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ABSTRACT 

 

This research investigates the feasibility of modeling visual attention (as 

represented through eye movements) as a stochastic process. A stochastic model of 

attention would provide a foundation for research involving probabilistic predictions 

of attention allocation which could be used in a variety of domains. The following 

hypotheses are examined as part of this research. 

1. The visual trace of participants when asked to fixate on a single point can 

be modeled as a stochastic process (Supported). 

2. The visual trace of participants will fluctuate when performing an 

additional cognitive task, but can still be modeled stochastically with 

additional parameter considerations (Supported). 

In order to determine whether attention could be modeled as a stochastic process, 

eye-tracking data were collected and analyzed. The experiment contains only a single 

focal point with no distractors. The goal of this experiment is to determine how the 

eyes move when attention is singularly focused. This experiment does not attempt to 

determine how attention is captured or distracted, but rather to understand the 

foundational elements of attention that can be ascertained from the inherent movement 

of the eyes.  

To determine whether the data could be modeled as a stochastic process, different 

tests are used to compare the empirical cumulative distribution function to the 

hypothesized theoretical distribution. It was hypothesized that the saccade occurrences 

follow a Poisson process, but only 46% of the 52 runs provided support that the data 



 

 
 

could be modeled as a Poisson process. There was no significant difference between 

the control and n-back runs. Overall, there is not enough evidence to support that the 

saccades follow a Poisson process. The Wiener process and random walk are 

hypothesized to relate to the gaze pattern or visual trace. For the Wiener process, the 

length of movement in the horizontal and vertical directions was assessed for 

normality. The hypothesis that the data followed a Wiener process was supported by 

100% of the 53 runs in both the horizontal and vertical directions. Thus, this data was 

able to be modeled as a stochastic process, specifically a Wiener process, which 

supported hypothesis 1.  

This analysis was extended to consider whether the distribution changed as the 

differences in position increased to two samples, three samples, four samples, five 

samples, and ten samples. As the number of time samples between eye position 

difference calculations increased, the results still strongly supported that the data 

followed a normal distribution. However, the variance proportions did not increase as 

expected by a Wiener process. This suggests that as the distance between time samples 

increases, at some point, the differences in position will no longer follow a Wiener 

process. The additional parameter assessment comparison for the Wiener process 

showed that in both the horizontal and vertical directions, the variances of the 

distributions differed significantly between the control and n-back runs. The variances 

for the n-back runs were consistently larger than those for the control runs. This 

provides support to hypothesis 2.  

Additional analyses regarding whether the gaze path followed a random walk 

were executed. The distribution of the angle or direction of movement was analyzed. 



 

 
 

In comparison to a uniform distribution, when saccades were removed, 60% of the 53 

runs failed to reject the null hypothesis. For the data with saccades, only 21% of the 53 

runs failed to reject the null hypothesis. Thus, there was a significant difference in the 

distributions of the angle of eye movement between the data with and without 

saccades. When saccades were removed, there is more support for the gaze path 

following a random walk, compared to when saccades are included in the assessment.   

This research and resulting conclusions are important in starting to explain the 

involuntary eye movements which occur when a participant is singularly focused. 

These results provide strong evidence that this underlying movement can be 

represented as a Wiener process. For any experiment considering eye movements, the 

inherent movement of the eyes should be considered in the analysis. 
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INTRODUCTION 
 

 

Attention is the focusing of sensory, motor, and/or mental resources on aspects of 

the environment in order to acquire knowledge [1]. It is required for the “conscious 

perception of any object” [2]. Two types of movements guide attention: endogenous 

movements, which are driven by the goals and intentions of the observer (i.e., top-

down or goal-directed attention), and exogenous movements, which are driven by 

stimulus properties in the visual environment (i.e., bottom-up or stimulus-driven 

attention) [1, 3, and 4]. In the attention literature, eye movement data are used as an 

indication of the focus of attention. Two types of eye movements typically examined 

in relation to attention are saccades and fixations. Saccades are the fast movements 

that redirect the eye to a new part of the surroundings, and fixations are intervals 

between saccades in which gaze is held almost stationary and visual information is 

taken into the visual system [5]. 

This research investigates the feasibility of modeling visual attention (as 

represented through eye movements) as a stochastic process. For the modeling effort, 

the Poisson process, the Wiener process, and the random walk are considered.  It is 

hypothesized that the saccade occurrences can be modeled as a Poisson process, and 

the visual trace or gaze path can be characterized by the Wiener process or a random 

walk. In addition, this research explores the effects of additional cognitive activity on 

visual trace. The following hypotheses are examined. 

CHAPTER 1  
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1. The visual trace of participants when asked to fixate on a single point can 

be modeled as a stochastic process. 

2. The visual trace of participants will fluctuate when performing an 

additional cognitive task, but can still be modeled stochastically with 

additional parameter considerations. 

In order to determine whether attention can be modeled as a stochastic process, 

eye-tracking data were collected and analyzed. The data included horizontal and 

vertical eye position within the experimental field and pupil size. For this study, a 

limited number of gaze paths were utilized to support the analysis. The experiment 

contains only a single focal point with no distractors. The goal of this experiment is to 

determine how the eyes move when attention is singularly focused. This research does 

not attempt to determine how attention is captured or distracted, but rather to 

understand the foundational elements of attention that can be ascertained from eye 

movement data.  

Participants were solicited from the University of Rhode Island (URI) student 

population. The study took place in the Eye Lab in Gilbreth Hall at URI utilizing the 

ISCAN software available. A C-Sharp program displayed a single black dot in the 

center of a screen, and the participants were asked to look at the dot for two minutes, 

during two distinct types of trials. Each participant repeated each of the two types of 

trials three times (total of 6 runs = 12 minutes). On one trial, participants performed an 

additional task requiring cognitive processing, i.e., the n-back task. In the n-back task, 

a series of verbal stimuli (e.g., a series of numbers) is presented and the participant is 

asked to indicate when the currently presented stimulus is the same as the one 
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presented n trials previously [6]. The other trial simply asked that participants focus on 

the black dot. Once the data was collected through the eye tracker software and C-

Sharp program, it was analyzed to support assessment of the hypothesis that eye 

movements, when directed to focus on a single point, can be modeled as a random 

process. The inherent properties of eye movements are examined without distractors 

or additional required tasks (i.e., visual search for a specified object within the scene).  

This is important in determining how the eyes move involuntarily while singularly 

focused. The purpose of including a cognitive task is to determine its effect on the 

focus of visual attention.  

Chapter 2 provides background on research regarding attention, details of various 

attention experiments, and theories and models of attention described in the current 

literature. In addition, an overview of random variables, random processes, and 

stochastic modeling is included in Chapter 2. Chapter 3 details the experiment 

including the experimental setup and execution. Chapter 4 describes the data analysis, 

modeling efforts, and resulting model of the data. Chapter 5 contains conclusions and 

recommendations for future research.  
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LITERATURE REVIEW 

 

2.1. Overview of Attention Literature 

The research of attention is important to many fields of study, and thus, the 

current literature extends to a variety of areas, including: biological and cognitive 

aspects of attention [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]; visual search and detection [4, 7, 

12, 13, 14, 15]; attention allocation and control [1, 4, 7, 10, 12, 13, 14, 16, 17]; 

limitations of attention [1, 6, 8, 10, 11, 12, 17, 18, 19]; a variety of attention 

experiments [10, 11, 12, 15, 17, 20, 21, 22, 23]; and theories and models of attention 

[13, 14, 15, 16, 17, 22, 23, 24, 25, 26, 27, 28, 29].   

Throughout the literature, eye position is used as an indirect measurement of 

where attention is currently deployed in space. This eye position is then translated into 

two primary classes of eye movements, fixations and saccades. Fixations are a type of 

eye movement in which the gaze is held almost stationary and visual information is 

obtained [3]. Saccades are fast movements (typically defined as movements greater 

than 300o/sec) that redirect the eye to a new part of the surroundings [3].  In much of 

the literature, the emphasis of the experiments, analysis, and modeling is based on 

fixations since they represent where a person’s attention is focused.  In this research, 

the focus is on saccades. Since, in addition to playing an important role in redirecting 

the eye to a new position, saccades may provide further insight into the underlying 

nature of eye movements. 

CHAPTER 2  
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2.2. Attention Experiments 

Most of the current literature seeks to utilize attention experiments to describe to 

what extent attention is controlled by top-down (driven by observer’s goals and 

intentions) versus bottom-up guidance (driven by external stimuli).  Two types of 

experiments typically used to describe attention allocation and guidance include: 

capture of attention experiments and experiments that require visual search and 

detection amongst distractors. Capture of attention experiments often seek to 

determine to which specific stimuli (e.g., abrupt onset, specific colors, etc.) the visual 

system is particularly sensitive. These experiments help to explain the extent to which 

attention is allocated utilizing bottom-up guidance and the strength of specific stimuli 

to capture attention.  

Visual search experiments address top-down attention by requiring the participant 

to orient attention and detect a particular stimulus based on pre-specified goals. 

Orienting is the process of aligning attention with a source of sensory input or an 

internal semantic structure stored in memory [4]. Detection of a stimulus means that 

the stimulus has reached a level of the nervous system at which it is now possible for 

the subject to report its presence [4].  These search experiments address bottom-up 

guidance, in addition to the goal-directed search guided by top-down mechanisms, by 

examining the difficulty of detecting the target amongst different combinations of 

distractors.  

Egeth and Yantis (1997) reviewed various experiments related to attentional 

control and attentional capture. Attentional control describes the extent to which 

deployment of attention is a result of an individual’s deliberate state of attentional 

readiness (i.e., goal-directed control) or is captured by specific aspects of the image 
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(i.e., stimulus-driven control) [10]. Their paper focuses on two types of external 

stimuli, feature singletons and abrupt visual onsets, to determine the extent to which 

each captures attention. By exploring attentional control in addition to capture, the 

paper explores not only the effect of these stimuli on bottom-up guidance, but also the 

extent to which top-down guidance influences the ability of a specific stimulus to 

capture one’s attention. 

Feature singletons are stimuli that differ substantially from their background in 

one or more visual attributes (e.g., color, orientation) [10]. Egeth and Yantis comment 

on the amount of conflicting evidence in the literature regarding whether singletons 

capture attention (see Pashler (1988), Theeuwes (1991a), and Joseph and Optican 

(1996) for studies supporting that singletons capture attention; and Jonides and Yantis 

(1988) and Theeuwes (1990), and Hillstrom and Yantis (1994) for examples of studies 

that conclude that singletons do not capture attention) [10]. In an attempt to reconcile 

the conflicting conclusions regarding feature singletons and attentional capture, Bacon 

and Egeth (1994) suggest that these results are the manifestations of two different 

attentional strategies adopted by participants [10]. Under some circumstances, subjects 

direct attention to the location exhibiting the largest local feature contrast as they 

search for the feature singleton [10]. In other stimulus conditions, subjects instead 

direct attention to the locations that match some task-defined visual feature (e.g., 

locations of blue items since the task is to identify a blue circle) [10]. This suggests 

that based upon a participant’s goals or intentions, a participant may be able to resist 

or minimize the effect of a feature singleton on attentional capture. 
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With abrupt visual onsets, there is a consensus that abrupt onsets capture 

attention. The extent to which attention is captured may depend on a number of 

variables. For example, Jonides (1981) showed that peripheral cues always drew 

attention (whether or not they were informative about the target location), while 

central cues only captured attention when they were informative [10]. Yantis and 

Jonides (1990) found that capture, which occurs in the absence of any relevant 

attentional set, is prevented when subjects are induced to focus attention on a different 

spatial location in advance of each trial [10]. This suggests that an individual can 

potentially resist or reduce the effects of abrupt visual onsets capturing attention, if 

attention is focused in advance. 

Mack et al. (2002) describe a series of experiments that explore the power of 

specific stimuli to capture attention when an inattentional state is produced. One 

inattentional state utilized was the attentional blink. In order to investigate whether an 

attentional blink occurred, a rapid serial presentation of alphanumeric characters was 

presented to an observer [11]. The observer was asked to report two consecutively 

presented characters designated as targets. An attentional blink occurs when the 

observer fails to detect the second target. It is called an attentional blink because the 

failure is attributed to the demands placed on attentional processing imposed by the 

first target which makes the processes for detecting the second target temporarily 

unavailable [11]. The experiments produced evidence that a complex, familiar, and 

meaningful stimuli (i.e., one’s own name) is able to capture attention and be perceived 

under a variety of conditions in which other stimuli are not. Mack et al. concluded that 

under conditions of inattention, it is the meaning of the stimulus which is ascertained 
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or processed without attention that captures attention and subsequently brings that 

stimulus into awareness [11].  

Posner et al. (1980) examined the relationship of orienting and detecting in the 

task of reporting the presence of a visual signal by reviewing experiments from the 

literature as well as executing their own experiments to validate or extend upon those 

conclusions [12]. The objective of one experiment was to compare detection latencies 

when a stimulus location was cued on each trial (mixed block) to a non-cued situation 

in which subjects prepared for one location for a block of trials (pure blocks) [12]. 

Each stimulus trial consisted of a visual warning signal, a stimulus (LED), the 

subject’s response, feedback based on the response, and an inter-trial interval. For the 

mixed block trials, 80% of the trials contained a digit (1, 2, 3, or 4) as a warning signal 

[12]. The digit indicated the most probable location at which the subject could expect 

the stimulus to occur [12]. The remaining 20% included a warning signal of a plus 

sign, indicating that the four locations were equally likely [12]. For the pure blocks, 

the warning signal was always a plus sign followed by an equal (each of the four 

locations is equally probable) or unequal block condition [12]. In the unequal 

condition, participants were informed of the most likely stimulus location at the 

beginning of each unequal block [12].  When subjects were cued on each trial, they 

showed stronger expectancy effects than when a probable position was held constant 

for a block, indicating the active nature of the expectancy [12]. Knowledge regarding 

the location of the stimulus produced benefits when it was used actively (cued) but not 

when it was used to maintain a general set (blocked) [12]. 
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Another experimental task described in Posner et al. (1980) involved a measure 

of reaction time to the onset of a stimulus LED. Again, warning signals of either a plus 

sign or a digit (1, 2, 3, or 4) were presented to indicate likely stimulus locations [12]. 

The plus sign indicated that each position was equally likely to contain the stimulus 

[12]. The digit indicated the most likely position during that block, while the next 

most likely position remained constant for three consecutive blocks [12]. Subjects 

were asked to remember these positions throughout the block and try to prepare 

accordingly [12]. Statistical analysis showed that for the most likely target positions, 

subjects exhibited significantly faster reaction times [12]. When the second most 

likely position was adjacent to the most likely position, the reaction time resembled 

that of the most likely target position [12]. However, when it was separated by a 

position from the most likely target position, the reaction time resembled that of the 

least likely position [12]. The results suggest that it is not possible for subjects to split 

their attentional mechanism between two positions separated in space when trying to 

detect a target [12].  Furthermore, the results indicate severe limits in the ability of 

subjects to assign attention to a secondary focus in addition to a primary focus [12]. 

The authors conclude that there is no evidence of an ability to divide attention [12]. 

The conclusions of Posner et al., regarding the ability to divide attention, dealt 

with an experiment that was solely based on visual stimuli. In this research, attention 

is again divided, but between a visual focus and a secondary aural task. One goal of 

this research is to determine how the model of attention changes when participants are 

asked to perform this secondary task. These changes in the focus of attention while 
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performing a secondary task may provide insight into the extent of one’s ability to 

effectively divide attention between a visual focus and a secondary aural task. 

 

2.3. Attention Theories and Models 

The models in the current literature focus primarily on attentional capture, visual 

search, and detection. Certain models rely solely on saliency-based, bottom-up 

attention [23, 25, 27, 28, 29], while others incorporate both bottom-up, image-based 

saliency cues and top-down, task-dependent cues [13, 14, 16, 22, 24]. Absent from the 

literature are models which focus on only top-down guidance, without search or 

distractors, which is the focus of this research. Since the participants are presented 

with a singular visual task (focus on the single black dot on the screen) with no other 

images on the screen, only top-down attention is utilized. Auditory stimuli are also 

presented during the n-back task, but the stimuli consist of a steady stream of numbers 

with no abrupt changes or onsets to draw attention away from the screen. 

“For the last decade the attention literature has been embroiled in a debate over 

the nature of visual spatial attention that focuses on the ‘thing’ that attention selects;” 

many have attempted to determine whether attention selects regions of space (space-

based attention) or specific objects within a region (object-based attention) [13].  The 

Contour Detector (CODE) Theory of Visual Attention (TVA), CTVA, integrates 

space-based and object-based approaches to attention by merging the CODE theory of 

perceptual grouping by proximity with TVA [13]. CTVA’s representation of space 

and objects derives from the CODE theory of perceptual grouping [13]. CODE theory 

utilizes two representations of space, one which represents the locations of items and 

the other representing objects and groups of objects [13]. CODE assumes that the 
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location of each item is represented by its own distribution, and the CODE surface is 

formed by bottom-up processes from the summation of those distributions [13]. By 

applying a threshold set by top-down processes to the CODE surface, items residing in 

the same above-threshold region are categorized into perceptual groups [13]. When 

applying the CODE theory to attention, the CODE surface can be viewed as 

distributions of item features where the height represents the probability of sampling 

those features [13]. CODE provides a sampling of visual features as an input to TVA, 

which then chooses among categorizations of perceptual inputs to select where 

attention will be allocated [13].  

