2012,
microplankton pigments made up the bulk of the sample (~86% and ~52%

respectively).

3.5 Large-volume size-fractionated Chl a and indicator pigments

Size-fractionated Chl @ and indicator pigment concentrations were also
measured by in situ pump (Table A4). Chl a was once again strongly correlated in a
roughly 1:1 ratio with the sum of the indicator pigments (p < 0.05) (Fig. A3). The
highest Chl a concentrations were measured in the 10 — 53-pum fraction during all

cruises. In February 2012, the >53-um fraction generally had the lowest
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concentrations, while in June 2012 and June 2011 the lowest concentrations were
generally in the 1 — 10-pum fraction.

Ideally, small-volume and large-volume concentrations of Chl @ and indicator
pigments should agree for samples collected at the same station and depth, but this
was not observed in this study (Fig. 3). Although differences between small- and
large-volume measurements of POC have been reported (Gardner, 1977, Moran et al.,
1999, Liu et al., 2005, Liu et al., 2009), few studies have compared Niskin bottle and
in situ pump measurements of indicator pigments (Lomas and Moran, 2011). Relative
to bottle samples, the pump samples indicate higher concentrations of microplankton
pigments FUCO and PER and lower concentrations of ZEA and TChl b, which are
pigments associated with pico- and nanoplankton (Fig. 3b-d). Large-volume pump
and small-volume bottle measurements of the nanoplankton indicator pigments HEX,
BUT, and ALLO generally agree within a factor of two (Fig. 3b-d). Given the small
size of ZEA-containing Synechococcus and TChl b-containing chlorophytes and
prasinophytes, it is likely that many of these cells pass through the 1-um Nitex screen
which would lead to under-sampling by the pumps (Liu et al., 2005). Bottles may
undersample large, rare cells because the small volume might not be a statistically
representative sample (Lomas and Moran, 2011). Furthermore, larger cells may settle
below the spigot of the Niskin bottles, leading to a further bias against the collection
of large cells (Gardner, 1977, Gundersen et al., 2001). Overall, pumps sample higher
concentrations of Chl a than bottles (Fig. 3a), but this trend is driven by the

oversampling of pumps at stations with high concentrations of Chl a. When Chl a
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concentrations are low (<200 ng L), the pumps tend to undersample relative to the
bottles.

Given these sampling inconsistencies, it is important to note that although the
total concentrations (summed for all size-fractions) measured by the in situ pumps
may be inaccurate, it is still possible that the >53-um fraction accurately represents the
composition of sinking particles. The disruption of loosely-bound aggregates during
collection by the pumps could cause an error in the >53-pum fraction, but this is
considered unlikely due to the presence of nanoplankton (and in some cases
picoplankton) pigments in this fraction. Furthermore, a recent study in the Sargasso
Sea employed a similar methodology and also found picoplankton pigments in three
particle size-classes, each >10-um (Lomas and Moran, 2011).

Indicator pigment PFs calculated for the size-fractionated particles (Table A3)
and plotted against depth (Figs. 6-8) reveal that while the overall indicator pigment
concentrations vary with depth and across size-fractions, the PFs do not exhibit a
systematic pattern of variation across size classes, depths, or seasons. The
picoplankton pigment ZEA typically represents <10% of the total indicator pigments
for all size classes. Microplankton pigments dominated samples at station P4 in
February 2012 and June 2012, with mPFs typically exceeding 0.5 and 0.8,
respectively, for each cruise. In addition, mPFs were high at station P26 during these
times, with values generally exceeding 0.5 (Figs. 7-8). Nanoplankton pigments
dominated at station P12 in February 2012 cruise with nPFs exceeding 0.5 for most

samples. As with the small volume samples, FUCO was usually the most abundant
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microplankton pigment while HEX was usually the most abundant nanoplankton

pigment (Table A4).

3.6 Total 234Th, Sy Yl U activity ratios, and 234Thﬂuxes

Total (dissolved + particulate) >**Th activities, 2**U activities, and Z*Th/***U
activity ratios are listed in Table A5. Depth sections of these Z**Th/**U activity ratios
(Fig. 2d) indicate that areas of low >**Th/***U are prevalent in spring and summer and
corresponding to periods known to have high particle export in this region (Wong et
al., 1999, Timothy et al., 2013). ***Th fluxes (P;) were calculated using these
#4Th/*8U results and a 2-D steady-state model of the radiochemical balance for ***Th

in the upper ocean,

J0Ar, azATh 0Ary
ET AyArn — ArpArp — Prp + KhW + Uy e

(1)
where Ay is the activity of 2 SU, Arn 1S the 234Th decay constant, A7, is the activity of
234Th, Py, 1s the vertical flux of 234Th on sinking particles, K is the eddy diffusion
coefficient, and Uj, is the current velocity (Coale and Bruland, 1985, Charette et al.,
1999). Assuming a steady-state (0A47,/0t = 0) over several weeks to months, and that
the diffusive flux of Z*Th is small relative to advection and can therefore be ignored,

the vertical flux of ***Th is defined by,

z 0Ar,
Pry = J [ATh(AU —Arp) + Uy ) dz
0
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2)
where z is the depth of the water column over which the flux is measured. In this
study, the gradient of thorium (0A47,/0x) was only measured in the east-west direction
(along Line P). Therefore, x is the east-west distance across which the gradient will be
measured and U, is the east-west current velocity. Given that the currents in the
region generally flow west-east, and with no data at stations north and south of Line P,
the north-south transport of 2**Th by advection had to be assumed to be negligible. At
stations P12, P16, and P20, the 24Th gradient was measured between the adjacent
stations. For stations P4 and P26 (at either end of Line P), the gradient of 2**Th was
determined from the adjacent station assuming a linear change extended beyond the
measured transect.

