Coupled evolution of BrO_x-ClO_x-HO_x-NO_x chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

M. J. Evans
D. J. Jacobs

See next page for additional authors

Follow this and additional works at: https://digitalcommons.uri.edu/gsofacpubs

Terms of Use
All rights reserved under copyright.

Citation/Publisher Attribution
Authors
Coupled evolution of BrO$_x$-ClO$_x$-HO$_x$-NO$_x$ chemistry during bromine-catalyzed ozone depletion events in the arctic boundary layer

Received 8 July 2002; revised 8 October 2002; accepted 10 October 2002; published 28 February 2003.

[1] Extensive chemical characterization of ozone (O$_3$) depletion events in the Arctic boundary layer during the TOPSE aircraft mission in March–May 2000 enables analysis of the coupled chemical evolution of bromine (BrO$_x$), chlorine (ClO$_x$), hydrogen oxide (HO$_x$) and nitrogen oxide (NO$_x$) radicals during these events. We project the TOPSE observations onto an O$_3$ chemical coordinate to construct a chronology of radical chemistry during O$_3$ depletion events, and we compare this chronology to results from a photochemical model simulation. Comparison of observed trends in ethyne (oxidized by Br) and ethane (oxidized by Cl) indicates that ClO$_x$ chemistry is only active during the early stage of O$_3$ depletion (O$_3$ > 10 ppbv). We attribute this result to the suppression of BrCl regeneration as O$_3$ decreases. Formaldehyde and peroxy radical concentrations decline by factors of 4 and 2 respectively during O$_3$ depletion and we explain both trends on the basis of the reaction of CH$_2$O with Br. Observed NO$_x$ concentrations decline abruptly in the early stages of O$_3$ depletion and recover as O$_3$ drops below 10 ppbv. We attribute the initial decline to BrNO$_3$ hydrolysis in aerosol, and the subsequent recovery to suppression of BrNO$_3$ formation as O$_3$ drops. Under halogen-free conditions we find that HNO$_4$ heterogeneous chemistry could provide a major NO$_x$ sink not included in standard models. Halogen radical chemistry in the model can produce under realistic conditions an oscillatory system with a period of 3 days, which we believe is the fastest oscillation ever reported for a chemical system in the atmosphere.

INDEX TERMS: 0305 Atmospheric Composition and Structure: Aerosols and particles (0345, 4801); 0317 Atmospheric Composition and Structure: Chemical kinetic and photochemical properties; 0365 Atmospheric Composition and Structure: Troposphere—composition and chemistry; KEYWORDS: Polar, ozone, boundary layer, bromine, NO$_x$, HO$_x$

1. Introduction

[2] Events of near-total ozone (O$_3$) depletion in Arctic spring surface air have been observed since the 1980s [Oltmans, 1981; Oltmans and Komhyr, 1986] and are known to be due to fast catalytic loss driven by unusually high concentrations of bromine oxide radicals (BrO$_x$ ≡ Br + BrO) [Barrie et al., 1988; Haussmann and Platt, 1994]. These events are also associated with high concentrations of chlorine oxide radicals (ClO$_x$ ≡ Cl + ClO) as demonstrated by observations of differential hydrocarbon depletion [Yokouchi et al., 1994; Jobson et al., 1994]. More recently, several studies have pointed out the importance of polar snow as a source of nitrogen oxide radicals (NO$_x$ ≡ NO + NO$_2$) and of precursors of hydrogen oxide radicals (HO$_x$ ≡ OH + peroxy radicals) during spring [Sumner and Shepson, 1999; Honrath et al., 2000; Jones et al., 2001]. Extensive chemical observations during the Tropospheric Ozone Production around the Spring Equinox (TOPSE) aircraft campaign [Atlas et al., 2003] offer the first opportunity to analyze the coupled evolution of BrO$_x$-ClO$_x$-HO$_x$ radical chemistry during O$_3$ depletion events in the Arctic spring. We present such an analysis here and use photochemical model calculations to place the TOPSE observations in the context of current understanding.

[3] The bromine chemistry leading to O$_3$ depletion is relatively well understood [Barrie et al., 1988; Fan and
Jacob, 1992; Hausmann and Platt, 1994; Michalowski et al., 2000]. It involves the catalytic O3 destruction by BrOx radicals and it requires the recycling of BrOx from its non-radical reservoirs. The main catalytic mechanism for O3 depletion is

\[
\begin{align*}
&\text{(R1)} & 2 \times (Br + O_3 \rightarrow BrO + O_2) \\
&\text{(R2)} & BrO + BrO \rightarrow Br_2 + O_2 \\
&\text{(R3)} & \text{Net} \frac{Br_2 + hv}{2O_3} \rightarrow 2Br \\
\end{align*}
\]

\[\text{(R4)} Br + CH_2O \rightarrow HBr + CO + HO_2\]

\[\text{(R5)} Br^- + HOBr + H^+ \rightarrow Br_2 + H_2O\]

\[\text{(R3)} Br_2 + hv \rightarrow 2Br\]

[5] The efficiency of this cycle is limited by conversion of BrOx to the non-radical reservoir HBr, which is long-lived with respect to both photolysis and reaction with OH. Production of HBr is mostly by the reaction between Br and CH2O, although reactions with other carbonyls can also be significant [Shepson et al., 1996].

\[\text{(R4)} Br + CH_2O \rightarrow HBr + CO + HO_2\]

[6] In this manner the radical bromine is regenerated, sustaining the O3 loss cycle (R1–R3). Although there is now substantial evidence from field and laboratory studies to support the above mechanism, model calculations of the O3 loss rate in relation to the BrOx radical supply have never been evaluated with observations. We will present such an evaluation here and examine the chemical coupling of BrOx with other radical families.

