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ABSTRACT 

It has been widely known that the stock market is always volatile and full of risk. 

How to better capture the volatility and decrease risk accordingly has become a main 

concern for both investors and researchers. In this thesis, the stochastic volatility 

model with offset mixture of normal distribution is fitted for financial dataset 

NASDAQ:LLTC daily stock market returns volatility and one-step-ahead prediction is 

made based on the AR(1) SV model. Bayesian analysis is fully applied for model 

fitting and parameter estimation. The Markov Chain Monte Carlo algorithm, using the 

Metropolis Hasting method, the Forward Filtering Backward Sampling and the Gibbs 

Sampler is well developed to fit the real data. A small improvement incorporated is the 

resampling of weights in the discrete normal mixture distribution which is used to 

approximate a non-normal distribution. Estimated parameters when having weights 

sampled are compared with the results when weights are fixed. The predictive 

distribution for one-step-ahead log volatility 1Tz  and log transformed stock return 

1Ty  is given in the graphs. Mean and 95% posterior interval are also provided for both 

1Tz   and 1Ty  . FFBS algorithm is first applied to a simulated dataset with normal 

mixture structure in Dynamic Linear Models. Visual plots with posterior mean and 

95% posterior interval are given. Autoregressive model with application of Monte 

Carlo approximation is also included to model LLTC stock returns. 
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CHAPTER 1 

 

INTRODUCTION 

 

            Stock is a type of security that signifies an ownership position in a corporation. 

A company can be divided into a number of shares and each share of stock is entitled 

to a proportional share of profit or loss made by the company. It is a representative of 

the claim as part of the corporation’s assets and earnings. There are many options for 

people who want to make investments. The buying and selling of stock is always the 

most popular option for public trading. When investors buy stocks, they become 

shareholders, which means that they own a part of the company. If the company's 

profits go up, they will share those increased profits with the company. Similarly, if 

the company's profits go down, the stock price goes down accordingly and the loss in 

profits will be shared with investors too. The logic to make money is that investors 

buy the stock, hold it for some time, and then sell it at a higher price than the 

purchasing price. Suppose they sold their stock at a price lower than the price they 

have paid for it, they would lose money. 

            It is widely known that stock price is very changeable, even on a daily basis. 

The reason for that is because of supply and demand. In stock markets, a large volume 

of stocks are traded every day. If there are more people who buy a stock than the 

people who sell it, out of the expectation that the price will go up in the future, then 

the price will rise. Conversely if more people want to sell it than to buy it, the stock 

price will fall dramatically. However, investors’ expectation for the market is in a 
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permanent state of fluctuation due to all kinds of information obtained over time that 

strongly affect their decision-making. That’s also why the stock trading has been 

processed so often over a short period of time. 

            Most stocks are traded on stock exchanges, which are the places where buyers 

and sellers meet and make a deal on a price.  One of the most famous stock exchanges 

is the New York Stock Exchange (NYSE), in which much of the trading is done face 

to face on the trading floor and prices are determined using the auction method. The 

NASDAQ stock exchange, commonly known as NASDAQ, is the second type of 

stock exchange, where the trading is done through a computer and telecommunication 

network of dealers. This is also called the over-the-counter (OTC) market. NASDAQ 

used to be the largest company listed only on the NYSE. Due to the late 90s’ 

technology boom, NASDAQ is now becoming home to several big technology 

companies such as Microsoft, Intel, Dell etc. LLTC is also one of them, which I am 

going to talk about in detail in my thesis.  

        Linear Technology Corporation (LLTC), a member of the S&P 500, has been 

designing, manufacturing and marketing a broad line of high performance analog 

integrated circuits for major companies worldwide for three decades. The Company’s 

products provide an essential bridge between our analog world and the digital 

electronics in communications, networking, industrial, automotive, computer, medical, 

instrumentation, consumer, and military and aerospace systems. Linear Technology 

produces power management, data conversion, signal conditioning, RF and interface 

ICs, µModule subsystems, and wireless sensor network products. (see LLTC website) 

            As a master’s candidate, I justify my research on “Forecasting Stock Market  
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Returns Volatility” based on the following introduction and overview. 

1.1 Stock Market Returns 

      In a stock market, four stock prices will usually be provided in a day which  

include open price, close price, high price and low price. Open price is the price at 

which a specified stock first trades upon the opening of an exchange on a given 

trading day. Close price is the final price at which a stock is traded. Close price is 

important because it represents the most up-to-date valuation of a security before the 

next trading day. The closing price of one day can be compared to the previous close 

price in order to measure market sentiment. 

      In the thesis, stock daily return i1s calculated by taking the natural logarithm of the 

ratio of stock closing price at time 1t   and time t , denoted by 1ln( )t tp p  , which is a 

commonly used approximation of the percentage of return 1 1( )t t t tr p p p   . There 

are several reasons for doing so. One reason is that when return tr  is very small, we 

have ln(1 )t tr r  , 1tr  based on the Taylor expansion in mathematics. Another 

reason is that the multiplication of small numbers 
1

n

i

i

r


 will cause arithmetic 

underflow and taking the logarithm is a modification to this potential problem by the 

summation of log values 
1

log(1 )
n

i

i

r


 . Hence, loosely speaking, log return means the 

ratio of money gained or lost on a stock. Positive returns reflect a rising market (bull 

market) where people make money, while negative returns are usually referred as a 

“bear market” where people lose money. 

1.2  Stock Market Volatility 
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       Volatility is a statistical measure of the dispersion or variability of returns for a 

given security or market index. It refers to how uncertain one is about the size of 

change in a security’s value over time. Volatility, which is always positive,  can either 

be measured by variance or standard deviation (the square root of variance), between 

returns over a specified period of time. A high volatility means that the returns can 

potentially take values in a large range of values, so the uncertainty about the stock 

returns is also high which represents high risk. Hence high volatility implies that the 

returns can change dramatically in values over a short period of time, since large 

amounts of stocks are traded within any minute. Conversely, a low volatility means 

the returns don’t fluctuate dramatically over a short time period. In general, the higher 

the volatility, the riskier the stock market is. And the more risk investors take, the 

greater the potential for higher gain or loss. 

1.3 Why Stock Market Returns? 

      Stock price is the price of a single share of many saleable stocks for a company or 

other financial institution. It essentially, is a function of the amount of dividends that 

can be expected in the future. Therefore, the current price at a given time point t  

reflects the whole investment community’s expectation and confidence towards a 

stock in the future. If the underlying expectation for the market stays the same, then 

stock price will not make any change. But nobody is really sure about the change of 

stock price. Different expectations for future stock price lead to frequent buying and 

selling of stocks, which in reverse, causes the constant change of price over time. As 

we can observe directly from the stock markets, even in a single day, four different 

prices are given to reflect the volatility of stock prices. Basically stock price depends 
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on demands and supply driven by buyers and sellers. The interest of the buyers and 

sellers for stocks depends on market sentiment. Market sentiment relies on the 

domestic and international economy and other factors, which are very complex and 

unpredictable. So it is extremely hard to predict stock prices directly, if not 

impossible. Obtaining stock returns, however, makes it more convenient to analyze 

changes in stock prices by making a transformation on them. Changes in stock returns 

can easily be used to make inference on stock prices. After a transformation, we don’t 

have to deal with the high correlations among stock prices since low correlations exist 

among stock returns and volatility in returns is also lower than in stock prices. 

