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Abstract 

 Polar marine ecosystems are highly productive, with strong seasonal 

phytoplankton blooms, and high abundances of vertebrate predators. A key link between 

these phytoplankton and megafauna are the zooplankton, which package and transform 

phytoplankton biomass, making it available to the fish, mammals, seabirds, and other 

predators in the ecosystem. I investigated three groups of these important small 

eukaryotes. In the Bering Sea I analyzed the diet of three morphologically very similar 

congeners of Pseudocalanus copepods. The two copepod species with largely overlapping 

geographic ranges were found to have different diets, suggesting feeding differences may 

serve as a mechanism of niche partitioning between these two species, reducing 

competition and allowing them both to persist simultaneously. In the West Antarctic 

Peninsula region the distribution of krill, and the diversity and distribution of 

microeukaryotes were analyzed in winter. Krill were concentrated within the fjords along 

the coast, with the few krill found in more offshore stations small, young-of-the-year 

individuals. Microeukaryotes in the peninsula region included organisms from nearly 

every major eukaryotic lineage. Microeukaryote assemblages were different in surface 

waters, deep-waters, and sediments, with further differences by geographic location. 

Sequences for multiple phytoplankton groups in sediment samples suggest the 

importance of resting stages, and of the sediments as a seed bank for the highly seasonal 

phytoplankton bloom. Enhanced understanding of the ecology of these polar ecosystems 

may potentially allow for improvements in modeling and fisheries management in these 

regions, and also serves as a baseline against which future changes may be compared. 
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Preface 

 This dissertation is in manuscript format and is composed of four manuscripts 

addressing related questions in the ecology of small polar marine eukaryotes. The first 

manuscript, “Feeding by Pseudocalanus copepods in the Bering Sea: trophic linkages and 

a potential mechanism of niche partitioning”, is in press at Deep Sea Research II for 

inclusion in the special issue on the Bering Sea Ecosystem Study (BEST).  The second 

manuscript, “Winter distribution and size structure of Euphausia superba populations 

inshore in the West Antarctic Peninsula”, is formatted for submission to Polar Biology.  

The third manuscript, “Diversity and distribution of small pelagic and benthic eukaryotes 

in the West Antarctic Peninsula in winter”, is formatted for submission to Molecular 

Ecology. The forth manuscript “Unexpected prevalence of parasite sequences amongst 

Antarctic marine protists” came out of discussions in the defense of this dissertation, and 

is formatted for submission to PLoS One. 
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Abstract 

Pseudocalanus copepods are small and abundant zooplankton in the Bering Sea 

ecosystem which play an important role in transferring primary production to fish and 

other higher trophic level predators. Four morphologically cryptic species, the primarily 

arctic P. minutus and P. acuspes, and the more temperate P. newmani and P. mimus, are 

found within the Bering Sea. Pseudocalanus are generally considered phytoplanktivores. 

However, their feeding is poorly known, despite their importance to the ecosystem. In 

situ feeding by the three most abundant Pseudocalanus congeners, P. minutus, P. 

newmani, and P. acuspes, was investigated by sequencing partial 18S rDNA (ribosomal 

Deoxyribonucleic Acid) of gut contents from 225 individuals sampled from 8 stations 

across the Bering Sea in May and June of 2010. The 28,456 prey 18S rDNA sequences 

obtained clustered into 138 distinct prey items with a 97% similarity cut-off, and included 

diatoms, dinoflagellates, microzooplankton, mesozooplankton, and vascular plants. 

Pseudocalanus diets reflected variations in the environment, with phytoplankton 

sequences relatively more abundant in copepods from stations with higher water column 

chlorophyll a concentrations.  Feeding differences were observed between species.  P. 

acuspes diet contained relatively more heterotrophic dinoflagellate sequences, and was 

significantly different from that of P. minutus and P. newmani, which both contained 

relatively more diatom sequences, and between which no significant difference was 

observed.  Feeding differences between the two primarily arctic species may be a 

mechanism of niche partitioning between these spatially co-located congeners and may 

have implications for the effects of climate change on the success of these abundant 

zooplankters and their many predators in this ecosystem. 
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Keywords: Pseudocalanus, Bering Sea, trophic interactions, niche partitioning, 18S 

rDNA 

1. Introduction 

 The competitive exclusion principle in ecological theory suggests that no two 

sympatric species can occupy precisely the same ecological niche, as one will inevitably 

eventually outcompete the other (Gause 1934, Hardin 1960). In the Bering Sea, four 

morphologically cryptic species of Pseudocalanus copepods have been identified (Frost 

1989, Bailey et al. this issue), which at first glance appear to violate this principle. These 

four species are similar in both size and overall morphology and traditional morphometric 

and meristic traits are often unsuccessful at differentiating among them, although they are 

genetically distinct and can be distinguished by DNA sequencing (Frost 1989, Bailey 

2012, Bailey et al. this issue). Pseudocalanus minutus and P. acuspes are considered 

primarily arctic, while P. newmani and P. mimus are considered primarily temperate, but 

all four species ranges overlap in the Bering Sea (Frost 1989, Coyle et al. 2011). In order 

for these species to persist in their coexistence in the Bering Sea, they must be different 

from each other in at least one ecologically meaningful way, such as susceptibility to 

disease or predators, timing of reproduction, or feeding.  

As a location for investigating copepod niche partitioning, the Bering Sea is 

particularly interesting as it is a region with high levels of interannual variation and 

alternating 4 to 5 year periods of relatively warm and cool temperatures (Stabeno et al. 

2012). Changes in physical forcing may have bottom up ecosystem effects, such as by 
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changing phytoplankton bloom dynamics (Stabeno et al. 2012, Winder & Sommer 2012). 

Warming has also been associated with a shift from a largely benthic ecosystem to a 

more pelagic dominated system, giving small zooplankton such as Pseudocalanus spp. an 

increasingly important role in the transfer of carbon and energy from primary producers 

to pelagic higher predators (Overland & Stabeno 2004).   

Although Pseudocalanus spp. are small (1-2 mm in length), their abundance 

makes them important components of food webs and carbon cycling in the Bering Sea 

ecosystem (Frost 1989, Napp et al. 2002). Pseudocalanus are particularly important as 

prey for walleye pollock, Theragra chalcogramma, one of the most commercially 

important fish stocks in the US, since larval pollock diet consists of up to 60% small 

copepods (Coyle et al. 2011). Understanding the range of prey consumed by 

Pseudocalanus in situ and the relative importance of different prey types is essential to 

understanding the role this abundant consumer plays in transferring primary production 

to higher trophic levels. 

Little is known about the specific prey types consumed by Pseudocalanus in situ; 

results published to date have lumped all Pseudocalanus species together (Lebour 1922, 

Marshall 1949, Poulet 1973). Incubation experiments in natural seawater and water from 

mesocosms have suggested that Pseudocalanus spp. copepods are able to feed effectively 

on particles from 4 to 102 µm diameter, with a potential preference for particles 25 to 57 

µm (Poulet 1973, Harris 1982). Microscopic analysis of Pseudocalanus gut contents has 

shown that they consume diatoms, including Coscinodiscus, Paralia, Navicula, and 

Thalassiosira spp., and to a lesser extent, crustaceans, radiolarians, and flagellates 

(Lebour 1922, Marshall 1949).   
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The relative paucity of data on Pseudocalanus feeding is not surprising, since 

measuring feeding by small zooplankton is methodologically challenging. Previous work 

used incubation experiments and particle counters (Poulet 1973), but these may not be 

representative of feeding in situ and give fairly coarse resolution of prey type. 

Microscopic examination of gut contents provides in situ data, but is strongly biased 

towards prey with distinctive exoskeletons and typically only limited samples can be 

analyzed by this labor intensive approach (Lebour 1922, Marshall 1949). Recent 

advances in DNA analysis and sequencing have allowed for new molecular approaches to 

understanding zooplankton feeding. DNA barcodes from gut contents can be sequenced, 

and by comparing these sequences to reference databases of known organisms, the 

identity of every known eukaryote the predator, in this case Pseudocalanus, had 

consumed in the preceding minutes can be determined (Cleary et al. 2012, Durbin et al. 

2012, O’Rorke et al. 2012, Hu et al 2014,  Craig et al. 2014). Unlike microscopy-based 

diet analysis, 18S rDNA sequencing allows for identification of the full range of 

eukaryotic prey items consumed, including soft bodied and morphologically indistinct 

prey. Feeding differences have been inferred as mechanisms of niche partitioning in other 

copepods (e.g. von Vaupel Klein 1997); however, in their study feeding was not directly 

measured, but rather assumed to be a function of body size and morphology. 

This study examined 18S rDNA in Pseudocalanus gut contents to elucidate 

feeding by P. minutus, P. newmani, and P. acuspes in the eastern Bering Sea, to address 

questions of niche partitioning by these cryptic congeners and improve understanding of 

food webs and carbon flows through this ecosystem.  The gut contents of 225 

Pseudocalanus individuals from across the shelf and shelf break region were analyzed 
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using Peptide Nucleic Acid (PNA) probes and a high throughput sequencing approach to 

determine what they had consumed, how environmental factors affected feeding, and 

whether there were differences in consumption between species which might serve as a 

mechanism of ecological niche separation. 

2. Methods 

2.1 Field sampling and species identification 

Copepods and environmental data were collected in the eastern Bering Sea 

between May 19 and June 10, 2010. Pseudocalanus spp. copepods were collected in 

vertically integrated net tows from 60 m (or 1 m above the seafloor where depth <60 m) 

to the surface at 15-20 m min-1 with a 153 µm mesh 1m ring net at 8 stations (Table 1 and 

Fig. 1).  Mixed plankton samples were immediately preserved in 95% ethanol, to 

minimize effects of digestion and potential net feeding, and ethanol was changed once 

after 12 to 24 hours to maintain concentration (Passmore et al. 2006). Temperature, 

salinity and fluorescence profiles were obtained with a SBE 19+ CTD at the same 

stations as copepods were collected, with temperature and salinity at the depth of the in 

situ fluorescence maximum used in station comparisons. Total chlorophyll and 

chlorophyll >5µm were measured flourometrically from extracted pigments of water 

collected at this same depth of maximum in situ fluorescence (M. Lomas, unpublished 

data). In the lab, individual Pseudocalanus spp. copepods were picked from mixed 

plankton samples under a dissecting microscope and rinsed thoroughly in clean 95% 

ethanol (Bailey et al. this issue). DNA was extracted from each whole individual using 

the DNeasy Blood and Tissue kit (Qiagen) (Bailey et al. this issue).  Species identity of 



8 
 

each copepod was determined through sequencing of cytochrome oxidase gene fragments 

by Bailey et al. (this issue). 

2.2 Gut contents 18S rDNA amplification and sequencing  

Peptide Nucleic Acid Polymerase Chain Reaction (PNA-PCR) was used to 

amplify the partial 18S rDNA of all eukaryotes in Pseudocalanus gut contents from pools 

of DNA extracts from 5 conspecific individuals from a single net tow (Cleary et al. 2012, 

O’Rorke et al. 2012). Triplicate pools were analyzed of each species at each of the 

stations, for 15 copepods in total from each species in each net tow where sufficient 

individuals were collected (Table 1). One technical replicate, with all stages of analysis 

after DNA extraction run separately, was run on one of the pools of 5 copepods from P. 

acuspes at station 99, for an overall total of 46 samples.  Each reaction contained 1x 

GoTaq Green master mix (Promega), 0.5 µmol L-1 each 960F and 1200R primers (Gast et 

al. 2004), 20µmol L-1 PNA ( 5’-TGCTCAATCTCGTGCGAC-3’), and approximately 0.5 

ng µL-1 template DNA. An initial denaturation at 95o C for 30s, was followed by 30 

cycles of 94o for 30s, 77o for 30s, 58o for 30s, 60o for 45s, and a final extension at 60o for 

5 min.  To remove any remaining genomic DNA, amplicons were electrophoresed on a 

0.8% agarose gel and the entire lane between approximately 2000 and 20 base pairs was 

excised with a sterile scalpel based on the migration of dye fronts of Crystal 5x DNA 

Loading Buffer Tri-Color (Bioline).  

Amplicons were gel extracted and purified using the Wizard SV kit (Promega) as 

per manufacturer’s directions.  454 sequencing adaptors and 8 base pair sample 

identification tags for each of the 46 samples were attached to the amplicons in a second 

PCR, containing 1x GoTaq Green master mix (Promega), 0.5 µmol L-1 each 454-tag-



9 
 

1200Rrc Forward and 454-960Frc Reverse primers (modified from Gast et al. 2004), and 

30% by volume 18S amplicons from the first round of the PCR. Reverse compliments of 

the PNA-PCR primers were used here in the addition of 454 adaptors to maximize 

sequencing resolution of the more variable 3’ region of the amplicon. Following an initial 

denaturation at 95o C for 30s, 9 cycles of 94o for 30s, 65o for 30s, 72o for 45s, were run, 

with a final extension at 72o for 5 min. No-template controls were carried through all of 

the above steps along with each set of 6 samples, and visualized at the completion on a 

0.8% agarose 1x TAE gel with ethidium bromide – ultra-violet light imaging to confirm 

the absence of contaminants.  

454-tagged amplicons were purified using AmPure (Beckman-Coulter) and 

sample DNA concentration was quantified using the DNA 1000 kit on a 2100 

Bioanalyzer (Agilent). Equimolar aliquots of amplicons from each sample were 

combined into one of two template pools (23 samples per pool). Each template pool was 

sequenced in 1/16th pico-titer plate on a GS FLX+ 454 platform (Roche) at the 

University of Illinois WM Keck Center following standard protocols. 

2.3 Sequence data analysis 

Sequence data was denoised to remove sequencing errors (Quince et al. 2009, 

Edgar 2010), separated by sample tag, and clustered into Operational Taxonomic Units 

(OTUs) with 97% identity by UClust in MacQiime (Caporaso et al. 2010).  A 

phylogenetic tree was constructed of all prey OTUs using Fasttree in MacQiime (Price et 

al. 2010) and visualized in FigTree v. 1.4.  Subgroups of related prey OTUs from this tree 

were then combined with related known organisms from GenBank using known 

phylogeny and BLAST (Altschul et al. 1990) to create 11 sub-trees of OTUs and related 
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organisms. General phylogeny of sub-trees was confirmed with literature comparisons 

(Baroin-Tourancheau et al. 1992, Collins 2002, Cavalier-Smith & Chao 2003, James et 

al. 2006).  

For each OTU, the nearest taxonomic identity was determined from these sub-

trees, and was typically chosen as the taxon into which both the nearest and second 

nearest neighbor were classified; in some instances where reference sequences were 

sparse and general tree topology agreed well with known phylogeny, only the nearest 

neighbor was used. This approach resulted in different degrees of specificity for different 

prey items. Literature searches were used to identify OTUs whose nearest taxonomic 

identity was known to be parasitic (Ho & Perkins 1985, Evans et al. 2008, Guo et al. 

2012) and these OTUs were excluded from all subsequent dietary analyses. Additionally 

any OTUs for which the nearest taxonomic identity was Pseudocalanus, suggesting the 

sequence originated from the copepod itself, or which clustered only with mammalian 

pseudogenes, suggesting potential trace human DNA contamination, were excluded from 

prey analysis. 

All data were normalized by total sequence abundance per sample prior to 

analysis and a variety of transformations were tested. Multivariate statistics were run on 

the abundance of each OTU in each 5-copepod sample in Primer6 (Clark & Gorley 

2006). Results are reported for both root-transformed abundance data and presence-

absence transformed data. We present both statistical results, because while presence-

absence results may be less subject to potential biases arising from variations in 18S 

rDNA copies per cell, such an analysis will tend to give disproportionately more weight 

to rare items (Clarke & Warwick 2001). In the case of pyrosequencing, where even very 
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rare trace OTUs are detected, such a presence absence analysis may not provide the most 

ecologically meaningful comparisons.  The relative sequence abundance analysis is 

similar to previous successful analysis of broadscale diet differences in larger predators 

(Jarman et al. 2013). 

Bray-Curtis distances were calculated as a measure of the similarity of the prey 

assemblages recovered from each sample. Analysis of Similarity (ANOSIM) was used to 

determine differences between species and stations, and SIMPER analysis was used to 

determine which prey items drove observed differences. BioEnv was used to compare 

diet data with the potential explanatory variables of species, station, on-off shore, total 

chlorophyll and chlorophyll >5µm (M. Lomas unpublished data), mixed layer 

temperature, mixed layer salinity, straight line distance to nearest land, water column 

depth, latitude, longitude, water column stability (the difference between the density at 

5m and the density at 100m depths), density at 5 m, and pycnocline depth.  Sea ice was 

not included because none was observed at any of the stations analyzed. Linear 

regressions of gut contents and environmental chlorophyll were run in Excel 2007.  For 

all analyses each sample of 5 copepods was considered a separate data point. 

3. Results 

3.1 Prey spectrum  

A total of 28,456 prey sequences, which clustered into 138 OTUs were obtained 

from the 46 samples (GenBank accession #s KC952737 through KC952871). The PCR 

and sequencing technical replicates had a Bray-Curtis similarity of 79.75% (P. acuspes, 

station 99). Biological replicates had a lower average similarity of 48.36% between 
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replicate pairs. Overall average similarity across all species and all samples was 29.35%.  

Each sample contained on average 19.5 different OTUs (± 5.6 stdv, min 10, max 33).  

OTUs found in gut contents included a wide phylogenetic range of organisms, 

including single- and multi-cellular autotrophs and heterotrophs (Fig. 2 and Table 2).  

Diatoms were among the most abundant and diverse groups of prey items. Centric diatom 

OTUs included four different Thalassiosiraceae, seven different Chaetoceros, and one 

each Attheya, Amphipora, Porosira, Proboscia, and Rhizosolenia. Pennate diatom OTUs 

included two different Achnanthales, and one OTU each of Pseudo-nitzschia, Navicula, 

Stauroneis, Fragilariopsis, and Fragilaria. Ten different diverse dinoflagellate OTUs 

were found in Pseudocalanus gut contents, including groups thought to be predominantly 

autotrophic (e.g. Gyrodinium) and predominantly heterotrophic (e.g. Polykrikos, 

Amoebophrya). Green alga in gut contents included Chlorellaceae, Klebsormidiaceae, 

and Prasinococcus. Sequences from the prymnesiophyte Phaeocystis were also present in 

gut contents. In addition to microalgae, autotroph sequences in Pseudocalanus gut 

contents included four vascular land plants: Pinus (pine) and Betula (birch) trees, a 

Camellia (tea/flower) bush and a Poaceae (rice/wheat) grass.  

Pseudocalanus gut contents also showed evidence of predation by these small 

copepods, including 18S rDNA from a variety of metazoan prey. Crustacean OTUs found 

include a Metridia (copepod), three different Euphausacea (krill), one Hyperiidea 

(amphipod), and a Cirripedia (barnacle). Other metazoan OTUs included Sagitta and 

Eukrohnia (chaetognaths), a Pteropoda, an Ophiuroid (brittle star), Bdelloidea and 

Plomida (rotifers), Ctenophora, and Cnidarians. Heterotrophic protist OTUs in 

Pseudocalanus gut contents included one Labyrinthulia, a Ciliophora, a Centrohelida, a 
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slime mold, two different Oomycetes, two different Saccharomyces (yeasts), and 18 other 

fungi. (A full list of prey items is available in the Web Appendix) 

3.2 Parasites within Pseudocalanus 

Thirteen OTUs were identified as parasitic organisms and excluded from the diet 

analysis. These parasite OTUs included one Digenea trematode, six different gregarines, 

three Foettingeridae (Oligohymenophorea) ciliates, and three Amoebophrya 

dinoflagellates. Overall, parasite OTUs made up 17.7% of the total recovered sequences, 

with parasites in separate samples of 5 copepods ranging from 0% to 93% of the 

recovered sequences. P. minutus showed the highest percent parasitic sequences, and the 

highest number of different parasites per sample (mean 27% parasite sequences, 3.1 

OTUs), with P. newmani showing intermediate parasite abundance and diversity (mean 

11% parasite sequences, 2.3 OTUs), and P. acuspes with the lowest parasite abundance 

and diversity (mean 0.7% parasite sequences, 1 OTU) (ANOVA p<0.01 for both % 

parasite sequences and number of parasite OTUs by Pseudocalanus species). 

3.3 Environmental effects on diet  

Water column chlorophyll a concentration was positively correlated with the 

percent of gut contents sequences represented by phytoplankton (Fig. 3). This trend was 

most pronounced in P. minutus which was found over the full range of environmental 

chlorophyll levels (linear regression r2=0.93), but was also present in P. acuspes and P. 

newmani. At the stations with the lowest environmental chlorophyll levels, relatively 

more microzooplankton, mesozooplankton, and gelatinous organism sequences were 

recovered (Fig. 5). Although the trend of increasing proportion of phytoplankton in 
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Pseudocalanus diets with increasing environmental chlorophyll is clear, it is not possible 

to determine the form of this relationship (linear, exponential, logistic, etc.) without more 

data from intermediate environmental chlorophyll levels.  

Within the diatom OTUs, diet diversity was highest, particularly among the 

Chaetoceros spp., at intermediate chlorophyll levels, while at both high and low 

chlorophyll concentrations the diatom sequences in gut contents were composed mainly 

of a single Thalassiosiraceae OTU (Fig. 4).  It is worth noting, however, that because 

many species of Thalassiosiraceae are identical over the 18S rDNA gene region 

sequenced, this OTU may contain a complex of related species. Pseudocalanus species 

and water column salinity explained 51% of the variance in BioEnv analysis, with the 

addition of longitude explaining an additional 1% of the variance. 

3.4 Species differences  

P. newmani and P. minutus diets were not significantly different from each other 

(root-transformed p=0.07, presence-absence p=0.34). P. acuspes diet was significantly 

different from P. newmani (root-transformed p=0.001, presence-absence p=0.01), and 

under the more representative root-transformed data, was also significantly different from 

P. minutus (root-transformed p=0.001, presence-absence p=0.08). P. newmani and P. 

minutus diet contained relatively more diatoms, while P. acuspes diet contained relatively 

more heterotrophic dinoflagellates (Fig. 5). The OTUs which explained the most of this 

difference (SIMPER) were a Thalassiosiraceae, a Polykrikos dinoflagellate, an 

Amoebophrya, and a Cnidaria.  

4. Discussion 
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4.1 Prey item diversity 

The range of prey items found in Pseudocalanus spp. gut contents in this study 

was very large.  138 different prey item OTUs were identified, and an average of 19 of 

these prey OTUs were present in each sample of five conspecific copepod individuals. 

