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ABSTRACT 

 The contributions of micro-, nano-, and picoplankton to particle export were 

estimated from measurements of size-fractionated particulate 234Th, organic carbon, 

and phytoplankton indicator pigments obtained during five cruises between 2010 and 

2012 along Line P in the subarctic northeast Pacific Ocean.  Sinking fluxes of 

particulate organic carbon (POC) and indicator pigments were calculated from 234Th–

238U disequilibria and, during two cruises, measured by sediment trap at Ocean Station 

Papa.  POC fluxes at 100 m ranged from 0.65 – 7.95 mmol m-2 d-1, similar in 

magnitude to previous results at Line P.  Microplankton pigments dominate indicator 

pigment fluxes (averaging 69±19% of total pigment flux), while nanoplankton 

pigments comprised the majority of pigment standing stocks (averaging 64±23% of 

total pigment standing stock).  Indicator pigment loss rates (the ratio of pigment export 

flux to pigment standing stock) point to preferential export of larger microplankton 

relative to smaller nano- and picoplankton.  However, indicator pigments do not 

quantitatively trace particle export resulting from zooplankton grazing, which may be 

an important pathway for the export of small phytoplankton.  These results have 

important implications for understanding the magnitude and mechanisms controlling 

the biological pump at Line P in particular, and more generally in oligotrophic gyres 

and high-nutrient, low-chlorophyll regions where small phytoplankton represent a 

major component of the autotrophic community. 
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 The thesis, “Estimates of micro-, nano-, and picoplankton contributions to 

particle export in the northeast Pacific” was written in Manuscript format under the 
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1. Introduction 

 Phytoplankton community structure exerts an important influence on the 

strength and efficiency of the biological pump (Michaels and Silver, 1988, Boyd and 

Newton, 1999, Thibault et al., 1999, Brew et al., 2009, Lomas and Moran, 2011).  

Small nano- and picoplankton dominate the phytoplankton community in the 

oligotrophic gyres and high-nutrient, low-chlorophyll (HNLC) oceanographic regions.  

It has traditionally been thought that small phytoplankton represent a relatively small 

fraction of the downward flux of particulate organic carbon (POC) relative to larger 

phytoplankton, such as diatoms, which are generally thought to contribute 

disproportionately to POC export (e.g., Michaels and Silver, 1988).  Recent studies 

have challenged this idea, suggesting that small phytoplankton contribute to POC 

export in proportion to their contribution to biomass, possibly through aggregation and 

incorporation into fecal pellets (Richardson and Jackson, 2007, Stukel and Landry, 

2010, Lomas and Moran, 2011).  A better understanding of the controls on the relative 

importance of small phytoplankton in POC export is needed to refine our 

understanding of the magnitude and mechanisms controlling the biological pump, 

particularly as recent climate models predict an expansion of the oligotrophic gyres 

where small cells dominate (Irwin et al., 2006, Polovina et al., 2008, Morán et al., 

2010). 

Ocean Station Papa (OSP, 50°N, 145°W), the site of one of the longest-

running ocean time-series, is located in the northeast Pacific Ocean in one of three 

major HNLC regions.  Previous attempts to resolve the apparent paradox of low 

phytoplankton biomass and high nitrate concentrations at OSP concluded that a 
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bottom–up control related to iron limitation is most important for large phytoplankton 

(Muggli et al., 1996, Harrison, 2006, Marchetti et al., 2006), while microzooplankton 

grazing exerts a strong top–down control on pico- and nanoplankton (Landry et al., 

1993, Harrison et al., 1999, Rivkin et al., 1999).  Primary production at the stations 

proximal to the coast on Line P (P4 & P12) is not iron-limited and diatom blooms are 

typically observed in spring and late summer (Boyd and Harrison, 1999, Thibault et 

al., 1999).  At the offshore stations (including OSP) the phytoplankton community is 

dominated by cells <5-µm and the seasonal variability of primary production is 

relatively low (~25 mmol C m-2 d-1 in winter and ~67 mmol C m-2 d-1 in summer) 

(Boyd and Harrison, 1999, Thibault et al., 1999, Choi et al., 2014).  In contrast to the 

low variability in primary production, POC export recorded by moored sediment traps 

at OSP exhibits a stronger seasonal cycle with fluxes at 200 m depth ranging from 

~0.4 mmol C m-2 d-1 in winter to ~2.4 mmol C m-2 d-1 in summer (Timothy et al., 

2013).  The average annual sediment trap POC flux at OSP (1.4 ± 1.1 mmol C m-2 d-1) 

is nearly five times lower than the annual net community production (ANCP) at OSP 

(6.3 ± 1.6 mmol C m-2 d-1), suggesting that the majority of organic carbon export is 

due to active transport by zooplankton and/or DOC export (Timothy et al., 2013, 

Emerson, 2014). 