2%Th fluxes (Py;) calculated using the 2-D model are within 5% of fluxes
determined using a steady-state 1-D model that ignores advection (Fig. A4). This
indicates that, under these assumptions, the vertical flux of 2**Th on sinking particles
is the dominant transport term. Consistent with previous studies, ***Th fluxes at all
stations were higher during the August and June cruises than during the February
cruises (Fig. 9a) (Charette et al., 1999). Also, 2**Th fluxes did not exhibit a consistent

trend along Line P.

3.7 #*Th-derived POC fluxes
The POC/**Th ratio in the >53-pum size-class and Py, for a given depth
horizon were used to calculate POC fluxes (Ppoc) (Fig. 9). In most cases, Ppoc

decreases with depth, although in some cases, the maximum Ppoc in a given profile
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occurs at 50 or 100 m. Ppoc fluxes at 100 m range from 0.65 — 7.95 mmol m d'l,
which are similar to the only prior >**Th-derived POC export fluxes reported for this
region (Charette et al., 1999). Ppoc fluxes are generally higher in summer than winter,
and highest at station P4, consistent with previous studies along Line P (Charette et al.,
1999, Wong et al., 1999, Timothy et al., 2013).

The ratio of Ppoc flux to NPP, referred to as the ThE-ratio, is an estimate of
efficiency of the biological pump (Buesseler, 1998). ThE-ratios were determined using
Ppoc fluxes at the base of the photic zone (Table 2, Fig. 10). The highest measured
ThE-ratio determined in this study was 0.26 at P4 in February 2012 and the lowest
measured was 0.01 at station P26 in February 2012 and at P20 in June 2012 (Table 2).
ThE-ratios from this study are similar to those reported by Charette et al. (1999), and
are also in line with an annual average e-ratio determined using average sediment trap

POC fluxes (Wong et al., 1999) and annual average NPP (Harrison, 2002) (Fig. 10).

3.8 Sediment trap ***Th and POC fluxes

The particle flux of ***Th and POC fluxes determined by the PITS traps (F7
and Fpoc respectively) both tend to decrease with depth (Table 4). F7; was higher in
June 2012 than in June 2011, though there was no clear difference between the two
cruises for Fpoc. A comparison of the F'7;, with the Py, from corresponding stations
and depths indicates that the F'y;, is consistently higher than the Py, though usually not
by more than a factor of two. Fpoc is also consistently higher than Ppoc, though again

not by more than a factor of two (Fig. 11a). The POC/***Th ratios of particles caught
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in sediment traps (Table 9) tend to be slightly higher (generally within a factor of 2)

than the ratio of particles sampled by pumps at the corresponding station and depth.

3.9 *Th-derived and sediment trap pigment fluxes

Sinking fluxes of Chl a (Pcni,) and indicator pigments (Ppigmen) Were
calculated from Pz, and the Pigment/**Th ratio measured on >53-pum particles. Chl a
and indicator pigment fluxes (Table 3, Fig. 11a-c) are generally highest at station P4
and decrease moving offshore. The highest indicator pigment fluxes were typically
observed for microplankton pigments (FUCO and PER) whereas the lowest were
observed for the picoplankton pigment ZEA (Table 3, Fig. 12a-c).

Sediment trap pigment fluxes (Fpigmens) Were typically lower than Ppigpens
(Table 3, Fig. 11x). The maximum sediment trap fluxes of Chl a and most indicator
pigments were determined at 50 m in June 2011 and at 30 m in June 2012 (Table 3).
For both deployments the deepest fluxes were generally the lowest, presumably due to
the progressive degradation of sinking phytoplankton and resulting loss of pigments.
Chl a and indicator pigment fluxes were generally higher in June 2011 than in June
2012, which is the opposite of the trend observed for Fy;.

Pigment PFs determined for material captured by the PITS traps do not vary
greatly with depth, suggesting that the quality of material sinking to depth is similar to
that in the surface water, despite the general decrease of material (Figs. 6 and 8).
Microplankton PFs are higher for trap samples than for bottle samples but not as high
as for pump samples, while nPFs and pPFs are higher for trap samples than for pump

samples but lower than for bottle samples.
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4. Discussion

The results presented in this study build on previous investigations of export
production in the northeast Pacific by providing estimates of the relative contributions
of different phytoplankton size-classes to particle export. A comparison of indicator
pigment standing stocks and Ppjgmens fluxes suggests that while nanoplankton
represented the bulk of phytoplankton biomass (68+24% of pigment standing stock,
averaged for all stations and cruises), microplankton dominated the flux of pigmented
material (69+19% on average) (Table 3, Fig. 12). Sediment trap pigment fluxes
indicate a lower, but still substantial, relative contribution of microplankton to export,
with microplankton pigments making up 47% and 33% of the total sediment trap
indicator pigment flux in June 2011 and June 2012 respectively, as compared to 81%
and 85% of total Ppjgmens fluxes. Though nano- and picoplankton did not form the
majority of the algal aggregate flux, their 29+19% contribution is significant and
similar to contributions reported by Lomas and Moran (2011) for cyanobacteria and
nano-eukaryotes in the Sargasso Sea.