       For LLTC stock returns (see Figure 7), the means of the series seem constant over 

the long run and only the variances keep changing. Some big spikes show up every 

now and then. What I am aiming to do in this thesis is to fit a model that can best 

capture the volatility and make a short-term prediction on future volatility with the 

assumption that the possible values of the future stock returns is within the range of 

what we have observed in the data. 

1.4 Time Series 

      A univariate time series is a chronological sequence of observations about a 

particular variable, which is usually denoted as ty ( t =…-2,-1,0,1,2…), e.g., exchange 

rate, inflation rate, product sales, unemployment etc. Usually time t  is taken at equally 

spaced intervals, and the unit of time may be anything from seconds to years. Time 

series analysis can be useful to detect the change over time for a security or other time 

series variables. Five common features in economic and business time series include 

trends, seasonality, aberrant observation, conditional heteroskedasticity and non-
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linearity, see Franses’ book “Time series models for business and economic 

forecasting” (2000) at Chapter Two for details.  Besides that, a comparison can be 

made on multiple time series over the same period of time. As for financial time series, 

for example, co-integration was raised to specifically investigate the co-

movement/common trend between two or more financial time series. Financial time 

series analysis (FTSA),  is  concerned with the theory and practice of asset valuation 

over time. What makes financial time series analysis different is that it is highly 

volatile and empirical such as stock market indices, market shares.  Furthermore, it 

relies more on statistical theory and methods for the development of robust models 

since there is no universal model that will fit every financial time series.  

      Stock returns series is a typical financial time series with high volatility.  Due to 

the sensitivity of stock prices to economic events or interest rates, it is important to 

build a volatility model with high accuracy to better capture the change in stock 

returns over time. Bayesian analysis can be applied to accomplish the goal here. 

1.5  Bayesian Analysis 

In a precise mathematical sense, it has been shown that probabilities can  

numerically represent a set of rational beliefs, that is we claim that probabilities are a 

way to numerically express rational beliefs.  Bayesian statistics is thus founded on the 

fundamental premise that all uncertainties about quantities should be represented and 

measured by probabilities. We use statistical induction to learn about the general 

characteristics of a population from a subset of the population.   

1.5.1  Notations and Definitions 

Stochastic Process:  A stochastic process is a family of random variables  



 

7 

 

defined on a given probability space, indexed by the time variable t , which is used to  

represent the evolution of some random values or system over time. It is also known  

as a random process. A time series process is a stochastic process. 

          Stationarity: A strict stationary process is a stochastic process whose joint 

probability distribution doesn’t change when shifted in time or space. Thus, 

stationarity explores the time invariant behavior of a time series. Determining the 

stationarity condition of the time series allows for proper identification and 

development of forecasting models. There are two types of stationarities: strict 

stationarity whose distribution is time invariant, and weak stationarity for which only 

the first two moments are time invariant, that is the data values fluctuate with constant 

variation around a constant level. Most financial time series exhibit a weak form 

stationarity. 

        Autocorrelation: Autocorrelation describes the serial correlation between values 

of a stochastic process at different times, as a function of the time lag. Let ,ty t T  

be a time series process. Then the sample autocorrelation function is given by  

1

2

1

( )( )

( )

T l

t t l

t
l T

t

t

y y y y

y y



  









 








, 

where y


 is the sample mean and T is the sample size. Existence of autocorrelation 

implies the return is predictable, indicating market inefficiency.  

         White Noise: White noise is a simple type of stochastic process whose terms are 

identically independently distributed (iid) with zero mean. A Gaussian white noise is a 

stochastic process with zero mean, finite variance and zero autocorrelation. 



 

8 

 

1.5.2 Bayes’ Rule 

            Numerical description of population characteristics are typically expressed in 

terms of a set of parameters,  s, and a numerical description of the sample make up a 

data set y . Before a data set is obtained, the numerical values  of , y are uncertain. 

After a dataset is obtained, the information it contains can  be used to decrease our 

uncertainty about the population characteristics, which is the goal of Bayesian 

inference. Bayes’ rule (1.1) provides us with a rational method to update the 

uncertainty as new information about y is collected.  

            For each numerical parameter    (   is the set of possible parameter  

values for  ), our prior distribution ( )p   describes our belief that   represents the 

true population characteristics. For each   and y Y , our sampling model 

( )p y  describes our belief that y would be the outcome of our study if  we know that 

  is true. Once we obtain the data set y , the last step is to update our belief about  . 

For each  , our posterior distribution ( )p y  describes our belief that   is the 

true value, after observing data set y . The posterior distribution is obtained from the 

prior distribution and the sampling model via Bayes’ rule:  

~

( ) ( ) ( ) ( )
( )

( ) ( ) ( )

p y p p y p
p y

p y p y p

   


 


 


                             (1.1) 

        It is important to note that Bayes’ rule does not tell us what our beliefs should be, 

it tells us how they should change after observing new information. Even if a 

particular prior distribution does not exactly reflect our prior information, the  

corresponding posterior distribution can still be a useful means of providing stable  
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inference and estimation for both large and small sample sizes. 

1.5.3 Metropolis-Hasting Algorithm 

In a generic situation where we have a sampling model ~ ( )Y p y  and the  

prior distribution ( )p  ,  our target distribution is  

'' '

( ) ( )
( )

( ) ( )

p p y
p y

p p y d

 


  



                                (1.2) 

What Bayesian simulation usually does is to sample from the posterior distribution 

and obtain a Monte Carlo approximation to posterior quantities, if  ( )p y is tractable 

with an analytical form. But if we can’t sample directly from ( )p y , the Metropolis 

algorithm needs to be used to approximate the posterior distribution. In terms of 

estimating the posterior distribution, the key is to be able to construct a large 

collection of   values, whose empirical distribution approximates ( )p y . Suppose 

we already have an acceptable collection 
(1) (2) ( ){ , ,..., }s   , and we are considering to 

add another value 
( 1)s 

. With a proposed value  
, whether we add it to the set or not 

depends on the ratio ( )( ) ( )sr p y p y  . How the Metropolis algorithm generates a 

value 
( 1)s 

 is as follows: 

            1. Sample ( )~ ( )sJ   . ( )( )sJ   is a symmetric proposal distribution. 

            2. Compute the acceptance ratio  

( ) ( ) ( )

( ) ( )( )

( ) ( ) ( )
s s s

p y pp y
r

p y p y p

 

  

 

   

     3. Let  
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( 1)

( )

min( ,1)

1 min( ,1)

s

s

withthe probability r

withthe probability r











 


 

Step 3 can be accomplished by sampling ~ (0,1)u uniform and setting 
( 1)s   if 

u r  and setting 
( 1) ( )s s   otherwise. 