This study builds upon prior investigations of phytoplankton community 

composition and export production along Line P by examining the distributions of 

organic carbon, phytoplankton indicator pigments, and 234Th in three particle size-

fractions.  Sinking fluxes of POC and indicator pigments from the upper waters (~100 

m) were calculated from the 234Th–238U disequilibrium and, during two cruises, 



 4 

measured at OSP using free-floating sediment traps.  A comparison of indicator 

pigment fluxes with the respective standing stocks suggests that microplankton (20 – 

200-µm) make up a higher percentage of POC export than biomass, whereas pico- and 

nano plankton (0.2 – 2-µm and 2 – 20-µm) make up a lower percentage of POC export 

than biomass. 

 

2. Methods 

2.1 Study location 

Sample collection was conducted at five stations along Line P (P4, P12, P16, 

P20, and P26 (OSP)) during cruises aboard the CCGS John P. Tully in August 2010, 

February 2011, June 2011, February 2012, and June 2012 (Fig. 1, Table 1).  Line P is 

located at the southern edge of the Alaskan Gyre, and the prevailing winds and surface 

currents are west-east (Bograd et al., 1999).  Because precipitation and continental 

run-off exceed evaporation, a permanent halocline exists at ~100 m impeding deep 

winter mixing.   In addition, a seasonal thermocline forms at ~50 m in spring and 

shoals to ~20 m in summer (Freeland et al., 1997, Thibault et al., 1999, Freeland, 

2013, Timothy et al., 2013). 

 

2.2 Net primary production by 14C incubation 

Rates of net primary production (NPP) were determined following the 

protocols outlined in Lomas et al. (2012).    Samples were collected with Niskin 

bottles from seven depths in the euphotic zone corresponding to 1, 5, 9, 17, 33, 55, and 

100% of surface irradiance.  Three ‘light’ bottles, a single ‘dark’ bottle, and a single 
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initial (T0) bottle were each spiked with ~10 µCi NaH14CO3.  A sub-sample to confirm 

total added activity was removed from the T0 bottle at each light depth and 

immediately added to an equal volume of β-phenylethylamine.  Bottles were incubated 

under simulated in situ conditions, using neutral density screening to mimic light 

levels at the depth of sample collection, in an on-deck incubator for ~24 hours.  After 

incubation, 125 mL sub-samples from each light and dark bottle were filtered through 

an Ahlstrom 151 (0.7-µm nominal pore size) and a Whatman Track Etch 5-µm filter 

and rinsed with 10% HCl.  Samples were counted on a Perkin Elmer TriCarb 2900LR 

~48 h after the addition of 5 mL of Ultima Gold (Perkin Elmer, USA) scintillation 

cocktail. 

 

2.3 Water column 234Th 

 Total 234Th (dissolved + particulate) analysis followed the procedures outlined 

in Bauman et al. (2013).  Briefly, samples (4 L) were collected by Niskin bottle at 12 

depths (surface to ~500 m) and spiked with 230Th to monitor Th recovery.  Samples 

were then treated with 7-8 drops of concentrated NH4OH solution, followed by 25 µL 

of 0.2 M KMnO4, and finally with 11.5 µL of 1.0 M MnCl2 to form a MnO2 

precipitate that quantitatively scavenges Th (Benitez-Nelson et al., 2001, Buesseler et 

al., 2001, van der Loeff et al., 2006).  After 1 hour, samples were vacuum filtered onto 

25 mm glass microfiber filters (GM/F, 1-µm nominal pore size) that were frozen for 

later analysis in the shore-based laboratory.  To prepare samples for counting, filters 

were dried at 50°C for ~24 hours, mounted on acrylic planchets, and covered with 

aluminum foil.  To quantify 234Th, the beta emission of 234mPa (Emax = 2.19 MeV; t1/2 = 
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1.2 min) was counted using a RISØ National Laboratory low-background beta 

detector (Roskilde, Denmark).  Each sample was counted four times over a period of 

approximately six half-lives, with the first count made at least 10 days after collection 

to allow for the decay of short-lived isotopes, and the final count used to quantify 

background levels. Data were fit to the 234Th decay curve to calculate the decay-

corrected activity at the time of sample collection. 

 

2.4 Water column POC, Chl a, and indicator pigments 

 Water samples for POC, Chl a, and phytoplankton indicator pigments were 

collected from the same depths in the photic zone as for NPP samples.  Suspended 

POC was measured on 1 L seawater samples filtered onto pre-combusted Ahlstrom 

151 filters and frozen at -20°C until analysis.  Samples were dried at 60°C in a drying 

over, fumed in a desiccator containing concentrated hydrochloric acid for 24 h to 

remove inorganic carbonates, and dried again at 60°C.  Samples were then analyzed 

on an EA-440 Analyzer (Exeter Analytical, Inc., Chelmsford, MA) (Pike and Moran, 

1997).  Chl a samples were analyzed using the methods outlined in Lomas et al., 

(2012).  Separate samples (~0.2 L) were filtered onto Ahlstrom 151 and 5-µm 

Whatman Track Etch polycarbonate filters and frozen at -20°C until analysis.  