Indicator pigment loss rates determined from both Ppigyen fluxes and sediment trap
pigment fluxes imply that microplankton are exported more efficiently than nano- or
picoplankton (Table 3, Fig. 12d-f). Loss rates of pigments, estimated as the ratio of
Ppigmen: fluxes to pigment standing stock, averaged (for all cruises) 8+12% for
microplankton pigments, 1+2% for nanoplankton pigments and 0.6+1% for
picoplankton pigments. These results suggest that export of large cells by direct

sinking of algal aggregates is more efficient than the export of small cells by the same
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pathway. Sediment trap loss rates for microplankton were also higher than those for
nano- and picoplankton, further indicating preferential export of microplankton. Even
though differences between bottle and pump samples may exaggerate the extent to
which large cells dominate export, sediment trap loss rates support and confirm the
preferential export of large cells by algal aggregation.

In contrast to the trends observed for pigment fluxes and loss rates, the low variability
of pump indicator pigment PFs with depth (Figs. 6-8), does not appear to indicate
preferential export of microplankton. Furthermore, the presence of nano- and
picoplankton pigments in the >53-um size-fraction and in samples below the mixed
layer suggests that nano- and picoplankton are incorporated into aggregates and that
some of these aggregates are exported from the surface ocean. If large cells were
being preferentially exported, microplankton pigments would be expected to make up
a larger percentage of total pigments in samples below the mixed layer than in samples
from the mixed layer, but this is not observed in the results of this study. It is possible
that some of this discrepancy can be attributed to differences between bottle and pump
samples. Because cells <I-um in size can pass through the 1-um Nitex screens used in
the pumps, the sum of the pump size-fractions does not accurately reflect the
community composition in the euphotic zone, and may miss a change in indicator
pigment PFs with depth. In addition, the under-sampling of large cells by Niskin
bottles may lead to an underestimate of microplankton standing stocks, and thus and
overestimate of microplankton loss rates.

These pigment fluxes are likely lower estimates of the total contribution of each

phytoplankton group to particle export. The use of indicator pigments as tracers of
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phytoplankton export only accounts for the direct sinking of healthy, ungrazed cells,
because grazing degrades the indicator pigments to an analytically undetectable form
(Head and Harris, 1992, Strom et al., 1998, Thibault et al., 1999). Indirect export (via
grazing) is thought to be an important pathway for picoplankton export in the HNLC
Equatorial Pacific (Richardson et al., 2004, Stukel and Landry, 2010). Given that
grazing has been shown to control the biomass of small phytoplankton in the northeast
Pacific (Landry et al., 1993, Harrison et al., 1999, Rivkin et al., 1999), indirect export
may also be a significant pathway for small cell export in this region. Because this
pathway is not accounted for by the methodology employed in this study, the results
presented here may underestimate the export of small phytoplankton, which may be
less likely to sink directly based on their size.

Although grazing and fecal pellet export were not directly measured in this study, a
comparison of sediment trap and pump measurements of Chl a, indicator pigments,
and POC, suggests that zooplankton fecal pellets may be an important component of
POC export at OSP, at least in spring (Fig. 11). While Fpoc fluxes are higher than the
corresponding Ppoc fluxes, Fpigmen fluxes are lower than Ppjgpen fluxes, indicating that
the material captured by the sediment traps is enriched in carbon and depleted in Chl a
and indicator pigments relative to that sampled by the pumps. Because the trap brine
was not poisoned, zooplankton grazing and cell degradation in the trap tube may also
have contributed to some loss of pigments over the ~3 day deployment of the PITS
traps. However, the collection of carbon-rich and pigment-depleted fecal pellets by
the traps but not by the pumps, which do not quantitatively sample fecal pellets

(Lomas and Moran, 2011), could also explain these observations. This latter
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explanation is consistent with the results presented in Thibault et al. (1999), which
indicate that fecal pellet export is 3 to 6 times greater than algal aggregate export at

Line P.

5. Conclusions

New estimates of phytoplankton indicator pigment loss rates calculated from
both ***Th-derived and sediment trap pigment fluxes suggest that large cells are
preferentially exported at Line P. Specifically, microplankton pigments on average
made up 69+19% of the total pigment flux, but only 32+24% of pigment standing
stock, whereas nano- and picoplankton pigments on average formed 314+19% of
pigment flux in spite of representing 68+24% of the standing stock. These results are
consistent with traditional food web models (Michaels and Silver, 1988, Legendre and
Le Févre, 1995) that suggest nano- and picoplankton are underrepresented in particle
flux relative to their contribution to phytoplankton biomass; they also lend support to
the conclusions of Choi et al. (2014). However, the methods employed in this study
do not quantitatively account for export via zooplankton fecal pellets, which could be
significant for small phytoplankton as they are controlled by grazing in this region
(Landry et al., 1993, Harrison et al., 1999, Rivkin et al., 1999, Thibault et al., 1999).
Furthermore, the determination of pigment loss rates also required a comparison
between small- and large-volume samples, and the inherent differences of these
sampling techniques likely led to an overestimation of the microplankton contribution

to algal aggregate export. Therefore, it is possible that all sizes-classes of
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phytoplankton contribute to POC export in approximate proportion to their
contribution to NPP as predicted by Richardson and Jackson (2007).