1.5.4 Gibbs Sampler 

            Suppose we have a vector of parameters 1 2{ , ,.., }p    , and  the  prior 

information is given by 1 2( ) ( , ,.., )pp p     . Given  a   starting  point  

(0) (0) (0) (0)

1 2{ , ,.., }p    , the Gibbs sampler generates ( )s from ( 1)s by  sampling 

from the full conditional distribution as follows: 

1. Sample ( ) ( 1) ( 1)

1 1 2~ ( ,..., )s s s

pp      

2. Sample ( ) ( ) ( 1) ( 1)

2 2 1 3~ ( , ..., )s s s s

pp       

            

          p.  Sample ( ) ( ) ( ) ( )

1 2 1~ ( , ..., )s s s s

p p pp     
 

 This algorithm generates a dependent sequence of vectors 

(1) (1) (1) (1)

1 2

(2) (2) (2) (2)

1 2

( ) ( ) ( ) ( )

1 2

{ , ,.., }

{ , ,.., }

{ , ,.., }

p

p

s s s s

p

  

  

  

 

 

 

 

In this sequence, if ( )s depends on 
(0) (1) ( 1), ,..., s   only through ( 1)s   the 

sequence is called a Markov Chain.  With the Gibbs sampler, we can approximate 

posterior means, quantile of interest using the empirical distribution of 

(1) (2) ( ){ , ,..., }s   . 
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1.5.5 Standard MCMC approximation 

            The standard practice in the MCMC approximation, using either the 

Metropolis algorithm or the Gibbs sampler, is as follows: 

1. Run the algorithm until some iteration B  for which it looks like the Markov 

Chain has achieved stationarity; 

2. Run the algorithm S  more times, generating 
( 1) ( ){ ,..., }B B S  

; 

3. Discard 
(1) ( ){ ,..., }B  and use the empirical distribution of

( 1) ( ){ ,..., }B B S  
 

to approximate ( )p y . 

          The iterations up to and including B are called the “burn-in” period, in which 

the Markov Chain created after burn in has higher posterior probability. Another 

reason for that is to weaken the influence of the initial values, especially when we 

don’t have a good idea about the prior belief. 

1.6  Application of Stochastic Volatility Models 

Many models exist in literature and in practice for the uncertainty of unrealized  

volatility. Model calibration is made to find a set of parameters that minimizes the 

difference between the model predictions and realized market data. The principle of 

model selecting is to provide the most ease with respect to market calibration, instead 

of capturing the particular dynamic features within the related structure. Stochastic 

volatility models have been widely used in derivative pricing and hedging in the past 

decade since a non-constant implied volatility was brought to attention and become 

more acceptable, especially after the 1987 crash. A natural extension of SV models is 

to modify the specification of volatility in the stochastic dynamics of the underlying 

asset price model. A variety of effects are considered in different modeling domains, 
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such as leverage effects, supply and demand, declined stock prices leading to massive 

portfolio volatility than increased stock price. Stochastic volatility correction has been 

made to Black-Scholes (The Journal of Political Economy, 1973) by a new approach 

which requires volatility to be mean-reverting and transforms the slope and intercept 

of the implied volatility skew into information about the correlation between volatility 

and stock price shocks and the market’s volatility risk premium. When volatility 

persists, the derivative price can be approximated in the SV environment by pricing a 

more complicated security in the Black-Scholes constant volatility environment. The 

payoff structure of the new security depends on the Black-Scholes pricing formula for 

the original one and accounts appropriately for volatility risk. ( Fouque et al., 2000) 

        When it comes to volatility forecasting, there are many practical applications. 

Since volatility is the essential risk aspect of the market, a large part of financial risk 

management is to capture volatility in tractable statistical models and to measure and 

manage the potential future losses. Asset allocation is the way you allocate your 

investment in bills, stocks, bonds etc. To balance the risk and reward for individuals, 

volatility forecasting is also a problem that can't be ignored. Besides that, the most 

challenging application of volatility forecasting is to use it for developing a volatility 

trading strategy. 
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CHAPTER 2 

 

REVIEW OF LITERATURE 

 

2.1 Review of Models for Volatility 

         The rapid growth in the financial market and the continual development of more 

complex financial instruments requires advanced statistical methods to gain the 

theoretical and empirical knowledge of financial time series. It is widely known that 

the daily returns of financial assets, especially stock returns, are difficult to predict, 

even though the volatility of stock returns seems easier to forecast. The time-varying 

volatility models have been used in various contexts of a time series analysis. 

        The simplest model is the ARCH model, which stands for Autoregressive 

Conditional Heteroscedasticity, first developed by Engle (1982).  The AR comes from 

the fact that these models are autoregressive models in squared returns. The 

conditional comes from the fact that next period's volatility is conditional on 

information from this period. Heteroscedasticity means non constant volatility. Let us 

assume that the return on an asset is 

                     t t tr                                                                                (2.1) 

where 
. .

~ (0,1)
i i d

t N . In an ARCH(1) model, the residual return at time t is defined 

as ta = tr  ,  

                 2 2

0 1t ta                                                                               (2.2) 

where 0 0  and 1 0   to ensure positive variance and 1 1   to ensure stationarity.  
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The conditional variance is expressed as a function of the squares of past observations  

and past variances. 

        An extension of the ARCH model leads to the GARCH model or Generalized 

ARCH model. The GARCH model was proposed by Bollerslev (1986) and Taylor 

(1986) primarily to overcome the large number of ARCH parameters that were needed 

to model the volatility process. The fundamental idea of the GARCH model is to 

describe the evolution of the time-varying variance 2

t with a moving average 

structure.  Let t t tr a  , then ta follows a GARCH (p, q) model if  

2 2 2 2 2

0 1 1 1 1... ...

~ (0,1)

t t t

t t p t p t q t q

t

a

a a

N

 

       



   



                        (2.3) 

When p=q=1, the GARCH (1,1) model is expressed as 2 2 2

0 1 1 1 1t t ta       , in this 

model the next period forecast of variance is a combination of the last period forecast 

and last period’s return. A special case of the GARCH (1,1) model arises when 

1 1 1    and 0 0  ,which is known as IGARCH model or Integrated GARCH 

model. In this case it is common to use the symbol  for 1 and the equation takes a 

simpler form 

2 2 2 2

1 1

0

(1 ) (1 ) i

t t t t i

i

      


  



                                     (2.4) 

The variance in this case can be interpreted as a weighted average of all previous 

squared returns with the weights decreasing exponentially over time. 

        The stochastic volatility models (proposed by Taylor, 1986) assume volatility 

follows some latent stochastic process and introduce the innovation in the conditional 
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variance. It was developed out of a need to modify the Black Scholes model for option 

pricing in the theoretical finance literature, which failed to effectively take the 

volatility in the price of the underlying security into account. The Black Scholes 

model assumed that the volatility of the underlying security was constant, while 

stochastic volatility models categorized the price of the underlying security as a 

random variable. Allowing the price to vary in the stochastic volatility models 

improved the accuracy of calculations and forecasts. The canonical AR(1) SV model 

for regularly spaced data is as follows 

/2

1

2

1 2

( )

~ ( , )
1

th

t t

t t t

y e

h h

h N



 

    










   



,                                                (2.5) 

where th is the log-volatility following a stationary autoregressive process with order 

1, the parameter  or exp( / 2) is a constant factor and can be thought of as modal 

instantaneous volatility. This is not a linear model, and transformation is needed to 

proceed with the analysis. 

2.2  ARCH/GARCH Models and SV Models Comparison 

      Modeling volatility plays a crucial role in risk management in banks or other 

 financial institutions since volatility is considered to be a measure of risk. It is now 

widely agreed that financial asset returns volatilities are time-varying, with persistent 

dynamics. (Andersen et al 2007). A comparison of the popular GARCH models and 

less known SV(or ARSV) models, both of which is capable of modeling time varying 

volatility and capturing the volatility clustering,  will be discussed in this section. 