Samples were then extracted in 5 mL of 90% acetone for 24 h at -20°C and analyzed 

using a calibrated TD-700 fluorometer. 

Indicator pigment samples were collected on separate Ahlstrom 151 filters and 

stored at -80°C until analysis by high-performance liquid chromatography (HPLC) at 

the Bermuda Institute of Ocean Sciences in the Bermuda Atlantic Time-series Study 
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Laboratory (Knap et al., 1997).  Fucoxanthin (FUCO), peridinin (PER), 19’-

hexanoyloxyfucoxanthin (HEX), 19’-butanoyloxyfucoxanthin (BUT), alloxanthin 

(ALLO), total chlorophyll b (TChl b), and zeaxanthin (ZEA) were analyzed as 

indicator pigments based on their correspondence to particular phytoplankton 

taxonomic groups.  Indicator proportion factors (PFs) were calculated to further 

analyze the size-distribution of the phytoplankton community (Hooker et al., 2005, 

Lomas and Moran, 2011).  The sum of FUCO and PER concentrations was used to 

determine the microplankton proportion factor (mPF), while the sum of HEX, BUT, 

ALLO, and TChl b was used to determine the nanoplankton proportion factor (nPF), 

and ZEA was used to determine the picoplankton proportion factor (pPF) (Hooker et 

al., 2005, Lomas and Moran, 2011).  Hooker et al. (2005) included TChl b in pPF, but 

because Prochlorococcus is not found in the study region, it was assumed in this study 

that any Chl b would be found in cells (e.g., chlorophytes and euglenophytes) in the 

nanoplankton size-class. 

 

2.5 In situ pump sampling 

Large-volume in situ pumps (Challenger Oceanic Systems and Services, UK 

and McLane Scientific, Falmouth, MA) were deployed for approximately four hours at 

depths of 30, 50, 100, 150, and 200 m.  Each pump sampled 100 – 1000 liters to 

collect size-fractionated particles, with seawater passing sequentially through 53-µm, 

10-µm, and 1-µm Nitex screens.  Particles were resuspended by ultrasonication in 0.7-

µm prefiltered seawater and filtered onto separate pre-combusted GF/F filters for 

parallel analysis.  Indicator pigment samples were stored at -80°C until analysis by 
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high-performance liquid chromatography (HPLC) at the Bermuda Institute of Ocean 

Sciences in the Bermuda Atlantic Time-series Study Laboratory (Knap et al., 1997).  

Filters for analysis of POC and 234Th were frozen at -20°C until analysis.  A sub-

sample (~30% by weight) was cut with acetone-cleaned stainless steel scissors from 

each 234Th filter for POC analysis, and these sub-samples were dried and fumed with 

concentrated HCl as described above.  POC was then measured using a CE 440 CHN 

Elemental Analyzer (Exeter Analytical, Inc., Chelmsford, MA).  The 234Th filter 

subsample was dried at 60°C in a drying oven and counted on a RISØ beta detector as 

noted above.   

 

2.6 Sediment trap sampling 

 Surface-tethered particle interceptor traps (PITS) with cylindrical tubes (KC-

Denmark, Silkeborg, Denmark) were deployed for ~3 days at station P26 during the 

June 2011 and June 2012 cruises to collect particles at the depths of 30, 50, 100, 150, 

and 200 m.  Due to limited wire-time and other cruise constraints it was not possible to 

deploy sediment traps at any other stations sampled as part of this study.  The trap 

design and sampling procedure is described in Baumann et al. (2012).  Four tubes (72 

mm diameter, 450 mm length) were used at each depth, and tubes were filled with 

non-poisoned, 0.4-µm filtered brine (S = ~85 ‰) prior to deployment.  Upon recovery 

trap brines were combined, particles were re-suspended and filtered onto pre-

combusted GF/F filters, and swimmers were removed.  Filters were stored frozen and 

later analyzed for POC, 234Th, and indicator pigments as described above. 
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3. Results 

3.1 Hydrography and NPP 

 Depth sections of temperature and density anomaly (sigma-t) were generated 

using results from all CTD casts for a given cruise to improve horizontal data 

resolution (Fig. 2).  The seasonal change in water temperature is largely confined to 

the upper ~100 m.  Surface temperatures in August 2010 were ~14°C, while during 

the February cruises, surface temperatures were slightly cooler offshore (~6°C) than 

inshore (~8°C).  During the June cruises, inshore temperatures were warmer (~10 – 

12°C) while offshore temperatures remained relatively cool (~8°C).  Density anomaly 

did not vary greatly between cruises below ~100 m.  During the winter, a pool of less 

dense water (density of 1023 – 1025 kg m-3) was observed toward the coast (east of 

~126°W).  During the June cruises, this pool was observed extending west to ~130°W 

and during August 2010, it extended out to OSP (145°W).  These data follow the 

expected seasonal pattern of a well-mixed water column in winter and increasing 

stratification moving from spring to summer. 