[7] A complicating factor for the NOx and HOx radical budgets in the Arctic boundary layer is the emission of NOx and CH2O from the snow surface. These emissions appear to be driven by sunlight [Sumner and Shepson, 1999; Ridley et al., 2000; Honrath et al., 1999, 2001] although physical adsorption and desorption may also take place [Hutterli et al., 1999, 2001]. Surface measurements at Alert in the Canadian Arctic show a pronounced diurnal cycle of NOx concentrations [Ridley et al., 2000] with a noon maximum, suggesting a shorter lifetime for NOx (less than 4 hours) than would be expected from atmospheric loss by oxidation in standard models. We include the snow emissions of NOx and CH2O in our analysis and propose that heterogeneous oxidation of HNO4 in aerosols provides a major sink of NOx in the Arctic boundary layer.

[8] Section 2 describes the O3 depletion events observed during TOPSE with focus on the evolution of radical chemistry. We apply a photochemical model (section 3) to simulate the chemical development of these events and interpret the TOPSE observations (section 4). An intriguing chemical oscillation taking place in the model under certain conditions is presented in section 5. Conclusions are in section 6.

2. Ozone Depletion Events Observed During TOPSE

[9] The TOPSE aircraft program took place between February and May 2000 [Atlas et al., 2003]. Its goal was to investigate the origin of the springtime O3 maximum observed at northern extra-tropical latitudes [Monks, 2000]. The NSF C-130 aircraft flew between Boulder (Colorado), Churchill (Manitoba), and Thule (Greenland), with some flights north to 85°N over the Arctic Ocean. A total of 37 flights were carried out (see Figure 1). The aircraft carried a wide range of chemical instrumentation including measurements of O3, NOx and total reactive nitrogen oxides (NOy) [Ridley et al., 2003], speciated hydrocarbons [Blake et al., 2003], OH [Mauldin et al., 2003], total peroxy radicals (RO2) (C. A. Cantrell et al., Peroxy radical observations using CIMS during TOPSE, manuscript submitted to J. Geophys. Res., 2002), H2O2 and CH3OOH [Snow et al., 2003], CH2O [Fried et al. 2003], peroxyacetyl nitrate (PAN) and soluble bromide [Scheuer et al., 2003]. Photolysis frequencies [Shetter and Mueller, 1999] and aerosol size distributions were also measured. Individual cases of O3 depletion events observed during TOPSE are discussed by Ridley et al. [2003].

[10] Figure 2 shows the cumulative probability distribution of O3 concentrations observed in the Arctic boundary layer (below 500 m altitude and north of 50°N) during spring (March 23 to May 22) and around local noon (1100 to 1300). Most TOPSE data were collected around midday; introducing the 1100 to 1300 restriction filters out 50% of the data and makes little change to the distribution. The O3 concentrations range from 0.2 to 50 ppbv; 50% of the measurements are below 23 ppbv. The accuracy of the O3 measurements was 0.06 ppbv at 1 ppbv of O3 [Ridley et al., 2003]. For further analysis we partitioned the data into four O3 bins (0 to 1 ppbv, 1 to 10 ppbv, 10 to 30 ppbv and above 30 ppbv). Table 1 gives the means and standard deviations of the ensemble of TOPSE observations in these four bins. Selection of data below 100 m rather than 500 m leads to an increased probability of low O3 concentrations but little change to the concentration of species within each O3 bin. We will assume in what follows that differences in composition between the four categories of air masses in Table 1 reflect different degrees of processing by halogen radical chemistry. In support of this assumption, we see in Table 1 that CO (unaffected by halogen chemistry) is uniform across all four categories.

[11] Soluble bromide concentrations observed during TOPSE are highest in the O3 depleted air masses. Ethyne and ethene show differing trends as O3 decreases. Whereas the ethyne concentration drops continuously with O3, the ethene concentration changes little below 10 ppbv of O3. We propose in section 4.2 that this reflects different temporal evolutions of bromine and chlorine radicals during O3 depletion events. Concentrations of HOx radicals and reservoir species (OH, RO2, CH2O, H2O2 and CH3OOH) all
decrease with decreasing O3 concentration. A previous study of CH2O evolution during O3 depletion events observed at Alert [Rudolph et al., 1999] showed a gradual increase in CH2O concentrations from 40 to 15 ppbv of O3 followed by a decline similar to that observed during TOPSE. The budgets of these species are discussed in section 4.3.

Concentrations of NOX observed in TOPSE decrease as O3 drops below 30 ppbv but then recover as O3 drops below 10 ppbv, so that concentration under conditions of strong O3 depletion (O3 < 1 ppbv) are similar to those with little or no depletion (O3 > 30 ppbv). The initial reduction in NOX at the onset of O3 depletion events has been seen before [Beine et al., 1997]. Concentrations of NOy appear to increase slightly as the O3 concentration decreases and PAN concentrations shows a more substantial increase. These intriguing trends in the NOy species are examined further in section 4.4.

3. Photochemical Model

We apply a 0-D (box) photochemical model of the Arctic boundary layer to interpret the relationships described above and examine the coupled evolution of BrOx-ClOx-HOx-NOx radical chemistry during O3 deple-

Figure 1. Flight tracks during TOPSE (February–May 2000). Symbols show location of boundary layer tracks (below 500 m altitude) with O3 concentrations less than 15 ppbv. The dates during which these air masses were encountered are given.