Pomplun et al. (2003) developed the Area Activation Model, which is a 

computational model that predicts the statistical distribution of saccadic endpoints in 

visual search tasks [15]. The distribution is based on the assumption that saccades in 

visual search tend to foveate the display areas that provide the maximum amount of 

task-relevant information for the subsequent fixation. Navalpakkam and Itti (2005) 

describe another computational model for task-specific guidance of visual attention. 

Their model is based on a biologically motivated architecture which emphasizes the 

aspects important to biological vision [16]. The model is divided into four important 

steps in guiding visual attention in real-world scenes. The model first determines the 

task-relevance of an entity. Then, the model biases attention for the low-level visual 

features indicative of the desired targets. The model uses these low-level features to 

recognize targets. Throughout the process, the model incrementally builds a visual 

map of the task-relevance at every scene location and stores this information within 

the memory of the model. 
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Rutishauser and Koch (2007) developed a generative model that reproduces eye 

movements during a visual search task. It calculates the conditional probabilities that, 

given a specified target, observers fixate on or near an item sharing a specific feature 

with that target [22]. The model consists of three modules: (1) feature extraction and 

representation of the visual scene, (2) saccade planning, and (3) target detection [22]. 

The probabilities generated by the model are used to infer which visual features were 

biased by top-down attention [22]. 

Itti and Koch (2011) established a combined model of attentional selection and 

object recognition [24]. This model is based on a framework that subjects selectively 

direct attention to objects within a scene using both bottom-up, image-based saliency 

cues and top-down, task-dependent cues [24].  The model uses a bottom-up feature 

extraction pathway to select informative image regions from an incoming visual scene 

[24]. A trained knowledge base hierarchically represents object classes and encodes 

each object within an object class [24]. This encoding includes both expected visual 

features and a set of critical points on these objects, which the model then uses for 

object recognition [24]. 

Torralba (2003) describes a contextual cueing model for attentional guidance 

based on global scene configuration [25]. This model utilizes statistical correlations 

between global scene structure and object properties to facilitate search in complex 

scenes [25]. In addition, it provides estimates of the likelihood of finding an object in a 

given scene and its most likely position [25].  In Rimey and Brown (1990), the focus 

of the model is attention allocation [26].  They consider an augmented hidden Markov 

model in which allocation of visual processing is controlled preferentially within a 
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scene, leaving open just the resources being managed [26].  As in the attention 

experiments, the models focus on aspects of attention such as visual search, detection 

of features, and attention allocation. The model considered in this research focuses on 

the inherent elements of eye movements when attention is singularly focused. The 

papers listed in the bibliography contain additional information about attentional 

theories and models. 

 

2.4. Random Variables and Probability Distributions 

A random variable, 𝑋, is a function which maps the sample space, 𝑆, into a subset 

of numbers on the real line [30]. This subset of numbers forms a new sample space 𝑆𝑋, 

which for a discrete random variable includes a finite or countably infinite set of 

points, 𝑋(𝑠𝑖) = 𝑥𝑖 for 𝑖 = 1, 2, …[30]. To characterize the properties of a random 

variable, a probability mass function (for discrete random variables) or a cumulative 

distribution function (CDF) can be used. These functions summarize the probabilities 

associated with the random variable assuming certain values and contain all the 

information available about a random variable before its value is determined by an 

experiment [31]. The probability mass function (PMF) is defined in [32] as: 

𝑝𝑋[𝑥𝑖] = 𝑃[𝑋(𝑠) = 𝑥𝑖] 

For a discrete random variable, the probability mass function can be equivalently 

defined as the discrete probability density function (PDF) as in Hoel (1984) by: 

𝑓(𝑥) = 𝑃[𝑋 = 𝑥] 

For a continuous random variable, the probability density function contains the 

same information as that contained in a probability mass function for a discrete 

random variable. The probability density function is a function, 𝑓(𝑥), which possesses 
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the following properties: (1) 𝑓(𝑥) ≥ 0, (2) ∫ 𝑓(𝑥)𝑑𝑥∞
−∞ = 1, and (3) ∫ 𝑓(𝑥)𝑑𝑥𝑏

𝑎 =

𝑃(𝑎 < 𝑋 < 𝑏) where 𝑎 and 𝑏 are any two values of 𝑥 satisfying 𝑎 < 𝑏 [33].  The 

cumulative distribution function represents the probability that 𝑋 takes on a value less 

than or equal to 𝑥, and is defined as:  

𝐹𝑋(𝑥) = 𝑃(𝑋 ≤ 𝑥),−∞ < x < ∞ 

The cumulative distribution functions for discrete and continuous random variables 

are defined in terms of the probability mass or density functions as follows: 

𝐹𝑋(𝑥) =  �𝑓(𝑡)
𝑡≤𝑥

, if 𝑋 is discrete 

𝐹𝑋(𝑥) =  �𝑓(𝑡)𝑑𝑡
𝑥

−∞

, if 𝑋 is continuous 

Often when it is clear to which random variable the distribution function applies, the 

subscript is removed, and thus, 𝐹𝑋(𝑥) becomes 𝐹(𝑥). These two terms can be viewed 

as interchangeable throughout this paper. 

This section describes a few of the most important distributions in order to 

illustrate some of the statistical concepts discussed. The first distribution, which is 

perhaps the easiest to understand and represent, is the uniform distribution. In the 

uniform distribution, within the range of possible outcomes, each outcome is equally 

likely to occur. Its distribution functions are defined as follows: 

𝑓(𝑥) = �
1

𝑏 − 𝑎
, 𝑎 ≤ 𝑥 ≤ 𝑏

0,                  otherwise
 

𝐹(𝑥) =  �

0,                  𝑥 < 𝑎
𝑥 − 𝑎
𝑏 − 𝑎

, 𝑎 ≤ 𝑥 ≤ 𝑏

1,                  𝑥 > 𝑏
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The normal distribution, or Gaussian distribution, is probably the most important 

distribution due to its wide applicability throughout a variety of domains. It is defined 

by two parameters, a location parameter, 𝜇, and a scale parameter, 𝜎.  The location 

parameter represents the center or mean of the ‘bell-shaped’ curve of the distribution, 

whereas the scale parameter represents the spread or standard deviation of the 

distribution. Thus, both parameters are important in defining the related distribution 

functions: 

𝑓(𝑥) =
1

𝜎√2𝜋
exp�

−(𝑥 − 𝜇)2

2𝜎2
� ,−∞ < 𝑥 < ∞ 

𝐹(𝑥) = �
1

𝜎√2𝜋
exp �

−(𝑡 − 𝜇)2

2𝜎2
�𝑑𝑡

𝑥

−∞

 

Since the integral for 𝐹(𝑥) cannot be solved explicitly, the value for the 

cumulative distribution function for the normal curve is found from a table 

representing the standard normal distribution. In the standard normal distribution, 

𝜇 = 0 and 𝜎 = 1, resulting in the following distribution functions: 

𝑓(𝑥) =
1

√2𝜋
exp�

−𝑥2

2
� ,−∞ < 𝑥 < ∞ 

𝐹(𝑥) =
1

√2𝜋
� exp�

−𝑡2

2
�𝑑𝑡

𝑥

−∞

 

For the standard normal distribution, 𝐹(𝑥) is often represented by Φ(𝑥), and the value 

for Φ(1) represents the area depicted in Figure 2-1.   
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Figure 2-1. Standard Normal Distribution - Shaded area represents Φ(1) = 0.84 

 

To obtain the value for the general normal distribution, the following transformation is 

used to determine which value of Φ(𝑥) to look up in the table: 

𝐹(𝑥) = Φ�
𝑥 − 𝜇
𝜎

� 

Another distribution of relevance to this research is the Poisson distribution. A 

random variable, 𝑋, is a Poisson random variable with parameter 𝜆 > 0, if its 

probability mass function is defined as: 

𝑝𝑋[𝑘] = 𝑃(𝑋 = 𝑘) =
𝑒−𝜆𝜆𝑘

𝑘! 
,𝑘 = 0, 1, 2, … 

The cumulative distribution function of a Poisson random variable is defined as: 

𝐹𝑋(𝑥) = 𝑒−𝜆�
𝜆𝑘

𝑘!

𝑛

𝑘=0

,𝑛 ≤ 𝑥 < 𝑛 + 1 
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The expected value, 𝐸[𝑋], of a random variable is the average value of the 

outcomes of a large number of experimental trials [30]. For a discrete random 

variable, it is defined by the equation:  

𝐸[𝑋] = �𝑥𝑖𝑝𝑋[𝑥𝑖]
𝑖

 

Equivalently, for a continuous random variable:  

𝐸[𝑋] = � 𝑥𝑓(𝑥)𝑑𝑥
∞

−∞

 

For a uniform random variable, 𝐸[𝑋] = 𝑎+𝑏
2

. The expected value for a normal random 

variable is equal to the mean or location parameter, 𝐸[𝑋] = 𝜇. For a Poisson random 

variable, 𝐸[𝑋] = 𝜆.   

The variability of a random variable is measured by its variance, defined by: 

var(𝑋) = 𝐸[(𝑋 − 𝐸[𝑋])]2 = 𝐸[𝑋2] − 𝐸2[𝑋] 

For a uniform random variable, the variance is equal to (𝑏−𝑎)2

12
. The variance for the 

normal distribution is again easily obtained from one of its parameters, with var(𝑋) =

𝜎2. One important characteristic of a Poisson random variable is that its variance is 

equivalent to its expected value; thus, var[𝑋] = 𝜆. 

 

2.5. Overview of Random Processes 

Suppose a characteristic of a system is observed at discrete points in time, 

0, 1, 2, … and let 𝑋𝑡 be a random variable, which represents the value of the system 

characteristic at time, 𝑡. A discrete-time stochastic process or random process is 

simply a description of the relation between the random variables 𝑋0,𝑋1,𝑋2, … [34]. A 
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continuous-time stochastic process is a stochastic process in which the state of the 

system can be viewed at any time, not just at discrete instants in time [34]. Stochastic 

processes are distinguished by their state space, or the range of possible values for the 

random variables 𝑋𝑡, by their index set 𝑇, and by the dependence relations among the 

random variables 𝑋𝑡 [31].   

Another way to think about a random process is to consider a conceptual random 

process generator as described in Kay (2006). In this conceptual random process 

generator, the input consists of an infinite sequence of random variables along with 

their probabilistic description (e.g., probability mass function), and the output is an 

infinite sequence of numbers, or the random process [30]. In other words, a random 

process is an infinite sequence of random variables, with one random variable for each 

time instant, and each realization of the random process takes on a value represented 

by an infinite sequence of random variables [30]. 

A point process is a type of random process that models the occurrences of some 

phenomenon at the time epochs {𝑡𝑖} where 𝑖 refers to an index set [35]. For a point 

process, there are four equivalent descriptions of the sample paths: (1) counting 

measures, (2) non-decreasing, integer-valued step functions, (3) sequences of points, 

and (4) sequences of intervals (see Figure 2-2) [35].  A temporal point process is 

composed of a time-series of binary events that occur in continuous time [35]. At each 

point in time, the point process can take on only one of two possible values indicating 

whether an event occurred [35]. As with any random signal, the data observed as part 

of a point process can be expressed in terms of multiple collections of random 

variables [36]. For example, let 𝑌1,𝑌2, … be random variables describing the 
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occurrence times of a point process. A realization of this point process is the event 

𝑌1 = 𝑦1,𝑌2 = 𝑦2, … for some collection of times 0 < 𝑦1 < 𝑦2 < ⋯ [36].  

Any point process can be completely characterized by its conditional intensity 

function, 𝜆(𝑡|𝐻𝑡) defined as:  

𝜆(𝑡|𝐻𝑡) = lim
Δ𝑡→0

Pr�𝛥𝑁(𝑡,𝑡+𝛥𝑡] = 1�𝐻𝑡�
Δ𝑡

 

where Pr�𝛥𝑁(𝑡,𝑡+𝛥𝑡] = 1�𝐻𝑡� is the instantaneous conditional probability of an event 

and 𝐻𝑡 is history of events up to time 𝑡 [35]. A Poisson process of intensity, or rate, 

𝜆 > 0 is an integer-valued stochastic process {𝑋(𝑡); 𝑡 ≥ 0} for which the following 

properties hold:  

(1) for any time points 𝑡0 = 0 < 𝑡1 < 𝑡2 < ⋯ < 𝑡𝑛, the process increments: 

𝑋(𝑡1) − 𝑋(𝑡0),𝑋(𝑡2) − 𝑋(𝑡1), … ,𝑋(𝑡𝑛) − 𝑋(𝑡𝑛−1) are independent random 

variables  

(2) for 𝑠 ≥ 0 and 𝑡 > 0, the random variable 𝑋(𝑠 + 𝑡) − 𝑋(𝑠) has the Poisson 

distribution: 

Pr{𝑋(𝑠 + 𝑡) − 𝑋(𝑠) = 𝑘} =
(𝜆𝑡)𝑘𝑒−𝜆𝑡

𝑘!
,𝑘 = 0, 1, … 

(3) 𝑋(0) = 0 [31].  

A Poisson point process 𝑁�(𝑠, 𝑡]� counts the number of events occurring in an 

interval (𝑠, 𝑡] [31]. A Poisson counting process, or more simply a Poisson process 

𝑋(𝑡), counts the number of events occurring up to time 𝑡 [31].  

Figure 2-2, adapted from Pinsky and Karlin (2011), illustrates a typical sample 

path of a Poisson process. The waiting times, 𝑊𝑛, represent the time up until event 𝑛 

has occurred. These follow the gamma distribution, with probability density function: 
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𝑓𝑊𝑛(𝑡) =
𝜆𝑛𝑡𝑛−1

(𝑛 − 1)!
exp(−𝜆𝑡) ,𝑛 = 1, 2, … , 𝑡 ≥ 0 

In particular, 𝑊1, the time to the first event, is exponentially distributed: 

𝑓𝑊1(𝑡) = 𝜆𝑒−𝜆𝑡, 𝑡 ≥ 0 

The sojourn times (i.e., the times between events), 𝑆0, 𝑆1, … , 𝑆𝑛−1, are independent 

random variables, each having the exponential probability density function: 

𝑓𝑆𝑘(𝑠) = 𝜆𝑒−𝜆𝑠, 𝑠 ≥ 0 

 

 

Figure 2-2. Typical sample path of a Poisson process (adapted from [31]) 

 

Additionally, events of a Poisson process occur randomly in time, the first at 𝑇1 or 𝑊1, 

the second at 𝑇2, and so on, with the 𝑛𝑡ℎ event occurring at 𝑇𝑛. The random variable 𝑇𝑖 

denotes the time at which the 𝑖𝑡ℎ event occurs, and the values 𝑡𝑖 of 𝑇𝑖 are called the 

points of occurrence [32]. These points, occurring randomly over a specified time 

period, follow a uniform distribution.  
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Another type of stochastic process of interest is a Wiener Process, which is the 

mathematical model for Brownian motion. Brownian motion describes the random 

motion of particles suspended in a fluid resulting from their collision with the atoms 

within the fluid.  A stochastic process 𝐵(𝑡), −∞ < 𝑡 < ∞, is a Wiener process with 

parameter 𝜎2, if it satisfies the following properties as defined in [37]: 

(1) 𝐵(0) = 0 

(2) 𝐵(𝑡) − 𝐵(𝑠) has a normal distribution with mean equal to zero and a 

variance of 𝜎2(𝑡 − 𝑠) for 𝑠 ≤ 𝑡 

(3) 𝐵(𝑡2) − 𝐵(𝑡1), …𝐵(𝑡𝑛) − 𝐵(𝑡𝑛−1) are independent for 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛 

A random walk is an extension of the Wiener process for which, the direction of 

change in position is also of importance. For example, define a sequence of 

independent, identically distributed discrete random variables by {𝑋𝑘}𝑘=1∞ . For each 

positive integer 𝑛, let 𝑆𝑛 denote the sum of the sequence of 𝑋𝑘’s up to 𝑋𝑛: 𝑆𝑛 = 𝑋1 +

𝑋2 + ⋯+ 𝑋𝑛. This sequence {𝑆𝑛}𝑛=1∞  is a random walk. In a simple random walk, the 

𝑋𝑘’s follow a Bernoulli distribution in which: 

𝑓(𝑥) =  �
𝑝, 𝑥 = +1
𝑞, 𝑥 = −1
0, otherwise

 

where 𝑝 + 𝑞 = 1. If 𝑝 = 𝑞 = 0.5, this is a simple symmetric random walk. The more 

general symmetric random walk is the process obtained by summing up independent, 

uniformly distributed, (𝐴 ∪ 𝐴−1)-valued random variables, 𝑋𝑛. The random walk can 

also be studied in multiple dimensions. When considering a two-dimensional random 

walk, in which a step can be taken in any direction or angle, 𝑑, the direction is chosen 
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randomly with probability 1
𝑑
. Thus, the angle or direction of the random walk follows a 

uniform distribution. 