This study, conducted in a subarctic HNLC region, contributes to the ongoing
discussion of small cell export that has largely focused on tropical and subtropical
regions (Richardson et al., 2004, Richardson et al., 2006, Richardson and Jackson,
2007, Stukel and Landry, 2010, Lomas and Moran, 2011). In particular, these results
suggest that nano- and picoplankton may contribute significantly to POC export in this
subarctic HNLC region, even if they are not as efficiently exported as larger
microplankton. If large phytoplankton drive more efficient POC export in the
northeast Pacific as suggested by this study, it could have important implications for
understanding the biological pump. It has been proposed that decreasing winter mixed
layer depths (Freeland et al., 1997, Freeland, 2013) and variations of macronutrient
concentrations linked to shifts in climate regime (Pena and Varela, 2007) in the
northeast Pacific could lead to shifts in the phytoplankton community composition.
This study suggests that such changes in phytoplankton community composition could
significantly affect the efficiency of the biological pump, and in turn, the cycling of
carbon. While the results indicate that shifts in community composition favoring
larger phytoplankton could lead to more efficient particle export, they do not indicate
that shifts favoring smaller phytoplankton would lead to a shutdown of POC export as
suggested by some previous studies (e.g., Michaels and Silver, 1988), but merely that

the export of POC could be less efficient.
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Table 1: Cruise dates and sample collection along Line P

Cruise Dates P4 P12 P16 P20 P26
2010-14 Total Th Total Th Total Th Total Th Total Th
Aug. 2010
(8/19/10 - . ) .
8/31/10) WCPig WCPig WCPig
2011-01 Total Th Total Th Total Th Total Th
Feb. 2011
(2/9/11 - 2/15/11) WCPig WCPig WCPig
2011-26 Total Th Total Th Total Th Total Th Total Th
June 2011 Part. Th
(6/4/11 - 6/16/11) WCPig WCPig WCPig WCPig WCPig
Part. Pig
Traps
2012-01 Total Th Total Th Total Th Total Th Total Th
Feb. 2012 Part. Th Part. Th Part. Th
(2/7/12-2/19/12)  WCPig WC Pig WC Pig
Part. Pig Part. Pig Part. Pig
2012-12 Total Th Total Th Total Th Total Th Total Th
June 2012 Part. Th Part. Th Part. Th Part. Th Part. Th
(5/23/12-6/7/12) WCPig WCPig WCPig
Part. Pig Part. Pig Part. Pig Part. Pig Part. Pig
Traps
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Table 4: 2*Th and POC fluxes and POC/***Th ratios measured

by the PITS traps.

Depth  Days S4Th flux POC flux POC/**Th ratio
(m) In-situ (dpmm?>d”') (mmolm?>d") (umol dpm™)

June 2011 P26
30 332 3192+117 153+0.4 48 +£0.2
50  3.32 2909 + 92 10.1 £0.3 3.5+0.1
100 3.32 2256 +94 59+0.2 2.6 £0.1
150  3.32 1928+ 79 5.0+0.2 2.6 £0.1
200  3.32 2281 +97 85+03 37+0.2

June 2012 P26
30 2.82 3999+ 206 147 +0.4 37+0.2
50  2.82 5485+ 290 13.5+0.5 25+0.2
100 2.82 3154+192 6.5+0.2 2.1 +0.1
150 282 2151135 55+0.2 25+0.2
200 2.82 3959+129 50+0.2 1.3+0.1
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Figure 1. Map showing the Line P stations sampled in this study.
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Figure 3. Comparison of small-volume Niskin bottle and large-volume in situ pump
measurements of a) POC, b) picoplankton indicator pigments, ¢) nanoplankton
indicator pigments, d) microplankton pigments. Niskin bottle measurements are lower
than pump measurements for microplankton pigments, and higher for nanoplankton
pigments and POC.
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Figure 4. a) POC/***Th ratios on 1 — 10-pm particles and on 10 — 53-pm particles
plotted against the POC/***Th ratio on >53-um particles. Fractional distributions of
POC and particulate >**Th are plotted for three size-classes of particles. The
percentage of total POC associated with each particle size-class is plotted against the
percentage of total particulate >*Th for samples collected at stations on Line P during
b) June 2011, c¢) February 2012, and d) June 2012. The correlation coefficient (rz) and
the slope of the linear regression (m) are shown for each cruise.
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Figure 9. Depth profiles of a) **Th fluxes (Pr,) determined using the 2-D model, b)