     SV models is usually considered a successful alternative of ARCH models in  
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modeling financial return series. The distinctive advantage of SV models is that they 

incorporate leverage effect (volatility tends to increase when prices go down) and also 

capture the main empirical properties often observed in daily return series in a more 

appropriate way. The reason that SV models are less popular in practice is mainly 

because of the complexity and difficulty of parameter estimation. SV models are non-

linear and non-Gaussian and the computations are more demanding than for GARCH 

models. For instance, there are two error/noise terms: observation error and state error 

in SV models due to the assumption of latent process, but there is only one error 

process in GARCH models. The problem of SV models is obvious from the likelihood 

function where we have to integrate over the latent factor a T  dimensional integral. 

This can not be solved analytically, so the numerical simulation is required. 

       However, GARCH-type models have a poor forecasting ability. Besides that, 

there are other problems with GARCH, such as inconsistent parameter estimate results 

for different time scales, inefficiency to capturing outliers and large moves and failure 

to distinguish the association between large moves and earnings announcements and 

other news. The theoretical examination of GARCH and SV comparison provided by 

Carnero et al. (2001) shows that SV models can better explain the excess kurtosis, low 

first order autocorrelation and high persistence of volatility. They also show that SV 

model is less dependent on the choice of returns distribution. In the paper by Mapa et 

al (2010), they conclude that SV models capture more aspect of volatility than 

GARCH model due to its sources of variability and produce lower forecast errors by 

comparing basic GARCH volatility forecasts with SV models which are computed 

through Kalman Filter or MCMC method. Hence, if we ignore the calculation 
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 difficulties for SV models, SV models are adequate substitute to GARCH models. 

2.3  SV Models Literature Summary 

In the process of writing this thesis, I referred to many books and papers. The book  

I would like to summarize here is “Time Series: Modeling, Computation, and 

Inference” by Raquel Prado and Mike West. In this book, mainstream modeling 

approaches in time series with a range of significant recent developments in 

methodology and application of time series analysis are integrated. The overview of 

several models such as traditional time domain models, state space TVAR models, 

dynamic linear models, mixture models etc., and related methodology for inference, 

statistical computation for model fitting and forecasting is present. The estimation and 

forecasting are based on Bayesian analysis which involves likelihood and Bayesian 

methodologies, with a strong emphasis on using simulation-based approaches for 

model estimation, inference and forecasting.  

       Posterior inference and forecasting can be easily achieved in the normal DLM 

framework. When more general models are considered, such as non-linear and non-

normal dynamic models,   Markov Chain Monte Carlo algorithms can be implemented 

for posterior estimation.  In a general framework, a nonlinear/non-Gaussian dynamic 

model is defined by the densities
1( , )t t tp y D 

, 
1 1( , )t t tp D   

and the prior density  

0 0( )p D . Our interest is to obtain samples from the filtering distribution ( )t tp D and 

the joint posterior distribution 0:( )T Tp D . In a Gibbs sampling framework, we would 

sample from the conditional posterior 
( )( , )t t Tp D  

, where ( )t  consists of 0:T  

except the t th element t , we sequentially sample through 0:t T as follows: 
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1. Set initial values (0)

0:T . 

2. For each iteration m , sample ( )

0:

m

T component by component, i.e., for each t , 

sample ( )m

t from ( ) ( 1)

0:( 1) ( 1):( , , )m m

t t t T Tp D   

 
 

3. Repeat the previous step until MCMC convergence.  

However, the posterior ( ) ( 1)

0:( 1) ( 1):( , , )m m

t t t T Tp D   

 
is rarely calculable in practice. In this  

case, Metropolis-Hastings steps within the Gibbs iteration could be used. In the  

normal dynamic linear model, a useful MCMC method Forward Filtering Backward 

Sampling method was developed and proved to be powerful. For univariate stochastic 

volatility model, discrete mixture of normal distribution was introduced to 

approximate the non-linear log chi-square distribution and the number of mixtures to 

be chosen is seven, even though more mixtures can refine the approximation. Zero-

mean AR(1) SV model and the MCMC analysis applied to real data were discussed in 

detail.  

       In the paper “Stochastic Volatility: Likelihood Inference and Comparison with 

ARCH Models” by Kim, Shephard et al, Markov Chain Monte Carlo sampling 

methods are exploited to provide a practical likelihood-based framework for the 

analysis of stochastic volatility models. To sample all unobserved volatility all at once 

using offset mixture model followed by an importance reweighting procedure is 

proved to be an effective method. This approach is compared with several alternative 

methods with application on real data.  Simulation-based methods for filtering, 

likelihood evaluation and model diagnostic are also developed. The fit of stochastic 

volatility and GARCH models are compared.  
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       The first complete Markov Chain Monte Carlo simulation-based analysis of the 

SV model which covers efficient methods for Bayesian inference, likelihood 

evaluation, computation of filtered volatility estimates, diagnostics for model failure, 

and computation of statistics for comparing non-nested volatility models are provided. 

A very simple Bayesian method for estimating SV model, which is based on one-at-a-

time updating of the volatilities, is shown to be quite inefficient from a simulation 

perspective. An improved method that relies on an offset mixture of normal 

approximation to a log-chi-square distribution coupled with an importance 

reweighting procedure is shown to be strikingly more effective. Additional 

refinements of the latter method are developed to reduce the number of blocks in the 

Markov Chain sampling. The paper also develops formal tools for comparing the basic 

SV and Gaussian and t-GARCH models and finds that the simple SV model typically 

fits the data as well as more heavily parameterized GARCH models. In the end, a  

number of extensions of the SV model are considered that can be fitted using the 

developed methodology. 
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CHAPTER 3 

 

METHODOLOGY 

 

3.1 Dynamic Linear Models  

3.1.1 Model Introduction  

      When parameters of time series model are indexed in time
'

,1 ,( ,..., )t t t p   , the 

dynamic linear models for univariate time series with equally spaced observations are 

given by 

  
'

t t t ty F                                                                            (3.1)

 

  1t t t tG w                                                                            (3.2)

 

ty  is the observation at time t ;  

t  is the state vector ,1 ,2 ,( , ,..., )t t t p    at time t ;  

tF  is a p-dimensional column vector of known constants at time t ; 

t  is the observation noise with ( 0, )t tN v ; 

tG  is a p p matrix known as evolution or transition matrix; 

tw  is the state noise, or innovation, with ( 0, )t tN w W . 

t  and tw  are independent and mutually independent.  

Then ty has a DLM representation given by{ , , , }t t t tF G v W . (3.1) is often referred to as 

the “Observation Equation”, and  (3.2) as the “Evolution Equation ”.  

         In general, Dynamic Linear Models are given by probability density functions  



 

21 

 

( )t tp y  and 1( )t tp    , which define a conditional dependence structure between 

observations ty and parameters t . DLMs has a sequential nature and one of the main 

targets from a Bayesian approach is ( )t tp D : the posterior distribution of t given all 

the information available at time t , i.e., 1 2{ , ,.., }t tD y y y .  

3.1.2 DLMs with Normal Mixture Structure for Simulated Data 

Mixture of normal distribution was proposed to accommodate the non-normality  

and asymmetric characteristic of financial time series. A mixture of two normal 

distribution is given by 

      2 2

1 1 1 2 2 2( ) ( , ) (1 ) ( , )tf x f f                                                         (3.3)    

where 2

1 1 1( , )f   is the PDF of a normal distribution with mean 1  and 

variance 2

1 , 2

2 2 2( , )f   is the PDF of a normal distribution with mean 2  and 

variance 2

2 . The weight is the probability of  when the first regime occurs while the 

second regime occurs with the probability 1  . 