Prey items were taxonomically diverse, and included soft-bodied organisms which could 

not have been detected with traditional microscopy-based techniques, and unusual prey 

items which would not have been detected by more targeted molecular approaches. 

Diatoms in Pseudocalanus spp. gut contents included species known to be 

common in the Bering Sea, and which have been previously observed in Pseudocalanus 

spp. gut contents. Thalassiosiracea spp. were the most frequent and abundant sequences 

in gut contents, and are typically one of the major constituents of spring blooms in this 

region (Aizawa et al. 2005). All of the groups of diatoms that early studies observed 

microscopically in Pseudocalanus gut contents (Lebour 1922, Marshall 1949) were also 

detected with DNA in this study, with the exception of Paralia, a tachypelagic species 

typically associated with resuspended sediments, and hence more commonly found in 

shallower waters.  

 Pine and birch tree DNA in Pseudocalanus gut contents likely originated from 

pollen blowing out to sea and being consumed by these copepods. Birch pollen 

abundance in southern Alaska peaks in late May (Municipality of Anchorage, 2013), 

during the time these Pseudocalanus were collected. Terrestrial organic matter represents 

a large input of carbon to the ocean through both riverine and atmospheric transport, but 

its fate and potential incorporation into marine food webs is poorly understood (Hedges 

et al. 1997). Birch tree DNA was found in just under half of the samples and all but one 
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of the stations analyzed, and pine tree DNA was found in nearly a third of the samples 

and at every station, although overall sequence abundance of both these tree OTUs was 

much lower than that of the most common diatom prey items. Pine pollen is typically 30 

to 50µm in size, while birch pollen is slightly smaller, around 15 to 30µm (Davis & 

Goodlett 1960). Both of these fall into the 25 to 57µm range previously suggested as 

optimal for Pseudocalanus consumption (Poulet 1973). Further understanding of the 

quantitative importance of terrigenous material ingested by zooplankton may be useful in 

modeling carbon fluxes in this ecosystem, particularly the fluxes of carbon from the land 

to the marine environment, and in predicting Bering Sea ecosystem responses to 

continuing climate change, with potential changes in the timing and magnitude of inputs, 

such as pollen, from the terrestrial realm. 

4.2 Method assessment  

While this data was rigorously quality controlled, it is possible that some of the 

sequences recovered did not originate from direct ingestion of the sequenced organism by 

a Pseudocalanus. It is possible that trace amounts of prey were adhered to the 

exoskeleton of the copepods. Copepods used in this analysis were rinsed thoroughly in 

fresh ethanol prior to DNA extraction and there were no visible organisms attached to the 

exoskeleton. Although this approach is less rigorous than some which have been 

suggested (Greenstone et al. 2012, O’Rorke et al. 2013) rinsing with ethanol has been 

considered to be effective in removing contaminants in some cases (Greenstone et al. 

2012) and given the small size of Pseudocalanus and the relative permeability of marine 

crustacean exoskeletons, this approach reduced surface contaminants without risk of 

damaging gut contents DNA. It is still possible that some of the “prey” DNA, was in fact 
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adhered to the exterior of the copepod, particularly that of gelatinous organisms, such as 

ctenophores and chaetognaths (Durbin & Casas 2014, O’Rorke et al. 2013). However, 

this external contamination is likely to be relatively low in abundance compared with true 

gut contents. Additionally, external contaminants would be likely to affect all 

Pseudocalanus species equally within a sample; something not supported by our 

observations of substantial differences between species. 

In order to eliminate parasites, we took a conservative approach of excluding 

from the dietary analysis sequences of any organism known to be parasitic. This may 

have excluded some parasitic organisms which had been consumed as prey items. 

Alternately, true parasites not yet reported in the literature as such would have been 

included as prey.  We found that known parasites tended to show relatively low 

frequency amongst samples but high sequence abundance, since unlike prey, parasites are 

alive and are not in the process of digestion. On this basis we excluded one additional 

OTU with very poorly resolved phylogeny which was present in a single sample at high 

abundance. While starved copepod controls would have been ideal to determine which 

sequences might originate from symbionts of Pseudocalanus, given our conservative 

approach with the analysis of the available samples, we do not think that any inadvertent 

inclusion of parasite OTUs as prey significantly affected our diet results. 

Although DNA sequences can be used to identify the organisms consumed, they 

do not provide information on the life stage or body part of the organisms which were 

consumed. Some of the sequences recovered may thus have originated from feeding on 

eggs, larvae, fragments of carcasses, exuvea, or fecal pellets of the sequenced organism 

either singly, or in aggregates or marine snow. Copepods, including species 
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morphologically similar to Pseudocalanus have been observed to feed on marine snow 

(Green & Dagg 1997), and such feeding may explain some of the unusual prey items 

observed here. Feeding on fecal pellets might potentially explain euphausiid sequences 

found in Pseudocalanus gut contents. Euphausiids produce thin string-like fecal pellets 

which are bound by a membrane, and this membrane contains euphausiid DNA. 

Pseudocalanus feeding on euphausiid fecal pellets would consume this membrane, and 

therefore contain euphausiid 18S rDNA. Prey DNA has been found in feces of copepods 

(Nejstgaard et al. 2003, Vestheim et al. 2005, Durbin et al. 2012). Although it is possible 

that the contents of the fecal pellet might also be detected in the Pseudocalanus gut 

contents, this DNA would have already been subject to digestion and degradation in the 

euphausiid gut, so this doubly digested prey is unlikely to show a strong DNA signature 

in our analysis. Prey-of-prey has been observed as a potential challenge in studies using 

species or group specific primers (Sheppard et al. 2005). However, in the universal 

primer approach applied here, such doubly digested prey-of-prey, derived from fecal 

pellets or gut contents of consumed prey, is likely to be strongly outcompeted by the 

more abundant and less degraded prey consumed directly. Thus, though prey-of-prey 

may be detected, they are likely to occur at very low frequency and abundance and 

unlikely to be a significant source of error in the diet analysis. 

Technical variation from PCR and sequencing was low, with replicates providing 

very similar gut contents information, lending confidence to the reproducibility of 

pyrosequencing gut contents. Biological variability between groups of copepods of the 

same species from the same net tow was higher, with Bray-Curtis similarities on average 

less than 50%, suggesting difference between individuals in their feeding over the time 
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immediately prior to capture. As DNA is rapidly digested, this variability is not 

surprising since individual copepods will vary in their recent feeding history. This 

variability between biological replicates was still considerably lower than the variability 

observed between different species and stations sampled, and did not obscure overall 

patterns in diet. 

Direct comparisons of sequence data with ingested biomass suggest that, at least 

for larger predators, relative sequence abundance offers a broadscale indication of the 

relative importance of different prey items (Deagle et al. 2010, Murray et al. 2011). In 

our study the strong correlation between relative abundance of phytoplankton OTU 

sequences and environmental water column chlorophyll a concentrations suggests these 

abundances may offer at least a semi-quantitative view of the abundance of each prey 

item; these OTU abundances may potentially reflect the total prey biomass consumed 

rather than the number of prey individuals consumed. Additionally, although potential 

biases due to variations in copy number per cell, digestion, extraction and PCR 

amplification efficiency are likely to vary between different prey items, they are likely to 

be consistent across different Pseudocalanus individuals.  Because these biases are likely 

to be relatively uniform across all the samples analyzed, relative OTU abundance is used 

to provide a comparison between species which is less influenced by the rare sequences, 

and thus may be more representative of actual in situ feeding.  

 4.3 Effects of environmental variation  

Pseudocalanus gut contents included a greater proportion of sequences from 

phytoplankton where environmental chlorophyll a levels were higher. This suggests that 

when phytoplankton were abundant, Pseudocalanus consumed them, whereas when 
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phytoplankton were relatively rare, Pseudocalanus fed on alternative prey items such as 

meso- and microzooplankton. This ability to feed on alternative prey items may be 

important to Pseudocalanus during periods of low phytoplankton abundance, such as 

winter and late summer. Switching between herbivory and carnivory has been observed 

in other copepod species as a function of the relative abundances of different prey types 

(Landry 1981, Kiørboe et al. 1996). Prey switching may not only buffer the copepods 

themselves from changing environmental conditions, but also allow for a refuge from 

predation for low abundance prey items, thus helping to maintain diversity in the 

plankton (Landry 1981).  

Amongst the environmental variables analyzed, salinity was the best predictor of 

diet. Salinity changes have been previously found to explain temporal variations in 

copepod assemblages, and it has been hypothesized that this is due to bottom up effects 

(Pershing et al. 2005, Mountain & Kane 2010, Ji et al. 2012). Salinity variations may 

drive changes in water column stability with effects on the relative success of diatoms 

and dinoflagellates; potentially leading to different prey assemblages available for 

Pseudocalanus to feed on (Mountain & Kane 2010, Hinder et al. 2012). However, water 

column stability, pycnocline depth, and density at 5m were not found to be good 

predictors of diet here. Thus, in this case, salinity may be acting rather as a tracer for 

different water masses with varying prey assemblages. 

4.4 Niche separation  

P. minutus and P. newmani showed very similar diets, while P. acuspes diet was 

significantly different from that of P. minutus and P. newmani. Diet differences were 

maintained across the range of chlorophyll a concentrations encountered. These diet 
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differences were driven largely by broad differences in the types of prey consumed, with 

P. acuspes consuming relatively more heterotrophic dinoflagellates and to a lesser extent 

macrozooplankton, while P. minutus and P. newmani consumed relatively more diatoms. 

Of the diatoms consumed, no differences in selection for specific types were observed 

between any of the three species.  Feeding differences between species may result from 

or be a reflection of small-scale variations in copepod species distribution. Species 

preferences for locations in the water column are poorly known, and may impact feeding, 

by affecting the available prey field of different species. Differences in broad prey types 

consumed suggest feeding differences may also potentially be driven by differences in 

feeding behavior. Copepods typically catch diatoms and other non-motile prey by 

maintaining a relatively stationary position and generating a feeding current, whereas 

motile prey such as dinoflagellates are typically captured by passively sinking copepods 

detecting hydromechanical signals from the prey items and then capturing them in a form 

of ambush feeding (Kiørboe et al. 1996). P. minutus have been observed to filter water 

through their mouthparts almost constantly, consistent with our observation of a diet 

relatively rich in non-motile diatoms (Tiselius & Jonsson 1990). Differences observed 

between P. minutus and P. newmani versus P. acuspes diets suggest potentially different 

allocations of effort to these two feeding strategies. 

 P. minutus and P. acuspes, which are both considered primarily arctic (Coyle et 

al. 2011), and hence occupy largely overlapping geographic ranges, show diet 

differences, suggesting potential ecological niche partitioning through feeding 

differences. By contrast P. minutus and P. newmani which have largely similar diets are 

more geographically separated, as P. newmani is considered to be a primarily temperate 
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species (Coyle et al. 2011), suggesting they may fill similar ecological niches in these 

different geographic areas. Feeding differences have previously been suggested as a 

mechanism of niche partitioning amongst co-located copepods (Maly & Maly 1974).  

4.5 Potential implications for the future  

The Bering Sea is experiencing rapid warming and changes in the patterns of 

interannual variation in response to anthropogenic climate change; and the effects of 

these changes have already been observed in both physical and biological components of 

the Bering Sea (Overland & Stabeno 2004, Stabeno et al. 2012).  Overall Pseudocalanus 

abundance has been found to be either negatively correlated with or independent of 

temperature in the Bering Sea (Coyle et al. 2011, Stabeno et al. 2012). Changes in sea ice 

and storminess may affect water column stability, with implications for the relative 

success of diatoms and dinoflagellates (Edwards & Richardson 2004, Edwards et al. 

2006, Hinder et al. 2012), and any such changes could have opposite implications for P. 

minutus/P. newmani and P. acuspes. 

 Diet has been shown to affect zooplankton fecal pellet sinking speeds, leading to 

variations in the efficiency of the biological pump and the sequestration of carbon in the 

deep sea (Atkinson et al. 2012).  Diets rich in diatoms are associated with denser faster 

sinking fecal pellets and more efficient carbon export (Atkinson et al. 2012). P. minutus 

and P. newmani feeding may thus be a relatively efficient mechanism for the export of 

carbon from the mixed layer, while feeding by P. acuspes may instead enhance microbial 

recycling within the upper water column. Interspecific differences in susceptibility to 

changing environmental variables, and roles in the biological pump suggest that 
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ecosystem monitoring efforts might benefit from differentiating these morphologically 

cryptic congeners.  

Given that P. minutus and P. newmani have similar diets it is possible that the 

more temperate P. newmani may take over some of the southern part of the range of P. 

minutus, under continued warming. Such a geographic shift in the transition zone 

between P. minutus and P. newmani would likely have minimal top down effects since 

their diet is so similar. However, P. minutus stores lipids, while P. newmani does not 

(Coyle et al. 2011), which may change their nutritional value as prey items to higher 

trophic levels, with potentially negative implications for commercially important predator 

species such as walleye pollock, ecologically important groups  such as seabirds, and 

culturally important organisms even higher up the trophic web, such as marine mammals. 

The high diversity of prey items found in Pseudocalanus gut contents suggests these 

organisms are able to consume a wide range of different prey types, and may potentially 

be able to feed opportunistically. Opportunistic feeding may allow Pseudocalanus 

populations to help buffer higher trophic levels in this productive ecosystem from 

bottom-up effects induced by changing climate. 
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Table 1: Characteristics of sampling locations and species analyzed at each station. 

Station (Stn) numbers correspond to Bailey (2012), species numbers indicate how many 

individuals of each species were analyzed, latitude and longitude are in decimal degrees, 

all dates are in 2010, total bottom depth is in meters and chlorophyll a (Chla) represents 

the  >5 µm size fraction in µg L-1at the depth of maximum chlorophyll a fluorescence. 

 

Stn P. 

acuspes  

P. 

minutus 

P. 

newmani 

Latitude Longitude Date 

Sampled 

De

pth 

Chla 

49 0 30 30 59.8998 -178.8960 May 19 486 20.1 

55 0 15 0 58.2043 -174.2357 May 21 381 0.4 

87 0 15 15 55.4315 -168.0608 May 29 205 6.2 

99 15 0 15 56.8536 -164.5056 May 31 73 3.8 

156 0 15 15 62.1890 -175.1521 June 5 79 3.8 

163 0 15 0 59.8934 -178.8983 June 7 657 4.1 

175 15 0 0 59.9003 -172.2170 June 9 73 0.8 

179 15 15 0 58.8301 -168.1589 June 10 46 0.8 
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Table 2: Most abundant Operational Taxonomic Units (OTUs) from Pseudocalanus gut contents, 

with nearest taxonomic identity, total number of sequences, presence/absence count out of 45 

total samples, and cumulative % of total sequences. These top 29 OTUs account for 27,044 

sequence reads, which is 95% of the total prey sequence reads found. The complete list of gut 

contents OTUs can be found in the Web Appendix. 

Rank GenBank Ass. # Prey Organism Total Count  Cumulative % 

1 KC952766 Thalassiosiraceae diatom 9451 45 33.2% 

2 KC952848 Polykrikos dinoflagellate 4239 29 48.1% 

3 KC952832 Cnidaria 2189 30 55.8% 

4 KC952803 Ameobophrya dinoflagellate 1974 40 62.7% 

5 KC952751 Mertensia cnidarian 1340 31 67.5% 

6 KC952857 Fragilaria diatom 1003 19 71.0% 

7 KC952818 Fragilariopsis diatom 867 27 74.0% 

8 KC952820 Ophiuroid brittle star 857 2 77.0% 

9 KC952779 Euphausiid krill 723 37 79.6% 

10 KC952790 Polykrikos dinoflagellate 508 15 81.4% 

11 KC952860 Sagitta/Krohnitta chaetognath 495 37 83.1% 

12 KC952772 Phaeocystis prymnesiophyte 454 21 84.7% 

13 KC952833 Chaetoceros sp. diatom 452 18 86.3% 

14 KC952738 Chaetoceros sp. diatom 379 12 87.6% 

15 KC952837 Chaetoceros sp. diatom 349 23 88.8% 

16 KC952807 Chaetoceros sp. diatom 255 15 89.7% 

17 KC952745 Pezizomycete fungus 230 26 90.5% 

18 KC952802 Grain (rice/wheat/corn) 212 15 91.2% 

19 KC952765 Betula sp. Birch tree 205 21 92.0% 

20 KC952752 Metridia copepod 124 10 92.4% 

21 KC952748 Pinus sp. Pine tree 115 14 92.9% 

22 KC952749 Rhizochaete fungus 94 16 93.2% 

23 KC952767 Agaromycete fungus 93 17 93.5% 

24 KC952867 Navicula diatom 91 10 93.8% 

25 KC952824 Porosira diatom 77 4 94.1% 

26 KC952756 Semaeostomae cnidarian 76 4 94.4% 

27 KC952777 Dinoflagellate 70 8 94.6% 

28 KC952791 Cryothecomonas flagellate 63 1 94.8% 

29 KC952823 Oligohymenophorea ciliate 59 4 95.0% 
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Figure legends 

Figure 1: Map of sampling locations in the Bering Sea. The 25, 50, 75, 100, 200 and 

1000m isobaths are shown. Stations 49 and 163 were in the same location on different 

dates. 

Figure 2: Phylogenetic tree of all prey 18S rDNA sequences recovered from Pseudocalanus spp. 

Circle size indicates in how many of the 45 samples each Operational Taxonomic Unit (OTU) 

was identified, with no circle indicating less than 10. Branch and circle colors indicate prey 

identity and correspond to colored text. Gelatinous organisms fall into two distinct clades as this 

group is defined by morphology, and includes the phylogenetically diverse ctenophores, 

cnidarian, and chaetognaths. 

Figure 3: Environmental chlorophyll a concentrations and phytoplankton as a percent of 

total prey sequences in Pseudocalanus gut contents. Circles and solid line show P. 

minutus, triangles and dotted line show P. acuspes, squares and dashed line show P. 

newmani. All trend lines show linear regressions. 

Figure 4: Diatom diversity in gut contents of each sample arranged as a function of 

chlorophyll a concentration.  Colored bars indicate the proportion of the total diatoms in 

gut contents contributed by each diatom OTU (left-hand axis). White circles show water 

column chlorophyll a concentration (right-hand axis). Vertical white lines separate each 

station, while brackets below the x axis indicate the copepod species, with “a” P. 

acuspes, “m” P. minutus, and “n” P. newmani. 
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Figure 5: Differences in diet among species and with chlorophyll a concentration. Pie 

charts show the relative abundance of sequences belonging to each type of prey in 

Pseudocalanus gut contents. 
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Fig. 3   
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Fig. 5 
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Abstract 

 Antarctic krill, Euphausia superba, are a key component of food webs in the 

maritime West Antarctic Peninsula, and their life history is tied to the seasonal cycles in 

sea ice and primary production in the region. Previous work has shown a general in-shore 

migration of krill in winter, however the very near shore has not often been sampled as 

part of these surveys. We investigated distribution, abundance, and size structure of krill 

in two bays along the peninsula, and in the adjacent Gerlache Strait using vertically 

stratified MOCNESS net tows and acoustic biomass estimates. Krill abundance was high 

within bays, with net estimated concentrations exceeding 60 krill m-3, while acoustic 

estimates were an order of magnitude higher. Krill within bays were larger than krill in 

the Gerlache Strait, though they had slightly lower condition indices. Within bays, krill 

aggregations were observed near the seafloor during the day, and exhibited diel vertical 

migration higher into the water column at night, potentially balancing optimizing feeding, 

predation risk, and metabolic costs. This abundance of nearshore krill helps to refine an 

increasingly complex picture of krill ecology and adaptability. Including these nearshore 

krill may increase populations in stock assessments and understanding the ecological role 

of these nearshore krill aggregations may have implications for managing the krill fishery 

this region. 

 

 Key words: Euphausia superba, winter, distribution, DVM, Andvord Bay, Gerlache 

Straight 
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Introduction 

Antarctic krill, Euphausia superba, (hereafter “krill”) are key members of 

Southern Ocean ecosystems. Krill serve as important prey to many megafauna; in the 

West Antarctic Peninsula (WAP) region krill make up over 90% of the diet of numerous 

species of baleen whales and brush-tailed penguins, and over a third of the diet of 

additional species of seals, birds, and fish (Quetin & Ross 1991). These small pelagic 

crustaceans have a huge global biomass, estimated at over 300 million tons, with 70% of 

the stock found in the narrow Atlantic sector from 0o to 90o W, encompassing the WAP 

(Atkinson et al. 2008).  

This huge biomass of krill in the Southern Ocean is not distributed evenly on any 

spatial scale, with strong patchiness on scales from thousands of kilometers around the 

continent, to meters within and between aggregations (Atkinson et al. 2008, Hamner & 

Hamner 2000). Krill are at the “awkward boundary between plankton and nekton” 

(Atkinson et al. 2008); their distribution can be strongly influenced by current flows, but 

they are also strong swimmers, capable of moving up to 15 cm s-1 horizontally or 

vertically (Lascara et al. 1999).  

Much of the research on krill distributions in Antarctica has been focused on the 

productive and more accessible summer season (Atkinson et al. 2008). A few studies 

have investigated patterns in the seasonal distributions of krill, both in general and along 

the WAP.  The general paradigm has been that krill spend the summer feeding in 

aggregations along the shelf break and in the waters beyond, with females laying eggs 

into the deep waters beyond the shelf; while in the fall and winter krill migrate to more 

inshore areas (Siegel 1988, Nicol 2006, Lascara et al. 1999, Atkinson et al. 2008).  The 
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smallest individuals have generally been found closest in-shore, where they may rely on 

sea ice for refuge from predation or food resources (Atkinson et al. 2008, Lascara et al. 

1999, Siegel 1988, Lawson et al. 2004).  The ecological reasons for this migration remain 

unclear, although it has been suggested it may improve feeding or reduce advection out 

of the favorable WAP region (Siegel 1988). 

Many of the studies that have addressed seasonal variations in krill distribution 

have sampled much lower levels of krill in winter as compared to other seasons. Lascara 

et al. (1999) found krill in winter at just one of their 25 acoustic stations, with total 

biomass estimates an order of magnitude lower than those in the same region in summer. 

Seasonal sampling in Marguerite Bay also observed much lower biomass in winter than 

in fall (Lawson et al. 2004). Earlier surveys showed similar changes, with over an order 

of magnitude more krill estimated to be present in summer than in winter, when only 

0.086 individuals m-3 were found, leading to the idea of a winter krill “vacuum” (Siegel 

1988).  