Figure 2. Cumulative probability distribution of midday (1100 to 1300 local time) O3 concentrations measured north of 50°N and below 500 m altitude between March 23 and May 22 during TOPSE. 252 1-minute measurements are included in the distribution. The dashed lines define the O3 bins used for analysis.
Table 1. Arctic Boundary Layer Observations During TOPSE

<table>
<thead>
<tr>
<th>Ozone Range (ppbv)</th>
<th>Bin 1</th>
<th>10 – 30</th>
<th>30 – 45</th>
<th>>45</th>
<th>Background</th>
</tr>
</thead>
<tbody>
<tr>
<td>Day of year</td>
<td>107 ± 26</td>
<td>108 ± 23</td>
<td>107 ± 13</td>
<td>105 ± 9</td>
<td>106.7</td>
</tr>
<tr>
<td>Latitude (°N)</td>
<td>72 ± 9</td>
<td>77 ± 8</td>
<td>74 ± 10</td>
<td>67 ± 11</td>
<td>73</td>
</tr>
<tr>
<td>Altitude (m)</td>
<td>144 ± 140</td>
<td>96 ± 107</td>
<td>97 ± 104</td>
<td>52 ± 57</td>
<td>100</td>
</tr>
<tr>
<td>O3 column (DU)</td>
<td>370 ± 42</td>
<td>371 ± 55</td>
<td>428 ± 67</td>
<td>470 ± 59</td>
<td>398</td>
</tr>
<tr>
<td>Aerosol (10⁻⁷ cm²/cm³)</td>
<td>4.7 ± 2.5</td>
<td>3.8 ± 2.0</td>
<td>5.3 ± 1.0</td>
<td>4.7 ± 1.2</td>
<td>4.9</td>
</tr>
<tr>
<td>Aerosol (10⁻¹² cm³/m³)</td>
<td>4.2 ± 3.0</td>
<td>3.7 ± 3.4</td>
<td>4.5 ± 0.95</td>
<td>4.1 ± 1.3</td>
<td>4.4</td>
</tr>
<tr>
<td>O3 (ppbv)</td>
<td>153 ± 10</td>
<td>151 ± 10</td>
<td>156 ± 4</td>
<td>157 ± 3</td>
<td>153</td>
</tr>
<tr>
<td>CH4 (ppmv)</td>
<td>1.84 ± 0.01</td>
<td>1.85 ± 0.01</td>
<td>1.85 ± 0.01</td>
<td>1.85 ± 0.01</td>
<td>1.84</td>
</tr>
<tr>
<td>CH2O (ppmv)</td>
<td>248 ± 125</td>
<td>119 ± 60</td>
<td>42 ± 28</td>
<td>389</td>
<td></td>
</tr>
<tr>
<td>n-Butane (pppt)</td>
<td>109 ± 90</td>
<td>87 ± 61</td>
<td>40 ± 23</td>
<td>26 ± 13</td>
<td>136</td>
</tr>
<tr>
<td>n-Pentane (pppt)</td>
<td>64 ± 52</td>
<td>63 ± 36</td>
<td>34 ± 18</td>
<td>25 ± 12</td>
<td>73</td>
</tr>
<tr>
<td>i-Pentane (pppt)</td>
<td>32 ± 15</td>
<td>19 ± 9.3</td>
<td>7.2 ± 3.6</td>
<td>4.3 ± 1.3</td>
<td>48</td>
</tr>
<tr>
<td>i-Butane (pppt)</td>
<td>41 ± 20</td>
<td>31 ± 12</td>
<td>11 ± 6.3</td>
<td>6.5 ± 2.7</td>
<td>62</td>
</tr>
<tr>
<td>Hexane (pppt)</td>
<td>10 ± 4</td>
<td>6.8 ± 1.6</td>
<td>3.8 ± 0.5</td>
<td><3f</td>
<td>15</td>
</tr>
<tr>
<td>OH (10⁻³ cm⁻³)</td>
<td>11. ± 9</td>
<td>5.0 ± 3.6</td>
<td>2.7 ± 2.1</td>
<td>1.7 ± 1.4</td>
<td>N/A</td>
</tr>
<tr>
<td>NO2 (10⁻³ cm⁻³)</td>
<td>2.2 ± 1.2</td>
<td>1.9 ± 1.2</td>
<td>1.3 ± 0.6</td>
<td>1.6 ± 0.4</td>
<td>N/A</td>
</tr>
<tr>
<td>CH3O (pppt)</td>
<td>143 ± 104</td>
<td>137 ± 93</td>
<td>94 ± 89</td>
<td>35 ± 110</td>
<td>143</td>
</tr>
<tr>
<td>CH2O (pppt)</td>
<td>264 ± 128</td>
<td>183 ± 113</td>
<td>92 ± 41</td>
<td>92 ± 74</td>
<td>254</td>
</tr>
<tr>
<td>CH3OH (pppt)</td>
<td>240 ± 123</td>
<td>230 ± 99</td>
<td>151 ± 43</td>
<td>131 ± 40</td>
<td>206</td>
</tr>
<tr>
<td>NO2 (pppt)</td>
<td>13 ± 8</td>
<td>4.6 ± 7.3</td>
<td>5.2 ± 4.7</td>
<td>15.0 ± 4.8</td>
<td>16</td>
</tr>
<tr>
<td>NO (pppt)</td>
<td>5.0 ± 5.0</td>
<td>1.1 ± 4.6</td>
<td>2.9 ± 3.2</td>
<td>11.7 ± 4.2</td>
<td>7.0</td>
</tr>
<tr>
<td>NO (pppt)</td>
<td>7.5 ± 4</td>
<td>3.4 ± 3.7</td>
<td>2.4 ± 2.4</td>
<td>3.2 ± 2.1</td>
<td>9.9</td>
</tr>
<tr>
<td>NO (pppt)</td>
<td>225 ± 39</td>
<td>200 ± 38</td>
<td>258 ± 16</td>
<td>253 ± 13</td>
<td>N/A</td>
</tr>
<tr>
<td>PAN (pppt)</td>
<td>152 ± 16</td>
<td>163 ± 39</td>
<td>212 ± 25</td>
<td>207 ± 10</td>
<td>161</td>
</tr>
</tbody>
</table>

a Means and standard deviations of aircraft observations made north of 50°N below 500 m altitude, from March 23 to May 22, 2000 and around local noon (1100–1300). The data are partitioned on O3 concentration range (see text) to determine the chemical characteristics of O3 depletion events.
b Mean concentrations of species in air masses with O3 > 45 ppbv and no detected soluble bromide. These concentrations are used as initial condition for the model simulation (Section 3). Initial condition for species not measured during TOPSE are given in section 3.
c Integrated over the 0.1–3 μm aerosol size distribution.
d Soluble bromide in gas (HBr) and aerosol phase (Br⁻).e Model simulations are conducted with initial bromide concentrations in the range 0–43 pptv [Michalowski et al., 2000].f Below level of detection (<3 pptv).