POC/**Th ratios on >53 pum particles, and c) **Th-derived POC fluxes (Ppoc) at
stations on Line P during the five cruises in this study.
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Figure 10. Net primary production (NPP) plotted against #¥Th-derived POC fluxes
(Ppoc) for stations along Line P in this study. The slopes of the dashed lines represent
ThE-ratios. For reference NPP and Pppc values determined by Charette et al. (1999)
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sediment trap POC fluxes (at 200 m) reported in Harrison (2002) and Wong et al.
(1999) respectively.
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Th-derived pigments fluxes at OSP during June 2011 and June 2012.
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Table A5: Total ***Th and ***U activities, >**Th/**U activity ratios, and ***Th

fluxes
Depth Total 234}"h 238U-1 24T/ AR Pnj _ Trap_Th _
(m)  (dpmL")  (dpmL") (dpmm3d")  (dpmm?>d
Aug. 2010 P4
5 0.73 £0.06 2.27 0.32 - -
10 1.08 £ 0.09 2.27 0.47 - -
20 - 2.28 - - -
21 1.33 £0.10 2.28 0.58 - -
30 1.81 £0.12 2.29 0.79 794 £ 97 -
50 2.26 £0.15 2.30 0.98 944 + 163 -
75 225 +0.17 2.32 0.97 - -
100 2.69 £0.17 2.36 1.14 894 + 393 -
150 2.06 £0.13 2.39 0.86 901 £ 611 -
200 - 2.40 - 1466 + 830 -
300 243 +£0.16 241 1.01 - -
500 2.36 £0.16 2.42 0.98 - -
Aug. 2010 P12
5 1.10 £ 0.08 2.24 0.49 - -
10 1.12 £0.08 2.24 0.50 - -
20 0.78 £0.06 2.24 0.35 - -
27 1.48 £0.11 2.28 0.65 - -
30 1.49 £0.11 2.30 0.65 786 £ 71 -
50 1.80 £0.12 2.30 0.78 1163 £+ 132 -
75 1.84 £0.13 2.30 0.80 - -
100 2.06 £0.13 2.32 0.89 1774 £ 310 -
150 235 +0.15 2.36 0.99 1972 £ 513 -
200 2.52 £0.17 2.39 1.05 1891 + 744 -
300 2.19 £0.15 2.40 0.91 - -
500 2.14 £0.14 2.41 0.89 - -
Aug. 2010 P16
5 1.49 £0.10 2.30 0.65 - -
10 1.84 £0.14 2.30 0.80 - -
20 1.54 £0.11 2.30 0.67 - -
30 0.96 £ 0.07 2.30 0.42 472 + 104 -
40 1.66 £ 0.11 2.31 0.72 - -
50 1.87 £0.12 2.31 0.81 918 £ 155 -
75 221 +0.15 2.32 0.95 - -
100 2.23 £0.15 2.33 0.96 1194 + 355 -
150 233 +0.16 2.39 0.97 1316 £ 573 -
200 2.06 £0.13 2.39 0.86 1603 £ 780 -
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
300 2.38+0.16 2.40 0.99 - -
500  2.50+0.16 241 1.03 - -

Aug. 2010 P20

5 1.30 £ 0.11 2.30 0.56 - -
10 1.33 £0.09 2.30 0.58 - -
20 1.72 £0.12 2.30 0.75 - -
30 1.80 £0.13 2.30 0.78 560 + 87 -
36 1.51 £0.11 231 0.65 - -
50 1.68 +£0.12 2.31 0.73 960 + 151 -
75 2.03+0.14 2.32 0.88 - -
100 1.99 +£0.13 2.35 0.85 1521 + 338 -
150 220+0.14 2.39 0.92 1913 + 536 -
200 248 £0.16 2.39 1.04 1982 + 758 -
300 233 +0.16 2.40 0.97 - -
500 - 2.41 - - -
Aug. 2010 P26
5 1.02 £ 0.07 2.31 0.44 - -
10 1.32+0.10 2.31 0.57 - -
20 1.07 £0.08 2.31 0.46 - -
30 1.67+0.12 2.32 0.72 846 + 93 -
35 1.33 £0.09 2.32 0.57 . .
50  1.35+0.10 2.32 0.58 1386 + 139 -
75 1.83 £0.12 2.32 0.79 - -
100  2.08 +£0.14 2.33 0.89 2184 + 300 -
150 230+0.16 2.39 0.96 2429 + 518 -
200 227 £0.15 2.39 0.95 2576 + 742 -
300 2.03+£0.13 2.40 0.84 - -
500 228 +0.14 2.42 0.94 - -
Feb. 2011 P12

1 1.96 £0.13 2.29 0.86 - -
5 2.13+£0.14 2.29 0.93 - -
10 218+0.15 2.29 0.95 - -
20 2.12+0.14 2.29 0.93 - -
30 222+0.15 2.29 0.97 234 + 171 -
50 2.01+0.13 2.29 0.88 337 + 234 -
75 225+0.15 2.29 0.98 - -
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
100  2.35+0.15 2.35 1.00 468 + 426 -
150  2.51+0.16 2.39 1.05 381 + 648 -
200 244 +0.16 2.40 1.02 265 + 878 .
300 2.35+0.15 2.40 0.98 - -
500 237 =+0.15 2.41 0.98 . .

Feb. 2011 P16

1 1.87 £0.13 2.31 0.81 - -
10 2.05+0.13 2.31 0.89 - -
20 2.09+0.14 2.31 0.91 - -
30 1.48+0.10 2.31 0.64 335+ 120 -
40  2.04+0.13 2.31 0.89 - -
50 197 +0.13 2.31 0.85 579 + 188 -
75 2.02+0.14 2.31 0.88 - -
100 242 +0.16 2.34 1.03 879 + 387 -
150 237 £0.15 2.39 0.99 834 + 610 -
200 2.40 £0.15 2.39 1.00 838 + 830 -
300 243 +0.16 2.40 1.01 - -
500 230 =0.15 2.41 0.95 . .