Unlike for smaller zooplankton, seasonal changes in observed krill abundance 

cannot be a result of population growth or contraction. Krill are long lived, taking two to 

three years to reach sexual maturity, with lifespans estimated at five to seven years 

(Lascara et al. 1999). Additionally, the fall/winter reduction in krill abundance, and 

corresponding spring increase, is evident in krill from a wide range of sizes (Atkinson et 

al. 2008, Siegel 1988) Given both the multiyear life cycle of krill, and the parallel 

abundance patterns amongst different age classes, the seasonal decline and increase in 

observed krill abundance is more likely to be due to krill entering and exiting the sampled 
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waters. Limited nearshore sampling has suggested this may be where large krill are found 

in winter (Lawson et al. 2004). 

Although krill are thought to move inshore in winter, the very most inshore 

regions of the WAP have been poorly sampled, and are missed by many standardized 

sampling programs. The coast of the WAP is complex and convoluted, with a series of 

deep bays and fjords. Vessel safety considerations mean that standardized or randomized 

transects of the type most often used in broad scale surveys are typically not possible 

within these areas (Johnston et al. 2012). Sampling within Wilhelmina Bay has shown the 

presence of krill “super-aggregations” suggesting this very nearshore region may be 

important winter habitat for krill (Nowacek et al. 2011). 

In this project we used adaptive sampling with nets and acoustics to investigate 

the distribution, abundance, and size structure of krill within Andvord and Flandres Bays 

and in adjacent comparison areas of the Gerlache Strait in winter. By sampling krill in 

this poorly known very nearshore region in winter we aimed to refine our understanding 

of krill seasonal distributions, and the implications of these distributions for the ecology 

and life history of E. superba in the WAP. 

Materials and Methods 

Setting 

 Krill and acoustic data were collected on the Research Vessel Ice Breaker 

Nathaniel B. Palmer between May 16 and June 15 2013 (figure 1 and table 1). Where 

possible paired day-night tows were analyzed. Tows 7 and 8 occurred in Andvord Bay, 

tows 14 and 15 in Flandres bay, tows 18 and 19 in the Gerlache Strait, and a single tow, 



48 
 

tow 20 was analyzed from Palmer Deep, the most offshore area sampled.  Mixed layer 

chlorophyll was uniformly low throughout the study, with all values below 0.4 µg L-1 as 

determined from fluorometric measurements of extracted pigments. Mixed layer 

temperatures ranged from -1.7oC to +0.5oC, with salinities from 33.4 to 34.4 psu, both as 

measured by 911plus CTD (SeaBird) (See appendix C). Sampling locations were based 

on bathymetry as observed with multibeam, and maintaining safe distances from 

coastlines and large icebergs. 

Net Sampling 

 Vertically stratified samples of krill were collected with a 1 m2 Multiple Opening 

Closing Net Environmental Sensing System (MOCNESS) (Wiebe et al. 1976) equipped 

with nine 333 µm mesh black nets. The maximum dimension of the mesh in a 333 µm net 

is 0.47 mm along the diagonal; since krill have a typical width to length ratio of 1:8 

(Zhou & Dorland 2004), the largest krill which would be able to go through the mesh 

would be 4 mm in length. The MOCNESS is therefore quantitatively sampling krill 

individuals greater than 4 mm in length. Two LED strobe lights (Brightwaters 

Instruments) were attached to the frame above the net mouth, and flashed continuously 

throughout all tows at approximately 2 flashes per second with a nominal light output of 

3 watts, in order to reduce net avoidance behavior by krill (Sameoto et al. 1993, Wiebe et 

al. 2004). The net was towed obliquely at a 45o angle at 1.5 to 2 knots from 50 m above 

the seafloor to the surface. Net opening and closing depths varied between tows and were 

determined based on real-time acoustic data in order to maximize resolution of 

aggregation structure. Each net filtered between 53 and 900 m3 of water. 
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 Net catches were processed immediately. Catches were split on board the ship 

using a bucket splitter, (a 20L cylinder with a 5 cm diameter tube extending from the 

bottom to a T-junction with identical 5cm outflow tubes pouring into 2 separate 20L 

cylinders) as many times as required for a sample of roughly 150 to 200 ml biovolume. 

Split samples were preserved in a 4% final concentration solution of sodium borate 

buffered formalin in seawater. In the laboratory, catches were further split if necessary 

for a final target sample size of 100 individuals. The final counted sample ranged from 

the full net catch to a 128th split. Krill were removed from the few non-krill zooplankton, 

and all krill individuals were measured for length and dry weight. Only juvenile and adult 

krill were analyzed, larvae were not included, setting a de-facto lower size limit close to 

the 1.5 cm length at which krill typically molt from larvae to juveniles (Siegel 1987). 

Both Standard 1 (base of eyestalk to posterior end of uropods) and Discovery (front of 

eye to tip of telson) lengths were used, as these have both been widely reported in the 

literature (Everson 2000). Measuring both of these metrics allows the results of this study 

to be broadly comparable, and also provides a conversion for use in comparing other 

studies. Individual krill were dried at 60oC for 24 or more hours and weighed on a 

BP310S microbalance (Sartorius).  

 Data processing was conducted in Excel and MatLab to calculate numbers and 

biomass per m3 of water filtered and per m2 of water column in each 0.25 cm length 

increment size fraction for each net. Size bins are designated in the figures by their upper 

size cut-off. Condition index was calculated as: with 

weight as dry weight in grams and length as Standard1 in cm (Ricker 1975).  Length-

weight analysis and all regressions were conducted using MatLab’s curve-fitting toolbox.  
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Based on length weight analysis extreme outliers were removed from the data set as they 

were unlikely to be true E. superba (n=4). Statistical differences between tows were 

investigated using ANOVA and Tukey tests (multcompare) as implemented in MatLab. 

Cluster analysis was conducted to look at the assemblage of different sized krill in each 

net using UPGMA with the number of krill in each 25mm size bin, normalized by the 

total number of krill in the net, as input and calculations done with the Cluster and 

Linkage functions in MatLab. 

Acoustics 

 Acoustic Doppler Current Profiler (ADCP) data were continuously collected and 

processed from a hull-mounted unit (Teledyne) with all instruments, settings and 

preliminary data processing as per Zhou & Dorland (2004). ADCP data were observed in 

real-time at sea, and were further examined in the laboratory by looking at profiles of 2 to 

4 hour blocks of time throughout the cruise in MatLab. Binned and processed ADCP data 

(8 m depth bins from 32m depth to 400m depth and 6 minute time bins) was used to 

compare acoustic and net estimates of biomass. ADCP backscatter was analyzed to 

investigate patterns in the depth of krill aggregations. For each time interval the depth of 

maximum biomass was found in the ADCP record. These calculations excluded the 10m 

immediately above the seafloor, as determined by Knudsen echosounder, due to potential 

noise from side-lobes of the ADCP beams, and excluded any time interval in which the 

maximum biomass did not exceed 100 grams m-3, as such time intervals may indicate 

areas without krill or bad data due to bow-thruster noise. In order to compare MOCNESS 

and ADCP estimates of krill biomass, for each MOCNESS net the corresponding 

acoustic backscatter estimate was calculated by averaging all ADCP bins within the time 
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interval of the complete tow and the depth interval of the net. The complete tow time 

rather than the net time was used because the ADCP is sampling the water directly under 

the vessel, and the net is behind the vessel, so the full tow time should give a more 

representative sample. MOCNESS counts were multiplied by mean weight in each net to 

give a biomass concentration, and a wet weight to dry weight conversion factor of 0.2 

was applied (Schmidt et al. 2011). Latitude and Longitude from MOCNESS logs and 

ADCP files were compared to ensure the correct time range of bins were being averaged, 

and the sum of all measured krill was calculated to ensure all krill were accounted for in 

the calculations, which were initially conducted with size fractionated counts.  

Results 

Net Sampling 

 In total, 3051 krill were counted and measured from 39 discrete depth interval 

nets in 7 tows encompassing two bays and the more offshore Gerlache Strait and Palmer 

Deep regions. Krill ranged in length from 0.9 to 5.1 cm and in dry weight from 0.001 g to 

0.217 g. The two length measurements, Standard 1 and Discovery, were highly correlated 

with Discovery length =1.002* Standard1 lnegth +0.09.  The slope was not significantly 

different from 1 and the line fit had an r2 of 0.999.  For the remainder of the results 

Standard 1 length is used. Krill-length weight fit the expected power model, with 

weight=0.0014*length2.98 and r2=0.934(figure 2).  This model fit the data from all 

samples well, although differences were seen, and are discussed in the condition index. 

The exponent was not significantly different from the theoretical 3 (Ricker 1975), 

indicating that for the post-larval krill sampled here growth was isometric.  
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 The distribution of krill lengths showed a strong peak at sizes of 2.75 to 3.25 cm, 

with some evidence of smaller secondary peaks at 1.25 to 1.5 cm and 4.25 to 4.5 cm 

(figures 3 & 4). The larger size classes showed a fairly consistent pattern of contributions 

from the different MOCNESS tows, but the smallest four size classes showed 

disproportionately high contributions from the Gerlache Strait stations, with tows 19 and 

20 making up over 50% of the krill 2 cm and under, despite making up only 2% of the 

overall total (figures 3 & 4). The peak in abundance between 2.75 and 3.25 was observed 

in all sampling locations, but with higher abundances in the fjords, while the small size 

class peak at 1.25 to 1.5 was most noticeable in the more offshore Gerlache Strait and 

Palmer Deep samples (figure 4). 

 Both the abundance and average size of krill were higher in the inshore stations 

than in the Gerlache stations (figure 5 and table 2).  Tow 14 (Flandres Bay at night) had 

by far the highest average abundances with 34.15 krill m-3, followed by 8 and 15 

(Andvord & Flandres Bays, respectively in the day). Tows19 and 20 (Gerlache Strait & 

Palmer Deep, respectively, at night) had the lowest average abundance, with 0.71 and 

0.16 krill m-3 respectively.  Length distributions of krill were significantly different 

between all tows except for tows 8, 14, and 15, (Andvord daytime, Flandres nighttime, 

and Flandres daytime, respectively) which are not significantly different from each other 

and had the highest mean values of 3.1, 2.9, and 2.8 cm respectively. Tows 7 and 18 

(Andvord nighttime & Gerlache daytime, respectively) had intermediate mean lengths of 

2.6 and 2.5 cm respectively, while tows 20 and 19 (Gerlache Strait & Palmer Deep 

nighttimes, respectively) had the lowest mean lengths at 1.6 and 1.4 cm respectively.  Not 

only did these more offshore tows 19 and 20 have the highest relative abundances of krill 
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in the smallest size fractions, they also had the highest total abundances of krill less than 

2 cm in length (figures 3 & 4). 

The condition index showed similar groupings, but with different trends from 

length. Tows 8, 14, and 15 (Andvord daytime, Flandres nighttime, and Flandres daytime, 

respectively) were again not significantly different from each other, but these tows had 

the lowest condition krill. Tow 7 (Andvord nighttime) was different from all other tows, 

with an intermediate condition. Tows 18, 19, and 20 (Gerlache Strait daytime & 

nighttime & Palmer Deep) were not significantly different from each other and showed 

the highest condition. Condition was found to be most variable in the smallest 

individuals, particularly those under 2 cm in length. Considering only these smallest 

individuals greatly reduces the size of the data set, and the power to discern trends, but 

the overall pattern remains similar; with tow 14 intermediate and not different from any 

other tows, tow 18 having the highest condition and different from all except 7 and 14, 

with 20 next highest and again different from all except 14, while tows 8, 15, and 19 were 

not significantly different from each other and exhibited the lowest condition indexes.  

 Vertical patterns of krill abundance showed both diel and spatial differences 

(figure 6). Within Andvord and Flandres Bays a diel pattern was observed with krill more 

concentrated and deeper during the day, and more dispersed and shallower at night 

(figure 6 & table 2). In the Gerlache Strait the major day-night difference observed was 

not in the vertical distribution but in the overall size class distribution with larger krill 

collected in the day than at night. No data is presented for Palmer Deep 100- 150 or 500-

700 meters as the cod-ends were lost at sea. 
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 Cluster analysis showed one large grouping, and one very distinct smaller 

grouping (figure 7). This smaller grouping consisted of all of the nets in tows 19 and 20 

(Gerlache & Palmer deep nighttimes), and the surface net in tow 18 (Gerlache daytime). 

These offshore nets tended to have smaller krill relative to the net samples collected in 

bays. Four of the six nets in tow 7 (Andvord nighttime) made up a sub-cluster within the 

large grouping; tow 7 tended to have a more even distribution of size classes, with both 

more small krill and more large krill, but relatively fewer medium krill, as compared to 

the other tows within bays. The large grouping included nets from tows 8, 14, 15, and 

below surface 18, which clustered with no clear patterns. These nets all tended to have 

relatively large fractions of krill in the 2.75 to 3.5 size classes, with relatively few of the 

largest and smallest size fractions. 

Acoustic sampling 

 Net estimates and acoustic estimates of krill biomass for each net do not correlate 

particularly well (figure 8).  A linear fit has a slope of over 15 and r2 = 0.20, and even the 

best fit with a power curve has an r2=0.23. Looking more closely at the points which fall 

far from the trend line, the two points near the top of the y axis correspond to two nets in 

tow seven, in which the ADCP showed narrow, strong bands of scatterers, but the net 

catches were low. In the opposite direction, the two points furthest along the x axis which 

appear too low in terms of ADCP estimates were from a school with a particularly high 

spectrum broadening, an indication of relatively high swimming behavior (Zhou & 

Dorland 2004). 

 General observations from the acoustic data were similar to patterns observed in 

MOCNESS tow catches, despite the poor point-by-point comparison. Krill abundance 
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was higher within bays than in the Gerlache Strait and offshore regions, with particularly 

high abundances near the coast (Figure 9). Within the bays sampled krill biomass was 

generally higher than outside the bays. During the day, krill were typically concentrated 

near the seafloor, in dense layers typically 50 to 100 m thick. Where the seafloor was 

shallower than 300 m, these aggregations were right on the sediment interface; where the 

seafloor was deeper, the aggregations tended to separate from the sediment but stay deep 

in the water column, typically between 200 and 300 m.  At night the krill tended to come 

up in the water column and form less dense aggregations.  These night time aggregations 

were typically concentrated between 100 and 200 m depth. Peak krill abundance typically 

followed these patterns, with peak abundance either close to the seafloor or between 100 

and 200 m depth (Figure 10). Outside of the bays in the Gerlache Strait area acoustic 

observations were generally very low, with the few observations of higher biomass 

generally close to the coasts. 

Discussion 

 High krill abundances found in the fjords in winter were above densities typically 

observed in the WAP. Within fjord abundances ranged from 235 – 8061 krill m-2 and 54 -

1733 grams m-2, well in excess of previously observed average values. Across the WAP 

as a whole including the offshore areas during the summer, averages of 3.4 krill (2.1 g 

WW) m-2 have been observed with nets (Siegel et al. 2013). In the Elephant Island region 

long term abundances have averaged 45 krill m-2, or 0.23 krill m-3 (Siegel et al. 2013). 

Further afield to the north, krill biomass has been estimated for South Shetlands (1-60 g 

m-2), and South Georgia (1.87-40.57 g m-2), and to the south vertically integrated krill 

biomass in Marguerite Bay (1.3-77.7 g m-2) (Lawson et al. 2008 and references therein). 
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Abundances observed here in the more offshore Palmer Deep and Gerlache Strait stations 

are in-line with previous observations in the area, with 156-284 krill and 8-43 grams m-2. 

The similarity of the observed abundances in the shelf region to previous surveys 

suggests the observed high abundances within fjords are not artifacts of our method, but 

rather indicate true, though typically under-sampled, regions of particularly high winter 

krill abundance.  

The observed abundances suggest that fjords may be important habitat for krill in 

the WAP region, at least in early winter as sampled here. Previous suggestions of the 

importance of nearshore habitat for E. superba include Lawson et al.’s (2008) 

observation of highest krill abundances in fall and one of two winters close to shore in 

Marguerite Bay, and Zhou et al.’s (1994) observations of high krill abundance in the 

Gerlache Strait region. 

Distributions of size fractions 

The overall size distribution considering all tows together observed here is similar 

to previous observations. Zhou et al. (1994) observed a peak in krill length frequency of 

22 mm for krill collected in the Gerlache Strait. This peak size is between that observed 

in the present fjord samples and the present offshore samples. His sampling was in an 

area geographically between the fjords and offshore areas analyzed in this study, at the 

same time of year. Brinton et al. (1987) observed size frequency distributions in March of 

1984 which showed a pattern similar to what was observed here, with a main peak around 

30 mm and a smaller peak around 6 mm, with MOCNESS tows near Elephant Island. 

Hernandez-Leon (2001) observed a smaller size distribution, with a peak around 17mm 

length outside of Wilhelmina Bay, very close to our study region in summer; while Siegel 
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(1987) encountered more larger individuals than were encountered in this study, with 

many krill over 5 cm in length. The differences in the overall size caught in this study and 

that of Siegel may be due to methods, where Siegel’s RMT trawl with larger mesh and 

higher tow speeds may be more difficult to escape than the MOCNESS used here.  Krill 

collected within the fjords in winter mainly fell into the size of age 1+ krill, individuals 

which would be roughly 18 months old at the time of sampling (figures 3 & 4).  Although 

the peaks in the length frequency observed in this study do not correspond particularly 

well with published length-at-age estimates for this region and season (figure 3), the 

largest peak observed here is between previous estimates for age 1+ krill and age 2+ krill, 

while the small secondary peak is between previous estimates for young-of-the-year and 

age 1+ krill from the same time of year as our sampling (Siegel 1987, Quetin et al. 1996). 

It seems most likely that the krill in this study are slightly larger than the krill used in the 

previous estimates, suggesting the small peak observed contains mainly young-of-the-

year, individuals which had been born the previous summer, while the main peak 

observed was composed of age 1+ krill, with some larger and older krill in the higher end 

tail of the observed distribution. 

 Broad scale surveys have typically observed smaller krill inshore of larger krill 

(Lascara et al. 1999, Siegel 1988, Atkinson et al. 2008, Quetin & Ross 2003). This is 

different from the pattern observed here, over a smaller scale, with the smallest young-of-

the-year krill collected offshore of the larger age 1+ krill, with the 2+ and older krill not 

observed and hypothesized therefore to be further offshore. Siegel (2005) suggested a 

seasonal pattern in which the age 1+ and older krill move further onshore in the winter, 

with the 1+ krill moving the closest onshore, and the young-of-the-year krill staying out 
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over the shelf break. This conceptual model is not fully in agreement with the 

observations here, where young-of-the-year were on the shelf and age 2+ and older krill 

were largely absent from the shelf area. These broadscale surveys have typically not 

sampled the very most inshore regions, and the few instances of such very near shore 

sampling have observed high acoustic biomass with either large krill individuals (Lawson 

et al. 2004) or juveniles (Lawson et al. 2008). It has been suggested that small krill may 

utilize sea ice in inshore areas for food resources and habitat (Schmidt et al. 2011, Quetin 

et al. 1996).  It is possible small krill within the bays could have been missed in this study 

if they were strongly associated with the under-ice habitat, as this part of the water 

column is not effectively sampled by the MOCNESS. However, previous work with nets 

more suited to sampling the ice-water interface and SCUBA observations have observed 

very few individuals in this habitat in winter (Meyer 2012, Quetin & Ross 1996). During 

the period of sampling for this study, the water was largely open and sea ice was mainly 

small pancakes. During the late fall and early winter when this sampling was conducted 

the ice algal community is not yet established, and the underside of the such small ice 

pancakes are unlikely to be a particularly favorable habitat for small krill, which prefer 

the more complex structure of established ice and pressure ridges. Thus our under-

sampling of this area is unlikely to explain the offshore bias to our distribution of the 

smallest krill.   

 There are several possible explanations for the observed pattern of small 

young-of-the-year krill existing on the shelf, larger age 1+ krill being present mainly 

within the fjords (figure 4), and age 2+ and older krill somewhere beyond the sampling 

area, potentially further off shore over the shelf break or beyond. Potential explanations 
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include differences in swimming speed, advection, metabolic requirements, top-down 

effects of cannibalism, and some combination of these factors. The roles of each factor 

are unclear, and some combination may help explain the distributions observed here. 

Krill swimming speed is a function of individual length, with larger individuals typically 

exhibiting faster sustained swimming speeds (Kils 1981).  Different age classes of krill 

are of distinctly different lengths, with concomitant differences in sustained swimming 

speeds. The interactions of these differences in swimming speeds with the advective 

WAP environment may play a role in the distribution of size classes.  Young of the year 

krill, which were found mainly in the offshore stations of Palmer Deep and Gerlache 

Strait, may be too small to effectively swim against currents. In the winter these krill may 

still be passively drifting in the more offshore gyre circulation. The circulation along this 

part of the WAP is complex with northeastward flow in the Antarctic Circumpolar 

Current near the shelf break, and south-westward flow in the Antarctic Coastal Current 

near shore, with a series of smaller gyres connecting these two systems and acting as 

retention areas for krill (Amos 1984, Quetin & Ross 2003, Nicol 2006). Young of the 

year krill sampled in this region may still be in the process of drifting inshore following 

developmental ascent, the growth period in which krill mature from eggs through furcilia 

while slowly ascending from deep waters (Hempel & Hempel 1986). It has also been 

suggested that the smallest size classes of krill in the Bransfield Strait may originate in 

areas of the Weddell or Bellinghausen Seas (Brinton 1991). Thus, the small individuals 

observed here may have originated in the Gerlache region, or in either of these upstream 

regions.  
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Age 1+ krill were highly abundant in the fjords. These fjords may serve as a 

refuge from advection out of the favorable WAP region. Potentially, age 1+ krill may 

migrate into these fjords to save energy they might otherwise need to expend in 

swimming against currents and avoid being swept out of the highly productive WAP.  

Larger krill were not observed in the fjords, nor in the offshore samples in winter. 