       Consider the model 

               t t ty    ,                                                                       (3.4)            

              1t t t    ,                                                                    (3.5)   

with 2~ (0, ) (1 ) (0, )t N v N k v    and ~ (0, )t N w , and they can be written as a 

conditionally Gaussian DLM given by { , , , }t t tF G v w . In here a latent variable t  is 

introduced. It takes the value of 1 with the probability of   and the value of 2k with 

the probability of1  , which also explains the meaning of normal mixture. 

        I simulated 200 points from the given model with 0.9   , 2 4k  , 1v  ,  
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1  . Then two different models were fitted to the simulated data. First I fit a model 

that ignores the mixture structure in the innovations at the observational level with 

(0, )t N v  and assume that all parameters { , , }v w  are given. Then I fit a model 

taking the normal mixtures on the obervational error into consideration with { , , }v w  

unknown (
2,k are given). To make inference on the model, a simulation-based 

method such as Markov Chain Monte Carlo algorithm with emphasis on Forward 

Sampling Backward Filtering and Gibbs sampling will be applied for model fitting. 

The mean posterior distribution of the state parameter t and its 95% posterior bands 

will be displayed in Figure 1 and Figure 3. 

Forward Filtering Backward Sampling method 

        Assuming tF , tG , tv , tw  are known, we have the following distribution at each 

time t : 

Forward Filtering 

 The prior for the state vector at time t 1( )t tp D  is ( , )t t tN a R  with 

1t t ta G m   and '

1t t t t tR G C G W  . 1tD  represents all the information available 

at time 1t  , i.e., 1 1 2 0{ , ,.., }t t tD y y y    

 One-step-ahead predictive distribution at time 1t   is given by 

1( ) ~ ( , )t t t t ty D N f q  with '

t t tf F a
 
and '

t t t t tq F R F v  . 

 Posterior distribution for t given current information set tD  ( )t tp D is  

( , )t t tN m C with t t t tm a Ae   and '

t t t t tC R A A q   where t t te y F   and  

/t t tA R F q . 
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Backward Sampling 

 The distribution of the past state vector conditional on all future state vectors 

and information up to time T is 1 1( ,..., , ) ( , )t t T T t t tp D p D      ~ * *( , )t tN m C  

with *

1 1( )t t t t tm m B a     , * '

1t t t t tC C B R B   where ' 1

1 1t t t tB C G R

  . 

Posterior simulation with MCMC algorithm 

        Assume the model defined by  , , ,t t t tF G v W  depends on some latent variables t .  

After calculating all the quantities about parameter t  ( 1:t T ) with the above 

equations, we can start to simulate from its posterior distribution. That is, to sample t  

from the posterior distribution over and over again until the samplers converge. For 

each MCMC iteration i , we will get a sequence of 0:T . The way to obtain ( )

0:

i

T  

conditional on ( )

1:

i

T
 
 is given as follows: 

1) Use the DLM filtering equations to compute tm , ta , tC and tR  for 1:t T . 

2) At time t T  sample ( )i

T  from ( , )T T TN m C . 

3) For ( 1) : 0t T   sample ( )i

t  from 
* *( , )t t tN m C  

MCMC Algorithm assuming unknown parameters 

      Assume , ,v w are unknown, and the normal mixture structure relies on latent 

variables t  where Pr( 1)t   , ( 1) ~ (0, )t tP N   ; 2Pr( ) 1t k    ,  

2 2( ) ~ (0, )t tP k N k   . For each MCMC iteration i , the simulation steps are as  

follows: 

 Sample 0:200 1:200 1:200( , , , , )y     .This reduced to sample from an inverse- 
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gamma distribution ,i.e., ( , )IG      with 0, / 2T    ,
2

0, / 2s      

            0, and 0, are prior fixed values, 200T  , and  2s  is given by 

   2

2 2 2 2

1

( ) ( ) /
t t

t t t t

k

s y y k
 

 
 

     . 

 Sample 0:200 1:200 1:200( , , , , )y     . is sampled from an inverse-gamma  

distribution ( , )IG     with 0, / 2T    , 2

,0 1

1

( ) / 2
T

t

t

    



    

where 0, and ,0  are prior fixed values. 

 Sample 0:200 1:200( , , , )y    .  is sampled from ( , )N m C
 , with  

200 200
2

1 1

1 1

/t t t

t t

m    

 

 
  
 
   and 

200
2

1

1

/ t

t

C   



  . 

 Sample 0:200 1:200 1:200( , , , , )y     . A forward filtering backward sampling 

algorithm was used to obtain a sample of 0:200 . 

 Sample 1:200 0:200 1:200( , , , , )y     . At each time t , t  is sampled from a discrete 

distribution, i.e., t is set to 1 or 2k  with probabilities defined in terms of ratio 

 0:200 2 2

2

0:200

Pr( 1 , , )
exp ( ) (1 ) / 2

Pr( , , ) 1

t

t t

t

k y k
k

    
 

    




    
 

 

3.1.3 Fitted AR(1) with Normal Mixture DLMs for Simulated Data 

      In Figure 1 and Figure 3, the points simulated from (0, )N v are shown with circles 

and the points simulated from 
2(0, )N k v  with solid circles to distinguish. 
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Figure1 : Simulated series from AR(1) with mixture observational errors(circles and 

solid circles). The red solid line corresponds to the posterior mean of the smoothing 

distribution over time 200( )t D  obtained from a model that ignores the mixture 

structure in the observational errors. The dotted lines are 95% posterior bands 

for 200( )t D . 

 

Figure2: Residual analysis obtained from fitting the model {1,0.9,1,1}to the simulated 

data. The top and bottom plots display, respectively, the standardized residuals and 

the sample ACF of the residuals. 



 

26 

 

Figure3: Simulated series. Posterior mean and 95% posterior bands for 

200( )t D obtained from the model described by Equations (1) and (2). 

 

Figure4 :posterior mean of the latent process t  

       By comparison of the plots displayed above, when the parameters are not given 

and normal mixtures are taken into consideration, the estimated mean and posterior 

interval using MCMC simulation is as well as the estimation when parameters are all 
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given  ignoring normal mixture, which shows the efficiency of MCMC method in 

model fitting. 

       In addition, the posterior mean and 95% posterior interval for the parameters are  

given in the table below:                

   v    

Posterior mean 0.882 1.302 1.025 

True value 0.9 1.0 1.0 

95% Posterior Interval (0.789,0.958) (0.875,1.865) (0.582,1.640) 

Table1: Estimated posterior mean and 95% posterior interval 

         We can see in the table that posterior estimation for the unknown parameters are 

very close to the true values with small errors, and each of the 95% posterior interval 

contains the true value. 

3.2 Stochastic Volatility Model  

3.2.1 AR(1) zero-mean Stochastic Volatility Model 

     We are modeling the stock market returns as a zero mean with time-varying  

variance process    

                     

2

1

~ ( 0, )

exp( )

t t

t t

t t t

r N r

x

x x



 

 

 

 

                                                               ( 3.6) 

where ( 0, )t tN    , tr is the stock return at time t , tx  is the log volatility at time t  

which is assumed to follow a stationary process ( 1  ). t  is uncorrelated white 

noise and ( , )N    is the normal distribution.  
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           The parameter   defines the baseline log-volatility; the AR(1) parameter 

 defines persistence in deviations in volatility from the baseline, and the innovation 

variance   “drives” the levels of activity in the volatility process. Typically is close 

to one, and in any case the AR(1) process is assumed stationary, so that the marginal 

distribution for the missing initial value is 2

0( 0, / (1 ))N x v  . 