Feb. 2011 P20

1 2.12+£0.14 2.30 0.92 - -
10 2.06+0.14 2.30 0.90 - -
20 1.99 +£0.13 2.30 0.87 - -
30 2.07+0.14 2.30 0.90 215 + 120 -
35 2.05+0.14 2.30 0.89 - -
50 2.03+0.14 2.30 0.88 360 + 196 -
75 1.95+£0.13 2.30 0.85 - -
100 247 £0.16 2.35 1.05 661 + 394 .
150 2.46 +0.16 2.39 1.03 526 + 624 -
200 2.55+0.17 2.39 1.07 366 + 860 -
300 227 =+0.15 2.40 0.95 - -
500 235=+0.16 2.41 0.97 . .

Feb. 2011 P26

5 221 +0.14 2.31 0.95 - -
10 231+0.16 2.31 1.00 - -
25 214 +£0.15 2.31 0.93 - -
30 - - - 114 + 132 .
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
50 2.30 £0.15 2.31 0.99 160 + 211 -
75 2.31 £0.15 2.31 1.00 - -
100 2.19 £0.15 2.36 0.93 224 + 418 -
125 244 £0.15 2.38 1.03 - -
150 227 £0.15 2.39 0.95 280 + 636 -
175 2.07 £0.13 2.39 0.87 - -
200 2.10+0.14 2.39 0.88 659 + 836 -
250  2.06 £0.13 2.40 0.86 - -
300 2.15+0.16 2.40 0.90 - -

June 2011 P4

1 1.21 £ 0.09 2.25 0.54 - -

10 1.15 +£0.08 2.25 0.51 - -
20 1.37 £0.10 2.28 0.60 - -
30 1.61 £0.11 2.29 0.70 849 + 91 -
39 1.61 £0.11 2.30 0.70 - -
50 1.70 £0.12 2.30 0.74 1232 + 149 -
75 2.27 £0.15 2.32 0.98 - -
100 2.11+0.14 2.36 0.89 1571 + 341 -
150 216 £0.14 2.39 0.90 1921 + 538 -
200 221 +0.14 2.40 0.92 2227 + 741 -
300 232 +0.15 2.41 0.96 - -
500 233 +0.16 2.42 0.96 - -

June 2011 P12

1 1.22 £ 0.09 2.28 0.53 - -

10 0.98 = 0.07 2.29 0.43 - -
20 1.30 £ 0.09 2.29 0.57 - -
30 1.15 £ 0.08 2.30 0.50 899 + 75 -
45 1.38 £ 0.09 2.30 0.60 - -
50 1.82 £0.12 2.30 0.79 1450 + 126 -
75 2.51 +£0.16 2.32 1.08 - -
100 246 £0.15 2.37 1.04 1456 + 336 -
150 234 £0.15 2.39 0.98 1425 £ 550 -
200 2.16+0.14 2.40 0.90 1631 £ 757 -
300 237+0.15 2.40 0.99 - -
500 224 +0.15 2.42 0.93 - -

75



Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
June 2011 P16
1 1.69 £ 0.11 2.31 0.73 - -
10 1.56 £ 0.11 2.31 0.67 - -
20 1.86 £0.12 2.31 0.80 - -
30 1.04 +0.08 2.31 0.45 544 + 95 -
50 1.40 +0.09 2.31 0.61 1172 + 141 -
60 1.79 £ 0.12 2.31 0.77 - -
75 1.82 £0.12 2.31 0.79 - -
100  2.50 £0.16 2.33 1.07 1715 £ 321 -
150 2.56 £0.16 2.39 1.07 1474 + 553 -
200 2.27+0.14 2.39 0.95 1447 + 774 -
300 2.20+0.14 2.40 0.92 - -
500 - 2.41 - - -
June 2011 P20
1 1.56 £ 0.11 2.30 0.68 - -
10 1.55+0.10 2.30 0.67 - -
20 1.34 +£0.09 2.30 0.58 - -
30 1.50 £ 0.10 2.30 0.65 746 + 86 -
50 1.48 £0.10 2.30 0.64 1217 + 143 -
55 1.56 £ 0.11 2.30 0.68 - -
75 2.24 £0.15 2.31 0.97 - -
100 2.54 +0.16 2.34 1.09 1525 + 340 -
150 247 +0.16 2.39 1.03 1335 £+ 569 -
200 2.20+0.14 2.39 0.92 1424 + 785 -
300 2.32+0.15 2.40 0.97 - -
500 2.39+0.16 242 0.99 - -
June 2011 P26 D (Trap Depolymc
1 1.17 £0.08 2.31 0.51 - -
10 1.30 £0.08 2.31 0.56 - -
20 1.20 = 0.08 2.31 0.52 - -
30 1.27 £ 0.09 2.31 0.55 949 + 78 3192 £ 117
45 1.38 £ 0.09 2.31 0.60 - -
50 1.35 +£0.09 2.32 0.58 1514 £ 126 2909 + 92
75 2.12+£0.13 2.32 0.91 - -
83 - - - 1974 £ 235 -
100 224 +0.14 2.32 0.96 2033 + 301 2256 + 94
150 249 £0.16 2.39 1.04 2021 £514 1928 £79
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
200 2.51 £0.16 2.39 1.05 1867 £ 739 2281 £ 97
300 2.28+0.14 2.40 0.95 - -
500 2.30+0.14 2.42 0.95 - -