We do not consider IOx chemistry as there is little evidence to suggest that it plays an important role in the evolution of these O3 depletion events [Sander et al., 1997; Martinez et al., 1999]. The model does not consider the deposition or emission of halogens to or from the snow surface and thus assumes that the bromine cycling within the aerosol is the dominant bromine activation mechanism (in general agreement with Michałowski et al. [2000]), and that the sole source and reservoir of bromine is the aerosol. [14] The chemistry scheme used in the model has been described before [e.g., Jaegle et al., 2000] and has been extended here to include halogen and aerosol chemistry following Michałowski et al. [2000]. It includes a detailed description of the oxidation of C1−C6 hydrocarbons updated with recent developments [Sander et al., 2000]. The rate constants for the reactions of Br with aldehydes [Ramacher et al., 2000] and ethyne [Ramacher et al., 2001] have been updated. Reactions of BrO with CH2O and HBr are not included, based on evidence that they are negligibly slow; even at the upper limits reported by Orlando et al. [2000] we find that they have little effect on the evolution of O3 depletion. Photolysis frequencies are calculated with a clear-sky radiative transfer model and are scaled to the mean midday photolysis frequencies of NO2 (J(NO2)) and O3 → O(3P) (J(O3)). The J(O3) scaling factor is applied to wavelengths less than 330 nm and the J(NO2) scaling factor to higher wavelengths. Aerosol processes in the chemical mechanism are listed in Tables 2a and 2b and include halogen radical as well as HNO3 chemistry. [15] The model is initialized on April 15 at 73°N, at local noon at 100 m altitude, with TOPSE measurements representative of background Arctic conditions unaffected by halogen chemistry (Table 1: Background). The composition of the boundary layer aerosol is derived from previous studies. We assume that the bulk of the aerosol is sulfuric acid [Barrie and Hoff, 1984]. Aerosol concentrations per volume of air of Cl− (100 ng m⁻³), equivalent to 1.7 × 10¹⁰ cm⁻⁵ and I⁻ (0.3 ng m⁻³), equivalent to 1.4 × 10¹⁶ cm⁻³) are taken from Sirois and Barrie [1999]; we assume that 50% of total iodine reported in Sirois and Barrie [1999] is iodide [Baker et al., 2001]. An aerosol pH of 0.5 is assumed from Li [1994]. An initial aerosol HNO3 concentration of 8 × 10⁷ cm⁻³ (again referenced to volume of air) is also taken from Li [1994]. Aerosol concentrations of H⁺, I⁻, and...
concentration is allowed to evolve. I⁻ and HNO₂ are kept constant in the simulation but the Cl⁻ play no further chemical role. Concentrations of CH₃CHO are given in Table 1.

...sinks of HNO₄ (see later) and thus specify small deposition velocities for PAN, PPN and H₂O₂ (0.004 cm s⁻¹, 0.008 cm s⁻¹, and 0.09 cm s⁻¹ respectively). Emission of NOₓ and CH₂O from the snow surface is necessary to reproduce the observed concentrations with the model. We assume that these emissions vary diurnally following the photolysis of NO₂. The resulting 24-hour average emissions of CH₂O and NOₓ are 1.2×10⁴ and 3.6×10³, respectively. Our implied CH₂O emission is a factor of 4 less than that found by [Jones et al., 2001] in Antarctica; such a difference could be rationalized as reflecting higher nitrate concentrations in the Arctic snow compared to the Antarctic [Wolff et al., 1995]. It is in reasonable agreement (40% higher) with measurements made at Summit, Greenland during the summer of 2000 [Honrath et al., 2002].