If the 𝑋𝑘’s follow a normal distribution with mean equal to zero and variance 

equal to 𝜎𝑘2, the sequence {𝑆𝑛}𝑛=1∞  is a random walk with Gaussian steps. When adding 

Gaussian random variables, the resulting sum is also normally distributed with mean 

and variance equal to the respective sums. If 𝑊 is normally distributed with mean 𝜇𝑊 

and variance 𝜎𝑊2 , this can be represented as: 𝑊~𝑁(𝜇𝑊,𝜎𝑊2 ). If in addition, 

𝑌~𝑁(𝜇𝑌,𝜎𝑌2) and 𝑍 = 𝑋 + 𝑌, then 𝑍~𝑁(𝜇𝑊 + 𝜇𝑌,𝜎𝑊2 + 𝜎𝑌2). A random walk with 

Gaussian steps is normally distributed with mean equal to zero and 𝜎𝑛2 = ∑ 𝜎𝑖2𝑛
𝑖=1 . 

Each of the stochastic processes described in this section are considered in the 

data analysis and modeling of the eye tracker data. The Poisson process is considered 

as a representation of the saccade occurrences. The Wiener process and random walk 

are considered for the gaze pattern or eye movements that occur during the run. 
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EXPERIMENT 

 

3.1. Material 

The required equipment for this experiment includes:  

1. the ISCAN ETL-500 eye tracking equipment, 

2. a dedicated computer connected to the eye tracker and a video device to 

collect eye movement data, 

3. a video recorder, 

4. a second computer to run the C-Sharp program, 

5. a table to house all eye scanning equipment (each participant was seated at 

this table), and 

6. a projector and projector screen. 

All of this equipment belongs to the eye-tracking lab in Gilbreth Hall where the 

experiments were executed. The remote ISCAN eye-tracker was set up on the table so 

that the participant’s eye was 96 inches from the projector screen. The projector was 

set up so that the projected image had a width of 63 inches and a height of 35 inches. 

This configuration was consistent for all test subjects.  

 

3.2. Description of Experiment 

In order to determine whether attention can be modeled as a stochastic process, 

eye-tracking data was collected and analyzed. The data included horizontal and 

vertical eye position within the experimental field and pupil size. For this study, a 
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limited number of gaze paths (nine participants) were collected to support the data 

analysis. Participants were solicited from the URI student population. The study was 

performed in the Eye Lab in Gilbreth Hall and utilized the ISCAN software available. 

A C-Sharp program displayed a single black dot in the center of a screen, and 

collected data from the eye tracker system. The participants were asked to look at the 

dot for two minutes, on two separate types of trials. Each participant repeated each of 

the two trial types three times (total of six runs per participant). 

On one trial, participants were required to perform an additional task requiring 

cognitive processing, i.e., the n-back task. In the n-back task, a series of verbal stimuli 

(e.g., a series of numbers) were presented and the participant was asked to indicate 

when the currently presented stimulus is the same as the one presented n trials 

previously [1]. For this data collection, 𝑛 = 2 (i.e., participants would indicate that the 

same stimulus was presented on the string “141” after hearing the second “1”). On the 

other trial, the participants were simply asked to focus on the black dot in the center of 

the screen. Data was collected from the eye tracker software through the C-Sharp 

program and analyzed to support assessment of the hypothesis that eye movements, 

when a participant is asked to focus on a single point, can be modeled as a random 

process (see Chapter 4 for more details on the modeling process). The purpose of 

including the additional cognitive task is to determine its effect on the focus of visual 

attention and resulting gaze path.  

The data collection occurred in May-June 2013. This experiment utilized the 

ISCAN ETL-500 remote eye tracking system with ISCAN Raw Eye Movement Data 

Acquisition (DQW) Software which collected samples at 240-Hz. The RK-826 PCI 
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Pupil Corneal Reflection Tracking System and the RK-630 PCI Autocalibration 

System are the hardware installed in the system. The RK-826 system tracks pupil 

position and size with the dark-pupil-to-corneal reflection method [2]. This system 

utilizes an infrared light source that illuminates the eye so that the pupil acts like a 

sink and the surrounding areas reflect the light source back to the camera [2]. The 

pupil is recognized and tracked as the dark image and the corneal position as the bright 

spot off which the infrared light source reflects; this allows the tracking of eye 

movements [2].  Figure 3-1 shows an example of an eye-tracking image in which the 

pupil and corneal reflection thresholds are set to the appropriate levels. This image is 

an example of the clarity and markings one would ideally like to see before starting 

the collection of eye tracking data. 

 

 

Figure 3-1. Ideal Eye Tracking Image (thresholds adjusted to appropriate levels) [3] 

 
 
The RK-630 PCI Autocalibration System utilizes a five-point calibration 

procedure to calculate the subject’s point of regard (POR) with respect to the scene 

being viewed [4]. The DQW software displays graphical representations of the pupil 
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size and eye positions. The video eye image display over which the eye is tracked is 

represented by 512 points in both the horizontal and vertical dimensions, with the 

upper left corner representing the point (0, 0) and the bottom right, (511, 511). The 

output data consisted of a matrix of horizontal and vertical coordinates representing 

eye position along with pupil size for each sample. 

Figure 3-2 illustrates the geometry needed to calculate the visual span or degrees 

of visual movement of a participant, which is sufficient when determining the amount 

of movement (in terms of degrees) for solely horizontal or solely vertical movement. 

 

 

Figure 3-2. Illustration of the visual span (horizontal and vertical) based on positioning 
of the participant from the screen and the size of the projected image on the screen 

 
 

Since the focus of the eye does not always start in a position perpendicular to the 

screen, the angle of movement must be calculated utilizing three-dimensional 

geometry. Figure 3-3 illustrates the three-dimensional geometry utilized to determine 

the overall amount of movement between eye position samples (in degrees).   
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Figure 3-3. Three-dimensional geometry utilized to calculate amount of eye movement 
between samples (used to identify saccades) 

 

Each point within the space is defined as an ordered triple of real numbers, i.e., 

(ℎ, 𝑣,𝑑) where ℎ = horizontal position of the eye on the screen, 𝑣 = vertical position 

of the eye on the screen, and 𝑑 = distance of the eye from the screen. With the points 

defined as in Figure 3-3, the vectors X and Y are defined by the following equations.  

𝑿 = �
𝑥1
𝑥2
𝑥3
� = 𝐴𝐵�����⃗ = �

ℎ1 − ℎ1
𝑣1 − 𝑣1
0 − 𝑑

� = �
0
0
−𝑑

� 

𝒀 = �
𝑦1
𝑦2
𝑦3
� = 𝐴𝐶�����⃗ = �

ℎ2 − ℎ1
𝑣2 − 𝑣1
0 − 𝑑

� = �
ℎ2 − ℎ1
𝑣2 − 𝑣1
−𝑑

� 

The angle 𝜃 between two non-zero vectors X and Y is then calculated using the 

following equation: 

cos 𝜃 =
𝑿 ∙ 𝒀

‖𝑿‖‖𝒀‖
, 0 ≤ 𝜃 ≤ 𝜋 

where 𝑿 ∙ 𝒀 represents the dot product and is defined as: 𝑿 ∙ 𝒀 = 𝑥1𝑦1 + 𝑥2𝑦2 + 𝑥3𝑦3 

and ‖𝑿‖ represents the magnitudes of 𝑿 and is defined as: ‖𝑿‖ = (𝑿 ∙ 𝑿)1/2.  
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For example, let ℎ1 = 50, 𝑣1 = 60,ℎ2 = 70, 𝑣2 = 85, and 𝑑 = 175.  

𝑿 = �
0
0

−175
� ,𝒀 = �

ℎ2 − ℎ1
𝑣2 − 𝑣1
−𝑑

� = �
10
15

−175
�  

𝑿 ∙ 𝒀 = (0 ∗ 10) + (0 ∗ 15) + (−175 ∗ −175) = 30,625 

‖𝑿‖ = (02 + 02 + (−175)2)1/2 = 175 

‖𝒀‖ = (102 + 152 + (−175)2)1/2 = 175.926 

cos 𝜃 =
30625

(175) ∗ (175.926) = 0.9947  

𝜃 = cos−1(0.9947) = 5.88o 

This angle is then used to calculate the angular velocity of the eye movement by 

dividing by the time between samples. 

 
3.3. Experimental Procedure 

The sequence of events for the experiment is detailed in the following procedure. 

1. Start the eye tracker system. 

2. Open and run the C-sharp program “SingleDotFocus”. 

3. Perform the eye calibration. 

a. Ask the participant to sit in the chair facing the large projector screen 

and place his/her chin on the chin rest, and look straight ahead.  

b. Select ‘track active’ and make the necessary adjustments to the eye 

tracker system to obtain a clear picture of the eye and pupil (as shown 

in Figure 3-1). 
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c. Present screen with five dots (one central dot and one on each corner). 

Assure that each dot aligns with the dots on the eye tracker software 

calibration screen. 

d. Ask the participant to look at each dot in the sequence (e.g., center, top 

left, top right, bottom left, bottom right, back to center) while 

advancing through the corresponding dots in the calibration screen, so 

that the eye tracker system can be calibrated. 

e. Assure that the system is properly calibrated before proceeding to 

experiment. If the system calibration is inaccurate, repeat calibration. 

4. Present the screen containing a single center dot and ask participants to focus 

on the dot for two minutes on two different types of trials. 

a. On one trial, the participant will simply focus on the black dot. 

b. On the other trial, a series of numbers will be presented to the 

participant and he/she will be asked to indicate when the currently 

presented number is the same as the number presented two trials 

previously (e.g., for the sequence of numbers “3-7-3”, a report of same 

would occur after the second “3” is heard). 

5. Repeat each type of trial three times (order of trial type will be randomized), 

for a total of six runs per participant.  

During the n-back trials, each time a participant signaled that the currently 

presented number was the same as the one presently two trials previously, it was 

manually documented.  No associated time stamp was recorded.  This additional 

cognitive task was included in order to determine its effect of gaze pattern. The 
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purpose of this experiment was not to assess a participant’s speed or accuracy in 

identifying the repeated numbers, and thus, an actual performance assessment of the n-

back task extended beyond the scope of this research. 
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ANALYSIS AND RESULTS 

 

4.1. Eye-tracker data analysis 

Data collected for each participant was analyzed using MATLAB (see Appendix 

A for MATLAB scripts used for analysis). To ascertain the amount of movement 

occurring during the trial, plots of eye positions over time were constructed. At the 

beginning of each run, the central dot positions (in addition to the calibration dot 

positions) were recorded. Utilizing these positions, for each sample, an eye position 

distance from center, 𝑑𝑓𝑐, was calculated using a basic distance formula as follows: 

𝑑𝑓𝑐 = �(𝑒𝑣 − 𝑐𝑣)2 + (𝑒ℎ − 𝑐ℎ)2 

where 𝑒𝑣 = vertical eye position, 𝑒ℎ = horizontal eye position, 𝑐𝑣 = central dot 

vertical position, 𝑐ℎ = central dot horizontal eye position. A subgroup of plots for 

selected runs of two participants is shown below for illustrative purposes. In Figure 

4-1 and Figure 4-3, a series of spikes indicates that the participant’s focus shifted from 

the center dot. The shifts of focus, or saccades, are of primary interest for the 

development of a model to fit this data.  

In addition, the difference from the central focus of each participant was 

calculated and used to illustrate where the drifts occurred. Though participants were 

instructed to focus on the central dot, their actual focus did not align exactly with the 

central dot location. Thus, a central focal location was determined for each participant 

and used to generate Figure 4-2 and Figure 4-4. However, in order to calculate a 
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central position, blinks were removed (to avoid skewing the data unfairly), and the 

data was plotted without blinks. It is clear from the following plots that there is a slight 

difference in the pattern of drifts, but the overall shapes are similar. In addition, there 

is a reduction of noise in the data when the blinks were removed and the distance was 

determined using the central focus of the participant.  

It was also important to consider the variation in the amount of noise between 

participants. Initially, a distance from center threshold was used to identify drifts. 

However, due to the differences in variation, thresholds were also considered in terms 

of the number of standard deviations for each participant. In order to classify eye 

movements from the eye tracker data, various event detection algorithms were 

reviewed.  
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Figure 4-1. Distance from Center Dot - Participant 1, Control Run 1 

 

 

Figure 4-2. Distance from Central Focus - Participant 1, Control Run 1 
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Figure 4-3. Distance from Center Dot - Participant 5, n-back Run 1 

 

 

Figure 4-4. Distance from Central Focus - Participant 5, n-back Run 1 



 

39 
 

4.2. Event Detection Algorithms 

Salvucci and Goldberg [1] classify event detection algorithms in terms of two 

temporal and three spatial criteria. The temporal criteria consider the algorithm’s use 

of duration information and its local adaptivity [1]. The incorporation of local 

adaptivity allows the interpretation of a given data point to be influenced by the 

interpretation of temporally adjacent points [1]. This is important for event detection, 

i.e., when determining points belonging to a fixation, removing data surrounding 

blinks, and identifying the onset and offset of a saccade. Thus, this concept will be 

considered, but not a focal point in the following discussion. 

The spatial criteria divide algorithms into categories based on their use of 

dispersion, velocity, or area-of-interest (AOI) information to detect events [1]. 

Dispersion-based algorithms typically identify samples as belonging to a fixation if the 

samples are located within a spatially limited region for a minimum period of time 

(i.e., the fixation duration) [2]. Dispersion-based algorithms utilize the fact that the 

distance between samples is different for fixations and saccades. These algorithms 

also take into account that a fixation has a minimum duration of 50-100 msec [3].  

Velocity-based algorithms compute the angular velocity between each data point 

and use a velocity threshold to distinguish whether a point belongs to a fixation or a 

saccade [3]. These algorithms take advantage of the fact that the velocity of a fixation 

is different from that of a saccade [3]. Area-based algorithms identify points within 

given AOIs that represent the relevant visual targets [1]. Since in this task there is only 

a single focal point, area-based algorithms utilizing AOI information are irrelevant. 

Thus, the remainder of the section will focus on dispersion and velocity-based 

methods.  



 

40 
 

Dispersion-based algorithms identify fixations as groups of consecutive points of 

regard (POR) within a particular dispersion or maximum separation [4]. There are a 

variety of methods that can be used to calculate dispersion. For example, the 

dispersion can be measured as the distance between each point in a fixation and every 

other point or it can be calculated as the distance between successive points [4]. The 

Dispersion-Threshold Identification (I-DT) algorithm utilizes a moving window of 

consecutive data points and calculates the dispersion of points within the window [1]. 

The dispersion is compared to a pre-specified dispersion threshold (e.g., 1 degree), and 

if the dispersion exceeds this value, the window is identified as not representing a 

fixation [1]. The window moves one data point further and continues to identify and 

group points that belong to a fixation [1]. Additionally, I-DT takes into account a 

minimum fixation duration threshold. If the groups of points within a fixation window 

do not span the minimum fixation duration threshold, the window is discarded since it 

no longer represents a fixation [1]. 

Dispersion-based algorithms typically focus on identifying fixations whereas 

velocity-based algorithms are better suited to saccade identification. The Velocity-

Threshold Identification (I-VT) algorithm computes the angular velocity between each 

data point and uses a velocity threshold to distinguish whether points belong to a 

fixation or a saccade [3]. The angular velocity is simply calculated by dividing the 

angular dispersion by the time between sample points. Thus, for consecutive data 

points, at a 240-Hz sampling rate as used in this experiment, the points are 1/240 

second apart, and the angular velocity is calculated by dividing the angle by 1/240. 
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There are a few areas of concern in implementing any of the event detection 

algorithms described. Throughout the literature, the thresholds for identifying saccades 

and fixations based on angular dispersion and angular velocity vary significantly. For 

example, dispersion thresholds range from 0.1o to 1.3o and duration thresholds range 

from 50 milliseconds to 400 milliseconds for the cutoff of a fixation [1, 2, 3, and 4]. 

Velocity-based thresholds fluctuate from 20o/second to greater than 300o/second for 

distinguishing between a fixation and a saccade [1, 2, 3, and 4]. In addition, methods 

for detecting events utilizing velocity vary as well. Whereas some simply set a 

threshold, others consist of a series of values, which must be reached to signify a 

saccade. For example, one algorithm first searches for saccades by the point at which 

the velocity has exceeded 160o/second, and then searches backward in time to find the 

first point where the threshold of 20o/second is exceeded, and defines this point as the 

actual starting point of the saccade [5]. 

Another issue in analyzing eye tracker data in order to detect saccades results 

from the noise within the data. Various methods exist for filtering the data, but then 

one risks filtering out important pieces of information. Other methods suggest 

adaptive thresholds, which can take into account the variation between runs or 

participants by utilizing the standard deviation [6]. The final issue of concern, when 

attempting to identify saccades, is the sampling rate of the eye tracker system. Larsson 

(2010) compared event detection algorithm results for a variety of sampling 

frequencies ranging from 50 Hz to 1250 Hz [3]. Larsson concluded that a sampling 

frequency of at least 250 Hz is required to obtain reasonable results when computing 
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angular velocity [3]. Thus, with the maximum available sampling frequency of 240 Hz 

for this data collection, accurately identifying saccades may be an issue. 