 Total NPP and >5-µm size-fractionated NPP values were trapezoidally 

integrated over the euphotic zone (Table 2).  A maximum total NPP of 91.9 mmol m-2 

d-1 was measured at station P26 during June 2011, whereas the lowest value of 12.4 

mmol m-2 d-1 was measured at station P26 during February 2012.  These values agree 

to within a factor of two with the seasonal averages reported by Boyd and Harrison 

(1999).  A maximum >5-µm NPP of 39.6 mmol m-2 d-1 was at station P4 during June 

2012 and a minimum of 2.2 mmol m-2 d-1 was measured at station P12 in February 

2012. 
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3.2 Small- and large-volume POC concentrations 

 Suspended POC concentrations from Niskin bottle samples collected in the 

photic zone range from 1.1 – 7.1 µmol L-1.  POC concentrations were generally lowest 

at the base of the photic zone, though decreasing concentrations with depth were not 

observed at all stations (Table A1).  The highest suspended POC concentrations were 

measured at station P4 during all cruises.  POC concentrations were also measured in 

three size-fractions of particles collected with large-volume in situ pumps (Table A2).  

Concentrations of each size-fraction tended to decrease with depth and were typically 

less than 0.5 µmol L-1 at all depths.  One exception was at station P26 during February 

2011 when POC concentrations at 30 m were between 1.8 and 2.9 µmol L-1 for all 

size-fractions.   

The concentrations of POC collected using small-volume and large-volume 

methods often do not agree for samples collected at the same location and depth 

(Gardner, 1977, Moran et al., 1999, Liu et al., 2005, Liu et al., 2009).  As reported in 

these previous studies, POC concentrations measured by large-volume in situ pumps 

(summed for all size-fractions) are significantly (ANOVA, p < 0.05) less than small-

volume POC measurements from the same station and similar depth (Fig. 3a).  

Explanations put forth to account for this discrepancy include DOC adsorption to 

filters, pressure effects on particle retention in pump samples, the collection of 

zooplankton by Niskin bottles but not pumps, and particle washout from pump filters 

(Moran et al., 1999,  Liu et al., 2005,  Liu et al., 2009).  In this study, the smallest 

pump size-fraction was collected using a 1-µm Nitex screen, not a GF/F, resulting in 



 11 

the pumps missing the portion of the POC on particles between 0.7- and 1-µm, which 

may further contribute to the difference observed between the two methods.  Lomas 

and Moran (2011) reported that sonication of in situ pump samples to resuspend 

particles from the Nitex screens had no significant effect on measured POC 

concentrations. 

 

3.3 Particulate 234Th and POC/234Th ratios 

 Size-fractionated particulate 234Th activities in samples collected by in situ 

pump generally decrease with depth, and are typically less than 0.1 dpm L-1 (Table 

A2).  As with in situ pump POC concentrations, station P26 during February 2011 is 

an exception, with values exceeding 0.1 dpm L-1 for all size fractions at 30 m and 

throughout most of the water column for the 1 – 10-µm fraction.  Size-fractionated 

POC/234Th ratios (Fig. 4, Table A2) are less than ~6 µmol dpm-1 for all size-classes at 

most stations, with higher values measured at stations P4 and P12 in February 2012 

and P4 in June 2012.  POC/234Th ratios tend to decrease or remain constant with depth, 

with one exception at station P12 during February 2012 where the maximum 

POC/234Th was at 100 m for all size fractions.  Also, the POC/234Th ratio does not vary 

greatly between size-fractions (Fig. 4) as was observed in Speicher et al. (2006) and 

Brew et al. (2009). 

The accuracy of 234Th as a tracer of POC export depends on the assumption 

that 234Th and POC are sinking on the same particles, and therefore sinking at the 

same rate (Moran et al., 2003, Smith et al., 2006, Speicher et al., 2006, Burd et al., 

2007, Brew et al., 2009).  A high degree of correlation between the size-fractionated 
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distributions of 234Th and POC (Fig. 4) along Line P provides evidence in support of 

this assumption.  All correlations were statistically significant (p < 0.05) and imply a 

strong coupling between particulate 234Th and POC for all cruises.  In addition, the 

clustering of data for the different size-fractions of particles (Fig. 4) indicates that in 

February 2012 the 10 – 53-µm size class contained the highest percentage of POC and 

particulate 234Th, while the >53-µm size class contained the lowest percentage.  In 

June 2012, the 1 – 10-µm size class had the lowest percentage of POC and particulate 

234Th while both the 10 – 53-µm and the >53-µm fractions contained higher 

percentages (Fig. 4). 

 

3.4 Small-volume Chl a and indicator pigments 

 Concentrations of total Chl a and >5-µm Chl a measured by fluorometer 

(Table A1) were trapezoidally integrated over the photic zone to determine respective 

standing stocks.  During August 2010, the >5-µm fraction accounted for >30% of the 

Chl a at all stations, with a maximum of 50% at station P26.  During the other four 

cruises, the >5-µm size-fraction generally accounted for <30% of the total Chl a, 

except at station P26 in February 2012 and station P4 in June 2012.  Previous studies 

have reported that larger cells are more abundant at stations closer to the coast (Boyd 

and Harrison, 1999), though this was not always apparent.  The highest >5-µm 

percentage of Chl a was measured at station P26 during August 2010, June 2011, and 

February 2012.  Phytoplankton indicator pigments and Chl a concentrations in 

samples from the euphotic zone samples were also measured by HPLC (Table A1).  