Table 2a. Aerosol Chemistry: Aqueous-Phase Reactions

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Rate Constant (M⁻¹ s⁻¹)</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>HNO₄ + HSO₃⁻ → SO₄²⁻ + NO₃⁻ + 2 H⁺</td>
<td>1.1×10⁷</td>
<td>Amel et al. [1996]</td>
</tr>
<tr>
<td>HNO₂ + NO₂ → 2 NO₃⁻ + 2 H⁺</td>
<td>12</td>
<td>Lagager and Sehested [1993]</td>
</tr>
<tr>
<td>HNO₂ + Cl⁻ → HOBr + NO₃⁻</td>
<td>0.014</td>
<td>Régimbial and Mozurkewich [1997]</td>
</tr>
<tr>
<td>HNO₂ + Br⁻ → HOBr + NO₃⁻</td>
<td>0.54</td>
<td>Régimbial and Mozurkewich [1997]</td>
</tr>
<tr>
<td>HNO₂ + I⁻ → HOI + NO₃⁻</td>
<td>890</td>
<td>Régimbial and Mozurkewich [1997]</td>
</tr>
<tr>
<td>Br⁻ + O₃ + H⁺ → HOBr + O₂</td>
<td>11.7</td>
<td>Haag and Højgård [1983]</td>
</tr>
<tr>
<td>HOBr + Cl⁻ + H⁺ → BrCl + H₂O</td>
<td>5.6×10⁹</td>
<td>Wang et al. [1994]</td>
</tr>
<tr>
<td>HOBr + Br⁻ + H⁺ → Br₂ + H₂O</td>
<td>1.6×10⁹</td>
<td>Beckwith et al. [1996]</td>
</tr>
<tr>
<td>HOCl + Cl⁻ + H⁺ → Cl₂ + H₂O</td>
<td>2.2×10⁹</td>
<td>Wang and Margerum [1994]</td>
</tr>
<tr>
<td>HOCI + Br⁻ + H⁺ → BrCl + H₂O</td>
<td>1.3×10⁹</td>
<td>Kumar and Margerum [1987]</td>
</tr>
<tr>
<td>BrCl + H₂O → HOBr + Cl⁻ + H⁺</td>
<td>1.0×10⁸</td>
<td>Wang et al. [1994]</td>
</tr>
<tr>
<td>Br₂ + H₂O → HOBr + Br⁻ + H⁺</td>
<td>9.7×10⁴</td>
<td>Beckwith et al. [1996]</td>
</tr>
<tr>
<td>Cl₂ + H₂O → HOCI + Br⁻ + H⁺</td>
<td>2.2×10⁴</td>
<td>Wang and Margerum [1994]</td>
</tr>
<tr>
<td>BrCl + Br⁻ → Br₂Cl⁻</td>
<td>5×10⁸</td>
<td>Note a</td>
</tr>
<tr>
<td>Br₇ + Cl⁻ → Br₇Cl⁻</td>
<td>5×10⁹</td>
<td>Note a</td>
</tr>
<tr>
<td>BrCl + Cl⁻ → BrCl₂⁻</td>
<td>5×10⁹</td>
<td>Note a</td>
</tr>
<tr>
<td>Br₇Cl⁻ → Br₇Cl⁻</td>
<td>3.9×10⁹</td>
<td>Note b</td>
</tr>
<tr>
<td>BrCl₇⁻ → BrCl₇⁻</td>
<td>2.8×10⁶</td>
<td>Note b</td>
</tr>
<tr>
<td>BrCl₂⁻ → Cl₂ + Cl⁻</td>
<td>6.9×10²</td>
<td>Note b</td>
</tr>
<tr>
<td>HBr → Br⁻ + H⁺</td>
<td>0.3⁻</td>
<td>Schweitzer et al. [2000]</td>
</tr>
<tr>
<td>HCl → Cl⁻ + H⁺</td>
<td>0.3⁹</td>
<td>Schweitzer et al. [2000]</td>
</tr>
<tr>
<td>BrNO₃ + H₂O → BrNO₂ + NO₃⁻ + H⁺</td>
<td>0.3⁹</td>
<td>Hanson et al. [1996]</td>
</tr>
<tr>
<td>ClONO₂ + H₂O → HOCl + NO₃⁻ + H⁺</td>
<td>0.002⁹</td>
<td>Robinson et al. [1997]</td>
</tr>
<tr>
<td>N₂O₅ + H₂O → 2 NO₃⁻ + 2 H⁺</td>
<td>0.1⁹</td>
<td>Jacob [2000]</td>
</tr>
</tbody>
</table>

*Assumed [Michalowski et al., 2000].

*Derived from the equilibrium constant [Wang et al., 1994] and the assumed forward rate constant (see footnote a).

*Reaction probabilities (γ), dimensionless.

HNO₂ are kept constant in the simulation but the Cl⁻ concentration is allow to evolve. I⁻ and HNO₂ are included in the model as aerosol-phase sinks of HNO₄ (see later) and play no further chemical role. Concentrations of CH₃CHO (18 pptv) and (CH₂)₃CO (300 pptv) are assumed from chemical steady state with the background hydrocarbon concentrations given in Table 1.

[16] The boundary layer in our model is taken to be dynamically isolated from the free troposphere (zero flux boundary layer top). This is a reasonable assumption for O₃ depletion events in general [Wessel et al., 1998] and TOPSE in particular [Ridley et al., 2003]. The surface area is assumed to be snow and to provide a source or sink of nitrogen oxides, H₂O₂, and CH₂O. The surface flux boundary conditions for these and other non-radical secondary species are chosen to reproduce observed concentrations in background air (Background: Table 1) in a steady state calculation; for that purpose the boundary layer represented by the model is assumed to be 200m deep.

Table 2b. Aerosol Chemistry: Henry’s Law Equilibria (H) and Mass Accommodation Coefficients (α)

<table>
<thead>
<tr>
<th>Species</th>
<th>H (M/atm) 250K</th>
<th>α</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOBBr(g) ↔ HOB (aer)</td>
<td>3.0×10⁴</td>
<td>0.3</td>
<td>H:Waschewsly and Abbatt [1999]</td>
</tr>
<tr>
<td>HOCI(g) ↔ HOCl (aer)</td>
<td>1.8×10⁴</td>
<td>0.3</td>
<td>H: Huthwelker et al. [1995]</td>
</tr>
<tr>
<td>Br₂ (g) ↔ Br₂ (aer)</td>
<td>1.0×10¹</td>
<td>0.01</td>
<td>α: Abbat and Molina [1992]</td>
</tr>
<tr>
<td>Cl₂ (g) ↔ Cl₂ (aer)</td>
<td>3.7×10¹</td>
<td>0.01</td>
<td>α:Kelley and Tartar [1956]</td>
</tr>
<tr>
<td>BrCl (g) ↔ BrCl (aer)</td>
<td>5.6×10¹</td>
<td>0.01</td>
<td>α: estimated Sander and Crutzen [1996]</td>
</tr>
<tr>
<td>O₃ (g) ↔ O₃ (aer)</td>
<td>3.5×10¹</td>
<td>0.002</td>
<td>α: estimated Sander and Crutzen [1996]</td>
</tr>
<tr>
<td>HNO₄ (g) ↔ HNO₄ (aer)</td>
<td>1.2×10⁴</td>
<td>0.05</td>
<td>α: Régimbial and Mozurkewich [1997]</td>
</tr>
</tbody>
</table>

α: (estimated) Sander and Crutzen [1996]
amplification of the diurnal cycle of NOx concentrations observed (1200) suggesting that the lifetime of NOx in the 2000;
Dentener et al. of HNO4 in the oxidation of S(IV) in clouds. Our under-
standing of the role of HNO4 in the atmospheric chemistry 10
thermal dissociation constant is uncertain by a factor of 5 uncertainties in its chemistry (for example at 250K its
system is limited by both a lack of field observations and
phase, which in turn depends on the assumed concentration
simulated in the model with heterogeneous
chemistry (solid line) and without (dashed line). Concentrations are normalized to the maximum concentra-
tion calculated over the diurnal cycle. Results are from a
steady state Arctic boundary layer simulation for back-
ground conditions (Table 1) and no BrOx-CIOx chemistry.