 

4.3. Saccade Detection Results and Graphs 

Before the data could be modeled, it was necessary to determine where and at 

what rate saccades were occurring. Based on the review of event detection algorithms, 

it was determined that a velocity-based algorithm would be used. A variety of 

thresholds and filtering methods were explored, before selecting a threshold value of 

300o/second. An adaptive threshold was also considered to account for participants 

with larger amounts of variation, but ultimately, was not used in the saccade 

identification.  

A simple algorithm which identified saccades based predominately on the 

velocity threshold was developed. The points that exceeded the threshold were 

categorized as potential saccades. Further review assessed whether or not these high 

velocity events occurred surrounding a blink. The dark-pupil-to-corneal reflection 

method used by the eye tracker is not able to accurately obtain the eye’s position while 

it is opening (or closing) as part of a blink. Thus, if the data occurred within twenty 

samples before or after a blink (identified by a zero in the positional data), it was 

discarded from the set of potential saccades. The remaining potential saccades were 

then identified as saccades and used for the following analyses. The data was analyzed 

using MATLAB with the pseudo code shown in Error! Reference source not found..   
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Figure 4-5. Saccade Detection Algorithm  

 
The number of saccades within each run was calculated and the times at which 

the saccades occurred were obtained.  The number of data points for each run both 

with and without saccades is shown in Table 4-1.  Note that blinks and physiologically 

impossible values have been removed from the data prior to the total data counts. 

Though for saccade identification 20 samples before and after blinks were considered, 

only ten samples before and after each blink were removed. For saccade detection, it 

was important that the adjustment of the eye before and after a blink was not identified 

as a saccade. For blink removal, it was only necessary to remove the data points that 
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might be part of the actual opening or closing of the eye. For the majority of the runs, 

removing blinks and the ten samples before and after blinks resulted in less than 10% 

of the data points being removed. 

 

 Saccades Control 1 Control 2 Control 3 N-back 1 N-back 2 N-back 3 

P1 Included 27495 26003 26592 27736 28612 28353 
Removed 27493 26001 26592 27510 28450 27954 

P2 
Included 24017 24724 22505 15175 21503 20821 
Removed 23983 23318 21779 15122 21442 20793 

P3 Included 26843 27250 27424 29043 26434 25060 
Removed 25140 26245 25862 27962 24815 23624 

P4 Included 27238 27691 27028 29085 30364 30260 
Removed 27145 27529 25651 28758 30141 28131 

P5 
Included 27621 27815 26807 30564 28010 N/A 
Removed 27615 27790 26497 30554 28008 N/A 

P6 Included 27437 28002 26891 27341 29438 29576 
Removed 26301 27818 26520 25890 29294 29327 

P7 Included 26412 26249 26600 26273 26032 29035 
Removed 23889 24283 24543 25045 23778 27040 

P8 
Included 27853 27183 26762 28578 28757 28450 
Removed 26958 26375 26019 27750 27064 26149 

P9 Included 27046 26804 27133 26520 26356 26278 
Removed 24629 24436 25209 24742 24652 24834 

 
Table 4-1. Number of data points in each run for each participant (before and after 
saccades have been removed from the data) 

 
 

The following plots illustrate the saccade counts versus time for each of the 

participants. Each subplot shows either the three control runs or three n-back runs of 

that participant. Participant 5 runs have been removed due to a data recording issue. 
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Figure 4-6. Saccade Count versus Time – Participant 1 Runs 

 
Participant 1 had significantly fewer saccades than the other participants (with the 

exception of Participant 2’s n-back runs). For the control runs, Participant 1 exhibited 

no more than two saccades during the two-minute period. The number of saccades 

increased for the n-back runs resulting in approximately 150-400 saccades during the 

two-minute period.  
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Figure 4-7. Saccade Count versus Time – Participant 2 Runs 

 
Participant 2 exhibited more saccades during the control runs than during the n-

back runs. However, the number of saccades varied greatly, from less than 50 

saccades in the first control run, up to approximately 1400 saccades during the second 

control run. For the n-back runs, participant 2’s number of saccades decreased to 25-

50 saccades during the two-minute period. The results from these two participants 

differed the most from the results of the other participants in terms of patterns and 

quantity of saccades. 
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Figure 4-8. Saccade Count versus Time – Participant 3 Runs 

 

For participant 3, the saccade pattern between the control runs and the n-back 

runs did not differ much, nor did the quantity of saccades. Both types of runs varied 

between 1000 and 1600 saccades during the two-minute period. Participant 4 also 

showed similar patterns of saccades between the control runs and n-back runs. 

However, while the first and second runs resulted in 200 saccades or less for the 

control runs, and less than 300 saccades for the n-back runs, this number significantly 

increased to almost 1400 saccades for control run 3 and almost 2000 saccades for n-

back run 3.   
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Figure 4-9. Saccade Count versus Time – Participant 4 Runs 

 

Figure 4-10. Saccade Count versus Time – Participant 6 Runs 
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Participant 6 followed a similar pattern as participant 4, in that control runs 2 and 

3 exhibited about 175 saccades and 375 saccades, respectively, whereas in control run 

1, approximately 1100 saccades were detected. For n-back runs 2 and 3, participant 6 

exhibited less than 200 saccades each, but in n-back run 1 that number shot up to over 

1400 saccades. 

 

 

Figure 4-11. Saccade Count versus Time – Participant 7 Runs 

 

For participant 7 there were more saccades and less variation exhibited in the 

control runs compared to the n-back runs. In the control runs, the number of saccades 

ranged from slightly under 2000 to 2500 saccades, whereas for the n-back runs the 

values ranged from about 1200 saccades to 2200 saccades.  
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Figure 4-12. Saccade Count versus Time – Participant 8 Runs 

 

For participant 8, approximately 750-900 saccades occurred during the two-

minute period of the control runs, whereas the n-back runs resulted in between 750 

and 2200 saccades. Thus, the quantity and the variation in the control runs were 

considerably smaller than that exhibited in the n-back runs. The pattern of saccades for 

participant 9 was opposite of the pattern observed for participant 8. Participant 9 

exhibited more saccades in the control runs, with approximately 1900 to 2400 

saccades, than in the n-back runs, where the number of saccades ranged from 1400 to 

1800 saccades. The two types of runs exhibited similar amounts of variation. 
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Figure 4-13. Saccade Count versus Time – Participant 9 Runs 

 

Overall, there was not a consistent pattern among the saccade counts across 

participants, or even within participants for the same type of run. Some participants 

exhibited more consistent patterns of saccades across all runs, whereas others differed 

significantly between the control and n-back runs. To further assess the distribution of 

saccades, histograms of saccade counts were generated using ten-second bins. The 

following figures illustrate a subset of these histograms. Figures 4-14 through 4-16 

illustrate Participant 1’s n-back histograms. These plots do not appear to consistently 

follow one specified distribution.  
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Figure 4-14. Histogram of Saccade Counts (participant 1, n-back 1) 

 

 

Figure 4-15. Histogram of Saccade Counts (participant 1, n-back 2) 
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Figure 4-16. Histogram of Saccade Counts (participant 1, n-back 3) 

 

 

Participant 7 did exhibit a fairly consistent pattern across all runs (Figures 4-17 

through 4-22). These graphs contain about 150-250 saccades per ten-second bin, and 

appear uniform across both the control and n-back runs. Additional analysis of the 

distribution of saccades is examined in the next section. 
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Figure 4-17. Histogram of Saccade Counts (participant 7, control 1) 

 

 

Figure 4-18. Histogram of Saccade Counts (participant 7, control 2) 
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Figure 4-19. Histogram of Saccade Counts (participant 7, control 3) 

 

 

Figure 4-20. Histogram of Saccade Counts (participant 7, n-back 1) 
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Figure 4-21. Histogram of Saccade Counts (participant 7, n-back 2) 

 

 

Figure 4-22. Histogram of Saccade Counts (participant 7, n-back 3) 
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4.4. Modeling and Simulation Results 

This section considers the various stochastic models described in section 2.5, and 

their applicability to different aspects of visual attention.  The first process considered 

is a Poisson process, and how accurately it describes the saccade patterns of the 

participants. As described in Section 2.5, the events of a Poisson process, 𝑋, occur 

randomly in time, and thus, follow a uniform distribution. In addition, 𝑋(0) = 0 and 

event occurrences in disjoint time intervals are independent. At the beginning of a run, 

no saccades have yet occurred, and thus the condition that 𝑋(0) = 0 is satisfied.  

Since saccade occurrences are not influenced by past saccades, the requirement for 

independence of events between disjoint time intervals is also satisfied.  

In order to test whether the times at which the events occur follow a uniform 

distribution, the Kolmogorov-Smirnov test was used.  A Kolmogorov-Smirnov plot is 

a graph of the empirical cumulative distribution function compared to the theoretical 

cumulative distribution function.  The empirical distribution was obtained from the 

event times at which the saccades occurred. For any 𝑥, the empirical distribution 

function, 𝐹𝑛(𝑥), represents the proportion of observations less than or equal 𝑥 and is 

defined as: 

𝐹𝑛(𝑥) = �

0,          𝑥 < 𝑋(1)
1
𝑛

, 𝑋(𝑖) ≤ 𝑥 < 𝑋(𝑖 + 1), 𝑖 = 1, … ,𝑛 − 1

1,          𝑥 ≥ 𝑋(𝑛)

 

where 𝑛 = the total number of observations or events. The theoretical cumulative 

distribution function, 𝐹(𝑥), represents the hypothesized distribution that the empirical 

data is expected to follow.  As such, 𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥), the probability of an 

observation value less than or equal to 𝑥. If the hypothesized model fails to account 
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for some aspect of the event behavior, then the lack of fit will be reflected in the 

Kolmogorov-Smirnov plot as a significant deviation from the theoretical cumulative 

distribution function.  

The Kolmogorov-Smirnov test statistic was then calculated to obtain a numerical 

estimate of lack of fit. This test statistic equals the largest absolute vertical difference 

between the empirical and theoretical cumulative distribution functions. This test is 

useful in determining whether a model accurately describes the structure of the data. 

For this test, the null hypothesis is that the empirical data follow the hypothesized 

distribution. Therefore, since a significance level of 0.05 is used, any value exceeding 

0.05, would fail to reject the null hypothesis, and thus, provide evidence to support 

that the empirical data follows the hypothesized distribution.  

In Table 4-2, the Kolmogorov-Smirnov test is assessing whether or not the 

saccade occurrence times follow a uniform distribution, and thus, a Poisson process. 

The cells highlighted in magenta represent those showing support for the saccade 

occurrences following a uniform distribution. Of the 52 runs, only 21% failed to reject 

the null hypothesis, indicating evidence towards the data following a Poisson process. 

Thus, it is not likely that the saccades follow a Poisson process.   
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 Kolmogorov-Smirnov Test: p-value for each run 
Participant Control 1 Control 2 Control 3 N-back 1 N-back 2 N-back 3 

1 <0.0001 <0.0001 N/A <0.0001 0.0004 0.0048 
2 0.8547 <0.0001 0.0202 0.0047 <0.0001 0.2353 
3 0.0002 0.0021 <0.0001 <0.0001 0.0273 <0.0001 
4 0.2295 <0.0001 0.0014 <0.0001 <0.0001 0.1339 
5 0.2061 <0.0001 0.0001 0.0664 <0.0001 N/A 
6 0.0123 0.0400 0.0003 0.0264 0.1799 0.0417 
7 0.2448 0.0105 <0.0001 <0.0001 0.0782 0.3555 
8 0.0085 0.0025 0.3348 0.0005 0.0058 <0.0001 
9 0.0060 <0.0001 0.0004 <0.0001 <0.0001 0.0006 

 
Table 4-2. Kolmogorov-Smirnov Test for a uniform distribution of saccade event times 
to indicate whether the saccades follow a Poisson process 

 

The following series of plots show a subset of the Kolmogorov-Smirnov plots 

testing whether the saccade occurrence times follow a uniform distribution. One 

aspect of concern is the runs in which the p-value does not appear to correspond with 

the plot. For example, there are certain plots with small p-values in which it appears 

that the empirical distribution closely follows the theoretical distribution and others 

with the opposite issue.  These discrepancies may suggest that the Kolmogorov-

Smirnov test is not the ideal test for this data. The Kolmogorov-Smirnov test requires 

that the cumulative distribution function be pre-determined [7]. It is not accurate if the 

parameters of the cumulative distribution function are estimated from the data [7]. In 

this case, the parameters were estimated from the data, and this inaccuracy may be 

represented in the discrepancies exhibited between the graphical representations and 

the p-values.  

Figure 4-23 shows an example where the p-value is quite large, 0.235, indicating 

a failure to reject the null hypothesis, but a large discrepancy, 0.154, exists between 

the empirical and theoretical distributions. Another example of this discrepancy is 
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shown in Figure 4-24 where the maximum difference is 0.241 and the p-value equals 

0.206. Figures 4-25 and 4-26 illustrate additional plots in which the p-values are large, 

indicating a failure to reject the null hypothesis. In these plots, however, the empirical 

distribution function appears to closely follow the theoretical one. The maximum 

differences between the distributions is about 0.02 for both plots; thus, corresponding 

appropriately to the p-value. Figures 4-27 and 4-28 illustrate plots with small p-values, 

indicating a rejection of the null hypothesis. In this set of plots, the empirical 

distribution appears to closely follow the theoretical one (with maximum differences 

of about 0.035), but the p-value does not agree with the graphical representation. 

 

 

Figure 4-23. Distribution of Saccade Occurrence Times (participant 2, n-back 3): 
Illustrates large p-value with large discrepancy between empirical and theoretical 
cumulative distribution function 
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Figure 4-24. Distribution of Saccade Occurrence Times (participant 5, control 1): 
Illustrates large p-value with large discrepancy between empirical and theoretical 
cumulative distribution function 

 

 

Figure 4-25. Distribution of Saccade Occurrence Times (participant 7, control 1): 
Agreement between p-value and graphical representation – empirical distribution 
follows the theoretical distribution 
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Figure 4-26. Distribution of Saccade Occurrence Times (participant 7, n-back 3): 
Agreement between p-value and graphical representation – empirical distribution 
follows the theoretical distribution 

 

 

Figure 4-27. Distribution of Saccade Occurrence Times (participant 3, n-back 2): 
Illustrates small p-value (reject that data comes from the theoretical distribution) with 
small discrepancy between empirical and theoretical distributions 
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Figure 4-28. Distribution of Saccade Occurrence Times (participant 9, control 1): 
Illustrates small p-value (reject that data comes from the theoretical distribution) with 
small discrepancy between empirical and theoretical distributions 

 

Due to the numerous discrepancies between the p-values and the graphical 

representations, additional distribution tests were explored. The Lilliefors test is a 

goodness-of-fit test suitable when a fully specified null distribution is unknown and 

the parameters must be estimated from the data [7].  The Lilliefors test statistic is the 

same as the Kolmogorov-Smirnov test, but the theoretical cumulative distribution 

function parameters are estimated from the data [7]. The table of critical values is 

calculated differently for the Lilliefors test. For each value of 𝑁, a large number of 

samples are drawn from the estimated distribution, and then used to determine the 

distribution of critical values [8]. One limitation of the Lilliefors test is that it is only 

able to test whether the empirical data comes from a distribution in the normal family, 
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as opposed to the Kolmogorov-Smirnov test, which allows a comparison of any two 

distribution functions [7]. Thus, instead of analyzing the distribution of the saccade 

event times, the distribution of the time between saccades was compared to an 

exponential distribution.  

As noted previously, another indicator that a point process is Poisson is that its 

sojourn times (i.e., the time between events) follow an exponential distribution. The 

empirical cumulative distribution function was assessed against an exponential 

distribution at a 95% confidence level using the lillietest function in MATLAB. 

Thus, an additional limitation of this test was that a dataset required at least four 

sample points, and that p-values above 0.5 and below 0.001 were rounded to 0.5 and 

0.001, respectively. Data which encountered data collection issues or contained less 

than four data points (i.e., less than four saccades), are shown as N/A in the table of p-

values (see Table 4-3).  