Such 2+ and older krill were collected in summer with identical sampling gear (Durbin, 

unpublished data), suggesting these larger krill are not simply missed due to increased net 

avoidance skills at greater age and size.  It is possible these largest and strongest 

swimming krill may spend the winters even further from land, where water from the 

Antarctic Circumpolar Current (ACC) may advect in potential zooplankton prey (Loeb et 

al. 2009). These largest krill would be better able to swim long onshore offshore seasonal 

migrations, and better able to maintain position against a current, potentially allowing 

them to take advantage of these higher food resources not available to smaller krill 

individuals with lower swimming speeds. There is some evidence of larger krill 

individuals beyond the shelf break in previous broadscale surveys (Lascara et al. 1999, 

Siegel et al. 2013). Further winter sampling is needed to better understand the migration 

and habitat use by age 2+ and older krill in winter. 

Krill are known to behave cannibalistically; this has been observed in laboratories 

((Cleary, unpublished data) and through gut contents analysis (Ligowski 2000). Avoiding 

cannibalism has been suggested to be one of the factors driving the life history patterns of 

krill (Nicol 2006). Since krill are frequently the biomass dominant marine organism in 

this ecosystem, predation by large krill may be an important mortality factor for small 

krill. This conspecific predation may be one of the factors keeping young-of-the-year 
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krill in more offshore waters away from predation by age 1+krill, and/or one of the 

factors driving age 1+ krill into the fjords and away from the age 2+ and larger 

individuals. In relatively enclosed bays where a range of sizes of krill were observed 

together, and encounter rates between large and small krill are potentially high, it may be 

that by the time of sampling, age 1+ krill had effectively removed many of the small krill 

from the population. Rather than having been cleared, these different habitat usage 

strategies may be evolved responses to minimize losses due to cannibalism. 

Different ages of krill may also have different metabolic requirements. Young-of-

the-year krill have had only a few months to grow, and are not thought to be able to 

survive prolonged starvation (Meyer et al. 2009). Age 2+ and larger krill may gain a 

reproductive advantage by winter feeding to fuel early spring reproduction. Early spring 

reproduction is thought to lead to higher success rates of the offspring by giving them a 

longer summer season to mature (Ross & Quetin 1986). Age 1+ krill may be in a unique 

position of having enough resources accumulated to be able to survive prolonged 

starvation, while also not needing to fuel reproduction in the coming summer. Pelagic 

food resources in the nearshore areas are low, with vanishingly low concentrations of 

chlorophyll and very few mesozooplankton (Durbin, unpublished data). The ACC is 

thought to carry mesozooplankton and potentially other prey items into the offshore areas 

of the WAP region (Loeb et al. 2009). The ACC however can also potentially advect krill 

out of the favorable WAP region, and into less productive areas to the north. Thus the 

more offshore shelf break areas may offer a risky, but potentially rewarding habitat for 

krill, with potential for food, but also risk of advection. The age-specific food 

requirements of krill may determine the balance of this risk-reward. 
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 Another unexpected observation was that offshore krill tended to have higher 

condition indices than krill sampled in bays, even when including only the smallest size 

classes for which condition was most variable.  At first glance it would seem that krill 

should be concentrated in the areas with the most favorable environmental conditions, 

which would lead to krill in areas of higher abundance also being in better condition, 

opposite to the observed pattern. However, krill in the bays may have higher competition 

for food resources, because of the high densities found there. Offshore krill may also 

have been advected into the region from areas with more favorable conditions. 

 No clear patterns in size distribution with depth were observed, with different 

tows showing different patterns. Cluster analysis also showed that station was a better 

predictor of the size distribution of a tow than depth, as nets within a tow clustered 

together more than nets of a particular depth. There has been a previous suggestion that 

different sizes of krill may utilize different parts of the water column in a form of niche 

partitioning (Schmidt et al. 2011, Nicol 2006), but no consistent evidence of this was 

observed in this study. 

Near bottom aggregations 

 Acoustic and net tow observations found krill aggregations in close proximity to 

the seafloor within bays during the daylight hours. This pattern was more evident in the 

acoustic data as net tows were restricted to 50 m above the seafloor due to concerns of 

vessel safety around icebergs.  Our near bottom aggregation observations add to the 

growing evidence that the sediment interface can be an important krill habitat. Schmidt et 

al. (2011) reviewed studies to date on epibenthic krill aggregations, showing over 14 

different studies observing epibenthic E. superba. This behavior is widespread, with 
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aggregations observed in the WAP, as well as in Terre Adélie in East Antarctica 

(Schmidt et al. 2011).  Widespread near bottom aggregations have been previously 

observed acoustically in winter to the south of our study region (Lawson et al. 2004). 

Epibenthic krill aggregations may be utilizing sediment food resources, consuming 

epibenthic and sublittoral diatoms which grow year round in some locations (Ligowski 

2000), or feeding on detritus settled out from the water column, which is preserved by the 

cold temperatures as a kind of “food bank” (Schmidt et al. 2011, Smith et al. 2006). If 

benthic food resources are indeed important to krill, particularly at times when water 

column food resources are scarce (Schmidt et al. 2011), energetic balance and access to 

these food resources may help explain why near-bottom krill aggregations were observed 

mainly in the very inshore. Relatively shallow inshore bays may reduce the energetic 

costs of swimming to and from the sea-floor, as compared to similar journeys in the 

deeper offshore areas; potentially an important savings during the winter period when 

krill energy budgets may be tight. Thus, sediment feeding may provide a greater net 

energy gain in shallow inshore areas as compared to deeper areas in the Gerlache Strait 

and offshore, potentially explaining the higher abundances of near bottom krill observed 

in the nearshore region.  

Diel patterns 

 Krill were observed to spend the daylight hours at depth and in fairly high 

concentration aggregations, while during the night krill were more dispersed throughout 

the upper water column. Similar patterns have been observed in this area previously, with 

Guzman (1983) and Zhou & Dorland (2004) all noting a pattern of descent at dawn and 

ascent after dusk. Water column phytoplankton was not available to krill during the 
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winter period of this sampling, but such diel cycling may be driven in part by endogenous 

rhythms not sensitive to temporal variations in the available prey field (Teschke et al. 

2011).  

Minimizing predation risk can be one of the main drivers of Diel Vertical 

Migration (DVM) behavior. The most prominent predators of krill during our sampling in 

the bays were humpback whales. Humpback whale abundance within these bays is high 

in late fall and winter, with estimates of 0.68 whales km-2 in Andvord bay, and 1.75 to 5.1 

whales km-2 in the adjacent Wilhelmina Bay (Johnston et al. 2012, Nowacek et al. 2011). 

These whales were frequently observed during sampling. Outside of the bays, whale 

abundance is much lower, at less than 0.1 whale km-2, and they were rarely noted during 

sampling or transit through these areas.  Unlike toothed whales, humpback whale feeding 

relies on a “significantly visually based prey locating component” (Friedlaender et al. 

2009). Humpback whales in the WAP have been observed to show strong diel patterns in 

feeding, with all or nearly all observed feeding occurring at night (Friedlaender et al. 

2013), and similar patterns in whale diel behavior were anecdotally observed during krill 

collections here.  Thus krill may reduce predation risk by avoiding the surface waters, 

where they are likely to be most accessible to whales, during daylight hours when 

visibility is greatest for the whales.  The distribution of humpback whales in this region 

also tracks our observed pattern of DVM; in bays where whales were abundant, strong 

DVM was observed, whereas in the more offshore areas in the Gerlache Strait where 

whales are relatively scarce, no clear signal of DVM was observed. 

With benthic food resources available at the seafloor and very little food in the 

water column, and a refuge from whale predation at the seafloor as well, why would krill 
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come to the upper part of the water column at night? Krill may be balancing multiple 

predation risks, or potentially minimizing metabolic costs. Although prominent, whales 

are not the only krill predators in the sampled bays. Mackerel icefish (Champsocephalus 

gunnari) were also anecdotally observed in underwater video on the seafloor around the 

time of sampling, and these predators may pose a predation risk to epibenthic krill. DVM 

has been suggested to help reduce metabolic costs in zooplankton, by allowing them to 

spend the day in deeper cooler waters where their metabolic rates are reduced (McLaren 

1963). In winter in the bays along the WAP this situation was somewhat reversed, as 

surface cooling led to a water column in which the coldest waters were consistently those 

above about 120 meters, with warmer waters below (data not shown).  Thus krill moving 

from daytime near the seafloor up into the water column at night may be experiencing 

reduced temperatures, allowing for reduced metabolism and energy savings. For 

example, a krill individual moving from the daytime biomass peak in Andvord Bay up to 

the nighttime peak would go from 0.09 oC to -0.14oC for a reduction of 0.25oC, and an 

individual which chose to transit further would experience an even greater change. Krill 

metabolism is strongly affected by temperature; for larval krill a change from 0oC to -1oC 

leads to almost halving of its energy requirement (Quetin & Ross 1989).  Krill are efficient 

swimmers, and transiting from their daytime depths to nighttime depths would only cost a couple 

of Joules of energy each way (Swadling et al. 2005). It may be that the energy savings from 

spending the day at slightly colder temperatures outweigh the costs of swimming to and from the 

seafloor, but more data are needed to understand this trade-off. 

Summary 
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Krill were observed to be abundant in the near shore region of the WAP in winter, 

with high concentrations observed in Andvord and Flandres Bays. Age 1+ individuals 

dominated krill assemblages in bays, while the more offshore Palmer Deep and Gerlache 

Strait were characterized by low overall abundances and primarily young-of-the-year krill 

individuals. Offshore krill had higher condition indices, suggesting either reduced 

competition for food, or advection into the area from a different source region. Near 

bottom krill aggregations were observed in all of the sampled bays, and may have been 

utilizing sediment food sources. Diel vertical migration from these near bottom daytime 

aggregations up into the water column at night was observed within bays, but no clear 

migration pattern was observed in the Gerlache straight. Observed DVM may be an 

adaptation to trade-offs between availability of sediment food resources, whale predation, 

and temperature influences on metabolism. These coastal fjords are currently under 

sampled and may harbor significant parts of the total population, with implications for 

overall stock assessment, and managing the fishery for krill in the WAP region, Including 

the observed size distributions in the near shore may help refine recruitment estimates for 

krill, which are to date largely based on more offshore surveys, and may be biased by 

missing this fraction of the population (Quetin & Ross 2003). Overall these results 

illustrate some of the complexities of understanding krill distributions, and indicate the 

importance of considering the role of very nearshore habitat for Euphausia superba. 
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Tables 

MOC tow Location Latitude Longitude Date Time 

(local) 

7 Andvord 

Bay 

-64 48.23 -62 41.56 May 23 22:13 

8 Andvord 

Bay 

-64 50.89 -62 35.82 May 24 09:41 

14 Flandres Bay -65 03.88 -63 19.11 May 29 21:47 

15 Flandres Bay -65 00.92 -63 15.28 May 30 09:16 

18 Gerlache 

Strait 

-64 51.93 -63 46.30 May 31 11:28 

19 Gerlache 

Strait 

-64 51.94 -63 46.12 May 31 20:35 

20 Palmer Deep -64 54.62 -64 13.78 June 1 05:46 

 

Table 1: MOCNESS station information, dates are in 2013, time is local 24 hour time. 
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Table 2: Krill length, weight, and condition for each tow with mean (standard deviation) 

as well as the number of krill analyzed and and overall abundance for each tow. Length is 

in cm, weight is dry weight in grams,  , abundance is in krill 

m-3, BWMD is biomass weighted mean depth and is calculated as      where x is 

the number of nets sampled, ni is the biomass in net I (m-2), N is the total biomass in the 

tow, and Zi is the midpoint of the net depth interval. Krill m-2 gives water column total 

abundances, and Krill g WW m-2  gives water column total wet weight biomass of krill 

assuming a 1:5 ratio of dry weight to wet weight (Tyler 1973). 

  

MOC tow 7 8 14 15 18 19 20 

# krill 

analyzed 

265 286 443 462 578 644 373 

Mean 

length 

2.64 

(1.01) 

3.08 

(0.71) 

2.93 

(0.43) 

2.84 

(0.72) 

2.47 

(1.00) 

1.45 

(0.30) 

1.65 

(0.64) 

Mean 

weight 

0.036 

(0.04) 

0.045 

(0.03) 

0.038 

(0.02) 

0.035 

(0.02) 

0.034 

(0.03) 

0.006 

(0.01) 

0.010 

(0.01) 

Mean 

condition 

1.558 

(0.75) 

1.358 

(0.32) 

1.427 

(0.23) 

1.361 

(0.43) 

1.719 

(0.56) 

1.708 

(0.42) 

1.765 

(0.51) 

Abundance 0.785 6.569 34.156 6.794 0.987 0.711 0.162 

BWMD 99.52 234.67 159.41 190.35 117.02 149.37 128.10 

Krill m-2 235 1807 8061 2038 251 284 156 

Krill g 

WW m-2 

53.96 430.01 1733.18 413.90 42.64 7.51 13.27 
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Figures 

 

 

Figure 1: MOCNESS tow locations. Tows 18 and 19 occurred at the same location at 

different times. 
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Figure 2: Length-weight relationship for all measured krill, with weight as dry weight in 

grams, length as Standard1, and weight = 0.014* length2.98 



79 
 

 

Figure 3: Histogram of lengths of krill sampled. Height of bars indicates mean numbers 

per m3 throughout the study region. Length bins are 0.25 cm intervals and are labeled by 

the upper size limit of each bin. Color indicates in which MOCNESS tow the individuals 

were collected. Boxes below the plot show the size-at-age from available winter literature 

values, where Siegel is 1987, and Quetin et al. is 1996. The preponderance of age 1+ krill 

is clear in the main peak between 2.75 and 3.5 cm. 
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Figure 4: Length frequency histograms by location. These histograms show the similar 

distribution between Andvord and Flandres Bay’s and the high contribution of young-of-

the-year in the more offshore Gerlache Strait and Palmer Deep samplings. 
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Figure 5: Average krill m -3 for each tow. Colors indicate the number of each krill in each 

size fraction. Blue moons show night time tows, yellow suns show daytime tows. 
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Figure 6: Vertical profiles of size fractions of krill. All plots show the upper 400 m of the 

water column with depth in meters on the y axis, and bar widths filling the depth interval 

they sampled. Please note that the abundance scale is different in each plot to show 

details. 
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Figure 7: UPGMA cluster analysis of normalized size distributions for all nets. Nets are 

labeled as Tow-net, where net 1 is the deepest net and higher numbered nets are 

progressively shallower. 
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Figure 8: Comparison of krill biomass as estimated with MOCNESS net catches and 

ADCP acoustics. Each point represents one MOCNESS net. Note the different x and y 

scales. 
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Figure 9: Spatial distribution of krill in the West Antarctic Peninsula in winter (May-

June) from acoustic estimates. Each point indicates the vertically integrated biomass from 

the surface to 400m or 10m above the seafloor in g wet weight m-3 averaged over a 6 

minute time interval. 
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Figure 10: Krill peak abundance depth over the range of bottom depths. Krill tended to 

either occur close to the seafloor (points along the triangle hypotenuse) or in a layer 100-

200 meters depth (points in horizontal layer). 
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Abstract 

 The West Antarctic Peninsula is a highly productive and highly seasonal 

ecosystem. Although the krill and larger organisms in this region are historically well 

studied, the diversity, distribution, and ecological roles of the microeukaryotes are poorly 

known. In summer, diatoms and Phaeocystis dominate the water column, but the 

distribution of microeukaryotes in winter, particularly heterotrophic microeukaryotes, is 

largely unknown. We investigated these organisms in winter using 18S rDNA sequencing 

of the 0.2 µm to 5,000µm size fraction from surface waters, deep waters, and sediments 

in 4 locations along the Peninsula. Just under 3 million quality-controlled sequencing 

reads revealed over 11,000 operational taxonomic units (OTUs), including sequences 

representative of almost every major eukaryotic lineage.  Different assemblages of OTUs 

were found in surface waters, deep waters, and sediments, with further differences within 

sample types by location. Water column samples included alveolates, diatoms, other 

stramenopiles, and a range of other groups, while sediment samples contained mainly 

cercozoa, diatoms, and metazoans. A Chaetoceros socialis –like OTU was observed at 

high abundance in all sediment samples with additional sequences in sediments from 

chrysophycea, cryothecomonas, and pedinellales, all phytoplankton known to form 

resting stages. These sediment phytoplankton OTUs suggest the sediments in this region 

may serve as a “seed bank” for phytoplankton diversity during the dark winter period. 

Improved information on the microeukaryote communities and their spatial partitioning 

provides a baseline against which future communities can be compared in a time of rapid 
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anthropogenic climate change, and suggests poorly known groups which may be 

ecologically important. 

Introduction 

 The West Antarctic Peninsula (WAP) is a highly productive ecosystem. This 

region supports large populations of megafauna, with over 3 million penguins breeding in 

the area, and whale densities in excess of 1 whale per km2 (Ducklow et al. 2007, Johnston 

et al. 2012). Anthropogenic pressure from multiple sources is also high in the WAP. The 

largest fishery in the Southern Ocean, that for the krill Euphausia superba, hereafter krill, 

is concentrated in this area, with catches in excess of 200,000 tons annually (Nicol et al. 

2011).  The WAP is also experiencing some of the most rapid climate change on earth; 

winter temperatures have increased by 5 – 6o C over just the last 50 years (Ducklow et al. 

2007). 

 The WAP is a historically well-studied ecosystem. Long-term surveys through the 

Antarctic Marine Living Resources (AMLR) and Palmer Long Term Ecological Research 

(palLTER) programs have documented the community of net phytoplankton (>50 µm), 

meso- and macro-zooplankton, penguins, whales, and seals, and the interannual 

variations in their abundances (Ducklow et al. 2007, Walsh 2014). However, the smallest 

eukaryotes, those not typically sampled by plankton nets, have often been left out from 

these surveys, particularly the non-photosynthetic single-celled protists (Heger et al. 

2013). The microeukaryotes are operationally defined as that fraction of the eukaryotic 

organisms which are too small to be visualized by the naked eye, thus encompassing 

organisms ranging from a single micron in length through roughly 1000 µm, a range of 3 

orders of magnitude. This relative lack of data on the smallest eukaryotes is not particular 
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to the WAP. Throughout marine ecology the smallest eukaryotes have often been 

excluded from analysis, largely due to methodological limitations, and protists are the 

least explored component of the biosphere (Caron et al. 2009, Heger et al. 2013). The 

diversity of microeukaryotes is incredible – molecular data have revealed a plethora of 

kingdom-level groups, expanding our view from an earlier, though still recent, 

understanding of 7 supergroups to include 13 additional deep branching lineages 

(Pawlowski 2013).  Many of these new high level taxonomic groups have only a few 

described species, with little known of their distribution or ecology (Pawlowski 2013, 

Dawson & Pace 2002). In recent years, advances in DNA sequencing and the increasing 

availability of massively-parallel pyrosequencing have made broad-scale and in-depth 

surveys of microscopic organisms possible, and even more recent advances in 

computational algorithms and reference databases have made such analyses practical for 

eukaryotes (Caron et al. 2009, Quast et al. 2013).  

 Microeukaryotes can be important in the WAP marine ecosystem, and their 

importance is probably not yet fully realized (Knox 2007, Ducklow et al. 2005).  At 

times, large proportions of the primary production in the region can be the result of cells 

to small to be identified by typical light microscopy; in some cases over 80%, of the 

chlorophyll and primary production occurs in the nano, pico, and ultra phytoplankton 

(Knox 2007).  The classical paradigm of the Antarctic as a simple food web of diatoms-

krill-whales is increasingly recognized as an over simplification.  The microbial loop of 

bacteria and protists rapidly cycling through organic carbon is now thought to be playing 

important roles, particularly outside of the spring diatom bloom (Azam et al. 1983, 

Ducklow et al. 2007). For example the small protistan heterotrophic nanoplankton have 
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been suggested to exert top down control on bacterial populations in the region (Ducklow 

et al. 2007). Increased understanding of the roles of microorganisms, both prokaryotic 

and eukaryotic may improve our understandings of how carbon flows through this 

ecosystem, and what prey are available to krill, and hence available to be transferred to 

the whales, penguins, and other charismatic vertebrates. Thus, uncovering the poorly 

known microeukaryotic community may potentially improve mechanistic understanding 

of WAP marine ecosystems, and predictive power of models for the region. 

 The WAP experiences extreme seasonality, with the classical spring bloom period 

of melting sea ice, long days, and high primary production, contrasting with a winter of 

extensive sea ice, short days, and extremely low primary production (Ducklow et al. 

2007).  Primary production over the annual cycle in the WAP is similar to that observed 

in temperate regions, but compressed into less than half the time (Ducklow et al. 2007). 

There has also been seasonality to research in the region, with many studies focusing on 

the active spring and summer seasons. Though less studied, winter is a particularly 

interesting period in the WAP because many organisms must find ways to persist through 

months of low light availability and low abundances of typical pelagic food sources. 

Benthic-pelagic coupling has been suggested to play an important role in these seasonal 

cycles, with sediment potentially serving as both a “seed bank” of resting phytoplankton 

spores and a “food bank” of phytodetritus available to heterotrophs (Smayda 2011, 

Mincks et al. 2005).  

 In this research, we investigated the diversity and distribution of all small (0.2 µm 

to 5,000µm) eukaryotes in the waters and sediments of the WAP in winter through 18S 

rDNA sequencing.  The distribution of these molecular sequences was used to investigate 
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the range of organisms present in the WAP, the assemblages of these organisms, their 

utilization of different habitat types, and their overwintering strategies.  

Materials and Methods 

Field Collections - Samples were collected between May 18 and June 3, 2013, on 

the RVIB Nathaniel B Palmer during cruise NBP1304 (Table 1). Water samples were 

collected in Niskin bottles on a CTD rosette. Surface water was collected from the 

surface mixed layer at 20 m depth. Deep-water was collected at 10m above the seafloor 

within bays, and at 600m in Palmer Deep (bottom depth 1345m) (Table 1, Figure 1). For 

each sample, 2L of whole seawater was filtered by peristaltic pump onto a 0.2 µm 

membrane filter, thus collecting all organisms or pieces of organisms between 0.2 µm 

and approximately 5 mm diameter. Surface and deep-water samples were collected from 

Flandres Bay, Gerlache Strait, and Palmer Deep; Surface water only was collected in 

Andvord Bay (Figure 1, Table 1). Filters were placed in individual cryovials and 

immediately frozen at -80oC.  Temperature and salinity were recorded simultaneous with 

sample collection with a SBE 911plus CTD (SeaBird). Photosynthically active radiation 

(400-700 nm λ) was recorded from a Biospherical Licor instrument. 