June 2011 P26 R (Trap Recovery’

1 1.22 +0.08 2.32 0.53 - -

10 1.35+0.09 2.32 0.58 - -
20 1.20 +0.08 2.32 0.52 - -
30 1.28 +£0.08 2.32 0.55 923 + 78 3192 £ 117
48 1.68 £ 0.11 2.32 0.73 - -
50 1.59 £0.10 2.32 0.68 1395 + 130 2909 + 92
75 2.01 +£0.12 2.32 0.87 - -
85 - - - 1847 £ 246 -
100 2.25+0.13 2.32 0.97 1910 £ 301 2256 v 94
150 247 +£0.14 2.36 1.05 1881 £+ 499 1928 £79
200 2.29+0.14 2.39 0.96 1871 £ 705 2281 £ 97
300 2.31+0.14 2.40 0.96 - -
500 2.38+0.14 2.42 0.98 - -

Feb. 2012 P4

1 1.79 £ 0.12 2.30 0.78 - -

10 1.74 £ 0.11 2.30 0.76 - -
20 1.94 +£0.13 2.30 0.85 - -
30 1.91 +£0.13 2.30 0.83 336 + 135

40 1.74 £ 0.11 2.30 0.76 - -
50 2.09 £0.13 2.30 0.91 581 + 193

75 2.00 £0.13 2.31 0.87 - -
100 1.99+0.13 2.37 0.84 1015 £+ 370 -
150 223 +0.14 2.39 0.93 1401 + 562 -
200 2.22+0.14 2.40 0.93 1646 + 763 -
300 2.40+0.15 2.40 1.00 - -
500 2.28+0.15 2.42 0.94 - -

Feb. 2012 P12

1 1.94 +£0.11 2.31 0.84 - -
10 1.70 £ 0.10 2.31 0.73 - -
20 2.07 £0.12 2.31 0.90 - -
30 2.04 +£0.12 2.31 0.88 350 + 104 -
40 - 2.31 - - -
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
50 2.18+0.14 2.31 0.94 356 + 180 -
75 1.91 £0.12 2.31 0.83 - -
100 2.17 £0.13 2.31 0.94 739 + 357 -
150 2.79+£0.16 2.39 1.17 551 + 571 -
200 2.66 £0.17 2.40 1.11 71 + 807 -
300 2.41+0.15 2.40 1.01 - -
500 2.35=+0.15 2.42 0.97 . .
Feb. 2012 P16
1 1.76 £ 0.11 2.31 0.76 - -
10 1.64 +£0.11 2.31 0.71 - -
20 1.81£0.11 2.31 0.78 - -
30 1.81+0.11 2.31 0.78 435 + 105 -
40  1.83£0.11 2.31 0.79 - -
50  1.80+£0.11 2.31 0.78 719 + 165 -
75 2.24+0.14 2.31 0.97 - -
100 2.40 £0.14 2.31 1.04 922 + 352 -
150 2.71 £0.16 2.40 1.13 632 + 567 -
200 2.83 +£0.17 2.40 1.18 96 + 799 -
300 2.73+0.16 2.40 1.14 - -
500 2.75+0.15 2.41 1.14 - -
Feb. 2012 P20
1 2.16 £0.13 2.31 0.93 - -
10 2.06£0.12 2.31 0.89 - -
20 2.04+0.12 2.31 0.88 - -
30 2.03+0.12 2.31 0.88 121 + 123 .
40 227+0.14 2.31 0.98 - -
50 1.98 £0.12 2.31 0.86 220 + 188 -
75 2.13+£0.12 2.31 0.92 - -
100 1.97 £0.12 2.31 0.85 593 + 357 -
150 2.68 £0.16 2.40 1.12 636 + 555 -
200 223 +0.14 2.40 0.93 545 + 765 -
300 235+0.14 2.40 0.98 - -
500 2.45+0.14 2.41 1.02 - -
Feb. 2012 P26
1 1.90 £0.12 2.31 0.82 . .
10 233+0.14 2.31 1.01 - -
20 2.12+0.12 2.31 0.92 - -
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
30 2.23 +£0.13 2.31 0.96 78 + 125 -
50 2.31+0.14 2.31 1.00 105 + 194 -
75 2.07 £0.12 2.31 0.90 195 + 283 -
100 2.03 £0.12 2.31 0.88 386 + 369 -
125 1.65 £0.10 2.32 0.71 - -
150 2.55+0.14 2.37 1.08 898 + 534 -
200 249+0.15 2.39 1.04 694 + 741 -
300 2.56 £0.15 2.40 1.07 - -
500 2.58 £0.15 2.41 1.07 - -