We find that the uptake of HNO4 by aerosols and its subsequent reaction in the aerosol phase (mostly with HNO2 and I) provides a significant NOx sink in the Arctic boundary layer outside of O3 depletion episodes. It accounts in the model for 40% of the NOx loss on a 24-hour average basis and 50% at noon. This heterogeneous HNO4 chemistry increases the amplitude of the diurnal cycle of NOx concentrations and shifts the diurnal maximum to mid afternoon, as compared to a sensitivity simulation with no HNO4 uptake by aerosols (Figure 3). The rate of the aerosol HNO4 sink is limited by the rate of reaction in the aerosol phase, which in turn depends on the assumed concentration of reactants [Sirois and Barrie, 1999; Li, 1994]. The amplification of the diurnal cycle of NOx concentrations due to HNO4 chemistry in our model is consistent with the Alert observations of Ridley et al. [2000], but the timing of the model maximum (1400 local time) is still later than observed (1200) suggesting that the lifetime of NOx in the measurements of Ridley et al. [2000] may be even shorter than that calculated here.

Previous studies [Warneck, 1999; Leriche et al., 2000; Dentener et al., 2002] have shown the importance of HNO4 in the oxidation of S(IV) in clouds. Our understanding of the role of HNO4 in the atmospheric chemistry system is limited by both a lack of field observations and uncertainties in its chemistry (for example at 250K its thermal dissociation constant is uncertain by a factor of 10 [DeMore et al., 1997]).

4. Radical Chemistry During Ozone Depletion Events

4.1. Temporal Evolution and O3 Chemical Coordinate

Starting from the steady state background conditions described in the previous section and summarized in Table 1, the model atmosphere was perturbed instantaneously with varying levels of bromide (Br-) from 0.2 to 43 pptv (range observed by Sirois and Barrie [1999]) and then allowed to evolve chemically for 10 days. The initial activation of the halogen radicals is through the reactions of Br- and O3 [Haag and Hoigne, 1983] and HNO4 [Regimbal and Mozurkewich, 1997] to release HOBr. After this initial activation, the recycling of bromine radicals from non-radical reservoirs is controlled by Cl- + HOBr + H+ – BrCl + H2O [Wang et al., 1994] and Br- + HOBr + H+ – Br2 + H2O [Beckwith et al., 1996], with the recycling of Br- being dominated by the latter.

Figure 4 shows the temporal evolution of O3, ethyne, NOx (NO + NO2) and BrO concentrations over 10 days for 3 of the cases (0, 13 and 43 pptv initial bromide). Without any bromine the model is at steady state for the radicals and their reservoirs; ethyne concentration decreases very slowly due to reaction with OH. With 13 pptv of initial bromide the O3 concentration drops slowly from 45 to 30 pptv over the 10 days of the simulation. This is accompanied by a slow linear loss of ethyne. The NOx concentration drops precip-
itously due to BrNO3 hydrolysis. The formation of BrNO3 is favored toward dawn and dusk when Br/BrO and NO/ NO2 ratios are low, leading to a large diurnal cycle in the NOx concentration. The small increases in NOx concentra-
tions simulated during night are due to the slow thermal decay of PAN and HNO4. The daytime BrO concentrations remain steady at 9 pptv. If the concentration of initial bromide is increased to 43 pptv, the impact is much greater. O3 concentrations drop down to a steady state of 1–2 ppbv after 6 days. As the O3 concentration drops below 3 ppbv the bromine radical chemistry essentially shuts down, as seen in the disappearance of BrO and the leveling off of ethyne. This suppression of bromine radical chemistry is due to a change in the balance between gas-phase and aerosol-phase bromine. As the O3 concentration drops, the NO/NO2 and Br/BrO concentration ratios increase. Eventu-
ally, HOBr production by BrO + HO2 is suppressed, preventing the recycling of bromine radicals by R5. The suppression of bromine radical chemistry and the increase in the NO/NO2 ratio suppress in turn the formation of BrNO3. The longer NOx lifetime, together with the surface source, allows the NOx concentration to recover.

Simulations of the temporal evolution of O3 and halogen radical concentrations in the Arctic boundary layer during O3 depletion events have been reported in previous model studies [Sander et al., 1997; Michalowski et al., 2000]. Important new aspects here include the depletion and recovery of NOx driven by BrNO3 hydrolysis, and the coupling of Br and Cl chemistry which affects the evolution of ethyne and alkanes differently, as discussed below. As in previous modeling studies [e.g., Sander et al., 1997], we find that the BrO self reaction is the dominant mechanism for halogen-catalyzed O3 loss (~70%), with BrO + HO2 playing a subsidiary role (~25%). Other mechanisms (BrO + CH3O2, BrNO3 + aerosol, and ClO + BrO) play minor roles (~1%).

It is difficult to compare this temporal evolution in the model directly with the TOPSE observations, which were not collected in a Lagrangian framework, and this has been a general problem in the evolution of models of Arctic O3 depletion. In order to enable such a comparison, we use the O3 concentration as a proxy for chemical history and make the comparison along this chemical coordinate.
For different initial bromide concentrations. The observed relationships apparent in Figure 5 between the different species and O₃ concentration were previously discussed in section 2. Many of these relationships are reproduced by the model and the mechanisms leading to them can therefore be elucidated.

4.2. Halogen Radicals and Hydrocarbons

[23] The TOPSE observations show a decrease of the hydrocarbon concentrations along with O₃ (Table 1) reflecting the presence of both Br and Cl radicals. The model reproduces the observed trends, as shown in Figure 5 for ethyne and ethane. The differing behavior of ethyne and ethane reflects different temporal evolution of Br atoms (ethyne oxidant) and Cl atoms (ethane oxidant) as the O₃ concentrations drop (see for example Ramacher et al. [1999]). Bromine chemistry continues to operate at low O₃ concentrations (the ethyne concentration declines at all O₃ concentrations) whereas chlorine chemistry is quenched below 10 ppbv of O₃ (ethane is not depleted further).