Sediment samples were collected with a megacorer (Ocean Scientific 

International Limited (OSIL)) from sampling sites identified as topographically smooth 

by multibeam bathymetry, and free from excessive ice rafted rock debris by underwater 

camera observation. Cores were recovered and processed immediately indoors, with 

sampling completed within 30 minutes of collection. To access sediments, overlaying 

water was gently removed by peristaltic pump and cores were extruded from the core 

tubes to just below the level of the sediment surface. The surface most layer of sediment 
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was sampled using autoclaved popsicle sticks, placed in cryovials, and immediately 

frozen at -80o C.  Sediment samples collected all organisms less than approximately 5 

mm. Sediment was sampled from two locations in Wilhelmina Bay, one with high krill 

abundance, and one with low krill abundance, from two locations in Andvord Bay, one 

shallower and one deeper, and from one location in Flandres Bay and one location in 

Palmer Deep (Figure 1, Table 1). Samples were collected from 3 separate cores from one 

of the Andvord Bay corings, and from a single core in each of the other corings. All 

samples were shipped on dry ice from the dock in Chile to the lab at the University of 

Rhode Island and stored at -80o until analysis. Bottom depth was recorded by shipboard 

Chirp 3260 echo sounder (Knudsen).  

Laboratory Processing – Total DNA was extracted from water filters with the 

DNeasy blood and tissue kit (Qiagen). Volumes of the initial lysis buffers were all 

doubled to ensure the filter was submerged and all material was lysed. Total DNA was 

extracted from 0.25 grams of each sediment sample using the PowerSoil kit (MoBio) 

with the bead-vortex lysis option, as per manufacturers instructions. Only samples of the 

same type (water or sediment) were extracted on the same day. All extractions were 

conducted in a laminar flow hood with project-dedicated pipettes, tips, and chemicals, to 

minimize possible contamination. 

18S rDNA was amplified using universal eukaryotic primers (Gast et al. 2004) 

modified by the addition of a variable position in the reverse primer to improve priming 

of ciliates (Cleary et al. in press), and to include adaptors for Illumina sequencing, and a 

variable number (0-3) of ambiguous bases to offset the amplicons and increase the 

variability at each read position for improved base calling. Each reaction contained a final 
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concentration of 1x Pfu Ultra II clear buffer (Agilent), 1x Bovine Serum Albumin (New 

England Biolabs), 0.25 mM equimolar mixture of all four deoxynucleotide triphosphates 

(dNTPs) (Promega), 0.1 µM each primer (forward and reverse), 1x Pfu Ultra II 

polymerase (Agilent), and 20% by volume DNA template at extracted concentrations.  

Pfu is a high fidelity polymerase with proof-reading activity, and has twenty times lower 

rate of PCR errors than the more commonly used taq polymerases, leading to increased 

sequence accuracy (Agilent User Manual). Thermocycling consisted of 95o for 30s, 

followed by cycles of 94o for 30s, 58o for 45s, and 72o for 30s, with a final extension of 

72o for 5 min. Samples were amplified for the minimum number of cycles necessary to 

obtain sufficient DNA for sequencing in order to reduce amplification biases and over-

representation of abundant targets. Water samples were all amplified for 35 cycles, as 

were sediment samples 28, 29, 30, 35, and 37, while the remaining sediment samples 

were amplified for 30 cycles. Amplicon presence and size was confirmed with gel 

electrophoresis. Amplification of no-template blanks included in each PCR showed no 

signs of contaminating DNA. 

Amplicon purification and sequencing was done at the URI Genomics and 

Sequencing Center. Amplicons were AmPure cleaned, re-amplified to add sample 

identification tags, and quantified on a BioAnalyzer (Agilent). Amplicons were pooled 

into one half Illumina Miseq run, and sequenced for 500 cycles, allowing for almost 

complete overlap of the amplicon. 

Data Analysis – Paired ends of reads were joined if the entire overlap region was 

identical in both read directions; if not the reads were discarded. Amplicons were then 

assigned sample-specific names and pooled for further analysis. Primers, and any 
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sequence data beyond the end of the amplicons, were trimmed, and any sequences in 

which the exact primer sequence was not found were again discarded. This fairly 

stringent approach to QC likely eliminated most sequencing errors, as they are unlikely to 

occur identically in the two directions of sequencing. Amplicons were clustered into 97% 

Operational Taxonomic Units (OTUs). 97% sequence identity has been commonly used 

as a proxy for species, and while not the most biologically meaningful approach, is 

computationally feasible for large sequence data sets (Sogin et al. 2006). Any OTU with 

only a single sequence in it was discarded because such singletons may be erroneous and 

add significantly to computation time, without adding much to the overall interpretations 

of the data; this discarding of singletons is commonly applied to environmental data sets 

(Logares et al. 2014).  All of the above analyses were conducted in Qiime – virtual box 

(Caporaso et al. 2010) 

Taxonomic identity was assigned to each OTU through automated comparison in 

Qiime with the Silva database (Quast et al. 2013).  BLAST searching was used to 

confirm and in some cases refine taxonomic assignments (Altschul et al 1990). For 

certain groups, sequence data was further investigated using oligotyping (Eren et al. 

2013), which clusters sequences based only on the base positions with the greatest 

Shannon entropy, allowing for more biologically meaningful groupings with less noise. 

Oligotyping is currently only computationally feasible on closely related groups of 

sequences, and was used to investigate the Chaetoceros and Telonema sequences.  A 

dissimilarity matrix of all samples was constructed using the Bray-Curtis metric. 

Principal coordinates were calculated in Qiime, and visualized in MatLab. In order to 



97 
 

determine the significance of observed groupings, ANOSIM and ADONIS were 

calculated in Qiime (Legendre & Anderson 1999). 

Results 

 A diverse range of eukaryotic sequences was recovered from the samples. After 

quality control, 2,817,417 sequences were used in further analysis. These sequences 

clustered into 11,621 OTUs, 6,972 of which could be assigned some level of taxonomic 

identity. 1,715 OTUs were observed in both sediment and water samples, while 3,105 

OTUs were found exclusively in water samples, and 6,803 OTUs were found exclusively 

in sediment samples. 2,107 OTUs were found in only a single sample. Shannon diversity 

metrics (Shannon & Weaver 1949) for the water column and sediment were very similar, 

with 4.575 for the water column, and 4.578 for the sediment. OTUs from 17 of the 20 

major eukaryotic lineages were observed, including ophistokonts, amoebozoa, excavata, 

picobiliphytes, centrohelids, rhizaria, haptophytes, telonemia, alveolates, stramenopiles, 

and chlorophytes (table 2). The only high-level lineages not observed, or not identified, 

were rappemonae, collodictyonidae, and rigidifilida (Figure 2). 

 Sequence assemblages contained a few highly abundant OTUs, and a large 

proportion of rare OTUs. Only the 11 most abundant OTUs individually contained more 

than 1% of the total number of sequences. The top 20 OTUs (shown in Figure 3 and 

Table 2) combined made up slightly less than 52% of the total sequences. The most 

abundant 425 OTUs combined include 90% of the sequence reads, while the top 4,223 

OTUs combined include 99% of all the sequencing reads. The least abundant 7,398 

OTUs, which composed 64% of the total OTU diversity, combined to make up only 1% 

of the total sequence reads.  
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Sediment samples had a slightly higher proportion of rare OTUs than water 

samples. In the water samples, 91.6% of the OTUs had an individual sequence abundance 

of less than 0.01% of the total water sequences, while in sediment this percentage of rare 

OTUs was 92.6%. Similarly, water samples had more abundant OTUs, with 0.41% of the 

OTUs individually making up more than 1% of the total water sequence abundance, and 

only 0.11% of the OTUs reaching this threshold in sediment samples. Most of the top 20 

OTUs were present mainly in one sample type, that is, surface water, deep-water, or 

sediment, though some were distributed throughout the source types (Figure 3, Table 2). 

Unknown groups made up a larger fraction of sediments sequences than of water column 

sequences. In surface waters, organisms unclassifiable to levels lower than “eukaryote” 

made up less than 8% of the total sequences, whereas in sediments this most poorly 

known category encompassed 31% of the total sequences. 

The most abundant OTU overall was a type of Chaetoceros diatom, which is 

identical to reference sequences for C. socialis, C. debilis, and C. setoense over the 

sequenced gene region. This Chaetoceros OTU was found almost exclusively in sediment 

samples (Figure 3, Table 2). The next most abundant OTU was a Scrippsiella-like 

dinoflagellate, which was found mainly in surface waters, but was present in all sample 

types. The third most abundant OTU overall was another diatom, this one found 

predominantly in the surface waters. This third-most abundant OTU diatom’s sequence is 

100% identical over the sequenced region to representative sequences from 

Thalassiosira, Minidiscus, and Cyclotella references (as such it is categorized only as 

Mediophycea in the diatom analysis). 
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 Multivariate analysis shows separation of the three source types (surface water, 

deep-water, and sediment), and additional separation by sampling site within the source 

types. Principal coordinate analysis shows these three distinct groupings (Figure 4).  

Surface water samples cluster most closely together. Deep-water samples cluster closer to 

the surface water than to the sediment, with the shallower deep-water samples from 

Flandres Bay clustering nearest the surface water samples, and the deepest deep-water 

samples from Palmer Deep clustering furthest away from the surface water samples.  

Sediment samples clustered separately from both surface and deep-water samples. 

Samples from Palmer Deep sediment clustered notably closer to the water column 

samples than did other sediment samples.  

ANOSIM analysis showed that overall sample type is a significant factor in 

determining the community microeukaryote assemblages, with p=0.001. Within each 

sample type, location (Flandres, Andvord, Gerlache, Wilhelmina, Palmer Deep) was also 

a significant explanatory variable in these assemblages; for surface waters and sediment 

p=0.001, while for deep-water p=0.004. ADONIS analysis confirmed the significance of 

these clusterings, and showed they explain a large part of the observed variance. Overall, 

ADONIS showed sample type was significant at p<0.001 and explained 59% of the total 

observed variance. Within each sample type location was significant, with p<0.001 for all 

three types. Within surface waters, location explained 66% of the total variance, within 

deep-waters location explained 69% of the total variance, and within sediment samples 

location explained 53% of the total variance.  

 Considering the overall distribution of all OTUs across all samples, there are clear 

differences in the relative abundances of different phylogenetic groups in the different 
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sample types (Figure 5, Table 3). Surface waters show higher relative abundances of non-

diatom stramenopiles, picozoa, haptophytes, and telonema. Deep water showed higher 

relative abundances of alveolates, metazoa, and radiolaria. Sediment showed higher 

relative abundances of cercozoa, apicomplexa, and unknown organisms. Both surface 

waters and the sediment had high relative abundances of diatoms, as compared to the 

deep water.  

Results for specific groups follow, clustered by major lineage as per Keeling et al. 

(2005) and Quast et al. (2013), and arranged in alphabetical order for simplicity. 

Alveolates 

 Apicomplexa, a phylum best known for its member Plasmodium which causes 

malaria in humans (Lee 2008), were observed in 38 of the 40 samples, but were at very 

low relative abundance in water samples (Figure 5). Within water samples the 

apicomplexa were mainly Lankasteria, with a few sequences of other apicomplexa 

including Eugregarinia (Figure 6). In deep water samples apicomplexa sequences 

included cryptosporidium OTUs. Sediments, where apicomplexan sequences were at 

their highest relative abundances, showed fairly even distributions of types of 

apicomplexa, with OTUs representative of Eimeriorina, eugregarines, fipodium and 

selidium gregarines, Lecudina, sarcosystis and rhytidocystis all observed. 

Ciliate sequences were present in all samples, with highest relative abundances in 

surface samples, and lowest relative abundances in the sediments (Figure 5). In the 

surface waters ciliates were mainly choreotrichia and oligotrichia, with small relative 

abundances of Salpingella and Strombilidium (Figure 7). Although choreotrichia 
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sequences were not classifiable to lower levels, this group includes the tintinnids. 

Strombilidium sequences were more abundant in Andvord surface waters than in the 

other sampling locations. Choreotrichia and oligotrichia were also in high relative 

abundances within deep waters, but they were joined by oligohymenophorea sequences. 

The ciliate assemblage within the sediments appeared more diverse, with no single 

dominant type and a mixture of Euphlota, haptoria, hypotrichia, spirotrichia, and 

spirotrachelostyla. Ciliate sequence relative abundance was correlated to that of 

dinoflagellates, with a linear r2 = 0.61. 

Dinoflagellates were not a large percentage of the sequences in any sample, but 

were present in all samples, and showed higher relative abundances in water samples as 

compared to in sediments (Figure 5). In the surface waters dinoflagellate sequences 

belonged mainly to the gymnodiniphycidae, Gyrodinium, and haplozoa (Figure 8). Deep 

water assemblages were similar to those observed in surface waters, with the addition of 

smaller relative abundances of dinophycea, peridiniphycidae, and suessiasea. The 

sediments were quite variable in their composition of dinoflagellates, which is not 

surprising given the low abundance of dinoflagellate sequences in them (0.18% of 

sediment sequences). Palmer Deep sediments notably had a high relative abundance of 

kareniacea, and in Wilhelmina Bay the coring in a high krill abundance area showed 

notably high relative abundances of Protoperidinium. 

Other alveolates were present in all samples, with the highest relative 

abundances found in deep water, where they made up 27% to 62% of the overall total 

sequences (Figure 5, Table 3).  Many alveolate sequences were not classifiable to lower 

taxonomic groupings, but amongst those that were, syndiniales dominated (Figure 9). In 
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particular syndiniales groups I and II had the highest relative abundance, with lower 

relative abundances for groups III and IV. Syndiniales group I had the highest relative 

abundance within the sediment samples, while in deep water samples group II made up 

the bulk of the alveolates, and in surface waters a fairly even mixture of the two types 

was observed. amoebophrya were also observed, and had higher relative abundances in 

water than in sediment. In sediment samples, Perkinsidae made a consistent presence, 

making up over 10% of the alveolates, and low relative abundances were observed of 

protalveolata and duboscquella. 

Cryptophytes 

Cryptophytes were found in all samples, but had their highest relative 

abundances in the surface waters (Figure 5). Within the sediments, cryptophytes were 

notably higher in relative abundance at Palmer Deep. In surface waters, and deep waters 

except those at Palmer Deep, cryptophyte sequences were composed mainly of reads 

within a single OTU of cryptomonadales. Small relative abundances of one OTU of 

teleaulax were also present in the water samples, and less frequently in the sediment. In 

the sediment samples, and in the deep water at Palmer Deep, cryptophytes were 

composed mainly of a single OTU of Rhodomonas, with smaller contributions from 4 

OTUs of goniomonas. 

Excavates  

Excavates were observed mainly in deep waters, with a few present in surface 

waters, and few in sediments, and were consistently present but at low relative 

abundances (Figure 5).  In sediments excavates were present in highest relative 
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abundances in Palmer Deep sediments, with lower but still above average relative 

abundances in Flandres Bay sediments. Euglenozoa made up 99.5% of the excavate 

sequences. In the water column, excavates were mainly diplonemia, with some 

contribution from neobodina, particularly in surface waters (Figure 10). In the sediment a 

more mixed community of excavates was observed. Petalomonas made up the largest 

relative abundance, with additional high relative abundances of diplonemia, and smaller 

relative abundances of bodo, carpediomonas, and rhynchopus, with a few sequences of 

tetramitia. 

Haptophytes 

Haptophytes, single celled division of algae best known as the group containing 

the coccolithophores, were found mainly in surface waters (Figure 5). Across all samples 

haptophytes were a mixture of Chrysochromulina and Phaeocystis, with an overall 

contribution of 64% Chrysochromulina and 32% Phaeocystis. Small relative abundances 

were observed from other prymnesiophycea, and other prymnesiales. In the deep waters 

of Flandres Bay pavlophycea OTUs were also observed in low relative abundance. 

Haptophytes were at very low abundances in the sediment, with Phaeocystis making up 

less than 0.007% of the total sediment sequences. 

Ophistokonts 

 Metazoan (multicellular animal) sequences had their highest relative abundances 

in deep waters, with similarly high relative abundances in sediments (Figure 5).  Surface 

water metazoans included higher relative abundances of non-copepod arthropods, and 

Porifera (sponges) (Figure 11). Porifera sequences classified into 30 OTUs, but sequence 
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abundance was dominated by 2 OTUs, both belonging to the desmospongiae. One of 

these desmospongiae OTUs dominated the porifera sequences in Flandres Bay (71%), 

while in the other surface waters the 2 OTUs were both present in a fairly even mixture 

with 31% to 59% of the aforementioned OTU. Sediment samples showed high relative 

abundances of nematode sequences (round worms), as well as playthelminthes (flat 

worms), and kinorhyncha (mud dragons). Annelid (segmented worms) sequences showed 

high relative abundances in many samples, particularly in the deep water of Flandres bay.  

Copepod sequences were also found across all sample types. Within the water column 

copepods were a mixture of an OTU with a sequence identical to representative 

sequences of Oithona sp., an OTU with a Pseudocalanus/Microcalanus like sequence, an 

OTU more similar to reference sequences for Euchirella/Scaphocalanus, and an OTU 

most closely related to Tisbe/Nemesis type copepods.  Oithona copepods were also one of 

the dominant zooplankters identified taxonomically in co-occurring net tows (data not 

shown). In the sediment, copepod sequences were mainly of the harpacticoid Diathrodes 

(Boxshall & Halsey 2004). 

 Fungus sequences were present in all samples, but always at low abundances, 

with less than 0.1% of the total sequences in the surface and deep waters, and 0.51% of 

the sediment sequences (Table 3). Fungus sequences were composed largely of 

chytridiomycetes and glomeromycotina, with smaller contributions from agarimycetes, 

taphrinomycotina, yeasts, and others. 

Picozoa 
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Picozoa sequences were observed in all samples, with highest relative abundances 

in surface waters (Figure 5, Table 2). No further taxonomic information was available for 

these poorly known organisms. 

Plantae 

Chlorophyte (green alga) OTUs had highest relative abundances found in the 

surface samples (Figure 5). In these surface samples Chlorophyte OTUs were mainly 

Bathycoccus and Micromonas (Figure 12). In deep waters these two groups were also 

important, but mamiellophycea and organisms from the clade VII group were also 

present at high relative abundances. Within sediments the few chlorophyte OTU 

sequences observed were mainly associated with clade VII, although there were also 

sequences of mamiellophycea, Micromonas, prasinophytes, nephroselmidophycea and 

ulvophycea. 

Rhizaria 

 Cercozoa OTUs were, like the apicomplexa, mainly observed in sediment 

samples (Figure 5).  The few cercozoa present in surface waters were mainly 

cryothecomonas (Figure 13). While the deep water also had a relatively low overall 

abundance of cercozoan OTU sequences, those present were more diverse, with 

Phaeodaria and Paradinium present, and at higher relative abundances in Palmer Deep. 

Deep water in Flandres Bay had a larger relative contribution of protapsidae. Both deep 

water and sediment samples included OTUs of chlorarachniophyta. In sediment, where 

cercozoa had their largest relative abundance, the cercozoan assemblage was variable by 

station, but consistently composed largely of cryothecomonas and silicofilosea.  In 



106 
 

Andvord Bay these two types were present in roughly equal relative abundances, while in 

Flandres Bay there is a lower relative abundance of silicofilosea sequences. At Palmer 

Deep a higher proportion of cercozoa sequences were unclassifiable to lower taxonomic 

groupings. Within Wilhelmina Bay, the coreing in the high krill concentration area had 

lower relative abundances of Phaeodaria, as compared to the coreing outside of the area 

of high krill abundance. 

Foraminifera were present in 39 of the 40 samples, including surface waters. The 

greatest relative abundance of foraminifera was found in the Palmer Deep sediments, 

with lesser but still above average relative abundances in the deep waters at Palmer Deep 

and Gerlache Strait (Figure 5).  The foraminifera sequences were 97% categorized as 

Epistominella, closely related to E. exigua. Other foraminifera present at low relative 

abundances included Reophaxis and Bulmina marginata. 

Radiolarians were observed mainly in deep water samples (Figure 5). Most of 

the radiolarian sequences observed (78%) were categorized as radiolarian type B – the 

Sticholonche and related radiolarians. BLAST searching these sequences confirmed their 

taxonomic affiliation with Sticholonche. 

Stramenopiles 

 Diatoms had high relative abundances in both surface waters and the sediment, 

and lower but still present abundances in deep waters (Figure 5). The water column 

diatoms were composed mainly of sequences from the single OTU with the third highest 

overall abundance (Figure 14). This OTU is classified as Mediophycea, as it 100% 

identical over the sequenced region to representatives from Thalassiosira, Minidiscus, 



107 
 

and Cyclotella. In addition to the dominant Mediophycea OTU, surface water samples 

contained Corethron sequences, and a low relative abundance of OTUs classifiable as 

Thalasiossira, while deep water included additional Porosira sequences. A small 2-5 µm 

cylindrical diatom, likely our abundant Mediophycea OTU, and Corethron were observed 

by microscopy in surface water samples during the cruise (K Whitaker pers. comm.). 

Sediment diatom sequences were composed almost exclusively of a single OTU of 

Chaetoceros. This sediment Chaetoceros OTU is identical over the sequenced region to 

reference sequences of C. socialis, C. debilis, and C. setoense.This Chaetoceros OTU 

was the most abundant sequence overall across all of the eukaryotic sequences(Figure 3). 

Oligotyping analysis showed this OTU is composed 98% of a single unique sequence – 

this one unique Chaetoceros sequence makes up 28% of all of the sediment sequences 

observed across all taxa. Within sediment samples the relative abundance of diatoms was 

correlated with depth, with higher relative abundances at shallower depths, and lowest 

diatom abundances in the deepest sediment from Palmer Deep. A linear fit to this 

comparison of diatom relative abundance with depth gave an r2 of 0.76, while an 

exponential fit to this data gave an r2 of 0.89.  

 Non-diatom stramenopiles were present in all samples, with highest relative 

abundances found in surface waters (Figure 5). The largest fractions of the non-diatom 

stramenopile sequences came from the numbered MArine STramenopile (MAST) clades, 

rather than from taxonomically described groups (Figure 15). MAST-1 sequences were 

present in all samples, with higher relative abundances in water samples. MAST groups 

3, 7, and 8 were also at high relative abundances in water samples, while group 12 was 

present mainly in sediment samples. All samples had a low relative abundance signal 
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from bolidomonas. Surface waters also had a high relative abundance of pelagophyseae, 

and the Andvord and Gerlache samples also had a smaller relative abundance of 

phaeophycea. Deep water assemblages were intermediate between those of the surface 

and those of the sediment, with Palmer Deep deep water most resembling the sediment 

community. Both deep water and sediments had high relative abundances of 

chrysophyseae and labyrinthulomycetes. For Palmer Deep, deep water and sediment also 

contained bicoseocida sequences. Sediment stramenopile assemblages included a large 

relative abundance of pedinellales, with smaller contributions from peronosporomycetes, 

Pirsonia, and paraphysomonas.  