HPLC and fluorescence Chl a concentrations generally agreed to within a factor of 
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two, and the correlation between the two measurements was statistically significant (p 

< 0.05) (Fig. A1).  The correlation between the sum of the indicator pigment 

concentrations and the Chl a concentration was statistically significant (p < 0.05) and 

roughly 1:1, suggesting that the indicator pigments examined in this analysis 

accounted for most of the phytoplankton biomass (Fig. A2).  Furthermore, the 

correlation between the >5-µm fraction of Chl a and mPF is statistically significant (p 

< 0.05), suggesting that this PF is a reasonable representation of that size-fraction of 

the phytoplankton community.  Profiles of indicator pigment concentrations were 

trapezoidally integrated over the photic zone to quantify standing stocks (Table 3).  

FUCO was the most abundant microplankton pigment, and HEX was the most 

abundant nanoplankton pigment at most stations.  Indicator pigment PFs (Table A3, 

Fig. 5) reveal that the phytoplankton community was typically dominated by 

nanoplankton, although at P4, and to a lesser extent at P20 in June 2012, 

microplankton pigments made up the bulk of the sample (~86% and ~52% 

respectively).  

 

3.5 Large-volume size-fractionated Chl a and indicator pigments 

 Size-fractionated Chl a and indicator pigment concentrations were also 

measured by in situ pump (Table A4).  Chl a was once again strongly correlated in a 

roughly 1:1 ratio with the sum of the indicator pigments (p < 0.05) (Fig. A3).  The 

highest Chl a concentrations were measured in the 10 – 53-µm fraction during all 

cruises.  In February 2012, the >53-µm fraction generally had the lowest 
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concentrations, while in June 2012 and June 2011 the lowest concentrations were 

generally in the 1 – 10-µm fraction. 

Ideally, small-volume and large-volume concentrations of Chl a and indicator 

pigments should agree for samples collected at the same station and depth, but this 

was not observed in this study (Fig. 3).  Although differences between small- and 

large-volume measurements of POC have been reported (Gardner, 1977, Moran et al., 

1999,  Liu et al., 2005, Liu et al., 2009), few studies have compared Niskin bottle and 

in situ pump measurements of indicator pigments (Lomas and Moran, 2011).  Relative 

to bottle samples, the pump samples indicate higher concentrations of microplankton 

pigments FUCO and PER and lower concentrations of ZEA and TChl b, which are 

pigments associated with pico- and nanoplankton (Fig. 3b-d).  Large-volume pump 

and small-volume bottle measurements of the nanoplankton indicator pigments HEX, 

BUT, and ALLO generally agree within a factor of two (Fig. 3b-d).  Given the small 

size of ZEA-containing Synechococcus and TChl b-containing chlorophytes and 

prasinophytes, it is likely that many of these cells pass through the 1-µm Nitex screen 

which would lead to under-sampling by the pumps (Liu et al., 2005).  Bottles may 

undersample large, rare cells because the small volume might not be a statistically 

representative sample (Lomas and Moran, 2011).  Furthermore, larger cells may settle 

below the spigot of the Niskin bottles, leading to a further bias against the collection 

of large cells (Gardner, 1977, Gundersen et al., 2001).  Overall, pumps sample higher 

concentrations of Chl a than bottles (Fig. 3a), but this trend is driven by the 

oversampling of pumps at stations with high concentrations of Chl a.  When Chl a 
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concentrations are low (<200 ng L-1), the pumps tend to undersample relative to the 

bottles. 

Given these sampling inconsistencies, it is important to note that although the 

total concentrations (summed for all size-fractions) measured by the in situ pumps 

may be inaccurate, it is still possible that the >53-µm fraction accurately represents the 

composition of sinking particles.  The disruption of loosely-bound aggregates during 

collection by the pumps could cause an error in the >53-µm fraction, but this is 

considered unlikely due to the presence of nanoplankton (and in some cases 

picoplankton) pigments in this fraction.  Furthermore, a recent study in the Sargasso 

Sea employed a similar methodology and also found picoplankton pigments in three 

particle size-classes, each >10-µm (Lomas and Moran, 2011). 

Indicator pigment PFs calculated for the size-fractionated particles (Table A3) 

and plotted against depth (Figs. 6-8) reveal that while the overall indicator pigment 

concentrations vary with depth and across size-fractions, the PFs do not exhibit a 

systematic pattern of variation across size classes, depths, or seasons.  The 

picoplankton pigment ZEA typically represents <10% of the total indicator pigments 

for all size classes.  Microplankton pigments dominated samples at station P4 in 

February 2012 and June 2012, with mPFs typically exceeding 0.5 and 0.8, 

respectively, for each cruise.  In addition, mPFs were high at station P26 during these 

times, with values generally exceeding 0.5 (Figs. 7-8).  Nanoplankton pigments 

dominated at station P12 in February 2012 cruise with nPFs exceeding 0.5 for most 

samples.  As with the small volume samples, FUCO was usually the most abundant 
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microplankton pigment while HEX was usually the most abundant nanoplankton 

pigment (Table A4). 