           Since we have non-normality inherent in the observation equation, a 

transformation is needed to linearize it.  Let 21
log( )

2
t ty  , so that  

   
2

2

1

log( ) / 2 log( ) / 2

t t t

t t t

t

y x 

  

 

  

  ,                                                          (3.7 ) 

Here tx is assumed independent of the t . We approximate the density of t  by a 

discrete mixture of normal components of the form 
1

( ) ( , )
J

t i t j j
j

p q N b w 


 . Very 

good approximation can be obtained by choosing J as low as five (we choose seven in 

this thesis) and with approximate choices of the component weights, means and 

variances. This strategy converts the model into a conditionally Gaussian DLM. 

Introduce a latent indicator variable  1:tr J , at each time t  the mixture of normal 

distribution can be constructed from the conditionals 

Pr( )t jr j q    and  ( ) ~ ( , ) , 1:t t t j jr j N b w j J   . 

t are independent over time t .  

          When J=7, we have the means and variances given as follows: 
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jq  0.00730 0.00002 0.10556    0.25750   0.34001   0.24566   0.04395 

jb  -5.7002     -4.9186    -2.6216     -1.1793    -0.3255    0.2624     0.7537 

j  0.7537 1.2949     0.6534 0.3157 0.1600 0.0851 0.0418 

Table2: Discrete normal mixture approximation to log chi- square distribution. 

Extending the analysis to include inference on the sequence of t  ( 1:t T ) opens up  

the model fitting strategy of conditional Gaussian models, so that posterior inference  

can be performed via standard MCMC methods. 

         However, Gibbs sampling based MCMC applied to the original parameterization 

suffers from low convergence due to the inherent negative correlations always evident 

in conditional posteriors 0:( , )Tx  0:( , )Tx    between  and each of the tx . This is 

resolved by developing the posterior simulation on the posterior for 0:Tz  and   where 

t tz x   . We re-express the model with the equivalent model representation  

                     
1( )

t t t

t t t

y z v

z z   

 

   
                                                                    (3.8) 

where tz  is the AR(1) volatility process centered around the baseline level  . 

3.2.2 MCMC Analysis 

            Inference for SV model is based on Markov Chain Monte Carlo methods, 

which is also known as the Metropolis-Hastings and Gibbs Sampling algorithm. These 

methods are widely used in the theory and practice of Bayesian inference. The idea 

behind MCMC methods is to produce variates from a given multivariate density (the 
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posterior density distribution) by repeatedly sampling a Markov chain whose invariant 

distribution is the target density of interest. Sample variates from a MCMC algorithm 

are a high-dimensional (correlated) sample from the target density of interest. 

Posterior moments and marginal densities can be estimated by averaging the relevant 

function of interest over the sampled variates. For example, the posterior mean of   is 

simply estimated by the sample mean of the simulation   values. And these estimates 

can be made arbitrarily accurate by increasing the simulation size. 

        In this thesis, I first applied the MCMC analysis to the model in which the 

weights, means and variances, of the normal mixture distribution are all fixed as 

shown in the table above. Then I included weight samplers in each MCMC iteration, 

that is to sample weights 1:Jq (denoted by 1:J  instead) before sampling the latent  

variables 1:T  in each iteration.  The priors on the parameters are defined by 

~ ( , )N g G , 

 ~ ( , ) (0 1)N c C I     

1

0~ ( / 2, / 2)G a a  . 

Iterating through these steps provides the iterate of the overall MCMC without 

sampling weights. 

1. Resample 1:T  from conditionally independent posteriors for each t with 

*

,Pr( , )t t t t jj y z q    ,where  * 2 1/2

, exp ( ) / (2 ) /t j j t j t j jq q y b z w w     for 

1:j J  and 
*

,

1

1
J

t j

j

q


 . 
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2. Resample   under the implied conditional posterior distribution 

*

0:( , , ) ( ) ( )Tp z a p I     (0 1)   

            where *( ) ( , )p N c C     is the normal density given by   

*

1

1

( ) ( , ) ( ( ), )
T

t t

t

p N c C N z z     



  
2 1/2 2 2

0 0( ) ( , , ) (1 ) exp( ( ) / (2 ))a p z z            

3. Resample   from the implied conditional normal posterior proportional to 

2

0 11
( ) ( , / (1 )) ( ( ), )

T

t tt
p N z N z z       

    

4. Resample   from the implied conditional inverse-gamma posterior 

proportional to  

2

0 11
( ) ( , / (1 )) ( ( ), )

T

t tt
p N z N z z       

   . 

5. Resample from the conditional posterior for the full volatility sequence 0:Tz . 

The modified observation  equation now is   

, ~ ( 0, )
t tt t t t ty z b N w         

 1( ) , ~ ( 0, )t t t t tz z N           

Using forward filtering backward sampling (FFBS) algorithm: 

 Forward Filtering: Sequentially compute and update the on-line posteriors 

1: 1:( , , , , ) ( , )t t t t t tz y N z m M    , 1:t T  

 where 0m  and 2

0 / (1 )M    . 

 Backward Sampling: Sample from ( , )T T TN z m M . Then for each 

( 1) : 0t T   sample from the implied sequence of normal distribution 
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1 1: 1: 1( , , , , , ) ( , ) ( ( ), )t t t t t t t t tp z z y N z m M N z z           . 

      Assume the ( ,j jb w ) are appropriately fixed, we now treat the mixing normal  

probabilities as uncertain. A more general model is generated by  

1:

1

( , ) ( , )
J

t t J j j t j

j

y z N b z w 


 , 

where 1:J  are also parameters to be estimated. The original 1:Jq  given in Table 2 are 

referred to as a good first guess and used as prior means for a conjugate Dirichlet prior 

with 
1

1:

1

( ) j

J
q

J j

j

p


 




 ( 0 1j  and 
1

1
J

j  ).  

We now need to resample j  in each MCMC iteration for SV Model in order to  

incorporate this uncertainty about the normal mixture structure. In the following  

iteration steps, I add one more function to sample the weights, and in Gibbs sampling  

process weights will be sampled in each iteration like the other samplers.  

1. Resample 1:J  from the conditional posterior 

1:( ) ( )J tp Dir q   , 

where  1,2,...,jc j J   with jc defined as the number of j ’s  in 

( 1: )t t T  ,   is a known value, { 1: }jq q j J  . Here, the latent variable 

t  has a multinomial distribution with 1,2,..., J as possible outcomes for each 

trial. 

2. Resample 1:T  from conditionally independent posteriors for each t with  

*

1: ,Pr( , , )t t t J t jj y z   
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where  * 2 1/2

, exp ( ) / (2 ) /t j j t j t j jy b z w w      for 1:j J  and 
*

,

1

1
J

t j

j




 . 