Razali and Wah (2011) compared the power of four formal tests of normality 

including the Kolmogorov-Smirnov and Lilliefors test. Power comparisons were 

obtained via Monte Carlo simulation of sample data generated from alternative 

distributions [9]. Samples sizes ranged from 10 to 2000 [9]. For small sample sizes, 

the power of each test varied considerably, but at a sample size of 2000, all tests 

obtained power values exceeding 80% [9]. In this study, the number of samples 

exceeds 20,000 for each run. Thus, for the distribution tests utilized, the power of each 

test is more than sufficient, with values exceeding 99% [9]. 
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 Lilliefors Test: p-value for each run 
Participant Control 1 Control 2 Control 3 N-back 1 N-back 2 N-back 3 

1 N/A N/A N/A <0.001 0.0026 0.0021 
2 0.0163 >0.50 0.0420 <0.001 <0.001 0.0012 
3 0.3730 0.0191 >0.50 0.1025 0.3007 0.0188 
4 0.0149 <0.001 0.2799 <0.001 0.0117 0.2111 
5 0.0054 0.0175 0.0131 0.0363 N/A N/A 
6 0.1648 <0.001 <0.001 0.0400 <0.001 0.0037 
7 >0.50 0.4858 0.1394 >0.50 0.3355 0.0137 
8 0.1420 0.2004 0.1097 0.1379 >0.50 0.3629 
9 0.1626 0.1503 >0.50 >0.50 0.0112 0.0892 

 
Table 4-3. Lilliefors Test for an exponential distribution of saccade sojourn times to 
indicate whether the saccades follow a Poisson process 

 

 

The p-values appeared to better correspond to the graphical representations in this 

case, not only for the exponential distribution comparison, but also when reviewing 

the uniform distribution comparison plots previously illustrated. The following subset 

of figures illustrates both those empirical distributions that follow the theoretical one 

and those that do not.  For this test, 46% of the 52 runs (assuming the three runs with 

an insufficient number of saccades do not follow an exponential distribution) resulted 

in evidence which supports that the saccades follow a Poisson process. The overall 

conclusion is still that the saccade occurrences do not follow a Poisson process. 
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Figure 4-29. Distribution of Saccade Sojourn Times (participant 3, n-back 2): Empirical 
distribution follows the theoretical distribution 

 

 

Figure 4-30. Distribution of Saccade Sojourn Times (participant 8, n-back 3): Empirical 
distribution follows the theoretical distribution 
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Figure 4-31. Distribution of Saccade Sojourn Times (participant 4, n-back 2): Empirical 
distribution does not follow the theoretical distribution 

 
 

 

Figure 4-32. Distribution of Saccade Sojourn Times (participant 6, control 2): Empirical 
distribution does not follow the theoretical distribution 
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Table 4-4 summarizes the results in relation to the null hypothesis, 𝐻0: The 

sojourn times follow an exponential distribution. By definition of a Poisson process, 

the times between events should follow an exponential distribution. Thus, failure to 

reject the null hypothesis provides evidence to support the idea that the saccade 

occurrences follow a Poisson process. Overall, 46% of the 52 runs failed to reject the 

null hypothesis, providing some evidence that the saccades may follow a Poisson 

process. However, this does not provide enough evidence to support that the saccades 

follow a Poisson process. There was not a substantial difference between the control 

runs and the n-back runs with 53% of control and 38% of n-back runs failing to reject 

the null hypothesis.   

 

 Control N-back Total 
Reject H0 12 16 28 

Fail to Reject H0 14 10 24 

Table 4-4. Summary of Lilliefors Distribution Tests – Poisson Process 

  

Another stochastic process considered is the Wiener process. In this section, the 

goal is to determine whether the gaze path, as defined by the eye movements made 

between sample times, follows a Wiener process. As defined in section 2.5, a 

stochastic process 𝐵(𝑡), −∞ < 𝑡 < ∞, is a Wiener process with parameter 𝜎2, if: 

(1) 𝐵(0) = 0,  

(2) 𝐵(𝑡2) − 𝐵(𝑡1), …𝐵(𝑡𝑛) − 𝐵(𝑡𝑛−1) are independent for 𝑡1 ≤ 𝑡2 ≤ ⋯ ≤ 𝑡𝑛,  

(3) 𝐵(𝑡) − 𝐵(𝑠) has a normal distribution with mean equal to zero and a 

variance of 𝜎2(𝑡 − 𝑠) for 𝑠 ≤ 𝑡.   
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As noted before, the first two conditions are clearly satisfied, and thus, testing the 

third condition is of interest here. For both the horizontal and vertical positions, 

𝐵(𝑡) − 𝐵(𝑠) was calculated for consecutive time samples, after removing blinks and 

saccades. In addition, data values corresponding to angular velocities exceeding 

1000o/second were removed since these data represent a movement of the eye that is 

not physiologically possible [2]. The distribution of the differences in position was 

then tested for normality at a 95% confidence level using the lillietest function in 

MATLAB.  For the Lilliefors test, all runs (i.e., for all participants, in both the 

horizontal and vertical dimensions, and both with and without saccades) resulted in p-

values equal to 0.5.  

 
 Horizontal Vertical 

Reject H0 0 0 
Fail to Reject H0 53 53 

Table 4-5. Summary of Lilliefors Distribution Tests for a Wiener process 

 

For both the horizontal differences and vertical differences in movement between 

samples, 100% of the 53 runs failed to reject the null hypothesis. This provides strong 

evidence that the gaze path in each dimension can be modeled as Brownian motion.  

Due to the limitations in minimum and maximum p-values, additional tests for 

normality were considered. The Jarque-Bera test assesses the hypothesis that the 

sample data follow a normal distribution with unknown mean and variance, against the 

alternative that the data does not come from a normal distribution. The test statistic for 

this test is: 𝐽𝐵 = 𝑛
6
�𝑠2 + (𝑘−3)2

4
� where 𝑛 = sample size, 𝑠 = skewness of the sample 

data, and 𝑘 = kurtosis of the sample data [7]. The jbtest function in MATLAB was 
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used. This function replaces the chi-square approximation of the test statistic with a 

more accurate algorithm that interpolates p-values from a table of quantiles [7].  The 

resulting Jarque-Bera test p-values for the difference in position, both with and 

without saccades, are shown in Table 4-6.  

 

Participant Run Saccades removed Saccades included 
Horizontal Vertical Horizontal Vertical 

1 

Control 1 0.5000 0.4883 0.5000 0.5000 
Control 2 0.4357 0.3542 0.5000 0.3542 
Control 3 0.5000 0.3201 0.5000 0.3201 
N-back 1 0.3591 0.3612 0.1511 0.1691 
N-back 2 0.2582 0.4920 0.1646 0.2207 
N-back 3 0.3599 0.4881 0.5000 0.4222 

2 

Control 1 0.4070 0.2823 0.4341 0.2848 
Control 2 0.1747 0.1793 0.0808 0.1214 
Control 3 0.5000 0.1549 0.0996 0.1336 
N-back 1 0.5000 0.5000 0.2631 0.2288 
N-back 2 0.1003 0.5000 0.1115 0.3927 
N-back 3 0.2358 0.2680 0.1715 0.2554 

3 

Control 1 0.5000 0.2082 0.0884 0.1533 
Control 2 0.5000 0.3414 0.2664 0.2323 
Control 3 0.4767 0.5000 0.0815 0.1707 
N-back 1 0.5000 0.5000 0.3533 0.2354 
N-back 2 0.3017 0.4336 0.0731 0.1966 
N-back 3 0.5000 0.0955 0.0705 0.2678 

4 

Control 1 0.5000 0.3223 0.1393 0.3590 
Control 2 0.4211 0.3080 0.1199 0.2713 
Control 3 0.5000 0.1994 0.0901 0.0833 
N-back 1 0.2024 0.5000 0.2877 0.2109 
N-back 2 0.5000 0.2840 0.1255 0.1601 
N-back 3 0.4217 0.1818 0.1130 0.0826 

5 

Control 1 0.2987 0.5000 0.4113 0.5000 
Control 2 0.3315 0.2987 0.1760 0.2643 
Control 3 0.2840 0.4983 0.1194 0.1916 
N-back 1 0.5000 0.3339 0.5000 0.3339 
N-back 2 0.2704 0.3084 0.2704 0.3084 

Table 4-6. P-values for the Jarque-Bera Test for a normal distribution to indicate 
whether the gaze path follows a Wiener process  
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Participant Run Saccades removed Saccades included 
Horizontal Vertical Horizontal Vertical 

6 

Control 1 0.4588 0.2993 0.0727 0.1868 
Control 2 0.5000 0.5000 0.3179 0.2182 
Control 3 0.3481 0.2921 0.1380 0.3134 
N-back 1 0.0804 0.1765 0.0703 0.1039 
N-back 2 0.3203 0.3015 0.3403 0.3665 
N-back 3 0.5000 0.2261 0.0999 0.1656 

7 

Control 1 0.0844 0.3635 0.0624 0.3246 
Control 2 0.0906 0.2321 0.0716 0.1496 
Control 3 0.1343 0.1659 0.0686 0.1214 
N-back 1 0.1336 0.1444 0.0818 0.1266 
N-back 2 0.0833 0.1368 0.0608 0.1358 
N-back 3 0.1299 0.1398 0.0670 0.1435 

8 

Control 1 0.4276 0.3779 0.1018 0.1586 
Control 2 0.2207 0.2484 0.2337 0.0968 
Control 3 0.3877 0.2254 0.2279 0.0782 
N-back 1 0.3336 0.2914 0.1605 0.2118 
N-back 2 0.3389 0.3107 0.0791 0.3803 
N-back 3 0.1522 0.3788 0.0659 0.1643 

9 

Control 1 0.1334 0.1245 0.0891 0.0860 
Control 2 0.1239 0.1203 0.0737 0.1149 
Control 3 0.2497 0.1335 0.0770 0.0732 
N-back 1 0.1262 0.1462 0.0747 0.0771 
N-back 2 0.1027 0.0878 0.0886 0.0896 
N-back 3 0.1067 0.0916 0.0792 0.0709 

Table 4-6 (cont.) P-values for the Jarque-Bera Test for a normal distribution to indicate 
whether the gaze path follows a Wiener process 

 

In terms of overall rejection or failure to reject the null hypothesis, the results of 

the Jarque-Bera test resulted in the same conclusions as those from the Lilliefors test. 

Though there was more variation in the p-values, 100% of the 53 still failed to reject 

the null hypothesis, which provided support that the data could be modeled as a 

Wiener process. The following plots illustrate the comparisons between the empirical 

distribution and the theoretical distribution, a normal distribution with mean equal to 

zero and a standard deviation estimated from the data.  
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Figure 4-33. Length of Horizontal Changes in Eye Position (participant 1, control 1): 
Empirical distribution follows theoretical distribution 
 

 

Figure 4-34. Length of Vertical Changes in Eye Position (participant 1, control 1): 
Empirical distribution follows theoretical distribution 
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Figure 4-35. Length of Horizontal Changes in Eye Position (participant 4, n-back 3): 
Empirical distribution follows theoretical distribution 
 

 

Figure 4-36. Length of Vertical Changes in Eye Position (participant 4, n-back 3): 
Empirical distribution follows theoretical distribution  
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Figure 4-37. Length of Horizontal Changes in Eye Position (participant 6, control 2): 
Empirical distribution follows theoretical distribution  
 

 

Figure 4-38. Length of Vertical Changes in Eye Position (participant 6, control 2): 
Empirical distribution follows theoretical distribution 
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Figure 4-39. Length of Horizontal Changes in Eye Position (participant 7, control 2): 
Empirical distribution follows theoretical distribution 
 

 

Figure 4-40. Length of Vertical Changes in Eye Position (participant 7, control 2): 
Empirical distribution follows theoretical distribution 
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The plots illustrate the differences in p-values between the Lilliefors and Jarque-

Bera tests. Though the overall conclusions drawn were always the same, the Jarque-

Bera test provided additional variation in the p-values that corresponded better with 

the graphical depiction and reflected the differences in the distribution functions. A 

summary of the Jarque-Bera test conclusions is shown in Table 4-7.  Overall, 100% of 

the 53 runs provide support that the eye movements follow Brownian motion.  

 

 Horizontal Direction Vertical Direction 
Saccades: Removed Included Removed Included 
Reject H0 0 0 0 0 

Fail to Reject H0 53 53 53 53 

Table 4-7. Summary of Jarque-Bera Distribution Tests for a Wiener process; Note that 
for the columns labeled removed or included, this refers to whether saccades were 
removed from the data before the analysis 

 

This analysis was extended to consider whether the distribution changed as the 

differences in position increased to two samples, three samples, four samples, five 

samples, and ten samples. For a Wiener process, 𝐵(𝑡) − 𝐵(𝑠) should follow a normal 

distribution with mean equal to zero and variance equal to 𝜎2(𝑡 − 𝑠). Thus, as the 

distance between 𝑡 and 𝑠 increases, it is expected that the variance will increase 

accordingly. For instance, if (𝑡 − 𝑠) = 3, then the proportion of variances between 

this three sample case and the consecutive sample case (i.e., (𝑡 − 𝑠) = 1)) should be 

equal to three. The results are summarized in Table 4-8 and Table 4-9.  
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Reject H0 Fail to Reject H0 

Horizontal Vertical Horizontal Vertical 
(𝑡 − 𝑠) = 1  0 0 53 53 
(𝑡 − 𝑠) = 2  4 4 49 49 
(𝑡 − 𝑠) = 3  2 1 51 52 
(𝑡 − 𝑠) = 4  5 4 48 49 
(𝑡 − 𝑠) = 5  5 5 48 48 
(𝑡 − 𝑠) = 10  16 13 37 40 

Table 4-8. Summary of Jarque-Bera Distribution Tests (with saccades removed) 
Comparison of different amounts of time between samples  

 

 
Reject H0 Fail to Reject H0 

Horizontal Vertical Horizontal Vertical 
(𝑡 − 𝑠) = 1  0 0 53 53 
(𝑡 − 𝑠) = 2  2 3 51 50 
(𝑡 − 𝑠) = 3  1 1 52 52 
(𝑡 − 𝑠) = 4  3 3 50 50 
(𝑡 − 𝑠) = 5  7 1 46 52 
(𝑡 − 𝑠) = 10  17 11 36 42 

Table 4-9. Summary of Jarque-Bera Distribution Tests (with saccades included) 
Comparison of different amounts of time between samples 

 

 As the number of time samples between eye positions increased in the 

calculation of horizontal and vertical differences, the results still strongly supported 

that the data follow a normal distribution. For the number of time samples up to four, 

more than 90% of the runs failed to reject the null hypothesis. This number dropped 

slightly to 86% for five samples between positional difference calculations, but still 

showed strong support that the data followed a normal distribution. At ten samples, a 

little more than 70% of the runs failed to reject the null hypothesis. However, the 

variance proportions did not increase as expected by a Wiener process as seen in Table 

4-10. Table 4-10 shows the average variance proportion by distance between time 
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samples. The proportions are grouped by direction of movement and saccade inclusion 

(or removal).  

 

 Horizontal Direction Vertical Direction 
Saccades: Removed Included Removed Included 

(𝑡 − 𝑠) = 2  2.149 2.092 2.557 2.333 
(𝑡 − 𝑠) = 3  3.324 3.280 4.138 3.724 
(𝑡 − 𝑠) = 4  4.677 4.603 5.824 5.194 
(𝑡 − 𝑠) = 5  6.149 5.998 7.624 6.731 
(𝑡 − 𝑠) = 10  11.707 11.920 13.382 12.160 

Table 4-10. Average proportion of variances between the time sample differences shown 
and the consecutive time sample case, i.e., (𝒕 − 𝒔) = 𝟏 

 

In the vertical dimension, there was more variation than in the horizontal 

dimension. For (𝑡 − 𝑠) = 2 or 3, the variance proportion values were quite close to 

the expected values. However, as the distance between time samples increased up to 

ten samples, the smallest average proportion observed was 11.707 when it should have 

been equal to 10. This suggests that as the distance between samples increases, at 

some point, the differences in position will no longer follow a Wiener process. 

Additional analysis of the parameter fits for the mean and standard deviation of 

the distributions was executed. A statistical summary of the results is provided in 

Appendix B for each type of run and for the analysis both with and without saccades. 

For each comparison, the mean and variance for each pair of datasets were assessed. 

In order to compare the variance, the MATLAB function vartest2 was used. This 

function tests the null hypothesis that the variances of the two distributions are equal. 

This result was used in comparing the means using ttest2 in MATLAB.  This 

function tests the null hypothesis that the means of the two datasets are equal, and an 
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equal or unequal variance assumption must be defined. The results from the various 

comparisons are shown in Table 4-11.  For the individual Jarque-Bera p-values and 

parameter fit values by participant, see tables B-3 through B-11 in Appendix B. 

 

Comparison description P-value: 
Mean test 

P-value: 
Variance test 

Control vs. N-back: Horizontal (without saccades) 0.3478 <0.0001 
Control vs. N-back: Horizontal (with saccades) 0.3346 <0.0001 
Control vs. N-back: Vertical (without saccades) 0.2706 <0.0001 
Control vs. N-back: Vertical (with saccades) 0.3817 <0.0001 
With vs. Without Saccades: Horizontal (control) 0.9999 <0.0001 
With vs. Without Saccades: Horizontal (n-back) 0.7324 <0.0001 
With vs. Without Saccades: Vertical (control) 0.9999 <0.0001 
With vs. Without Saccades: Vertical (n-back) 0.9914 <0.0001 
With vs. Without Saccades: Horizontal (both run types) 0.9419 <0.0001 
With vs. Without Saccades: Vertical (both run types) 0.5633 <0.0001 
Horizontal vs. Vertical: Control (without saccades) 0.0155 <0.0001 
Horizontal vs. Vertical: Control (with saccades) 0.0163 <0.0001 
Horizontal vs. Vertical: N-back (without saccades) 0.0748 <0.0001 
Horizontal vs. Vertical: N-back (with saccades) 0.3931 <0.0001 

Table 4-11. Hypothesis testing for differences in means and variances between different 
subsets of the data 

 

All the tests resulted in a rejection of the null hypothesis that the variances were 

equal. For the means, when comparing with versus without saccades, all the tests 

failed to reject the null hypothesis that the means were equal. Thus, for the comparison 

of with versus without saccades, there was no difference in means but there was a 

difference in variances. The runs with saccades consistently resulted in larger 

variances than those without the saccades. For the horizontal versus vertical 

differences in positions, the control runs rejected the hypothesis that the means are 
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equal, but the n-back runs failed to reject the null hypothesis. Hence, there was a 

difference in the variances between the horizontal and vertical dimensions, and 

between the means for the control runs. For the comparison of means between the 

control and n-back runs, in both dimensions, there was a failure to reject the null 

hypothesis. There was a difference in variances between the control and n-back runs, 

but there was no difference in means. The variances for the n-back runs were 

consistently larger than those for the control runs.  