June 2012 P4

1 0.84 +£0.06 2.25 0.38 - -
10 0.82 £ 0.06 2.25 0.36 - -
20 0.91 +£0.07 2.25 0.40 - -
30 1.70 £0.12 2.28 0.75 907 + 91 -
40 1.99 £ 0.14 2.30 0.86 - -
50 1.88 £0.13 2.31 0.82 1143 £ 155 -
75 2.37+0.16 2.31 1.03 - -
100 1.91 £0.13 2.34 0.81 1408 + 359 -
150 249 +£0.16 2.39 1.04 1649 + 565 -
200 254 +0.17 2.40 1.06 1474 + 798 -
300 226 +0.15 2.41 0.94 - -
500 249 £0.16 2.42 1.03 - -

June 2012 P12

1 1.26 £ 0.08 2.31 0.54 - -
10 1.38 £ 0.09 2.31 0.60 - -
20 1.31 £0.09 2.31 0.57 - -
30 1.73 £0.12 2.31 0.75 678 + 90 -
50 2.03 +£0.14 2.31 0.88 928 + 161 -
60 2.02 £0.13 2.31 0.87 - -
75 2.33 £0.15 2.31 1.01 - -
100 2.55 +£0.17 2.32 1.10 982 + 373 -
150 2.02+0.14 2.39 0.85 1085 + 591 -
164 - - - 1209 £ 647 -
200 246 £0.16 2.40 1.03 1305 + 805 -
300 236 +0.16 2.40 0.98 - -
500 236 +0.16 2.41 0.98 - -
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
June 2012 P16
1 1.62 £0.12 2.32 0.70 - -
10 1.55 +£0.11 2.32 0.67 - -
20 1.38 £0.10 2.32 0.60 - -
30 1.55 +£0.11 2.32 0.67 637 + 95 -
40 1.67 £0.12 2.32 0.72 - -
50 1.80 £ 0.13 2.32 0.77 1008 + 160 -
75 221 £0.15 2.32 0.95 - -
100 233 +0.16 2.32 1.00 1270 + 368 -
150 2.58+0.17 2.40 1.08 1128 + 603 -
200 244 +0.16 2.40 1.02 960 + 842 -
300 2.37+0.16 2.40 0.99 - -
500 2.49+0.16 2.41 1.03 - -
June 2012 P20
1 1.61 £0.11 2.31 0.70 - -
10 1.57 £0.11 2.31 0.68 - -
20 1.62 £0.11 2.31 0.70 - -
30 1.83 £0.13 2.31 0.79 551 +95 -
44 1.62 £0.11 2.31 0.70 - -
50 2.36 £0.16 2.32 1.02 843 + 167 -
75 2.12+£0.14 2.32 0.92 - -
100  2.68 +£0.17 2.32 1.15 841 + 385 -
115 - - - 699 + 458 -
150 2.57 +0.17 2.39 1.08 454 £ 629 -
200 - 2.40 - 192 + 873 -
300 - 2.40 - - -
500 - 2.41 - - -
June 2012 P26 D (Trap Deploymx
1 1.64 £0.11 2.32 0.71 -
10 1.95+0.13 2.32 0.84 -
20 1.51 £0.11 2.32 0.65 -
30 1.59 £0.11 2.32 0.69 513 + 104 3999 + 206
40 1.43 £0.10 2.32 0.62 - -
50 1.39 £ 0.10 2.32 0.60 1008 £ 161 5485 + 290
60 - - - 1241 £ 190 -
75 1.98 £0.13 2.32 0.85 - -
100 2.12 £0.15 2.32 0.92 1655 + 342 3154 £ 192
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Table A5: Continued

Depth  Total **Th BU e s Py Trap,
(m) (dpmL")  (dpmL™) ThZ U AR (dpmm>d") (dpmm™d™)
150 2.21 £0.15 2.38 0.93 1918 £ 551 2151 £ 135
200 2.19+0.14 2.39 0.91 2186 + 760 3959 + 129
300 2.39+0.16 2.40 1.00 - -
500 2.51+0.17 242 1.04 - -

June 2012 P26 R (Trap Recovery)

1 1.34 £0.10 2.32 0.58 - -

10 1.38 £0.10 2.32 0.60 - -

20 1.60 = 0.11 2.32 0.69 - -

30 1.71 £0.11 2.32 0.74 706 + 94 3999 + 206
40 1.71 £0.12 2.32 0.74 - -

50 1.62 £0.11 2.32 0.70 1068 £ 157 5485 + 290
60 - - - 1249 + 188 -

75 1.95+0.13 2.32 0.84 - -
100 2.27 £0.14 2.32 0.98 1599 + 338 3154 £192
150 241 £0.16 2.38 1.01 1617 + 553 2151 + 135
200 2.40 £0.16 2.39 1.01 1589 £ 780 3959 + 129
300  2.33 £0.15 2.40 0.97 - -
500 2.38+0.16 2.42 0.98 - -
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Figure A1. Comparison of fluorescence and high-performance liquid chromatography
(HPLC) measurements of Chl a concentrations.
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Figure A2. Chl a concentrations plotted against total indicator pigment concentrations
for Niskin bottle samples. The correlation coefficient (rz) is also shown.
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Figure A3. Chl a concentrations plotted against total indicator pigment concentrations
for three sizeifractions of particles collected by in-situ pumps. The correlation
coefficient (1) is also shown.
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Figure A4. **Th fluxes determined by the 1-D steady-state model compared to those
determined by the 2-D steady-state model. Dashed and dotted lines envelope 5% and
10% error ranges respectively.
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