Telonema 

 Telonema sequences were found in all samples, and had highest relative 

abundances in the surface waters (Figure 5). All telonema sequences were classified as 

unknown/uncultured, so oligotyping was used to investigate whether there were 

biologically separate groupings with differences in distributions. Each oligotyped OTU 

was assigned a letter name in order of overall abundance. Clear differences in the 

telonema community assemblage were observed between different sample types (Figure 

16). In surface waters telonema sequences mainly belong to OTUs A & B. Deep water 

samples were mainly B, with others, including O & P which were not found in surface 

waters or the sediments. Sediments were mainly OTUs F & I. Telonema assemblages 

also showed more geographic variation than was seen in most groups investigated, with 

clear differences between stations. The northern samples from Andvord Bay and 

Gerlache Strait showed clear differences in telonema assemblages from the southern 
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samples from Flandres Bay and Palmer Deep within surface water. Within the sediment, 

Andvord had higher relative abundances of F as compared to the other locations. 

Discussion 

Range of Organisms and the Rare Biosphere 

 The 11,621 OTUs found in the WAP region samples covered much of the known 

range of diversity of eukaryotes with OTUs representative of almost all of the kingdom 

level eukaryotic lineages (Pawlowski 2013). OTUs which were not classifiable by 

comparison with Silva were simply classified as “unknown”, although selected BLAST-

searching suggests some of these organisms represent poorly known groups, including 

heliozoa, which may be underrepresented in the database, thus making our observed 

diversity of types of organisms potentially an underestimate. Although none of the 

sequences which were individually investigated showed any signs of errors, it is also 

possible some fraction of these unkown OTUs may represent PCR or sequencing errors 

which evaded our quality filtering. Roughly 10% of the estimated total diversity of 

protists has been described, and this fraction is highly variable between phylogenetic 

groups (Heger et al. 2013). Thus is it perhaps not surprising that we observed a noticeable 

fraction of reads which are completely unidentifiable (Table 3), and additional organisms 

which were identifiable only to very broad kingdom level groups (Figures 6 through 16). 

The unknown fraction was highest amongst sediment samples, and lowest in surface 

waters, suggesting the taxonomic diversity of sediment organisms in the WAP may be 

less well characterized than that of the water column community, and may be an 

interesting area for future investigations.  
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Many of the OTUs observed were present in very low abundances, composing the 

‘rare biosphere’ which has often been observed in deep sequencing studies of mainly 

bacterial and archeal assemblages, but also microeukaryote assemblages (Sogin et al. 

2006, Logares et al. 2014). In comparison with microeukaryote communities observed in 

the coastal surface water of Europe, our water samples contained relatively few abundant 

OTUs with only 0.41% of the total OTUs representing over 1% of the total sequence 

reads, while Logares et al. (2014) found typically higher values, with 0.9 to 2.7% of the 

OTUs having this level of abundance. Similarly we observed more rare OTUs with 

91.6% of the OTUs observed having less than 0.01% of the total reads, as compared to 

the 66%-77% observed by Logares et al.  Differences in target gene fragments, 

sequencing depth, and data analysis methods (97% OTUs here vs 95% OTUs in Logares 

et al. 2014) may artificially inflate or deflate the number of rare OTUs, so these results 

should be regarded cautiously until there are more studies of marine microeukaryotes 

with which to compare the results. Nevertheless, this higher fraction of rare organisms in 

WAP is interesting; the rare biosphere has been suggested to represent a range of 

organisms waiting for the environmental conditions to be right, and for them to increase 

in abundance (Logares et al. 2014). The higher proportion of rare OTUs in the WAP 

winter sampling, as compared to European coastal waters, may be a reflection of the 

extreme seasonality in the WAP. Many organisms in the rare biosphere may be spending 

the winter period in a dormant state, and may not become active members of the 

ecological community until the spring increase in solar irradiance and water column 

stratification, or the concomitant increase in primary production..  

Spatial variations in assemblages 
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 Microeukaryote assemblages were variable between sample types, with clear 

differences between surface waters, deep waters, and sediment samples. These 

clusterings were seen in PCA and statistically confirmed with ANOSIM and ADONIS 

analyses (p<0.001).  Sediment is, in many ways, a different habitat from the water 

column, with surfaces and refuges, different nutrient and chemical substrate availabilities, 

and without the concern for organisms of sinking out of the habitat. Causative factors 

driving differences between surface and deep waters are less clear, though solar 

irradiance is likely to be an important driver. Temperatures throughout the water column 

were within 1.5 degrees of 0oC, and salinities were within 1 psu (table 1).  Solar 

irradiance is likely the largest difference between the surface and deep water 

environments, and has previously been considered the main limiting factor for 

phytoplankton assemblages over much of the year in the Southern Ocean (Fryxell 1989). 

In winter there is relatively little incoming solar irradiance, with our highest values of 

photosynthetically active radiation (PAR), observed in the 20m depth samples taken 

around noon, at only 5 µmol photons m-2 s-1, below the level which has been used to 

induce light limitation in various phytoplankton (Harrison et al. 1990). All deep samples 

and night time surface samples had undetectable light levels. Surface waters contained 

higher relative abundances of some photosynthetic groups, including diatoms, 

haptophytes, other stramenopiles, and chlorophytes (Figure 5 & Table 3). Thus, despite 

the relatively low levels of light, and few hours of light daily, photosynthetic organisms 

appear to be concentrated in the part of the water column where they could best utilize 

this energy. Surface waters also contained higher abundances of certain non-

photosynthetic groups which have been associated with sea ice, including picozoa, 
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telonema and ciliatas, suggesting these groups may spend time in the surface waters 

before the ice and associated community develop. Deep waters contained higher relative 

abundances of metazoans, euglenas, and radiolarians than were found in surface waters.  

Differences between locations were also significant within sample types. Within 

the sediment samples, Palmer Deep samples clustered closer to the water column samples 

(Figure 4). Palmer Deep assemblages included more of some more typically water 

associated groups of organisms, such as cryptomonads, paraphysomonas, and kareniacea. 

Palmer Deep is much deeper than the other sediment samples, and is an area with much 

lower krill abundances than within the bays (Cleary et al. in prep). These sediments may 

thus be experiencing less re-processing and grazing and may reflect a signal from 

organisms sinking out of the water column after the spring bloom. Within Wilhelmina 

Bay, the sediment samples from an area with low krill populations, showed higher 

relative abundances of Phaeodaria (cercozoa) than a nearby coreing in a high krill 

population area. It is possible these soft bodied sediment organisms may be being grazed 

down by krill feeding at the seafloor (Schmidt et al. 2011). Krill aggregations were 

observed at the sediment interface during the sampling period, suggesting krill may be 

actively grazing on these benthic organisms (Cleary et al. in prep) 

Ciliates and Dinoflagellates 

Ciliates have previously been found to be at higher abundances in water 

influenced by the Bellinghausen Sea than in more coastal waters with stronger Gerlache 

water influence (Alder & Boltovskoy 1991). This is in agreement with the finding of 

highest relative abundance of ciliate sequences in the surface waters of Palmer Deep, the 

most offshore of our stations. It has been suggested that ciliate abundance in the Southern 
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Ocean may be driven by patterns in the abundance of their preferred prey, dinoflagellates 

(Alder & Boltovskoy 1991). We see evidence of this in the sequence data, with relative 

abundances of ciliates and dinoflagellates correlated. However, Gymnodinium 

dinoflagellates, which were the largest fraction of the observed dinoflagellate OTUs, 

have been shown to feed on ciliates, with preferences for small Oligotrichs, which were 

one of the most abundant ciliate sequence groups (Bocktahler & Coats 1993). 

Dinoflagellates have shown a linear increase in feeding rate with ciliate prey 

concentration, with maximum ingestion rates of 1.5 ciliates per day (Bocktahler & Coasts 

1993).  Gymnodinium dinoflagellates are major herbivores in the Southern Ocean (Sherr 

& Sherr 1994). Thus, while the correlation between ciliates and dinoflagellates may 

suggest a trophic interaction between these groups as one of the factors determining their 

distributions, it is unclear whether ciliates or dinoflagellates are the predators. It is also 

possible that a third factor, such as the availability of bacterial food, or the distribution of 

predators, drives the abundances of both ciliates and dinoflagellates in a similar way. 

Euphausia superba were abundant in the region at the time of sampling, and these krill 

are known to consume microzooplankton such as ciliates and dinoflagellates, so krill 

predation pressure may be an important factor in the distribution of these groups (Knox 

2007, Cleary et al. in prep). 

Small flagellates 

Small flagellates are an ecologically important group in marine ecosystems, due 

to their role in bactivory, and the resulting release of nutirents to phytoplankton (Logares 

et al. 2012). The uncultured groups of Marine Stramenopiles – designated here following 

the common nomenclature as MAST – followed by the group number, are thought to 
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consist of such small flagellates, with sizes typically in the 1-5 um fraction (Logares et al. 

2012). MAST group sequences were fairly common in our samples, particularly in the 

surface waters. Most MAST groups are thought to be largely planktonic, corresponding 

to our observed distribution, but MAST group 12 is thought to be active mainly in 

sediment environments (Logares et al. 2012), which is where we found this group’s 

highest relative contribution to the stramenopiles. 

Picozoa, which were found in all samples but had highest relative abundances in 

the surface waters, are very small heterotrophic flagellates, with maximum sizes only 

around 3 µm (Seenivasan et al. 2013). These poorly known organisms are globally 

distributed (Seenivasan et al. 2013).  These picozoans feed on particles <0.15 µm, likely 

marine colloids, such as exudates from phytoplankton, and potentially viruses, using a 

unique pattern of locomotion described as “jump, drag, and skedaddle” (Seenivasan et al. 

2013). The high relative abundance of these organisms in the surface waters suggests 

they may be utilizing colloid-sized exudates remaining from the spring phytoplankton 

bloom. It is possible these picozoa play an important role near the base of the WAP food 

web in winter; they utilize a food source so small as to be inaccessible to most 

heterotrophs, and may be important prey in this winter period with low photosynthetic 

biomass. Microscopic analyses of surface waters from the WAP have previously found 

that “small unidentified flagellates (usually less than 5 µm) are always numerically 

dominant” (Ducklow et al. 2007). Our sequencing suggests that at least some of these 

small flagellates are likely to be members of the picozoa.  

Telonema are another poorly known group which may contribute to the 

abundance of small unidentified flagellates in the WAP. Small flagellates such as these 
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telonema and picozoa groups may play an important role in marine ecosystems by 

increasing nutrient availability to phytoplankton through bacterial grazing and nutrient 

excretion (Azam et al. 1983). Although only 2 species of telonema have been described, 

earlier molecular work suggests at least 20 phylogenetic groupings amongst these 

organisms, and our analysis identified 24 phylogenetically distinct groups within the 

WAP (Klaveness et al. 2005, Bråte et al. 2010, Pawlowski 2013). The described species 

of telonema are small, pear-shaped heterotrophic flagellates, ranging from 6 to 20 µm in 

length, and are thought to feed on bacteria, small flagellates, and pico/nano 

phytoplankton (Klaveness et al. 2005, Bråte et al. 2010). Telonema are broadly 

distributed, and are thought to be one of the most widely reported heterotrophic 

flagellates (Klaveness et al. 2005).  Telonema are frequently encountered in sea ice, and 

their abundances in water have been correlated with distance to the ice (Bråte et al. 

2010). At the time of sampling in early winter, sea ice was still forming, and the ice algal 

community was not yet developed; the distribution of telonema sequences mainly in 

surface waters may suggest staying in the surface waters as an adaptation to take 

advantage of this sea ice habitat when it becomes available. 

Although these telonema are poorly known, they are of interest due to their high 

relative sequence abundance particularly within the surface waters, where they made up 

over 10% of the sequence reads in some samples, and their presence in all sample types 

suggests they may play an important, and as yet largely unknown, role in the WAP 

ecosystem. In Arctic waters, telonema are on occasion the numerically dominant 

flagellates (Klaveness et al. 2005). The very clear differences in the telonema 

assemblages between surface waters, deep waters, and particularly sediments, suggests 
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that within this poorly known group different members employ different ecological 

strategies.  Types A, D, and L had much higher relative abundances within the surface 

water, suggesting they may prey on small phytoplankton present there in winter or be 

awaiting sea ice community development, while types O & P were found predominantly 

in deep waters, suggesting perhaps different feeding strategies. Types F & I dominated 

the sediment telonema sequences; telonema to date have been mainly identified in water 

samples, and their flagellate morphology would not appear to be adapted to a benthic 

lifestyle, so the presence of telonema types F & I across all sediment samples may 

suggest the ability of these groups to potentially form resting spores, and possible 

presence of a type of cysts has previously been suggested (Bråte et al. 2010). 

Alternatively these sediment telonema may be residing in the nephloid layer of the water 

column. Our sediment sampling captured the sediment-water interface, and it is possible 

that some of the relatively low abundance groups in the sediments, such as the telonema 

may have come from the very near bottom waters, and types F & I may be adapted to a 

deeper lifestyle. 

Foraminifera 

The foraminifera Epistominella exigua, which was found mainly in sediment 

samples but also in the water column, is a globally distributed species, which is thought 

to be genetically homogenous over its full geographic range (Lecroq et al. 2009). This 

species is 100-200 µm in size, and is one of the most common deep sea foraminifera 

(Lecroq et al. 2009). E. exigua relies on phytodetrital food resources, and is therefore 

typically found in highly seasonal environments, such as in the WAP (Lecroq et al. 

2009). This phytodetritivorous life style likely explains why the highest relative 
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abundance of foraminifera was observed  at Palmer Deep, since Palmer Deep sediments 

appear to be most influenced by sedimentation of phytodetritus.  

Porifera 

Porifera are important components of benthic communities in the WAP 

(McClintock et al. 2005, Knox 2007). However, their high relative abundances in the 

surface waters were surprising, particularly as most sponges have larvae which are 

lecithotrophic and only briefly free swimming (McClintock et al. 2005). It is unclear how 

sponge DNA became distributed in the pattern we observed, with porifera making up a 

large fraction of the metazoan sequences in the surface waters, but almost absent from 

deep waters and sediments. It is possible some of these desmospongiea have longer larval 

periods, perhaps to allow for greater dispersal, or in order to match settling time of the 

larvae with the seasonal phytodetritus flux. Iceberg scour or anchor ice may also dislodge 

pieces of sponges and carry them to the surface waters.  

Sediments as a Seed Bank 

Cryothecomonas, our highest relative abundance cercozoan, has often been 

reported in polar waters and sea ice (Thaler & Lovejoy 2012, Durbin & Casas 2013). We 

found higher relative abundances of cryothecomonas in surface waters as compared to 

deep waters, which is in agreement with earlier studies finding highest abundances near 

the surface, and particularly in association with sea ice (Thaler & Lovejoy 2012).  

Cryothecomonas are generalist predators, with different species grazing on diatoms, 

protists, or bacteria, and their abundance has been correlated with total chlorophyll 

(Thaler & Lovejoy 2012). Described species of cryothecomonas are 9 to 32 µm in length, 
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but molecular probes suggest there are species or life stages less than 5µm in length 

(Thaler & Lovejoy 2012). In addition to their presence in surface waters, crypthecomonas 

made up over a third of the cercozoa sequences in sediment samples, the sample type in 

which cercozoa showed highest relative abundances overall. To date, living cells of 

cryothecomonas have not been reported from sediment samples (Thaler & Lovejoy 

2012). However, there are reports of the related and morphologically similar Protapsis in 

sediments, which may potentially be misidentifications of cryothecomonas (Thaler & 

Lovejoy 2012). Cyst like cells have also been observed in cultures and water column 

samples (Thaler & Lovejoy 2012), so such cysts may act as a resting stage for 

cryothecomonas, allowing them to settle out to the sediment over winter, and re-enter the 

water column at the time of the ice edge bloom, when environmental conditions would be 

expected to be optimal for their lifestyle. 

Diatoms in sediments were also suggestive of resting spores, which could seed the 

spring bloom (Durbin 1978). The dominant sediment diatom OTU, which made up just 

under a third of all sediment sequences, was a Chaetoceros sp., whose sequence is 

identical over the target region to reference sequences for C. socialis, C. debilis, and C. 

setoense. C. socialis is known to form resting spores, and such spores have been observed 

in morphology-based analyses of Wilhelmina Bay near bottom waters (Ferrario et al. 

1998). Chaetoceros resting spores can be highly abundant in WAP sediments, with 

estimates of 300 to 900 million spores per gm dry weight of sediment (Crosta et al. 

1997). The correlation of the relative sequence abundance of this Chaetoceros OTU in 

sediments with the depth of the overlaying water column may suggest predation on these 

spores during sinking, or may simply reflect geographic variations in the intensity of the 
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spring bloom. This gradient in Chaetoceros spore concentration with depth has been 

observed previously, and has been interpreted as an indication of the neritic environment 

serving as the main habitat for these spore-forming diatoms (Crosta et al. 1997). 

Fragilariopsis, a group associated with sea ice and ice edge blooms, form resting spores 

which have also been observed in this region (Ferrario et al. 1998); we only found this 

diatom type in sediment samples. Porosira is another diatom group known to form 

resting spores (Fryxell 1989) and we saw this group mainly in sediments with lower 

relative abundances in deep waters. 

Other stramenopile OTUs show a similar pattern to that of the diatoms, with a few 

types up in the water column, and sequences of known spore-forming types found in the 

sediment. The pelageophyceae which made up 30-60% of the non-diatom stramenopiles 

in the surface waters are small (3-5µm), round, and non-descript members of the 

photosynthetic ultraplankton (Lee 2008). Many species from this group of tiny cells have 

just a single chloroplast and single mitochondrion (Lee 2008). The pelageophyceae are 

known to thrive at low temperatures, making their high relative abundance in WAP’s 

coldest waters, near the surface, not surprising (Lee 2008). Chrysophyceae, our most 

abundant sediment stramenopile, is a golden-brown alga which is known to survive 

unfavorable periods as a resting statospore (Lee 2008). Similarly, Pedinellales, which 

were present at a moderately high relative abundance, but only in sediments, form a type 

of resting cyst under certain conditions (Thomsen 1988). 

Marine sediments have been suggested to serve as a “seed bank” for the spring 

bloom, particularly in areas of high seasonality such as the WAP (Smayda 2011). Our 

results support this seed bank idea in the WAP – a large fraction of the sequences found 
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in the sediment samples are derived from organisms with largely pelagic life-style, but 

which are known to form resting spores.  Thus we see DNA likely originating in resting 

spores from Chaetoceros of the hyalochaete (spore forming) section (Fryxell 1989), 

Porosira, and  Fragilariopsis diatoms, from statospores of Chrysophycea, and from cysts 

of Cryothecomonas and Pedinellales. Resting spores in these sediments may help to 

initialize the spring bloom and contribute to phytoplankton diversity in the region.  

Sediments as a food bank? 

In addition to their role as a ‘seed bank’ for the spring bloom, it has also been 

suggested that WAP sediments may also act as a ‘food bank’ for heterotrophs, by 

preserving the phytodetritus which falls out for the spring bloom and providing a more 

steady food source for herbivores and detritivores during the winter period of low pelagic 

food availability (Minks et al. 2005).  Minks et al. (2005) argued that elevated levels of 

photosynthetically-derived pigments in WAP sediments support this hypothesis of bulk 

phytoplankton biomass preservation into the winter, and its potential role as a food 

resource (Minks et al. 2005). DNA is degraded more rapidly than bulk biomass and 

pigments, and it is perhaps not surprising we did not see DNA evidence of the sediments 

acting as a food bank. The high abundance of bulk phytoplankton biomass in the 

sediments is suggested to be due to temperature limitations on extracellular enzymatic 

breakdown leading to the necessity of high substrate concentrations of these large 

molecules (Mincks et al. 2005). Since DNA is a smaller molecule composed largely of 

sugars, it may be small enough to be brought within the predator cell, and thus not subject 

to the same temperature limitation on substrate concentration as bulk biomass.  
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We found negligible abundances of OTUs from types of non-spore forming 

phytoplankton in the sediment. Spring blooms in the Southern Ocean generally contain 

several species, often a mixture of Thalassiosira, Eucampia, Odontella, Rhizosolenia, 

Navicula, Proboscia, and/or Corethron, in addition to a variety of Chaetoceros (Fryxell 

1989, Knox 2007) – yet we only observe DNA sequences for the resting-spore forming 

groups of Chaetoceros and Fragilariopsis. Even within the Chaetoceros, the dominant 

species within blooms are typically the more heavily silicide forms of the Phaeoceros 

section which do not form spores (Fryxell 1989), but might be expected to be more 

resistant to degredation, and DNA sequences from these heavily silicified types were not 

important components of the sediment OTU assemblage, again suggesting the sediments 

are not preserving DNA from the bulk phytodetritus. Considering the non-diatom 

phytoplankton, Phaeocystis can be an important component of WAP assemblages. 

Summer blooms of Phaeocystis can reach high abundances and biomass, particularly in 

the inshore and Gerlache Strait regions (Ducklow et al. 2007). When these blooms 

terminate Phaeocystis settling rates out of the water column and down to the sediment 

can exceed 4 g C m-2 day-1 (DiTullio et al. 2000). If the sediments were acting as a food 

bank, and preserving the cells sinking out from the spring bloom, one might expect that 

Phaeocystis would be present, or even common, in sediment 18S assemblages. Instead 

what was observed was exceedingly low abundances of Phaeocystis OTUs, with these 

OTUs making up less than 0.007% of the total sediment sequences. This suggests that at 

least for Phaeocystis DNA the sediment was not acting as a food bank in the early winter 

in the WAP. If the sediments were acting as a food bank preserving the phytoplankton 

falling out of the spring bloom, we would expect to see a sediment assemblage of 



122 
 

phytoplankton OTUs similar to what would be expected in a spring bloom. However, this 

is not the pattern of OTUs we observe, suggesting that at least for small, bioavailable 

molecules like DNA, settling phytodetritus is rapidly consumed by herbivores or bacteria 

or degraded. This is not surprising given the abundance of organisms grazing on any 

available sediment phytodetritus. Within our sequence data we find benthic grazers 

including foraminiferans, worms (annelids, platyhelminthes, and nematodes), and 

kinhoryncha, all of which can feed on benthic phytodetritus and other sedimenting 

organic matter. Outside of the size range sampled in our sequencing efforts, Antarctic 

krill, Euphausia superba, are also likely to be an important grazer on benthic materials, 

as near bottom aggregations and feeding behavior have been observed previously, and 

were frequent during the sampling for this project (Cleary et al. in prep, Schmidt et al. 