Additional analyses regarding whether the gaze path followed a random walk 

were executed. The distribution of the angle or direction of movement was analyzed. 

In comparison to a uniform distribution, when saccades were removed, 60% of the 53 

runs failed to reject the null hypothesis. This provides support that the angle of eye 

movement, in two dimensions, followed a uniform distribution. For the data with 

saccades, only 21% of the 53 runs failed to reject the null hypothesis. Thus, there was 

a significant difference in the distributions of the angle of eye movement between the 

data with and without saccades. When saccades were removed, there is more support 

for the gaze path following a random walk, compared to when saccades are included 

in the assessment.   

Recall that 𝑆𝑛 represents the position of the eye at the end of 𝑛 movements. The 

distribution of the sequence of {𝑆𝑘}𝑘=1𝑛  was also examined. However, the resulting 

empirical distribution functions were varied, and without a consistent pattern. The 

distributions were first tested against a normal distribution and then a uniform 

distribution, but neither showed promising results. Thus, from this data, no 

conclusions can be drawn regarding the distribution of 𝑆𝑛.  
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For each of the distribution tests, simulation runs were also executed and assessed 

for validation. Multiple sets of 1000 random variables were generated in MATLAB 

for each of the distributions tested, i.e., uniform distribution, exponential distribution, 

and normal distribution. For the uniform distribution, each set of random variables 

was distributed over the same specified range, [0, 120], to represent the two-minute 

test runs. For the exponential distribution, the mean parameter value was varied over 

40 different data points based on the range of mean values in the collected data set. 

The same approach was followed for determining the standard deviation values for the 

normal random variables generated.  The mean value for the normal random variables 

was set at zero for all the simulation runs. 

The tests used to assess the uniform, exponential, and normal distributions for the 

collected data were then used on the simulated data for comparison. For each test, the 

random variables corresponding to the same distribution as the test were assessed, as 

well as a set of random variables corresponding to a different distribution. First, the 

uniform theoretical distribution was tested against the set of uniform random variables 

and the set of exponential random variables using the Kolmogorov-Smirnov test.  

Thus, the null hypothesis is that the data (i.e., simulated set of random variables) 

follow a uniform distribution. The results are summarized in Table 4-12. The cells 

highlighted in yellow represent that the correct conclusion was drawn, i.e., reject the 

null hypothesis that the exponential random variables follow a uniform distribution. 

Ideally, all of the data points would fall within these cells. 
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  Uniform random 

variables 
Exponential 

random variables 
Reject H0 8 200 

Fail to Reject H0 192 0 

Table 4-12. Kolmogorov-Smirnov test results; simulated sets of both uniform and 
exponential random variables were compared to a uniform distribution function 

 

The exponential distribution was assessed using the Lilliefors test. For the 

exponential distribution, a set of exponential random variables and a set of uniform 

random variables were tested. The null hypothesis is that the data follow an 

exponential distribution, and the results are summarized in Table 4-13. 

 

 Exponential 
random variables 

Uniform random 
variables 

Reject H0 11 200 
Fail to Reject H0 189 0 

Table 4-13. Lilliefors test results; simulated sets of both uniform and exponential 
random variables were compared to an exponential distribution function 

 

The last set of tests assessed how a simulated set of random variables (generated 

from a normal distribution or from an exponential distribution) compared to a normal 

distribution. The null hypothesis is that the data follow a normal distribution with 

mean equal to zero and a standard deviation estimated from the data. The results are 

summarized in Table 4-14 and Table 4-15 for the Lilliefors and Jarque-Bera tests, 

respectively. 
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 Normal random 
variables 

Exponential 
random variables 

Reject H0 8 200 
Fail to Reject H0 192 0 

Table 4-14. Lilliefors test results; simulated sets of both normal and exponential random 
variables were compared to a normal distribution function 

 

 Normal random 
variables 

Exponential 
random variables 

Reject H0 25 200 
Fail to Reject H0 175 0 

Table 4-15. Jarque-Bera test results; simulated sets of both normal and exponential 
random variables were compared to a normal distribution function 

 

In all the simulation results, the test never identified a set of random variables as 

following the specified distribution, when in fact it was generated from a different 

distribution. For instance, of the 200 trials testing the set of exponential random 

variables against a normal distribution, all 200 trials rejected the null hypothesis that 

the data followed a normal distribution. This was consistent across all distribution 

tests. Thus, these tests generated no false positives. This is important because it 

assures that those which failed to reject the null hypothesis, were actually variables 

generated from the same distribution being tested. 

On the other hand, there were instances in which a set of random variables (e.g., 

normal random variables) generated from the specified distribution rejected the null 

hypothesis that the data followed that specified distribution (e.g., the normal 

distribution).  Thus, there are instances in which the tests may be too rigid or the data, 

though generated from the specified distribution, still results in test statistics 

exceeding the acceptable value.  It appears that the Jarque-Bera test was more 
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conservative than the Lilliefors test in failing to reject the null hypothesis when the 

data was indeed generated from a normal distribution. Thus, for the summary of 

results when testing for Brownian motion, the results from the Jarque-Bera test are 

used. Overall, the results from the simulated sets of data provide evidence that when a 

test failed to reject the null hypothesis, that data did indeed follow the specified 

distribution.  
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CONCLUSIONS 

 

Eye tracker data was collected on nine participants for a series of runs. Two types 

of runs were considered, control and n-back runs. In both types of runs, the visual task 

was simple: focus on a single dot on a screen for two minutes. The n-back runs 

extended the task to include an auditory task in which a stream of numbers was 

presented to the participant. While focusing on the dot, and listening to the number 

stream, participants were asked to identify when the current number matched the 

number presented two steps previously. The goal of this research was to identify how 

the eyes moved when a participant is simply focusing on a single location. Unlike 

most of the experiments in the literature, the goal was not to identify how distractors 

affected eye movements or how one performed in a visual search task, but rather to 

provide a foundational model for basic eye movement. 

Three stochastic processes were considered in terms of modeling the focus of 

attention. The first process considered was a Poisson process, and how accurately it 

describes the saccade patterns of the participants. First, the saccade occurrence times 

were assessed using a Kolmogorov-Smirnov test. This resulted in 21% of the 52 runs 

supporting the hypothesis that the data followed a Poisson process. However, due to 

discrepancies between the graphical representation and the test statistics, additional 

distribution test statistics were considered. The Lilliefors test was then used to assess 

the times between saccades (i.e., the sojourn times). The sojourn times were compared 

CHAPTER 5 
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to an exponential distribution; for this test, 46% of the 52 runs resulted in evidence, 

which supports that the saccades follow a Poisson process. There was not a substantial 

difference between the control runs and the n-back runs with 53% of control and 38% 

of n-back runs failing to reject the null hypothesis.  Overall, the evidence was not 

strong enough to support that the saccades followed a Poisson process.  

One goal of this research was to determine the distribution of saccades. Different 

algorithms for saccade detection were considered as well as how noise affected the 

saccade detection.  A saccade detection algorithm was implemented and histograms of 

saccade occurrences were analyzed.  However, there was insufficient evidence to 

support that the saccade occurrences consistently follow one distribution across 

participants. Some participants exhibited similar patterns of saccades throughout while 

others varied considerably within the six runs. Thus, future work could extend the data 

collection and assessment to determine the distribution of the saccade occurrences. 

Another stochastic process considered was the Wiener process. The goal was to 

determine whether the gaze path, as defined by the eye movements made between 

sample times, follows a Wiener process. For this process, the length of eye movements 

made between samples, 𝐵(𝑡) − 𝐵(𝑠), follows a normal distribution with mean equal to 

zero and a variance of 𝜎2(𝑡 − 𝑠) for 𝑠 ≤ 𝑡.  For both the horizontal and vertical 

positions, 𝐵(𝑡) − 𝐵(𝑠) was calculated for consecutive time samples, after removing 

blinks and saccades, and then tested for normality. For the consecutive time sample 

case, 100% of the 53 runs provided support to the hypothesis that the data followed a 

normal distribution. This provides strong evidence that the gaze path in each 

dimension follows Brownian motion.  



 

88 
 

The analysis extended to consider whether the distribution changed as the 

differences in position increased to two samples, three samples, four samples, five 

samples, and ten samples. As the number of time samples between eye position 

differences calculations, the results still strongly supported that the data followed a 

normal distribution. For the number of time samples up to four, more than 90% of the 

runs failed to reject the null hypothesis. This number dropped slightly, to 86%, for five 

samples between positional difference calculations, but still showed strong support 

that the data followed a normal distribution. At ten samples, a little more than 70% of 

the runs failed to reject the null hypothesis. However, the variance proportions did not 

increase as expected by a Wiener process. This suggests that as the distance between 

samples increases, at some point, the differences in position will no longer follow a 

Wiener process. 

Additional analysis of the parameter fits for the mean and standard deviation of 

the distributions was executed.  All the tests resulted in a rejection of the null 

hypothesis that the variances were equal. For the comparison of with versus without 

saccades, there was no difference in means, but the runs with saccades resulted in 

consistently larger variances than those without the saccades. For the horizontal versus 

vertical differences in positions, the control runs rejected the hypothesis that the means 

are equal, but the n-back runs failed to reject the null hypothesis. For the comparison 

between the control and n-back runs, there was a difference in variances between the 

control and n-back runs, but there was no difference in means. The variances for the n-

back runs were consistently larger than those for the control runs.  
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Additional analyses regarding whether the gaze path followed a random walk 

were executed. The distribution of the angle or direction of movement was analyzed. 

In comparison to a uniform distribution, when saccades were removed, 60% of the 53 

runs failed to reject the null hypothesis. This provides support that the angle of eye 

movement, in two dimensions, followed a uniform distribution. For the data with 

saccades, only 21% of the 53 runs failed to reject the null hypothesis. Thus, there was 

a significant difference in the distributions of the angle of eye movement between the 

data with and without saccades. When saccades were removed, there is more support 

for the gaze path following a random walk, compared to when saccades are included 

in the assessment.  

Overall, both hypotheses were supported. Focus of attention, as represented by 

eye movement data, was able to be modeled as a stochastic process. The strongest 

evidence resulted from modeling differences in the horizontal and vertical eye 

movement as Brownian motion or the Wiener process. For these tests, 100% of the 

runs failed to reject the null hypothesis that the data followed a normal distribution, 

and thus, supported the hypothesis that the data followed a Wiener process. 

Additionally, there were differences exhibited between the variances for the parameter 

estimates between the control and n-back runs in both dimensions. 

This research and resulting conclusions are important in starting to explain the 

involuntary eye movements, which occur when a participant is singularly focused. 

These results provide strong evidence that this underlying movement can be 

represented as a Wiener process. For any experiment considering eye movements, the 

inherent movement of the eyes should be considered in the analysis. For instance, 
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consider an experiment in which one is trying to determine how attention is shifted 

when searching for a specified object. If the experimenter does not consider the eye 

movement that occurs involuntarily, inaccurate conclusions may be drawn about the 

items viewed prior to identifying the item of interest. Involuntary saccades or shifts of 

attention may be identified as important steps towards reaching the goal of object 

detection, when in actuality they are simply involuntary movements of the eyes. In any 

attention experiment, it may be important for the experimenter to consider initial 

experiments, which identify these basic eye movements. This would allow 

experimenters to estimate parameters for the process and consider how this underlying 

movement affects the results. 

Future work could build upon this model by extending the experiments to 

consider additional factors. Runs with motion or additional visual distractors could be 

included to determine how the model is affected.  Obvious extensions could also 

include more participants or longer test runs. In addition, a more demanding cognitive 

task could be included to further assess the degree of eye movement differences 

encountered.  Cognitive task performance in terms of reaction time and speed could 

also be assessed to determine the impact on gaze pattern.  

Future research could consider the application of these results to various domains. 

For example, one could study the gaze pattern differences in participants with 

attention deficit disorder (ADD).  It would be interesting to compare how focus of 

attention, as represented by gaze pattern, changes for participants diagnosed with 

ADD. This could extend to studying how medication for ADD affects the gaze pattern, 

which could potentially provide insight into the effectiveness of different types and 
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doses of ADD medication. In any more complex experiment, extension to an 

application, or predictive analysis of the focus of attention, it is important to consider 

the model of the inherent eye movement pattern. This research provides initial 

evidence of the structure of this eye movement pattern. 

  



 

92 
 

 

 

The following MATLAB script was utilized for testing the distribution of the 

saccade data.  Each section contains brief comments describing the purpose of that 

piece of code. Comments are shown in green. For clarity, when dividing the scripts 

into pages, sections of script focusing on a specified task (e.g., a for loop which reads 

in a series of data files) are illustrated as part of the same page instead of dividing the 

scripts where the page breaks actually occur. Each participant was assessed by 

changing the participant number in the script.  

 

 

Figure A-1. MATLAB script for analysis of the saccade distribution 

 

% Eye Tracker Data - Saccade Distribution Tests (page 1 of 6) 
 
%% Define run data to obtain 
folder = 'C:\Documents\Graduate 
School\Data_collection\participant_runs\'; 
participant = '1'; 
datatype = {'control';'nback'}; 
run_num = {'1';'2';'3'}; 
  
%% Set up variables 
din = 96; % distance from eye to projector screen in inches 
% convert d to pixels (or spaces on screen) 
  
width = 63; % width of displayed image on screen (in inches) 
up_rt_h = 422; center_h = 250;  
in_per_pix_h = (width/2)/(up_rt_h-center_h); 
  
height = 35; % height of displayed image on screen (in inches) 
up_rt_v = 239; center_v = 350;  
in_per_pix_v = (height/2)/(center_v-up_rt_v); 
  
in_per_pix = mean([in_per_pix_h in_per_pix_v]); 
d = din/in_per_pix; % distance from screen converted to pixels 
  
dt = 240; % number of samples in 1 sec 
 

APPENDIX A: MATLAB SCRIPT 
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Figure A-1 (continued). MATLAB script for analysis of the saccade distribution 

 

% Eye Tracker Data - Saccade Distribution Tests (page 2 of 6) 
 
%% Read csv data and put into variables and calculate point-to-point  
% angles and angular velocities 
cd([folder,'\','p',participant,'_data']) 
for t = 1:length(datatype) 
    for rn = 1:length(run_num) 
        filename = strcat('p',participant,'_',datatype{t,:},... 
                          run_num{rn,:},'_data.csv'); 
        data = csvread(filename); 
        nm = strcat(datatype{t,:},run_num{rn,:}); 
        horiz.(nm) = data(:,1); 
        vert.(nm) = data(:,2); 
        pos = [horiz.(nm) vert.(nm) zeros(length(horiz.(nm)(:)),1)]; 
        A = [horiz.(nm) vert.(nm) d*ones(length(vert.(nm)(:)),1)]; 
        for i = 1:length(A)-1 
            X = (pos(i,:)-A(i,:))'; 
            Y = (pos(i+1,:)-A(i,:))'; 
            ang.(nm)(i,1) = acosd((dot(X,Y))/... 
                            (sqrt(dot(X,X))*sqrt(dot(Y,Y)))); 
            vel.(nm)(i,1) = ang.(nm)(i,1)*dt; 
        end 
    end 
end 
 
%% Velocity Threshold -- Identify Occurrences of Saccades vs. Time 
% based on crossing of threshold -- set values to 0 or 1 (when  
% velocity threshold is crossed)  
  
run = {'control1';'control2';'control3';'nback1';'nback2';'nback3'}; 
 
vt = 300; % saccade velocity threshold 
vmax = 1000; % based on physical limitations 
for k = 1:length(run) 
    ind_v.(run{k,:}) = find(vel.(run{k,:})>=vt & vel.(run{k,:})<=vmax); 
    rlng_fix = zeros(length(vel.(run{k,:})),1);  
    rlng_fix(ind_v.(run{k,:}),1) = 1;  
    scid.(run{k,:}).fixed = rlng_fix; 
end 
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Figure A-1 (continued). MATLAB script for analysis of the saccade distribution 

 

 

% Eye Tracker Data - Saccade Distribution Tests (page 3 of 6) 
 