3. Resample  under the implied conditional posterior  

*

0:( , , ) ( ) ( )Tp z a p I     (0 1)   

where *( ) ( , )p N c C     is the normal density given by   

*

1

1

( ) ( , ) ( ( ), )
T

t t

t

p N c C N z z     



    

2 1/2 2 2

0 0( ) ( , , ) (1 ) exp( ( ) / (2 ))a p z z            

4. Resample   from the implied conditional normal posterior proportional to 

2

0 11
( ) ( , / (1 )) ( ( ), )

T

t tt
p N z N z z       

    

5. Resample   from the implied conditional inverse-gamma posterior 

proportional to 

2

0 11
( ) ( , / (1 )) ( ( ), )

T

t tt
p N z N z z       

   . 

6. Resample from the conditional posterior for the full volatility sequence 0:Tz . 

The modified observation equation now is   

, ( 0, )
t tt t t t ty z b N w         

1( ) , ( 0, )t t t t tz z N           

Using forward filtering backward sampling (FFBS) algorithm: 

 Forward Filtering: Sequentially compute and update the on-line posteriors  

1: 1:( , , , , ) ( , )t t t t t tz y N z m M    , 1:t T  

where 0m  and 2

0 / (1 )M    . 
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 Backward Sampling: Sample from ( , )T T TN z m M . Then for each 

( 1) : 0t T   sample from the implied sequence of normal distribution 

1 1: 1: 1( , , , , , ) ( , ) ( ( ), )t t t t t t t t tp z z y N z m M N z z           . 
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CHAPTER 4 

 

FINDINGS 

 

4.1 Data Description 

       Linear Technology Corporation (LLTC), a member of the S&P 500, designs  

manufactures and markets a broad line of high performance analog integrated circuits 

for major companies worldwide. The daily stock price data -open, high, low and close 

price, for NASDAQ-LLTC was provided by Google Finance.  

 

Figure5 : A snapshot of  the raw data 

      Descriptive plots for the daily stock price are given below. We can see that stock 

price is changing over time with an obvious pattern. It has time-varying means and 

time-varying variances. A large spike shows up. Very high autocorrelation exists 

within the series over a long period of time, and it decays extremely slowly. 
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Figure6: Left Top and Right Top: time series and histogram for LLTC Daily Stock 

Price; Left Bottom and Right Bottom: Density and Autocorrelation Plot  for Stock 

Price. 

      The only variable used in this thesis is close price. There are no missing values in 

the raw data. Stock market returns need to be calculated from stock close price before 

performing any analysis. In the raw data, we have 4000 observations, each of which 

represents the stock price on a business day. After obtaining stock returns data, there 

are 3999 observations, each of which represents the stock return on a specific trading 

day. The visualization of daily log returns is as follows. 
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        I first plot the returns series with 3999 data points connected by lines, then a 

closer look at the data is taken by plotting the first 200 observations. As we can see 

from the plots below, stock returns are quite volatile and seem to have a constant mean 

around 0 over the long run. The variances of the series are changing over time, with 

some large spikes. 

 

Figure7: Top:Time series plot for LLTC stock market returns from 5/22/97 to 3/25/13. 

Bottom:A closer look at the return series from the first 200 observations. 

     Basic visualizations are given below. The data seems to be have a normal 

distribution but not exactly, as we can see there is a little peak on one tail from the 

density plot. In the QQ plot,  the data displays a systematic departure from the straight 
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line at both ends. From the ACF plot, the returns have a much lower autocorrelation 

compared with stock price. By calculating log returns, we detrended the stock price 

series . 

 

Figure8: Left Top and Left Bottom: Histogram and QQ plot for LLTC Daily Returns; 

Right Top and Right Bottom: Density and Correlogram  for LLTC Returns 

4.2 AR(8) Model for NASDAQ:LLTC Stock Market Returns 

4.2.1 Structure of Autoregressive Model AR(P) 

1 1 2 2

2

...

~ (0, )

t t t p t p t

t

y y y y

N

   

 

      
                              (4.1) 

  js
 
are constant parameters. 

4.2.2 Order Selection 

              From the autocorrelation plot given above on the right bottom, spikes showed 

up at Lag 1,2 and 8. So the order chosen for the autoregressive model is 8.  
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             The model to be fitted has the form as follows : 

   

0 1 1 2 2 8 8

2~ (0, )

t t t t t

t

y y y y

N

    

 

      
,                                          (4.2) 

4.2.3 Monte Carlo Approximation 

              Since AR(8) is a multiple linear regression model with the error normally 

distributed, we can apply the Bayesian method to estimate unknown parameters. The 

parameters of interest are 
2{ , }  .  Our goal is to simulate from the joint posterior 

distribution
2( , , )p y X   by the Monte Carlo method. We assume a prior distribution 

for   is multivariate normal distribution with mean 0 and variance-covariance 0 . In 

here a popular specification “g-prior” was used with 0 =0 and 2 1

0 ( )Tg X X   .  

the posterior distributions for the two unknown quantities are calculated by  

2 2

0 0 0( , ) (( ) / 2,( ) / 2)gp y X IG n SSR     , 

^
2 1( , , ) ( , ( ) )

1 1

T

ols

g g
p y X MVN X X

g g
    

 
, 

where 
1( ( ) )

1

T T T

g

g
SSR y I X X X X y

g

 
  

and 
1( )T TX X X y   . 

A sample value of 
2( , )   from 

2( , , )p y X 
 
can be made as follows:  

1. Sample  
2 2

0 0 0(( ) / 2,( ) / 2)gIG n SSR     , 

2. Sample 
^

2 1( , ( ) )
1 1

T

ols

g g
MVN X X

g g
   

 
 

In this way, we can generate multiple independent Monte Carlo samples from the 

posterior distribution.  

4.2.4 Estimated AR(8) model for NASDAQ:LLTC Stock Market Returns 
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1 2 8

2

0.000324 0.057734 0.089153 0.046243

~ (0,0.0009 )

t t t t t

t

y y y y

N





      

        (4.3)
 

4.2.5 Error Variance Plots 

 The estimated error vaiance 
2 specified above is the mean value of all error  

variances drawn from its posterior distribution. We can see below that the variance of 

the error seems to be normally distributeed with constant mean.  

            
                 Figure9 :Top Graph : Simulated posterior variance for innovation terms;  

                 Bottom Graph: Histogram for simulated  posterior error variances  

4.3 AR(1) SV Models for NASDAQ:LLTC Stock Returns 

4.3.1 Fitted AR(1) SV Models with fixed weights for Normal Mixtures   

  I ran the MCMC simulation for 20000 times and discarded the first 10000  

   iterations. The estimated parameters for , ,v   are  

        

^

^

^

0.9931

3.2050

0.0301









 



                                                                        (4.4) 
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The fitted model can be written as  

13.2050 0.9931( 3.2050)

~ (0, 0.0301)

t t t

t t t

t

y z

z z

N









 

     ,                         (4.5) 

 where 20.5log( 0.001)t ty r  ,  tr  represents NASDAQ-LLTC daily stock market 

returns, 0.01 is the offset part, 20.5log( )t t  , ~ (0,1)t N .  We approximate t  by 

the mixture of seven normal distributions with fixed weights given in Table 1. 

4.3.2 Fitted AR(1) SV Models with Sampled Weights for Normal Mixtures
   

 

  I ran the Gibbs Sampling 50000 times and discarded the first 20000 iterations.  