2011). It is possible that the shelf food bank may be seen more strongly in deeper areas; 

our deepest sediment samples, from Palmer Deep, showed notably more types of 

phytoplankton, and in greater relative abundances, suggesting they may be conforming 

more to the food bank model and preserving the phytoplankton and their DNA from the 

spring bloom. Palmer Deep is also a region with much lower abundances of krill, and 

hence lower grazing pressure on benthic food resources (Cleary et al. in prep). 

Conclusions 

In summary, during the winter in the WAP a highly diverse assemblage of 

microeukeryotes was observed, with different assemblages in surface waters, deep waters 

and sediments, and further variation by geographic location within all sample types. 

Microeukaryote ssemblages included OTUs from nearly all described kingdoms of 

eukaryotes.  Groups with high relative sequence abundance included both well-known 
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organisms, such as diatoms and metazoans, and as yet largely undescribed groups such as 

Picozoa and Telonema. 

 The WAP shows high seasonality, with strong spring blooms and long summer 

days followed by dark winter with very low photosynthetic production and biomass 

(Ducklow et al. 2007). The extreme seasonality appeared to influence the observedour 

distributions of OTUs. This seasonality is clearest in sediment samples, which appear to 

be serving as a seed bank. These benthic assemblages are dominated by sequences of 

pelagic organisms, spending the cold winter months as resting cysts or spores on the 

seafloor. These OTUs of diatoms and other groups are potentially available to seed a 

bloom when the light and stratification of spring arrive in the WAP.  

Though the WAP has sometimes been considered a simple ecosystem, with a food 

web dominated by diatoms-krill-whales, molecular analysis showed an incredible 

diversity of organisms, likely filling a diverse range of complex ecological roles, and 

interacting in ways yet to be understood. Including these small and less familiar 

organisms in our understanding and modeling of the WAP may help to improve 

mechanistic understanding and future modeling of this important and fascinating region. 
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Tables 

 

Table 1: Sampling locations and metadata. Sample numbers correspond to independent 

water filters or sediment scrapings, except in the case of 79 which is a technical replicate 

for 9. All dates are in 2013, time is in Chilean local 24 hr time, depth is in meters, map 

symbol corresponds to figure 1. Salinity and temperature data are not available for 

sediment samples. 
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OTU # Taxonomic Identity Surface 

Water 

Deep 

Water 

Sediment 

12711 Chaetoceros socialis/debilis diatom 0.01 0.10 29.32 

7747 Scrippsiella-like dinoflagellate 13.18 10.17 0.32 

7743 Thalasiossira/Stephanodiscus/Cyclotella 

diatom 

14.62 1.71 0.37 

7744 Heliospora 3.88 4.38 3.28 

2567 Heliospora 0.03 0.05 7.64 

8258 Aureococcus stramenopile 7.43 0.20 0.00 

8259 Heliospora 2.29 2.00 2.27 

3669 Cryothecomonas 0.43 0.04 3.78 

11332 Polycheate metazoan 0.14 6.46 0.79 

14627 Stramenopile 4.00 0.76 0.00 

16996 Choreotrichia cilliate 2.82 1.15 0.00 

16265 Silicofilosea rhizarian 0.00 0.03 2.07 

5278 Syndiniales alveotate 0.16 4.76 0.00 

7516 Karlodinium alveolate 1.54 1.61 0.17 

7741 Stramenopile 1.99 0.94 0.00 

12357 Pseudocalanus/Scaphocalanus copepod 0.00 4.54 0.00 

4398 Picozoa 2.24 0.21 0.00 

15339 Sticholonche radiolarian 0.22 3.90 0.01 

13812 Karlodinium-like alveolate 0.79 0.88 0.68 

1770 Heliospora 0.00 0.05 1.62 

 

Table 2: 20 most individually abundant OTUs, with taxonomic identity, and the percent 

each OTU made up of the total from surface waters, deep waters, and sediment samples. 
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Group Surface 

water 

Deep 

Water 

Sediments 

Alveolates (other) 20.77 43.00 3.19 

Amoebas 0.00 0.01 0.18 

Apicomplexa 0.03 0.08 2.62 

Centrohelids 0.00 0.01 0.04 

Cerocozoa 0.70 0.30 11.57 

Chlorophytes 1.84 0.06 0.17 

Chloroplastida 0.01 0.05 0.03 

Ciliates 9.11 4.60 1.48 

Cryptophytes 1.49 0.20 0.11 

Diatom 17.56 2.36 31.40 

Dinoflagellates 3.37 1.55 0.18 

Excavates 0.10 2.18 0.41 

Foraminifera 0.06 1.23 1.09 

Fungus 0.05 0.07 0.51 

Haptophytes 3.17 0.17 0.01 

Holozoa 1.60 0.78 0.10 

Metazoa 1.56 16.47 11.48 

Picozoa 6.58 1.14 0.00 

Radiolarians 0.56 8.56 0.11 

Rhodophytes 0.01 0.00 0.00 

SAR - unspecified 0.07 0.11 0.06 

Stramenopiles (non-

diatoms) 

20.00 5.17 3.52 

Telonema 2.20 0.24 0.11 

Other 1.39 1.35 0.36 

Unknown 7.76 10.32 31.26 

 

Table 3: Percent of each group of sequences within each sample type. Alveolates includes 

all alveolates except the separately described dinoflagellates, ciliates, and apicomplexa 
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Figures 

 

Figure 1: Map of the study region indicating sampling locations. Numbers indicate 

sampling sites, the corresponding samples can be found in Table 1. Latitude and 

Longitude are expressed in degrees south and west, respectively. 
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Figure 2: Pie charts of all sequence read abundances in each category (above) and the 

number of distinct OTUs in each category (below) 
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Figure 3: Rank Abundance Curve showing the total sequence abundance of the 20 most 

abundant OTUs overall. Taxonomic identity for each OTU is indicated above the bar, 

with OTU number along the x-axis. Bars are colored by the source of each sequence, as 

surface water, deep water, or sediment. 
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Figure 4: Principal Coordinates Plot of microeukarytoe assemblages in each sample – 

Colors indicate sample type, surface water, deep water, or sediment, and shape indicates 

sampling locations  
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Figure 5: Overall bar graph showing the distribution of all types of OTUs across all 

samples. Other includes diverse groups which are of such low abundance they cannot be 

individually visualized at this scale, while unknown OTUs have no assigned taxonomic 

identity.  

  

Gerlache 
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Figure 6: Apicomplexa bar graph – very few apicomplexa sequences were present in the 

water column and that data is not necessarily representative. 

  

Gerlache 



142 
 

 

Figure 7: Cilliate bar graph showing the distribution of ciliate sequence reads across all 

samples.  
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Figure 8: Dinoflagellate bar graph showing the distribution of dinoflagellate sequencing 

reads across all samples 
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Figure 9: Other Alveolates bar graph showing the distribution of alveolate sequences 

across all samples. Syndiniales sequences in blue make up a large proportion of the 

alveolates.  
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Figure 10: Excavate bar graph showing the distribution of excavate sequences, mainly 

types of euglena, across all samples.  

Gerlache 
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Figure 11: Metazoan bar graph showing the distribution of metazoan sequence reads 

across all samples.  
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Figure 12: Chlorophyte bar graph showing the distribution of chlorophyte sequences 

across all samples.  

  

Gerlache 
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Figure 13: Cercozoa bar graph showing the distribution of cercozoa sequences across all 

samples.  
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Figure 14: Diatom bar graph showing the distribution of diatom sequence reads across all 

samples.  
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Figure 15: Stramenopile bar graph showing the distribution of all non-diatom strameopile 

sequence reads across all samples.  
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Figure 16: Telonema bar graph showing the distribution of sequences from each telonema 

type across all samples.  
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Abstract 

 Parasites are not typically considered to be important components of polar marine 

ecosystems.  Environmental 18S rDNA surveys of the diversity and distribution of 

eukaryotes in the West Antarctic Peninsula in winter revealed surprisingly high 

abundances of sequences associated with parasitic protist groups. Parasite sequences 

made up on average over half (52%) of the sequence reads in samples from deep water. 

Surface water and sediment samples containing fewer parasite sequences (14% and 11% 

respectively), but these abundances still suggest potential ecological importance of 

parasites. One thousand and forty two distinct parasite Operational Taxonomic Units 

were observed, with the largest abundances and diversities within the avleolate groups, 

particularly the Syndiniales and related Amoebophrya.  Less abundant parasite sequences 

included those associated with Apicomplexa, Blastodinium, Chytriodinium, 

Cryptocaryon, Ichthyosporea, Paradinium, Perkinsidae, and Pirsonia. While it is 

possible some of this abundance of parasite sequences may result from methodological 

artifacts, this abundance may suggest the role of diverse lifestyles within parasite groups, 

and also suggests it may be worth considering more closely the role of parasites in the 

West Antarctic Peninsula marine ecosystem. Higher abundances of parasites within this 

productive ecosystem has potential implications for the role of the microbial loop, carbon 

flows, and ecosystem responses to ongoing anthropogenic climate change. 

 

Key Words: 18S rDNA, parasites, protists, plankton, West Antarctic Peninsula, 

Syndiniales 
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Introduction 

 The West Antarctic peninsula has traditionally been thought of as a simple 

ecosystem, with the food web dominated by large phytoplankton being consumed by 

krill, which were in turn consumed by penguins, seals, and whales (Huntley et al. 1991).  

More recently, the roles of smaller phytoplankton, microzooplankton, bacteria, and the 

ensuing microbial loop have been increasingly recognized (Sailley et al. 2013).  This 

microbial loop is now known to play an important role in carbon cycling and food web 

dynamics in the region (Sailley et al. 2013). Even as the role of many of these smaller 

organisms in the WAP marine ecosystem has been increasingly recognized, one group of 

small marine organisms which continues to escape attention are the parasitic protists.  

The abundance of protistan parasites is thought to be under-accounted for in 

marine planktonic systems generally (Skovgaard 2014). Analysis of metazoan parasites 

in estuaries showed they accounted for 2-3% of the total biomass (Kuris et al. 2008).  

Protistan parasites can be difficult to observe, since they are small and spend much of 

their lives hidden within their hosts. These parasites may be invisible when analyzing 

preserved plankton samples (Skovgaard & Daugbjerg 2008).  

Protistan parasite diversity is also poorly known, particularly in the marine 

environment. For many parasitic protist groups there are only rough estimates of the total 

diversity and abundance. It has been suggested that the biodiversity of parasites as a 

whole may be comparable to that of all non-parasite groups combined (Hudson et al. 

2006). Many groups which have been identified as obligate parasites include only a 

handful of described species (Chambouvet et al. 2014). Yet, molecular surveys suggest 
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these groups may be highly diverse and contain hundreds or more species (Chambouvet 

et al. 2014, Skovgaard 2014).  

Although these protistan parasites are poorly known, they may play important 

roles in ecosystem dynamics. Protistan parasites can crop the abundances of their hosts, 

affecting their population dynamics (Coats & Park 2002). Such reductions in the 

populations of hosts can also have potential impacts on the predators of these hosts. In the 

process of killing, or reducing the fitness, of hosts in a species specific and density 

dependent manner, selective protistan parasites can also play a role in maintaining 

ecosystem diversity (Hudson et al. 2006). Protistan parasite activity can also lead to 

increased release of dissolved and particulate organic matter (DOM & POM) from their 

hosts as they put them under increased physiological stress, or cause them to lyse 

(Skovgaard 2014). Such organic matter can be taken up by bacteria or small eukaryotes, 

fueling the microbial loop. Thus, understanding the roles of these parasites is important to 

our overall understanding of carbon flows and trophic interactions in the west Antarctic 

Peninsula marine ecosystem. 

 New data from the West Antarctic Peninsula marine ecosystem offered an 

opportunity to investigate the diversity, distributions and relative abundance of protistan 

parasites. Millions of 18S DNA barcode sequences from the microeukaryote 

communities of the water column and sediments were used to obtain a first glimpse into 

the types of parasites present in the region, how these parasites are distributed in this 

ecosystem, and how much of the protist DNA in this ecosystem can be attributed to 

parasites. 
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Materials and Methods 

Field Collections - Samples were collected between May 18 and June 3 on RVIB 

Nathaniel B Palmer cruise NBP1304. All samples were collected in triplicate. Water 

samples were collected in 12L niskin bottles on a CTD rosette. Surface water was 

collected from the surface mixed layer at 20 m depth. Deep water was collected at 10m 

above the seafloor within bays, and at 600m in Palmer Deep (bottom depth 1345m) (table 

1). For each water sample, 2L of whole seawater were filtered by peristaltic pump onto a 

0.2 µm membrane filter thus collecting all organisms or pieces of organisms between 0.2 

µm and approximately 5 mm diameter. Surface and deep water samples were collected 

from Flandres Bay, Gerlache Strait, and Palmer Deep; surface water only was collected 

in Andvord Bay (Figure 1, Table 1). Filters were placed in individual cryovials and 

immediately frozen at -80oC.  Temperature and salinity were recorded simultaneously 

with sample collection with a SBE 911plus CTD (SeaBird).  

Sediment samples were collected with a megacorer (Ocean Scientific Instruments 

Limited). In order to expose the sediment surface, overlaying water was gently removed 

by peristaltic pump and cores were extruded to just below the level of the sediment 

surface. The surface-most layer of sediment was sampled using sterile scrapers, placed in 

cryovials, and immediately frozen at -80o C.  Sediment samples collected all organisms 

less than approximately 5 mm. Sediment was sampled from two locations in Wilhelmina 

Bay, two locations in Andvord Bay, one location in Flandres Bay and one location in 

Palmer Deep (Figure 1, Table 1). Samples were collected from 3 separate cores from one 

of the corings in Andvord Bay, and from a single core in each of the other corings. All 
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samples were shipped from Chile to Rhode Island on dry ice and stored at -80o until 

analysis. Bottom depth was recorded by shipboard Chirp 3260 echo sounder (Knudsen).  

Laboratory Processing – Total DNA was extracted from water filters with the 

DNeasy blood and tissue kit (Qiagen). Volumes of the initial lysis buffers were all 

doubled to ensure the filter was submerged and all material was lysed. Total DNA was 

extracted from 0.25 grams of each sediment sample using the PowerSoil kit (MoBio) 

with the bead-vortex lysis option as per manufacturer’s instructions. Only samples of the 

same type (water/sediment) were extracted on the same day. All extractions were 

conducted in a sterilized laminar flow hood with project-dedicated pipettes, tips, and 

chemicals, to minimize possible contamination. 

18S rDNA was amplified using universal eukaryotic primers (Gast et al. 2004) 

modified by the addition of a variable position in the reverse primer to improve priming 

of ciliates (Cleary et al. in press), and to include adaptors for Illumina sequencing, and a 

variable number (0-3) of ambiguous bases to offset the amplicons and increase the 

variability at each read position for improved base calling. Each reaction contained a final 

concentration of 1x Pfu Ultra II clear buffer (Agilent), 1x Bovine Serum Albumin (New 

England Biolabs), 0.25 mM equimolar mixture of all four deoxynucleotide triphosphates 

(dNTPs) (Promega), 0.1 µM each primer (forward and reverse), 1x Pfu Ultra II 

polymerase (Agilent), and 20% by volume DNA template at extracted concentrations.  

Thermocycling consisted of 95o C for 30s, followed by cycles of 94o C for 30s, 58o C for 

45s, and 72o C for 30s, with a final extension of 72o C for 5 min. Samples were amplified 

for the minimum number of cycles necessary to obtain sufficient DNA for sequencing in 

order to reduce amplification biases and over-representation of abundant targets. Water 
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samples were all amplified for 35 cycles, as were sediment samples 28, 29, 30, 35, and 

37, while the remaining sediment samples were amplified for 30 cycles. Amplicon 

presence and size was confirmed with gel electrophoresis and UV visualization. 

Amplifications of no-template blanks included in each PCR showed no signs of 

contaminating DNA in gel images. 

Amplicon purification and sequencing were done at the URI Genomics and 

Sequencing Center. Amplicons were AmPure cleaned, re-amplified to add sample 

identification tags, and quantified on a BioAnalyzer (Agilent). Amplicons were pooled 

into one half Illumina Miseq run, and sequenced for 500 cycles, allowing for almost 

complete overlap of the amplicon. 

Data Analysis – Paired ends of reads were joined if the entire overlap region was 

identical in both read directions; if the overlap region was not identical, both reads were 

discarded. Amplicons were then assigned sample-specific names and pooled for further 

analysis. Primers, and any sequence data beyond the end of the amplicons were trimmed, 

and any sequences in which the exact primer sequence was not found were again 

discarded. This fairly stringent approach to quality control likely eliminated most 

sequencing errors, as such errors are unlikely to occur identically in the two directions of 

sequencing. Amplicons were clustered into 97% sequence identity Operational 

Taxonomic Units (OTUs), which have been commonly used as a proxy for species (Sogin 

et al. 2006). Any OTU with only a single sequence in it was discarded.  OTUs with 

chimeric sequences were detected with the blast_fragments approach (Altschul et al. 

1990), and removed from the data. All of the above analyses were conducted in Qiime 

v.1.8 (Caporaso et al. 2010). Because multicellular organisms are unlikely to be 
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quantitatively sampled in the small volumes of water and sediment analyzed here, these 

OTUs were also removed from the final data set.  

Taxonomic identity was assigned to each OTU through automated comparison in 

Qiime with the Silva database v. 111 (Wang et al. 2007, Quast et al. 2013).  BLAST 

searching was used to confirm and in some cases refine taxonomic assignments (Altschul 

et al 1990). OTUs were classified as parasitic, non-parasitic, or unknown based on 

literature. To keep estimates conservative those organisms for which a lifestyle could not 

be determined were included with the free-living organisms in all calculations.  

A dissimilarity matrix of all samples was constructed using the Bray-Curtis metric 

(Bray & Curtis 1957) base on the sequence read counts for each of the parasite OTUs, 

normalized by the overall (parasite & free-living) total sequence read for each sample. 

Likewise, a dissimilarity matrix was constructed for all free-living OTUs. Principal 

coordinates were calculated and visualized in MatLab. Parasite and free-living 

communities were compared in a side-by-side cluster analysis based on Bray-Curtis 

distances. Interactions between parasite OTUs and potential host OTUs were explored 

using an OTU-wise Bray-Curtis metric with read counts normalized by OTU, and simple 

linear correlations with read counts normalized by sample. Parasite-host interaction 

analysis was limited to the 500 most abundant OTUs overall to avoid artifacts due to 

stochasticity at low abundance. Parasite-host analysis also excluded organisms with poor 

taxonomic resolution, or with very phylogenetically close parasites and hosts to avoid 

erroneous correlations due to potentially imperfect OTU picking.  

Results 
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 A total of 1042 parasite-associated OTUs which encompassed 363,135 sequence 

reads were recovered from the Antarctic coastal environment. 400 of these OTUs were 

found in surface water samples, 594 were found in deep-water samples, and 576 were 

found in sediment samples.  Sequence reads from parasite-associated OTUs made up 

between 5.6% of the total sequence reads in sample 22 (Wilhelmina Bay sediment) and 

73.0 % of the total sequence reads in sample 11 (Palmer Deep deep-water), with an 

overall average of 21.4% of the sequence reads in a sample.  Deep-water samples showed 

the highest percentages of parasite-associated OTU reads, with 52.4% of the deep-water 

reads falling into these groups. 13.9% of surface water sequences were classified as 

parasite-associated OTUs. Sediments showed the lowest relative abundance of parasite 

reads, with 10.8% of total reads classified into parasite-associated OTUs (Table 2). 

 Parasite OTUs included a diverse range of organisms. Most of the parasite OTUs 

belonged to the alveolata. The most abundant group of sequences belonged to the 

syndiniales, making up 11.3% of the total sequences, and 62.2% of the parasite 

sequences. Within the syndiniales, organisms associated with syndiniales group II made 

the greatest contributions to both number of reads and number of OTUs. Also within the 

syndiniales, Amoebophyra were present mainly in water samples, but also in sediments, 

Duboscquella were found mainly in deep-water, and haplozoons were found most 

abundant in surface waters (Table 2, Figure 2).  Dinoflagellate parasites were also 

observed; Hematodinium were found mainly in surface water samples, Chytriodinium 

was found mainly in water samples, and Blastodinium was found in all sample types 

(Table 2, Figure 2). Other alveolate parasites found included apicomplexa, which were 

mainly observed in sediments, cryptocaryon ciliates which were observed in all sample 
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types, ellobiopsis which was found mainly in water samples, and perkinsidae which had 

their highest relative abundance in sediments (Table 2, Figures 2 & 3).   

Some parasites were also observed from the rhizaria. Rhizarian parasites included 

Cryothecomonas which was found most abundantly in sediments, Paradinium spp. which 

was observed across all sample types, and phytomyxea which was found mainly in 

sediments.  Two groups of parasites belonging to the stramenopiles were observed; 

Pirsonia spp. was found mainly in deep-water and sediments, and Solenicola spp. was 

found mainly in surface waters. The only parasite group found which did not fall within 

the Stramenopile-Alveolate-Rhizaria (SAR) complex was the holozoa Ichtyosporea spp. 

(Table 2, Figures 2 & 3). 

Parasites showed different assemblages in surface waters, deep-waters, and 

sediments.  Surface waters contained large fractions of syndiniales and sub-groups, as 

well as noticeable contributions from cryothecomonas and haplozoons (Figure 3). Deep-

water sample parasite assemblages were dominated by syndiniales and subgroups, 

particularly syndiniales II, with relatively low contributions from other groups. Sediment 

parasite assemblages showed much lower abundances of syndiniales than was observed 

in the water column, with the parasite assemblage composed mainly of cryothecomonas 

and apicomplexa, with contributions from perkinsidae as well as small contributions from 

syndiniales and sub-groups (Figure 3).  The notable exception to this trend is Palmer 

Deep, where samples showed relatively more syndiniales, particularly group I. These 

differences in assemblages are evident in a Principal Coordinates Analysis (Figure 4). 