%% Identify saccades from potential saccades 
for m = 1:length(run) 
    samp = (1:length(horiz.(run{m,:})))'; posh = horiz.(run{m,:}); 
    posv = vert.(run{m,:}); veln = [-1; vel.(run{m,:})];  
    sc = [0; scid.(run{m,:}).fixed]; 
    scnew.(run{m,:}) = sc; 
    indsc = find(sc==1); 
    for b = 1:length(indsc) 
        if indsc(b,1)<=20 
            if any(posv(1:indsc(b,1)+20,1)==0) 
                scnew.(run{m,:})(indsc(b),1)=0; 
            end 
        elseif indsc(b,1)+20>length(posv) 
            if any(posv(indsc(b,1)-20:end)==0) 
                scnew.(run{m,:})(indsc(b),1)=0; 
            end 
        else 
            if any(posv(indsc(b,1)-20:indsc(b,1)+20,1)==0) 
                scnew.(run{m,:})(indsc(b),1) = 0; 
            end 
        end 
    end 
    for c = 1:length(sc) 
       ct(c,1) = sum(scnew.(run{m,:})(1:c)); 
    end 
    scn = scnew.(run{m,:}); 
    spdata.(run{m,:}) = [samp samp/240 posh posv veln sc scn ct]; 
    sdta.(run{m,:}) = [samp/240 scn]; 
    clear ct 
end 
 
%% Develop histograms with counts of saccades in each 10-second bin 
for tt = 1:length(run) 
    figure 
    edges = 0:2400:length(spdata.(run{tt,:})(:,7)); 
    ctn = find(spdata.(run{tt,:})(:,7)==1); 
    n = histc(ctn,edges); 
    bar(edges/240,n) 
    xlabel('Time (seconds)'); ylabel('Saccade counts'); 
    tstrng = ['Histogram of Saccade Counts: Participant ', ... 
               participant,' - ', run{tt,:}];  
    title(tstrng) 
    sstrng = ['p',participant,run{tt,:},'_histogram_of_saccades'] 
    saveas(gcf,sstrng,'fig'); saveas(gcf,sstrng,'png') 
end 
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Figure A-1 (continued). MATLAB script for analysis of the saccade distribution 

 

 

% Eye Tracker Data - Saccade Distribution Tests (page 4 of 6) 
 
%% Generate plots of saccade counts versus time 
clr = {'b','r','g'}; datatype = {'control';'nback'}; 
  
for t = 1:length(datatype) 
    subplot(1, 2, t) 
    for rn = 1:3 
        nm = strcat(datatype{t,:},num2str(rn)); 
        i = 1:240:length(spdata.(nm)); i = i'; 
        stairs(spdata.(nm)(i,8),clr{rn},'LineWidth',2) 
        hold on 
        grid on 
        xlabel('Time (sec)'); xlim([0 120]); 
        ylabel('Count (#Saccades)') 
        tstrng = ['Participant ',participant,': ', ... 

datatype{t,:},' runs']; 
        title(tstrng) 

legend([datatype{t,:},num2str(1)],[datatype{t,:}, ...    
num2str(2)],[datatype{t,:},num2str(3)],'Location','best') 

    end 
    saveas(gcf,['p',participant,'_num_saccades_all_runs'],'fig') 
    saveas(gcf,['p',participant,'_num_saccades_all_runs'],'png') 
end 
  
%% Create variable to represent time between saccades (or sojourn times) 
for sj = 1:length(run) 
    ind = find(spdata.(run{sj,:})(:,7)==1); 
    sdta = spdata.(run{sj,:})(ind,2); 
    stimes.(run{sj,:})(1,1) = sdta(1,1); 
    for sjt = 2:length(sdta) 
        stimes.(run{sj,:})(sjt,1) = sdta(sjt,1)-sdta(sjt-1,1); 
    end 
end 
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Figure A-1 (continued). MATLAB script for analysis of the saccade distribution 

 

 

% Eye Tracker Data - Saccade Distribution Tests (page 5 of 6) 
 
%% Kolmogorov-Smirnov test - Uniform distribution of event times 
% Test to determine whether the event times (i.e., the times at which  
% a saccade occurs) are uniformly distributed over the length of the  
% run as required by a Poisson point process 
for k = 1:length(run) 
    figure 
    ind = find(spdata.(run{k,:})(:,7)==1);  
    xtst = spdata.(run{k,:})(ind,1); 
    [fval,xval]=ecdf(spdata.(run{k,:})(:,1),'frequency',... 
                     spdata.(run{k,:})(:,7));     
    plot(xval,fval,'LineWidth',2) 
    xx = 1:max(xval); xx = xx'; 
    thcdf = unifcdf(xx,0,max(xval)); 
    hold on 
    plot(xx,thcdf,'r--','LineWidth',2) 
    hold on 
    legend('Empirical CDF','Theoretical CDF','Location','Best') 
    grid on 
    [hval.(run{k,:}),pval.(run{k,:})] = kstest(xtst,[xx,thcdf]); 
    xlabel('x'); ylabel('F_X(x)'); 
    text(5000,0.8,['p-value = ',num2str(pval.(run{k,:}))],... 
                   'BackgroundColor',[0.9 0.9 0.9],'EdgeColor','k')    
    tstrng = ['Distribution of Saccade Event Times: Participant ',... 
                participant,' - ',run{k,:}]; 
    title(tstrng) 
    saveas(gcf,['p',participant,run{k,:},... 
                '_CDF_comparison_saccades_ks_pval'],'fig') 
    saveas(gcf,['p',participant,run{k,:},... 
                '_CDF_comparison_saccades_ks_pval'],'png') 
    close 
end 
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Figure A-1 (continued). MATLAB script for analysis of the saccade distribution  

 

For the assessment of gaze path, much of the initial code as well as the methods 

used are the same as shown above. The first page is identical and thus, is not repeated 

here. The code starts after that first page has occurred, and thus labeling begins at page 

2. For this page 2, compared to the above, there are only slight differences. Additional 

calculations were added to obtain values for horizontal, vertical, and overall 

differences in position between time samples. The other pages contain more extensive 

changes in the code and thus, are not summarized here.  

 

 

 

% Eye Tracker Data - Saccade Distribution Tests (page 6 of 6) 
 
%% Lilliefors test - Exponential distribution of sojourn times 
% Test to determine whether the sojourn times (i.e., time between  
% saccade occurrences) follow an exponential distribution as required  
% by the points of a Poisson process 
for sj = 1:length(run) 
    [fval,xval] = ecdf(stimes.(run{sj,:})); 
    thcdf = expcdf(xval,mean(stimes.(run{sj,:}))); 
    stairs(xval,fval,'b','LineWidth',2) 
    hold on 
    plot(xval,thcdf,'r--','LineWidth',2) 
    legend('Empirical CDF','Theoretical CDF','Location','Best') 
    grid on 
    xval = xval'; thcdf = thcdf'; 

[hval.(run{sj,:}),pval.(run{sj,:})] = lillietest(xval,0.05,'exp'); 
    xlabel('x'); ylabel('F_X(x)'); 
    text(0.5,0.2,['p-value = ',num2str(pval.(run{sj,:}))],... 
                  'BackgroundColor',[0.9 0.9 0.9],'EdgeColor','k')    
    tstrng = ['Distribution of Sojourn Times: Participant ',... 
                participant,' - ',run{sj,:}]; 
    title(tstrng) 
    saveas(gcf,['p',participant,run{sj,:},... 
                '_CDF_comparison_sojourns_ll_pval'],'fig') 
    saveas(gcf,['p',participant,run{sj,:},... 
                '_CDF_comparison_sojourns_ll_pval'],'png') 
    close 
end 
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Figure A-2. MATLAB script for Brownian motion assessment 

 

% Eye Tracker Data – Gaze Path Assessment (page 2 of 6) 
 
%% Read csv data and put into variables and calculate point-to-point  
% angles and angular velocities 
for t = 1:length(datatype) 
    for rn = 1:length(run_num) 
        filename = strcat(folder,'p',participant,'_data\','p',... 
                   participant,'_',datatype{t,:},run_num{rn,:},... 
                   '_data.csv'); 
        data = csvread(filename); 
        nm = strcat(datatype{t,:},run_num{rn,:}); 
        horiz.(nm) = data(:,1); 
        vert.(nm) = data(:,2); 
   for i = 1:length(horiz.(nm))-1 
            hor_diff.(nm)(i,1) = (horiz.(nm)(i+1,1)-horiz.(nm)(i,1));  
            ver_diff.(nm)(i,1) = (vert.(nm)(i+1,1)-vert.(nm)(i,1)); 
            dist.(nm)(i,1) = sqrt(hor_diff.(nm)(i,1)^2+... 
                                  ver_diff.(nm)(i,1)^2); 
 
        end 
        pos = [horiz.(nm) vert.(nm) zeros(length(horiz.(nm)(:)),1)]; 
        A = [horiz.(nm) vert.(nm) d*ones(length(vert.(nm)(:)),1)]; 
        for i = 1:length(A)-1 
            X = (pos(i,:)-A(i,:))'; 
            Y = (pos(i+1,:)-A(i,:))'; 

ang.(nm)(i,1) =   
acosd((dot(X,Y))/(sqrt(dot(X,X))*sqrt(dot(Y,Y)))); 

            vel.(nm)(i,1) = ang.(nm)(i,1)*dt; 
        end 
    end 
end 
 
%% Velocity Threshold -- Identify Occurrences of Saccades vs. Time 
run = {'control1';'control2';'control3';'nback1';'nback2';'nback3'}; 
vt = 300; vmax = 1000;  
  
for k = 1:length(run) 
    ind_v.(run{k,:}) = find(vel.(run{k,:})>=vt & ... 
                            vel.(run{k,:})<=vmax); 
    rlng_fix = zeros(length(vel.(run{k,:})),1);  
    rlng_fix(ind_v.(run{k,:}),1) = 1;  
    scid.(run{k,:}) = rlng_fix; 
end 
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Figure A-2 (continued). MATLAB script for Brownian motion assessment 

 

% Eye Tracker Data – Gaze Path Assessment (page 3 of 6) 
%% Find locations of saccades 
for m = 1:length(run) 
    posv = vert.(run{m,:});  
    horiz_ns.(run{m,:}) = [0; hor_diff.(run{m,:})]; 
    vert_ns.(run{m,:}) = [0; ver_diff.(run{m,:})];  
    dist_ns.(run{m,:}) = [0; dist.(run{m,:})]; 
    sc = [0; scid.(run{m,:})]; scnew.(run{m,:}) = sc; 
    indsc = find(sc==1); 
    for b = 1:length(indsc) 
        if indsc(b,1)<=20 
            if any(posv(1:indsc(b,1)+20,1)==0) 
                scnew.(run{m,:})(indsc(b),1)=0; 
            end 
        elseif indsc(b,1)+20>length(posv) 
            if any(posv(indsc(b,1)-20:end)==0) 
                scnew.(run{m,:})(indsc(b),1)=0; 
            end 
        else 
            if any(posv(indsc(b,1)-20:indsc(b,1)+20,1)==0) 
                scnew.(run{m,:})(indsc(b),1) = 0; 
            end 
        end 
    end 
end 
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Figure A-2 (continued). MATLAB script for Brownian motion assessment 

 

 

% Eye Tracker Data – Gaze Path Assessment (page 4 of 6) 
 
%% Find pattern with blinks and saccades removed 
hnew = horiz; vnew = vert; 
for q = 1:length(run) 
    rb = 11;  
    while rb < length(hnew.(run{q,:}))-10 
        if hnew.(run{q,:})(rb)==0 && vert.(run{q,:})(rb)==0 
  if horiz.(run{q,:})(rb-1)==0 || horiz.(run{q,:})(rb+1)==0 
            % set data around blinks to 0 

    hnew.(run{q,:})(rb-10:rb+10)=0;  
                vnew.(run{q,:})(rb-10:rb+10)=0; 
            else 

    hnew.(run{q,:})(rb-samp_num:rb+samp_num)=0;  
                vnew.(run{q,:})(rb-samp_num:rb+samp_num)=0; 
         end 

  end 
  rb = rb + 1; 

    end  
    hdiff = [0; hor_diff.(run{q,:})];  
    vdiff = [0; ver_diff.(run{q,:})]; 
    odiff = [0; dist.(run{q,:})]; velnew = [0; vel.(run{q,:})]; 
    ind_ns = find(scnew.(run{q,:})==0 & hnew.(run{q,:})>0 & ... 
                  vnew.(run{q,:})>0 & velnew<=1000); 
    horiz_ns.(run{q,:}) = hdiff(ind_ns,1);  
    vert_ns.(run{q,:}) = vdiff(ind_ns,1); 
    dist_ns.(run{q,:}) = odiff(ind_ns,1);  
    ind_nb = find(hnew.(run{q,:})>0 & vnew.(run{q,:})>0 & ... 
                  velnew<=1000); 
    horiz_nb.(run{q,:})= hdiff(ind_nb,1);  
    vert_nb.(run{q,:}) = vdiff(ind_nb,1); 
    dist_nb.(run{q,:}) = odiff(ind_nb,1); 
    dist_nb.(run{q,:}) = odiff(ind_nb,1); 
end 
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Figure A-2 (continued). MATLAB script for Brownian motion assessment 
 

% Eye Tracker Data – Gaze Path Assessment (page 5 of 6) 
%% Tests for normality - With blinks and saccades removed 
 
% Comment two out of three of the following lines for each run 
% through this code; run through the code for each line 
 
dir = horiz_ns; tval = 'Horizontal'; sval = 'horiz'; 
% dir = vert_ns; tval = 'Vertical'; sval = 'vert'; 
% dir = dist_ns; tval = 'Overall'; sval = 'overall'; 
  
for tn = 1:length(run) 
    figure 
    [fval,xval] = ecdf(dir.(run{tn,:})); 
    stairs(xval,fval,'LineWidth',2) 
    sdev = std(dir.(run{tn,:})); 
    xx = min(xval):0.5:max(xval); 
    thcdf = normcdf(xx,0,sdev);  
    hold on 
    plot(xx,thcdf,'r--','LineWidth',2) 
    hold on 
    legend('Empirical CDF','Theoretical CDF','Location','NorthWest') 
    grid on 
    xlabel('x'); ylabel('F_X(x)'); xlim([-10 10]); 

[h_ll.(run{tn,:}),p_ll.(run{tn,:})] =     
lillietest(xval,0.05,'norm');  

    [h_jb.(run{tn,:}),p_jb.(run{tn,:})] = jbtest(xval); 
    text(-8,0.7,{'P-values';['Lilliefors = ',... 
                 num2str(p_ll.(run{tn,:}))];['Jarque-Bera = ',... 
                 num2str(p_jb.(run{tn,:}))]},'BackgroundColor',... 
                 [0.9 0.9 0.9],'EdgeColor','k','FontSize',10.5)    
    tstrng = [tval, ' Path Distances: ','Participant ',... 
              participant, ' - ', run{tn,:}]; 
    title(tstrng) 
    saveas(gcf,['p',participant,run{tn,:},'_CDF_comp_',sval,... 
                '_dist_both_ns'],'fig') 
    saveas(gcf,['p',participant,run{tn,:},'_CDF_comp_',sval,... 
                '_dist_both_ns'],'png') 
end 
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Figure A-2 (continued). MATLAB script for Brownian motion assessment 

 

 

 

% Eye Tracker Data – Gaze Path Assessment (page 6 of 6) 
%% Tests for normality – Only blinks are removed 
 
% Comment two out of three of the following lines for each run 
% through this code; run through the code for each line – directory  
% is changed for each set of graphs 
dir = horiz_nb; tval = 'Horizontal'; sval = 'horiz'; 
% dir = vert_nb; tval = 'Vertical'; sval = 'vert'; 
% dir = dist_nb; tval = 'Overall'; sval = 'overall'; 
  
for tn = 1:length(run) 
    figure 
    [fval,xval] = ecdf(dir.(run{tn,:})); 
    stairs(xval,fval,'LineWidth',2) 
    sdev = std(dir.(run{tn,:})); 
    xx = min(xval):0.5:max(xval); 
    thcdf = normcdf(xx,0,sdev);  
    hold on 
    plot(xx,thcdf,'r--','LineWidth',2) 
    hold on 
    legend('Empirical CDF','Theoretical CDF','Location','NorthWest') 
    grid on 
    xlabel('x'); ylabel('F_X(x)'); xlim([-10 10]); 

[h_ll.(run{tn,:}),p_ll.(run{tn,:})] =     
lillietest(xval,0.05,'norm');  

    [h_jb.(run{tn,:}),p_jb.(run{tn,:})] = jbtest(xval); 
    text(-8,0.7,{'P-values';['Lilliefors = ',... 
                 num2str(p_ll.(run{tn,:}))];['Jarque-Bera = ',... 
                 num2str(p_jb.(run{tn,:}))]},'BackgroundColor',... 
                 [0.9 0.9 0.9],'EdgeColor','k','FontSize',10.5)    
    tstrng = [tval, ' Path Distances: ','Participant ',... 
              participant, ' - ', run{tn,:}]; 
    title(tstrng) 
    saveas(gcf,['p',participant,run{tn,:},'_CDF_comp_',sval,... 
                '_dist_both_ns'],'fig') 
    saveas(gcf,['p',participant,run{tn,:},'_CDF_comp_',sval,... 
                '_dist_both_ns'],'png') 
end 
  
close all 
 
%% Estimate parameters for comparison 
for i = 1:length(run) 
    [muh_ns(i,1),sigh_ns(i,1)] = normfit(horiz_ns.(run{i,:})); 
    [muv_ns(i,1),sigv_ns(i,1)] = normfit(vert_ns.(run{i,:})); 
    [muo_ns(i,1),sigo_ns(i,1)] = normfit(dist_ns.(run{i,:})); 
    [muh_nb(i,1),sigh_nb(i,1)] = normfit(horiz_nb.(run{i,:})); 
    [muv_nb(i,1),sigv_nb(i,1)] = normfit(vert_nb.(run{i,:})); 
    [muo_nb(i,1),sigo_nb(i,1)] = normfit(dist_nb.(run{i,:})); 
end 
 