 

3.6  Total 234Th, 234Th/238U activity ratios, and 234Th fluxes 

 Total (dissolved + particulate) 234Th activities, 238U activities, and 234Th/238U 

activity ratios are listed in Table A5.  Depth sections of these 234Th/238U activity ratios 

(Fig. 2d) indicate that areas of low 234Th/238U are prevalent in spring and summer and 

corresponding to periods known to have high particle export in this region (Wong et 

al., 1999, Timothy et al., 2013).  234Th fluxes (PTh) were calculated using these 

234Th/238U results and a 2-D steady-state model of the radiochemical balance for 234Th 

in the upper ocean, 

 

𝜕𝐴!!
𝜕𝑡 = 𝐴!𝜆!! − 𝐴!!𝜆!! − 𝑃!! + 𝐾!

𝜕!𝐴!!
𝜕!𝑥   + 𝑈!

𝜕𝐴!!
𝜕𝑥  

(1) 

where AU is the activity of 238U, λTh is the 234Th decay constant, ATh is the activity of 

234Th, PTh is the vertical flux of 234Th on sinking particles, Kh is the eddy diffusion 

coefficient, and Uh is the current velocity (Coale and Bruland, 1985, Charette et al., 

1999).  Assuming a steady-state (∂ATh/∂t = 0) over several weeks to months, and that 

the diffusive flux of 234Th is small relative to advection and can therefore be ignored, 

the vertical flux of 234Th is defined by, 

 

𝑃!! = 𝜆!!(𝐴! − 𝐴!!)+ 𝑈!
𝜕𝐴!!
𝜕𝑥

!

!
𝑑𝑧 
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(2) 

where z is the depth of the water column over which the flux is measured.  In this 

study, the gradient of thorium (∂ATh/∂x) was only measured in the east-west direction 

(along Line P).  Therefore, x is the east-west distance across which the gradient will be 

measured and Uh is the east-west current velocity.  Given that the currents in the 

region generally flow west-east, and with no data at stations north and south of Line P, 

the north-south transport of 234Th by advection had to be assumed to be negligible.  At 

stations P12, P16, and P20, the 234Th gradient was measured between the adjacent 

stations.  For stations P4 and P26 (at either end of Line P), the gradient of 234Th was 

determined from the adjacent station assuming a linear change extended beyond the 

measured transect. 

234Th fluxes (PTh) calculated using the 2-D model are within 5% of fluxes 

determined using a steady-state 1-D model that ignores advection (Fig. A4).  This 

indicates that, under these assumptions, the vertical flux of 234Th on sinking particles 

is the dominant transport term.  Consistent with previous studies, 234Th fluxes at all 

stations were higher during the August and June cruises than during the February 

cruises (Fig. 9a) (Charette et al., 1999).  Also, 234Th fluxes did not exhibit a consistent 

trend along Line P. 

 

3.7 234Th-derived POC fluxes 

 The POC/234Th ratio in the >53-µm size-class and PTh for a given depth 

horizon were used to calculate POC fluxes (PPOC) (Fig. 9).  In most cases, PPOC 

decreases with depth, although in some cases, the maximum PPOC in a given profile 
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occurs at 50 or 100 m.  PPOC fluxes at 100 m range from 0.65 – 7.95 mmol m-2 d-1, 

which are similar to the only prior 234Th-derived POC export fluxes reported for this 

region (Charette et al., 1999).  PPOC fluxes are generally higher in summer than winter, 

and highest at station P4, consistent with previous studies along Line P (Charette et al., 

1999, Wong et al., 1999, Timothy et al., 2013). 

 The ratio of PPOC flux to NPP, referred to as the ThE-ratio, is an estimate of 

efficiency of the biological pump (Buesseler, 1998). ThE-ratios were determined using 

PPOC fluxes at the base of the photic zone (Table 2, Fig. 10).  The highest measured 

ThE-ratio determined in this study was 0.26 at P4 in February 2012 and the lowest 

measured was 0.01 at station P26 in February 2012 and at P20 in June 2012 (Table 2).  

ThE-ratios from this study are similar to those reported by Charette et al. (1999), and 

are also in line with an annual average e-ratio determined using average sediment trap 

POC fluxes (Wong et al., 1999) and annual average NPP (Harrison, 2002) (Fig. 10). 

