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Abstract. We analyze the monthly 1866–2000 Southern Os-
cillation Index (SOI) data to determine:

1) whether the SOI data are sufficiently noise-free that use-
ful predictions can be made from them, and

2) in particular, whether future ENSO events can be pre-
dicted from the SOI data.

The “Hilbert-EMD” technique is used to aid the analy-
sis. This new frequency-time algorithm, based on the Hilbert
transform, may be applied to time series for which the con-
ventional assumptions of linearity and stationarity may not
apply.

With the aid of the EMD procedure, a cleaner represen-
tation of ENSO dynamics is obtained from the SOI data.
A polynomial function is then used to predict SOI values.
Using only the data from January 1866 through December
1996, this prediction correctly indicated a warm event in
1997–1998 and a cold event in 1999. Using all the data
(through December 2000), this prediction shows no strong
ENSO events (positive or negative) during the time period
January 2001 through December 2004.

1 Introduction

El Niño/Southern Oscillation (ENSO) is an interannual cli-
matological disturbance centered on the tropical Pacific; it
has global effects and relevance. The term “Southern Os-
cillation” describes an atmospheric pressure fluctuation cen-
tered over the tropical Pacific and Indian Oceans (Philander,
1990). The Southern Oscillation Index (SOI) is sea-level
atmosphere pressure (SLP) at Tahiti minus that at Darwin,
Australia, normalized as described in the next section. When
the SOI is strongly negative, anomalously warm surface wa-
ters appear off the coasts of Peru and Ecuador. This is called
“El Ni ño,” while the reverse condition with a strong posi-
tive SOI and anomalous cold surface waters is called “La

Correspondence to:J. I. Salisbury (echojack@ieee.org)

Niña.” Alternatively, these may be called warm and cold
ENSO events, respectively. The time interval between suc-
cessive warm ENSO events ranges from one to eight years
and averages 3.6 years.

Poor prediction of ENSO events significantly harms the
world economy (Philander, 1990). Conventional models and
prediction schemes did not anticipate the large 1986–1987
ENSO event (CPC, 1992). We will show that the dynam-
ics of ENSO are sufficiently represented in the SOI data, so
this time series may be usefully employed to predict ENSO
events.

In this paper, we use a data analysis method which is not
limited to linear, statistically stationary time series. This em-
pirical mode decomposition (EMD) method extracts the en-
ergy associated with various intrinsic time scales in generat-
ing a collection of intrinsic mode functions (IMF). The IMFs
have well-behaved Hilbert transforms, from which instanta-
neous frequencies can be calculated. Thus, we can localize
any event in time as well as frequency. The decomposition
can also be viewed as an expansion of the data in terms of the
IMFs. Then these IMFs, based on and derived from the data,
serve as the basis of that expansion; they can be linear or
nonlinear, as dictated by the data. The different IMFs corre-
spond to the different physical time scales which characterize
the various dynamical oscillations in the time series.

With our knowledge of ENSO, we can hope to identify
an ENSO-related IMF, thus making it possible for prediction
techniques to be fruitfully employed to forecast future ENSO
events.

2 Data

The data set used in this analysis is the monthly- average SOI
time series extending from January 1866 through Decem-
ber 2000, with a sampling interval of one month (Mitchell,
1999). This gives a data set of 1620 samples. Figure 1 shows
the SOI data from January 1970 to October 2000. If SOI’ is
normalized sea-level pressure (SLP) at Tahiti minus normal-
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Fig. 1. Monthly SOI data series from January 1970 to October 2000.
Tick marks on the time axis indicate the beginning of the designated
year.

ized SLP at Darwin, then SOI is SOI’ normalized by its stan-
dard deviation during 1951–1980. Prior to 1933 there were
a few gaps in either the Tahiti or Darwin data; these range in
length from 3 to 40 months. Since none of these gaps occur
simultaneously at both locations, each gap has been filled by
using the normalized pressure at the operating site with the
appropriate sign,+ for Tahiti, – for Darwin (Ropelewski and
Jones, 1987; Allan et al., 1991; Konnen et al., 1998). These
filled-in gaps that occurred more than 65 years ago should
contribute relatively little to the prediction error.

3 Hilbert-EMD analysis

In this paper, we use a new data analysis method known
as Empirical Mode Decomposition (EMD), in which a time
series is decomposed into a set of intrinsic mode functions
(IMF) derived from the data itself (Huang et al., 1998, 1999).
The decomposition is based on the direct extraction of en-
ergy associated with various intrinsic time scales. The local
energy and instantaneous frequency derived from the IMFs
through the Hilbert transform can give us a full energy-
frequency-time distribution of the data. Such a representa-
tion is designated as the Hilbert spectrum; it is well-suited to
the analysis of nonlinear and nonstationary data.