 

103 
 

 
For the assessment of the random walk, much of the script was the same as that 

for the Brownian motion assessment. However, an additional variable needed to be 

calculated and tested. Again page 1 from figure A-1 remained the same. For page 2 in 

Figure A-2, the following lines were the only changes made. These were added to the 

initial for loop used for reading data into MATLAB and defining variables. 

 
hor_length = hor_diff.(nm); ver_length = ver_diff.(nm); 
ang_dir.(nm) = atand(ver_length./hor_length); 
 

 
Page 3 in Figure A-2 was again repeated almost identically with only three added 

lines. In the for loop which identifies variables with blinks and saccades removed, the 

following three lines were added. 

 
adiff = [0; ang_dir.(run{q,:})];  
ang_dir_nb.(run{q,:}) = adiff(ind_nb,1);  
ang_dir_ns.(run{q,:}) = adiff(ind_ns,1); 
 

 
The distribution of both these variables, equivalent to the angle of eye movement with 

saccades (ang_dir_nb) and without saccades (ang_dir_ns), were then tested using the 

Kolmogorov-Smirnov test as described in Figure A-1. The only changes were to 

inconsequential items such as titles and file names. The remainder of the code is 

shown in Figure A-3. 
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Figure A-3. MATLAB script for Random Walk assessment 

 

 
  

 

% Eye Tracker Data – Random Walk Assessment  
 
%% Sum up horizontal and vertical distances to obtain new variable 
% S_n, which represents a random walk 
for s = 1:length(run) 
    for n = 1:length(horiz_ns.(run{s,:})) 
        sn_horiz_ns.(run{s,:})(n,1) =sum(horiz_ns.(run{s,:})(1:n,1)); 
        sn_vert_ns.(run{s,:})(n,1) = sum(vert_ns.(run{s,:})(1:n,1)); 
    end 
    for m = 1:length(horiz_nb.(run{s,:})) 
        sn_horiz_nb.(run{s,:})(m,1) = sum(horiz_nb.(run{s,:})(1:m,1)); 
        sn_vert_nb.(run{s,:})(m,1) = sum(vert_nb.(run{s,:})(1:m,1)); 
    end 
end 
 
%% Test for distribution of summed values 
 
% Comment all but one of the following lines for each run through 
% this code; run through the code for each line – commented out thcdf 
% and kstest were also explored and thus included in this code 
 
dir = sn_horiz_ns; sval = 'sn_h_ns'; 
% dir = sn_horiz_nb; sval = 'sn_h_nb'; 
% dir = sn_vert_ns; sval = 'sn_v_ns'; 
% dir = sn_vert_nb; sval = 'sn_v_nb'; 
 
for tn = 1:length(run) 
    figure 
    [fval,xval] = ecdf(dir.(run{tn,:})); 
    stairs(xval,fval,'LineWidth',2) 
    xx = min(xval):0.5:max(xval); xx = xx'; 
    sdev = std(dir.(run{tn,:})); 
    thcdf = normcdf(xx,0,sdev);  
%     thcdf = unifcdf(xx,min(xval),max(xval)); 
    hold on 
    plot(xx,thcdf,'r--','LineWidth',2) 
    hold on 
    legend('Empirical CDF','Theoretical CDF','Location','NorthWest') 
    grid on 
    xlabel('x'); ylabel('F_X(x)'); ylim([0 1]); 
    [h_jb.(run{tn,:}), p_jb.(run{tn,:})] = jbtest(xval); 
%     [h_ks.(run{tn,:}),p_ks.(run{tn,:})] = kstest(xval,[xx,thcdf]); 

text(mean(xval),0.3,['p-value = ',num2str(p_jb.(run{tn,:}))],... 
              'BackgroundColor',[0.9 0.9 0.9],'EdgeColor','k')    
    tstrng = ['Gaze Path Distribution: Participant ',participant,... 
              ' - ', run{tn,:}]; 
    title(tstrng) 
end 
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A statistical summary of the results is provided below for each type of run and for 

the analysis both with and without saccades. 

 

 Parameter Run Type Minimum Maximum Mean Median 

Horizontal 
Mean 

Control -0.0460 0.0135 -0.0034 -0.0007 

N-back -0.0184 0.0256 -0.0003 0.0004 
Horizontal 
Standard 
Deviation 

Control 0.4919 4.4372 1.8798 1.5976 

N-back 0.7170 4.4759 2.0122 1.5861 

Vertical 
Mean 

Control -0.0245 0.0421 0.0002 0.0014 

N-back -0.1028 0.0158 -0.0113 -0.0008 
Vertical 
Standard 
Deviation 

Control 0.6280 3.6273 1.8272 1.7089 

N-back 0.7861 4.1807 2.0009 1.6973 

 Table B-1: Summary Statistics of Parameter Fits for data without saccades  

 

Parameter Run Type Minimum Maximum Mean Median 

Horizontal 
Mean 

Control -0.0458 0.0079 -0.0031 -0.0004 

N-back -0.0335 0.0131 -0.0012 0.0020 
Horizontal 
Standard 
Deviation 

Control 0.5062 6.4903 2.9758 2.7528 

N-back 0.7180 6.4506 3.0977 2.9249 

Vertical 
Mean 

Control -0.0187 0.0501 -0.0001 -0.0001 

N-back -0.1060 0.0145 -0.0093 -0.0008 
Vertical 
Standard 
Deviation 

Control 0.6280 5.4379 2.6482 2.8265 

N-back 0.7962 5.0790 2.7261 2.6570 

Table B-2: Summary Statistics of Parameter Fits for data with saccades 

APPENDIX B: PARAMETER ASSESSMENT SUMMARY 
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The following tables are the results of testing whether the empirical data follow a 

normal distribution. The empirical data is the difference in horizontal and vertical eye 

position for the consecutive time sample case. Each table summarizes the results for 

one participant and contains the parameter fit values and Jarque-Bera p-values by run.  

 

Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal -0.0004 0.4919 0.5000 -0.0004 0.5062 0.5000 

Vertical -0.0009 0.6537 0.4883 -0.0009 0.6582 0.5000 

Control 2 
Horizontal -0.0091 0.5341 0.4357 -0.0091 0.5428 0.5000 

Vertical 0.0125 0.6925 0.3542 0.0125 0.6945 0.3542 

Control 3 
Horizontal -0.0020 0.5064 0.5000 -0.0020 0.5064 0.5000 

Vertical -0.0010 0.6280 0.3201 -0.0010 0.6280 0.3201 

N-back 1 
Horizontal -0.0032 0.7657 0.3591 0.0010 1.4937 0.1511 

Vertical 0.0081 1.0070 0.3612 0.0097 1.3710 0.1691 

N-back 2 
Horizontal -0.0005 0.7900 0.2582 -0.0004 1.2525 0.1646 

Vertical 0.0058 0.8925 0.4920 0.0050 1.0950 0.2207 

N-back 3 
Horizontal 0.0025 1.1280 0.3599 0.0048 1.9399 0.5000 

Vertical 0.0101 1.0945 0.4881 0.0091 1.5326 0.4222 
 
Table B-3: Participant 1 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 
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Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal -0.0049 0.6422 0.4070 -0.0050 0.7866 0.4341 

Vertical -0.0178 0.7079 0.2823 -0.0177 0.7711 0.2848 

Control 2 
Horizontal -0.0265 2.8862 0.1747 -0.0178 4.5786 0.0808 

Vertical 0.0042 2.5136 0.1793 -0.0047 3.5932 0.1214 

Control 3 
Horizontal -0.0460 1.9874 0.5000 -0.0458 3.1406 0.0996 

Vertical 0.0421 1.9775 0.1549 0.0501 2.8265 0.1336 

N-back 1 
Horizontal -0.0184 0.9541 0.5000 -0.0335 1.2449 0.2631 

Vertical -0.1028 1.2233 0.5000 -0.1060 1.3474 0.2288 

N-back 2 
Horizontal -0.0147 0.9828 0.1003 -0.0180 1.2130 0.1115 

Vertical -0.0562 1.0569 0.5000 -0.0553 1.1842 0.3927 

N-back 3 
Horizontal -0.0134 0.7645 0.2358 -0.0135 0.9021 0.1715 

Vertical -0.0650 1.0367 0.2680 -0.0640 1.0824 0.2554 

Table B-4: Participant 2 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 

 

 

Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0081 1.8818 0.5000 0.0037 3.5018 0.0884 

Vertical 0.0014 1.6904 0.2082 0.0007 2.8836 0.1533 

Control 2 
Horizontal 0.0036 1.5976 0.5000 0.0033 2.9677 0.2664 

Vertical -0.0163 1.7089 0.3414 -0.0140 2.8277 0.2323 

Control 3 
Horizontal -0.0024 2.0752 0.4767 0.0079 3.7422 0.0815 

Vertical -0.0019 1.8261 0.5000 -0.0132 3.3581 0.1707 

N-back 1 
Horizontal -0.0001 1.7596 0.5000 0.0018 3.0853 0.3533 

Vertical 0.0064 1.6684 0.5000 0.0069 2.7224 0.2354 

N-back 2 
Horizontal 0.0100 2.3622 0.3017 0.0052 4.0739 0.0731 

Vertical -0.0090 2.1509 0.4336 -0.0084 3.6601 0.1966 

N-back 3 
Horizontal -0.0149 2.1927 0.5000 0.0030 3.8877 0.0705 

Vertical -0.0014 1.9012 0.0955 -0.0029 3.3923 0.2678 
 
Table B-5: Participant 3 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 
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Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal -0.0007 0.7041 0.5000 0.0002 1.1895 0.1393 

Vertical 0.0032 1.4450 0.3223 0.0032 1.6328 0.3590 

Control 2 
Horizontal -0.0016 0.7381 0.4211 -0.0004 1.3827 0.1199 

Vertical 0.0053 1.1642 0.3080 0.0042 1.5810 0.2713 

Control 3 
Horizontal 0.0053 2.1757 0.5000 -0.0007 3.9835 0.0901 

Vertical 0.0074 1.8502 0.1994 0.0057 3.3664 0.0833 

N-back 1 
Horizontal 0.0256 1.3847 0.2024 0.0108 2.0900 0.2877 

Vertical 0.0025 1.5335 0.5000 -0.0008 1.8965 0.2109 

N-back 2 
Horizontal -0.0001 0.8786 0.5000 0.0004 1.6177 0.1255 

Vertical 0.0026 1.6158 0.2840 0.0028 1.9589 0.1601 

N-back 3 
Horizontal 0.0089 2.4600 0.4217 0.0022 4.6431 0.1130 

Vertical 0.0046 2.0206 0.1818 0.0084 4.0941 0.0826 
 
Table B-6: Participant 4 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 

 

 

Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0028 0.7990 0.2987 0.0028 0.8196 0.4113 

Vertical 0.0021 0.6902 0.5000 0.0022 0.7027 0.5000 

Control 2 
Horizontal 0.0016 0.8450 0.3315 0.0021 0.9376 0.1760 

Vertical 0.0016 0.7796 0.2987 0.0022 0.8248 0.2643 

Control 3 
Horizontal -0.0023 2.0480 0.2840 -0.0006 2.5733 0.1194 

Vertical 0.0004 1.5312 0.4983 0.0011 1.7691 0.1916 

N-back 1 
Horizontal 0.0060 0.7312 0.5000 0.0061 0.7875 0.5000 

Vertical 0.0122 0.9002 0.3339 0.0122 0.9160 0.3339 

N-back 2 
Horizontal 0.0035 0.7170 0.2704 0.0038 0.7180 0.2704 

Vertical 0.0051 0.7861 0.3084 0.0062 0.7962 0.3084 
 
Table B-7: Participant 5 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 
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Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0122 2.1533 0.4588 0.0051 3.7847 0.0727 

Vertical 0.0053 1.7801 0.2993 -0.0053 2.8196 0.1868 

Control 2 
Horizontal 0.0020 0.8467 0.5000 0.0022 1.5220 0.3179 

Vertical -0.0158 0.9127 0.5000 -0.0139 1.1505 0.2182 

Control 3 
Horizontal -0.0112 1.1203 0.3481 -0.0083 2.0745 0.1380 

Vertical -0.0191 1.1432 0.2921 -0.0187 1.6637 0.3134 

N-back 1 
Horizontal 0.0026 3.4100 0.0804 0.0020 4.9946 0.0703 

Vertical 0.0015 2.6848 0.1765 -0.0007 3.6660 0.1039 

N-back 2 
Horizontal -0.0068 0.7848 0.3203 -0.0075 1.2968 0.3403 

Vertical -0.0194 0.9682 0.3015 -0.0183 1.1406 0.3665 

N-back 3 
Horizontal -0.0164 1.0563 0.5000 -0.0179 1.8187 0.0999 

Vertical -0.0193 1.0123 0.2261 -0.0183 1.2954 0.1656 
 
Table B-8: Participant 6 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 

 

 

Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0135 4.2281 0.0844 -0.0061 6.4903 0.0624 

Vertical -0.0234 3.4840 0.3635 -0.0134 4.6092 0.3246 

Control 2 
Horizontal -0.0275 4.4372 0.0906 -0.0069 6.2041 0.0716 

Vertical -0.0130 3.2408 0.2321 -0.0158 3.9840 0.1496 

Control 3 
Horizontal -0.0020 3.6856 0.1343 0.0016 5.5872 0.0686 

Vertical -0.0014 3.5847 0.1659 -0.0060 4.4963 0.1214 

N-back 1 
Horizontal -0.0060 2.4956 0.1336 -0.0153 4.0969 0.0818 

Vertical -0.0143 2.6259 0.1444 -0.0125 3.4928 0.1266 

N-back 2 
Horizontal 0.0032 4.4759 0.0833 0.0113 6.4506 0.0608 

Vertical -0.0209 3.7152 0.1368 -0.0130 4.6964 0.1358 

N-back 3 
Horizontal 0.0218 3.5505 0.1299 0.0131 5.2158 0.0670 

Vertical -0.0366 4.1305 0.1398 -0.0160 5.0529 0.1435 
 
Table B-9: Participant 7 -- Parameter fit values and Jarque-Bera p-values for testing the 
empirical data against the normal distribution 
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Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0107 1.5268 0.4276 0.0048 2.7528 0.1018 

Vertical 0.0169 1.9356 0.3779 0.0107 2.9753 0.1586 

Control 2 
Horizontal 0.0003 1.3304 0.2207 0.0026 2.6373 0.2337 

Vertical 0.0084 1.5494 0.2484 0.0085 2.6977 0.0968 

Control 3 
Horizontal -0.0074 1.4395 0.3877 -0.0042 2.4997 0.2279 

Vertical 0.0280 1.7898 0.2254 0.0210 3.0853 0.0782 

N-back 1 
Horizontal 0.0003 1.4126 0.3336 0.0022 2.7645 0.1605 

Vertical 0.0158 1.7262 0.2914 0.0145 2.5917 0.2118 

N-back 2 
Horizontal 0.0014 2.4139 0.3389 0.0021 4.2094 0.0791 

Vertical -0.0004 2.1845 0.3107 0.0020 3.3757 0.3803 

N-back 3 
Horizontal 0.0063 3.4181 0.1522 -0.0013 5.5262 0.0659 

Vertical 0.0010 2.8700 0.3788 -0.0017 4.1678 0.1643 
 
Table B-10: Participant 8 -- Parameter fit values and Jarque-Bera p-values for testing 
the empirical data against the normal distribution 

 

 

Run Direction 
Saccades Removed Saccades Included 
𝝁� 𝝈� p-value 𝝁� 𝝈� p-value 

Control 1 
Horizontal 0.0067 3.2404 0.1334 0.0046 5.3199 0.0891 

Vertical -0.0245 3.2479 0.1245 -0.0049 5.3876 0.0860 

Control 2 
Horizontal 0.0023 3.5644 0.1239 -0.0034 5.5267 0.0737 

Vertical -0.0021 3.6273 0.1203 -0.0001 5.4379 0.1149 

Control 3 
Horizontal -0.0160 3.2702 0.2497 -0.0142 4.7893 0.0770 

Vertical 0.0040 3.1811 0.1335 0.0055 5.0758 0.0732 

N-back 1 
Horizontal -0.0066 3.5243 0.1262 0.0046 5.0795 0.0747 

Vertical -0.0114 3.2776 0.1462 -0.0040 4.4956 0.0771 

N-back 2 
Horizontal 0.0005 3.8445 0.1027 0.0044 5.0386 0.0886 

Vertical -0.0109 3.7597 0.0878 0.0017 4.7744 0.0896 

N-back 3 
Horizontal 0.0010 4.0591 0.1067 -0.0031 5.0985 0.0792 

Vertical -0.0013 4.1807 0.0916 0.0028 5.0790 0.0709 
 
Table B-11: Participant 9 -- Parameter fit values and Jarque-Bera p-values for testing 
the empirical data against the normal distribution 
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