 

3.8 Sediment trap 234Th and POC fluxes 

 The particle flux of 234Th and POC fluxes determined by the PITS traps (FTh 

and FPOC respectively) both tend to decrease with depth (Table 4).  FTh was higher in 

June 2012 than in June 2011, though there was no clear difference between the two 

cruises for FPOC.  A comparison of the FTh with the PTh from corresponding stations 

and depths indicates that the FTh is consistently higher than the PTh, though usually not 

by more than a factor of two.  FPOC is also consistently higher than PPOC, though again 

not by more than a factor of two (Fig. 11a).  The POC/234Th ratios of particles caught 
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in sediment traps (Table 9) tend to be slightly higher (generally within a factor of 2) 

than the ratio of particles sampled by pumps at the corresponding station and depth.   

 

3.9 234Th-derived and sediment trap pigment fluxes 

 Sinking fluxes of Chl a (PChla) and indicator pigments (PPigment) were 

calculated from PTh and the Pigment/234Th ratio measured on >53-µm particles.  Chl a 

and indicator pigment fluxes (Table 3, Fig. 11a-c) are generally highest at station P4 

and decrease moving offshore.  The highest indicator pigment fluxes were typically 

observed for microplankton pigments (FUCO and PER) whereas the lowest were 

observed for the picoplankton pigment ZEA (Table 3, Fig. 12a-c). 

 Sediment trap pigment fluxes (FPigment) were typically lower than PPigment 

(Table 3, Fig. 11x).  The maximum sediment trap fluxes of Chl a and most indicator 

pigments were determined at 50 m in June 2011 and at 30 m in June 2012 (Table 3).  

For both deployments the deepest fluxes were generally the lowest, presumably due to 

the progressive degradation of sinking phytoplankton and resulting loss of pigments.  

Chl a and indicator pigment fluxes were generally higher in June 2011 than in June 

2012, which is the opposite of the trend observed for FTh. 

Pigment PFs determined for material captured by the PITS traps do not vary 

greatly with depth, suggesting that the quality of material sinking to depth is similar to 

that in the surface water, despite the general decrease of material (Figs. 6 and 8).  

Microplankton PFs are higher for trap samples than for bottle samples but not as high 

as for pump samples, while nPFs and pPFs are higher for trap samples than for pump 

samples but lower than for bottle samples. 
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4. Discussion 

The results presented in this study build on previous investigations of export 

production in the northeast Pacific by providing estimates of the relative contributions 

of different phytoplankton size-classes to particle export.  A comparison of indicator 

pigment standing stocks and PPigment fluxes suggests that while nanoplankton 

represented the bulk of phytoplankton biomass (68±24% of pigment standing stock, 

averaged for all stations and cruises), microplankton dominated the flux of pigmented 

material (69±19% on average) (Table 3, Fig. 12).  Sediment trap pigment fluxes 

indicate a lower, but still substantial, relative contribution of microplankton to export, 

with microplankton pigments making up 47% and 33% of the total sediment trap 

indicator pigment flux in June 2011 and June 2012 respectively, as compared to 81% 

and 85% of total PPigment fluxes.  Though nano- and picoplankton did not form the 

majority of the algal aggregate flux, their 29±19% contribution is significant and 

similar to contributions reported by Lomas and Moran (2011) for cyanobacteria and 

nano-eukaryotes in the Sargasso Sea. 

Indicator pigment loss rates determined from both PPigment fluxes and sediment trap 

pigment fluxes imply that microplankton are exported more efficiently than nano- or 

picoplankton (Table 3, Fig. 12d-f).  Loss rates of pigments, estimated as the ratio of 

PPigment fluxes to pigment standing stock, averaged (for all cruises) 8±12% for 

microplankton pigments, 1±2% for nanoplankton pigments and 0.6±1% for 

picoplankton pigments.  These results suggest that export of large cells by direct 

sinking of algal aggregates is more efficient than the export of small cells by the same 
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pathway.  Sediment trap loss rates for microplankton were also higher than those for 

nano- and picoplankton, further indicating preferential export of microplankton.  Even 

though differences between bottle and pump samples may exaggerate the extent to 

which large cells dominate export, sediment trap loss rates support and confirm the 

preferential export of large cells by algal aggregation. 

In contrast to the trends observed for pigment fluxes and loss rates, the low variability 

of pump indicator pigment PFs with depth (Figs. 6-8), does not appear to indicate 

preferential export of microplankton.  Furthermore, the presence of nano- and 

picoplankton pigments in the >53-µm size-fraction and in samples below the mixed 

layer suggests that nano- and picoplankton are incorporated into aggregates and that 

some of these aggregates are exported from the surface ocean.  If large cells were 

being preferentially exported, microplankton pigments would be expected to make up 

a larger percentage of total pigments in samples below the mixed layer than in samples 

from the mixed layer, but this is not observed in the results of this study.  It is possible 

that some of this discrepancy can be attributed to differences between bottle and pump 

samples.  Because cells <1-µm in size can pass through the 1-µm Nitex screens used in 

the pumps, the sum of the pump size-fractions does not accurately reflect the 

community composition in the euphotic zone, and may miss a change in indicator 

pigment PFs with depth.  In addition, the under-sampling of large cells by Niskin 

bottles may lead to an underestimate of microplankton standing stocks, and thus and 

overestimate of microplankton loss rates. 