The burn in period was intended to ensure that the effect of the initial values becomes 

insignificant, which means that the different starting values that could’ve been set 

don’t actually provide any additional information or play a role in the parameter 

estimation when running multiple Markov Chains. The estimated results for the 

parameters are 

     

^

^

^

0.9862

2.9368

0.0262









 



                                                                       (4.6) 

Hence, the fitted AR(1) SV models can be expressed as 

    

12.9368 0.9862( 2.9368)

~ (0, 0.0262)

t t t

t t t

t

y z

z z

N









 

    

 

,                          (4.7) 

Applying the exponential function to the sampled tz ( 0:t T ) , we get the stock 

market returns volatility, namely exp( )t tz  .  
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Figure10: The absolute LLTC Stock Market Returns 
tr . 

 

Figure 11: Estimated volatility  process t in the standard univariate SV model. The 

full line indicates the posterior mean of exp( )tz , plotted over days=1:T, from the 

MCMC analysis; the yellow shading is 50 similar time plots representing 50 randomly 

selected trajectories from the posterior. 

      In each of the following three figures, four plots--complete iterations, iterations 

after burn in period, histogram, correlogram, are displayed to keep track of the single 

move Gibbs samplers for parameters ,   and v . The correlogram (autocorrelation 

function) indicates important autocorrelations for ,   and v  at large lag lengths.  
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Figure12: Top : Complete traceplot and  traceplot after burn in period for   

    Bottom: Histogram and correlogram for sampled  after burn in period. 



 

44 

 

 

Figure13: Top : Complete traceplot and  traceplot after burn in period for   

    Bottom: Histogram and correlogram for sampled  after burn in period. 

 

Figure14: Top : Complete traceplot and  traceplot after burn in period for v  

     Bottom: Histogram and correlogram for sampled v after burn in period. 
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4.3.3 NASDAQ:LLTC One-step-ahead Stock Market Return Forecast  

4.3.3.1 Definitions 

                    Predictive Distribution: When it comes to forecasting, the event of   

interest is to predict the value of a future observation t hy  , ( 1,2,3...)h  , given the 

data y , 1 2( , ,..., )ty y y y . This can be solved by computing conditional density 

t hy y
. Assume 1 2, ,..., ty y y are conditionally independent given parameter  . ( can 

be a random vector, finite or infinite dimensional). When 1h  ,  

1 1 2 1 1 2

1 1 2 1 2

1 1 2

( , ,..., ) ( , , ,..., ) ( )

( , , ,..., ) ( , ,..., ) ( )

( ) ( , ,..., ) ( )

t t n t

n t t

n t

p y y y y f y y y y dv

f y y y y y y y dv

f y y y y dv

 

   

   

 

















. 

where 
1 2( , ,..., )ty y y  is the posterior distribution of  given 1 2( , ,..., )ty y y . Note that 

1

1 2 1 2 1

1 1

( , ,..., ) ( , ,..., ) ( ) ( ) ( ) ( )
t t

t t t i t i

i i

y y y y y y f y f y f y f y       




 

     

based on Bayes’ Rule, so 1 2( , ,..., )ty y y  can be computed recursively through 

1 2 1( , ,..., )ty y y   . 1 1 2( , ,..., )t tp y y y y  is also called One-step-ahead prediction. 

                  95% Posterior Interval:  In Bayesian inference, the 95% posterior interval 

for a parameter, is estimated by the samples drawn from its conditional posterior 

distribution, which means that the probability that the posterior interval will contain 

the true value is 95%. This is a Bayesian analogue of confidence interval in frequentist 

statistics. 

4.3.3.2 One-step-ahead Prediction Results  

  The one-step-ahead log transformed volatility for stock returns is defined  
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 as 1Tz  = 1log( )T  . After transformation, original volatility 1 1exp( )T Tz   . Using 

the parameterized model (3.7), when 1t T  , we can get 1Tz   
by calculating 

( )Tz    in the first equation. Below is the estimated distribution for log volatility 

and volatility at 1t T  . They have the same shape because the exponential function 

is monotone increasing.   

 

Figure15: One step ahead volatility prediction histograms 

 The mean and 95% posterior interval for 1Tz  and 1T  : 
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Posterior Estimation 
1Tz   1T   

Mean -3.0611 0.0470 

95% PI (-3.2471,-2.8807) (0.0388,0.0560) 

Table3 : Mean and 95% posterior interval for One-step-ahead volatility prediction 

Given predicted 1Tz  , we can predict the log transformed stock returns by  

1 1 1T T Ty z v    .  

 

   Figure16 : One step ahead prediction distribution for 1Ty  , its mean (green line)   

   and 95% posterior interval (purple lines). 
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The posterior mean of one-step-ahead prediction for log transformed stock market 

return 1Ty  is -3.4151(compared with the previous observation 3.451589Ty    ) and 

the 95% posterior interval is (-4.5613,-2.4645), as shown above in the plot. 

 

Figure 17: Red curve is the posterior mean of the predictive distribution for log  

transformed stock market returns; Yellow curves represent the simulated predictive 

distribution after burn in. 

4.3.4 Parameter Estimation Summary 

MCMC analysis is fully applied to our data when building the SV model.  Two  

 specified models are given above with slight differences in parameter estimation and  
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the estimation tends to be more accurate when having weights sampled for the  

 normal mixture approximation structure.  The table below lists the estimated values  

 for each parameter under both conditions.  

Normal Mixture Approximation Estimated   Estimated   Estimated   

Fixed Weights 0.9931 -3.2050 0.0301 

Sampled Weights 0.9862 -2.9368 0.0262 

Table 4 : Comparison of fitted results for SV models when having weights fixed 

                    and sampled. 
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CHAPTER 5 

 

CONCLUSION 

 

To better understand how to fit stochastic volatility models, which are non-linear 

and non-Gaussian, for NASDAQ-LLTC daily stock market returns, we need to get 

familiar with Dynamic Linear Models. Normal Dynamic Linear Model with emphasis 

on Forward Filtering Backward Sampling is applied to simulated data for parameter 

estimation and is shown to be an efficient simulation-based method with small errors. 

For the real data, we first fit a simple autoregressive model with order eight. Using this 

AR model, we can make a prediction on the future stock returns given the returns for 

the past eight business days. In stochastic volatility models, stock returns are assumed 

to be normally distributed with mean zero and time-varying variance or volatility. 

What we are aiming to do is to model this volatility and volatility is assumed to have a 

non-linear form. In this thesis, the log transformation with offset term is used to 

linearize the model and avoid meaningless definitions. Besides, normal mixture 

approximation to log chi-square distribution is fully applied with our data. 

 Model fitting and forecasting are realized with the application of a well 

developed Markov Chain Monte Carlo algorithm. In the MCMC context, Gibbs 

Sampling is applied to SV models to sample multiple unknown parameters from their 

posterior distribution and it also allows us to sample the log volatilities 0:Tz  all at once 

for each iteration i . The goal of the MCMC method is to sample quantities from their 

joint posterior distribution. To simplify this process, Bayes’ theorem is fully applied 



 

51 

 

which makes the sequential conditional posterior sampling plausible and effective. 

One step ahead prediction of log volatility and log transformed stock market returns 

are both talked about and displayed in the graphs. The mean and 95% posterior 

interval are also given as part of the prediction result. Two model fitting results are 

given in the context and the differences arise from whether the weights for the normal 

mixture structure are sampled or not. We make a prediction using the model estimated 

from MCMC procedure with sampled weights.  
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