With this method, we can localize an event in both time
and frequency. The decomposition can be viewed as an ex-
pansion of the data in terms of the IMFs. These functions
are almost orthogonal, and form a complete basis: the sum
of the IMFs equals the original data. The IMFs can be lin-
ear or nonlinear, as dictated by the data. Most important of
all, the expansion is adaptive. Locality and adaptivity are
the necessary features of a basis for expanding nonlinear and
nonstationary time series.

To compute an intrinsic mode function from a data set
x(t), one first identifies the successive extrema ofx(t), then
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Fig. 2. SOI Intrinsic Mode FunctionsC1, C2, C3, C4 for the SOI
data set.
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Fig. 3. Same as Fig. 2, but for Intrinsic Mode Functions
C5, C6, C7, C8.

the local maxima are connected by a cubic spline as the up-
per envelope, and the local minima are similarly connected
as the lower envelope. The mean of these two envelopes is
a function of time and designated asm1(t). The difference
between the datax(t) and the meanm1(t) is computed and
designatedh1(t) = x(t)−m1(t). Thish(t) is approximately
the first IMF. To determine it more accurately, we treath1(t)

as a new set of data, determine its upper and lower envelopes
and compute their new mean,m11(t), as well as the differ-
enceh11(t) = h1(t) − m11(t). This h11(t) is again treated
as a new data set, and the process, referred to as “sifting,” is
repeated a number of times. The sifting process is stopped
when the number of zero-crossings ofh1k equals the number
of extrema. The convergent result is designated byC1(t),
which is the first IMF of the data setx(t); it has a zero local
mean.

Now subtractC1(t) from the data setx(t), and call the
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difference, “the first residue”:

R1(t) = x(t) − C1(t). (1)

The residue is analyzed by the same method as if it were
new data. A new mean is found and the difference,R1(t)

minus its mean, converges to a function of time,C2(t), which
is the second intrinsic mode function ofx(t). It also has a
zero local mean. The second residue,

R2(t) = R1(t) − C2(t), (2)

is formed, and the process is continued until eitherCn or Rn

becomes so small that it is less than a predetermined value of
substantial consequence, or the residueRn becomes a mono-
tonic function from which no more IMFs can be extracted.

In the real world, the data set to be analyzed is generally
noisy, nonstationary and of limited duration. These three fac-
tors greatly limit our ability to distinguish whether, for exam-
ple, the dynamical system is a random process, a low-order
noisy chaotic system or a high-order chaotic system. If the
signal of interest is captured in a single IMF, we can examine
the predictability of this IMF.

The IMFs for the SOI data, computed using the sifting pro-
cess described above, are presented in Figs. 2 and 3.C9 is
the final residue; it shows a monotone trend. As can be seen,
C1 is composed of the smallest time scales, or highest fre-
quencies, and the time scale increases as the indexi of Ci

increases. IMFs 1 through 5 contain the major portion of the
energy in the SOI signal.

A few cycles of the Hilbert transforms of IMFs 3 and 4 are
presented in Figs. 4 and 5. Intrawave modulation can be ob-
served in both these figures. This behaviour is characteristic
of nonlinear dynamics. Also, note that IMF 4 has a char-
acteristic frequency of 0.03 cpm, which roughly corresponds
to the 3.6-year mean interval between ENSO warm events.
Figure 6 presents a comparison of the SOI and IMF 4 data
for the years January 1970 to October 2000. IMF 4 resem-
bles a smoothed version of the SOI data. We will attempt to
use both the SOI time series and the IMF 4 series to predict
ENSO events.

4 Prediction

We must now select an effective dynamical model, which
will allow us to predict the evolution of any new point in the
phase space within the limits of the intrinsic instabilities em-
bodied in the data. The basic idea is that since we know ap-
proximately how points in a neighborhood evolve into points
in the next neighborhood, we can make a predictive estimate
using an appropriate function,G, such that

ζ̂ (n + 1) = G(ζ(n)) . (3)

Using the techniques described by Kantz and Schreiber
(1997), various functions for predicting future events of non-
linear dynamical systems were employed on the SOI and
IMF 4 data. Various options, input parameter values and
prediction models were tried. Evaluation was performed by

 

 

Fig4 

Fig. 4. The Hilbert spectrum (upper panel) from IMF 3 (lower
panel) of the SOI for the period 1982–2000. Note the intrawave
modulation in which the local frequency varies within the domi-
nant cycle of the oscillation.

 

 

Fig5 

Fig. 5. Same as Fig. 4, but for IMF 4.
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Fig. 6. Monthly SOI data series (red) from January 1970 to Oc-
tober 2000. Also, the IMF 4 data series for the same time period.
Tick marks on the time axis indicate the beginning of the desig-
nated year.
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Fig. 7. 48-month prediction (blue) based on the measured SOI data
prior to 1997. Actual SOI time series for the 1997–2000 period of
the prediction is also shown (red).

looking at both the in-sample and out-of-sample errors. We
selected the prediction algorithm and the combination of em-
bedding dimension and delay resulting in the smallest out-
of-sample error. The functional form selected, which is flex-
ible enough to model the true function on the whole attractor,
is a multivariate polynomial (Giona et al., 1991), which for
degreeh and dimensiond hask = (d + h)!/(d!h!) inde-
pendent coefficients. The problem to be solved, given the
Nd-dimensional vectors

(x(1), x(2), . . . , x(N)) , (4)

is to reconstruct the mapping,

x(n + 1) = F (x(n)), (5)

whereF is ad-dimensional vector of polynomial functions
of thed components ofx.