[24] Figure 6 describes the simulated evolution of the concentrations of halogen species as the O₃ concentration drops. Chlorine radical concentrations drop to near zero below 5 ppbv of O₃. A number of processes contribute to this decline. The only significant source of chlorine radicals in the model is the reaction of aerosol Cl⁻ with HOBr to produce BrCl which volatilizes and photolyzes. The Cl⁻ concentration remains essentially constant during the simulation (Figure 6) so that the production of active chlorine is limited by the availability of HOBr. As the O₃ concentration drops, the production of HOBr decreases (as discussed previously), reducing the production of BrCl. The production of Br⁻ increases, so that the reaction of Br⁻ and HOBr competes with the reaction of Cl⁻, further reducing the conversion of Cl⁻ into BrCl. The increase in Br⁻ also increases the rate of the reaction between Br⁻ and BrCl to produce Br₂Cl⁻, which predominantly decomposes to Br₂ and Cl⁻.

[25] In contrast to Cl, the concentration of Br atoms increases initially as O₃ declines, and remains relatively high even as O₃ drops down to 1 ppbv. The reduction in the HOBr concentration as the O₃ drops is to some extent compensated for by an increase in the Br⁻ concentration, so that overall the rate of volatilization of Br₂ from the aerosol is maintained. Increasing Br/BrO ratio as the O₃ concentration declines further contributes to maintaining high Br atom concentrations.

4.3. Hydrogen Oxide Radicals

[26] We find that the RO₂ concentration drops by a factor of 2, both in the model and in the observations, as O₃ concentrations decrease from background values down to 1 ppbv (Figure 5). Measured OH declines by a factor of 5 while simulated OH declines by only a factor of 2. Problems with the OH instrumentation [Mauldin et al., 2003] make interpretation of the discrepancy difficult.

[27] Halogen radicals in the model drive profound changes in the HOₓ budget during O₃ depletion episodes. Without any halogens the production of HOₓ is mainly due to the photolysis of CH₂O (~40%) with the photolysis of O₃ providing a smaller contribution (~20%). Most of the CH₂O (60%) in the model originates from surface emission (as opposed to production from methane and higher VOC oxidation) and thus acts as a primary HOₓ source. The loss of HOₓ is mainly (~75%) through the HO₂ self reaction to produce H₂O₂. With the inclusion of halogens this balance changes substantially. The primary source of HOₓ becomes the reaction between Br and CH₂O. HOB
acts as a temporary reservoir for HOx, producing OH when photolysed and consuming HO2 when produced. The uptake and subsequent destruction of HOBr in aerosols by R5 acts as a large HOx sink. The rapid oxidation of hydrocarbons and carbonyls by Br or Cl increases the importance of organic peroxy radicals (CH3O2 and above) in the HOx budget.

We see from the above discussion that there is strong coupling and interchange between the HOx and BrOx families, with major sinks of HOx serving as sources of BrOx and vice versa, and with HOBr serving as a reservoir for both radical families. One can consider these families together with ClOx (which plays little role and will not be discussed further) as components of a larger radical family H/Cl/BrOx. The primary production of H/Cl/BrOx is from the photolysis of CH2O and the primary sink is from peroxy–peroxy reactions. When H/Cl/BrOx is at steady state the photolysis of CH2O is approximately balanced by the self reaction between RO2 radicals. Reactions involving BrOx play little role in producing or destroying H/Cl/BrOx. Thus, the RO2 concentration should be proportional to the square root of the CH2O concentration regardless of the bromine chemistry. In both the model and the observations, CH2O concentrations decline by a factor 4 as O3 is depleted (Figure 5) and the RO2 concentration responds by dropping by a factor of 2, in line with this simple analysis. The decline in CH2O is driven by reaction with Br atoms. Thus the reaction between Br and CH2O, rather than acting to increase HOx concentrations, does in fact suppress them.

Concentrations of H2O2 decrease during O3 depletion events, while CH3OOH initially increases and then decreases, both in the model and in the observations. The decline of H2O2 is due both to the decline of total peroxy radicals (RO2) and to a shift in the partitioning of RO2 to favor organic peroxy radicals, as discussed above. The latter shift favors CH3OOH production, which is further favored by the drop in NOx concentration at the onset of O3 depletion events (the CH3O2 + HO2 reaction proceeds faster under low NOx concentration due to less competition from...
As O₃ concentrations drop below 10 ppbv, the recovery of NOₓ as well as the decline in total RO₂ act to decrease CH₃OOH.

4.4. Nitrogen Oxide Radicals

As O₃ concentrations decrease from 40 to 10 ppbv, the measured NOₓ exhibits a rapid decline from about 20 pptv to 3 pptv. As O₃ is further depleted, the NOₓ concentration recovers, eventually reaching similar concentrations to those observed in air masses with O₃ concentrations above 40 ppbv. The model reproduces this evolution as shown in Figure 5. In the model, the decline and subsequent recovery in the NOₓ concentration is due to a combination of BrNO₃ hydrolysis and NOₓ emission from the snow. When BrOx chemistry is active and O₃ concentrations are still high, formation and hydrolysis of BrNO₃ (ν = 0.3) leads to loss of NOₓ. At lower O₃ concentrations, BrNO₃ formation is suppressed due to increases in both the NO/NO₂ and Br/BrO ratios.

Both PAN and NOₓ show a similar relationship with O₃, reflecting the dominant role of PAN in the composition of NOₓ. The measurements show increases of PAN and NOₓ during O₃ depletion events, and this is reproduced by the model (Figure 5). In the model, the rise in PAN is due to the oxidation of carbonyls and hydrocarbons by Cl and Br atoms, and is kept in check by the concurrent depletion of NOₓ. The model study of Shepson et al. [1996] found much more rapid production of PAN during O₃ depletion events because they did not include BrNO₃ hydrolysis in their mechanism.