Samples cluster most strongly by sample type, but within sample type also show 

clustering by location. Parasite assemblages are closely tied to non-parasite assemblages. 
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A clustering analysis dendrogram indicated very similar clusterings for parasites and for 

non-parasite OTUs (Figure 5).   

Considering relationships between specific parasites and potential hosts, the 

strongest correlations observed were between syndiniales and radiolarians.  Twelve 

syndiniales OTUs correlated with r2>0.9 with individual radiolarian OTUs (figure 6). 

Considering all syndiniales and all radiolarians, the positive linear correlation between 

the percent abundances of these groups over all samples showed a slope of 9.4 and an r2 

of 0.94 (Figure 6).  

Discussion 

 The high proportions of parasite sequences reads observed in these samples from 

the Antarctic environment begs the question: Are these observed high abundances of 

parasite OTU sequences indicative of high parasitic activity in Antarctic marine 

ecosystems? There are several potential explanations for the observed high abundances: 

1) The observed sequence abundances are an artefact of the DNA barcoding approach 2) 

Groups classified as parasitic in fact contain organisms with other lifestyles 3) Parasites 

have long lived spores or resting stages 4) Parasite abundance in the Antarctic is high.  

Each of these explanations likely plays a part in explaining the overall results, and the 

merits and likely impact of each are discussed below. 

 Pyrosequencing does not provide data on the overall abundance of organisms, but 

it has traditionally been used to infer relative abundances of different organisms and 

groups of organisms (Not et al. 2009).  There is potential for biases in preservation 

efficiency, 18S copy numbers per cell, DNA extraction efficiency, PCR primer binding, 
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polymerase extension, amplicon purification, sequencing, and quality control. Despite 

these potential sources of bias, studies with bacterial mock communities have shown 

close resemblances of sequence read proportions with true cell abundance proportions 

(Jumpstart consortium 2012). Steps were taken to minimize the effect of all of these 

potential sources of bias in this analysis. PCR primers used have been optimized to 

efficiently amplify all major groups of eukaryotes (Cleary et al. in press).Differences in 

the number of copies of the 18S gene per cell or per unit carbon have been observed in 

some groups (Zhu et al. 2005). However, some of the groups notorious for high copy 

numbers were observed at low abundances, such as the free living dinoflagellates, which 

only made up 1.5% of the total sequences. This suggests that while 18S copy variations 

are certainly present, they are unlikely to be the full explanation for the observed high 

proportions of parasite sequences.  

 Many of the groups of parasites found in this study are very poorly known. Little 

is known about their diversity, abundances, distributions, morphology or ecology 

(Skovgaard 2014). This is particularly true of the largest group of parasite sequences 

observed, the syndiniales, for which there are many uncertainties (Bråte et al. 2012). Here 

organisms were classified as parasites if literature described the group to which they 

belong as obligately parasitic, or if all described organisms within the narrowest group to 

which the OTU could be identified were obligate parasites. However, it may be possible 

that some of these groups contain as yet undiscovered species with other lifestyles, such 

as free-living or mutualistic symbiosis. Including such hidden free-living organisms 

might explain some of the abundance of parasite sequences observed here. 
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 Many parasitic organisms have some form of spore or infective stage, allowing 

them to spend time outside of a host in the process of finding a new host (Hudson et al. 

2006). It is possible that some fraction of the parasite sequences observed here came not 

from active parasites but from some type of such a spore. However, many of these spores 

are very short lived, suggesting they would be unlikely to form a large reservoir of DNA 

sequences in the environment. For example, syndiniales and related organisms are 

thought to have very short lived spores, and to require new hosts within a matter of days 

(Coats & Park 2002).  Amoebophyra spp. (syndiniales) spores show exponential declines 

in abundance, with most spores disintegrated within 3 to 13 days, an even amongst 

surviving spores, ability to infect declined rapidly over time since production (Coats & 

Park 2002). It may be possible, however, that some of the parasite organisms found in 

this study have longer lived spores, potentially as an adaptation to the extreme seasonality 

in the abundance and biomass of potential hosts in Antarctic marine ecosytems. In austral 

winter in the Antarctic Peninsula, phytoplankton biomass is very low, with measured 

values during the time of sampling consistently less than 0.5 µg chlorophyll a L-1, 

whereas in summer in these same regions, chlorophyll a concentrations can exceed 30 µg 

L-1 (data not shown). It might thus potentially be advantageous for protistan parasites 

which rely on planktonic hosts to have the capacity to survive as a spore during over the 

winter period with low abundances of hosts.  

Correlations between syndiniales OTUs and radiolarian OTUs suggest an 

ecological interaction, however, arguing against resting cysts as the major source of 

parasite sequences. Previous analysis of perkinsidae parasite sequences have been shown 

to represent ribosomally active cells in marine sediments, suggesting their DNA 
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abundance is indicative of an ecologically important role, and not derived from resting 

spores or cysts (Chambouvet et al. 2014). 

 It appears likely that protist parasites are more abundant, and more ecologically 

important than we have traditionally given them credit for in the West Antarctic 

Peninsula coastal waters, even given all of the above potential secondary explanations 

and caveats. Models of Antarctic marine food webs have not typically included parasites 

(Melbourne-Thomas et al. 2013, Skovgaard 2014), yet they are potentially important. 

Parasitism can divert carbon and energy out of the classic phytoplankton-krill-whale food 

chain, and into the microbial loop as particulate and dissolved organic matter released 

from ailing and dying hosts. The microbial food web is thought to be increasing in 

importance in this northern West Antarctic Peninsula region, as a result of ongoing 

anthropogenic change (Sailley et al. 2013). Parasitism has traditionally been considered 

to be more important in warmer ecosystems (Rhode 1984), and thus as temperatures 

continue to increase, parasitism may play a role in the increasing importance of the 

microbial loop.  

Parasites can also have effects on the population dynamics of hosts and the 

diversity of the ecosystem more broadly. Syndinium infestation is estimated to cause 

copepod mortality comparable to predation mortality with rates as high as 42% mortality 

per day reported (Konovalova 2008), and Amoebophrya spp. have even been suggested as 

a biocontrol on harmful algal blooms as they can remove over 50% of their hosts daily 

(Coats & Clark 2002, Skovgaard 2014). Many parasites are highly host specific, 

parasitizing only a single species (Hudson et al. 2006, Skovgaard 2014). Such high-

specificity parasites may play a role in maintaining diversity within Antarctic marine 
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ecosystems, by causing mortality or reducing fitness of an abundant species, parasites 

may create opportunities for other species within the ecosystem. Thus, incorporating 

parasites and their roles in regulating plankton populations into ecosystem models may 

allow for better predictions of the trends in species dynamics in the West Antarctic 

Peninsula. 

 Parasitism may be more important than commonly considered in marine 

ecosystems more broadly. When considering metazoan parasites on larger organisms 

such as fish, the Antarctic has been found to have lower parasite loads than other parts of 

the world ocean, (Rhode 1984). Here we presented data on protistan parasites for a 

limited area from the West Antarctic Peninsula in winter. Yet, comparable data for other 

regions of the world ocean are still sparse; DNA sequencing technologies have been 

rapidly improving, and with the public availability of reference databases for eukaryotes 

(Quast et al. 2013) it has only very recently become feasible to conduct and analyse 

broadscale surveys of eukaryote communities. Limited data from pyrosequencing and 

clone libraries in other regions of the world ocean suggest the unexpectedly high 

prevalence of parasite sequences observed here may be a wider phenomenon. 

Metanalyses of clone libraries suggest syndiniales make up over half of the dinoflagellate 

sequences observed in marine samples (Guillou et al.2008). Clone library sequences of 

Antarctic deep-water samples north of our sampling region in austral summer were 

composed 65-76% by unclassified alveolates, which are related to the syndiniales parasite 

groups (López-García et al. 2001). At the other end of the earth, clone libraries in the 

high arctic also contained high abundances of syndiniales, with various syndiniales 

groups making up 44% of the clones (Sørensen et al. 2012). Radiolarians sampled in the 
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Arctic were associated with alveolates, as observed here in the Antarctic (Figure 6) (Bråte 

et al. 2012). Similar syndiniales-like alveolates have also been observed near 

hydrothermal vent systems in both the Atlantic and Pacific along with more well-known 

parasites such as Perkinsidae spp. (Edgcomb et al. 2002, López-García et al. 2003, 

Moreira & López-García 2003). As new observations over diverse areas of the world 

ocean become available it will be interesting to see how the importance of these parasite-

associated sequence groups varies globally, and begin to understand the magnitude of 

their ecological roles more widely. 
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Tables 

 

Table 1: Sampling locations and metadata. Sample numbers correspond to independent 

water filters or sediment scrapings, except in the case of 79 which is a technical replicate 

for 9. All dates are in 2013, time is in Chilean local 24 hr time, depth is in meters, map 

symbol corresponds to figure 1. Salinity and temperature data are not available for 

sediment samples. 
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Group # 

OTUs 

% in 

Surface 

% in 

Deep 

% in 

sedime

nt 

Known hosts Ref 

Amoebophrya 124 2.766 3.687 0.013 Dinoflagellates 1 

Apicomplexa 216 0.058 0.130 3.004 crustaceans 3,1 

Blastodinium 4 0.047 0.008 0.003 Diatoms, crustaceans 1,11 

Chytriodinium 3 0.001 0.001 0.000 Copepod eggs 1 

Cryothecomon

as 

14 0.744 0.068 4.486 Diatoms 1,5 

Cryptocaryon 17 0.002 0.015 0.032 Fish 7 

Duboscquella 5 0.003 0.377 0.024 Tintinids 1 

Ellobiopsidae 4 0.002 0.340 0.000 Crustaceans 1,11 

Haplozoon 9 1.185 0.390 0.000 Marine worms 6 

Hematodinium 9 0.006 0.210 0.002 Crustaceans 11 

Ichtchyosporea 8 0.004 0.020 0.027 Fish eggs 4, 1 

Paradinium 19 0.029 0.036 0.055 Copepods 1,12 

Perkinsidae 88 0.003 0.062 0.589 Mollusks, 

dinoflagellates 

2, 3 

Phytomyxea 19 0.001 0.002 0.132 Diatoms 9 

Pirsonia 7 0.001 0.032 0.037 Diatoms 8,1,

5 

Solenicola 1 0.001 0.000 0.000 Diatoms 1 

Syndiniales, 

unclassified 

54 0.683 1.401 0.463 Copepods, radiolarians 10,1 

Syndiniales I 137 4.835 9.562 1.645  10 

Syndiniales II 304 3.499 36.06

3 

0.277  10 

Totals: 1042 13.869 52.40

5 

10.789   

Table 2: Parasite groups encountered in 18S rDNA sequences from the West Antarctic 

Peninsula. # of OTUs is the total number of observed distinct OTUs for each group. % in 

indicates the percent of the total sequences in each sample type which were attributable to 

each group. References: 1) Skovgaard 2014 2) Chambouvet et al. 2014 3) Moreira & 

López-García 2003 4) Glockling et al. 2013 5)Tillmann et al. 1999 6) Leander et al. 2002 

7) Wright & Colorni 2002 8) Kühn et al. 2004 9) Neuhauser et al. 2011 10)Guillou et al. 

2008 11)Konovalova 2008 12)Skovgaard & Daugbjerg 2008  
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Figures 

 

 

Figure 1: Map of sampling locations. Numbers correspond to positions on Table 1  

Wilhelmina Bay 

Palmer Deep 

Flandres Bay 

Andvord Bay 
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Figure 2: Distribution of sequence reads for parasite and free-living organism OTUs across all 

samples. Upper rectangles indicate sample source; lower rectangles indicate sample location as 

Andvord Bay, Flandres Bay, Gerlache Straight or Palmer Deep; sample numbers along the x-axis 

correspond to table 1 and are arranged within sample type by increasing bottom depth. The 

high percentage of parasites in sequencing reads from deep-water samples is striking. 
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Figure 3: Parasite sequence reads across all samples. Formatting follows Figure 2. The high 

contribution from Syndiniales and related organisms (Amoebophrya & Hematodinium) all shown 

in blue is apparent, particularly in water samples. 
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Figure 4: Principal Coordinates analysis of the parasite communities sampled. Shape indicates 

the location of each sample, with color indicating the sample type. Sample type is clearly the 

dominant structuring factor amongst these assemblages. 
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Figure 5: Cluster analysis of all samples for both parasite and non-parasite OTUs show strong 

clustering by sample type (surface water, deep-water, sediment), as well as clustering by 

location. 
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Figure 6: Correlations between radiolarians and syndiniales. All plots show radiolarian hosts on 

the x axis, with syndiniales parasites on the y axis, with both axis indicating sequence read 

abundance as a percent of total sequence reads per sample. A) various syndiniales OTUs 

correlated with radiolarian OTU 13310 B) various syndinales OTUs correlated with radiolarian 

OTU 15634 C) All syndiniales OTUs as compared to all radiolarian OTUs  
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Appendix A: Pseudocalanus gut contents OTUs 

GenBank 
accession OTU Pie chart category Narrowest ID 

Total 
abundance Count 

KC952737 0 Microzooplankton Oomycete 5 1 

KC952738 1 Diatom Chaetoceros 379 11 

KC952805 2 Gelatinous Chaetognath 2 2 

KC952823 4 Microzooplankton Oligohymenophorea 59 4 

KC952847 7 Fungus Tetracladium 4 1 

KC952864 9 Fungus Pezizomycotina 12 1 

KC952748 11 Terrestrial Pine tree 115 14 

KC952761 13 Fungus Ustillaginomycotina 11 2 

KC952770 14 Gelatinous Pantachogon 20 6 

KC952783 16 Fungus Saccharomycotina 23 2 

KC952799 18 Microzooplankton Thaumatomastix 17 5 

KC952806 20 Other Alga Prasinococcus-like 3 2 

KC952807 21 Diatom Chaetoceros 255 14 

KC952808 22 Mesozooplankton Euphausiid 14 6 

KC952809 24 Fungus Pucciniomycotina 4 2 

KC952810 25 Mesozooplankton Plomid rotifer 5 2 

KC952811 26 Microzooplankton Kinetoplastid 2 1 

KC952812 27 Microzooplankton Labyrinthulid 41 11 

KC952813 28 Fungus Pezizomycotina 21 4 

KC952814 29 Diatom Attheya 8 5 

KC952815 30 Other Alga Dunaliella 4 1 

KC952816 31 Other Alga Chlorarachnea 6 1 

KC952817 32 Fungus Pezizomycotina 6 2 

KC952818 33 Diatom Fragilariopsis 867 27 

KC952819 34 Microzooplankton Colpodea 14 3 

KC952820 35 Mesozooplankton Brittle Star 857 2 

KC952821 36 Other Alga Gyrodinium 8 2 

KC952822 38 Gelatenous Pseudosagitta 16 3 

KC952824 40 Diatom Porosira 77 4 

KC952825 41 Unknown ? 2 1 

KC952826 43 Gelatinous Mertensia 4 3 

KC952827 44 Mesozooplankton Conchecia 2 1 

KC952828 45 Mesozooplankton Barnacle 49 2 

KC952829 48 Fungus Agarimycotina 10 1 

KC952830 49 Terrestrial Camellia 3 1 
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KC952831 51 Fungus Sistotrema 7 4 

KC952832 52 Gelatinous Cnidarian 2189 30 

KC952833 53 Diatom Chaetoceros 452 18 

KC952834 54 Other Alga Chlorellaceae 8 2 

KC952835 56 Microzooplankton Oomycete 31 7 

KC952836 57 Gelatinous Mertensia 18 3 

KC952837 58 Diatom Chaetoceros 349 22 

KC952838 59 Other Alga Chrysophyte 6 4 

KC952839 60 Fungus Chytridiomycetes 7 2 

KC952840 62 Unknown ? 20 1 

KC952841 63 Gelatinous 

Anthomedusae/lepto
medusea 26 2 

KC952842 64 Other Alga dinoflagellate 2 1 

KC952843 65 Fungus Pezizomycotina 57 14 

KC952844 66 Diatom Thalassiosiraceae 4 2 

KC952845 67 Fungus Knufia 26 1 

KC952846 68 Mesozooplankton Artemia 5 1 

KC952848 70 

Heterotrophic 
dinoflagellate Polykrikos 4239 28 

KC952849 71 Unknown ? 8 3 

KC952850 72 Unknown ? 9 3 

KC952851 73 Unknown ? 7 1 

KC952852 74 Fungus Cryptococcus 16 4 

KC952853 76 Fungus Pucciniomycotina 21 3 

KC952854 79 Fungus Ustillaginomycotina 14 5 

KC952855 80 Fungus Lanspora 19 4 

KC952856 81 

Heterotrophic 
dinoflagellate Amoebophrya 20 6 

KC952857 82 Diatom Fragilaria 1003 19 

  83 Unknown ? 5 1 

KC952858 84 Diatom Chaetoceros 6 1 

KC952859 85 Microzooplankton Cercozoan 4 2 

KC952860 86 Gelatinous Sagitta/Krohnitta 495 36 

KC952861 87 Fungus Ochroconis 28 2 

KC952862 88 Mesozooplankton Euphausiid 8 2 

KC952863 89 Microzooplankton Cryothecomonas 45 10 

KC952865 90 Unknown ? 3 2 

KC952866 91 Fungus Saccharomycea 10 2 

KC952867 93 Diatom Navicula 91 10 

KC952868 94 Fungus Chytridiomycetes 33 10 
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KC952869 97 Diatom Achnanthales 6 1 

KC952870 98 

Heterotrophic 
dinoflagellate Polykrikos 5 1 

KC952871 99 Mesozooplankton Squid 53 1 

KC952739 100 Fungus Candida 8 4 

KC952740 101 Microzooplankton Cercozoan 9 2 

KC952741 102 Diatom Stauroneis 16 2 

KC952742 104 Fungus Chytridiomycetes 3 1 

KC952743 105 Terrestrial Spider 14 2 

KC952744 106 Other Alga 

Chlamydomonadacea
e 3 1 

KC952745 107 Fungus Pezizomycotina 230 26 

KC952746 108 Fungus Taphrina 8 2 

KC952747 109 Gelatinous Eukrohnia 30 13 

KC952749 113 Fungus Rhizochaete 94 16 

KC952750 114 Gelatinous Ctenophore 2 1 

KC952751 118 Gelatinous Mertensia 1340 31 

KC952752 119 Mesozooplankton Metridea 124 10 

KC952753 120 Gelatenous Beroe 8 4 

KC952754 121 Microzooplankton Heterophrys 2 1 

KC952755 122 Other Alga Gyrodinium 34 3 

KC952756 123 Gelatinous Semaeostomae 76 3 

KC952757 125 Other Alga Klebsormidiaceae 19 2 

KC952758 126 Mesozooplankton Hyperiid Amphipod 16 4 

KC952759 127 Other Alga dinoflagellate 34 4 

KC952760 129 Microzooplankton Cercomonas 5 4 

KC952762 131 Diatom Chaetoceros 2 1 

KC952763 132 Unknown ? 4 1 

KC952764 133 Unknown ? 7 4 

KC952765 134 Fungus Birch tree 205 21 

KC952766 135 Diatom Thalassiosiraceae 9451 44 

KC952767 136 Fungus Agarimycotina 93 17 

KC952768 137 Other Alga dinoflagellate 20 3 

KC952769 138 Gelatinous Parasagitta 23 11 

KC952771 141 Microzooplankton Gymnophrys 5 2 

KC952772 143 Other Alga Phaeocystis 454 21 

KC952773 144 Diatom Thalassiosiraceae 11 4 

KC952774 145 Microzooplankton Oligohymenophorea 3 1 

KC952775 146 Other Alga dinoflagellate 9 2 

KC952776 147 Diatom Amphiprora 9 1 
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KC952777 149 Other Alga dinoflagellate 70 8 

KC952778 150 Other Alga dinoflagellate 33 6 

KC952779 153 Mesozooplankton Euphausiid 723 37 

KC952780 155 Mesozooplankton Bdelloid rotifer 3 1 

KC952781 158 Terrestrial Springtail 7 1 

KC952782 159 Diatom Rhizosolenia 33 6 

KC952784 160 Diatom Achnanthales 12 2 

KC952785 162 Diatom Chaetoceros 11 4 

KC952786 163 Microzooplankton Cercozoan 3 1 

KC952787 164 Unknown ? 11 1 

KC952788 165 Mesozooplankton Euphausiid 7 1 

KC952789 167 Fungus fungus 3 2 

KC952790 168 

Heterotrophic 
dinoflagellate Polykrikos 508 15 

KC952791 169 Microzooplankton Cryothecomonas 63 1 

KC952792 170 Diatom Thalassiosiraceae 11 5 

KC952793 171 

Heterotrophic 
dinoflagellate Amoebophrya 2 1 

KC952794 172 Gelatinous Polypodium 24 4 

KC952795 175 Gelatinous Siphonophore 40 3 

KC952796 176 Microzooplankton Colpodea 4 2 

KC952797 177 Mesozooplankton Pteropod 5 2 

KC952798 178 Diatom Proboscia 35 13 

KC952800 181 Unknown ? 4 1 

  184 Unknown ? 3 1 

KC952801 185 Mesozooplankton Conchecia 2 1 

KC952802 186 Terrestrial Grain (wheat/rice) 212 15 

KC952803 189 

Heterotrophic 
dinoflagellate Amoebophrya 1974 39 

KC952804 190 Microzooplankton Protostelium 2 1 
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Appendix B: Size fractionated krill biomass from MOCNESS tows 

Size fractionated krill biomass from MOCNESS tows. Minimum and maximum depths 

sampled are in meters. Volume filtered is in m3. Split indicates the factor by which counts 

were multiplied to account for splitting at sea and in the laboratory. Size bins are 0.25 cm 

Standard Length and are indicated by the upper limit on the size bin, krill of unknown 

size were removed for other analyses prior to measuring and were assigned the overall 

mean weight. Biomass in each size bin for each net is given as grams formalin-preserved 

wet weight m-3. 
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Appendix C: Hydrographic profiles of NBP1304 

Hydrographic profile summaries and T-S diagram for cruise NBP1304 to the West 

Antarctic Peninsula (May-June 2013). All CTD casts for the cruise are plotted together to 

give a general impression of hydrographic conditions during sampling. Line colors are 

shaded by sampling order, with earlier samples in darker shades and later samples in 

lighter shades. All data were generated by a 911plus SeaBird CTD. Depth is in meters 

below the surface, salinity is in practical salinity units (psu), temperature is in degrees 

Celsius, and density is expressed as (kg m-3)-1000. 
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