These pigment fluxes are likely lower estimates of the total contribution of each 

phytoplankton group to particle export.  The use of indicator pigments as tracers of 
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phytoplankton export only accounts for the direct sinking of healthy, ungrazed cells, 

because grazing degrades the indicator pigments to an analytically undetectable form 

(Head and Harris, 1992, Strom et al., 1998, Thibault et al., 1999).  Indirect export (via 

grazing) is thought to be an important pathway for picoplankton export in the HNLC 

Equatorial Pacific (Richardson et al., 2004, Stukel and Landry, 2010).  Given that 

grazing has been shown to control the biomass of small phytoplankton in the northeast 

Pacific (Landry et al., 1993, Harrison et al., 1999, Rivkin et al., 1999), indirect export 

may also be a significant pathway for small cell export in this region.  Because this 

pathway is not accounted for by the methodology employed in this study, the results 

presented here may underestimate the export of small phytoplankton, which may be 

less likely to sink directly based on their size. 

Although grazing and fecal pellet export were not directly measured in this study, a 

comparison of sediment trap and pump measurements of Chl a, indicator pigments, 

and POC, suggests that zooplankton fecal pellets may be an important component of 

POC export at OSP, at least in spring (Fig. 11).  While FPOC fluxes are higher than the 

corresponding PPOC fluxes, FPigment fluxes are lower than PPigment fluxes, indicating that 

the material captured by the sediment traps is enriched in carbon and depleted in Chl a 

and indicator pigments relative to that sampled by the pumps.  Because the trap brine 

was not poisoned, zooplankton grazing and cell degradation in the trap tube may also 

have contributed to some loss of pigments over the ~3 day deployment of the PITS 

traps.  However, the collection of carbon-rich and pigment-depleted fecal pellets by 

the traps but not by the pumps, which do not quantitatively sample fecal pellets 

(Lomas and Moran, 2011), could also explain these observations.  This latter 
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explanation is consistent with the results presented in Thibault et al. (1999), which 

indicate that fecal pellet export is 3 to 6 times greater than algal aggregate export at 

Line P. 

 

5. Conclusions 

 New estimates of phytoplankton indicator pigment loss rates calculated from 

both 234Th-derived and sediment trap pigment fluxes suggest that large cells are 

preferentially exported at Line P.  Specifically, microplankton pigments on average 

made up 69±19% of the total pigment flux, but only 32±24% of pigment standing 

stock, whereas nano- and picoplankton pigments on average formed 31±19% of 

pigment flux in spite of representing 68±24% of the standing stock.  These results are 

consistent with traditional food web models (Michaels and Silver, 1988, Legendre and 

Le Fèvre, 1995) that suggest nano- and picoplankton are underrepresented in particle 

flux relative to their contribution to phytoplankton biomass; they also lend support to 

the conclusions of Choi et al. (2014).  However, the methods employed in this study 

do not quantitatively account for export via zooplankton fecal pellets, which could be 

significant for small phytoplankton as they are controlled by grazing in this region 

(Landry et al., 1993, Harrison et al., 1999, Rivkin et al., 1999, Thibault et al., 1999).  

Furthermore, the determination of pigment loss rates also required a comparison 

between small- and large-volume samples, and the inherent differences of these 

sampling techniques likely led to an overestimation of the microplankton contribution 

to algal aggregate export.  Therefore, it is possible that all sizes-classes of 
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phytoplankton contribute to POC export in approximate proportion to their 

contribution to NPP as predicted by Richardson and Jackson (2007). 

 This study, conducted in a subarctic HNLC region, contributes to the ongoing 

discussion of small cell export that has largely focused on tropical and subtropical 

regions (Richardson et al., 2004, Richardson et al., 2006, Richardson and Jackson, 

2007, Stukel and Landry, 2010, Lomas and Moran, 2011).  In particular, these results 

suggest that nano- and picoplankton may contribute significantly to POC export in this 

subarctic HNLC region, even if they are not as efficiently exported as larger 

microplankton.  If large phytoplankton drive more efficient POC export in the 

northeast Pacific as suggested by this study, it could have important implications for 

understanding the biological pump.  It has been proposed that decreasing winter mixed 

layer depths (Freeland et al., 1997, Freeland, 2013) and variations of macronutrient 

concentrations linked to shifts in climate regime (Pena and Varela, 2007) in the 

northeast Pacific could lead to shifts in the phytoplankton community composition.  

This study suggests that such changes in phytoplankton community composition could 

significantly affect the efficiency of the biological pump, and in turn, the cycling of 

carbon.  While the results indicate that shifts in community composition favoring 

larger phytoplankton could lead to more efficient particle export, they do not indicate 

that shifts favoring smaller phytoplankton would lead to a shutdown of POC export as 

suggested by some previous studies (e.g., Michaels and Silver, 1988), but merely that 

the export of POC could be less efficient. 
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