5. An Oscillatory System in Bromine-Catalyzed O₃ Depletion

The search for oscillatory solutions in atmospheric chemistry models generates sporadic interest in the literature, both for theoretical curiosity and for possible implications for atmospheric stability [Madronich and Hess, 1994; Poppe and Lustfeld, 1996; Tinsley and Field, 2001]. We find in our photochemical simulation for the Arctic boundary layer described above that an oscillatory system with a period of 3 days develops under low O₃ conditions if the reactive uptake coefficients (g) of HBr and HOBr are increased from 0.3 to 0.8 (alternatively this can be viewed as an increase in the aerosol surface area). Figure 7 shows the evolution of O₃, CH₂O, and NOₓ and BrO concentrations under these conditions over a 30 day model simulation period with 43 pptv of initial bromide. The strong 3 day oscillation is evident. As bromine destroys O₃, the Br/BrO ratio increasingly favors HBr production over HOBr. This leads to an accumulation of...
Br− in the aerosol. Eventually virtually all of the model bromine resides in the aerosol (see Figure 6), suppressing BrO\textsubscript{x} chemistry. Those species which are depleted by bromine radical chemistry, notably CH\textsubscript{2}O and NO\textsubscript{x}, increase in concentration, leading to O\textsubscript{3} production. The increase in O\textsubscript{3} concentration leads to increased HOB\textsubscript{r} concentration which in turn leads to an increased rate of recycling of bromine. This leads to net O\textsubscript{3} destruction and thus an oscillation. This appears to be the fastest oscillation calculated by a numerical model of the troposphere. Previous studies reviewed by Tinsley and Field [2001] have investigated cycles which act on timescales of a few weeks or more. Measurements in the Arctic boundary layer may offer the best opportunity of observing a chemical oscillation in the real atmosphere.

6. Conclusions

[33] Observations from the TOPSE aircraft campaign over the Arctic in March–May 2000 provide extensive chemical characterization of O\textsubscript{3} depletion events in the boundary layer. We used a combination of data analysis and photochemical modeling to investigate the processes controlling the coupled evolution of BrO\textsubscript{x}–ClO\textsubscript{x}–HO\textsubscript{x}–NO\textsubscript{x} radicals and their reservoirs.

[34] Ethane and ethyne observations during TOPSE indicate that Cl radical chemistry is important only during the early stages of O\textsubscript{3} depletion while Br radical chemistry remains active even as O\textsubscript{3} drops below 1 ppbv. We reproduce these results in our model. As the O\textsubscript{3} concentration decreases below 5 ppb, accumulation of Br− in the aerosol leads Br\textsubscript{2} production to compete with BrCl production as a sink of HOB\textsubscript{r} leading to a reduction in the rate of Cl radical production. Also, the reaction between aerosol phase BrCl and Br− to produce Br\textsubscript{2}Cl− further inhibits the release of BrCl. These two processes lead to a marked reduction in Cl chemistry below 10 ppbv of O\textsubscript{3}.

[35] Measured total peroxy radical concentrations (RO\textsubscript{2}) drop by a factor of 2 during O\textsubscript{3} depletion events, a trend well reproduced by our model. During these events there are strong interchanges between HO\textsubscript{x} and BrO\textsubscript{x} radicals, and HOB\textsubscript{r} serves as a major reservoir for both. We define a generalized H/Cl/BrO\textsubscript{x} radical family to account for this coupling. Production of this family is mostly from the photolysis of CH\textsubscript{2}O emitted from the snow, and loss is mostly by the self reactions of peroxy radicals. Thus, at steady state the RO\textsubscript{2} concentration is proportional to the square root of the CH\textsubscript{2}O concentration. Measured and simulated CH\textsubscript{2}O concentrations drop by a factor of 4 during O\textsubscript{3} depletion events due to reaction with Br atoms, explaining the observed decrease in RO\textsubscript{2} concentrations.

[36] Observed NO\textsubscript{x} concentrations show a marked decline during the early stages of O\textsubscript{3} depletion with subsequent recovery as the O\textsubscript{3} concentration drops below 10 ppbv. We reproduce this feature and ascribe the initial NO\textsubscript{x} depletion to BrNO\textsubscript{3} hydrolysis. As the O\textsubscript{3} concentration continues to drop, both the Br/BrCl and NO/NO\textsubscript{2} ratios increase which leads to a reduction in the BrNO\textsubscript{3} concentration and thus the magnitude of the NO\textsubscript{x} sink. The emission of NO\textsubscript{x} from the snow then leads to a recovery in the NO\textsubscript{x} concentration. The magnitude of this recovery is obviously dependent upon the strength of the surface source and thus may vary geographically and seasonally.

[37] Outside of O\textsubscript{3} depletion episodes, our model calculations suggest that aerosol phase reactions of HNO\textsubscript{4} with
HNO₂ and I⁻ could represent a substantial sink for NO₂. There is an obvious need for HNO₃ measurements in the Arctic boundary layer and for better characterization of HNO₃ chemistry.

[38] Our photochemical model simulation for the Arctic boundary layer shows a large-amplitude oscillation for O₃ with a period of 3 days under certain realistic conditions with high bromine. The period of the oscillation is much shorter than previously reported oscillations in tropospheric chemistry mechanisms. Although it could be nothing more than a theoretical curiosity, since external forcing (such as from transport) is likely to disrupt it, it may be because of the short period afford an opportunity for observing an oscillation in the real atmosphere.

[39] Acknowledgments. This work was funded by the Atmospheric Chemistry Program of the U.S. National Science Foundation.

References

D. Blake, Department of Chemistry, University of California, Irvine, CA 92697, USA.

B. Heikes, School of Oceanography, University of Rhode Island, Narragansett, RI 02882, USA.

J. Snow, University of Washington Bothell, Bothell, WA 98011, USA.