The combination of an embedding dimension of 4, a delay
of 1 month, and a third-degree polynomial, gave the smallest
out-of-sample error. All techniques and parameters resulted
in predicted variations occurring at a slightly lower frequency
than those observed.

We first used the SOI data without the last 48 data points,
January 1997 to December 2000, to make a prediction for
these four years. The period from January 1866 to Decem-
ber 1996 was used as a training set to predict 48 months into
the future. The results are depicted in Fig. 7, which shows
a nearly useless prediction (blue), giving a proper value only
for the mean, as expected for a random process.

Next, the Hilbert-EMD procedure was carried out on the
SOI data to obtain IMF 4 for the period January 1866 – De-
cember 1994, and again for the period January 1866 – De-
cember 1995. The same scheme was used to predict the suc-
ceeding 48 month period in each case, January 1995 – De-
cemeber 1998 (Fig. 8) and January 1996 – December 1999
(Fig. 9). Both of these predictions show a strong “cold event”
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Fig. 8. 48-month prediction (blue) of IMF 4 computed from SOI
data prior to 1995 (red).
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Fig. 9. 48-month prediction (blue) of IMF 4 computed from SOI
data prior to 1996 (red).
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Fig. 10. 48-month (2001–2004) prediction (blue) of IMF 4 com-
puted from SOI data prior to 2001 (red).
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(SOI > 1) followed by a strong “warm event” (SOI< −1),
and for the second case, which extends through the year
2000, another strong “cold event” (SOI> 1). This agrees
with the observed SOI index (Fig. 7, red curve), except that
the predicted times for these events are somewhat later than
the observed times, as a result of the frequency shift men-
tioned above. Now using the IMF 4 data derived from all
available SOI data up to December 2000, a 48-month, Jan-
uary 2001 – December 2004 prediction was made; it is pre-
sented in Fig. 10. The actual measured data, including the
past warm and cold events, are plotted (red) along with the
predicted (blue) results, which begin after the last known data
point (December 2000). The predicted SOI magnitudes from
January 2001 to December 2004 are all less than one, indi-
cating that no strong warm or cold events are predicted by
this procedure before December 2004.

5 Conclusion

It has been shown that the Empirical Mode Decomposition
separates the total dynamics in the SOI into a finite number
of simpler components. Attempting to predict future events
using the undecomposed data proved fruitless. By analyzing
just one of the EMD components, IMF 4, which has the same
mean frequency as ENSO, we have been able to study a much
simpler dynamical system and predict future events.

Out-of-sample predictions based on the 4th Intrinsic Mode
Function of the SOI data show a strong warm event in 1997–
1998 and a strong cold event in 1999, as observed. They
also forecast no strong ENSO events during the period 2001–
2004.

References

Allan, R. J., Nicholls, N., Jones, P. D., and Butterworth, I. J.: A
further extension of the Tahiti-Darwin SOI, early ENSO events
and Darwin pressure, J. Climate, 4, 743–749, 1991.

CPC (Climate Prediction Center, NOAA): Experimental Long-Lead
Forecast Bulletin, 6, No. 1, March, 1992.

Giona, M., Lentini, F., and Cimagalli, V.: Functional reconstruc-
tion and local prediction of chaotic time series, Phys. Rev. A, 44,
3496–3502, 1991.

Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H.-H., Zheng,
Q., Yen, N.-C., Tung, C.-C., and Liu, H.-H.: The empirical mode
decomposition and the Hilbert spectrum for nonlinear and non-
stationary time series ananlysis, Proc. Roy. Soc. London Ser. A,
454, 903–995, 1998.

Huang, N. E., Shen, Z., and Long, S. R.: A new view of nonlin-
ear water waves: the Hilbert spectrum, Annual Review of Fluid
Mechanics, 31, 417–457, 1999.

Kantz, H. and Schreiber, T.: Nonlinear Time Series Analysis, Cam-
bridge University Press, 1997.

Konnen, G. P., Jones, P. D., Kaltofen, M. H., and Allan, R. J.: Pre-
1866 extensions of the Southern Oscillation Index using early
Indonesian and Tahitian meteorological readings, Journal of Cli-
mate, 11, 2325–2339, 1998.

Mitchell, T.: Southern Oscillation Index,http://tao.atmos.
washington.edu/pacs/additional_analyses/
soi.html , 1999.
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